WorldWideScience

Sample records for scanning probe electrospray

  1. Electrospray deposition from fountain pen AFM probes

    NARCIS (Netherlands)

    Geerlings, J.; Sarajlic, Edin; Berenschot, Johan W.; Abelmann, Leon; Tas, Niels Roelof

    2012-01-01

    In this paper we present for the first time electrospraying from fountain pen probes. By using electrospray contactless deposition in an AFM setup becomes possible. Experiments on a dedicated setup were carried out as first step towards this goal. Spraying from 8 and 2 µm apertures was observed. For

  2. Probe-Substrate Distance Control in Desorption Electrospray Ionization

    Science.gov (United States)

    Yarger, Tyler J.; Yuill, Elizabeth M.; Baker, Lane A.

    2018-03-01

    We introduce probe-substrate distance (Dps)-control to desorption electrospray ionization (DESI) and report a systematic investigation of key experimental parameters. Examination of voltage, flow rate, and nebulizing gas pressure suggests as Dps decreases, the distance-dependent spray current increases, until a critical point. At the critical point the relationship inverts, and the spray current decreases as the probe moves closer to the surface due to constriction of solution flow by the nebulizing gas. Dps control was used to explore the use of spray current as a signal for feedback positioning, while mass spectrometry imaging was performed simultaneously. Further development of this technique is expected to find application in study of structure-function relationships for clinical diagnostics, biological investigation, and materials characterization. [Figure not available: see fulltext.

  3. Real-Time Metabolomics on Living Microorganisms Using Ambient Electrospray Ionization Flow-Probe

    DEFF Research Database (Denmark)

    Hsu, Cheng-Chih; ElNaggar, Mariam S.; Peng, Yao

    2013-01-01

    sampling probe for electrospray ionization-mass spectrometry to extract and ionize metabolite mixtures directly from living microbial colonies grown on soft nutrient agar in Petri-dishes without any sample pretreatment. To demonstrate the robustness of the method, this technique was applied to observe...

  4. On-line probe for fast electrochemistry/electrospray mass spectrometry. Investigation of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Xu, X; Lu, W; Cole, R B

    1996-12-01

    A newly invented probe accessory for fast electrochemistry/electrospray mass spectrometry (EC/ESMS) is presented and evaluated. The device features a low-volume, three-electrode electrochemical cell which has been designed with a minimum distance between the working electrode and the "Taylor cone" inherent to the electrospray process. This configuration limits the time between electrochemical generation of ions and mass spectrometric analysis to an absolute minimum. A fused-silica layer insulates the microcylinder working electrode from the sample solution until immediately prior to the electrospray region, postponing electrode processes until the last moment. The same fused-silica layer insulates the working electrode from the surrounding auxiliary electrode, a stainless steel capillary that also serves as the electrospray capillary. The performance and capabilities of the novel electrochemistry/electrospray mass spectrometry system have been evaluated using polycyclic aromatic hydrocarbons (PAHs) as test analytes. In the positive ion EC/ESMS mode, oxidized forms (one-electron removal) of PAHs are produced in high yield. The ability to analyze reaction products appearing subsequent to the initial oxidation is also demonstrated.

  5. Scanning vector Hall probe microscopy

    International Nuclear Information System (INIS)

    Cambel, V.; Gregusova, D.; Fedor, J.; Kudela, R.; Bending, S.J.

    2004-01-01

    We have developed a scanning vector Hall probe microscope for mapping magnetic field vector over magnetic samples. The microscope is based on a micromachined Hall sensor and the cryostat with scanning system. The vector Hall sensor active area is ∼5x5 μm 2 . It is realized by patterning three Hall probes on the tilted faces of GaAs pyramids. Data from these 'tilted' Hall probes are used to reconstruct the full magnetic field vector. The scanning area of the microscope is 5x5 mm 2 , space resolution 2.5 μm, field resolution ∼1 μT Hz -1/2 at temperatures 10-300 K

  6. Liposomes self-assembled from electrosprayed composite microparticles

    International Nuclear Information System (INIS)

    Yu Dengguang; Yang Junhe; Wang Xia; Tian Feng

    2012-01-01

    Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way. (paper)

  7. An interchangeable scanning Hall probe/scanning SQUID microscope

    International Nuclear Information System (INIS)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-01-01

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10 −7 T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La 2/3 Ca 1/3 MnO 3 thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K

  8. Characterization of coating probe with Ti-DLC for electrical scanning probe microscope

    International Nuclear Information System (INIS)

    Shia Xiaolei; Guo Liqiu; Bai Yang; Qiao Lijie

    2011-01-01

    In electrical scanning probe microscope (ESPM) applications, the wear and conductivity of the probe are undoubtedly serious concerns since they affect the integrity of the measurements. This study investigates the characterization of Ti doped diamond-like-carbon (DLC) as coating material on a silicon cantilever for ESPM. We deposited a layer of Ti-DLC thin film on the surface of Si cantilever by magnetron sputtering. The morphology and composition of the Ti-DLC films were characterized by scanning electron microscopy and Raman spectroscopy, respectively. We also compared the wear resistance, electric conductivity and scanning image quality of the Ti-DLC-coated probes with those of commercially available conductive probes. The results showed that the electric conductivity and the scanning image quality of the Ti-DLC-coated probes were the same as the commercial conductive probes, while the wear resistance and service life was significantly better.

  9. An interchangeable scanning Hall probe/scanning SQUID microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Tse-Jun; Wang, M. J. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  10. Four-probe measurements with a three-probe scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-01-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe

  11. Four-probe measurements with a three-probe scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Salomons, Mark [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A., E-mail: rwolkow@ualberta.ca [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  12. Four-probe measurements with a three-probe scanning tunneling microscope.

    Science.gov (United States)

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  13. Scanning probe recognition microscopy investigation of tissue scaffold properties

    Science.gov (United States)

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  14. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy......, scanning tunneling spectroscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. The temperature of the sample can be as high as 850 °C. Both reducing and oxidizing gases such as oxygen, hydrogen, and nitrogen can be added in the sample chamber and the oxygen partial pressure (pO2...

  15. Quantitative Caffeine Analysis Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  16. The Scanning Theremin Microscope: A Model Scanning Probe Instrument for Hands-On Activities

    Science.gov (United States)

    Quardokus, Rebecca C.; Wasio, Natalie A.; Kandel, S. Alex

    2014-01-01

    A model scanning probe microscope, designed using similar principles of operation to research instruments, is described. Proximity sensing is done using a capacitance probe, and a mechanical linkage is used to scan this probe across surfaces. The signal is transduced as an audio tone using a heterodyne detection circuit analogous to that used in…

  17. Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function.

    Science.gov (United States)

    Higuchi, Seiji; Kuramochi, Hiromi; Laurent, Olivier; Komatsubara, Takashi; Machida, Shinichi; Aono, Masakazu; Obori, Kenichi; Nakayama, Tomonobu

    2010-07-01

    Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.

  18. Nanobits: customizable scanning probe tips

    DEFF Research Database (Denmark)

    Kumar, Rajendra; Shaik, Hassan Uddin; Sardan Sukas, Özlem

    2009-01-01

    We present here a proof-of-principle study of scanning probe tips defined by planar nanolithography and integrated with AFM probes using nanomanipulation. The so-called 'nanobits' are 2-4 mu m long and 120-150 nm thin flakes of Si3N4 or SiO2, fabricated by electron beam lithography and standard s...

  19. Nanofabrication of magnetic scanned-probe microscope sensors

    International Nuclear Information System (INIS)

    Chong, B.K.

    2001-10-01

    This thesis presents the development of novel magnetic sensor combined with Atomic Force Microscope probe (AFM) using conventional semiconductor processing techniques and Electron Beam Lithography (EBL). The fabrication of these magnetic sensors was performed on a common micromachined silicon substrate using a generic batch fabrication technique. Sub-micron Hall bar for Scanning Hall probe Microscopy (SHPM) and electromagnetic force coil magnet for Scanning Electromagnetic Force Microscopy (eMFM) were designed and constructed at the apex of Silicon attractive mode cantilever probes. The process demonstrates good control over sensor parameters. Results indicated controllability of Hall bar junction sizes (spatial resolution) to below 100nm and Coil diameter sizes to below 500nm with minimum sizes down to 50nm and 270nm respectively. The process has shown its flexibility to accommodate different material systems. The same technology was used to fabricate multiple devices such as double Hall bars on a tip as well as a small electro-magnet coil probe co-defined with the Hall probe to form a magnetic imaging / modification probe. A conventional Non-Contact mode AFM employing heterodyne interferometry and in-house built electronics was modified for SHPM and eMFM. These probes had been scanned over a commercial computer hard disk. These microscopes showed the capability of resolving magnetic bits and topographic information independently and simultaneously. All scanning experiments were carried out under ambient conditions. The experiments required no extra preparation to be done to the specimen before imaging and measurements were carried out under ambient conditions. These probes offer the prospect of direct magnetic field measurement, non- invasiveness, very close proximity, possible local manipulation, better control over the tip- specimen interaction distance and topographic imaging. It is hoped that these magnetic microscope probes will be of great interest and

  20. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus

    International Nuclear Information System (INIS)

    Melko, Joshua J.; Ard, Shaun G.; Shuman, Nicholas S.; Viggiano, Albert A.; Pedder, Randall E.; Taormina, Christopher R.

    2015-01-01

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H 3 O + , but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re + with O 2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re 2 2+ is found to charge transfer with O 2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba + , which is reacted with N 2 O to create BaO + , and we find a rate constant that agrees with the literature

  1. Full information acquisition in scanning probe microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, Stephen; Belianinov, Alex; Kalinin, Sergei V.; Somnath, Suhas

    2017-04-04

    Apparatus and methods are described for scanning probe microscopy and spectroscopy based on acquisition of full probe response. The full probe response contains valuable information about the probe-sample interaction that is lost in traditional scanning probe microscopy and spectroscopy methods. The full probe response is analyzed post data acquisition using fast Fourier transform and adaptive filtering, as well as multivariate analysis. The full response data is further compressed to retain only statistically significant components before being permanently stored.

  2. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1996-01-01

    Scanning Tunneling Microscopy III provides a unique introduction to the theoretical foundations of scanning tunneling microscopy and related scanning probe methods. The different theoretical concepts developed in the past are outlined, and the implications of the theoretical results for the interpretation of experimental data are discussed in detail. Therefore, this book serves as a most useful guide for experimentalists as well as for theoreticians working in the filed of local probe methods. In this second edition the text has been updated and new methods are discussed.

  3. Scanning probe lithography for nanoimprinting mould fabrication

    International Nuclear Information System (INIS)

    Luo Gang; Xie Guoyong; Zhang Yongyi; Zhang Guoming; Zhang Yingying; Carlberg, Patrick; Zhu Tao; Liu Zhongfan

    2006-01-01

    We propose a rational fabrication method for nanoimprinting moulds by scanning probe lithography. By wet chemical etching, different kinds of moulds are realized on Si(110) and Si(100) surfaces according to the Si crystalline orientation. The structures have line widths of about 200 nm with a high aspect ratio. By reactive ion etching, moulds with patterns free from the limitation of Si crystalline orientation are also obtained. With closed-loop scan control of a scanning probe microscope, the length of patterned lines is more than 100 μm by integrating several steps of patterning. The fabrication process is optimized in order to produce a mould pattern with a line width about 10 nm. The structures on the mould are further duplicated into PMMA resists through the nanoimprinting process. The method of combining scanning probe lithography with wet chemical etching or reactive ion etching (RIE) provides a resistless route for the fabrication of nanoimprinting moulds

  4. Scanning probe microscopy experiments in microgravity

    International Nuclear Information System (INIS)

    Drobek, Tanja; Reiter, Michael; Heckl, Wolfgang M.

    2004-01-01

    The scanning probe microscopy setups are small, lightweight and do not require vacuum or high voltage supply. In addition, samples can be investigated directly without further preparation. Therefore, these techniques are well-suited for applications in space, in particular, for operation on the International Space Station (ISS) or for high resolution microscopy on planetary missions. A feasibility study for a scanning tunneling microscopy setup was carried out on a parabolic flight campaign in November 2001 in order to test the technical setup for microgravity applications. With a pocket-size design microscope, a graphite surface was imaged under ambient conditions. Atomic resolution was achieved although the quality of the images was inferior in comparison to laboratory conditions. Improvements for future scanning probe microscopy experiments in microgravity are suggested

  5. Large Scale Scanning Probe Microscope "Making Shear Force Scanning visible."

    NARCIS (Netherlands)

    Bosma, E.; Offerhaus, Herman L.; van der Veen, Jan T.; van der Veen, J.T.; Segerink, Franciscus B.; Wessel, I.M.

    2010-01-01

    We describe a demonstration of a scanning probe microscope with shear-force tuning fork feedback. The tuning fork is several centimeters long, and the rigid fiber is replaced by a toothpick. By scaling this demonstration to visible dimensions the accessibility of shear-force scanning and tuning fork

  6. Developments in Scanning Hall Probe Microscopy

    Science.gov (United States)

    Chouinard, Taras; Chu, Ricky; David, Nigel; Broun, David

    2009-05-01

    Low temperature scanning Hall probe microscopy is a sensitive means of imaging magnetic structures with high spatial resolution and magnetic flux sensitivity approaching that of a Superconducting Quantum Interference Device. We have developed a scanning Hall probe microscope with novel features, including highly reliable coarse positioning, in situ optimization of sensor-sample alignment and capacitive transducers for linear, long range positioning measurement. This has been motivated by the need to reposition accurately above fabricated nanostructures such as small superconducting rings. Details of the design and performance will be presented as well as recent progress towards time-resolved measurements with sub nanosecond resolution.

  7. Gold nanocone probes for near-field scanning optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, Bastian; Schaefer, Christian; Nill, Peter; Fleischer, Monika; Kern, Dieter P. [Institute of Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, 72076 Tuebingen (Germany)

    2010-07-01

    Apertureless near-field scanning optical microscopy (ANSOM) provides the possibility to collect simultaneously high-resolution topographical and sub-diffraction limited optical information from a surface. When optically excited, the scanning probes act as optical antennae with a strong near-field enhancement near the tip apex. Spatial resolution and optical near-field enhancement depend strongly on the properties and geometry of the scanning probe - in particular on very sharp tip radii. Various possibilities for fabricating good antennae have been pursued. Most commonly, scanning probes consist of electrochemically etched gold wires which are sharp but not well-defined in geometry. We present two different approaches for ultra sharp and well-defined antennae based upon fabricating gold nanocones with a tip radius smaller than 10 nm which can be used in ANSOM. A transfer process is presented that can be used to attach single gold nanocones to non-metallic probes such as sharp glass fiber tips. Alternatively, new processes are presented to fabricate cones directly on pillars of different materials such as silicon or bismuth, which can be applied to cantilever tips for ANSOM scanning applications.

  8. Fabrication of all diamond scanning probes for nanoscale magnetometry

    OpenAIRE

    Appel Patrick; Neu Elke; Ganzhorn Marc; Barfuss Arne; Batzer Marietta; Gratz Micha; Tschoepe Andreas; Maletinsky Patrick

    2016-01-01

    The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes s...

  9. Aligned ion implantation using scanning probes

    International Nuclear Information System (INIS)

    Persaud, A.

    2006-01-01

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  10. Aligned ion implementation using scanning probes

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, A

    2006-12-12

    A new technique for precision ion implantation has been developed. A scanning probe has been equipped with a small aperture and incorporated into an ion beamline, so that ions can be implanted through the aperture into a sample. By using a scanning probe the target can be imaged in a non-destructive way prior to implantation and the probe together with the aperture can be placed at the desired location with nanometer precision. In this work first results of a scanning probe integrated into an ion beamline are presented. A placement resolution of about 120 nm is reported. The final placement accuracy is determined by the size of the aperture hole and by the straggle of the implanted ion inside the target material. The limits of this technology are expected to be set by the latter, which is of the order of 10 nm for low energy ions. This research has been carried out in the context of a larger program concerned with the development of quantum computer test structures. For that the placement accuracy needs to be increased and a detector for single ion detection has to be integrated into the setup. Both issues are discussed in this thesis. To achieve single ion detection highly charged ions are used for the implantation, as in addition to their kinetic energy they also deposit their potential energy in the target material, therefore making detection easier. A special ion source for producing these highly charged ions was used and their creation and interactions with solids of are discussed in detail. (orig.)

  11. Nanolithography and nanochemistry utilizing scanning probe techniques: directed self-assembly of sub-micrometer-sized structures by scanning probe lithography defined templates

    NARCIS (Netherlands)

    Wouters, D.; Sturms, J.P.E.; Schubert, U.S.

    2004-01-01

    The octadecyl trichlorosilane (OTS) monolayer was formed on Si carrier, and the template regulated by a local probe oxidation method from this was produced using a scanning probe lithography. The local probe oxidation was done by moving an AFM tip along an axle line. When the chip contacts a OTS

  12. Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cong-Min [Institute of Microanalytical; Zhu, Ying [Institute of Microanalytical; Jin, Di-Qiong [Institute of Microanalytical; Kelly, Ryan T. [Environmental; Fang, Qun [Institute of Microanalytical

    2017-08-15

    Ambient mass spectrometry (MS) has revolutionized the way of MS analysis and broadened its application in various fields. This paper describes the use of microfluidic techniques to simplify the setup and improve the functions of ambient MS by integrating the sampling probe, electrospray emitter probe, and online mixer on a single glass microchip. Two types of sampling probes, including a parallel-channel probe and a U-shaped channel probe, were designed for dryspot and liquid-phase droplet samples, respectively. We demonstrated that the microfabrication techniques not only enhanced the capability of ambient MS methods in analysis of dry-spot samples on various surfaces, but also enabled new applications in the analysis of nanoliter-scale chemical reactions in an array of droplets. The versatility of the microchip-based ambient MS method was demonstrated in multiple different applications including evaluation of residual pesticide on fruit surfaces, sensitive analysis of low-ionizable analytes using postsampling derivatization, and high-throughput screening of Ugi-type multicomponent reactions.

  13. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    Science.gov (United States)

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  14. A Resonant Scanning Dipole-Antenna Probe for Enhanced Nanoscale Imaging

    NARCIS (Netherlands)

    Neumann, L.; van 't Oever, Jan Joannes Frederik; van Hulst, N.F.

    2013-01-01

    We present a scanning antenna probe that provides 35 nm optical hotspots with a 16-fold excitation enhancement. A resonant optical antenna, tuned to operation in the visible, is carved into the aluminum-coated scanning probe. The antenna resonances, field localization, excitation, and polarization

  15. Simulation-aided design and fabrication of nanoprobes for scanning probe microscopy

    International Nuclear Information System (INIS)

    Liu, Bernard Haochih; Chang, Day-Bin

    2011-01-01

    We proposed and demonstrated a flexible and effective method to design and fabricate scanning probes for atomic force microscopy applications. Computer simulations were adopted to evaluate design specifications and desired performance of atomic force microscope (AFM) probes; the fabrication processes were guided by feedback from simulation results. Through design-simulation-fabrication iterations, tipless cantilevers and tapping mode probes were successfully made with errors as low as 2% in designed resonant frequencies. For tapping mode probes, the probe tip apex achieved a 10 nm radius of curvature without additional sharpening steps; tilt-compensated probes were also fabricated for better scanning performance. This method provides AFM users improved probe quality and practical guidelines for customized probes, which can support the development of novel scanning probe microscopy (SPM) applications. -- Research highlights: → We developed a design-simulation-fabrication strategy for customized AFM/SPM probes and demonstrated the results of tipless cantilever, sharpened probe tip, and tilt-compensated probe. → This simulation-aided method improved the geometry control and performance prediction of AFM probes; the error in resonant frequency was reduced to ∼2%. → Integration of simulation in design and fabrication of AFM probes expedites development of new probes and consequently promotes novel SPM applications.

  16. Confocal scanning microscopy with multiple optical probes for high speed measurements and better imaging

    Science.gov (United States)

    Chun, Wanhee; Lee, SeungWoo; Gweon, Dae-Gab

    2008-02-01

    Confocal scanning microscopy (CSM) needs a scanning mechanism because only one point information of specimen can be obtained. Therefore the speed of the confocal scanning microscopy is limited by the speed of the scanning tool. To overcome this limitation from scanning tool we propose another scanning mechanism. We make three optical probes in the specimen under confocal condition of each point. Three optical probes are moved by beam scanning mechanism with shared resonant scanning mirror (RM) and galvanometer driven mirror (GM). As each optical probe scan allocated region of the specimen, information from three points is obtained simultaneously and image acquisition time is reduced. Therefore confocal scanning microscopy with multiple optical probes is expected to have three times faster speed of the image acquisition than conventional one. And as another use, multiple optical probes to which different light wavelength is applied can scan whole same region respectively. It helps to obtain better contrast image in case of specimens having different optical characteristics for specific light wavelength. In conclusion confocal scanning microscopy with multiple optical probes is useful technique for views of image acquisition speed and image quality.

  17. Shrinking droplets in electrospray ionization and their influence on chemical equilibria.

    Science.gov (United States)

    Wortmann, Arno; Kistler-Momotova, Anna; Zenobi, Renato; Heine, Martin C; Wilhelm, Oliver; Pratsinis, Sotiris E

    2007-03-01

    We investigated how chemical equilibria are affected by the electrospray process, using simultaneous in situ measurements by laser-induced fluorescence (LIF) and phase Doppler anemometry (PDA). The motivation for this study was the increasing number of publications in which electrospray ionization mass spectrometry is used for binding constant determination. The PDA was used to monitor droplet size and velocity, whereas LIF was used to monitor fluorescent analytes within the electrospray droplets. Using acetonitrile as solvent, we found an average initial droplet diameter of 10 microm in the electrospray. The PDA allowed us to follow the evolution of these droplets down to a size of 1 microm. Rhodamine B-sulfonylchloride was used as a fluorescent analyte within the electrospray. By spatially resolved LIF it was possible to probe the dimerization equilibrium of this dye. Measurements at different spray positions showed no influence of the decreasing droplet size on the monomer-dimer equilibrium. However, with the fluorescent dye pair DCM and oxazine 1 it was shown that a concentration increase does occur within electrosprayed droplets, using fluorescence resonance energy transfer as a probe for the average pair distance.

  18. Soft control of scanning probe microscope with high flexibility.

    Science.gov (United States)

    Liu, Zhenghui; Guo, Yuzheng; Zhang, Zhaohui; Zhu, Xing

    2007-01-01

    Most commercial scanning probe microscopes have multiple embedded digital microprocessors and utilize complex software for system control, which is not easily obtained or modified by researchers wishing to perform novel and special applications. In this paper, we present a simple and flexible control solution that just depends on software running on a single-processor personal computer with real-time Linux operating system to carry out all the control tasks including negative feedback, tip moving, data processing and user interface. In this way, we fully exploit the potential of a personal computer in calculating and programming, enabling us to manipulate the scanning probe as required without any special digital control circuits and related technical know-how. This solution has been successfully applied to a homemade ultrahigh vacuum scanning tunneling microscope and a multiprobe scanning tunneling microscope.

  19. Development of a multiplexed interface for capillary electrophoresis-electrospray ion trap mass spectrometry.

    Science.gov (United States)

    Li, Fu-An; Wu, Ming-Chi; Her, Guor-Rong

    2006-08-01

    A four-channel multiplexed electrospray capillary electrophoresis interface has been developed. This new interface permits up to four capillary electrophoresis columns to be sampled sequentially by means of a stepper motor and a notched rotating plate assembly, which at any instant occludes all but a single sprayer. In this design, four sheath liquid electrospray probes are oriented in a circular array situated 90 degrees relative to one another. The rotating metal disk, which contains a one-quarter notch, is mounted to the stepper motor assembly and is located between the sprayers and the entrance aperture of an ion trap mass spectrometer. By using the data acquisition signal from the ion trap mass spectrometer, the scan event is synchronized with the rotation of the metal disk. With this device, four discrete sample streams can be simultaneously analyzed, resulting in a 4-fold increase in analytical throughput.

  20. Scanning probe microscopy competency development

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.E.; Reagor, D.W.; Jia, Quan Xi [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The project collaborators developed an ultra-high vacuum scanning tunneling microscope (UHV-STM) capability, integrated it with existing scanning probe microscopes, and developed new, advanced air-based scanning force techniques (SPMs). Programmatic, basic, and industrially related laboratory research requires the existence of SPMs, as well as expertise capable of providing local nano-scale information. The UHV-STM capability, equipped with load-lock system and several surface science techniques, will allow introduction, examination, and reaction of surfaces prepared under well-controlled vacuum conditions, including the examination of morphology and local bonding associated with the initial stages of film growth under controlled growth conditions. The resulting capabilities will enable the authors to respond to a variety of problems requiring local characterization of conducting and nonconducting surfaces in liquids, air, and UHV.

  1. Scanning Probe Microscopy at 650 °C in Air

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Jacobsen, Torben; Nørgaard, Anne-Mette

    2009-01-01

    The controlled atmosphere high temperature scanning probe microscope was designed to study the electrical properties of surfaces at elevated temperatures by using the probe as an electrode. The capability of a simultaneous acquisition of topographical and electrical data for the same surface area...

  2. Final report: Mapping Interactions in Hybrid Systems with Active Scanning Probes

    Energy Technology Data Exchange (ETDEWEB)

    Berezovsky, Jesse [Case Western Reserve Univ., Cleveland, OH (United States)

    2017-09-29

    This project aimed to study and map interactions between components of hybrid nanodevices using a novel scanning probe approach. To enable this work, we initially constructed a flexible experimental apparatus allowing for simultaneous scanning probe and confocal optical microscopy measurements. This setup was first used for all-optical measurements of nanostructures, with the focus then shifting to hybrid devices in which single coherent electron spins are coupled to micron-scale ferromagnetic elements, which may prove useful for addressing single spins, enhanced sensing, or spin-wave-mediated coupling of spins for quantum information applications. A significant breakthrough was the realization that it is not necessary to fabricate a magnetic structure on a scanning probe – instead a ferromagnetic vortex core can act as an integrated, solid state, scanning probe. The core of the vortex produces a very strong, localized fringe field which can be used analogously to an MFM tip. Unlike a traditional MFM tip, however, the vortex core is scanned within an integrated device (eliminating drift), and can be moved on vastly faster timescales. This approach allows the detailed investigation of interactions between single spins and complex driven ferromagnetic dynamics.

  3. Scanning probe microscopy in material science and biology

    International Nuclear Information System (INIS)

    Cricenti, A; Colonna, S; Girasole, M; Gori, P; Ronci, F; Longo, G; Dinarelli, S; Luce, M; Rinaldi, M; Ortenzi, M

    2011-01-01

    A review of the activity of scanning probe microscopy at our Institute is presented, going from instrumentation to software development of scanning tunnelling microscopy, atomic force microscopy and scanning near-field optical microscopy (SNOM). Some of the most important experiments in material science and biology performed by our group through the years with these SPM techniques will be presented. Finally, infrared applications by coupling a SNOM with a free electron laser will also be presented.

  4. Scanning probes for new energy materials: probing local structure and function

    NARCIS (Netherlands)

    Balke, N.; Bonnell, D.; Ginger, D.S.; Kemerink, M.

    2012-01-01

    The design and control of materials properties, often at the nanoscale, are the foundation of many new strategies for energy generation, storage, and efficiency. Scanning probe microscopy (SPM) has evolved into a very large toolbox for the characterization of properties spanning size scales from

  5. Scanning probe microscope simulator for the assessment of noise in scanning probe microscopy controllers

    International Nuclear Information System (INIS)

    Wutscher, T.; Niebauer, J.; Giessibl, F. J.

    2013-01-01

    We present an electronic circuit that allows to calibrate and troubleshoot scanning probe microscopy (SPM) controllers with respect to their noise performance. The control signal in an SPM is typically highly nonlinear—the tunneling current in scanning tunneling microscopy (STM) varies exponentially with distance. The exponential current-versus-voltage characteristics of diodes allow to model the current dependence in STM. Additional inputs allow to simulate the effects of external perturbations and the reactions of the control electronics. We characterized the noise performance of the feedback controller using the apparent topography roughness of recorded images. For a comparison of different STM controllers, an optimal gain parameter was determined by exploring settling times through a rectangular perturbation signal. We used the circuit to directly compare the performance of two types of SPM controllers used in our laboratory

  6. Quantitative Thin-Layer Chromatography/Mass Spectrometry Analysis of Caffeine Using a Surface Sampling Probe Electrospray Ionization Tandem Mass Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Michael J [ORNL; Deibel, Michael A. [Earlham College; Tomkins, Bruce A [ORNL; Van Berkel, Gary J [ORNL

    2005-01-01

    Quantitative determination of caffeine on reversed-phase C8 thin-layer chromatography plates using a surface sampling electrospray ionization system with tandem mass spectrometry detection is reported. The thin-layer chromatography/electrospray tandem mass spectrometry method employed a deuterium-labeled caffeine internal standard and selected reaction monitoring detection. Up to nine parallel caffeine bands on a single plate were sampled in a single surface scanning experiment requiring 35 min at a surface scan rate of 44 {mu}m/s. A reversed-phase HPLC/UV caffeine assay was developed in parallel to assess the mass spectrometry method performance. Limits of detection for the HPLC/UV and thin-layer chromatography/electrospray tandem mass spectrometry methods determined from the calibration curve statistics were 0.20 ng injected (0.50 {mu}L) and 1.0 ng spotted on the plate, respectively. Spike recoveries with standards and real samples ranged between 97 and 106% for both methods. The caffeine content of three diet soft drinks (Diet Coke, Diet Cherry Coke, Diet Pepsi) and three diet sport drinks (Diet Turbo Tea, Speed Stack Grape, Speed Stack Fruit Punch) was measured. The HPLC/UV and mass spectrometry determinations were in general agreement, and these values were consistent with the quoted values for two of the three diet colas. In the case of Diet Cherry Coke and the diet sports drinks, the determined caffeine amounts using both methods were consistently higher (by 8% or more) than the literature values.

  7. Piezoresistor-equipped fluorescence-based cantilever probe for near-field scanning.

    Science.gov (United States)

    Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2007-08-01

    Scanning near-field optical microscopes (SNOMs) with fluorescence-based probes are promising tools for evaluating the optical characteristics of nanoaperture devices used for biological investigations, and this article reports on the development of a microfabricated fluorescence-based SNOM probe with a piezoresistor. The piezoresistor was built into a two-legged root of a 160-microm-long cantilever. To improve the displacement sensitivity of the cantilever, the piezoresistor's doped area was shallowly formed on the cantilever surface. A fluorescent bead, 500 nm in diameter, was attached to the bottom of the cantilever end as a light-intensity-sensitive material in the visible-light range. The surface of the scanned sample was simply detected by the probe's end being displaced by contact with the sample. Measuring displacements piezoresistively is advantageous because it eliminates the noise arising from the use of the optical-lever method and is free of any disturbance in the absorption or the emission spectrum of the fluorescent material at the probe tip. The displacement sensitivity was estimated to be 6.1 x 10(-6) nm(-1), and the minimum measurable displacement was small enough for near-field measurement. This probe enabled clear scanning images of the light field near a 300 x 300 nm(2) aperture to be obtained in the near-field region where the tip-sample distance is much shorter than the light wavelength. This scanning result indicates that the piezoresistive way of tip-sample distance regulation is effective for characterizing nanoaperture optical devices.

  8. Optical characterication of probes for photon scanning tunnelling microscopy

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    The photon scanning tunnelling microscope is a well-established member of the family of scanning near-field optical microscopes used for optical imaging at the sub-wavelength scale. The quality of the probes, typically pointed uncoated optical fibres, used is however difficult to evaluate...

  9. Near-field scanning optical microscopy using polymethylmethacrylate optical fiber probes

    International Nuclear Information System (INIS)

    Chibani, H.; Dukenbayev, K.; Mensi, M.; Sekatskii, S.K.; Dietler, G.

    2010-01-01

    We report the first use of polymethylmethacrylate (PMMA) optical fiber-made probes for scanning near-field optical microscopy (SNOM). The sharp tips were prepared by chemical etching of the fibers in ethyl acetate, and the probes were prepared by proper gluing of sharpened fibers onto the tuning fork in the conditions of the double resonance (working frequency of a tuning fork coincides with the resonance frequency of dithering of the free-standing part of the fiber) reported earlier for the case of glass fibers. Quality factors of the probes in the range 2000-6000 were obtained, which enables the realization of an excellent topographical resolution including state-of-art imaging of single DNA molecules. Near-field optical performance of the microscope is illustrated by the Photon Scanning Tunneling Microscope images of fluorescent beads with a diameter of 100 nm. The preparation of these plastic fiber probes proved to be easy, needs no hazardous material and/or procedures, and typical lifetime of a probe essentially exceeds that characteristic for the glass fiber probe.

  10. Logarithmic axicon characterized by scanning optical probe system.

    Science.gov (United States)

    Cao, Zhaolou; Wang, Keyi; Wu, Qinglin

    2013-05-15

    A scanning optical probe system is proposed to measure a logarithmic axicon (LA) with subwavelength resolution. Multiple plane intensity profiles measured by a fiber probe are interpreted by solving an optimization problem to get the phase retardation function (PRF) of the LA. Experimental results show that this approach can accurately obtain the PRF with which the optical path difference of the generated quasi-nondiffracting beam in the propagation is calculated.

  11. RTSPM: real-time Linux control software for scanning probe microscopy.

    Science.gov (United States)

    Chandrasekhar, V; Mehta, M M

    2013-01-01

    Real time computer control is an essential feature of scanning probe microscopes, which have become important tools for the characterization and investigation of nanometer scale samples. Most commercial (and some open-source) scanning probe data acquisition software uses digital signal processors to handle the real time data processing and control, which adds to the expense and complexity of the control software. We describe here scan control software that uses a single computer and a data acquisition card to acquire scan data. The computer runs an open-source real time Linux kernel, which permits fast acquisition and control while maintaining a responsive graphical user interface. Images from a simulated tuning-fork based microscope as well as a standard topographical sample are also presented, showing some of the capabilities of the software.

  12. Electrospray deposition of fullerenes in ultra-high vacuum: in situ scanning tunneling microscopy and photoemission spectroscopy

    International Nuclear Information System (INIS)

    Satterley, Christopher J; Perdigao, LuIs M A; Saywell, Alex; Magnano, Graziano; Rienzo, Anna; Mayor, Louise C; Dhanak, Vinod R; Beton, Peter H; O'Shea, James N

    2007-01-01

    Electrospray deposition of fullerenes on gold has been successfully observed by in situ room temperature scanning tunneling microscopy and photoemission spectroscopy. Step-edge decoration and hexagonal close-packed islands with a periodicity of 1 nm are observed at low and multilayer coverages respectively, in agreement with thermal evaporation studies. Photoemission spectroscopy shows that fullerenes are being deposited in high purity and are coupling to the gold surface as for thermal evaporation. These results open a new route for the deposition of thermally labile molecules under ultra-high vacuum conditions for a range of high resolution surface science techniques

  13. Circular mode: a new scanning probe microscopy method for investigating surface properties at constant and continuous scanning velocities.

    Science.gov (United States)

    Nasrallah, Hussein; Mazeran, Pierre-Emmanuel; Noël, Olivier

    2011-11-01

    In this paper, we introduce a novel scanning probe microscopy mode, called the circular mode, which offers expanded capabilities for surface investigations especially for measuring physical properties that require high scanning velocities and/or continuous displacement with no rest periods. To achieve these specific conditions, we have implemented a circular horizontal displacement of the probe relative to the sample plane. Thus the relative probe displacement follows a circular path rather than the conventional back and forth linear one. The circular mode offers advantages such as high and constant scanning velocities, the possibility to be combined with other classical operating modes, and a simpler calibration method of the actuators generating the relative displacement. As application examples of this mode, we report its ability to (1) investigate the influence of scanning velocity on adhesion forces, (2) measure easily and instantly the friction coefficient, and (3) generate wear tracks very rapidly for tribological investigations. © 2011 American Institute of Physics

  14. High throughput, parallel scanning probe microscope for nanometrology and nanopatterning applications

    NARCIS (Netherlands)

    Sadeghian Marnani, H.; Paul, P.C.; Herfst, R.W.; Dekker, A.; Winters, J.; Maturova, K.

    2017-01-01

    Scanning Probe microscope (SPM) is an important nanoinstrument for several applications such as bioresearch, metrology, inspection and nanopatterning. Single SPM is associated with relatively slow rate of scanning and low throughput measurement, thus not being suitable for scanning large samples

  15. Novel scanning probe microscope instrumentation with applications in nanotechnology

    International Nuclear Information System (INIS)

    Humphry, M.J.

    2000-10-01

    A versatile scanning probe microscope controller has been constructed. Its suitability for the control of a range of different scanning probe microscope heads has been demonstrated. These include an ultra high vacuum scanning tunnelling microscope, with which atomic resolution images of Si surfaces was obtained, a custom-built atomic force microscope, and a custom-built photon emission scanning tunnelling microscope. The controller has been designed specifically to facilitate data acquisition during molecular manipulation experiments. Using the controller, the fullerene molecule C 60 has been successfully manipulated on Si(100)-2x1 surfaces and detailed data has been acquired during the manipulation process. Evidence for two distinct modes of manipulation have been observed. A repulsive mode with success rates up to 90% was found to occur with tunnel gap impedances below 2GΩ, while between 2GΩ and 8GΩ attractive manipulation events were observed, with a maximum success rate of ∼8%. It was also found that the step size between feedback updates had a significant effect on tip stability, and that dwell time of the STM tip at each data point had a critical effect on manipulation probability. A multi-function scanning probe microscope head has been developed capable of operation as a scanning tunnelling microscope and an atomic force microscope in vacuum and a magnetic field of 7T. The custom-built controller also presented here was used to control the head. A three-axis inertial sliding motor was developed for the head, capable of reproducible step sizes of <1000A. In addition, an optical fibre interferometer was constructed with a sensitivity of 0.2A/√Hz. Preliminary development of a magnetic resonance force microscope mode has also been performed, with initial results showing such a system to be feasible. (author)

  16. Band excitation method applicable to scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  17. Study of Perylenetetracarboxylic Acid Dimethylimide Films by Cyclic Thermal Desorption and Scanning Probe Microscopy

    Science.gov (United States)

    Pochtennyi, A. E.; Lappo, A. N.; Il'yushonok, I. P.

    2018-02-01

    Some results of studying the direct-current (DC) conductivity of perylenetetracarboxylic acid dimethylimide films by cyclic oxygen thermal desorption are presented. The microscopic parameters of hopping electron transport over localized impurity and intrinsic states were determined. The bandgap width and the sign of major current carriers were determined by scanning probe microscopy methods (atomic force microscopy, scanning probe spectroscopy, and photoassisted Kelvin probe force microscopy). The possibility of the application of photoassisted scanning tunneling microscopy for the nanoscale phase analysis of photoconductive films is discussed.

  18. Surface chemical reactions probed with scanning force microscopy

    NARCIS (Netherlands)

    Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this letter we report the study of surface chemical reactions with scanning force microscopy (SFM) with chemical specificity. Using chemically modified SFM probes, we can determine the local surface reaction conversion during a chemical surface modification. The adhesion forces between a

  19. Scanning probe lithography for fabrication of Ti metal nanodot arrays

    International Nuclear Information System (INIS)

    Jung, B.; Jo, W.; Gwon, M.J.; Lee, E.; Kim, D.-W.

    2010-01-01

    We report fabrication of Ti metal nanodot arrays by scanning probe microscopic indentation. A thin poly-methylmethacrylate (PMMA) layer was spin-coated on Si substrates with thickness of 70 nm. Nanometer-size pore arrays were formed by indenting the PMMA layer using a cantilever of a scanning probe microscope. Protuberances with irregular boundaries appeared during the indentation process. Control of approach and pulling-out speed during indentation was able to dispose of the protrusions. Ti metal films were deposited on the patterned PMMA layers by a radio-frequency sputtering method and subsequently lifted off to obtain metal nanodot arrays. The fabricated metal nanodot arrays have 200 nm of diameter and 500 nm of interdistance, which corresponds to a density of 4x10 8 /cm 2 . Scanning probe-based measurement of current-voltage (I-V) behaviors for a single Ti metal nanodot showed asymmetric characteristics. Applying external bias is likely to induce oxidation of Ti metal, since the conductance decreased and volume change of the dots was observed. I-V behaviors of Ti metal nanodots by conventional e-beam lithography were also characterized for comparison.

  20. Multifrequency scanning probe microscopy study of nanodiamond agglomerates

    Science.gov (United States)

    Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team

    Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  1. Optical and electrical characterization at the nanoscale with a transparent probe of a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Sychugov, Ilya; Omi, Hiroo; Murashita, Tooru; Kobayashi, Yoshihiro

    2009-01-01

    A new type of scanning probe microscope, combining features of the scanning tunnelling microscope, the scanning tunnelling luminescence microscope with a transparent probe and the aperture scanning near-field optical microscope, is described. Proof-of-concept experiments were performed under ultrahigh vacuum conditions at varying temperature on GaAs/AlAs heterostructures.

  2. Study of sapphire probe tip wear when scanning on different materials

    International Nuclear Information System (INIS)

    Nicolet, Anaïs; Küng, Alain; Meli, Felix

    2012-01-01

    The accuracy of today's coordinate measuring machines (CMM) has reached a level at which exact knowledge of each component is required. The role of the probe tip is particularly crucial as it is in contact with the sample surface. Understanding how the probe tip wears off will help to narrow the measurement errors. In this work, wear of a sapphire sphere was studied for different scanning conditions and with different sample materials. Wear depth on the probe was investigated using an automated process in situ on the METAS micro-CMM and completed by measurements with an atomic force microscope. We often found a linear dependence between the wear depth and the scan length ranging from 0.5 to 9 nm m −1 , due to variations in scan speed, contact force or sample material. In the case of steel, the wear rate is proportional to the scan speed, while for aluminum several processes seem to interact. A large amount of debris was visible after the tests. Except for aluminum, wear was visible only on the sphere and not on the sample. Sapphire/steel is the worst combination in terms of wear, whereas the combination sapphire/ceramic exhibits almost no wear. (paper)

  3. Graphene quantum dots probed by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, Markus; Freitag, Nils; Nent, Alexander; Nemes-Incze, Peter; Liebmann, Marcus [II. Institute of Physics B and JARA-FIT, RWTH Aachen University, Aachen (Germany)

    2017-11-15

    Scanning tunneling spectroscopy results probing the electronic properties of graphene quantum dots are reviewed. After a short summary of the study of squared wave functions of graphene quantum dots on metal substrates, we firstly present data where the Landau level gaps caused by a perpendicular magnetic field are used to electrostatically confine electrons in monolayer graphene, which are probed by the Coulomb staircase revealing the consecutive charging of a quantum dot. It turns out that these quantum dots exhibit much more regular charging sequences than lithographically confined ones. Namely, the consistent grouping of charging peaks into quadruplets, both, in the electron and hole branch, portrays a regular orbital splitting of about 10meV. At low hole occupation numbers, the charging peaks are, partly, additionally grouped into doublets. The spatially varying energy separation of the doublets indicates a modulation of the valley splitting by the underlying BN substrate. We outline that this property might be used to eventually tune the valley splitting coherently. Afterwards, we describe graphene quantum dots with multiple contacts produced without lithographic resist, namely by local anodic oxidation. Such quantum dots target the goal to probe magnetotransport properties during the imaging of the corresponding wave functions by scanning tunneling spectroscopy. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning.

    Science.gov (United States)

    Rashidi, Mohammad; Wolkow, Robert A

    2018-05-23

    Atomic-scale characterization and manipulation with scanning probe microscopy rely upon the use of an atomically sharp probe. Here we present automated methods based on machine learning to automatically detect and recondition the quality of the probe of a scanning tunneling microscope. As a model system, we employ these techniques on the technologically relevant hydrogen-terminated silicon surface, training the network to recognize abnormalities in the appearance of surface dangling bonds. Of the machine learning methods tested, a convolutional neural network yielded the greatest accuracy, achieving a positive identification of degraded tips in 97% of the test cases. By using multiple points of comparison and majority voting, the accuracy of the method is improved beyond 99%.

  5. Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology

    International Nuclear Information System (INIS)

    Haemmerli, Alexandre J.; Pruitt, Beth L.; Harjee, Nahid; Koenig, Markus; Garcia, Andrei G. F.; Goldhaber-Gordon, David

    2015-01-01

    The lateral resolution of many electrical scanning probe techniques is limited by the spatial extent of the electrostatic potential profiles produced by their probes. Conventional unshielded conductive atomic force microscopy probes produce broad potential profiles. Shielded probes could offer higher resolution and easier data interpretation in the study of nanostructures. Electrical scanning probe techniques require a method of locating structures of interest, often by mapping surface topography. As the samples studied with these techniques are often photosensitive, the typical laser measurement of cantilever deflection can excite the sample, causing undesirable changes electrical properties. In this work, we present the design, fabrication, and characterization of probes that integrate coaxial tips for spatially sharp potential profiles with piezoresistors for self-contained, electrical displacement sensing. With the apex 100 nm above the sample surface, the electrostatic potential profile produced by our coaxial tips is more than 2 times narrower than that of unshielded tips with no long tails. In a scan bandwidth of 1 Hz–10 kHz, our probes have a displacement resolution of 2.9 Å at 293 K and 79 Å at 2 K, where the low-temperature performance is limited by amplifier noise. We show scanning gate microscopy images of a quantum point contact obtained with our probes, highlighting the improvement to lateral resolution resulting from the coaxial tip

  6. On the sensitivity of probe-corrected spherical near-field antenna measurements with high-order probes using double phi-step theta-scanning scheme against various measurement uncertainties

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2011-01-01

    In this paper, the relatively recently introduced double phi-step theta-scanning scheme and the probe correction technique associated with it is examined against the traditional phi-scanning scheme and the first-order probe correction. The important result of this paper is that the double phi......-step theta-scanning scheme is shown to be clearly less sensitive to the probe misalignment errors compared to the phi-scanning scheme. The two methods show similar sensitivity to noise and channel balance error....

  7. Controllable synthesizing DLC nano structures as a super hydrophobic layer on cotton fabric using a low-cost ethanol electrospray-assisted atmospheric plasma jet

    Science.gov (United States)

    Sohbatzadeh, F.; Eshghabadi, M.; Mohsenpour, T.

    2018-06-01

    The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.

  8. Gwyscan: a library to support non-equidistant scanning probe microscope measurements

    International Nuclear Information System (INIS)

    Klapetek, Petr; Grolich, Petr; Valtr, Miroslav; Yacoot, Andrew; Nečas, David

    2017-01-01

    We present a software library and related methodology for enabling easy integration of adaptive step (non-equidistant) scanning techniques into metrological scanning probe microscopes or scanning probe microscopes where individual x , y position data are recorded during measurements. Scanning with adaptive steps can reduce the amount of data collected in SPM measurements thereby leading to faster data acquisition, a smaller amount of data collection required for a specific analytical task and less sensitivity to mechanical and thermal drift. Implementation of adaptive scanning routines into a custom built microscope is not normally an easy task: regular data are much easier to handle for previewing (e.g. levelling) and storage. We present an environment to make implementation of adaptive scanning easier for an instrument developer, specifically taking into account data acquisition approaches that are used in high accuracy microscopes as those developed by National Metrology Institutes. This includes a library with algorithms written in C and LabVIEW for handling data storage, regular mesh preview generation and planning the scan path on basis of different assumptions. A set of modules for Gwyddion open source software for handling these data and for their further analysis is presented. Using this combination of data acquisition and processing tools one can implement adaptive scanning in a relatively easy way into an instrument that was previously measuring on a regular grid. The performance of the presented approach is shown and general non-equidistant data processing steps are discussed. (paper)

  9. Gwyscan: a library to support non-equidistant scanning probe microscope measurements

    Science.gov (United States)

    Klapetek, Petr; Yacoot, Andrew; Grolich, Petr; Valtr, Miroslav; Nečas, David

    2017-03-01

    We present a software library and related methodology for enabling easy integration of adaptive step (non-equidistant) scanning techniques into metrological scanning probe microscopes or scanning probe microscopes where individual x, y position data are recorded during measurements. Scanning with adaptive steps can reduce the amount of data collected in SPM measurements thereby leading to faster data acquisition, a smaller amount of data collection required for a specific analytical task and less sensitivity to mechanical and thermal drift. Implementation of adaptive scanning routines into a custom built microscope is not normally an easy task: regular data are much easier to handle for previewing (e.g. levelling) and storage. We present an environment to make implementation of adaptive scanning easier for an instrument developer, specifically taking into account data acquisition approaches that are used in high accuracy microscopes as those developed by National Metrology Institutes. This includes a library with algorithms written in C and LabVIEW for handling data storage, regular mesh preview generation and planning the scan path on basis of different assumptions. A set of modules for Gwyddion open source software for handling these data and for their further analysis is presented. Using this combination of data acquisition and processing tools one can implement adaptive scanning in a relatively easy way into an instrument that was previously measuring on a regular grid. The performance of the presented approach is shown and general non-equidistant data processing steps are discussed.

  10. Observation of quantized vortices by cryocooler-based scanning Hall probe microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Y.; Konishi, Y.; Tokunaga, M.; Tamegai, T

    2004-10-01

    We have developed a scanning Hall probe microscope (SHPM) system utilizing closed-cycle cryocooler. The Hall probe used in this system is fabricated from a GaAs/GaAlAs two-dimensional electron gas. A stepping-motor-driven XYZ translator is used with a resolution better than 0.1 {mu}m and maximum scan range of 20 x 20 mm{sup 2}. The spatial resolution of the system is about 5 {mu}m and magnetic resolution is about 100 mG. By using this system, we have successfully resolved the quantized vortices on the cleaved surface of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} single crystal.

  11. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    Science.gov (United States)

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  12. Monolithically Integrated, Mechanically Resilient Carbon-Based Probes for Scanning Probe Microscopy

    Science.gov (United States)

    Kaul, Anupama B.; Megerian, Krikor G.; Jennings, Andrew T.; Greer, Julia R.

    2010-01-01

    Scanning probe microscopy (SPM) is an important tool for performing measurements at the nanoscale in imaging bacteria or proteins in biology, as well as in the electronics industry. An essential element of SPM is a sharp, stable tip that possesses a small radius of curvature to enhance spatial resolution. Existing techniques for forming such tips are not ideal. High-aspect-ratio, monolithically integrated, as-grown carbon nanofibers (CNFs) have been formed that show promise for SPM applications by overcoming the limitations present in wet chemical and separate substrate etching processes.

  13. Analysis of main artifacts in scanning probe microscopy (1)

    International Nuclear Information System (INIS)

    Alekperov, S.D.; Alekperov, S.D.

    2012-01-01

    The analysis of experiment carrying methodology in the scanning probe microscopy (SPM) region is carried out, the main parameters influencing on image quality are revealed. In order to reveal the artifact reason the main components of SPM signal which are divided on 5 groups : the useful signal; noises connected with external influences and temperature drift; distortions connected with piezoceramics and piezo-scanner non-ideality; probe geometry influence; apparatus noises are considered. The main methods of removal and minimization of the given artifacts are considered. The second and third groups of main components of SPM signal are considered in the articles first part

  14. Solid state transformations in consequence of electrospraying--a novel polymorphic form of piroxicam.

    Science.gov (United States)

    Nyström, Maija; Roine, Jorma; Murtomaa, Matti; Mohan Sankaran, R; Santos, Hélder A; Salonen, Jarno

    2015-01-01

    The aim of the research was to verify that electrospraying of piroxicam yielded a new polymorphic form of this drug. In the experiments, piroxicam was dissolved in chloroform and the solution was atomised electrostatically. Subsequently, the charged droplets were neutralised and dried. The solid drug particles were collected and analysed by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, high performance liquid chromatography, and infrared and Raman spectroscopy. The X-ray diffractogram measured for the electrosprayed piroxicam particles did not match with any of the known piroxicam crystal structures (Cambridge Crystallographic Data Centre). The variable temperature X-ray diffraction showed that the structure recrystallised completely into piroxicam polymorphic formI during heating. No degradation products or solvate removal was detected by high performance liquid chromatography and thermal analysis. The infrared and Raman spectra of the electrosprayed piroxicam were compared to those of formI, and some notable differences in the peak positions, shapes and intensities were detected. The results indicate that electrospraying leads to piroxicam crystallisation in a currently unknown polymorphic form. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The Use Of Scanning Probe Microscopy To Investigate Crystal-Fluid Interfaces

    International Nuclear Information System (INIS)

    Orme, C A; Giocondi, J L

    2007-01-01

    Over the past decade there has been a natural drive to extend the investigation of dynamic surfaces in fluid environments to higher resolution characterization tools. Various aspects of solution crystal growth have been directly visualized for the first time. These include island nucleation and growth using transmission electron microscopy and scanning tunneling microscopy; elemental step motion using scanning probe microscopy; and the time evolution of interfacial atomic structure using various diffraction techniques. In this lecture we will discuss the use of one such in situ method, scanning probe microscopy, as a means of measuring surface dynamics during crystal growth and dissolution. We will cover both practical aspects of imaging such as environmental control, fluid flow, and electrochemical manipulation, as well as the types of physical measurements that can be made. Measurements such as step motion, critical lengths, nucleation density, and step fluctuations, will be put in context of the information they provide about mechanistic processes at surfaces using examples from metal and mineral crystal growth

  16. Micro-four-point probes in a UHV scanning electron microscope for in-situ surface-conductivity measurements

    DEFF Research Database (Denmark)

    Shiraki, I.; Nagao, T.; Hasegawa, S.

    2000-01-01

    For in-situ measurements of surface conductivity in ultrahigh vacuum (UHV), we have installed micro-four-point probes (probe spacings down to 4 mum) in a UHV scanning electron microscope (SEM) combined with scanning reflection-high-energy electron diffraction (RHEED). With the aid of piezoactuators...

  17. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

    Science.gov (United States)

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of water-soluble fenofibrate.

  18. Impedance measurements on Au microelectrodes using controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Wu, Yuehua; Hansen, Karin Vels; Jacobsen, Torben

    2011-01-01

    High temperature impedance measurements on Au microelectrodes deposited on polished yttria stabilized zirconia (YSZ) pellets were demonstrated using a newly designed controlled atmosphere high temperature scanning probe microscope (CAHT-SPM). Probes based on Pt0.8Ir0.2 were fabricated and employed...

  19. Improve performance of scanning probe microscopy by balancing tuning fork prongs

    International Nuclear Information System (INIS)

    Ng, Boon Ping; Zhang Ying; Wei Kok, Shaw; Chai Soh, Yeng

    2009-01-01

    This paper presents an approach for improving the Q-factor of tuning fork probe used in scanning probe microscopes. The improvement is achieved by balancing the fork prongs with extra mass attachment. An analytical model is proposed to characterize the Q-factor of a tuning fork probe with respect to the attachment of extra mass on the tuning fork prongs, and based on the model, the Q-factors of the unbalanced and balanced tuning fork probes are derived and compared. Experimental results showed that the model fits well the experimental data and the approach can improve the Q-factor by more than a factor of three. The effectiveness of the approach is further demonstrated by applying the balanced probe on an atomic force microscope to obtain improved topographic images.

  20. Multiterminal semiconductor/ferromagnet probes for spin-filter scanning tunneling microscopy

    NARCIS (Netherlands)

    Vera Marun, I.J.; Jansen, R.

    2009-01-01

    We describe the fabrication of multiterminal semiconductor/ferromagnet probes for a new technique to study magnetic nanostructures: spin-filter scanning tunneling microscopy. We describe the principle of the technique, which is based on spin-polarized tunneling and subsequent analysis of the spin

  1. The art of SPM : scanning probe microscopy in materials science

    NARCIS (Netherlands)

    Loos, J.

    2005-01-01

    In this Progress Report, outstanding scientific applications of scanning probe microscopy (SPM) in the field of materials science and the latest technique developments are introduced and discussed. Besides being able to image the organization of matter with sub-nanometer resolution, SPM, owing to

  2. Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen R.; Petersen, Dirch Hjorth

    2014-01-01

    Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite...... to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements. © 2014 American Physical Society....

  3. System and method for liquid extraction electrospray-assisted sample transfer to solution for chemical analysis

    Science.gov (United States)

    Kertesz, Vilmos; Van Berkel, Gary J.

    2016-07-12

    A system for sampling a surface includes a surface sampling probe comprising a solvent liquid supply conduit and a distal end, and a sample collector for suspending a sample collection liquid adjacent to the distal end of the probe. A first electrode provides a first voltage to solvent liquid at the distal end of the probe. The first voltage produces a field sufficient to generate electrospray plume at the distal end of the probe. A second electrode provides a second voltage and is positioned to produce a plume-directing field sufficient to direct the electrospray droplets and ions to the suspended sample collection liquid. The second voltage is less than the first voltage in absolute value. A voltage supply system supplies the voltages to the first electrode and the second electrode. The first electrode can apply the first voltage directly to the solvent liquid. A method for sampling for a surface is also disclosed.

  4. Aspects of scanning force microscope probes and their effects on dimensional measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yacoot, Andrew [National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom); Koenders, Ludger [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)], E-mail: andrew.yacoot@npl.co.uk

    2008-05-21

    The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements. (topical review)

  5. Aspects of scanning force microscope probes and their effects on dimensional measurement

    International Nuclear Information System (INIS)

    Yacoot, Andrew; Koenders, Ludger

    2008-01-01

    The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements. (topical review)

  6. Geometrical modelling of scanning probe microscopes and characterization of errors

    International Nuclear Information System (INIS)

    Marinello, F; Savio, E; Bariani, P; Carmignato, S

    2009-01-01

    Scanning probe microscopes (SPMs) allow quantitative evaluation of surface topography with ultra-high resolution, as a result of accurate actuation combined with the sharpness of tips. SPMs measure sequentially, by scanning surfaces in a raster fashion: topography maps commonly consist of data sets ideally reported in an orthonormal rectilinear Cartesian coordinate system. However, due to scanning errors and measurement distortions, the measurement process is far from the ideal Cartesian condition. The paper addresses geometrical modelling of the scanning system dynamics, presenting a mathematical model which describes the surface metric x-, y- and z- coordinates as a function of the measured x'-, y'- and z'-coordinates respectively. The complete mathematical model provides a relevant contribution to characterization and calibration, and ultimately to traceability, of SPMs, when applied for quantitative characterization

  7. A scanning contact probe for a micro-coordinate measuring machine (CMM)

    International Nuclear Information System (INIS)

    Fan, Kuang-Chao; Cheng, Fang; Wang, Weili; Chen, Yejin; Lin, Jia-You

    2010-01-01

    A new high precision contact scanning probe able to measure miniature components on a micro/nano-coordinate measuring machine (CMM) is proposed. This contact probe is composed of a fiber stylus with a ball tip, a floating plate and focus sensors. The stylus is attached to a floating plate, which is connected to the probe housing via four elastic wires. When the probe tip is touched and then deflected by the workpiece, the wires experience elastic deformations and the four mirrors mounted on the plate will be displaced. These displacements can be detected by four corresponding laser focus probes. To calibrate this touch trigger probe, a double-trigger method is developed for a high-speed approach and a low-speed touch. Experimental results show that the probe has a symmetric contact property in the horizontal XY plane. The contact force is found to be about 109 µN. The standard deviation of the unidirectional touch is less than 10 nm and the pre-travel distance is around 10 nm with a standard deviation of less than 3 nm

  8. AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe

    Science.gov (United States)

    Van Berkel, Gary J.

    2015-06-23

    An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.

  9. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1993-01-01

    While the first two volumes on Scanning Tunneling Microscopy (STM) and its related scanning probe (SXM) methods have mainly concentrated on intro­ ducing the experimental techniques, as well as their various applications in different research fields, this third volume is exclusively devoted to the theory of STM and related SXM methods. As the experimental techniques including the reproducibility of the experimental results have advanced, more and more theorists have become attracted to focus on issues related to STM and SXM. The increasing effort in the development of theoretical concepts for STM/SXM has led to considerable improvements in understanding the contrast mechanism as well as the experimental conditions necessary to obtain reliable data. Therefore, this third volume on STM/SXM is not written by theorists for theorists, but rather for every scientist who is not satisfied by just obtaining real­ space images of surface structures by STM/SXM. After a brief introduction (Chap. 1), N. D. Lang first co...

  10. Metrological large range scanning probe microscope

    International Nuclear Information System (INIS)

    Dai Gaoliang; Pohlenz, Frank; Danzebrink, Hans-Ulrich; Xu Min; Hasche, Klaus; Wilkening, Guenter

    2004-01-01

    We describe a metrological large range scanning probe microscope (LR-SPM) with an Abbe error free design and direct interferometric position measurement capability, aimed at versatile traceable topographic measurements that require nanometer accuracy. A dual-stage positioning system was designed to achieve both a large measurement range and a high measurement speed. This dual-stage system consists of a commercially available stage, referred to as nanomeasuring machine (NMM), with a motion range of 25 mmx25 mmx5 mm along x, y, and z axes, and a compact z-axis piezoelectric positioning stage (compact z stage) with an extension range of 2 μm. The metrological LR-SPM described here senses the surface using a stationary fixed scanning force microscope (SFM) head working in contact mode. During operation, lateral scanning of the sample is performed solely by the NMM. Whereas the z motion, controlled by the SFM signal, is carried out by a combination of the NMM and the compact z stage. In this case the compact z stage, with its high mechanical resonance frequency (greater than 20 kHz), is responsible for the rapid motion while the NMM simultaneously makes slower movements over a larger motion range. To reduce the Abbe offset to a minimum the SFM tip is located at the intersection of three interferometer measurement beams orientated in x, y, and z directions. To improve real time performance two high-end digital signal processing (DSP) systems are used for NMM positioning and SFM servocontrol. Comprehensive DSP firmware and Windows XP-based software are implemented, providing a flexible and user-friendly interface. The instrument is able to perform large area imaging or profile scanning directly without stitching small scanned images. Several measurements on different samples such as flatness standards, nanostep height standards, roughness standards as well as sharp nanoedge samples and 1D gratings demonstrate the outstanding metrological capabilities of the instrument

  11. Probing Field Distributions on Waveguide Structures with an Atomic Force/Photon Scanning Tunneling Microscope

    NARCIS (Netherlands)

    Borgonjen, E.G.; Borgonjen, E.G.; Moers, M.H.P.; Moers, M.H.P.; Ruiter, A.G.T.; van Hulst, N.F.

    1995-01-01

    A 'stand-alone' Photon Scanning Tunneling Microscope combined with an Atomic force Microscope, using a micro-fabricated silicon-nitride probe, is applied to the imaging of field distribution in integrated optical ridge waveguides. The electric field on the waveguide is locally probed by coupling to

  12. Crystal engineering of lactose using electrospray technology: carrier for pulmonary drug delivery.

    Science.gov (United States)

    Patil, Sharvil; Mahadik, Abhijeet; Nalawade, Pradeep; More, Priyesh

    2017-12-01

    Dry powder inhalers (DPIs) consisting of a powder mixture containing coarse carrier particles (generally lactose) and micronized drug particles are used for lung drug delivery. The effective drug delivery to the lungs depends on size and shape of carrier particles. Thus, various methods have been proposed for engineering lactose particles to enhance drug delivery to lungs. The objective of current work was to assess suitability of electrospray technology toward crystal engineering of lactose. Further, utility of the prepared lactose particles as a carrier in DPI was evaluated. Saturated lactose solutions were electrosprayed to obtain electrosprayed lactose (EL) particles. The polymorphic form of EL was determined using Fourier transform infrared spectroscopy, powder X-ray diffractometry, and differential scanning calorimetry. In addition, morphological, surface textural, and flow properties of EL were determined using scanning electron microscopy and Carr's index, respectively. The aerosolization properties of EL were determined using twin-stage impinger and compared with commercial lactose particles [Respitose ® (SV003, Goch, Germany)] used in DPI formulations. EL was found to contain both isomers (α and β) of lactose having flow properties comparable to Respitose ® (SV003). In addition, the aerosolization properties of EL were found to be significantly improved when compared to Respitose ® (SV003) which could be attributed to morphological (high elongation ratio) and surface characteristic (smooth surface) alterations induced by electrospray technology. Electrospray technology can serve as an alternative technique for continuous manufacturing of engineered lactose particles which can be used as a carrier in DPI formulations.

  13. Potential Applications of Scanning Probe Microscopy in Forensic Science

    International Nuclear Information System (INIS)

    Watson, G S; Watson, J A

    2007-01-01

    The forensic community utilises a myriad of techniques to investigate a wide range of materials, from paint flakes to DNA. The various microscopic techniques have provided some of the greatest contributions, e.g., FT-IR (Fourier-transform infrared) microspectroscopy utilised in copy toner discrimination, multi-layer automobile paint fragment examination, etc, SEM-EDA (scanning electron microscopy with energy dispersive analysis) used to investigate glass fragments, fibers, and explosives, and SEM in microsampling for elemental analysis, just to name a few. This study demonstrates the ability of the Scanning Probe Microscope (SPM) to analyse human fingerprints on surfaces utilising a step-and-scan feature, enabling analysis of a larger field-of-view. We also extend a line crossings study by incorporating height analysis and surface roughness measurements. The study demonstrates the potential for SPM techniques to be utilised for forensic analysis which could complement the more traditional methodologies used in such investigations

  14. Potential Applications of Scanning Probe Microscopy in Forensic Science

    Energy Technology Data Exchange (ETDEWEB)

    Watson, G S [Nanoscale Science and Technology Centre, School of Science, Griffith University, Kessels Rd, Nathan, QLD, 4111 (Australia); Watson, J A [Nanoscale Science and Technology Centre, School of Science, Griffith University, Kessels Rd, Nathan, QLD, 4111 (Australia)

    2007-04-15

    The forensic community utilises a myriad of techniques to investigate a wide range of materials, from paint flakes to DNA. The various microscopic techniques have provided some of the greatest contributions, e.g., FT-IR (Fourier-transform infrared) microspectroscopy utilised in copy toner discrimination, multi-layer automobile paint fragment examination, etc, SEM-EDA (scanning electron microscopy with energy dispersive analysis) used to investigate glass fragments, fibers, and explosives, and SEM in microsampling for elemental analysis, just to name a few. This study demonstrates the ability of the Scanning Probe Microscope (SPM) to analyse human fingerprints on surfaces utilising a step-and-scan feature, enabling analysis of a larger field-of-view. We also extend a line crossings study by incorporating height analysis and surface roughness measurements. The study demonstrates the potential for SPM techniques to be utilised for forensic analysis which could complement the more traditional methodologies used in such investigations.

  15. In Situ Scanning Probe Microscopy and New Perspectives in Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Zhang, Jingdong; Chi, Qijin

    1999-01-01

    The resolution of scanning probe microscopies is unpresedented but the techniques are fraught with limitations as analytical tools. These limitations and their relationship to the physical mechanisms of image contrast are first discussed. Some new options based on in situ STM, which hold prospect...

  16. A fast spatial scanning combination emissive and mach probe for edge plasma diagnosis

    International Nuclear Information System (INIS)

    Lehmer, R.D.; LaBombard, B.; Conn, R.W.

    1989-04-01

    A fast spatially scanning emissive and mach probe has been developed for the measurement of plasma profiles in the PISCES facility at UCLA. A pneumatic cylinder is used to drive a multiple tip probe along a 15cm stroke in less than 400msec, giving single shot profiles while limiting power deposition to the probe. A differentially pumped sliding O-ring seal allows the probe to be moved between shots to infer two and three dimensional profiles. The probe system has been used to investigate the plasma potential, density, and parallel mach number profiles of the presheath induced by a wall surface and scrape-off-layer profile modifications in biased limiter simulation experiments. Details of the hardware, data acquisition electronics, and tests of probe reliability are discussed. 30 refs., 24 figs

  17. Scanning probe microscopy with vertically oriented cantilevers made easy

    International Nuclear Information System (INIS)

    Valdrè, G; Moro, D; Ulian, G

    2012-01-01

    Non-contact imaging in scanning probe microscopy (SPM) is becoming of great importance in particular for imaging biological matter and in general soft materials. Transverse dynamic force microscopy (TDFM) is an SPM-based methodology that exploiting a cantilever oriented in a vertical configuration with respect to the sample surface may work with very low tip to sample interaction forces. The probe is oscillated parallel to the sample surface, usually by a piezoelectric element. However, this methodology often requires complex microscope setups and detection systems, so it is usually developed in specific laboratories as a prototype microscope. Here, we present a very simple device that easily enables a commercial SPM head to be oriented in such a way to have the cantilever long axis perpendicular to the sample surface. No modifications of the SPM hardware and software are required and commercial available cantilevers can be used as probes. Performance tests using polystyrene spheres, muscovite crystallographic steps and DNA single molecules were successful and all resulted in agreement with other TDFM and SPM observations demonstrating the reliability of the device. (paper)

  18. Probing the local microwave properties of superconducting thin films by a scanning microwave near-field microscope

    CERN Document Server

    Wu, L Y; Wang, K L; Jiang, T; Kang, L; Yang, S Z; Wu, P H

    2002-01-01

    In this paper, we present our approach to probe the local microwave properties of superconducting thin films by using the microwave near-field scanning technique. We have employed a coaxial cavity together with a niobium tip as the probe and established a scanning sample stage cooled by liquid nitrogen to study thin film devices at low temperature in our scanning microwave near-field microscope. Nondestructive images have been obtained on the inhomogeneity of the YBaCuO superconducting thin films at microwave frequency. We believe that these results would be helpful in evaluating the microwave performance of the devices.

  19. Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: from individual atoms to nanowires.

    Science.gov (United States)

    Qin, Shengyong; Kim, Tae-Hwan; Wang, Zhouhang; Li, An-Ping

    2012-06-01

    The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.

  20. Supramolecular chemistry at the liquid/solid interface probed by scanning tunnelling microscopy

    NARCIS (Netherlands)

    Feyter, S. De; Uji-i, H.; Mamdouh, W.; Miura, A.; Zhang, J.; Jonkheijm, P.; Schenning, A.P.H.J.; Meijer, E.W.; Chen, Z.; Wurthner, F.; Schuurmans, N.; Esch, J. van; Feringa, B.L.; Dulcey, A.E.; Percec, V.; Schryver, F.C. De

    2006-01-01

    The liquid/solid interface provides an ideal environment to investigate self-assembly phenomena, and scanning tunnelling microscopy (STM) is one of the preferred methodologies to probe the structure and the properties of physisorbed monolayers on the nanoscale. Physisorbed monolayers are of

  1. TOPICAL REVIEW: Aspects of scanning force microscope probes and their effects on dimensional measurement

    Science.gov (United States)

    Yacoot, Andrew; Koenders, Ludger

    2008-05-01

    The review will describe the various scanning probe microscopy tips and cantilevers used today for scanning force microscopy and magnetic force microscopy. Work undertaken to quantify the properties of cantilevers and tips, e.g. shape and radius, is reviewed together with an overview of the various tip-sample interactions that affect dimensional measurements.

  2. Complexation of malic acid with cadmium(II) probed by electrospray ionization mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Jaklová Dytrtová, Jana; Jakl, M.; Schröder, Detlef

    2012-01-01

    Roč. 90, 15 Feb (2012), s. 63-68 ISSN 0039-9140 Institutional research plan: CEZ:AV0Z40550506 Keywords : electrospray ionization * hazardous metal s * mass spectrometry * root exudates * soil solution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2012

  3. Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene.

    Science.gov (United States)

    Settnes, Mikkel; Power, Stephen R; Petersen, Dirch H; Jauho, Antti-Pekka

    2014-03-07

    Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier transforms of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements.

  4. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...... hydroxide. Numerical simulations of the electromagnetic field around the probe-sample interaction region are used to explain the experimental observations. With an aluminum-coated fiber probe, lines of 35 nm in width were transferred into the amorphous silicon layer. (C) 1997 American Institute of Physics....

  5. Modeling the hysteresis of a scanning probe microscope

    DEFF Research Database (Denmark)

    Dirscherl, Kai; Garnæs, Jørgen; Nielsen, L.

    2000-01-01

    Most scanning probe microscopes use piezoelectric actuators in open loop configurations. Therefore a major problem related to these instruments is the image distortion due to the hysteresis effect of the piezo. In order to eliminate the distortions, cost effective software control based on a model...... for hysteresis can be applied to the scanner. We describe a new rate-independent model for the hysteresis of a piezo scanner. Two reference standards were used to determine the accuracy of the model; a one-dimensional grating with a period of 3.0 mum and a two-dimensional grating with 200 nm pitch...

  6. ELECTROSPRAY, TECHNIQUE AND APPLICATIONS

    NARCIS (Netherlands)

    BRUINS, AP

    Electrospray makes use of ions present in electrically charged droplets in an aerosol. The generation of an aerosol by electrospray has already been published by Zeleny in 1917. The feasibility of electrospray as an ionization technique was demonstrated by Fenn and coworkers, and by a group of

  7. A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK

    International Nuclear Information System (INIS)

    Khotkevych, V. V.; Bending, S. J.; Milosevic, M. V.

    2008-01-01

    We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial 3 He-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6x6x7 mm 3 space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields ≥10 mG/Hz 1/2 . The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.

  8. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.

    Science.gov (United States)

    Zhang, Tao; Gao, Feng; Jiang, Xiangqian

    2017-10-02

    This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

  9. Mapping the antioxidant activity of apple peels with soft probe scanning electrochemical microscopy

    OpenAIRE

    Lin, Tzu-En; Lesch, Andreas; Li, Chi-Lin; Girault, Hubert

    2017-01-01

    We present a non-invasive electrochemical strategy for mapping the antioxidant (AO) activity of apple peels, which counterbalances oxidative stress caused by various external effectors. Soft carbon microelectrodes were used for soft probe scanning electrochemical microscopy (SECM) enabling the gentle and scratch-free in contact mode scanning of the rough and delicate apple peels in an electrolyte solution. The SECM feedback mode was applied using ferrocene methanol (FcMeOH) as redox mediator ...

  10. Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes.

    Science.gov (United States)

    Esslinger, Moritz; Vogelgesang, Ralf

    2012-09-25

    Near-field microscopy offers the opportunity to reveal optical contrast at deep subwavelength scales. In scanning near-field optical microscopy (SNOM), the diffraction limit is overcome by a nanoscopic probe in close proximity to the sample. The interaction of the probe with the sample fields necessarily perturbs the bare sample response, and a critical issue is the interpretation of recorded signals. For a few specific SNOM configurations, individual descriptions have been modeled, but a general and intuitive framework is still lacking. Here, we give an exact formulation of the measurable signals in SNOM which is easily applicable to experimental configurations. Our results are in close analogy with the description Tersoff and Hamann have derived for the tunneling currents in scanning tunneling microscopy. For point-like scattering probe tips, such as used in apertureless SNOM, the theory simplifies dramatically to a single scalar relation. We find that the measured signal is directly proportional to the field of the coupled tip-sample system at the position of the tip. For weakly interacting probes, the model thus verifies the empirical findings that the recorded signal is proportional to the unperturbed field of the bare sample. In the more general case, it provides guidance to an intuitive and faithful interpretation of recorded images, facilitating the characterization of tip-related distortions and the evaluation of novel SNOM configurations, both for aperture-based and apertureless SNOM.

  11. Scanning Probe Optical Tweezers: a new tool to study DNA-protein interactions

    NARCIS (Netherlands)

    Huisstede, J.H.G.

    2006-01-01

    The main goal of the work described in this thesis is to construct a microscope in which OT and scanning probe microscopy (SPM) are combined, to be able to localize proteins while simultaneously controlling the tension within the DNA molecule. This apparatus enables the study of the effect of

  12. Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Guikema, Janice Wynn; /SLAC, SSRL

    2005-12-02

    Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with

  13. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.

    Science.gov (United States)

    Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  14. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    International Nuclear Information System (INIS)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-01-01

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  15. Distribution Analysis of the Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser and Hall Probe Microscopy

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, B. R.; Park, H. Y.; Ri, H. C.

    2011-01-01

    Distribution of the local critical temperature and current density in YBCO coated conductors were analyzed using Low-temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of the critical temperature and the current density in single and multi bridges. LTSLHPM system was modified for detailed linescan or two-dimensional scan both scanning laser and scanning Hall probe method simultaneously. We analyzed the local critical temperature of single and multi bridges from series of several linescans of scanning laser microscopy. We also investigated local current density and hysteresis curve of single bridge from experimental results of scanning Hall probe microscopy.

  16. Direct profiling of phytochemicals in tulip tissues and in vivo monitoring of the change of carbohydrate content in tulip bulbs by probe electrospray ionization mass spectrometry.

    Science.gov (United States)

    Yu, Zhan; Chen, Lee Chuin; Suzuki, Hiroaki; Ariyada, Osamu; Erra-Balsells, Rosa; Nonami, Hiroshi; Hiraoka, Kenzo

    2009-12-01

    Probe electrospray ionization (PESI) is a recently developed ESI-based ionization technique which generates electrospray from the tip of a solid needle. In this study, we have applied PESI interfaced with a time of flight mass spectrometer (TOF-MS) for direct profiling of phytochemicals in a section of a tulip bulb in different regions, including basal plate, outer and inner rims of scale, flower bud and foliage leaves. Different parts of tulip petals and leaves have also been investigated. Carbohydrates, amino acids and other phytochemicals were detected. A series of in vivo PESI-MS experiments were carried out on the second outermost scales of four living tulip bulbs to monitoring the change of carbohydrate content during the first week of initial growth. The breakdown of carbohydrates was observed which was in accordance with previous reports achieved by other techniques. This study has indicated that PESI-MS can be used for rapid and direct analysis of phytochemicals in living biological systems with advantages of low sample consumption and little sample preparation. Therefore, PESI-MS can be a new choice for direct analysis/profiling of bioactive compounds or monitoring metabolic changes in living biological systems.

  17. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes

    Directory of Open Access Journals (Sweden)

    A. Smirnov

    2018-01-01

    Full Text Available In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm and the probe’s tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000 of the TF + probe system (Cherkun et al., 2006. We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  18. Electromechanical response of amorphous LaAlO3 thin film probed by scanning probe microscopies

    Science.gov (United States)

    Borowiak, Alexis S.; Baboux, Nicolas; Albertini, David; Vilquin, Bertrand; Saint Girons, Guillaume; Pelloquin, Sylvain; Gautier, Brice

    2014-07-01

    The electromechanical response of a 3 nm thick amorphous LaAlO3 layer obtained by molecular beam epitaxy has been studied using scanning probe microscopies. Although this kind of sample is not ferroelectric due to its amorphous nature, the resulting images are identical to what is generally obtained on truly ferroelectric samples probed by piezoresponse force microscopy: domains of apparently opposite polarisation are detected, and perfect, square shaped hysteresis loops are recorded. Moreover, written patterns are stable within 72 h. We discuss in the general case the possible origins of this behaviour in terms of charge injection, ionic conduction and motion of oxygen vacancies. In the case presented in this paper, since the writing process has been conducted with applied voltages lower than the injection threshold measured by conductive atomic force Microscopy, allowing to withdraw the hypothesis of charge injection in the sample, we propose that a bistable distribution of oxygen vacancies is responsible for this contrast.

  19. Electromechanical response of amorphous LaAlO3 thin film probed by scanning probe microscopies

    International Nuclear Information System (INIS)

    Borowiak, Alexis S.; Baboux, Nicolas; Albertini, David; Gautier, Brice; Vilquin, Bertrand; Saint Girons, Guillaume; Pelloquin, Sylvain

    2014-01-01

    The electromechanical response of a 3 nm thick amorphous LaAlO 3 layer obtained by molecular beam epitaxy has been studied using scanning probe microscopies. Although this kind of sample is not ferroelectric due to its amorphous nature, the resulting images are identical to what is generally obtained on truly ferroelectric samples probed by piezoresponse force microscopy: domains of apparently opposite polarisation are detected, and perfect, square shaped hysteresis loops are recorded. Moreover, written patterns are stable within 72 h. We discuss in the general case the possible origins of this behaviour in terms of charge injection, ionic conduction and motion of oxygen vacancies. In the case presented in this paper, since the writing process has been conducted with applied voltages lower than the injection threshold measured by conductive atomic force Microscopy, allowing to withdraw the hypothesis of charge injection in the sample, we propose that a bistable distribution of oxygen vacancies is responsible for this contrast.

  20. Self-mixing laser diode included in scanning microwave microscope to the control of probe nanodisplacement

    Science.gov (United States)

    Usanov, D. A.; Skripal, A. V.; Astakhov, E. I.; Dobdin, S. Y.

    2018-04-01

    The possibilities of self-mixing interferometry for measuring nanodisplacement of a probe included in a near-field scanning microwave microscope have been considered. The features of the formation of a laser interference signal at current modulation of the wavelength of laser radiation have been investigated. Experimental responses of a semiconductor laser system included in scanning microwave microscope to control nanodisplacement of the probe have been demonstrated.To register the nanodisplacement of the probe, it is proposed to use the method of determining the stationary phase of a laser interference signal by low-frequency spectrum of a semiconductor laser. The change of the amplitudes of the spectral components in the spectrum of the interference signal due to creation of the standing wave in the external resonator of the laser self-mixing system has been shown. The form of the interference signal at current modulation of the radiation wavelength was experimentally obtained when the probe moves with a step of 80 nm. The results of measuring nanodisplacements of an electromagnetic translator STANDA 8MVT40-13 have been demonstrated. Deviation of the nanodisplacement of the proposed method does not exceed 15%.

  1. Characterisation of tryptic peptides of phosphorylated tyrosine hydroxylase by high-pressure liquid chromatography electrospray ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Graham, Mark E.; Dickson, Phillip W.; Dunkley, Peter R.; Nagy-Felsobuki, Ellak I. von

    2005-01-01

    Tyrosine hydroxylase (TH) is involved in the biosynthesis of catecholamines and is activated by phosphorylation. Phosphorylated TH was analysed using high-pressure liquid chromatography combined with electrospray mass spectrometry (HPLC ESI-MS). Two mass scanning methods were used to detect tryptic cleavage products of TH. In the positive electrospray ionisation mode (ESI+), the peptides that contain the phosphorylation sites of TH were identified. In the alternative method, a phosphopeptide was detected in the negative electrospray ionisation mode (ESI-) using single ion monitoring in combination with a sequential ESI+ switching experiment. A raised baseline interfered with detection of hydrophilic peptides in ESI-, with the signal-to-noise ratio indicating that the method was operating near the limit of detection for a conventional electrospray source. The switching method improved the certainty of identification of phosphopeptides

  2. Electrospray mass spectrometry for actinides and lanthanide speciation

    International Nuclear Information System (INIS)

    Moulin, C.; Amekraz, B.; Colette, S.; Doizi, D.; Jacopin, C.; Lamouroux, C.; Plancque, G.

    2006-01-01

    Electrospray mass spectrometry (ES-MS) is a new speciation technique that has the great interest to be able to probe the element, the ligand and the complex in order to reach the speciation. This paper will focus on the use of ES-MS for the speciation of actinides/lanthanides on several systems of interest in various fields such as the interaction between DTPA (decorporant) and europium, HEBP and uranium, BTP (new extracting agent) and lanthanides with comparison with known chemistry as well as whenever possible with other speciation techniques

  3. Processing of Graphene combining Optical Detection and Scanning Probe Lithography

    Directory of Open Access Journals (Sweden)

    Zimmermann Sören

    2015-01-01

    Full Text Available This paper presents an experimental setup tailored for robotic processing of graphene with in-situ vision based control. A robust graphene detection approach is presented applying multiple image processing operations of the visual feedback provided by a high-resolution light microscope. Detected graphene flakes can be modified using a scanning probe based lithographical process that is directly linked to the in-situ optical images. The results of this process are discussed with respect to further application scenarios.

  4. Magnetic scanning gate microscopy of a domain wall nanosensor using microparticle probe

    Energy Technology Data Exchange (ETDEWEB)

    Corte-León, H., E-mail: hector.corte@npl.co.uk [National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Royal Holloway University of London, Egham TW20 0EX (United Kingdom); Gribkov, B. [National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Krzysteczko, P. [Physikalisch-Technische Bundesanstalt, Braunschweig D-38116 (Germany); Marchi, F.; Motte, J.-F. [University of Grenoble Alpes, Inst. NEEL, Grenoble F-38042 (France); CNRS, Inst. NEEL, Grenoble F-38042 (France); Schumacher, H.W. [Physikalisch-Technische Bundesanstalt, Braunschweig D-38116 (Germany); Antonov, V. [Royal Holloway University of London, Egham TW20 0EX (United Kingdom); Kazakova, O. [National Physical Laboratory, Teddington TW11 0LW (United Kingdom)

    2016-02-15

    We apply the magnetic scanning gate microscopy (SGM) technique to study the interaction between a magnetic bead (MB) and a domain wall (DW) trapped in an L-shaped magnetic nanostructure. Magnetic SGM is performed using a custom-made probe, comprising a hard magnetic NdFeB bead of diameter 1.6 µm attached to a standard silicon tip. The MB–DW interaction is detected by measuring changes in the electrical resistance of the device as a function of the tip position. By scanning at different heights, we create a 3D map of the MB–DW interaction and extract the sensing volume for different widths of the nanostructure's arms. It is shown that for 50 nm wide devices the sensing volume is a cone of 880 nm in diameter by 1.4 µm in height, and reduces down to 800 nm in height for 100 nm devices with almost no change in its diameter. - Highlights: • AFM tips with a magnetic bead attached used to test interaction with domain wall. • Domain wall inside a nanostructure affect the electrical resistance. • Recording electrical resistance while scanning with modified AFM probe. • Change of resistance as a function of the position of the magnetic bead. • This allows comparing different devices in a reproducible and controllable way.

  5. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    Science.gov (United States)

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-01-01

    Energy technologies of the 21st century require understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. This short review provides a summary of recent works dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. Discussion presents advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961

  6. Waveguide analysis of heat-drawn and chemically etched probe tips for scanning near-field optical microscopy.

    Science.gov (United States)

    Moar, Peter N; Love, John D; Ladouceur, François; Cahill, Laurence W

    2006-09-01

    We analyze two basic aspects of a scanning near-field optical microscope (SNOM) probe's operation: (i) spot-size evolution of the electric field along the probe with and without a metal layer, and (ii) a modal analysis of the SNOM probe, particularly in close proximity to the aperture. A slab waveguide model is utilized to minimize the analytical complexity, yet provides useful quantitative results--including losses associated with the metal coating--which can then be used as design rules.

  7. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  8. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    Science.gov (United States)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  9. Experimental Route to Scanning Probe Hot Electron Nanoscopy (HENs) Applied to 2D Material

    KAUST Repository

    Giugni, Andrea; Torre, Bruno; Allione, Marco; Das, Gobind; Wang, Zhenwei; He, Xin; Alshareef, Husam N.; Di Fabrizio, Enzo M.

    2017-01-01

    for applications in electronics: 2D MoS2 single crystal and a p-type SnO layer. Results are supported by complementary scanning Kelvin probe microscopy, traditional conductive AFM, and Raman measurements. New features highlighted by HEN technique reveal details

  10. Scanning Hall probe microscopy of a diluted magnetic semiconductor

    International Nuclear Information System (INIS)

    Kweon, Seongsoo; Samarth, Nitin; Lozanne, Alex de

    2009-01-01

    We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga 0.94 Mn 0.06 As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 μm wide and fairly stable with temperature. Magnetic clusters are observed above T C , which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.

  11. Scanning Hall probe microscopy of a diluted magnetic semiconductor

    Science.gov (United States)

    Kweon, Seongsoo; Samarth, Nitin; de Lozanne, Alex

    2009-05-01

    We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga0.94Mn0.06As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 μm wide and fairly stable with temperature. Magnetic clusters are observed above TC, which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.

  12. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2016-01-01

    Full Text Available Abid Mehmood Yousaf,1,2 Omer Mustapha,1 Dong Wuk Kim,1 Dong Shik Kim,1 Kyeong Soo Kim,1 Sung Giu Jin,1 Chul Soon Yong,3 Yu Seok Youn,4 Yu-Kyoung Oh,5 Jong Oh Kim,3 Han-Gon Choi1 1College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, South Korea; 2Faculty of Pharmacy, University of Central Punjab, Johar, Lahore, Pakistan; 3College of Pharmacy, Yeungnam University, Gyongsan, North Gyeongsang, 4School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, 5College of Pharmacy, Seoul National University, Seoul, South Korea Purpose: The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate.Methods: Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion.Results: All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1

  13. Electromechanical response of amorphous LaAlO{sub 3} thin film probed by scanning probe microscopies

    Energy Technology Data Exchange (ETDEWEB)

    Borowiak, Alexis S.; Baboux, Nicolas; Albertini, David; Gautier, Brice, E-mail: brice.gautier@insa-lyon.fr [Institut des nanotechnologies de Lyon (INL), Institut National des Sciences Appliquées de Lyon, Université de Lyon, UMR CNRS 5270, 7 Avenue Capelle, F-69621 Villeurbanne Cedex (France); Vilquin, Bertrand; Saint Girons, Guillaume; Pelloquin, Sylvain [Institut des nanotechnologies de Lyon (INL), Ecole Centrale de Lyon, Université de Lyon, UMR CNRS 5270, 36 Avenue Guy de Collongues, F-69134 Ecully Cedex (France)

    2014-07-07

    The electromechanical response of a 3 nm thick amorphous LaAlO{sub 3} layer obtained by molecular beam epitaxy has been studied using scanning probe microscopies. Although this kind of sample is not ferroelectric due to its amorphous nature, the resulting images are identical to what is generally obtained on truly ferroelectric samples probed by piezoresponse force microscopy: domains of apparently opposite polarisation are detected, and perfect, square shaped hysteresis loops are recorded. Moreover, written patterns are stable within 72 h. We discuss in the general case the possible origins of this behaviour in terms of charge injection, ionic conduction and motion of oxygen vacancies. In the case presented in this paper, since the writing process has been conducted with applied voltages lower than the injection threshold measured by conductive atomic force Microscopy, allowing to withdraw the hypothesis of charge injection in the sample, we propose that a bistable distribution of oxygen vacancies is responsible for this contrast.

  14. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.

    Science.gov (United States)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-26

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  15. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    Science.gov (United States)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  16. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    International Nuclear Information System (INIS)

    Bolker, Asaf; Kalish, Rafi; Saguy, Cecile

    2014-01-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques. (paper)

  17. Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid dispersions prepared by electrospraying method.

    Science.gov (United States)

    Jahangiri, Azin; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef; Hamishehkar, Hamed; Adibkia, Khosro

    2017-09-01

    In the present study, electrospraying was applied as a novel method for the fabrication of amorphous nano-solid dispersions (N-SDs) of atorvastatin calcium (ATV), ezetimibe (EZT), and ATV/EZT combination as poorly water-soluble drugs. N-SDs were prepared using polyvinylpyrrolidone K30 as an amorphous carrier in 1:1 and 1:5 drug to polymer ratios and the total solid (including drug and polymer) concentrations of 10 and 20% (w/v). The prepared formulations were further investigated for their morphological, physicochemical, and dissolution properties. Scanning electron microscopy studies indicated that the morphology and diameter of the electrosprayed samples (ESs) were influenced by the solution concentration and drug:polymer ratio, so that an increase in the solution concentration resulted in fiber formation while an increase in the polymer ratio led to enhancement of the particle diameter. Differential scanning calorimetry and X-ray powder diffraction studies together with in vitro dissolution test revealed that the ESs were present in an amorphous form with improved dissolution properties. Infrared spectroscopic studies showed hydrogen-bonding interaction between the drug and polymer in ESs. Since the electrospraying method benefits from the both amorphization and nanosizing effect, this novel approach seems to be an efficient method for the fabrication of N-SDs of poorly water-soluble drugs.

  18. Scanning microscopic four-point conductivity probes

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Torben Mikael; Bøggild, Peter

    2002-01-01

    A method for fabricating microscopic four-point probes is presented. The method uses silicon-based microfabrication technology involving only two patterning steps. The last step in the fabrication process is an unmasked deposition of the conducting probe material, and it is thus possible to select...... the conducting material either for a silicon wafer or a single probe unit. Using shadow masking photolithography an electrode spacing (pitch) down to 1.1 mum was obtained, with cantilever separation down to 200 run. Characterisation measurements have shown the microscopic probes to be mechanically very flexible...

  19. Development of X-ray excitable luminescent probes for scanning X-ray microscopy

    International Nuclear Information System (INIS)

    Moronne, M.M.

    1999-01-01

    Transmission soft X-ray microscopy is now capable of achieving resolutions that are typically 5 times better than the best-visible light microscopes. With expected improvements in zone plate optics, an additional factor of two may be realized within the next few years. Despite the high resolution now available with X-ray microscopes and the high X-ray contrast provided by biological molecules in the soft X-ray region (λ=2-5 nm), molecular probes for localizing specific biological targets have been lacking. To circumvent this problem, X-ray excitable molecular probes are needed that can target unique biological features. In this paper we report our initial results on the development of lanthanide-based fluorescent probes for biological labeling. Using scanning luminescence X-ray microscopy (SLXM, Jacobsen et al., J. Microscopy 172 (1993) 121-129), we show that lanthanide organo-polychelate complexes are sufficiently bright and radiation resistant to be the basis of a new class of X-ray excitable molecular probes capable of providing at least a fivefold improvement in resolution over visible light microscopy. Lanthanide probes, able to bind 80-100 metal ions per molecule, were found to give strong luminescent signals with X-ray doses exceeding 10 8 Gy, and were used to label actin stress fibers and in vitro preparations of polymerized tubulin. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Application of carbon nanotubes to topographical resolution enhancement of tapered fiber scanning near field optical microscopy probes

    Science.gov (United States)

    Huntington, S. T.; Jarvis, S. P.

    2003-05-01

    Scanning near field optical microscopy (SNOM) probes are typically tapered optical fibers with metallic coatings. The tip diameters are generally in excess of 300 nm and thus provide poor topographical resolution. Here we report on the attachment multiwalled carbon nanotubes to the probes in order to substantially enhance the topographical resolution, without adversely affecting the optical resolution.

  1. Scanning thermo-ionic microscopy for probing local electrochemistry at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Eshghinejad, Ahmadreza; Nasr Esfahani, Ehsan; Wang, Peiqi; Li, Jiangyu, E-mail: jjli@uw.edu [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Xie, Shuhong [Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan (China); Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong (China); Geary, Timothy C.; Adler, Stuart B. [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2016-05-28

    Conventional electrochemical characterization techniques based on voltage and current measurements only probe faradaic and capacitive rates in aggregate. In this work we develop a scanning thermo-ionic microscopy (STIM) to probe local electrochemistry at the nanoscale, based on imaging of Vegard strain induced by thermal oscillation. It is demonstrated from both theoretical analysis and experimental validation that the second harmonic response of thermally induced cantilever vibration, associated with thermal expansion, is present in all solids, whereas the fourth harmonic response, caused by local transport of mobile species, is only present in ionic materials. The origin of STIM response is further confirmed by its reduced amplitude with respect to increased contact force, due to the coupling of stress to concentration of ionic species and/or electronic defects. The technique has been applied to probe Sm-doped Ceria and LiFePO{sub 4}, both of which exhibit higher concentrations of mobile species near grain boundaries. The STIM gives us a powerful method to study local electrochemistry with high sensitivity and spatial resolution for a wide range of ionic systems, as well as ability to map local thermomechanical response.

  2. Synthesis and electroplating of high resolution insulated carbon nanotube scanning probes for imaging in liquid solutions.

    Science.gov (United States)

    Roberts, N A; Noh, J H; Lassiter, M G; Guo, S; Kalinin, S V; Rack, P D

    2012-04-13

    High resolution and isolated scanning probe microscopy (SPM) is in demand for continued development of energy storage and conversion systems involving chemical reactions at the nanoscale as well as an improved understanding of biological systems. Carbon nanotubes (CNTs) have large aspect ratios and, if leveraged properly, can be used to develop high resolution SPM probes. Isolation of SPM probes can be achieved by depositing a dielectric film and selectively etching at the apex of the probe. In this paper the fabrication of a high resolution and isolated SPM tip is demonstrated using electron beam induced etching of a dielectric film deposited onto an SPM tip with an attached CNT at the apex.

  3. Nanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy.

    Science.gov (United States)

    Lv, Yi; Cui, Jian; Jiang, Zuimin M; Yang, Xinju

    2012-11-29

    The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested.

  4. Vortex imaging in superconducting films by scanning Hall probe microscopy

    International Nuclear Information System (INIS)

    Oral, A.; Bending, S.J.; Humphreys, R.G.

    1996-01-01

    The authors have used a low noise Scanning Hall Probe Microscope (SHPM) to study vortex structures in superconducting films. The microscope has high magnetic field (∼2.9 x 10 -8 T/√Hz at 77K) and spatial resolution, ∼0.85 μm. Magnetic field profiles of single vortices in High T c YBa 2 Cu 3 O 7-δ thin films have been successfully measured and the microscopic penetration depth of the superconductor has been extracted as a function of temperature. Flux penetration into the superconductor has been imaged in real time (∼8s/frame)

  5. [Comparison of the M and XL FibroScan(®) probes to estimate liver stiffness by transient elastography].

    Science.gov (United States)

    Herrero, José Ignacio; Iñarrairaegui, Mercedes; D'Avola, Delia; Sangro, Bruno; Prieto, Jesús; Quiroga, Jorge

    2014-04-01

    The FibroScan(®) XL probe has been specifically designed for obese patients to measure liver stiffness by transient elastography, but it has not been well tested in non-obese patients. The aim of this study was to compare the M and XL FibroScan(®) probes in a series of unselected obese (body mass index above 30 kg/m(2)) and non-obese patients with chronic liver disease. Two hundred and fifty-four patients underwent a transient elastography examination with both the M and XL probes. The results obtained with the two probes were compared in the whole series and in obese (n=82) and non-obese (n=167) patients separately. The reliability of the examinations was assessed using the criteria defined by Castéra et al. The proportion of reliable exams was significantly higher when the XL probe was used (83% versus 73%; P=.001). This significance was maintained in the group of obese patients (82% versus 55%; P<.001), but not in the non-obese patients (84% versus 83%). Despite a high correlation between the stiffness values obtained with the two probes (R=.897; P<.001), and a high concordance in the estimation of fibrosis obtained with the two probes (Cronbach's alpha value: 0.932), the liver stiffness values obtained with the XL probe were significantly lower than those obtained with the M probe, both in the whole series (9.5 ± 9.1 kPa versus 11.3 ± 12.6 kPa; P<0.001) and in the obese and non-obese groups. In conclusion, transient elastography with the XL probe allows a higher proportion of reliable examinations in obese patients but not in non-obese patients. Stiffness values were lower with the XL probe than with the M probe. Copyright © 2013 Elsevier España, S.L. and AEEH y AEG. All rights reserved.

  6. A robust method for processing scanning probe microscopy images and determining nanoobject position and dimensions

    NARCIS (Netherlands)

    Silly, F.

    2009-01-01

    P>Processing of scanning probe microscopy (SPM) images is essential to explore nanoscale phenomena. Image processing and pattern recognition techniques are developed to improve the accuracy and consistency of nanoobject and surface characterization. We present a robust and versatile method to

  7. Fast-dissolving core-shell composite microparticles of quercetin fabricated using a coaxial electrospray process.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available This study reports on novel fast-dissolving core-shell composite microparticles of quercetin fabricated using coaxial electrospraying. A PVC-coated concentric spinneret was developed to conduct the electrospray process. A series of analyses were undertaken to characterize the resultant particles in terms of their morphology, the physical form of their components, and their functional performance. Scanning and transmission electron microscopies revealed that the microparticles had spherical morphologies with clear core-shell structure visible. Differential scanning calorimetry and X-ray diffraction verified that the quercetin active ingredient in the core and sucralose and sodium dodecyl sulfate (SDS excipients in the shell existed in the amorphous state. This is believed to be a result of second-order interactions between the components; these could be observed by Fourier transform infrared spectroscopy. In vitro dissolution and permeation studies showed that the microparticles rapidly released the incorporated quercetin within one minute, and had permeation rates across the sublingual mucosa around 10 times faster than raw quercetin.

  8. Scanning probe microscopy

    International Nuclear Information System (INIS)

    Mainsbridge, B.

    1994-01-01

    In late 1959, Richard Feynman observed that manoeuvring atoms was something that could be done in principle but has not been done, 'because we are too big'. In 1982, the scanning tunnelling microscope (STM) was invented and is now a central tool for the construction of nanoscale devices in what was known as molecular engineering, and now, nanotechnology. The principles of the microscope are outlined and references are made to other scanning devices which have evolved from the original invention. The method of employment of the STM as a machine tool is described and references are made to current speculations on applications of the instrument in nanotechnology. A short bibliography on this topic is included. 27 refs., 7 figs

  9. Scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mainsbridge, B [Murdoch Univ., WA (Australia). School of Mathematical and Physical Sciences

    1994-12-31

    In late 1959, Richard Feynman observed that manoeuvring atoms was something that could be done in principle but has not been done, `because we are too big`. In 1982, the scanning tunnelling microscope (STM) was invented and is now a central tool for the construction of nanoscale devices in what was known as molecular engineering, and now, nanotechnology. The principles of the microscope are outlined and references are made to other scanning devices which have evolved from the original invention. The method of employment of the STM as a machine tool is described and references are made to current speculations on applications of the instrument in nanotechnology. A short bibliography on this topic is included. 27 refs., 7 figs.

  10. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  11. Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

    Directory of Open Access Journals (Sweden)

    Jakub S. Prauzner-Bechcicki

    2016-11-01

    Full Text Available Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania–sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania–sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well.

  12. Scanning probe methods applied to molecular electronics

    Energy Technology Data Exchange (ETDEWEB)

    Pavlicek, Niko

    2013-08-01

    Scanning probe methods on insulating films offer a rich toolbox to study electronic, structural and spin properties of individual molecules. This work discusses three issues in the field of molecular and organic electronics. An STM head to be operated in high magnetic fields has been designed and built up. The STM head is very compact and rigid relying on a robust coarse approach mechanism. This will facilitate investigations of the spin properties of individual molecules in the future. Combined STM/AFM studies revealed a reversible molecular switch based on two stable configurations of DBTH molecules on ultrathin NaCl films. AFM experiments visualize the molecular structure in both states. Our experiments allowed to unambiguously determine the pathway of the switch. Finally, tunneling into and out of the frontier molecular orbitals of pentacene molecules has been investigated on different insulating films. These experiments show that the local symmetry of initial and final electron wave function are decisive for the ratio between elastic and vibration-assisted tunneling. The results can be generalized to electron transport in organic materials.

  13. Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method

    Science.gov (United States)

    Wilson, Adam A.

    The ability to measure thermal properties of thin films and nanostructured materials is an important aspect of many fields of academic study. A strategy especially well-suited for nanoscale investigations of these properties is the scanning hot probe technique, which is unique in its ability to non-destructively interrogate the thermal properties with high resolution, both laterally as well as through the thickness of the material. Strategies to quantitatively determine sample thermal conductivity depend on probe calibration. State of the art calibration strategies assume that the area of thermal exchange between probe and sample does not vary with sample thermal conductivity. However, little investigation has gone into determining whether or not that assumption is valid. This dissertation provides a rigorous study into the probe-to-sample heat transfer through the air gap at diffusive distances for a variety of values of sample thermal conductivity. It is demonstrated that the thermal exchange radius and gap/contact thermal resistance varies with sample thermal conductivity as well as tip-to-sample clearance in non-contact mode. In contact mode, it is demonstrated that higher thermal conductivity samples lead to a reduction in thermal exchange radius for Wollaston probe tips. Conversely, in non-contact mode and in contact mode for sharper probe tips where air contributes the most to probe-to-sample heat transfer, the opposite trend occurs. This may be attributed to the relatively strong solid-to-solid conduction occurring between probe and sample for the Wollaston probes. A three-dimensional finite element (3DFE) model was developed to investigate how the calibrated thermal exchange parameters vary with sample thermal conductivity when calibrating the probe via the intersection method in non-contact mode at diffusive distances. The 3DFE model was then used to explore the limits of sensitivity of the experiment for a range of simulated experimental conditions. It

  14. A scanning fluid dynamic gauging technique for probing surface layers

    International Nuclear Information System (INIS)

    Gordon, Patrick W; Chew, Y M John; Wilson, D Ian; Brooker, Anju D M; York, David W

    2010-01-01

    Fluid dynamic gauging (FDG) is a technique for measuring the thickness of soft solid deposit layers immersed in a liquid environment, in situ and in real time. This paper details the performance of a novel automated, scanning FDG probe (sFDG) which allows the thickness of a sample layer to be monitored at several points during an experiment, with a resolution of ±5 µm. Its application is demonstrated using layers of gelatine, polyvinyl alcohol (PVA) and baked tomato purée deposits. Swelling kinetics, as well as deformation behaviour—based on knowledge of the stresses imposed on the surface by the gauging flow—can be determined at several points, affording improved experimental data. The use of FDG as a surface scanning technique, operating as a fluid mechanical analogue of atomic force microscopy on a millimetre length scale, is also demonstrated. The measurement relies only on the flow behaviour, and is thus suitable for use in opaque fluids, does not contact the surface itself and does not rely on any specific physical properties of the surface, provided it is locally stiff

  15. Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies

    Science.gov (United States)

    Wilkins, R.; Powell, Kirk St. A.

    1997-01-01

    Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.

  16. A preliminary report on a novel electrospray technique for nanoparticle based biomedical implants coating: precision electrospraying.

    Science.gov (United States)

    Kumbar, Sangamesh G; Bhattacharyya, Subhabrata; Sethuraman, Swaminathan; Laurencin, Cato T

    2007-04-01

    The compatibility and biological efficacy of biomedical implants can be enhanced by coating their surface with appropriate agents. For predictable functioning of implants in situ, it is often desirable to obtain an extremely uniform coating thickness without effects on component dimensions or functions. Conventional coating techniques require rigorous processing conditions and often have limited adhesion and composition properties. In the present study, the authors report a novel precision electrospraying technique that allows both degradable and nondegradable coatings to be placed. Thin metallic slabs, springs, and biodegradable sintered microsphere scaffolds were coated with poly(lactide-co-glycolide) (PLAGA) using this technique. The effects of process parameters such as coating material concentration and applied voltage were studied using PLAGA and poly(ethylene glycol) coatings. Morphologies of coated surfaces were qualitatively characterized by scanning electron microscopy. Qualitative observations suggested that the coatings were composed of particles of various size/shape and agglomerates with different porous architectures. PLAGA coatings of uniform thickness were observed on all surfaces. Spherical nanoparticle poly(ethylene glycol) coatings (462-930 nm) were observed at all concentrations studied. This study found that the precision electrospraying technique is elegant, rapid, and reproducible with precise control over coating thickness (mum to mm) and is a useful alternative method for surface modification of biomedical implants. (c) 2006 Wiley Periodicals, Inc.

  17. Ultrasound probe and needle-guide calibration for robotic ultrasound scanning and needle targeting.

    Science.gov (United States)

    Kim, Chunwoo; Chang, Doyoung; Petrisor, Doru; Chirikjian, Gregory; Han, Misop; Stoianovici, Dan

    2013-06-01

    Image-to-robot registration is a typical step for robotic image-guided interventions. If the imaging device uses a portable imaging probe that is held by a robot, this registration is constant and has been commonly named probe calibration. The same applies to probes tracked by a position measurement device. We report a calibration method for 2-D ultrasound probes using robotic manipulation and a planar calibration rig. Moreover, a needle guide that is attached to the probe is also calibrated for ultrasound-guided needle targeting. The method is applied to a transrectal ultrasound (TRUS) probe for robot-assisted prostate biopsy. Validation experiments include TRUS-guided needle targeting accuracy tests. This paper outlines the entire process from the calibration to image-guided targeting. Freehand TRUS-guided prostate biopsy is the primary method of diagnosing prostate cancer, with over 1.2 million procedures performed annually in the U.S. alone. However, freehand biopsy is a highly challenging procedure with subjective quality control. As such, biopsy devices are emerging to assist the physician. Here, we present a method that uses robotic TRUS manipulation. A 2-D TRUS probe is supported by a 4-degree-of-freedom robot. The robot performs ultrasound scanning, enabling 3-D reconstructions. Based on the images, the robot orients a needle guide on target for biopsy. The biopsy is acquired manually through the guide. In vitro tests showed that the 3-D images were geometrically accurate, and an image-based needle targeting accuracy was 1.55 mm. These validate the probe calibration presented and the overall robotic system for needle targeting. Targeting accuracy is sufficient for targeting small, clinically significant prostatic cancer lesions, but actual in vivo targeting will include additional error components that will have to be determined.

  18. Three axis vector magnet set-up for cryogenic scanning probe microscopy

    International Nuclear Information System (INIS)

    Galvis, J. A.; Herrera, E.; Buendía, A.; Guillamón, I.; Vieira, S.; Suderow, H.; Azpeitia, J.; Luccas, R. F.; Munuera, C.; García-Hernandez, M.

    2015-01-01

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi 2 Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert

  19. Three axis vector magnet set-up for cryogenic scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J. A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias Universidad Autónoma de Madrid, 28049 Madrid (Spain); Departamento de Ciencias Naturales Facultad de Ingeniería Universidad Central, Bogotá (Colombia); Herrera, E.; Buendía, A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias Universidad Autónoma de Madrid, 28049 Madrid (Spain); Guillamón, I.; Vieira, S.; Suderow, H. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias Universidad Autónoma de Madrid, 28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Azpeitia, J.; Luccas, R. F.; Munuera, C.; García-Hernandez, M. [Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); and others

    2015-01-15

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi{sub 2}Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert.

  20. Probing Free-Energy Surfaces with Differential Scanning Calorimetry

    Science.gov (United States)

    Sanchez-Ruiz, Jose M.

    2011-05-01

    Many aspects of protein folding can be understood in terms of projections of the highly dimensional energy landscape onto a few (or even only one) particularly relevant coordinates. These free-energy surfaces can be probed conveniently from experimental differential scanning calorimetry (DSC) thermograms, as DSC provides a direct relation with the protein partition function. Free-energy surfaces thus obtained are consistent with two fundamental scenarios predicted by the energy-landscape perspective: (a) well-defined macrostates separated by significant free-energy barriers, in some cases, and, in many other cases, (b) marginal or even vanishingly small barriers, which furthermore show a good correlation with kinetics for fast- and ultrafast-folding proteins. Overall, the potential of DSC to assess free-energy surfaces for a wide variety of proteins makes it possible to address fundamental issues, such as the molecular basis of the barrier modulations produced by natural selection in response to functional requirements or to ensure kinetic stability.

  1. Characterisation of corrosion processes of using electron micro-probe, scanning probe microscopy and synchrotron-generated x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Neufeld, A.K.; Cole, I.S.; Furman, S.A.; Isaacs, H.S.

    2002-01-01

    Full text: With recent advances in computerized technology, the study of chemical reactions can now be visualized as they occur in real time and has resulted in analytical techniques with orders of magnitude greater sensitivity and resolution. This ability offers the corrosion scientist a unique opportunity to study the processes relevant to degradation science which could only be theoretically considered. Neufeld el al (1,2) have attempted to explain in great detail the mechanism of corrosion initiation of zinc by using X-ray micro-probe, Scanning Kelvin probe, and more recently by using synchrotron-generated X-rays and X-ray fluorescence imaging. New results are presented from the synchrotron studies where the transport of ions in-situ has been investigated. The synthesis of information from the techniques will also be discussed in its relevance to atmospheric corrosion processes. Copyright (2002) Australian Society for Electron Microscopy Inc

  2. Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies.

    Science.gov (United States)

    Malik, Salman A; Ng, Wing H; Bowen, James; Tang, Justin; Gomez, Alessandro; Kenyon, Anthony J; Day, Richard M

    2016-04-01

    Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Growth of Pd-Filled Carbon Nanotubes on the Tip of Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Tomokazu Sakamoto

    2009-01-01

    Full Text Available We have synthesized Pd-filled carbon nanotubes (CNTs oriented perpendicular to Si substrates using a microwave plasma-enhanced chemical vapor deposition (MPECVD for the application of scanning probe microscopy (SPM tip. Prior to the CVD growth, Al thin film (10 nm was coated on the substrate as a buffer layer followed by depositing a 5∼40 nm-thick Pd film as a catalyst. The diameter and areal density of CNTs grown depend largely on the initial Pd thickness. Scanning electron microscopy (SEM and transmission electron microscopy (TEM images clearly show that Pd is successfully encapsulated into the CNTs, probably leading to higher conductivity. Using optimum growth conditions, Pd-filled CNTs are successfully grown on the apex of the conventional SPM cantilever.

  4. Ion concentration in micro and nanoscale electrospray emitters.

    Science.gov (United States)

    Yuill, Elizabeth M; Baker, Lane A

    2018-06-01

    Solution-phase ion transport during electrospray has been characterized for nanopipettes, or glass capillaries pulled to nanoscale tip dimensions, and micron-sized electrospray ionization emitters. Direct visualization of charged fluorophores during the electrospray process is used to evaluate impacts of emitter size, ionic strength, analyte size, and pressure-driven flow on heterogeneous ion transport during electrospray. Mass spectrometric measurements of positively- and negatively-charged proteins were taken for micron-sized and nanopipette emitters under low ionic strength conditions to further illustrate a discrepancy in solution-driven transport of charged analytes. A fundamental understanding of analyte electromigration during electrospray, which is not always considered, is expected to provide control over selective analyte depletion and enrichment, and can be harnessed for sample cleanup. Graphical abstract Fluorescence micrographs of ion migration in nanoscale pipettes while solution is electrosprayed.

  5. Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters

    International Nuclear Information System (INIS)

    Dryakhlushin, V F; Veiko, V P; Voznesenskii, N B

    2007-01-01

    A brief review of modern applications of scanning near-field optical (SNO) devices in microscopy, spectroscopy, and lithography is presented in the introduction. The problem of the development of SNO probes, as the most important elements of SNO devices determining their resolution and efficiency, is discussed. Based on the works of the authors, two different methods for fabricating SNO probes by using the adiabatic tapering of an optical fibre are considered: the laser-heated mechanical drawing and chemical etching. A nondestructive optical method for controlling the nanometre aperture of SNO probes is proposed, substantiated, and tested experimentally. The method is based on the reconstruction of a near-field source with the help of a theoretical algorithm of the inverse problem from the experimental far-filed intensity distribution. Some prospects for a further refinement of the construction and technology of SNO probes are discussed. (optical microscopy)

  6. Touching is believing: interrogating halide perovskite solar cells at the nanoscale via scanning probe microscopy

    Science.gov (United States)

    Li, Jiangyu; Huang, Boyuan; Nasr Esfahani, Ehsan; Wei, Linlin; Yao, Jianjun; Zhao, Jinjin; Chen, Wei

    2017-10-01

    Halide perovskite solar cells based on CH3NH3PbI3 and related materials have emerged as the most exciting development in the next generation photovoltaic technologies, yet the microscopic phenomena involving photo-carriers, ionic defects, spontaneous polarization, and molecular vibration and rotation interacting with numerous grains, grain boundaries, and interfaces are still inadequately understood. In fact, there is still need for an effective method to interrogate the local photovoltaic properties of halide perovskite solar cells that can be directly traced to their microstructures on one hand and linked to their device performance on the other hand. In this perspective, we propose that scanning probe microscopy (SPM) techniques have great potential to realize such promises at the nanoscale, and highlight some of the recent progresses and challenges along this line of investigation toward local probing of photocurrent, work function, ionic activities, polarization switching, and chemical degradation. We also emphasize the importance of multi-modality imaging, in-operando scanning, big data analysis, and multidisciplinary collaboration for further studies toward fully understanding of these complex systems.

  7. Precise Orientation of a Single C60 Molecule on the Tip of a Scanning Probe Microscope

    Science.gov (United States)

    Chiutu, C.; Sweetman, A. M.; Lakin, A. J.; Stannard, A.; Jarvis, S.; Kantorovich, L.; Dunn, J. L.; Moriarty, P.

    2012-06-01

    We show that the precise orientation of a C60 molecule which terminates the tip of a scanning probe microscope can be determined with atomic precision from submolecular contrast images of the fullerene cage. A comparison of experimental scanning tunneling microscopy data with images simulated using computationally inexpensive Hückel theory provides a robust method of identifying molecular rotation and tilt at the end of the probe microscope tip. Noncontact atomic force microscopy resolves the atoms of the C60 cage closest to the surface for a range of molecular orientations at tip-sample separations where the molecule-substrate interaction potential is weakly attractive. Measurements of the C60C60 pair potential acquired using a fullerene-terminated tip are in excellent agreement with theoretical predictions based on a pairwise summation of the van der Waals interactions between C atoms in each cage, i.e., the Girifalco potential [L. Girifalco, J. Phys. Chem. 95, 5370 (1991)JPCHAX0022-365410.1021/j100167a002].

  8. Low-Level Detection of Poly(amidoamine) PAMAM Dendrimers Using Immunoimaging Scanning Probe Microscopy

    OpenAIRE

    Cason, Chevelle A.; Fabré, Thomas A.; Buhrlage, Andrew; Haik, Kristi L.; Bullen, Heather A.

    2012-01-01

    Immunoimaging scanning probe microscopy was utilized for the low-level detection and quantification of biotinylated G4 poly(amidoamine) PAMAM dendrimers. Results were compared to those of high-performance liquid chromatography (HPLC) and found to provide a vastly improved analytical method for the low-level detection of dendrimers, improving the limit of detection by a factor of 1000 (LOD = 2.5 × 10−13 moles). The biorecognition method is reproducible and shows high specificity and good accur...

  9. Acoustic field of focusing phased array probe and the scanning system

    International Nuclear Information System (INIS)

    Murai, J.; Miura, S.; Ida, T.; Shiraiwa, T.; Miya, T.

    1997-01-01

    Acoustic field of a point focusing cylindrical linear array probe, in which focusing in the axial direction of cylinder is done by the phased linear array and focusing in the orthogonal direction is done geometrically, was studied by numerical calculation and an optimum design of phased array probe for focusing has been obtained. In generally speaking, the beam width at focus point decreases with decrease of width of each transducer element and with increase of synthetic aperture made by total elements. If the number of total array elements excited as one pulse is limited, the above conditions are contradicted. Thus, an optimum element width exists for the best focusing. On the above consideration, we can get focusing ability of phased array nearly as same as geometrical focusing. A developed transducer is a linear array of polymer piezoelectric material of cylindrical shape, of which radius is from 50 mm to 75 mm. The frequency is 10 Mhz and the beam width of 0.5 mm (depending on aperture) in the orthogonal direction to the cylinder axis and 0.7 mm width in the cylinder axis (phased array focusing) have been obtained. A delay circuit for exciting the transducer was newly designed to give maximum performance to the array regarding to accuracy, stability, easy control and etc. A c-scan ultrasonic testing system equipped with this transducer has sixteen times inspection speed compared to the single probe instrument.

  10. Scanning-probe-microscopy of polyethylene terephthalate surface treatment by argon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Beltran, Francisco [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Sanchez, Isaac C. [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); España-Sánchez, Beatriz L.; Mota-Morales, Josué D.; Carrillo, Salvador; Enríquez-Flores, C.I. [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Poncin-Epaillard, Fabienne, E-mail: epaill@univ-lemans.fr [Institute for Molecules and Materials, UMR CNRS 6283, Av. O. Messiaen, Universitè du Maine, Le Mans 72085 (France); Luna-Barcenas, Gabriel, E-mail: gluna@qro.cinvestav.mx [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico)

    2015-11-01

    Highlights: • Kelvin-probe-force microscopy helps study of PET surface treated by Ar ion beam. • Ar ion beam surface treatment promotes chain scission and N insertion. • Surface roughness and work function increases as intensity of ion energy increases. • Adhesive force of PET decrease due to the surface changes by ion bombardment. - Abstract: The effect of argon (Ar{sup +}) ion beam treatment on the surface of polyethylene terephthalate (PET) samples was studied by scanning probe microscopy (SPM) and the changes in surface topography were assessed by atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) sheds light of adhesion force between treated polymer films and a Pt/Cr probe under dry conditions, obtaining the contact potential difference of material. As a result of Ar{sup +} ion bombardment, important surface chemical changes were detected by X-ray photoelectron spectroscopy (XPS) measurements such as chains scission and incorporation of nitrogen species. Ion beam treatment increases the surface roughness from 0.49 ± 0.1 nm to 7.2 ± 0.1 nm and modify the surface potential of PET samples, decreasing the adhesive forces from 12.041 ± 2.1 nN to 5.782 ± 0.06 nN, and producing a slight increase in the electronic work function (Φ{sub e}) from 5.1 V (untreated) to 5.2 V (treated). Ar{sup +} ion beam treatment allows to potentially changing the surface properties of PET, modifying surface adhesion, improving surface chemical changes, wetting properties and surface potential of polymers.

  11. Production and properties of electrosprayed sericin nanopowder

    Directory of Open Access Journals (Sweden)

    Najmeh Hazeri, Hossein Tavanai and Ali Reza Moradi

    2012-01-01

    Full Text Available Sericin is a proteinous substrate that envelops fibroin (silk fiber, and its recovery provides significant economical and social benefits. Sericin is an antibacterial agent that resists oxidation and absorbs moisture and UV light. In powder form, sericin has a wide range of applications in food, cosmetics and drug delivery. Asides from other techniques of producing powder, such as precipitation and spray drying, electrospraying can yield solid nanoparticles, particularly in the submicron range. Here, we report the production of sericin nanopowder by electrospraying. Sericin sponge was recovered from Bombyx mori cocoons through a high-temperature, high-pressure process, followed by centrifugation and freeze drying of the sericin solution. The electrospraying solution was prepared by dissolving the sericin sponge in dimethyl sulfoxide. We demonstrate that electrospraying is capable of producing sericin nanopowder with an average particle size of 25 nm, which is by far smaller than the particles produced by other techniques. The electrosprayed sericin nanopowder consists of small crystallites and exhibits a high moisture absorbance.

  12. Production and properties of electrosprayed sericin nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Hazeri, Najmeh; Tavanai, Hossein; Moradi, Ali Reza, E-mail: tavanai@cc.iut.ac.ir [Department of Textile Engineering, Centre of Excellence in Applied Nanotechnology, Isfahan, University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2012-06-15

    Sericin is a proteinous substrate that envelops fibroin (silk) fiber, and its recovery provides significant economical and social benefits. Sericin is an antibacterial agent that resists oxidation and absorbs moisture and UV light. In powder form, sericin has a wide range of applications in food, cosmetics and drug delivery. Asides from other techniques of producing powder, such as precipitation and spray drying, electrospraying can yield solid nanoparticles, particularly in the submicron range. Here, we report the production of sericin nanopowder by electrospraying. Sericin sponge was recovered from Bombyx mori cocoons through a high-temperature, high-pressure process, followed by centrifugation and freeze drying of the sericin solution. The electrospraying solution was prepared by dissolving the sericin sponge in dimethyl sulfoxide. We demonstrate that electrospraying is capable of producing sericin nanopowder with an average particle size of 25 nm, which is by far smaller than the particles produced by other techniques. The electrosprayed sericin nanopowder consists of small crystallites and exhibits a high moisture absorbance. (paper)

  13. Electrical Potential of Acupuncture Points: Use of a Noncontact Scanning Kelvin Probe

    Directory of Open Access Journals (Sweden)

    Brian J. Gow

    2012-01-01

    Full Text Available Objective. Acupuncture points are reportedly distinguishable by their electrical properties. However, confounders arising from skin-to-electrode contact used in traditional electrodermal methods have contributed to controversies over this claim. The Scanning Kelvin Probe is a state-of-the-art device that measures electrical potential without actually touching the skin and is thus capable of overcoming these confounding effects. In this study, we evaluated the electrical potential profiles of acupoints LI-4 and PC-6 and their adjacent controls. We hypothesize that acupuncture point sites are associated with increased variability in potential compared to adjacent control sites. Methods. Twelve healthy individuals were recruited for this study. Acupuncture points LI-4 and PC-6 and their adjacent controls were assessed. A 2 mm probe tip was placed over the predetermined skin site and adjusted to a tip-to-sample distance of 1.0 mm under tip oscillation settings of 62.4 Hz frequency. A surface potential scan spanning a 1.0 cm × 1.0 cm area was obtained. Results. At both the PC-6 and LI-4 sites, no significant differences in mean potential were observed compared to their respective controls (Wilcoxon rank-sum test, and 0.79, resp.. However, the LI-4 site was associated with significant increase in variability compared to its control as denoted by standard deviation and range ( and 0.0005, resp.. At the PC-6 site, no statistical differences in variability were observed. Conclusion. Acupuncture points may be associated with increased variability in electrical potential.

  14. Note: Microelectrode-shielding tip for scanning probe electron energy spectroscopy

    Science.gov (United States)

    Huang, Wei; Li, Zhean; Xu, Chunkai; Liu, Jian; Xu, Chunye; Chen, Xiangjun

    2018-04-01

    We report a novel microelectrode-shielding tip (ME tip) for scanning probe electron energy spectroscopy (SPEES). The shielding effect of this tip is studied through comparing the detection efficiency with the normal tip by both experiment and simulation. The results show that the backscattering count rate detected by the SPEES instrument using the normal tip begins to decrease as the tip approaches to the sample surface within 21 μm, while that using the ME tip only starts to drop off within 1 μm. This indicates that the electron energy spectra can be measured with the ME tip at a much closer tip-sample distance. Furthermore, it is also demonstrated that the ME tip can be used to obtain topography of the sample surface in situ simultaneously.

  15. In situ scanning probe spectroscopy at nanoscale solid/liquid interfaces

    International Nuclear Information System (INIS)

    Schindler, W.; Hugelmann, M.; Hugelmann, Ph.

    2005-01-01

    Electrochemistry provides unique features for the preparation of low-dimensional structures, but in situ spectroscopy with atomic/molecular resolution at such structures is at present not well established yet. This paper shows that in situ scanning probe spectroscopy at solid/liquid interfaces can be utilized to study electronic properties at nanoscale, if appropriate conditions are applied. Tunneling spectroscopy provides information about tunneling barrier heights and electronic states in the tunneling gap, as shown on Au(1 1 1) substrates, contact spectroscopy allows for transport measurements at single nanostructures, as shown at Au/n-Si(1 1 1) nanodiodes. The influence of the electrolytic environment on spectroscopic investigations is not a principal limitation, but offers additional degrees of freedom, which allow, for example, spectroscopic studies of potential dependent surface phenomena at solid/liquid interfaces

  16. Standardization of nanomaterials characterization by scanning probe microscopy for societal acceptance

    International Nuclear Information System (INIS)

    Fujita, Daisuke; Onishi, Keiko; Xu, Mingsheng

    2009-01-01

    Novel nanomaterials are expected to play key roles for the promotion of innovations in the various industrial products. In order to make such novel nanomaterials to be socially acceptable and widely used, it is very important and necessary to establish the reliable nano-characterization methodology for the industrial nanomaterials under the authorized international scheme for standardization. Among the nano-characterization methods, scanning probe microscopy (SPM) is the most versatile both in the measurement functions and the operational environments. Whereas there are various nanomaterials of industrial application, fullerene nanomaterials (FNM) have attracted much attention due to their unique physical properties. Here we show the importance of the quantitative analysis and standardization of SPM using FNM as a typical example.

  17. Standardization of nanomaterials characterization by scanning probe microscopy for societal acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Daisuke [International Center for Materials Nanoarchitectonics (MANA) and Advanced Nano Characterization Center (ANCC), National Institute for Materials Science - NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Onishi, Keiko [Advanced Nano Characterization Center (ANCC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Mingsheng [International Center for Young Scientists-Interdisciplinary Materials Research (ICYS-IMAT), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)], E-mail: fujita.daisuke@nims.go.jp

    2009-04-01

    Novel nanomaterials are expected to play key roles for the promotion of innovations in the various industrial products. In order to make such novel nanomaterials to be socially acceptable and widely used, it is very important and necessary to establish the reliable nano-characterization methodology for the industrial nanomaterials under the authorized international scheme for standardization. Among the nano-characterization methods, scanning probe microscopy (SPM) is the most versatile both in the measurement functions and the operational environments. Whereas there are various nanomaterials of industrial application, fullerene nanomaterials (FNM) have attracted much attention due to their unique physical properties. Here we show the importance of the quantitative analysis and standardization of SPM using FNM as a typical example.

  18. STM-SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, Tadayuki; Tachiki, Minoru; Itozaki, Hideo

    2007-01-01

    We have developed a STM-SQUID probe microscope. A high T C SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution prior to observation by SQUID microscopy. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk. Furthermore we have investigated a sample vibration method of the static magnetic field emanating from a sample with the aim of achieving a higher signal-to-noise (S/N) ratio

  19. ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: Detection and correction

    International Nuclear Information System (INIS)

    Wu Yan; Shannon, Mark A.

    2006-01-01

    The dependence of the contact potential difference (CPD) reading on the ac driving amplitude in scanning Kelvin probe microscope (SKPM) hinders researchers from quantifying true material properties. We show theoretically and demonstrate experimentally that an ac driving amplitude dependence in the SKPM measurement can come from a systematic error, and it is common for all tip sample systems as long as there is a nonzero tracking error in the feedback control loop of the instrument. We further propose a methodology to detect and to correct the ac driving amplitude dependent systematic error in SKPM measurements. The true contact potential difference can be found by applying a linear regression to the measured CPD versus one over ac driving amplitude data. Two scenarios are studied: (a) when the surface being scanned by SKPM is not semiconducting and there is an ac driving amplitude dependent systematic error; (b) when a semiconductor surface is probed and asymmetric band bending occurs when the systematic error is present. Experiments are conducted using a commercial SKPM and CPD measurement results of two systems: platinum-iridium/gap/gold and platinum-iridium/gap/thermal oxide/silicon are discussed

  20. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl [Department of Optomechatronics, Netherlands Organization for Scientific Applied Research, TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Herfst, Rodolf; Winters, Jasper; Crowcombe, Will; Kramer, Geerten; Dool, Teun van den; Es, Maarten H. van [Department of Optomechatronics, Netherlands Organization for Scientific Applied Research, TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands)

    2015-11-15

    We have developed a high speed, miniature scanning probe microscope (MSPM) integrated with a Positioning Unit (PU) for accurately positioning the MSPM on a large substrate. This combination enables simultaneous, parallel operation of many units on a large sample for high throughput measurements. The size of the MSPM is 19 × 45 × 70 mm{sup 3}. It contains a one-dimensional flexure stage with counter-balanced actuation for vertical scanning with a bandwidth of 50 kHz and a z-travel range of more than 2 μm. This stage is mechanically decoupled from the rest of the MSPM by suspending it on specific dynamically determined points. The motion of the probe, which is mounted on top of the flexure stage is measured by a very compact optical beam deflection (OBD). Thermal noise spectrum measurements of short cantilevers show a bandwidth of 2 MHz and a noise of less than 15 fm/Hz{sup 1/2}. A fast approach and engagement of the probe to the substrate surface have been achieved by integrating a small stepper actuator and direct monitoring of the cantilever response to the approaching surface. The PU has the same width as the MSPM, 45 mm and can position the MSPM to a pre-chosen position within an area of 275×30 mm{sup 2} to within 100 nm accuracy within a few seconds. During scanning, the MSPM is detached from the PU which is essential to eliminate mechanical vibration and drift from the relatively low-resonance frequency and low-stiffness structure of the PU. Although the specific implementation of the MSPM we describe here has been developed as an atomic force microscope, the general architecture is applicable to any form of SPM. This high speed MSPM is now being used in a parallel SPM architecture for inspection and metrology of large samples such as semiconductor wafers and masks.

  1. A fast scanning probe for DIII--D

    International Nuclear Information System (INIS)

    Watkins, J.G.; Salmonson, J.; Moyer, R.; Doerner, R.; Lehmer, R.; Schmitz, L.; Hill, D.N.

    1992-01-01

    A fast reciprocating probe has been developed for DIII--D which can penetrate the separatrix during H mode with up to 5 MW of NBI heating. The probe has been designed to carry various sensor tips into the scrape-off layer at a velocity of 3 m/s and dwell motionless for a programmed period of time. The driving force is provided by a pneumatic cylinder charged with helium to facilitate greater mass flow. The first series of experiments have been done using a Langmuir probe head with five graphite tips to measure radial profiles of n e , T e , φ f , n e , and φ f . The amplitude and phase of the fluctuating quantities are measured by using specially constructed vacuum compatible 5-kV coaxial transmission lines which allow us to extend the measurements into the MHz range. TTZ ceramic bearings and fast stroke bellows were also specially designed for the DIII--D probe. Initial measurements will be presented

  2. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy

    Science.gov (United States)

    Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

    2007-05-01

    Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ˜55-60°C as output powers reach ˜50nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of ˜450nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4±1.7 and 20.7±6.9mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes (˜15° for etched and ˜6° for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of ˜6μm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.

  3. Optical and magnetic properties of porous graphene films produced by electrospraying

    International Nuclear Information System (INIS)

    Zhao, Jun; Yang, Shan-Shan; Chen, Li-Qing; Zhang, Zhao-Chun; Zheng, Hou-Li

    2013-01-01

    Graphene films have been produced by electrospraying on SiO 2 -coated silicon substrate and subsequent heat treatment, offering a simple and typical method to produce porous graphene films and exhibiting a good adhesion to silicon substrate. The microstructures of as-prepared graphene films were characterized by field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction and atomic force microscopy. X-ray photoelectron spectroscopy, infrared spectroscopy and Raman spectroscopy further confirmed the formation of porous graphene films. Moreover, the reflection spectrum of as-prepared graphene films was studied by ultraviolet–visible spectroscopy, revealing that light absorption played dominant roles at 375 and 635 nm, respectively. Finally, the resistance and magnetoresistance were measured, and some preliminary theoretical explanations were proposed. - Highlights: ► Porous graphene films were produced by electrospraying. ► Light absorption plays dominant roles at 375 and 635 nm. ► A negative magnetoresistance is emerged at low temperature. ► A 2D weak localization effect arises from random stacking of graphene

  4. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong Yongpeng [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China)], E-mail: yongpengt@yahoo.com.cn; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Liang Feng [Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen Jianmin [Shenzhen Municipal Hospital for Chronic Disease Control and Prevention, Guangdong 518020 (China); Zhang Hong; Liu Guoqing; Sun Huibin [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Luong, John H.T. [Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, H4P 2R2 (Canada)

    2008-12-15

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al{sub 2}O{sub 3} and TiO{sub 2}) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl{sub 2}) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe{sub 2}O{sub 3} nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  5. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1992-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.

  6. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications

    Science.gov (United States)

    Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2013-01-01

    Nanotechnology based Pharma has emerged significantly and has influenced the Pharma industry up to a considerable extent. Nanoparticles technology holds a good share of the nanotech Pharma and is significant in comparison with the other domains. Electrospraying technology answers the potential needs of nanoparticle production such as scalability, reproducibility, effective encapsulation etc. Many drugs have been electrosprayed with and without polymer carriers. Drug release characteristics are improved with the incorporation of biodegradable polymer carriers which sustain the release of encapsulated drug. Electrospraying is acknowledged as an important technique for the preparation of nanoparticles with respect to pharmaceutical applications. Herein we attempted to consolidate the reports pertaining to electrospraying and their corresponding therapeutic application area. PMID:23512013

  7. An inverse method for determining the interaction force between the probe and sample using scanning near-field optical microscopy

    International Nuclear Information System (INIS)

    Chang, Win-Jin; Fang, Te-Hua

    2006-01-01

    This study proposes a means for calculating the interaction force during the scanning process using a scanning near-field optical microscope (SNOM) probe. The determination of the interaction force in the scanning system is regarded as an inverse vibration problem. The conjugate gradient method is applied to treat the inverse problem using available displacement measurements. The results show that the conjugate gradient method is less sensitive to measurement errors and prior information on the functional form of quality was not required. Furthermore, the initial guesses for the interaction force can be arbitrarily chosen for the iteration process

  8. Designing topological defects in 2D materials using scanning probe microscopy and a self-healing mechanism: a density functional-based molecular dynamics study

    Science.gov (United States)

    Popov, Igor; Đurišić, Ivana; Belić, Milivoj R.

    2017-12-01

    Engineering of materials at the atomic level is one of the most important aims of nanotechnology. The unprecedented ability of scanning probe microscopy to address individual atoms opened up the possibilities for nanomanipulation and nanolitography of surfaces and later on of two-dimensional materials. While the state-of-the-art scanning probe lithographic methods include, primarily, adsorption, desorption and repositioning of adatoms and molecules on substrates or tailoring nanoribbons by etching of trenches, the precise modification of the intrinsic atomic structure of materials is yet to be advanced. Here we introduce a new concept, scanning probe microscopy with a rotating tip, for engineering of the atomic structure of membranes based on two-dimensional materials. In order to indicate the viability of the concept, we present our theoretical research, which includes atomistic modeling, molecular dynamics simulations, Fourier analysis and electronic transport calculations. While stretching can be employed for fabrication of atomic chains only, our comprehensive molecular dynamics simulations indicate that nanomanipulation by scanning probe microscopy with a rotating tip is capable of assembling a wide range of topological defects in two-dimensional materials in a rather controllable and reproducible manner. We analyze two possibilities. In the first case the probe tip is retracted from the membrane while in the second case the tip is released beneath the membrane allowing graphene to freely relax and self-heal the pore made by the tip. The former approach with the tip rotation can be achieved experimentally by rotation of the sample, which is equivalent to rotation of the tip, whereas irradiation of the membrane by nanoclusters can be utilized for the latter approach. The latter one has the potential to yield a yet richer diversity of topological defects on account of a lesser determinacy. If successfully realized experimentally the concept proposed here could

  9. Versatile variable temperature and magnetic field scanning probe microscope for advanced material research

    Science.gov (United States)

    Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan

    2017-10-01

    We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.

  10. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography

    Science.gov (United States)

    Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.

    2016-06-01

    The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.

  11. Electrospray ion source with reduced analyte electrochemistry

    Science.gov (United States)

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-08-23

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  12. Electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices

    Science.gov (United States)

    Hung, Chen-Jen

    This dissertation presents an investigation of the electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices. All of the films were deposited from aqueous solution at room temperature with no subsequent heat treatment needed to effect crystallization. Thallium(III) oxide defect chemistry superlattices were electrodeposited by pulsing the applied overpotential during deposition. The defect chemistry of the oxide is dependent on the applied overpotential. High overpotentials favor oxygen vacancies, while low overpotentials favor cation interstitials. Nanometer-scale holes were formed in thin thallium(III) oxide films using the scanning tunneling microscope in humid ambient conditions. Both cathodic and anodic etching reactions were performed on this metal oxide surface. The hole formation was attributed to localized electrochemical etching reactions beneath the STM tip. The scanning tunneling microscope (STM) was also used to both induce local surface modifications and image cleaved Pb-Tl-O superlattices. A trench of 100 nm in width, 32 nm in depth, and over 1 μm in length was formed after sweeping a bias voltage of ±2.5 V for 1 minute using a fixed STM tip. It has been suggested that STM results obtained under ambient conditions must be evaluated with great care because of the possibility of localized electrochemcial reactions. A novel synthesis method for the production of Cu(II) oxide from an alkaline solution containing Cu(II) tartrate was developed. Rietveld refinement of the cupric oxide films reveals pure Cu(II) oxide with no Cu(I) oxide present in the film.

  13. A proximal retarding field analyzer for scanning probe energy loss spectroscopy

    Science.gov (United States)

    Bauer, Karl; Murphy, Shane; Palmer, Richard E.

    2017-03-01

    A compact proximal retarding field analyzer for scanning probe energy loss spectroscopy measurements is described. Using the scanning tunneling microscope (STM) tip as a field emission (FE) electron source in conjunction with this analyzer, which is placed at a glancing angle to the surface plane, FE sample current and electron reflectivity imaging may be performed simultaneously. This is demonstrated in measurements of Ag nanostructures prepared on graphite by electron-beam lithography, where a material contrast of 13% is observed, with a lateral resolution of 25 nm, between the silver and graphite in electron reflectivity images. Topological contrast mechanisms such as edge enhancement and shadowing are also observed, giving rise to additional features in the electron reflectivity images. The same instrument configuration has been used to measure electron energy loss spectra on bare graphite, where the zero loss peak, π band plasmon loss peak and secondary electron peaks are observed. Using this simple and compact analyzer an STM, with sufficient open access to the tip-sample junction, may easily be augmented to provide simultaneous elemental and topographic mapping, supplementing STM image measurements with FE sample current and electron reflectivity images, as well as electron energy loss spectroscopy measurements, in the same instrument.

  14. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    Energy Technology Data Exchange (ETDEWEB)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France); Purans, J.; Sammelselg, V. [Tartu Univ. (Estonia); Chevrier, J.; Huant, S. [Universite Joseph-Fourier, Grenoble I, LEPES, 38 (France); Hamilton, B. [School of Electrical Engineering and Electronics, Manchester (United Kingdom); Saito, A. [Osaka Univ., RIKEN/SPring8 (Japan); Dhez, O. [OGG, INFM/CNR, 38 - Grenoble (France); Brocklesby, W.S. [Southampton Univ., Optoelectronics Research Centre (United Kingdom); Alvarez-Prado, L.M. [Ovieado, Dept. de Fisica (Spain); Kuzmin, A. [Institute of Solid State Physics - Riga (Latvia); Pailharey, D. [CRMC-N - CNRS, 13 - Marseille (France); Tonneau, D. [CRMCN - Faculte des sciences de Luminy, 13 - Marseille (France); Chretien, P. [Laboratoire de Genie Electrique de Paris, 75 - Paris (France); Cricenti, A. [ISM-CNR, Rome (Italy); DeWilde, Y. [ESPCI, 75 - Paris (France)

    2005-07-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document.

  15. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    International Nuclear Information System (INIS)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J.; Purans, J.; Sammelselg, V.; Chevrier, J.; Huant, S.; Hamilton, B.; Saito, A.; Dhez, O.; Brocklesby, W.S.; Alvarez-Prado, L.M.; Kuzmin, A.; Pailharey, D.; Tonneau, D.; Chretien, P.; Cricenti, A.; DeWilde, Y.

    2005-01-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document

  16. Nanobits - exchangable and customisable scanning probe tips

    DEFF Research Database (Denmark)

    Yildiz, Izzet

    dimensions: tips suitable for imaging high-aspect ratio structures and sidewall profiles were designed. Tip diameters in the order of 30 nm were reproducibly obtained with the FIB milling and the smallest tip diameter achieved was ... process by providing direct picking up of the NanoBits by the AFM probe was investigated. Two different bending mechanisms were studied for out-of-plane bending studies: FIB irradiation- and the residual stress-driven bending in bimorph structures. With FIB irradiation studies, NanoBits were demonstrated...... of the structure which may be starting at 170°C. The fabricated NanoBits were assembled and their performance as AFM probes were tested at OFFIS. The NanoBits were successfully picked up by a microgripper, collected in a cartridge and mounted to an AFM probe. Performances of the assembled high-aspect-ratio Nano...

  17. Static states and dynamic behaviour of charges: observation and control by scanning probe microscopy

    International Nuclear Information System (INIS)

    Ishii, Masashi

    2010-01-01

    This paper reviews charges that locally functionalize materials. Microscopic analyses and operation of charges using various scanning probe microscopy (SPM) techniques have revealed static, quasi-static/quasi-dynamic and dynamic charge behaviours. Charge-sensitive SPM has allowed for the visualization of the distribution of functionalized charges in electronic devices. When used as bit data in a memory system, the charges can be operated by SPM. The behaviour of quasi-static/quasi-dynamic charges is discussed here. In the data-writing process, spatially dispersive charges rather than a fast injection rate are introduced, but the technical problems can be solved by using nanostructures. Careful charge operations using SPM should realize a memory with a larger density than Tbit/inch 2 . Dynamic charges have been introduced in physical analyses and chemical processes. Although the observable timescale is limited by the SPM system response time of the order of several seconds, dynamics such as photon-induced charge redistributions and probe-assisted chemical reactions are observed. (topical review)

  18. Static states and dynamic behaviour of charges: observation and control by scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Masashi, E-mail: ISHII.Masashi@nims.go.j [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2010-05-05

    This paper reviews charges that locally functionalize materials. Microscopic analyses and operation of charges using various scanning probe microscopy (SPM) techniques have revealed static, quasi-static/quasi-dynamic and dynamic charge behaviours. Charge-sensitive SPM has allowed for the visualization of the distribution of functionalized charges in electronic devices. When used as bit data in a memory system, the charges can be operated by SPM. The behaviour of quasi-static/quasi-dynamic charges is discussed here. In the data-writing process, spatially dispersive charges rather than a fast injection rate are introduced, but the technical problems can be solved by using nanostructures. Careful charge operations using SPM should realize a memory with a larger density than Tbit/inch{sup 2}. Dynamic charges have been introduced in physical analyses and chemical processes. Although the observable timescale is limited by the SPM system response time of the order of several seconds, dynamics such as photon-induced charge redistributions and probe-assisted chemical reactions are observed. (topical review)

  19. Quadratic electromechanical strain in silicon investigated by scanning probe microscopy

    Science.gov (United States)

    Yu, Junxi; Esfahani, Ehsan Nasr; Zhu, Qingfeng; Shan, Dongliang; Jia, Tingting; Xie, Shuhong; Li, Jiangyu

    2018-04-01

    Piezoresponse force microscopy (PFM) is a powerful tool widely used to characterize piezoelectricity and ferroelectricity at the nanoscale. However, it is necessary to distinguish microscopic mechanisms between piezoelectricity and non-piezoelectric contributions measured by PFM. In this work, we systematically investigate the first and second harmonic apparent piezoresponses of a silicon wafer in both vertical and lateral modes, and we show that it exhibits an apparent electromechanical response that is quadratic to the applied electric field, possibly arising from ionic electrochemical dipoles induced by the charged probe. As a result, the electromechanical response measured is dominated by the second harmonic response in the vertical mode, and its polarity can be switched by the DC voltage with the evolving coercive field and maximum amplitude, in sharp contrast to typical ferroelectric materials we used as control. The ionic activity in silicon is also confirmed by the scanning thermo-ionic microscopy measurement, and the work points toward a set of methods to distinguish true piezoelectricity from the apparent ones.

  20. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Hachtel, J A; Haglund, R F; Pantelides, S T; Marvinney, C; Mayo, D; Mouti, A; Lupini, A R; Chisholm, M F; Mu, R; Pennycook, S J

    2016-01-01

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications. (paper)

  1. Analytical procedure for experimental quantification of carrier concentration in semiconductor devices by using electric scanning probe microscopy

    International Nuclear Information System (INIS)

    Fujita, Takaya; Matsumura, Koji; Itoh, Hiroshi; Fujita, Daisuke

    2014-01-01

    Scanning capacitance microscopy (SCM) is based on a contact-mode variant of atomic force microscopy, which is used for imaging two-dimensional carrier (electrons and holes) distributions in semiconductor devices. We introduced a method of quantification of the carrier concentration by experimentally deduced calibration curves, which were prepared for semiconductor materials such as silicon and silicon carbide. The analytical procedure was circulated to research organizations in a round-robin test. The effectiveness of the method was confirmed for practical analysis and for what is expected for industrial pre-standardization from the viewpoint of comparability among users. It was also applied to other electric scanning probe microscopy techniques such as scanning spreading resistance microscopy and scanning nonlinear dielectric microscopy. Their depth profiles of carrier concentration were found to be in good agreement with those characterized by SCM. These results suggest that our proposed method will be compatible with future next-generation microscopy. (paper)

  2. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    Science.gov (United States)

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  3. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    Science.gov (United States)

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  4. Electrospray methodologies for characterization and deposition of nanoparticles

    Science.gov (United States)

    Modesto Lopez, Luis Balam

    Electrospray is an aerosolization method that generates highly charged droplets from solutions or suspensions and, after a series of solvent evaporation -- droplet fission cycles, it results in particles carrying multiple charges. Highly charged particles are used in a variety of applications, including particle characterization, thin film deposition, nanopatterning, and inhalation studies among several others. In this work, a soft X-ray photoionization was coupled with an electrospray to obtain monodisperse, singly charged nanoparticles for applications in online size characterization with electrical mobility analysis. Photoionization with the soft X-ray charger enhanced the diffusion neutralization rate of the highly charged bacteriophages, proteins, and solid particles. The effect of nanoparticle surface charge and nanoparticle agglomeration in liquids on the electrospray process was studied experimentally and a modified expression to calculate the effective electrical conductivity of nanosuspensions was proposed. The effective electrical conductivity of TiO2 nanoparticle suspensions is strongly dependent on the electrical double layer and the agglomeration dynamics of the particles; and such dependence is more remarkable in liquids with low ionic strength. TiO2 nanoparticle agglomerates with nearly monodisperse sizes in the nanometer and submicrometer ranges were generated, by electrospraying suspensions with tuned effective electrical conductivity, and used to deposit photocatalytic films for water-splitting. Nanostructured films of iron oxide with uniform distribution of particles over the entire deposition area were formed with an electrospray system. The micro-Raman spectra of the iron oxide films showed that transverse and longitudinal optical modes are highly sensitive to the crystallize size of the electrospray-deposited films. The fabrication of films of natural light-harvesting complexes, with the aim of designing biohybrid photovoltaic devices, was

  5. PREDICTING CHEMICAL REACTIVITY OF HUMIC SUBSTANCES FOR MINERALS AND XENOBIOTICS: USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY AND VIRTUAL REALITY

    Science.gov (United States)

    In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...

  6. A new electrospray method for targeted gene delivery.

    Science.gov (United States)

    Boehringer, Stephan; Ruzgys, Paulius; Tamò, Luca; Šatkauskas, Saulius; Geiser, Thomas; Gazdhar, Amiq; Hradetzky, David

    2018-03-05

    A challenge for gene therapy is absence of safe and efficient local delivery of therapeutic genetic material. An efficient and reproducible physical method of electrospray for localized and targeted gene delivery is presented. Electrospray works on the principle of coulombs repulsion, under influence of electric field the liquid carrying genetic material is dispersed into micro droplets and is accelerated towards the targeted tissue, acting as a counter electrode. The accelerated droplets penetrate the targeted cells thus facilitating the transfer of genetic material into the cell. The work described here presents the principle of electrospray for gene delivery, the basic instrument design, and the various optimized parameters to enhance gene transfer in vitro. We estimate a transfection efficiency of up to 60% was achieved. We describe an efficient gene transfer method and a potential electrospray-mediated gene transfer mechanism.

  7. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1995-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM. They provide essential reading and reference material for all students and researchers involved in this field. In this second edition the text has been updated and new methods are discussed.

  8. Large-scale high-resolution scanning Hall probe microscope used for MgB2 filament characterization

    International Nuclear Information System (INIS)

    Cambel, V; Fedor, J; Gregusova, D; Kovac, P; Husek, I

    2005-01-01

    The scanning Hall probe microscope (SHPM) is an important imaging tool used for detailed studies of superconductors in basic science as well as in the industrial sector. It can be used for the studies of losses, current distribution, and effects at grain boundaries. However, only a few SHPMs for magnetic field imaging at temperatures below 77 K have been proposed up to now, most of them designed for small-area (∼10x10 μm 2 ) scanning. We present a large-scale low-temperature SHPM developed for imaging the entire magnetic field in close proximity to magnetic and superconducting samples at 4.2-300 K. The microscope combines a large scanned area and high spatial and magnetic field resolution. The instrument is designed as an insert of standard helium flowing cryostats. The Hall sensor scans an area up to 7 x 25 mm 2 in the whole temperature interval with a spatial resolution better than 5 μm. The presented system is used for the study of ex situ prepared MgB 2 filament. We show that external magnetic field induces local supercurrents in the MgB 2 , from which the critical current can be estimated. Moreover, it indicates the microstructure and space homogeneity of the superconductor

  9. An Evanescent Field Optical Microscope. Scanning probe Microscopy

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.; Wickramasinghe, H. Kumar

    1991-01-01

    An Evanescent Field Optical Microscope (EFOM) is presented, which employs frustrated total internal reflection on a highly localized scale by means of a sharp dielectric tip. The coupling of the evanescent field to the sub-micrometer probe as a function of probe-sample distance, angle of incidence

  10. Experimental Route to Scanning Probe Hot Electron Nanoscopy (HENs) Applied to 2D Material

    KAUST Repository

    Giugni, Andrea

    2017-06-09

    This paper presents details on a new experimental apparatus implementing the hot electron nanoscopy (HENs) technique introduced for advanced spectroscopies on structure and chemistry in few molecules and interface problems. A detailed description of the architecture used for the laser excitation of surface plasmons at an atomic force microscope (AFM) tip is provided. The photogenerated current from the tip to the sample is detected during the AFM scan. The technique is applied to innovative semiconductors for applications in electronics: 2D MoS2 single crystal and a p-type SnO layer. Results are supported by complementary scanning Kelvin probe microscopy, traditional conductive AFM, and Raman measurements. New features highlighted by HEN technique reveal details of local complexity in MoS2 and polycrystalline structure of SnO at nanometric scale otherwise undetected. The technique set in this paper is promising for future studies in nanojunctions and innovative multilayered materials, with new insight on interfaces.

  11. Scanning optical microscope with long working distance objective

    Science.gov (United States)

    Cloutier, Sylvain G.

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  12. Three-dimensional analysis of micro- and nanostructure of biomaterials and cells by method of scanning probe nanotomography

    Directory of Open Access Journals (Sweden)

    A. E. Efimov

    2017-01-01

    Full Text Available Aim: to perform a three-dimensional analysis of micro- and nanosctucture and quantitative morphological parameters of alginate spherical microcarriers and porous regenerated silk macrocarriers modifi ed by microparticles of decellularized rat liver matrix and human hepatoma HepG2 cells adhered to micro- and macro carriers. Materials and methods. Three-dimensional porous matrices made from regenerated silk by salt leaching technique and alginate spherical microcarriers fabricated by encapsulation were vitalized by human hepatome HepG2 cells. Study of three-dimensional structure of cells and micro- and macro carriers was carried out at –120 °С by scanning probe cryonanotomography technique with use of experimental setup combining cryoultramicrotome and scanning probe microscope.Results. Three-dimensional nanotomographical reconstructions of HepG2 cells adhered to macropore wall of regenerated silk macrocarrier and to spherical alginate microcarrier are obtained. Morphological parameters (mean roughness, effective surface area and autocorrelation length are determined for surfaces of macro and microcarriers and adhered cells. The determined mean roughness of alginate microcarrier surface is 76.4 ± 7.5 nm, while that of surface of macropore wall of regenerated silk macrocarrier is 133.8 ± 16.2 nm. At the same time mean roughness of cells adhered to micro- and macrocarriers are 118.5 ± 9.0 и 158.8 ± 21.6 nm correspondingly. Three-dimensional reconstructions of intracellular compartments with dimensions from 140 to 500 nm are also obtained.Conclusion. Obtained as a result of study quantitative morphology characteristics of surfaces of cell carriers and adhered cells show signifi cant degree of correlation of morphological parameters of cells and their carriers. Use of scanning probe cryonanotomography technique for three-dimensional analysis of structure and characteristics of biomaterials, cells and bio-artifi cial cellular systems

  13. Bio-electrosprayed multicellular zebrafish embryos are viable and develop normally

    International Nuclear Information System (INIS)

    Clarke, Jonathan D W; Jayasinghe, Suwan N

    2008-01-01

    Bio-electrosprays are rapidly emerging as a viable protocol for directly engineering living cells. This communication reports the bio-electrospraying of multicellular organisms, namely zebrafish embryos. The results demonstrate that the bio-electrospray protocol fails to induce any embryological perturbations. In addition to analysing overall embryo morphology, we use transgenic embryos that express green fluorescent protein in specific brain neurons to determine that neuronal numbers and organization are completely normal. These results demonstrate that the bio-electrospraying protocol does not interfere with the complex gene regulation and cell movements required for the development of a multicellular organism. (communication)

  14. Optical method for distance and displacement measurements of the probe-sample separation in a scanning near-field optical microscope

    International Nuclear Information System (INIS)

    Santamaria, L.; Siller, H. R.; Garcia-Ortiz, C. E.; Cortes, R.; Coello, V.

    2016-01-01

    In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.

  15. Optical method for distance and displacement measurements of the probe-sample separation in a scanning near-field optical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria, L.; Siller, H. R. [Tecnológico de Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, N.L., 64849 (Mexico); Garcia-Ortiz, C. E., E-mail: cegarcia@cicese.mx [CONACYT Research Fellow – CICESE, Unidad Monterrey, Alianza Centro 504, Apodaca, NL, 66629 (Mexico); Cortes, R.; Coello, V. [CICESE, Unidad Monterrey, PIIT, Alianza Centro 504, Apodaca, NL, 66629 (Mexico)

    2016-04-15

    In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.

  16. Probing uranyl(VI) speciation in the presence of amidoxime ligands using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2013-10-15

    Extraction processes using poly(acrylamidoxime) resins are being developed to extract uranium from seawater. The main complexing agents in these resins are thought to be 2,6-dihydroxyiminopiperidine (DHIP) and N(1),N(5)-dihydroxypentanediimidamide (DHPD), which form strong complexes with uranyl(VI) at the pH of seawater. It is important to understand uranyl(VI) speciation in the presence of these and similar amidoxime ligands to understand factors affecting uranyl(VI) adsorption to the poly(acrylamidoxime) resins. Experiments were carried out in positive ion mode on a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The ligands investigated were DHIP, DHPD, and N(1),N(2)-dihydroxyethanediimidamide (DHED). DHED and DHPD differ only in the number of carbons separating the oxime groups. The effects on the mass spectra of changes in uranyl(VI):ligand ratio, pH, and ligand type were examined. DHIP binds uranyl(VI) more effectively than DHPD or DHED in the pH range investigated, forming ions derived from solution-phase species with uranyl(VI):DHIP stoichiometries of 1:1, 1:2, and 2:3. The 2:3 uranyl(VI):DHIP complex appears to be a previously undescribed solution species. Ions related to uranyl(VI):DHPD complexes were detected in very low abundance. DHED is a more effective complexing agent for uranyl(VI) than DHPD, forming ions having uranyl(VI):DHED stoichiometries of 1:1, 1:2, 1:3, and 2:3. This study presents a first look at the solution chemistry of uranyl(VI)-amidoxime complexes using electrospray ionization mass spectrometry. The appearance of previously undescribed solution species suggests that the uranyl-amidoxime system is a rich and relatively complex one, requiring a more in-depth investigation. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Study of mechanically stimulated ferroelectric domain formation using scanning probe microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J H; Baek, J; Khim, Z G [School of Physics and Nano-Systems Institute, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2007-03-15

    The stress-related ferroelectric properties have been studied on the Triglycine sulfate (TGS) by scanning probe microscope (SPM). Together with normal stress of the tip, the lateral stress is applied to the sample with piezoelectric transducers. With this study, we characterized the way the ferroelectricity of TGS responds to the axis-specific stress. Specially, the b-directional stress applicable to the surface can amount to several GPa such that the polarization switching by mechanical stress is observable. Although the lateral stress is not strong enough to view such phenomena, a-axis(c-axis) stress still affects the polarization value so as to fortify (lessen) the electric field inside, respectively. These contrasting results can be explained by the sign relation of piezo-coefficients about the individual axis. This work can be a touchstone of future researches in characterizing the electromechanical properties of more popular ferroelectrics such as PZT or BTO.

  18. An electronic probe micro-analyser. A linear scan device; Microanalyseur a sonde electronique. Dispositif de balayage lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Kirianenko, A; Maurice, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The Castaing electronic probe micro-analyser makes possible static analysis at successive points. For two years this apparatus has been equipped by its constructor with an automatic device for surface scanning. In order to increase the micro-analyser's efficiency a 'linear' scan device has been incorporated making it possible to obtain semi-quantitative analyses very rapidly. (authors) [French] Le microanalyseur a sonde electronique de Castaing permet l'analyse statique en des points successifs. Depuis deux ans, cet appareil a ete equipe par son constructeur d'un dispositif de balayage automatique 'surface'. Afin d'augmenter l'efficacite du microanalyaeur, on a adapte un dispositif de balayage 'lineaire' qui permet d'obtenir tres rapidement des analyses semi-quantitative. (auteurs)

  19. Anti-browning and barrier properties of edible coatings prepared with electrospraying

    NARCIS (Netherlands)

    Khan, M.K.I.; Cakmak, I.; Tavman, S.; Schutyser, M.A.I.; Schroen, C.G.P.H.

    2014-01-01

    Electrospraying is a novel technique for the application of coating to foods. In this study, thin lipid-based coatings were prepared by electrospraying on model surface and evaluated for their moisture barrier functionality. Sunflower oil and chocolate based coating materials were electrosprayed at

  20. Optimal design and fabrication of three-dimensional calibration specimens for scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaoning; Luo Tingting; Chen Yuhang; Huang Wenhao [Department of Precision Machinery and Instrumentation, University of Science and Technology of China, 230026 Hefei (China); Piaszenski, Guido [Raith GmbH, Konrad-Adenauer-Allee 8, 44263 Dortmund (Germany)

    2012-05-15

    Micro-/nano-scale roughness specimens are highly demanded to synthetically calibrate the scanning probe microscopy (SPM) instrument. In this study, three-dimensional (3D) specimens with controllable main surface evaluation parameters were designed. In order to improve the design accuracy, the genetic algorithm was introduced into the conventional digital filter method. A primary 3D calibration specimen with the dimension of 10 {mu}m x 10 {mu}m was fabricated by electron beam lithography. Atomic force microscopy characterizations demonstrated that the statistical and spectral parameters of the fabricated specimen match well with the designed values. Such a kind of 3D specimens has the potential to calibrate the SPM for applications in quantitative surface evaluations.

  1. Double phi-Step theta-Scanning Technique for Spherical Near-Field Antenna Measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi

    2008-01-01

    Probe-corrected spherical near-field antenna measurements with an arbitrary probe set certain requirements on an applicable scanning technique. The computational complexity of the general high-order probe correction technique for an arbitrary probe, that is based on the Phi scanning, is O(N4...... a specific double Phi-step thetas scanning technique for spherical near-field antenna measurements. This technique not only constitutes an alternative spherical scanning technique, but it also enables formulating an associated probe correction technique for arbitrary probes with the computational complexity...

  2. Probe-diverse ptychography

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, I., E-mail: isaac.russellpeterson@rmit.edu.au [ARC Centre of Excellence for Coherent X-ray Science, the University of Melbourne, School of Physics, Victoria 3010 (Australia); Harder, R. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Robinson, I.K. [Research Complex at Harwell, Didcot, Oxfordshire OX11 0DE (United Kingdom); London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom)

    2016-12-15

    We propose an extension of ptychography where the target sample is scanned separately through several probes with distinct amplitude and phase profiles and a diffraction image is recorded for each probe and each sample translation. The resulting probe-diverse dataset is used to iteratively retrieve high-resolution images of the sample and all probes simultaneously. The method is shown to yield significant improvement in the reconstructed sample image compared to the image obtained using the standard single-probe ptychographic phase-retrieval scheme.

  3. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates

    International Nuclear Information System (INIS)

    Vandamme, N; Janssens, E; Vanhoutte, F; Lievens, P; Haesendonck, C van

    2003-01-01

    We systematically studied the influence of the substrate on the shape, mobility, and stability of deposited gold clusters. The Au n clusters were produced in a laser vaporization source and deposited with low kinetic energy (∼0.4 eV/atom) on atomically flat substrates (graphite, mica, and gold and silver films on mica) under UHV conditions. Their size distribution is probed with time-of-flight mass spectrometry and ranges from dimers to several hundreds of atoms. Scanning probe microscopy is used to characterize the deposited clusters and the formation of islands by cluster aggregation. On all substrates, Au n islands can be clearly distinguished and the islands are flattened despite the small impact energy. The shape and size of the island configurations are strongly system dependent. Gold clusters deposited on Au(111) and Ag(111) films grown on mica do not aggregate, but deform due to strong cluster-substrate interactions. The clusters tend to grow epitaxially on these surfaces. On graphite and on mica, deposited clusters do diffuse and aggregate. On the graphite surface, large ramified islands are formed by juxtaposition of small islands and trapping of the clusters at the step edges. On the other hand, the diffusion of the clusters on mica results in a total coalescence of the Au n clusters into compact islands

  4. Magnetic hydroxyapatite coatings as a new tool in medicine: A scanning probe investigation

    Energy Technology Data Exchange (ETDEWEB)

    Gambardella, A., E-mail: a.gambardella@biomec.ior.it [Laboratorio di NanoBiotecnologie (NaBi), Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, I-40136 Bologna (Italy); Bianchi, M. [Laboratorio di NanoBiotecnologie (NaBi), Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, I-40136 Bologna (Italy); Kaciulis, S.; Mezzi, A.; Brucale, M. [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche, Via Salaria km 29.300, P.O. Box 10, 00015 Monterotondo Staz, Roma (Italy); Cavallini, M. [Magnetic Nanostructures for Spintronics and Nanomedicine, CNR-ISMN, Via Gobetti 101, 40129 Bologna (Italy); Herrmannsdoerfer, T.; Chanda, G.; Uhlarz, M. [Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Cellini, A.; Pedna, M.F. [Unità Operativa Microbiologia Laboratorio Unico del Centro Servizi AUSL della Romagna, Pievesestina, Cesena (Italy); Sambri, V. [Unità Operativa Microbiologia Laboratorio Unico del Centro Servizi AUSL della Romagna, Pievesestina, Cesena (Italy); Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università degli Studi di Bologna, Via Zamboni 33, 40126 Bologna (Italy); Marcacci, M.; Russo, A. [Laboratorio di NanoBiotecnologie (NaBi), Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, I-40136 Bologna (Italy); Laboratorio di Biomeccanica ed Innovazione Tecnologica, Istituto Ortopedico Rizzoli, Via di Barbiano1/10, I-40136 Bologna (Italy)

    2016-05-01

    Hydroxyapatite films enriched with magnetite have been fabricated via a Pulsed Plasma Deposition (PPD) system with the final aim of representing a new platform able to disincentivate bacterial adhesion and biofilm formation. The chemical composition and magnetic properties of films were respectively examined by X-ray photoelectron spectroscopy (XPS) and Superconducting Quantum Interference Device (SQUID) measurements. The morphology and conductive properties of the magnetic films were investigated via a combination of scanning probe technologies including atomic force microscopy (AFM), electrostatic force microscopy (EFM), and scanning tunneling microscopy (STM). Interestingly, the range of adopted techniques allowed determining the preservation of the chemical composition and magnetic properties of the deposition target material while STM analysis provided new insights on the presence of surface inhomogeneities, revealing the presence of magnetite-rich islands over length scales compatible with the applications. Finally, preliminary results of bacterial adhesion tests, indicated a higher ability of magnetic hydroxyapatite films to reduce Escherichia coli adhesion at 4 h from seeding compared to control hydroxyapatite films. - Highlights: • Pulsed Plasma Deposition technique is used to deposit magnetite-rich films of hydroxyapatite for antibacterial purposes. • The preservation of the chemical composition and magnetic properties of the deposition target material is demonstrated. • Scanning tunnelling microscopy is employed for the first time to reveal the presence of magnetite-rich states at the surface. • Preliminary tests suggest that Mag HA films hamper the adhesion of Escherichia coli compared to not magnetic films.

  5. Measurement of local critical currents in TFA-MOD processed coated conductors by use of scanning Hall-probe microscopy

    International Nuclear Information System (INIS)

    Shiohara, K.; Higashikawa, K.; Kawaguchi, T.; Inoue, M.; Kiss, T.; Yoshizumi, M.; Izumi, T.

    2011-01-01

    We have investigated 2-dimensional distribution of critical current density. We have measured TFA-MOD processed YBCO coated conductor. We used scanning Hall-probe microscopy. These provided information is useful for fabrication process of coated conductor. We have carried out 2-dimensional (2D) measurement of local critical current in a Trifluoroacetates-Metal Organic Deposition (TFA-MOD) processed YBCO coated conductor using scanning Hall-probe microscopy. Recently, remarkable R and D accomplishments on the fabrication processes of coated conductors have been conducted extensively and reported. The TFA-MOD process has been expected as an attractive process to produce coated conductors with high performance at a low production cost due to a simple process using non-vacuum equipments. On the other hand, enhancement of critical currents and homogenization of the critical current distribution in the coated conductors are definitely very important for practical applications. According to our measurements, we can detect positions and spatial distribution of defects in the conductor. This kind of information will be very helpful for the improvement of the TFA-MOD process and for the design of the conductor intended for practical electric power device applications.

  6. Vibration Isolation Study in Scanning Probe Microscopy Part I: Low Frequency

    International Nuclear Information System (INIS)

    Oliva, A.I.; Espinosa-Faller, F.J.; Aguilar, M.

    1998-01-01

    A study of a low frequency isolation device based in a pneumatic system is presented. It consists of four cylinders which are closed and sealed with an elastic membrane on which the load is applied. Each cylinder made of PVC is formed by two chambers divided by a plate with a small hole for communication and damping. Air contained into chambers acts, in combination with the the elastic membranes, as a damper. Scanning probe techniques can be supported by this device in order to reduce the low frequency noises that affects them. Advantages of this isolator are discussed and compared. A theoretical approximation for this model is presented and compared with the experimental results obtained and show that it can isolate noises up to ∼ 2 Hz. The low frequency isolator has stability and fast response to external perturbations. This simple and economical low frequency isolator can be reproduced easily and its design depends on the work specific requirements. (Author) 9 refs

  7. Internal energy effects on the solvation and reactivity of multiply charged biomolecules for electrospray ionization mass spectroscopy. [Bovine ubiquitin

    Energy Technology Data Exchange (ETDEWEB)

    Light-Wahl, K.J.; Winger, B.E.; Rockwood, A.L.; Smith, R.D.

    1992-06-01

    Mild (capillary) interface conditions which do not completely desolvate the ions of proteins in electrospray ionization mass spectrometry (ESI-MS) may be required to probe the higher order structures and weak associations. For the small protein bovine ubiquitin, two ion distributions (unsolvated ions and unresolved solvated ions) were observed. The resolvable solvation for leucine-enkephalin with methanol and water shows that the use of countercurrent N{sub 2} flow at the capillary affects the solvation observed. 2 figs. (DLC)

  8. Focused Electrospray Deposition for Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    International Nuclear Information System (INIS)

    Jeong, Kyung Hwan; Seo, Jong Cheol; Yoon, Hye Joo; Shin, Seung Koo

    2010-01-01

    Focused electrospray (FES) deposition method is presented for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. FES ion optics consists of two cylindrical focusing electrodes capped with a truncated conical electrode through which an electrospray emitter passes along the cylindrical axis. A spray of charged droplets is focused onto a sample well on a MALDI target plate under atmospheric pressure. The shape and size distributions of matrix crystals are visualized by scanning electron microscope and the mass spectra are obtained by time-of-flight mass spectrometry. Angiotensin II, bradykinin, and substance P are used as test samples, while α-cyano-4-hydroxycinnamic acid and dihydroxybenzoic acid are employed as matrices. FES of a sample/matrix mixture produces fine crystal grains on a 1.3 mm spot and reproducibly yields the mass spectra with little shot-to-shot and spot-to-spot variations. Although FES greatly stabilizes the signals, the space charge due to matrix ions limits the detection sensitivity of peptides. To avoid the space charge problem, we adopted a dual FES/FES mode, which separately deposits matrix and sample by FES in sequence. The dual FES/FES mode reaches the detection sensitivity of 0.88 amol, enabling ultrasensitive detection of peptides by homogeneously depositing matrix and sample under atmospheric pressure

  9. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    Science.gov (United States)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  10. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope

    International Nuclear Information System (INIS)

    Ya-Jun, Zhao; Qian, Cheng; Meng-Lu, Qian

    2010-01-01

    Based on the interaction mechanism between tip and sample in the contact mode of a scanning probe acoustic microscope (SPAM), an active mass of the sample is introduced in the mass-spring model. The tip motion and frequency response of the sample vibration mode in the SPAM are calculated by the Lagrange equation with dissipation function. For the silicon tip and glass assemblage in the SPAM the frequency response is simulated and it is in agreement with the experimental result. The living myoblast cells on the glass slide are imaged at resonance frequencies of the SPAM system, which are 20kHz, 30kHz and 120kHz. It is shown that good contrast of SPAM images could be obtained when the system is operated at the resonance frequencies of the system in high and low-frequency regions

  11. NATO Advanced Study Institute on Scanning Probe Microscopy : Characterization, Nanofabrication and Device Application of Functional Materials

    CERN Document Server

    Vilarinho, Paula Maria; Kingon, Angus; Scanning Probe Microscopy : Characterization, Nanofabrication and Device Application of Functional Materials

    2005-01-01

    As the characteristic dimensions of electronic devices continue to shrink, the ability to characterize their electronic properties at the nanometer scale has come to be of outstanding importance. In this sense, Scanning Probe Microscopy (SPM) is becoming an indispensable tool, playing a key role in nanoscience and nanotechnology. SPM is opening new opportunities to measure semiconductor electronic properties with unprecedented spatial resolution. SPM is being successfully applied for nanoscale characterization of ferroelectric thin films. In the area of functional molecular materials it is being used as a probe to contact molecular structures in order to characterize their electrical properties, as a manipulator to assemble nanoparticles and nanotubes into simple devices, and as a tool to pattern molecular nanostructures. This book provides in-depth information on new and emerging applications of SPM to the field of materials science, namely in the areas of characterisation, device application and nanofabrica...

  12. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  13. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  14. Atovaquone oral bioavailability enhancement using electrospraying technology.

    Science.gov (United States)

    Darade, Aditya; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana

    2018-01-01

    Atovaquone in combination with proguanil hydrochloride, marketed as Malarone® tablets by GlaxoSmithKline (GSK), is prescribed for the treatment of malaria. High dose and poor bioavailability are the main hurdles associated with atovaquone oral therapy. The present study reports development of atovaquone nanoparticles, using in house designed and fabricated electrospraying equipment, and the assessment of bioavailability and therapeutic efficacy of the nanoparticles after oral administration. Solid nanoparticles of atovaquone were successfully produced by electrospraying and were characterized for particle size and flow properties. Differential Scanning Calorimetry, X-ray Diffraction, Fourier Transform Infrared Spectroscopy studies were also carried out. Atovaquone nanoparticles along with proguanil hydrochloride and a suitable wetting agent were filled in size 2 hard gelatin capsules. The formulation was compared with Malarone® tablets (GSK) and Mepron® suspension (GSK) in terms of in vitro release profile and in vivo pharmacokinetic studies. It showed 2.9-fold and 1.8-fold improved bioavailability in rats compared to Malarone® tablets and Mepron® suspension respectively. Therapeutic efficacy of the formulation was determined using modified Peter's 4-day suppressive tests and clinical simulation studies using Plasmodium berghei ANKA infected Swiss mice and compared to Malarone®. The developed formulation showed a 128-fold dose reduction in the modified Peter's 4-day suppressive tests and 32-fold dose reduction in clinical simulation studies. Given that only one capsule a day of developed formulation is required to be administered orally compared to 4 Malarone® tablets once a day and that too at a significantly reduced dose, this nanoparticle formulation will definitely reduce the side-effects of the treatment and is also likely to increase patient compliance. Copyright © 2017. Published by Elsevier B.V.

  15. Microscopic measurement of penetration depth in YBa2Cu3O7-δ thin films by scanning Hall probe microscopy

    International Nuclear Information System (INIS)

    Oral, A.; Bending, S.J.; Humphreys, R.G.; Henini, M.

    1997-01-01

    We have used a low noise scanning Hall probe microscope to measure the penetration depth microscopically in a YBa 2 Cu 3 O 7-δ thin film as a function of temperature. The instrument has high magnetic field (approx. 2.9x10 -8 T Hz -1/2 at 77 K) and spatial resolution (approx. 0.85 μm). Magnetic field profiles of single vortices in the superconducting film have been successfully measured and the microscopic penetration depth of the superconductor has been extracted. We find surprisingly large variations in values of λ for different vortices within the scanning field. (author)

  16. Laser scanning dental probe for endodontic root canal treatment

    Science.gov (United States)

    Blank, Molly A. B.; Friedrich, Michal; Hamilton, Jeffrey D.; Lee, Peggy; Berg, Joel; Seibel, Eric J.

    2011-03-01

    Complications that arise during endodontic procedures pose serious threats to the long-term integrity and health of the tooth. Potential complexities of root canals include residual pulpal tissue, cracks, mesial-buccal 2 and accessory canals. In the case of a failed root canal, a successful apicoectomy can be jeopardized by isthmuses, accessory canals, and root microfracture. Confirming diagnosis using a small imaging probe would allow proper treatment and prevent retreatment of endodontic procedures. An ultrathin and flexible laser scanning endoscope of 1.2 to 1.6mm outer diameter was used in vitro to image extracted teeth with varied root configurations. Teeth were opened using a conventional bur and high speed drill. Imaging within the opened access cavity clarified the location of the roots where canal filing would initiate. Although radiographs are commonly used to determine the root canal size, position, and shape, the limited 2D image perspective leaves ambiguity that could be clarified if used in conjunction with a direct visual imaging tool. Direct visualization may avoid difficulties in locating the root canal and reduce the number of radiographs needed. A transillumination imaging device with the separated illumination and light collection functions rendered cracks visible in the prepared teeth that were otherwise indiscernible using reflected visible light. Our work demonstrates that a small diameter endoscope with high spatial resolution may significantly increase the efficiency and success of endodontic procedures.

  17. Sheath liquid interface for the coupling of normal-phase liquid chromatography with electrospray mass spectrometry and its application to the analysis of neoflavonoids.

    Science.gov (United States)

    Charles, Laurence; Laure, Frédéric; Raharivelomanana, Phila; Bianchini, Jean-Pierre

    2005-01-01

    A novel interface that allows normal-phase liquid chromatography to be coupled with electrospray ionization (ESI) is reported. A make-up solution of 60 mM ammonium acetate in methanol, infused at a 5 microl min(-1) flow-rate at the tip of the electrospray probe, provides a sheath liquid which is poorly miscible with the chromatographic effluent, but promotes efficient ionization of the targeted analytes. Protonated molecules generated in the ESI source were subjected to tandem mass spectrometric experiments in a triple-quadrupole mass spectrometer. The main fragmentation reactions were characterized for each analyte and specific mass spectral transitions were used to acquire chromatographic data in the multiple reaction monitoring detection mode. Results obtained during optimization of the sheath liquid composition and flow-rate suggest that the electrospray process was mainly under the control of the make-up solution, and that it forms an external charged layer around a neutral chromatographic mobile phase core. This sheath liquid interface was implemented for the analysis of some neoflavonoid compounds and its performance was evaluated. Limits of detection were established for calophillolide, inophyllum B, inophyllum P and inophyllum C at 100, 25, 15 and 100 ng ml(-1), respectively.

  18. GMR-based eddy current probe for weld seam inspection and its non-scanning detection study

    Science.gov (United States)

    Gao, Peng; Wang, Chao; Li, Yang; Wang, Libin; Cong, Zheng; Zhi, Ya

    2017-04-01

    Eddy current testing is one of the most important non-destructive testing methods for welding defects detection. This paper presents the use of a probe consisting of 4 giant magneto-resistive (GMR) sensors to detect weld defects. Information from four measuring points above and on both sides of the weld seam is collected at the same time. By setting the GMR sensors' sensing axes perpendicular to the direction of the excitation magnetic field, the information collected mainly reflects the change in the eddy current which is caused by defects. Digital demodulation technology is applied to extract the real part and imaginary part of the GMR sensors' output signals. The variables containing directional information of the magnetic field are introduced. Based on the data from the four GMR (4-GMR) sensors' output signals, four values, Ran, Mean, Var and k are selected as the feature quantities for defect recognition. Experiments are carried out on weld seams with and without defects, and the detection outputs are given in this paper. The 4-GMR probe is also employed to investigate non-scanning weld defect detection and the four feature quantities (Ran, Mean, Var and k) are studied to evaluate weld quality. The non-scanning weld defect detection is presented. A support vector machine is used to classify and discriminate welds with and without defects. Experiments carried out show that through the method in this paper, the recognition rate is 92% for welds without defects and 90% for welds with defects, with an overall recognition rate of 90.9%, indicating that this method could effectively detect weld defects.

  19. Increasing Protein Charge State When Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Flanigan, Paul M.; Perez, Johnny J.; Archer, Jieutonne J.; Levis, Robert J.

    2015-05-01

    Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol ( m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.

  20. Research on Glass Frit Deposition Based on the Electrospray Process

    Directory of Open Access Journals (Sweden)

    Yifang Liu

    2016-04-01

    Full Text Available In this paper, the electrospray technology is used to easily deposit the glass frit into patterns at a micro-scale level. First, far-field electrospray process was carried out with a mixture of glass frit in the presence of ethanol. A uniform, smooth, and dense glass frit film was obtained, verifying that the electrospray technology was feasible. Then, the distance between the nozzle and the substrate was reduced to 2 mm to carry out near-field electrospray. The experimental process was improved by setting the range of the feed rate of the substrate to match both the concentration and the flow rate of the solution. Spray diameter could be less at the voltage of 2 kV, in which the glass frit film was expected to reach the minimum line width. A uniform glass frit film with a line width within the range of 400–500 μm was prepared when the speed of the substrate was 25 mm/s. It indicates that electrospray is an efficient technique for the patterned deposition of glass frit in wafer-level hermetic encapsulation.

  1. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy

    Science.gov (United States)

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  2. Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range

    Science.gov (United States)

    Yu, Anchi; Ye, Xiong; Ionascu, Dan; Cao, Wenxiang; Champion, Paul M.

    2005-11-01

    An electronically delayed two-color pump-probe instrument was developed using two synchronized laser systems. The instrument has picosecond time resolution and can perform scans over hundreds of nanoseconds without the beam divergence and walk-off effects that occur using standard spatial delay systems. A unique picosecond Ti :sapphire regenerative amplifier was also constructed without the need for pulse stretching and compressing optics. The picosecond regenerative amplifier has a broad wavelength tuning range, which suggests that it will make a significant contribution to two-color pump-probe experiments. To test this instrument we studied the rotational correlation relaxation of myoglobin (τr=8.2±0.5ns) in water as well as the geminate rebinding kinetics of oxygen to myoglobin (kg1=1.7×1011s-1, kg2=3.4×107s-1). The results are consistent with, and improve upon, previous studies.

  3. Fast imaging of intermittent electrospraying of water with positive corona discharge

    International Nuclear Information System (INIS)

    Pongrác, B; Janda, M; Martišovitš, V; Machala, Z; Kim, H H

    2014-01-01

    The effect of the electrospraying of water in combination with a positive direct current (dc) streamer corona discharge generated in air was investigated in this paper. We employed high-speed camera visualizations and oscilloscopic discharge current measurements in combination with an intensified charge-coupled device camera for fast time-resolved imaging. The repetitive process of Taylor cone formation and droplet formation from the mass fragments of water during the electrospray was visualized. Depending on the applied voltage, the following intermittent modes of electrospraying typical for water were observed: dripping mode, spindle mode, and oscillating-spindle mode. The observed electrospraying modes were repetitive with a frequency of a few hundreds of Hz, as measured from the fast image sequences. This frequency agreed well with the frequency of the measured streamer current pulses. The presence of filamentary streamer discharges at relatively low voltages probably prevented the establishment of a continuous electrospray in the cone–jet mode. After each streamer, a positive glow corona discharge was established on the water filament tip, and it propagated from the stressed electrode along with the water filament elongation. The results show a reciprocal character of intermittent electrospraying of water, and the presence of corona discharge, where both the electrospray and the discharge affect each other. The generation of a corona discharge from the water cone depended on the repetitive process of the cone formation. Also, the propagation and curvature of the water filament were influenced by the discharge and its resultant space charge. Furthermore, these phenomena were partially influenced by the water conductivity. (paper)

  4. Atomic species recognition on oxide surfaces using low temperature scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zong Min, E-mail: mzmncit@163.com [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Shi, Yun Bo; Mu, Ji Liang; Qu, Zhang; Zhang, Xiao Ming; Qin, Li [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Liu, Jun, E-mail: liuj@nuc.edu.cn [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China)

    2017-02-01

    Highlights: • The coexisted phase of p(2 × 1)and c(6 × 2) on Cu(110)-O surface using AFM under UHV at low temperature. • Two different c(6 × 2) phase depending on the status of the tip apex. • Electronic state of tip seriously effect the resolution and stability of the sample surface. - Abstract: In scanning probe microscopy (SPM), the chemical properties and sharpness of the tips of the cantilever greatly influence the scanning of a sample surface. Variation in the chemical properties of the sharp tip apex can induce transformation of the SPM images. In this research, we explore the relationship between the tip and the structure of a sample surface using dynamic atomic force microscopy (AFM) on a Cu(110)-O surface under ultra-high vacuum (UHV) at low temperature (78 K). We observed two different c(6 × 2) phase types in which super-Cu atoms show as a bright spot when the tip apex is of O atoms and O atoms show as a bright spot when the tip apex is of Cu atoms. We also found that the electronic state of the tip has a serious effect on the resolution and stability of the sample surface, and provide an explanation for these phenomena. This technique can be used to identify atom species on sample surfaces, and represents an important development in the SPM technique.

  5. Polymer deposition morphology by electrospray deposition - Modifications through distance variation

    International Nuclear Information System (INIS)

    Altmann, K.; Schulze, R.-D.; Friedrich, J.

    2014-01-01

    Electrospray deposition (ESD) of highly diluted polymers was examined with regard to the deposited surface structure. Only the flight distance (flight time) onto the resulting deposited surface was varied from 20 to 200 mm. An apparatus without any additional heating or gas flows was used. Polyacrylic acid (PAA) and polyallylamine (PAAm) in methanol were deposited on Si wafers. The polymer layers were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, derivatization reactions and Fourier transform infrared spectroscopy using a grazing incidence unit. SEM images illustrated the changing structures of PAA and PAAm. For PAA the deposited structure changed from a smooth film (20 mm) to a film with individual droplets on the coated surface (100 mm and 200 mm), while for PAAm individual droplets can be seen at all distances. The ESD process with cascades of splitting droplets slows down for PAA after distances greater than 40 mm. In contrast, the ESD process for PAAm is nearly stopped within the first flight distance of 20 mm. Residual solvent analysis showed that most of the solvent evaporated within the first 20 mm capillary-sample distance. - Highlights: • We deposited polyacrylic acid and polyallylamine by electrospray ionization (ESI). • The morphology in dependence of flight distance (20 mm to 200 mm) was analyzed. • The amount of residual solvent after deposition was determined. • ESI-process slows down for polyacrylic acid after 40 mm flight distance. • ESI-Process is complete for polyallylamine within the first 20 mm

  6. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu, E-mail: wangbc2000@126.com; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-06-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro.

  7. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    International Nuclear Information System (INIS)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-01-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro

  8. Controlled attenuation parameter using the FibroScan® XL probe for quantification of hepatic steatosis for non-alcoholic fatty liver disease in an Asian population.

    Science.gov (United States)

    Chan, Wah-Kheong; Nik Mustapha, Nik Raihan; Wong, Grace Lai-Hung; Wong, Vincent Wai-Sun; Mahadeva, Sanjiv

    2017-02-01

    The FibroScan® XL probe reduces failure of liver stiffness measurement (LSM) and unreliable results in obese patients. The objective of this article is to evaluate the accuracy of controlled attenuation parameter (CAP) obtained using the XL probe for the estimation of hepatic steatosis in patients with non-alcoholic fatty liver disease (NAFLD). Adult NAFLD patients with a liver biopsy within six months were included and were examined with the FibroScan® M and XL probes. Histopathological findings were reported according to the Non-Alcoholic Steatohepatitis Clinical Research Network Scoring System. Participants who did not have fatty liver on ultrasonography were recruited as controls. A total of 57 NAFLD patients and 22 controls were included. The mean age of the NAFLD patients and controls was 50.1 ± 10.4 years and 20.2 ± 1.3 years, respectively ( p  = 0.000). The mean body mass index was 30.2 ± 5.0 kg per m 2 and 20.5 ± 2.4 kg per m 2 , respectively ( p  = 0.000). The distribution of steatosis grades were: S0, 29%; S1, 17%; S2, 35%; S3, 19%. The AUROC for estimation of steatosis grade ≥ S1, S2 and S3 was 0.94, 0.80 and 0.69, respectively, using the M probe, and 0.97, 0.81 and 0.67, respectively, using the XL probe. CAP obtained using the XL probe had similar accuracy as the M probe for the estimation of hepatic steatosis in NAFLD patients.

  9. Electrospray Deposition of ZnO Thin Films and Its Application to Gas Sensors

    Directory of Open Access Journals (Sweden)

    Wenwang Li

    2018-02-01

    Full Text Available Electrospray is a simple and cost-effective method to fabricate micro-structured thin films. This work investigates the electrospray process of ZnO patterns. The effects of experimental parameters on jet characteristics and electrosprayed patterns are studied. The length of stable jets increases with increasing applied voltage and flow rate, and decreases with increasing nozzle-to-substrate distance, while electrospray angles exhibit an opposite trend with respect to the stable jet lengths. The diameter of electrosprayed particles decreases with increasing applied voltage, and increases with flow rate. Furthermore, an alcohol gas sensor is presented. The ZnAc is calcined into ZnO, which reveals good repeatability and stability of response in target gas. The sensing response, defined as the resistance ratio of R0/Rg, where R0 and Rg are resistance of ZnO in air and alcohol gas, increases with the concentration of alcohol vapors and electrospray deposition time.

  10. Field programmable gate array based reconfigurable scanning probe/optical microscope.

    Science.gov (United States)

    Nowak, Derek B; Lawrence, A J; Dzegede, Zechariah K; Hiester, Justin C; Kim, Cliff; Sánchez, Erik J

    2011-10-01

    The increasing popularity of nanometrology and nanospectroscopy has pushed researchers to develop complex new analytical systems. This paper describes the development of a platform on which to build a microscopy tool that will allow for flexibility of customization to suit research needs. The novelty of the described system lies in its versatility of capabilities. So far, one version of this microscope has allowed for successful near-field and far-field fluorescence imaging with single molecule detection sensitivity. This system is easily adapted for reflection, polarization (Kerr magneto-optical (MO)), Raman, super-resolution techniques, and other novel scanning probe imaging and spectroscopic designs. While collecting a variety of forms of optical images, the system can simultaneously monitor topographic information of a sample with an integrated tuning fork based shear force system. The instrument has the ability to image at room temperature and atmospheric pressure or under liquid. The core of the design is a field programmable gate array (FPGA) data acquisition card and a single, low cost computer to control the microscope with analog control circuitry using off-the-shelf available components. A detailed description of electronics, mechanical requirements, and software algorithms as well as examples of some different forms of the microscope developed so far are discussed.

  11. Low pressure electrospray ionization system and process for effective transmission of ions

    Science.gov (United States)

    Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Kelly, Ryan T [Wet Richland, WA; Smith, Richard D [Richland, WA

    2010-03-02

    A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel "interfaceless" electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.

  12. Assessment of breast tumor size in electrical impedance scanning

    International Nuclear Information System (INIS)

    Kim, Sungwhan

    2012-01-01

    Electrical impedance scanning (EIS) is a newly introduced imaging technique for early breast cancer detection. In EIS, we apply a sinusoidal voltage between a hand-held electrode and a scanning probe placed on the breast skin to make current travel through the breast. We measure induced currents (Neumann data) through the scanning probe. In this paper, we investigate the frequency-dependent behavior of the induced complex potential and show how the frequency differential of the current measurement on the scanning probe reflects the contrast in complex conductivity values between surrounding and cancerous tissues. Furthermore, we develop the formula for breast tumor size using the frequency differential of the current measurement and provide its feasibility. (paper)

  13. Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Son N.; Liyu, Andrey V.; Chu, Rosalie K.; Anderton, Christopher R.; Laskin, Julia

    2017-01-17

    A new approach for constant distance mode mass spectrometry imaging of biological samples using nanospray desorption electrospray ionization (nano-DESI MSI) was developed by integrating a shear-force probe with nano-DESI probe. The technical concept and basic instrumental setup as well as general operation of the system are described. Mechanical dampening of resonant oscillations due to the presence of shear forces between the probe and the sample surface enables constant-distance imaging mode via a computer controlled closed feedback loop. The capability of simultaneous chemical and topographic imaging of complex biological samples is demonstrated using living Bacillus Subtilis ATCC 49760 colonies on agar plates. The constant-distance mode nano-DESI MSI enabled imaging of many metabolites including non-ribosomal peptides (surfactin, plipastatin and iturin) and iron-bound heme on the surface of living bacterial colonies ranging in diameter from 10 mm to 13 mm with height variations of up to 0.8 mm above the agar plate. Co-registration of ion images to topographic images provided higher-contrast images. Constant-mode nano-DESI MSI is ideally suited for imaging biological samples of complex topography in their native state.

  14. Capillary filling of miniaturized sources for electrospray mass spectrometry

    International Nuclear Information System (INIS)

    Arscott, Steve; Gaudet, Matthieu; Brinkmann, Martin; Ashcroft, Alison E; Blossey, Ralf

    2006-01-01

    Capillary slot-based emitter tips are a novel tool for use in electrospray ionization-mass spectrometry of large biomolecules. We have performed a combined theoretical and experimental study of capillary filling in micron-sized slots with the aim of developing a rational design procedure for miniaturized electrospray sources, ultimately enabling the integration of ESI into laboratory-on-a-chip devices

  15. Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray

    International Nuclear Information System (INIS)

    Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo

    2007-01-01

    The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm 2 at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode

  16. Depth profiling of inks in authentic and counterfeit banknotes by electrospray laser desorption ionization/mass spectrometry.

    Science.gov (United States)

    Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie

    2016-01-01

    Electrospray laser desorption ionization is an ambient ionization technique that generates neutrals via laser desorption and ionizes those neutrals in an electrospray plume and was utilized to characterize inks in different layers of copy paper and banknotes of various currencies. Depth profiling of inks was performed on overlapping color bands on copy paper by repeatedly scanning the line with a pulsed laser beam operated at a fixed energy. The molecules in the ink on a banknote were desorbed by irradiating the banknote surface with a laser beam operated at different energies, with results indicating that different ions were detected at different depths. The analysis of authentic $US100, $100 RMB and $1000 NTD banknotes indicated that ions detected in 'color-shifting' and 'typography' regions were significantly different. Additionally, the abundances of some ions dramatically changed with the depth of the aforementioned regions. This approach was used to distinguish authentic $1000 NTD banknotes from counterfeits. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Development and characterization of a small electromembrane extraction probe coupled with mass spectrometry for real-time and online monitoring of in vitro drug metabolism

    DEFF Research Database (Denmark)

    Dugstad, Helene Bonkerud; Petersen, Nickolaj J.; Jensen, Henrik

    2014-01-01

    A small and very simple electromembrane extraction probe (EME-probe) was developed and coupled directly to electrospray ionization mass spectrometry (ESI-MS), and this system was used to monitor in real time in vitro metabolism by rat liver microsomes of drug substances from a small reaction...... (soft extraction). Soft extraction was mandatory in order not to affect the reaction kinetics by sample composition changes induced by the EME-probe. The EME-probe/MS-system was used to establish kinetic profiles for the in vitro metabolism of promethazine, amitriptyline and imipramine as model...

  18. Topographic and electronic contrast of the graphene moir´e on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy

    NARCIS (Netherlands)

    Sun, Z.; Hämäläinen, K.; Sainio, K.; Lahtinen, J.; Vanmaekelbergh, D.A.M.; Liljeroth, P.

    2011-01-01

    Epitaxial graphene grown on transition-metal surfaces typically exhibits a moir´e pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to probe the electronic and topographic contrast

  19. Obtaining Thickness-Limited Electrospray Deposition for 3D Coating.

    Science.gov (United States)

    Lei, Lin; Kovacevich, Dylan A; Nitzsche, Michael P; Ryu, Jihyun; Al-Marzoki, Kutaiba; Rodriguez, Gabriela; Klein, Lisa C; Jitianu, Andrei; Singer, Jonathan P

    2018-04-04

    Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.

  20. Electrospraying technique for the fabrication of metronidazole contained PLGA particles and their release profile

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Zamani, Maedeh [Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Felice, Betiana [Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Av. Independencia 1800, Tucumán (Argentina); Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2015-11-01

    Advanced engineering of materials for the development of drug delivery devices provides scope for novel and versatile strategies for treatment of various diseases. ‘Electrospraying’ was used to prepare PLGA microparticles and further encapsulate the drug, metronidazole (Met) within the particles to function as a drug delivery system. Two different solvents were utilized for the preparation of drug loaded PLGA particles, whereby the polymeric solution in dichloromethane (DCM) produced particles of bigger sizes than using trifluoroethanol (TFE). Scanning electron microscopy showed the spherical morphology of the particles, with sizes of 3946 ± 407 nm and 1774 ± 167 nm, respectively for PLGA-Met(DCM) and PLGA-Met(TFE). The FTIR spectroscopy proved the incorporation of metronidazole in the polymer, but without any specific drug–polymer interaction. The release of the drug from the particles was studied in phosphate buffered saline, where a sustained drug release was obtained for at least 41 days. Cytotoxicity evaluation of the drug extract using mesenchymal stem cells (MSCs) showed not hindering the proliferation of MSCs, and the cell phenotype was retained after incubation in the drug containing media. Electrospraying is suggested as a cost-effective and single step process for the preparation of polymeric microparticles for prolonged and controlled release of drug. - Highlights: • Electrospraying as a novel method for the fabrication of drug delivery device • Metronidazole encapsulated PLGA particles were fabricated by electrospraying. • Solvent DCM produced particles of double the size than using TFE. • Sustained release of metronidazole studied for a period of 41 days • Drug release pattern from particles followed Fickian diffusion. • PLGA-metronidazole particles can function as a substrate for periodontal regeneration.

  1. A compact high resolution electrospray ionization ion mobility spectrometer.

    Science.gov (United States)

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75 mm drift tube length and a drift voltage of 5 kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100 °C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Investigation of the Radial Compression of Carbon Nanotubes with a Scanning Probe Microscope

    Science.gov (United States)

    Shen, Weidian; Jiang, Bin; Han, Bao Shan; Xie, Si-Shen

    2001-03-01

    Carbon nanotubes have attracted great interest since they were first synthesized. The tubes have substantial promise in a variety of applications due to their unique properties. Efforts have been made to characterize the mechanical properties of the tubes. However, previous work has concentrated on the tubes’ longitudinal properties, and studies of their radial properties lag behind. We have operated a scanning probe microscope, NanoScopeTM IIIa, in the indentation/scratching mode to carry out a nanoindentation test on the top of multiwalled carbon nanotubes. We measured the correlation between the radial stress and the tube compression, and thereby determined the radial compressive elastic modulus at different compressive forces. The measurements also allowed us to estimate the radial compressive strength of the tubes. Support of this work by an Eastern Michigan University Faculty Research Fellowship and by the K. C. Wong Education Foundation, Hong Kong is gratefully acknowledged.

  3. Asymmetric actuating structure generates negligible influence on the supporting base for high performance scanning probe microscopies

    Science.gov (United States)

    Yi Yan, Gang; Bin Liu, Yong; Hua Feng, Zhi

    2014-02-01

    An asymmetric actuating structure generating negligible influence on the supporting base for high performance scanning probe microscopies is proposed in this paper. The actuator structure consists of two piezostacks, one is used for actuating while the other is for counterbalancing. In contrast with balanced structure, the two piezostacks are installed at the same side of the supporting base. The effectiveness of the structure is proved by some experiments with the actuators fixed to the free end of a cantilever. Experimental results show that almost all of the vibration modes of the cantilever are suppressed effectively at a wide frequency range of 90 Hz-10 kHz.

  4. Probing superconductors. Spectroscopic-imaging scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hanaguri, Tetsuo

    2011-01-01

    Discovery of high-temperature superconductivity in a cuprate triggered developments of various spectroscopic tools which have been utilized to elucidate electronic states of this mysterious compound. Particularly, angle-resolved photoemission spectroscopy and scanning-tunneling microscopy/spectroscopy are improved considerably. It is now possible to map the superconducting gap in both momentum and real spaces using these two techniques. Here we review spectroscopic-imaging scanning tunneling microscopy which is able to explore momentum-space phase structure of the superconducting gap, as well as real-space structure. Applications of this technique to a cuprate and an iron-based superconductor are discussed. (author)

  5. Low-Temperature Reduction of Graphene Oxide: Electrical Conductance and Scanning Kelvin Probe Force Microscopy

    Science.gov (United States)

    Slobodian, Oleksandr M.; Lytvyn, Peter M.; Nikolenko, Andrii S.; Naseka, Victor M.; Khyzhun, Oleg Yu.; Vasin, Andrey V.; Sevostianov, Stanislav V.; Nazarov, Alexei N.

    2018-05-01

    Graphene oxide (GO) films were formed by drop-casting method and were studied by FTIR spectroscopy, micro-Raman spectroscopy (mRS), X-ray photoelectron spectroscopy (XPS), four-points probe method, atomic force microscopy (AFM), and scanning Kelvin probe force (SKPFM) microscopy after low-temperature annealing at ambient conditions. It was shown that in temperature range from 50 to 250 °C the electrical resistivity of the GO films decreases by seven orders of magnitude and is governed by two processes with activation energies of 6.22 and 1.65 eV, respectively. It was shown that the first process is mainly associated with water and OH groups desorption reducing the thickness of the film by 35% and causing the resistivity decrease by five orders of magnitude. The corresponding activation energy is the effective value determined by desorption and electrical connection of GO flakes from different layers. The second process is mainly associated with desorption of oxygen epoxy and alkoxy groups connected with carbon located in the basal plane of GO. AFM and SKPFM methods showed that during the second process, first, the surface of GO plane is destroyed forming nanostructured surface with low work function and then at higher temperature a flat carbon plane is formed that results in an increase of the work function of reduced GO.

  6. Scanning probe microscopy of single Au ion implants in Si

    International Nuclear Information System (INIS)

    Vines, L.; Monakhov, E.; Maknys, K.; Svensson, B.G.; Jensen, J.; Hallen, A.; Kuznetsov, A. Yu.

    2006-01-01

    We have studied 5 MeV Au 2+ ion implantation with fluences between 7 x 10 7 and 2 x 10 8 cm -2 in Si by deep level transient spectroscopy (DLTS) and scanning capacitance microscopy (SCM). The DLTS measurements show formation of electrically active defects such as the two negative charge states of the divacancy (V 2 (=/-) and V 2 (-/0)) and the vacancy-oxygen (VO) center. It is observed that the intensity of the V 2 (=/-) peak is lower compared to that of V 2 (-/0) by a factor of 5. This has been attributed to a highly localized distribution of the defects along the ion tracks, which results in trapping of the carriers at V 2 (-/0) and incomplete occupancy of V 2 (=/-). The SCM measurements obtained in a plan view show a random pattern of regions with a reduced SCM signal for the samples implanted with fluence above 2 x 10 8 cm -2 . The reduced SCM signal is attributed to extra charges associated with acceptor states, such as V 2 (-/0), formed along the ion tracks in the bulk Si. Indeed, the electron emission rate from the V 2 (-/0) state is in the range of 10 kHz at room temperature, which is well below the probing frequency of the SCM measurements, resulting in 'freezing' of electrons at V 2 (-/0)

  7. Ultrafast photoinduced carrier dynamics in GaNAs probed using femtosecond time-resolved scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Terada, Yasuhiko; Aoyama, Masahiro; Kondo, Hiroyuki; Taninaka, Atsushi; Takeuchi, Osamu; Shigekawa, Hidemi

    2007-01-01

    The combination of scanning tunnelling microscopy (STM) with optical excitation using ultrashort laser pulses enables us, in principle, to simultaneously obtain ultimate spatial and temporal resolutions. We have developed the shaken-pulse-pair-excited STM (SPPX-STM) and succeeded in detecting a weak time-resolved tunnelling current signal from a low-temperature-grown GaNAs sample. To clarify the underlying physics in SPPX-STM measurements, we performed optical pump-probe reflectivity measurements with a wavelength-changeable ultrashort-pulse laser. By comparing the results obtained from the two methods with an analysis based on the nonlinear relationship between the photocarrier density and tunnelling current, we obtained a comprehensive explanation that the photocarrier dynamics is reflected in the SPPX-STM signal through the surface photovoltage effect

  8. Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope

    Directory of Open Access Journals (Sweden)

    Matthew F. B. Green

    2014-10-01

    Full Text Available One of the paramount goals in nanotechnology is molecular-scale functional design, which includes arranging molecules into complex structures at will. The first steps towards this goal were made through the invention of the scanning probe microscope (SPM, which put single-atom and single-molecule manipulation into practice for the first time. Extending the controlled manipulation to larger molecules is expected to multiply the potential of engineered nanostructures. Here we report an enhancement of the SPM technique that makes the manipulation of large molecular adsorbates much more effective. By using a commercial motion tracking system, we couple the movements of an operator's hand to the sub-angstrom precise positioning of an SPM tip. Literally moving the tip by hand we write a nanoscale structure in a monolayer of large molecules, thereby showing that our method allows for the successful execution of complex manipulation protocols even when the potential energy surface that governs the interaction behaviour of the manipulated nanoscale object(s is largely unknown.

  9. Optimal CT scanning parameters for commonly used tumor ablation applicators

    International Nuclear Information System (INIS)

    Eltorai, Adam E.M.; Baird, Grayson L.; Monu, Nicholas; Wolf, Farrah; Seidler, Michael; Collins, Scott; Kim, Jeomsoon; Dupuy, Damian E.

    2017-01-01

    Highlights: • This study aimed to determine optimal scanning parameters for commonly-used tumor ablation applicators. • The findings illustrate the overall interaction of the effects of kVp, ASiR, and reconstruction algorithm within and between probes, so that radiologists may easily reference optimal imaging performance. • Optimum combinations for each probe are provided. - Abstract: Purpose: CT-beam hardening artifact can make tumor margin visualization and its relationship to the ablation applicator tip challenging. To determine optimal scanning parameters for commonly-used applicators. Materials and methods: Applicators were placed in ex-vivo cow livers with implanted mock tumors, surrounded by bolus gel. Various CT scans were performed at 440 mA with 5 mm thickness changing kVp, scan time, ASiR, scan type, pitch, and reconstruction algorithm. Four radiologists blindly scored the images for image quality and artifact quantitatively. Results: A significant relationship between probe, kVp level, ASiR level, and reconstruction algorithm was observed concerning both image artifact and image quality (both p = <0.0001). Specifically, there are certain combinations of kVp, ASiR, and reconstruction algorithm that yield better images than other combinations. In particular, one probe performed equivalently or better than any competing probe considered here, regardless of kVp, ASiR, and reconstruction algorithm combination. Conclusion: The findings illustrate the overall interaction of the effects of kVp, ASiR, and reconstruction algorithm within and between probes, so that radiologists may easily reference optimal imaging performance for a certain combinations of kVp, ASiR, reconstruction algorithm and probes at their disposal. Optimum combinations for each probe are provided.

  10. Optimal CT scanning parameters for commonly used tumor ablation applicators

    Energy Technology Data Exchange (ETDEWEB)

    Eltorai, Adam E.M. [Warren Alpert Medical School of Brown University (United States); Baird, Grayson L. [Department of Diagnostic Imaging (United States); Warren Alpert Medical School of Brown University (United States); Lifespan Biostatistics Core (United States); Rhode Island Hospital (United States); Monu, Nicholas; Wolf, Farrah; Seidler, Michael [Department of Diagnostic Imaging (United States); Warren Alpert Medical School of Brown University (United States); Rhode Island Hospital (United States); Collins, Scott [Department of Diagnostic Imaging (United States); Rhode Island Hospital (United States); Kim, Jeomsoon [Department of Medical Physics (United States); Rhode Island Hospital (United States); Dupuy, Damian E., E-mail: ddupuy@comcast.net [Department of Diagnostic Imaging (United States); Warren Alpert Medical School of Brown University (United States); Rhode Island Hospital (United States)

    2017-04-15

    Highlights: • This study aimed to determine optimal scanning parameters for commonly-used tumor ablation applicators. • The findings illustrate the overall interaction of the effects of kVp, ASiR, and reconstruction algorithm within and between probes, so that radiologists may easily reference optimal imaging performance. • Optimum combinations for each probe are provided. - Abstract: Purpose: CT-beam hardening artifact can make tumor margin visualization and its relationship to the ablation applicator tip challenging. To determine optimal scanning parameters for commonly-used applicators. Materials and methods: Applicators were placed in ex-vivo cow livers with implanted mock tumors, surrounded by bolus gel. Various CT scans were performed at 440 mA with 5 mm thickness changing kVp, scan time, ASiR, scan type, pitch, and reconstruction algorithm. Four radiologists blindly scored the images for image quality and artifact quantitatively. Results: A significant relationship between probe, kVp level, ASiR level, and reconstruction algorithm was observed concerning both image artifact and image quality (both p = <0.0001). Specifically, there are certain combinations of kVp, ASiR, and reconstruction algorithm that yield better images than other combinations. In particular, one probe performed equivalently or better than any competing probe considered here, regardless of kVp, ASiR, and reconstruction algorithm combination. Conclusion: The findings illustrate the overall interaction of the effects of kVp, ASiR, and reconstruction algorithm within and between probes, so that radiologists may easily reference optimal imaging performance for a certain combinations of kVp, ASiR, reconstruction algorithm and probes at their disposal. Optimum combinations for each probe are provided.

  11. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Salgado, J. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Castro-Domínguez, B. [University of Tokyo, Department of Chemical System Engineering, Faculty of Engineering Bldg. 5, 7F 722, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8656 (Japan); Hernández-Hernández, P. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Newman, R.C. [University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto M5S 3E5 (Canada)

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  12. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    International Nuclear Information System (INIS)

    Lawton, J J; Pulisciano, A; Palmer, R E

    2009-01-01

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  13. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, J J; Pulisciano, A; Palmer, R E, E-mail: R.E.Palmer@bham.ac.u [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2009-11-25

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  14. An Investigation of Chemical Landscapes in Aqueous Electrosprays by Tracking Oligomerization of Isoprene

    KAUST Repository

    Junior, Adair Gallo

    2017-12-01

    Electrospray ionization mass spectrometry (ESIMS) is widely used to characterize neutral and ionic species in solvents. Typically, electrical, thermal, and pneumatic potentials are applied to create electrosprays from which charged ionic species are ejected for downstream analysis by mass spectrometry. Most recently, ESIMS has been exploited to investigate ambient proton transfer reactions at air-water interfaces in real time. We assessed the validity of these experiments via complementary laboratory experiments. Specifically, we characterized the products of two reaction scenarios via ESIMS and proton nuclear magnetic resonance (1H-NMR): (i) emulsions of pH-adjusted water and isoprene (C5H8) that were mechanically agitated, and (ii) electrosprays of pH-adjusted water that were collided with gas-phase isoprene. Our experiments unambiguously demonstrate that, while isoprene does not oligomerize in emulsions, it does undergo protonation and oligomerization in electrosprays, both with and without pH-adjusted water, confirming that C-C bonds form along myriad high-energy pathways during electrospray ionization. We also compared our experimental results with some quantum mechanics simulations of isoprene molecules interacting with hydronium at different hydration levels (gas versus liquid phase). In agreement with our experiments, the kinetic barriers to protonation and oligomerization of isoprene were inaccessible under ambient conditions. Rather, the gas-phase chemistries during electrospray ionization drove the oligomerization of isoprene. Therefore, we consider that ESIMS could induce artifacts in interfacial reactions. These findings warrant a reassessment of previous reports on tracking chemistries under ambient conditions at liquid-vapor interfaces via ESIMS. Further, we took some high-speed images of electrosprays where it was possible to observe the main characteristics of the phenomena, i.e. Taylor cone, charge separation, and Coulomb fission. Finally, we took

  15. Electrospray Collection of Airborne Contaminants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In stark contrast to current stagnation-based methods for capturing airborne particulates and biological aerosols, our demonstrated, cost-effective electrospray...

  16. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  17. Electrospray deposition of titanium dioxide (TiO{sub 2}) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Halimi, Siti Umairah, E-mail: fitrah@salam.uitm.edu.my; Bakar, Noor Fitrah Abu, E-mail: fitrah@salam.uitm.edu.my; Ismail, Siti Norazian, E-mail: fitrah@salam.uitm.edu.my; Hashib, Syafiza Abd, E-mail: fitrah@salam.uitm.edu.my [Faculty of Chemical Engineering, UniversitiTeknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Naim, M. Nazli [Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor (Malaysia)

    2014-02-24

    Deposition of titanium dioxide (TiO{sub 2}) nanoparticles was conducted by using eletrospray method. 0.05wt% of titanium dioxide suspension was prepared and characterized by using Malvern Zetasizer prior to the experiment. From Zetasizer results, stable suspension condition was obtained which is at pH 2 with zeta potential value of ±29.0 mV. In this electrospraying, the suspension was pumped at flowrate of 5 ml/hr by using syringe pump. The input voltage of 2.1 kV was applied at the nozzle tip and counter electrode. Electrosprayed particles were collected on the grounded aluminium plate substrate which was placed at 10–20 cm from counter electrode. Particles were then characterized using FESEM and average size of electrosprayed particles obtained. Initial droplet size was calculated by scaling law and compared with FE-SEM results in order to prove droplet fission occur during electrospray. Due to the results obtained, as the working distance increase from 10–20 cm the deposited TiO{sub 2} droplet size decrease from 247–116 nm to show droplet fission occur during the experiment.

  18. Electrospray Propulsion Engineering Toolkit (ESPET), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To accelerate the development of scaled-up Electrospray Propulsion emitter array systems with practical thrust levels, Spectral Sciences, Inc. (SSI), in...

  19. Measurement of in-plane magnetic relaxation in RE-123 coated conductors by use of scanning Hall probe microscopy

    International Nuclear Information System (INIS)

    Shiohara, K.; Higashikawa, K.; Inoue, M.; Kiss, T.; Iijima, Y.; Saitoh, T.; Yoshizumi, M.; Izumi, T.

    2013-01-01

    Highlights: ► We have investigated electric field criterion of in-plane critical current density. ► We could measure magnetic relaxation in a remanent state. ► The SHPM results show good agreement with the measurements by the 4-probe method. -- Abstract: We have investigated electric field criterion of in-plane critical current density in a coated conductor characterized by scanning Hall-probe microscopy (SHPM). From remanent field distribution and its relaxation measurements, we could obtain critical current distribution and induced electric field simultaneously by considering the Biot-Savart law and the Faraday’s law, respectively. These results lead us to evaluate a distribution of local critical current density and the corresponding criterion of electric field. As a result, it was found that the electric field criterion for the SHPM analysis was several orders lower than that used in the conventional 4-probe resistive method. However, the data point obtained by the SHPM shows good agreement with E–J curve analytically extended from the measurements by the 4-probe method. This means that we could characterize in-plane distribution of critical current density in a coated conductor at an electric field criterion quantitatively by this method in a nondestructive manner. These findings will be very important information since the uniformity of local critical current density in a coated conductor at extremely low electric fields is a key issue (1) especially for DC applications, (2) for quality control of coated conductors, and (3) for the standardization of the characterization of critical current among different methods

  20. Electrical conduction through surface superstructures measured by microscopic four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanabe, F.

    2003-01-01

    For in-situ measurements of the local electrical conductivity of well-defined crystal surfaces in ultra-high vacuum, we have developed two kinds of microscopic four-point probe methods. One involves a "four-tip STM prober," in which four independently driven tips of a scanning tunneling microscope...... (STM) are used for measurements of four-point probe conductivity. The probe spacing can be changed from 500 nm to 1 mm. The other method involves monolithic micro-four-point probes, fabricated on silicon chips, whose probe spacing is fixed around several mum. These probes are installed in scanning...

  1. Quantitative characterization of crosstalk effects for friction force microscopy with scan-by-probe SPMs

    International Nuclear Information System (INIS)

    Prunici, Pavel; Hess, Peter

    2008-01-01

    If the photodetector and cantilever of an atomic force microscope (AFM) are not properly adjusted, crosstalk effects will appear. These effects disturb measurements of the absolute vertical and horizontal cantilever deflections, which are involved in friction force microscopy (FFM). A straightforward procedure is proposed to study quantitatively crosstalk effects observed in scan-by-probe SPMs. The advantage of this simple, fast, and accurate procedure is that no hardware change or upgrade is needed. The results indicate that crosstalk effects depend not only on the alignment of the detector but also on the cantilever properties, position, and detection conditions. The measurements may provide information on the origin of the crosstalk effect. After determination of its magnitude, simple correction formulas can be applied to correct the crosstalk effects and then the single-load wedge method, using a commercially available grating, can be employed for accurate calibration of the lateral force

  2. Quantitative characterization of crosstalk effects for friction force microscopy with scan-by-probe SPMs

    Energy Technology Data Exchange (ETDEWEB)

    Prunici, Pavel [Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg (Germany); Hess, Peter [Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg (Germany)], E-mail: peter.hess@urz.uni-heidelberg.de

    2008-06-15

    If the photodetector and cantilever of an atomic force microscope (AFM) are not properly adjusted, crosstalk effects will appear. These effects disturb measurements of the absolute vertical and horizontal cantilever deflections, which are involved in friction force microscopy (FFM). A straightforward procedure is proposed to study quantitatively crosstalk effects observed in scan-by-probe SPMs. The advantage of this simple, fast, and accurate procedure is that no hardware change or upgrade is needed. The results indicate that crosstalk effects depend not only on the alignment of the detector but also on the cantilever properties, position, and detection conditions. The measurements may provide information on the origin of the crosstalk effect. After determination of its magnitude, simple correction formulas can be applied to correct the crosstalk effects and then the single-load wedge method, using a commercially available grating, can be employed for accurate calibration of the lateral force.

  3. Electrosprayed core–shell solid dispersions of acyclovir fabricated using an epoxy-coated concentric spray head

    Science.gov (United States)

    Liu, Zhe-Peng; Cui, Lei; Yu, Deng-Guang; Zhao, Zhuan-Xia; Chen, Lan

    2014-01-01

    A novel structural solid dispersion (SD) taking the form of core–shell microparticles for poorly water-soluble drugs is reported for the first time. Using polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix, the SDs were fabricated using coaxial electrospraying (characterized by an epoxy-coated concentric spray head), although the core fluids were unprocessable using one-fluid electrospraying. Through manipulating the flow rates of the core drug-loaded solutions, two types of core–shell microparticles with tunable drug contents were prepared. They had average diameters of 1.36±0.67 and 1.74±0.58 μm, and were essentially a combination of nanocomposites with the active ingredient acyclovir (ACY) distributed in the inner core, and the sweeter sucralose and transmembrane enhancer sodium dodecyl sulfate localized in the outer shell. Differential scanning calorimetry and X-ray diffraction results demonstrated that ACY, sodium dodecyl sulfate, and sucralose were well distributed in the PVP matrix in an amorphous state because of favorable second-order interactions. In vitro dissolution and permeation studies showed that the core–shell microparticle SDs rapidly freed ACY within 1 minute and promoted nearly eightfold increases in permeation rate across the sublingual mucosa compared with raw ACY powders. PMID:24790437

  4. Fabrication of Polymeric Coatings with Controlled Microtopographies Using an Electrospraying Technique.

    Directory of Open Access Journals (Sweden)

    Qiongyu Guo

    Full Text Available Surface topography of medical implants provides an important biophysical cue on guiding cellular functions at the cell-implant interface. However, few techniques are available to produce polymeric coatings with controlled microtopographies onto surgical implants, especially onto implant devices of small dimension and with complex structures such as drug-eluting stents. Therefore, the main objective of this study was to develop a new strategy to fabricate polymeric coatings using an electrospraying technique based on the uniqueness of this technique in that it can be used to produce a mist of charged droplets with a precise control of their shape and dimension. We hypothesized that this technique would allow facile manipulation of coating morphology by controlling the shape and dimension of electrosprayed droplets. More specifically, we employed the electrospraying technique to coat a layer of biodegradable polyurethane with tailored microtopographies onto commercial coronary stents. The topography of such stent coatings was modulated by controlling the ratio of round to stretched droplets or the ratio of round to crumped droplets under high electric field before deposition. The shape of electrosprayed droplets was governed by the stability of these charged droplets right after ejection or during their flight in the air. Using the electrospraying technique, we achieved conformal polymeric coatings with tailored microtopographies onto conductive surgical implants. The approach offers potential for controlling the surface topography of surgical implant devices to modulate their integration with surrounding tissues.

  5. Preparation, Optimization and Activity Evaluation of PLGA/Streptokinase Nanoparticles Using Electrospray

    Directory of Open Access Journals (Sweden)

    Nasrin Yaghoobi

    2017-04-01

    Full Text Available Purpose: PLGA nanoparticles (NPs have been extensively investigated as carriers of different drug molecules to enhance their therapeutic effects or preserve them from the aqueous environment. Streptokinase (SK is an important medicine for thrombotic diseases. Methods: In this study, we used electrospray to encapsulate SK in PLGA NPs and evaluate its activity. This is the first paper which investigates activity of an electrosprayed enzyme. Effect of three input parameters, namely, voltage, internal diameter of needle (nozzle and concentration ratio of polymer to protein on size and size distribution (SD of NPs was evaluated using artificial neural networks (ANNs. Optimizing the SD has been rarely reported so far in electrospray. Results: From the results, to obtain lowest size of nanoparticles, ratio of polymer/enzyme and needle internal diameter (ID should be low. Also, minimum SD was obtainable at high values of voltage. The optimum preparation had mean (SD size, encapsulation efficiency and loading capacity of 37 (12 nm, 90% and 8.2%, respectively. Nearly, 20% of SK was released in the first 30 minutes, followed by cumulative release of 41% during 72 h. Activity of the enzyme was also checked 30 min after preparation and 19.2% activity was shown. Conclusion: Our study showed that electrospraying could be an interesting approach to encapsulate proteins/enzymes in polymeric nanoparticles. However, further works are required to assure maintaining the activity of the enzyme/protein after electrospray.

  6. Mapping degenerate vortex states in a kagome lattice of elongated antidots via scanning Hall probe microscopy

    Science.gov (United States)

    Xue, C.; Ge, J.-Y.; He, A.; Zharinov, V. S.; Moshchalkov, V. V.; Zhou, Y. H.; Silhanek, A. V.; Van de Vondel, J.

    2017-07-01

    We investigate the degeneracy of the superconducting vortex matter ground state by directly visualizing the vortex configurations in a kagome lattice of elongated antidots via scanning Hall probe microscopy. The observed vortex patterns, at specific applied magnetic fields, are in good agreement with the configurations obtained using time-dependent Ginzburg-Landau simulations. Both results indicate that the long-range interaction in this nanostructured superconductor is unable to lift the degeneracy between different vortex states and the pattern formation is mainly ruled by the nearest-neighbor interaction. This simplification makes it possible to identify a set of simple rules characterizing the vortex configurations. We demonstrate that these rules can explain both the observed vortex distributions and the magnetic-field-dependent degree of degeneracy.

  7. Dual-MWCNT Probe Thermal Sensor Assembly and Evaluation Based on Nanorobotic Manipulation inside a Field-Emission-Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Zhan Yang

    2015-03-01

    Full Text Available We report a thermal sensor composed of two multiwalled carbon nano-tubes (MWCNTs inside a field-emission-scanning electron microscope. The sensor was assembled using a nanorobotic manipulation system, which was used to construct a probe tip in order to detect the local environment of a single cell. An atomic force microscopy (AFM cantilever was used as a substrate; the cantilever was composed of Si3N4 and both sides were covered with a gold layer. MWCNTs were individually assembled on both sides of the AFM cantilever by employing nanorobotic manipulation. Another AFM cantilever was subsequently used as an end effector to manipulate the MWCNTs to touch each other. Electron-beam-induced deposition (EBID was then used to bond the two MWCNTs. The MWCNT probe thermal sensor was evaluated inside a thermostated container in the temperature range from 25°C to 60°C. The experimental results show the positive characteristics of the temperature coefficient of resistance (TCR.

  8. Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models.

    Science.gov (United States)

    Mehta, Neil A; Levin, Deborah A

    2018-03-01

    Molecular dynamics (MD) electrospray simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF_{4}) ion liquid were performed with the goal of evaluating the influence of long-range Coulomb models on ion emission characteristics. The direct Coulomb (DC), shifted force Coulomb sum (SFCS), and particle-particle particle-mesh (PPPM) long-range Coulomb models were considered in this work. The DC method with a sufficiently large cutoff radius was found to be the most accurate approach for modeling electrosprays, but, it is computationally expensive. The Coulomb potential energy modeled by the DC method in combination with the radial electric fields were found to be necessary to generate the Taylor cone. The differences observed between the SFCS and the DC in terms of predicting the total ion emission suggest that the former should not be used in MD electrospray simulations. Furthermore, the common assumption of domain periodicity was observed to be detrimental to the accuracy of the capillary-based electrospray simulations.

  9. Operation of a scanning near field optical microscope in reflection in combination with a scanning force microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Faulkner, T.; Segerink, Franciscus B.; van der Werf, Kees; de Grooth, B.G.; Bölger, B.; Bölger, B.

    1992-01-01

    Images obtained with a scanning near field optical microscope (SNOM) operating in reflection are presented. We have obtained the first results with a SiN tip as optical probe. The instrument is simultaneously operated as a scanning force microscope (SFM). Moreover, the instrument incorporates an

  10. Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids.

    Science.gov (United States)

    Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank

    2011-01-01

    The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situ scanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situ STM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situ microscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).

  11. PET-Probe: Evaluation of Technical Performance and Clinical Utility of a Handheld High-Energy Gamma Probe in Oncologic Surgery.

    Science.gov (United States)

    Gulec, Seza A; Daghighian, Farhad; Essner, Richard

    2016-12-01

    Positron emission tomography (PET) has become an invaluable part of patient evaluation in surgical oncology. PET is less than optimal for detecting lesions PET-positive lesions can be challenging as a result of difficulties in surgical exposure. We undertook this investigation to assess the utility of a handheld high-energy gamma probe (PET-Probe) for intraoperative identification of 18 F-deoxyglucose (FDG)-avid tumors. Forty patients underwent a diagnostic whole-body FDG-PET scan for consideration for surgical exploration and resection. Before surgery, all patients received an intravenous injection of 7 to 10 mCi of FDG. At surgery, the PET-Probe was used to determine absolute counts per second at the known tumor site(s) demonstrated by whole-body PET and at adjacent normal tissue (at least 4 cm away from tumor-bearing sites). Tumor-to-background ratios were calculated. Thirty-two patients (80%) underwent PET-Probe-guided surgery with therapeutic intent in a recurrent or metastatic disease setting. Eight patients underwent surgery for diagnostic exploration. Anatomical locations of the PET-identified lesions were neck and supraclavicular (n = 8), axilla (n = 5), groin and deep iliac (n = 4), trunk and extremity soft tissue (n = 3), abdominal and retroperitoneal (n = 19), and lung (n = 2). PET-Probe detected all PET-positive lesions. The PET-Probe was instrumental in localization of lesions in 15 patients that were not immediately apparent by surgical exploration. The PET-Probe identified all lesions demonstrated by PET scanning and, in selected cases, was useful in localizing FDG-avid disease not seen with conventional PET scanning.

  12. Preparation of Porous Nanostructures Controlled by Electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dung The; Kim, Kyo-Seon [Kangwon National University, Chuncheon (Korea, Republic of); Nah, In Wook [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-10-15

    Various solid structures were prepared by electrospray technique. In this process, liquid flows out from a capillary nozzle under a high electrical potential and is subjected to an electric field, which causes elongation of the meniscus to form a jet. In our study, by controlling the amount of polyvinyl pyrrolydone in precursor solution, the jet either disrupted into droplets for the formation of spherical particles or was stretched in the electric field for the formation of fibers. During the electrospray process, the ethanol solvent was evaporated and induced the solidification of precursors, forming solid particles. The evaporation of ethanol solvent also enhanced the mass transport of solutes from the inner core to the solid shell, which facilitated fabrication of porous and hollow structure. The network structures were also prepared by heating the collector.

  13. Development of electrosprayed mucoadhesive chitosan microparticles

    DEFF Research Database (Denmark)

    Moreno, Jorge Alberto S.; Mendes, Ana C.; Stephansen, Karen

    2018-01-01

    The efficacy of chitosan (CS) to be used as drug delivery carrier has previously been reported. However, limited work has been pursued to produce stable and mucoadhesive CS electrosprayed particles for oral drug delivery, which is the aim of this study. Various CS types with different molecular...

  14. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  15. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement.

    Science.gov (United States)

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2015-05-01

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.

  16. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua, E-mail: canhualiu@sjtu.edu.cn, E-mail: jfjia@sjtu.edu.cn; Jia, Jin-Feng, E-mail: canhualiu@sjtu.edu.cn, E-mail: jfjia@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2015-05-15

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO{sub 3} surface.

  17. Analytical scanning evanescent microwave microscope and control stage

    Science.gov (United States)

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  18. Using precursor ion scan of 184 with liquid chromatography-electrospray ionization-tandem mass spectrometry for concentration normalization in cellular lipidomic studies.

    Science.gov (United States)

    Chao, Hsi-Chun; Chen, Guan-Yuan; Hsu, Lih-Ching; Liao, Hsiao-Wei; Yang, Sin-Yu; Wang, San-Yuan; Li, Yu-Liang; Tang, Sung-Chun; Tseng, Yufeng Jane; Kuo, Ching-Hua

    2017-06-08

    Cellular lipidomic studies have been favored approaches in many biomedical research areas. To provide fair comparisons of the studied cells, it is essential to perform normalization of the determined concentration before lipidomic analysis. This study proposed a cellular lipidomic normalization method by measuring the phosphatidylcholine (PC) and sphingomyelin (SM) contents in cell extracts. To provide efficient analysis of PC and SM in cell extracts, flow injection analysis-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) with a precursor ion scan (PIS) of m/z 184 was used, and the parameters affecting the performance of the method were optimized. Good linearity could be observed between the cell extract dilution factor and the reciprocal of the total ion chromatogram (TIC) area in the PIS of m/z 184 within the dilution range of 1- to 16-fold (R 2  = 0.998). The calibration curve could be used for concentration adjustment of the unknown concentration of a cell extract. The intraday and intermediate precisions were below 10%. The accuracy ranged from 93.0% to 105.6%. The performance of the new normalization method was evaluated using different numbers of HCT-116 cells. Sphingosine, ceramide (d18:1/18:0), SM (d18:1/18:0) and PC (16:1/18:0) were selected as the representative test lipid species, and the results showed that the peak areas of each lipid species obtained from different cell numbers were within a 20% variation after normalization. Finally, the PIS of 184 normalization method was applied to study ischemia-induced neuron injury using oxygen and glucose deprivation (OGD) on primary neuronal cultured cells. Our results showed that the PIS of 184 normalization method is an efficient and effective approach for concentration normalization in cellular lipidomic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy

    Science.gov (United States)

    Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.

    2017-01-01

    We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.

  20. Plume collimation for laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  1. Transient measurements with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    We use a photoconductively gated ultrafast scanning tunneling microscope to resolve laser-induced transients on transmission lines and photoconductors. The photoconductive switch on the tunneling probe is illuminated through a rigidly attached fiber. The use of the fiber enables us to scan across...... the transmission line while the change in delay time between pump beam (on the sample) and probe beam (on the probe) provides the temporal information. The investigated photoconductor sample is a low-temperature-grown GaAs layer placed on a sapphire substrate with a thin, semitransparent gold layer. In tunneling...... mode the probe is sensitive to laser-induced field changes in the semiconductor layer. Laser-induced transient signals of 2.2 ps widths are detected. As for the transmission lines, the signals can be explained by a capacitive coupling across the tunneling gap....

  2. Probing the Binding Interfaces of Protein Complexes Using Gas-Phase H/D Exchange Mass Spectrometry

    DEFF Research Database (Denmark)

    Mistarz, Ulrik H; Brown, Jeffery M; Haselmann, Kim F

    2016-01-01

    Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub-milliseco......Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub......-millisecond time span after electrospray ionization by ND3 gas can provide structural insights into protein conformers present in solution. Here, we have explored the use of gas-phase HDX-MS for probing the higher-order structure and binding interfaces of protein complexes originating from native solution...

  3. The production of ultra-thin layers of ion-exchange resin and metallic silver by electrospraying

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1988-10-01

    Highly efficient radioactive sources for use in radioisotope metrology have been prepared on ultra-thin layers of electrosprayed ion-exchange resin. The efficiency of these sources can be reduced for the purpose of radioactivity standardisation by coating them with conducting silver layers which are also produced by electrospraying. A description is given of improvements to the electrospraying methods, together with details of the rotating, oscillating source-mount turntable

  4. Poly(amidoamine-Cholesterol Conjugate Nanoparticles Obtained by Electrospraying as Novel Tamoxifen Delivery System

    Directory of Open Access Journals (Sweden)

    R. Cavalli

    2011-01-01

    Full Text Available A new poly(amidoamine-cholesterol (PAA-cholesterol conjugate was synthesized, characterized and used to produce nanoparticles by the electrospraying technique. The electrospraying is a method of liquid atomization that consists in the dispersion of a solution into small charged droplets by an electric field. Tuning the electrospraying process parameters spherical PAA-chol nanoparticles formed. The PAA-cholesterol nanoparticles showed sizes lower than 500 nm and spherical shape. The drug incorporation capacity was investigated using tamoxifen, a lipophilic anticancer drug, as model drug. The incorporation of the tamoxifen did not affect the shape and sizes of nanoparticles showing a drug loading of 40%. Tamoxifen-loaded nanoparticles exhibited a higher dose-dependent cytotoxicity than free tamoxifen, while blank nanoparticles did not show any cytotoxic effect at the same concentrations. The electrospray technique might be proposed to produce tamoxifen-loaded PAA-chol nanoparticle in powder form without any excipient in a single step.

  5. Is scanning in probed order recall articulatory?

    Science.gov (United States)

    Farrell, Simon; Lelièvre, Anna

    2009-09-01

    We consider how theories of serial recall might apply to other short-term memory tasks involving recall of order. In particular, we consider the possibility that when participants are cued to recall an item at an arbitrary position in a sequence, they covertly serially recall the list up to the cued position. One question is whether such "scanning" is articulatory in nature. Two experiments are presented in which the syllabic length of words preceding and following target positions were manipulated, to test the prediction of an articulatory-based mechanism that time to recall an item at a particular position will depend on the number of preceding long words. Although latency was dependent on target position, no word length effects on latency were observed. Additionally, the effects of word length on accuracy replicate recent demonstrations in serial recall that recall accuracy is dependent on the word length of all list items, not just that of target items, in line with distinctiveness assumptions. It is concluded that if scanning does occur, it is not carried out by covert or overt articulation.

  6. Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe

    International Nuclear Information System (INIS)

    Taylor, R.S.; Hnatovsky, C.

    2004-01-01

    Low power cw laser radiation coupled into a near-field scanning optical microscopy fiber probe has been used to generate a stable microbubble in water. A probe tip which was selectively chemically etched and metallized served as a microheater for the generation of the stable bubble. Bubble diameters in the range of 40-400 μm and lifetimes of over an hour have been obtained. The microbubble exhibited a linear growth phase over a period of a few seconds before reaching a maximum diameter which depended on the laser power. When the laser beam was blocked the microbubble decayed with a rate which was inversely proportional to the bubble diameter. The bubble lifetime depended on the square of the initial bubble diameter. Instabilities which transform a large stable bubble into a microjet stream of micron sized bubbles as the laser power was increased is also described

  7. Determination of fluspirilene in human plasma by liquid chromatography-tandem mass spectrometry with electrospray ionisation.

    Science.gov (United States)

    Swart, K J; Sutherland, F C; van Essen, G H; Hundt, H K; Hundt, A F

    1998-12-18

    An ultra-sensitive method for the determination of fluspirilene in plasma was established, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. The samples were extracted with hexane/isoamyl alcohol, separated on a Phenomenex Luna C18 5 mu 150 x 2.1 mm column with a mobile phase consisting of methanol-water-acetic acid (600:400:1) at a flow-rate of 0.3 ml/min. Detection was achieved by a Finnigan Matt mass spectrometer (LCQ) at unit resolution in full scan mode scanning the product ion spectrum from m/z 130-500 and monitoring the transition of the protonated molecular ion at m/z 476.2, to the sum of the largest product ions m/z 371, 342 and 274 (MS-MS). Electrospray ionisation was used for ion production. The mean recovery for fluspirilene was 90% with a lower limit of quantification of 21.50 pg/ml using 1 ml plasma for extraction. This is the first chromatographic method described for the determination of fluspirilene in plasma that is accurate and sensitive enough to be used in pharmacokinetic studies.

  8. Probing the location of displayed cytochrome b562 on amyloid by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Forman, C J; Barker, P D; Wang, N; Durkan, C; Yang, Z Y; Mowat, C G; Jarvis, S

    2013-01-01

    Amyloid fibres displaying cytochrome b 562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias ( 562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid. (paper)

  9. Innovative SPM Probes for Energy-Storage Science: MWCNT-Nanopipettes to Nanobattery Probes

    Science.gov (United States)

    Larson, Jonathan; Talin, Alec; Pearse, Alexander; Kozen, Alexander; Reutt-Robey, Janice

    As energy-storage materials and designs continue to advance, new tools are needed to direct and explore ion insertion/de-insertion at well-defined battery materials interfaces. Scanned probe tips, assembled from actual energy-storage materials, permit SPM measures of local cathode-anode (tip-sample) interactions, including ion transfer. We present examples of ``cathode'' MWCNT-terminated STM probe tips interacting with Li(s)/Si(111) anode substrates. The MWCNT tip functions as both SPM probe and Li-nanopipette,[1] for controlled transport and manipulation of Li. Local field conditions for lithium ionization and transfer are determined and compared to electrostatic models. Additional lithium metallic and oxide tips have been prepared by thin film deposition on conventional W tips, the latter of which effectively functions as a nanobattery. We demonstrate use of these novel probe materials in the local lithiation of low-index Si anode interfaces, probing local barriers for lithium insertion. Prospects and limitations of these novel SPM probes will be discussed. U.S. Department of Energy Award Number DESC0001160.

  10. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Tevis D. B., E-mail: tjacobs@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, Pennsylvania 15208 (United States); Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W., E-mail: carpick@seas.upenn.edu [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 S. 33rd St., Philadelphia, Pennsylvania 19104 (United States)

    2016-01-15

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture’s use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.

  11. Specificity enhancement by electrospray ionization multistage mass spectrometry--a valuable tool for differentiation and identification of 'V'-type chemical warfare agents.

    Science.gov (United States)

    Weissberg, Avi; Tzanani, Nitzan; Dagan, Shai

    2013-12-01

    The use of chemical warfare agents has become an issue of emerging concern. One of the challenges in analytical monitoring of the extremely toxic 'V'-type chemical weapons [O-alkyl S-(2-dialkylamino)ethyl alkylphosphonothiolates] is to distinguish and identify compounds of similar structure. MS analysis of these compounds reveals mostly fragment/product ions representing the amine-containing residue. Hence, isomers or derivatives with the same amine residue exhibit similar mass spectral patterns in both classical EI/MS and electrospray ionization-MS, leading to unavoidable ambiguity in the identification of the phosphonate moiety. A set of five 'V'-type agents, including O-ethyl S-(2-diisopropylamino)ethyl methylphosphonothiolate (VX), O-isobutyl S-(2-diethylamino)ethyl methylphosphonothiolate (RVX) and O-ethyl S-(2-diethylamino)ethyl methylphosphonothiolate (VM) were studied by liquid chromatography/electrospray ionization/MS, utilizing a QTRAP mass detector. MS/MS enhanced product ion scans and multistage MS(3) experiments were carried out. Based on the results, possible fragmentation pathways were proposed, and a method for the differentiation and identification of structural isomers and derivatives of 'V'-type chemical warfare agents was obtained. MS/MS enhanced product ion scans at various collision energies provided information-rich spectra, although many of the product ions obtained were at low abundance. Employing MS(3) experiments enhanced the selectivity for those low abundance product ions and provided spectra indicative of the different phosphonate groups. Study of the fragmentation pathways, revealing some less expected structures, was carried out and allowed the formulation of mechanistic rules and the determination of sets of ions typical of specific groups, for example, methylphosphonothiolates versus ethylphosphonothiolates. The new group-specific ions elucidated in this work are also useful for screening unknown 'V'-type agents and related

  12. Deceleration of probe beam by stage bias potential improves resolution of serial block-face scanning electron microscopic images.

    Science.gov (United States)

    Bouwer, James C; Deerinck, Thomas J; Bushong, Eric; Astakhov, Vadim; Ramachandra, Ranjan; Peltier, Steven T; Ellisman, Mark H

    2017-01-01

    Serial block-face scanning electron microscopy (SBEM) is quickly becoming an important imaging tool to explore three-dimensional biological structure across spatial scales. At probe-beam-electron energies of 2.0 keV or lower, the axial resolution should improve, because there is less primary electron penetration into the block face. More specifically, at these lower energies, the interaction volume is much smaller, and therefore, surface detail is more highly resolved. However, the backscattered electron yield for metal contrast agents and the backscattered electron detector sensitivity are both sub-optimal at these lower energies, thus negating the gain in axial resolution. We found that the application of a negative voltage (reversal potential) applied to a modified SBEM stage creates a tunable electric field at the sample. This field can be used to decrease the probe-beam-landing energy and, at the same time, alter the trajectory of the signal to increase the signal collected by the detector. With decelerated low landing-energy electrons, we observed that the probe-beam-electron-penetration depth was reduced to less than 30 nm in epoxy-embedded biological specimens. Concurrently, a large increase in recorded signal occurred due to the re-acceleration of BSEs in the bias field towards the objective pole piece where the detector is located. By tuning the bias field, we were able to manipulate the trajectories of the  primary and secondary electrons, enabling the spatial discrimination of these signals using an advanced ring-type BSE detector configuration or a standard monolithic BSE detector coupled with a blocking aperture.

  13. New directions in scanning-tunneling microscopy

    International Nuclear Information System (INIS)

    Ferrell, T.L.; Warmack, R.J.; Reddick, R.C.

    1989-01-01

    The tunneling of electrons in scanning-tunneling microscopy (STM) has permitted imaging of the electronic distribution about individual atoms on surfaces. The need for use of conducting surfaces in STM limits its applicability, and new forms of scanning microscopy have emerged as a result of interest in poorly conducting samples. Atomic force microscopy has demonstrated that the force between a surface and a probe tip can be used to image selected materials. Now being developed are magnetic probe STM's and photon tunneling microscopes in which the probe is a sharpened optical fiber. Also of great interest presently is the measurement of differential conductance of surfaces using electron STM's. This method supplies spectral information and contrast enhancement in images. At present there remains much theoretical work to be carried out in order to better characterize related data on inelastic electron tunneling, and valuable insight may be gained from data being gathered on the local work function of materials. As matters stand today, the key problems lie in determining tip and contamination effects, preparation of samples, and understanding conductivity mechanisms in very thin materials on conducting substrates. Resolution of these problems and introduction of new forms of scanning microscopy may permit novel and important applications in biology as well as surface science

  14. Pharmaceutical microparticle engineering with electrospraying

    DEFF Research Database (Denmark)

    Bohr, Adam; Wan, Feng; Kristensen, Jakob

    2015-01-01

    Microparticles of Celecoxib, dispersed in a matrix of poly(lactic-co-glycolic acid) (PLGA), were prepared by electrospraying using different solvent mixtures to investigate the influence upon particle formation and the resulting particle characteristics. Mixtures consisting of a good solvent, ace...... demonstrated by the increasingly higher drug release rates. The results demonstrate the importance of solvent composition in particle preparation and indicate potential for exploiting this dependence to improve pharmaceutical particle design and performance....

  15. Development of a Micro-SPM (Scanning Probe Microscope by Post-Assembly of a MEMS-Stage and an Independent Cantilever

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2007-08-01

    Full Text Available The development of miniature scanning probe microscopes (SPM on the basis of the MEMS technique has gained more and more interest. Here a novel approach is presented to realize a micro-SPM, in which by means of post-assembly a conventional cantilever is mounted onto a MEMS positioning stage and used to detect the topography variation of the surface under test. Compared with other integrated micro-SPMs, the proposed micro-SPM can maintain the lateral resolution by simply renewing its cantilever in use, and therefore features low cost, practicability and longer lifetime. Preliminary experimental results are reported, which demonstrate that the proposed microSPM can be realized.

  16. Shear force distance control in a scanning near-field optical microscope: in resonance excitation of the fiber probe versus out of resonance excitation

    International Nuclear Information System (INIS)

    Lapshin, D.A.; Letokhov, V.S.; Shubeita, G.T.; Sekatskii, S.K.; Dietler, G.

    2004-01-01

    The experimental results of the direct measurement of the absolute value of interaction force between the fiber probe of a scanning near-field optical microscope (SNOM) operated in shear force mode and a sample, which were performed using combined SNOM-atomic force microscope setup, are discussed for the out-of-resonance fiber probe excitation mode. We demonstrate that the value of the tapping component of the total force for this mode at typical dither amplitudes is of the order of 10 nN and thus is quite comparable with the value of this force for in resonance fiber probe excitation mode. It is also shown that for all modes this force component is essentially smaller than the usually neglected static attraction force, which is of the order of 200 nN. The true contact nature of the tip-sample interaction during the out of resonance mode is proven. From this, we conclude that such a detection mode is very promising for operation in liquids, where other modes encounter great difficulties

  17. Deposition of Ge{sub 23}Sb{sub 7}S{sub 70} chalcogenide glass films by electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Spencer, E-mail: spencen@g.clemson.edu [Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, SC (United States); College of Optics and Photonics, CREOL, University of Central FL (United States); Johnston, Danvers E.; Li, Cheng; Deng, Weiwei [Department of Mechanical and Aerospace Engineering, University of Central FL (United States); Richardson, Kathleen [Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, SC (United States); College of Optics and Photonics, CREOL, University of Central FL (United States)

    2015-08-03

    Solution-based chalcogenide glass films, traditionally deposited by spin-coating, are attractive for their potential use in chip-based devices operating in the mid-infrared and for ease of nanostructure incorporation. To overcome limitations of spin-coating such as excessive material waste and difficulty for scale-up, this paper introduces electrospray as a film deposition technique for solution-based chalcogenide glasses. Electrospray is shown to produce Ge{sub 23}Sb{sub 7}S{sub 70} films with similar surface quality and optical properties as films deposited by spin-coating. The advantages of electrospray deposition for nanoparticle dispersion, scalable and continuous manufacturing with little material waste, and comparable film quality to spin-coating make electrospray a promising deposition method for practical applications of chalcogenide glass films. - Highlights: • Electrospray film deposition processing of Ge{sub 23}Sb{sub 7}S{sub 70} films was developed. • Traditional spin-coated films were also fabricated in parallel. • Optical properties and surface quality found to be similar between two approaches.

  18. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

    Directory of Open Access Journals (Sweden)

    Tobias Meier

    2015-02-01

    Full Text Available We describe an atomic force microscope (AFM for the characterization of self-sensing tunneling magnetoresistive (TMR cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm3 is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm3. In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers.

  19. Endoscopic optical coherence tomography with a focus-adjustable probe.

    Science.gov (United States)

    Liao, Wenchao; Chen, Tianyuan; Wang, Chengming; Zhang, Wenxin; Peng, Zhangkai; Zhang, Xiao; Ai, Shengnan; Fu, Deyong; Zhou, Tieying; Xue, Ping

    2017-10-15

    We present a focus-adjustable endoscopic probe for optical coherence tomography (OCT), which is able to acquire images with different focal planes and overcome depth-of-focus limitations by image fusing. The use of a two-way shape-memory-alloy spring enables the probe to adjust working distance over 1.5 mm, providing a large scanning range with high resolution and no sensitivity loss. Equipped with a homemade hollow-core ultrasonic motor, the probe is capable of performing an unobstructed 360 deg field-of-view distal scanning. Both the axial resolution and the best lateral resolution are ∼4  μm, with a sensitivity of 100.3 dB. Spectral-domain OCT imaging of phantom and biological tissues with the probe is also demonstrated.

  20. Analysis of solvent dyes in refined petroleum products by electrospray ionization mass spectrometry

    Science.gov (United States)

    Rostad, C.E.

    2010-01-01

    Solvent dyes are used to color refined petroleum products to enable differentiation between gasoline, diesel, and jet fuels. Analysis for these dyes in the hydrocarbon product is difficult due to their very low concentrations in such a complex matrix. Flow injection analysis/electrospray ionization/mass spectrometry in both negative and positive mode was used to optimize ionization of ten typical solvent dyes. Samples of hydrocarbon product were analyzed under similar conditions. Positive electrospray ionization produced very complex spectra, which were not suitably specific for targeting only the dyes. Negative electrospray ionization produced simple spectra because aliphatic and aromatic moieties were not ionized. This enabled screening for a target dye in samples of hydrocarbon product from a spill.

  1. Synthesis of yttria powders by electrospray pyrolysis

    International Nuclear Information System (INIS)

    Rulison, A.J.; Flagan, R.C.

    1994-01-01

    Electrospray atomization of high-concentration (∼400 g/L) chemical precursor solutions was applied to the synthesis of yttria powders. Conditions were found which led to high-quality powders, composed of dense, spheroidal, submicrometer, and nanocrystalline oxide particles. The precursor solutions were hydrated yttrium nitrates dissolved in n-propyl alcohol at concentrations ranging from 44.1 to 455 g/L. Electrospray atomization produced submicrometer precursor droplets which were dispersed in air and carried through an electric furnace for thermal decomposition at 500 C for several seconds residence time. X-ray powder diffraction patterns indicated the expected cubic phase. Transmission electron micrographs showed that the particle structure varied with solution composition, ranging from hollow, inflated spheres for 6-hydrated nitrates to dense spheroids for 5-hydrated nitrates. The use of 6-hydrated nitrates in the solutions appeared to form particle surfaces which were impermeable to alcohol vapor evolved during thermal decomposition, leading to hollow, inflated spheres

  2. Effects of liquid post-column addition in electrospray ionization performance in supercritical fluid chromatography-mass spectrometry.

    Science.gov (United States)

    Akbal, Laura; Hopfgartner, Gérard

    2017-09-29

    In supercritical fluid chromatography coupled to atmospheric pressure ionization mass spectrometry (SFC-MS), the use of a make-up post-column is almost mandatory to avoid analyte precipitation, especially when using low percentage of modifier (supercritical conditions (1mL/min 40°C, 150bar) to gaseous state (room temperature, atmospheric pressure), the CO 2 expands around 430 times, contributing to almost 5% of the nebulizing process. In positive mode, the presence of ammonium ions either in the mobile phase or in the make-up did significantly increase the MS signal, even at basic apparent pH. The ionization performance of electrospray is influenced by the acidic buffer power of the carbon dioxide, and was found to be restricted in the apparent pH range of 3.8-7.2 in the various conditions investigated. This may challenge sensitive detection in negative mode, as illustrated for bosentan. The use of DMSO as make-up additive (up to 30%) showed a simplification of the full scan spectrum regarding the adducts. Finally, the optimization of make-up composition leads to an enhancement up to a factor of 69 on the electrospray MS response signal, for the SFC-SRM/MS analysis of HIV protease inhibitors in plasma extracted from Dried Plasma Spots. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen; Amad, Maan H.; Emwas, Abdul-Hamid M.

    2013-01-01

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed

  4. Impact of Acetic Acid on the Survival of L. plantarum upon Microencapsulation by Coaxial Electrospraying

    Directory of Open Access Journals (Sweden)

    Laura G. Gómez-Mascaraque

    2017-01-01

    Full Text Available In this work, coaxial electrospraying was used for the first time to microencapsulate probiotic bacteria, specifically Lactobacillus plantarum, within edible protein particles with the aim of improving their resistance to in vitro digestion. The developed structures, based on an inner core of whey protein concentrate and an outer layer of gelatin, were obtained in the presence of acetic acid in the outer solution as a requirement for the electrospraying of gelatin. Despite the limited contact of the inner suspension and outer solution during electrospraying, the combination of the high voltage used during electrospraying with the presence of acetic acid was found to have a severe impact on the lactobacilli, not only decreasing initial viability but also negatively affecting the survival of the bacteria during storage and their resistance to different stress conditions, including simulated in vitro digestion.

  5. Scanning transmission X-ray microscopy probe for in situ mechanism study of graphene-oxide-based resistive random access memory.

    Science.gov (United States)

    Nho, Hyun Woo; Kim, Jong Yun; Wang, Jian; Shin, Hyun-Joon; Choi, Sung-Yool; Yoon, Tae Hyun

    2014-01-01

    Here, an in situ probe for scanning transmission X-ray microscopy (STXM) has been developed and applied to the study of the bipolar resistive switching (BRS) mechanism in an Al/graphene oxide (GO)/Al resistive random access memory (RRAM) device. To perform in situ STXM studies at the C K- and O K-edges, both the RRAM junctions and the I0 junction were fabricated on a single Si3N4 membrane to obtain local XANES spectra at these absorption edges with more delicate I0 normalization. Using this probe combined with the synchrotron-based STXM technique, it was possible to observe unique chemical changes involved in the BRS process of the Al/GO/Al RRAM device. Reversible oxidation and reduction of GO induced by the externally applied bias voltages were observed at the O K-edge XANES feature located at 538.2 eV, which strongly supported the oxygen ion drift model that was recently proposed from ex situ transmission electron microscope studies.

  6. Online correction of scanning probe microscopes with pixel accuracy

    DEFF Research Database (Denmark)

    Dirscherl, Kai

    2000-01-01

    of 10 nm and an opening angle of 30.0 °. Even atomic resolution can be achieved. The scan movement of the tip is not linear however. This is caused by the propelling device of the SPM for the scan motion - a piezoelectric ceramic. The two major non-linear responses o f the piezo to the applied control....... The algorithm typically contains 5 - 7 parameters which have to be calibrated manually. Still, non-linear errors remain in the order of 1-2%. One pixel in a 512x 512 image corresponds to 0.2% per direction. This goal of measurement accuracy i s reached with the algorithm developed in this thesis. Three...... different SPM are analyzed for their non-linearity. Two commercial tube sc anners are applied with a maximum scan range in x and y of 40.0 µm and 160.0 µm as well as one specially designed stack scanner with a maximum range of 5.0 µm. For the tube scanners, a 1-dimensional line pattern with a reference...

  7. A Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Lev, Benjamin

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (2 um), or 6 nT / Hz1 / 2 per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly one-hundred points with an effective field sensitivity of 600 pT / Hz1 / 2 each point during the same time as a point-by-point scanner would measure these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly two orders of magnitude improvement in magnetic flux sensitivity (down to 10- 6 Phi0 / Hz1 / 2) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are for the first time carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns and done so using samples that may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge transport images at temperatures from room to \\x9D4K in unconventional superconductors and topologically nontrivial materials.

  8. Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering and Electrical Propulsion

    Science.gov (United States)

    2014-09-10

    Studies At the macroscale, the surface of a Taylor cone just before ion emission is an equipotential with a normal electric field strength found from...AFRL-OSR-VA-TR-2014-0246 Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering M Gamero-Castano UNIVERSITY OF CALIFORNIA IRVINE Final...298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 1 Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering and Electrical Propulsion

  9. Laser diagnostics of an evaporating electrospray

    Science.gov (United States)

    Yi, Tongxun

    2014-01-01

    An electrospray atomizer generates monodisperse, dilute sprays when working in the cone-jet mode. Evolution of an electrospray with droplet diameter below 10 μm is studied with phase Doppler particle analyzer (PDPA) and the exciplex-PLIF technique. The evaporation rate constant is determined from droplet velocity and diameter measured with a PDPA and is found to sharply increase with the velocity slip and the coflow temperature. Fluorescence around 400 nm, usually referred to as TMPD fluorescence, is calibrated with a heated, laminar, coflow vapor jet diluted with nitrogen. The TMPD fluorescence yield nonlinearly increases with temperature up to 538 K and then declines. Single-shot images show that fluorescence around 400 nm is mainly generated from TMPD vapor and that from droplets can be neglected as a first analysis; however, fluorescence around 490 nm, usually referred to as exciplex fluorescence, is generated from both droplets and fuel vapor immediately around droplets. Exciplex fluorescence is correlated with PDPA measurements and TMPD fluorescence. Effects of temperature, fuel composition, overlap of fluorescent spectra, and chemical equilibrium for exciplex formation are discussed. Technical challenges for quantitative exciplex-PLIF measurements are highlighted.

  10. Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance.

    Science.gov (United States)

    Wu, Xinyun; Oleschuk, Richard D; Cann, Natalie M

    2012-09-21

    Full-dimensional computational fluid dynamics (CFD) simulations are presented for nano electrospray ionization (ESI) with various emitter designs. Our CFD electrohydrodynamic simulations are based on the Taylor-Melcher leaky-dielectric model, and the volume of fluid technique for tracking the fast-changing liquid-gas interface. The numerical method is first validated for a conventional 20 μm inner diameter capillary emitter. The impact of ESI voltage, flow rate, emitter tapering, surface hydrophobicity, and fluid conductivity on the nano-ESI behavior are thoroughly investigated and compared with experiments. Multi-electrospray is further simulated with 2-hole and 3-hole emitters with the latter having a linear or triangular hole arrangement. The simulations predict multi-electrospray behavior in good agreement with laboratory observations.

  11. Kelvin probe force microscopy from single charge detection to device characterization

    CERN Document Server

    Glatzel, Thilo

    2018-01-01

    This book provides a comprehensive introduction to the methods and variety of Kelvin probe force microscopy, including technical details. It also offers an overview of the recent developments and numerous applications, ranging from semiconductor materials, nanostructures and devices to sub-molecular and atomic scale electrostatics. In the last 25 years, Kelvin probe force microscopy has developed from a specialized technique applied by a few scanning probe microscopy experts into a tool used by numerous research and development groups around the globe. This sequel to the editors’ previous volume “Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces,” presents new and complementary topics. It is intended for a broad readership, from undergraduate students to lab technicians and scanning probe microscopy experts who are new to the field.

  12. The analysis of aqueous mixtures using liquid chromatography-electrospray mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Steven [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    The focus of this dissertation is the use of chromatographic methods coupled with electrospray mass spectrometry (ES-MS) for the determination of both organic and inorganic compounds in aqueous solutions. The combination of liquid chromatography (LC) methods and ES-MS offers one of the foremost methods for determining compounds in complex aqueous solutions. In this work, LC-ES-MS methods are devised using ion exclusion chromatography, reversed phase chromatography, and ion exchange chromatography, as well as capillary electrophoresis (CE). For an aqueous sample, these LC-ES-MS and CE-ES-MS techniques require no sample preparation or analyte derivatization, which makes it possible to observe a wide variety of analytes as they exist in solution. The majority of this work focuses on the use of LC-ES-MS for the determination of unknown products and intermediates formed during electrochemical incineration (ECI), an experimental waste remediation process. This report contains a general introduction to the project and the general conclusions. Four chapters have been removed for separate processing. Titles are: Chapter 2: Determination of small carboxylic acids by ion exclusion chromatography with electrospray mass spectrometry; Chapter 3: Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte; Chapter 4: The determination of electrochemical incineration products of 4-chlorophenol by liquid chromatography-electrospray mass spectrometry; and Chapter 5: Determination of small carboxylic acids by capillary electrophoresis with electrospray mass spectrometry.

  13. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    McKelvey, Kim; Nadappuram, Binoy Paulose; Actis, Paolo; Takahashi, Yasufumi; Korchev, Yuri E; Matsue, Tomokazu; Robinson, Colin; Unwin, Patrick R

    2013-08-06

    Dual carbon electrodes (DCEs) are quickly, easily, and cheaply fabricated by depositing pyrolytic carbon into a quartz theta nanopipet. The size of DCEs can be controlled by adjusting the pulling parameters used to make the nanopipet. When operated in generation/collection (G/C) mode, the small separation between the electrodes leads to reasonable collection efficiencies of ca. 30%. A three-dimensional finite element method (FEM) simulation is developed to predict the current response of these electrodes as a means of estimating the probe geometry. Voltammetric measurements at individual electrodes combined with generation/collection measurements provide a reasonable guide to the electrode size. DCEs are employed in a scanning electrochemical microscopy (SECM) configuration, and their use for both approach curves and imaging is considered. G/C approach curve measurements are shown to be particularly sensitive to the nature of the substrate, with insulating surfaces leading to enhanced collection efficiencies, whereas conducting surfaces lead to a decrease of collection efficiency. As a proof-of-concept, DCEs are further used to locally generate an artificial electron acceptor and to follow the flux of this species and its reduced form during photosynthesis at isolated thylakoid membranes. In addition, 2-dimensional images of a single thylakoid membrane are reported and analyzed to demonstrate the high sensitivity of G/C measurements to localized surface processes. It is finally shown that individual nanometer-size electrodes can be functionalized through the selective deposition of platinum on one of the two electrodes in a DCE while leaving the other one unmodified. This provides an indication of the future versatility of this type of probe for nanoscale measurements and imaging.

  14. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    Science.gov (United States)

    Saive, Rebecca; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert; Kowalsky, Wolfgang

    2013-12-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces.

  15. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    International Nuclear Information System (INIS)

    Saive, Rebecca; Kowalsky, Wolfgang; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert

    2013-01-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces

  16. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes

    International Nuclear Information System (INIS)

    Lin Bin; Hu Ronggang; Ye Chenqing; Li Yan; Lin Changjian

    2010-01-01

    Scanning electrochemical probes of corrosion potential and chloride ions were developed for the in situ monitoring of localized corrosion processes of reinforcing steel in NaCl-containing solution. The results indicated that the chloride ions (Cl - ) preferentially adsorbed and accumulated at the imperfect/defective sites, resulting in initiation and propagation of pitting corrosion on the reinforcing steel surface. An electron microprobe analyzer (EMPA) was used to examine the corrosion morphology and elemental distribution at the corroded location to investigate the origins of the preferential Cl - adsorption and pitting corrosion. By combining the in situ and ex situ images, we concluded that manganese sulfide inclusions in reinforcing steel are the most susceptible defects to pitting corrosion in chloride-containing solution.

  17. Development of Scanning Ultrafast Electron Microscope Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  18. Determination of the electrical resistivity of vertically aligned carbon nanotubes by scanning probe microscopy

    Science.gov (United States)

    Ageev, O. A.; Il'in, O. I.; Rubashkina, M. V.; Smirnov, V. A.; Fedotov, A. A.; Tsukanova, O. G.

    2015-07-01

    Techniques are developed to determine the resistance per unit length and the electrical resistivity of vertically aligned carbon nanotubes (VA CNTs) using atomic force microscopy (AFM) and scanning tunneling microscopy (STM). These techniques are used to study the resistance of VA CNTs. The resistance of an individual VA CNT calculated with the AFM-based technique is shown to be higher than the resistance of VA CNTs determined by the STM-based technique by a factor of 200, which is related to the influence of the resistance of the contact of an AFM probe to VA CNTs. The resistance per unit length and the electrical resistivity of an individual VA CNT 118 ± 39 nm in diameter and 2.23 ± 0.37 μm in height that are determined by the STM-based technique are 19.28 ± 3.08 kΩ/μm and 8.32 ± 3.18 × 10-4 Ω m, respectively. The STM-based technique developed to determine the resistance per unit length and the electrical resistivity of VA CNTs can be used to diagnose the electrical parameters of VA CNTs and to create VA CNT-based nanoelectronic elements.

  19. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins.

    Science.gov (United States)

    Gallier, Sophie; Gragson, Derek; Jiménez-Flores, Rafael; Everett, David

    2010-04-14

    The bovine milk fat globule membrane (MFGM) is an important, biologically relevant membrane due to its functional and health properties. Its composition has been thoroughly studied, but its structure, especially the lateral organization of its components, still remains unclear. We have used confocal laser scanning microscopy (CLSM) to investigate the surface structure of the MFGM in globules with different degrees of processing using two types of fluorescently labeled phospholipid probes and a protein dye. Using this technique, we have observed heterogeneities in the distribution of MFGM lipids and proteins relating to the processing and size of the globules. The effect of pretreating the milk (centrifugation, pasteurization-homogenization and churning) was studied by double-staining the surface of the milk fat globules, followed by observation using CLSM, and by determining the phospholipid profile of raw milk, raw cream, processed milk and buttermilk powder. Our findings agree with other techniques by showing that the composition of the MFGM changes with processing through the loss of phospholipids and the adsorption of caseins and whey proteins onto the surface.

  20. Scanning Hall-probe microscopy of a vortex and field fluctuations in La1.85Sr0.15CuO4 films

    International Nuclear Information System (INIS)

    Chang, A.M.; Hallen, H.D.; Hess, H.F.; Kwo, J.; Sudboe, A.; Kao, H.L.; Chang, T.Y.

    1992-01-01

    A high-resolution scanning Hall-probe microscope is used to spatially resolve vortices in high-temperature superconducting La 1.85 Sr 0.15 CuO 4 films. At low magnetic fields, a disordered vortex arrangement is observed. A fit to the surface field of an individual vortex is consistent with one flux quantum, and is used to determine the local penetration depth and its temperature dependence. At higher fields, magnetic fluctuations are observed and compared to a collective pinning model. For films grown with the c-axis tilted from the surface normal, oval vortices are observed. (orig.)

  1. Probe-based recording technology

    International Nuclear Information System (INIS)

    Naberhuis, Steve

    2002-01-01

    The invention of the scanning tunneling microscope (STM) prompted researchers to contemplate whether such technology could be used as the basis for the storage and retrieval of information. With magnetic data storage technology facing limits in storage density due to the thermal instability of magnetic bits, the super-paramagnetic limit, the heir-apparent for information storage at higher densities appeared to be variants of the STM or similar probe-based storage techniques such as atomic force microscopy (AFM). Among these other techniques that could provide replacement technology for magnetic storage, near-field optical scanning optical microscopy (NSOM or SNOM) has also been investigated. Another alternative probe-based storage technology called atomic resolution storage (ARS) is also currently under development. An overview of these various technologies is herein presented, with an analysis of the advantages and disadvantages inherent in each particularly with respect to reduced device dimensions. The role of micro electro mechanical systems (MEMS) is emphasized

  2. High platinum utilization in ultra-low Pt loaded PEM fuel cell cathodes prepared by electrospraying

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.; Garcia-Ybarra, P.L.; Castillo, J.L. [Dept. Fisica Matematica y de Fluidos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid (Spain)

    2010-10-15

    Cathode electrodes for proton exchange membrane fuel cells (PEMFCs) with ultra-low platinum loadings as low as 0.012 mg{sub Pt}cm{sup -2} have been prepared by the electrospray method. The electrosprayed layers have nanostructured fractal morphologies with dendrites formed by clusters (about 100 nm diameter) of a few single catalyst particles rendering a large exposure surface of the catalyst. Optimization of the control parameters affecting this morphology has allowed us to overcome the state of the art for efficient electrodes prepared by electrospraying. Thus, using these cathodes in membrane electrode assemblies (MEAs), a high platinum utilization in the range 8-10 kW g{sup -1} was obtained for the fuel cell operating at 40 C and atmospheric pressure. Moreover, a platinum utilization of 20 kW g{sup -1} was attained under more suitable operating conditions (70 C and 3.4 bar over-pressure). These results substantially improve the performances achieved previously with other low platinum loading electrodes prepared by electrospraying. (author)

  3. Surface characterization of superconductive Nd1Ba2Cu3Oy thin films using scanning probe microscopes

    International Nuclear Information System (INIS)

    Ting, W.; Badaye, M.; Itti, R.; Morishita, T.; Koshizuka, N.; Tanaka, S.

    1996-01-01

    Recently, superconductive Nd 1 Ba 2 Cu 3 O y (Nd123) thin films with high superconducting transition temperature (T c ) have been successfully fabricated at the authors institute employing the standard laser ablation method. In this paper, they report parts of the results of surface characterization of the Nd123 thin films using an ultrahigh vacuum scanning tunneling microscope/spectroscopy (UHV-STM/STS) and an atomic force microscope (AFM) system operated in air. Clear spiral pattern is observed on the surfaces of Nd123 thin films by STM and AFM, suggesting that films are formed by two-dimensional island growth mode at the final growing stage. Contour plots of the spirals show that the step heights of the spirals are not always the integer or half integer numbers of the c-axis parameter of the structure. This implies that the surface natural termination layer of the films may not be unique. Surface atomic images of the as-prepared Nd123 thin films are obtained employing both STM and AFM. STS measurements show that most of the surfaces are semiconductive, or sometimes even metallic. The results of STS measurements together with the fact that they are able to see the surface atomic images using scanning probe microscopes suggest that exposure to air does not cause serious degradation to the as-prepared surfaces of Nd123 thin films

  4. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) with plume capture by continuous flow solvent probe

    Science.gov (United States)

    O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.

    2017-10-31

    A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.

  5. Application of scanning Kelvin probe microscopy for the electrical characterization of microcrystalline silicon for photovoltaics

    International Nuclear Information System (INIS)

    Breymesser, A.

    2000-05-01

    In the last years microcrystalline silicon thin films have attracted great attention as a new photovoltaic material. With this material it is possible to combine simple and cheap low temperature deposition techniques known from amorphous silicon with the long-term stability of the photovoltaic performance like in bulk crystalline silicon solar cells. The critical point is the deposition procedure with numerous tunable parameters influencing the quality and character of the produced diode structures. Additionally there is a great uncertainty about unintentionally incorporated defects, which is not affected by the deposition parameters. Extended investigation of the material, diode and solar cell characteristics is essential in order to correlate the impact of deposition conditions with the quality of the devices. The situation is complicated due to the anisotropic and inhomogeneous character of microcrystalline silicon. Scanning Kelvin probe microscopy (SKPM) is a work function measurement method based on a scanning force microscope (SFM) and a modified Kelvin probe technique. Due to the excellent lateral resolution of the SFM work function measurements with resolutions far below the micrometer level can be carried out. Applied on doped microcrystalline silicon structures it is possible to visualize the position of the Fermi level within the band gap and the influence of the deposition conditions on it. Within this work a SKPM based on a commercially available SFM was constructed and built. Great effort was concentrated on the characterization of the SKPM experiment. On the basis of an extended knowledge about the performance investigations concentrated on cross sections of microcrystalline silicon diode structures produced by hot-wire chemical vapor deposition (HW-CVD). A pin structure for the diodes was chosen due to the low diffusion lengths within this rather defective material. The evolution of the built-in electric drift field within the intrinsic absorber is

  6. [Molecular beacon based PNA-FISH method combined with fluorescence scanning for rapid detection of Listeria monocytogenes].

    Science.gov (United States)

    Wu, Shan; Zhang, Xiaofeng; Shuai, Jiangbing; Li, Ke; Yu, Huizhen; Jin, Chenchen

    2016-07-04

    To simplify the PNA-FISH (Peptide nucleic acid-fluorescence in situ hybridization) test, molecular beacon based PNA probe combined with fluorescence scanning detection technology was applied to replace the original microscope observation to detect Listeria monocytogenes The 5′ end and 3′ end of the L. monocytogenes specific PNA probes were labeled with the fluorescent group and the quenching group respectively, to form a molecular beacon based PNA probe. When PNA probe used for fluorescence scanning and N1 treatment as the control, the false positive rate was 11.4%, and the false negative rate was 0; when N2 treatment as the control, the false positive rate decreased to 4.3%, but the false negative rate rose to 18.6%. When beacon based PNA probe used for fluorescence scanning, taken N1 treatment as blank control, the false positive rate was 8.6%, and the false negative rate was 1.4%; taken N2 treatment as blank control, the false positive rate was 5.7%, and the false negative rate was 1.4%. Compared with PNA probe, molecular beacon based PNA probe can effectively reduce false positives and false negatives. The success rates of hybridization of the two PNA probes were 83.3% and 95.2% respectively; and the rates of the two beacon based PNA probes were 91.7% and 90.5% respectively, which indicated that labeling the both ends of the PNA probe dose not decrease the hybridization rate with the target bacteria. The combination of liquid phase PNA-FISH and fluorescence scanning method, can significantly improve the detection efficiency.

  7. Image processing for HTS SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, T.; Koetitz, R.; Itozaki, H.; Ishikawa, T.; Kawabe, U.

    2005-01-01

    An HTS SQUID probe microscope has been developed using a high-permeability needle to enable high spatial resolution measurement of samples in air even at room temperature. Image processing techniques have also been developed to improve the magnetic field images obtained from the microscope. Artifacts in the data occur due to electromagnetic interference from electric power lines, line drift and flux trapping. The electromagnetic interference could successfully be removed by eliminating the noise peaks from the power spectrum of fast Fourier transforms of line scans of the image. The drift between lines was removed by interpolating the mean field value of each scan line. Artifacts in line scans occurring due to flux trapping or unexpected noise were removed by the detection of a sharp drift and interpolation using the line data of neighboring lines. Highly detailed magnetic field images were obtained from the HTS SQUID probe microscope by the application of these image processing techniques

  8. Microfluidic Array of Externally Fed Electrospray Thrusters for Micro-Propulsion

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this proposal is to design an electrospray micropropulsion thruster that utilizes a novel propellant transport mechanism. This project is a collaboration...

  9. Path-separated electron interferometry in a scanning transmission electron microscope

    Science.gov (United States)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  10. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

    Directory of Open Access Journals (Sweden)

    Philipp Leinen

    2015-11-01

    Full Text Available Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926–1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf of the non-contact atomic force microscope (NC-AFM tuning fork sensor as well as the magnitude of the electric current (I flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111 surface.

  12. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    Science.gov (United States)

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

  13. Method for HEPA filter leak scanning with differentiating aerosol detector

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, B.J.; Banks, E.M.; Wikoff, W.O. [NUCON International, Inc., Columbus, OH (United States)

    1997-08-01

    While scanning HEPA filters for leaks with {open_quotes}Off the Shelf{close_quote} aerosol detection equipment, the operator`s scanning speed is limited by the time constant and threshold sensitivity of the detector. This is based on detection of the aerosol density, where the maximum signal is achieved when the scanning probe resides over the pinhole longer than several detector time-constants. Since the differential value of the changing signal can be determined by observing only the first small fraction of the rising signal, using a differentiating amplifier will speed up the locating process. The other advantage of differentiation is that slow signal drift or zero offset will not interfere with the process of locating the leak, since they are not detected. A scanning hand-probe attachable to any NUCON{reg_sign} Aerosol Detector displaying the combination of both aerosol density and differentiated signal was designed. 3 refs., 1 fig.

  14. Transmission Geometry Laser Ablation into a Non-Contact Liquid Vortex Capture Probe for Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Bhandari, Deepak [ORNL; Lorenz, Matthias [ORNL; Van Berkel, Gary J [ORNL

    2014-01-01

    RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the

  15. Contact resistance asymmetry of amorphous indium-gallium-zinc-oxide thin-film transistors by scanning Kelvin probe microscopy

    Science.gov (United States)

    Chen-Fei, Wu; Yun-Feng, Chen; Hai, Lu; Xiao-Ming, Huang; Fang-Fang, Ren; Dun-Jun, Chen; Rong, Zhang; You-Dou, Zheng

    2016-05-01

    In this work, a method based on scanning Kelvin probe microscopy is proposed to separately extract source/drain (S/D) series resistance in operating amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. The asymmetry behavior of S/D contact resistance is deduced and the underlying physics is discussed. The present results suggest that the asymmetry of S/D contact resistance is caused by the difference in bias conditions of the Schottky-like junction at the contact interface induced by the parasitic reaction between contact metal and a-IGZO. The overall contact resistance should be determined by both the bulk channel resistance of the contact region and the interface properties of the metal-semiconductor junction. Project supported by the Key Industrial R&D Program of Jiangsu Province, China (Grant No. BE2015155), the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province, China, and the Fundamental Research Funds for the Central Universities, China (Grant No. 021014380033).

  16. Profiling an electrospray plume by laser-induced fluorescence and Fraunhofer diffraction combined to mass spectrometry: influence of size and composition of droplets on charge-state distributions of electrosprayed proteins.

    Science.gov (United States)

    Girod, Marion; Dagany, Xavier; Boutou, Véronique; Broyer, Michel; Antoine, Rodolphe; Dugourd, Philippe; Mordehai, Alex; Love, Craig; Werlich, Mark; Fjeldsted, John; Stafford, George

    2012-07-14

    We investigated how physico-chemical properties of charged droplets are affected by the electrospray process, using simultaneous in situ measurements by laser-induced fluorescence (LIF), Fraunhofer diffraction and mass spectrometry. For this purpose, we implemented a laser-induced-fluorescence profiling setup in conjunction with a fast, high-resolution particle sizing scheme on a modified Agilent Jet Stream electrospray source coupled to a single quadrupole mass analyser. The optical setup permits us to profile the solvent fractionation and the size of the droplets as they evaporate in an electrospray plume by measuring both the angular scattering pattern and emission spectra of a solvatochromic fluorescent dye. Mass spectra are recorded simultaneously. These mass spectrometry and optical spectroscopy investigations allow us to study the relation between the observed charge-state distributions of protein anions and physico-chemical properties of evaporating droplets in the spray plume. By mixing water with methanol, a refolding of cytochrome C is observed as the water percentage increases in the plume due to the preponderant evaporation of volatile methanol.

  17. Direct coupling of electromembrane extraction to mass spectrometry – Advancing the probe functionality toward measurements of zwitterionic drug metabolites

    DEFF Research Database (Denmark)

    Kige Rye, Torstein; Fuchs, David; Pedersen-Bjergaard, Stig

    2017-01-01

    A triple-flow electromembrane extraction (EME) probe was developed and coupled directly to electrospray-ionization mass spectrometry (ESI-MS). Metabolic reaction mixtures (pH 7.4) containing drug substances and related metabolites were continuously drawn (20 μL/min) into the EME probe in one flow......-nitrophenyl octyl ether (and for some experiments containing 30% triphenyl phosphate (TPP)), and into 20 μL min-1 of formic acid as acceptor phase, which was introduced through a third flow channel. The acceptor phase was pumped directly to the MS system, and the ion intensity of extracted analytes......, the system can potentially be used for direct analysis of various kinds of chemical reactions that have to be run at pH conditions unfavorable for direct analyte extractions....

  18. Classification of terverticillate Penicillia by electrospray mass spectrometric profiling

    DEFF Research Database (Denmark)

    Smedsgaard, Jørn; Hansen, Michael Edberg; Frisvad, Jens Christian

    2004-01-01

    429 isolates of 58 species belonging to Penicillium subgenus Penicillium are classified from direct infusion electrospray mass spectrometry (diMS) analysis of crude extracts by automated data processing. The study shows that about 70% of the species can be classified correctly into species using...

  19. Resolution enhancement of scanning four-point-probe measurements on two-dimensional systems

    DEFF Research Database (Denmark)

    Hansen, Torben Mikael; Stokbro, Kurt; Hansen, Ole

    2003-01-01

    A method to improve the resolution of four-point-probe measurements of two-dimensional (2D) and quasi-2D systems is presented. By mapping the conductance on a dense grid around a target area and postprocessing the data, the resolution can be improved by a factor of approximately 50 to better than 1....../15 of the four-point-probe electrode spacing. The real conductance sheet is simulated by a grid of discrete resistances, which is optimized by means of a standard optimization algorithm, until the simulated voltage-to-current ratios converges with the measurement. The method has been tested against simulated...

  20. Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications.

    Science.gov (United States)

    Liu, Yaowen; Wang, Shuyao; Lan, Wenting

    2018-02-01

    In this study, blended films from poly(vinyl alcohol) (PVA) containing chitosan (CS) were prepared via a simple solution casting and electrospraying method. The structures of the PVA-CS films were characterized by Fourier-transform infrared spectroscopy. The morphologies of the films were observed by scanning electron microscopy. The thermal properties of the PVA-CS films were examined by thermogravimetry. The effects of CS contents on the mechanical properties, oxygen permeability values, water vapor permeation levels, and antibacterial behaviors against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains were investigated. Compared to the pure PVA film, the PVA-CS films showed greater elongation at break, lower oxygen permeability, higher water barrier properties, and greater antibacterial activity, especially for the PVA:CS weight ratio of 75:25. The obtained results indicate the PVA-CS film may be a promising material for food packaging applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Microfour-point probe for studying electronic transport through surface states

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Shiraki, I.

    2000-01-01

    Microfour-point probes integrated on silicon chips have been fabricated with probe spacings in the range 4-60 mum. They provide a simple robust device for electrical transport measurements at surfaces, bridging the gap between conventional macroscopic four-point probes and scanning tunneling...... transport through surface states, which is not observed on the macroscopic scale, presumably due to scattering at atomic steps. (C) 2000 American Institute of Physics....

  2. Near-Field Imaging of Free Carriers in ZnO Nanowires with a Scanning Probe Tip Made of Heavily Doped Germanium

    Science.gov (United States)

    Sakat, Emilie; Giliberti, Valeria; Bollani, Monica; Notargiacomo, Andrea; Pea, Marialilia; Finazzi, Marco; Pellegrini, Giovanni; Hugonin, Jean-Paul; Weber-Bargioni, Alexander; Melli, Mauro; Sassolini, Simone; Cabrini, Stefano; Biagioni, Paolo; Ortolani, Michele; Baldassarre, Leonetta

    2017-11-01

    A novel scanning probe tip made of heavily doped semiconductor is fabricated and used instead of standard gold-coated tips in infrared scattering-type near-field microscopy. Midinfrared near-field microscopy experiments are conducted on ZnO nanowires with a lateral resolution better than 100 nm, using tips made of heavily electron-doped germanium with a plasma frequency in the midinfrared (plasma wavelength of 9.5 μ m ). Nanowires embedded in a dielectric matrix are imaged at two wavelengths, 11.3 and 8.0 μ m , above and below the plasma wavelength of the tips. An opposite sign of the imaging contrasts between the nanowire and the dielectric matrix is observed at the two infrared wavelengths, indicating a clear role of the free-electron plasma in the heavily doped germanium tip in building the imaging contrast. Electromagnetic simulations with a multispherical dipole model accounting for the finite size of the tip are well consistent with the experiments. By comparison of the simulated and measured imaging contrasts, an estimate for the local free-carrier density in the investigated ZnO nanowires in the low 1019 cm-3 range is retrieved. The results are benchmarked against the scattering intensity and phase maps obtained on the same sample with a gold-coated probe tip in pseudoheterodyne detection mode.

  3. Simulation-based design of a microfabricated pneumatic electrospray nebulizer

    Czech Academy of Sciences Publication Activity Database

    Járvás, G.; Grym, Jakub; Foret, František; Guttman, A.

    2015-01-01

    Roč. 36, č. 3 (2015), s. 386-392 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : CFD * microfabrication * modeling * electrospray * nebulizer Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  4. Simulation-based design of a microfabricated pneumatic electrospray nebulizer

    Czech Academy of Sciences Publication Activity Database

    Járvás, G.; Grym, Jakub; Foret, František; Guttman, A.

    2015-01-01

    Roč. 36, č. 3 (2015), s. 386-392 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : CFD * microfabrication * modeling * electrospray * nebulizer Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.482, year: 2015

  5. Single molecule mapping of the optical field distribution of probes for near-field microscopy

    NARCIS (Netherlands)

    Veerman, J.A.; Garcia Parajo, M.F.; Kuipers, L.; van Hulst, N.F.

    1999-01-01

    The most difficult task in near-field scanning optical microscopy (NSOM) is to make a high quality subwavelength aperture probe, Recently we have developed high definition NSOM probes by focused ion beam (FIB) milling. These probes have a higher brightness, better polarization characteristics,

  6. Neurosurgical hand-held optical coherence tomography (OCT) forward-viewing probe

    Science.gov (United States)

    Sun, Cuiru; Lee, Kenneth K. C.; Vuong, Barry; Cusimano, Michael; Brukson, Alexander; Mariampillai, Adrian; Standish, Beau A.; Yang, Victor X. D.

    2012-02-01

    A prototype neurosurgical hand-held optical coherence tomography (OCT) imaging probe has been developed to provide micron resolution cross-sectional images of subsurface tissue during open surgery. This new ergonomic hand-held probe has been designed based on our group's previous work on electrostatically driven optical fibers. It has been packaged into a catheter probe in the familiar form factor of the clinically accepted Bayonet shaped neurosurgical non-imaging Doppler ultrasound probes. The optical design was optimized using ZEMAX simulation. Optical properties of the probe were tested to yield an ~20 um spot size, 5 mm working distance and a 3.5 mm field of view. The scan frequency can be increased or decreased by changing the applied voltage. Typically a scan frequency of less than 60Hz is chosen to keep the applied voltage to less than 2000V. The axial resolution of the probe was ~15 um (in air) as determined by the OCT system. A custom-triggering methodology has been developed to provide continuous stable imaging, which is crucial for clinical utility. Feasibility of this probe, in combination with a 1310 nm swept source OCT system was tested and images are presented to highlight the usefulness of such a forward viewing handheld OCT imaging probe. Knowledge gained from this research will lay the foundation for developing new OCT technologies for endovascular management of cerebral aneurysms and transsphenoidal neuroendoscopic treatment of pituitary tumors.

  7. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a non-rotationally-symmetric probe tip

    Directory of Open Access Journals (Sweden)

    Walla Frederik

    2018-01-01

    Full Text Available We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM. The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.

  8. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    Science.gov (United States)

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Electrosprayed Multi-Core Alginate Microcapsules as Novel Self-Healing Containers.

    Science.gov (United States)

    Hia, Iee Lee; Pasbakhsh, Pooria; Chan, Eng-Seng; Chai, Siang-Piao

    2016-10-03

    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5-100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed.

  10. Characterization of structural and electrostatic complexity in pentacene thin films by scanning probe microscopy

    Science.gov (United States)

    Puntambekar, Kanan Prakash

    The advancement of organic electronics for applications in solar energy conversion, printed circuitry, displays, and solid-state lighting depends upon optimization of structure and properties for a variety of organic semiconductor interfaces. Organic semiconductor/insulator (O/I) and organic-metal (O/M) interfaces, in particular, are critical to the operation of organic thin film transistors (OTFTs) currently being developed for printed flexible electronics. Scanning probe microscopy (SPM) is a powerful tool to isolate and characterize the bottlenecks to charge transport at these interfaces. This thesis establishes a direct correlation between the structural disorder and electrical complexity at these interfaces, using various SPM based methods and discusses the implications of such complexity on device performance. To examine the O/M interfaces, surface potentials of operating pentacene TFTs with two different contact geometries (bottom or top) were mapped by Kelvin probe force microscopy (KFM). The surface potential distribution was used to isolate the potential drops at the source and drain contacts. Simultaneously obtained topography and surface potential maps elucidated the correlation between the morphology and contact resistance at the O/M interface; the bottom contact TFTs were observed to be contact limited at large gate voltages, while the top contact TFTs were not contact limited. A direct correlation between structural defects and electric potential variations at the pentacene and silicon dioxide, a common insulator, is demonstrated. Lateral force microscopy (LFM) generates striking images of the polycrystalline microstructure of a monolayer thick pentacene film, allowing clear visualization of the grain boundary network. Further more, surface potential wells localized at the grain boundaries were observed by KFM, suggesting that the grain boundaries may serve as charge carrier (hole) traps. Line dislocations were also revealed in the second monolayer

  11. Practical aspects of spherical near-field antenna measurements using a high-order probe

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey; Nielsen, Jeppe Majlund

    2006-01-01

    Two practical aspects related to accurate antenna pattern characterization by probe-corrected spherical near-field antenna measurements with a high-order probe are examined. First, the requirements set by an arbitrary high-order probe on the scanning technique are pointed out. Secondly, a channel...... balance calibration procedure for a high-order dual-port probe with non-identical ports is presented, and the requirements set by this procedure for the probe are discussed....

  12. Fundamentals of Biomolecule Analysis by Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Weinecke, Andrea; Ryzhov, Victor

    2005-01-01

    Electrospray ionization (ESI) is a soft ionization technique that allows transfer of fragile biomolecules directly from solution into the gas phase. An instrumental analysis laboratory experiment is designed that would introduce the students to the ESI technique, major parameters of the ion trap mass spectrometers and some caveats in…

  13. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  14. Scanning thermal microscopy based on a quartz tuning fork and a micro-thermocouple in active mode (2ω method)

    International Nuclear Information System (INIS)

    Bontempi, Alexia; Nguyen, Tran Phong; Salut, Roland; Thiery, Laurent; Teyssieux, Damien; Vairac, Pascal

    2016-01-01

    A novel probe for scanning thermal microscope using a micro-thermocouple probe placed on a Quartz Tuning Fork (QTF) is presented. Instead of using an external deflection with a cantilever beam for contact detection, an original combination of piezoelectric resonator and thermal probe is employed. Due to a non-contact photothermal excitation principle, the high quality factor of the QTF allows the probe-to-surface contact detection. Topographic and thermal scanning images obtained on a specific sample points out the interest of our system as an alternative to cantilevered resistive probe systems which are the most spread.

  15. Scanning thermal microscopy based on a quartz tuning fork and a micro-thermocouple in active mode (2ω method).

    Science.gov (United States)

    Bontempi, Alexia; Nguyen, Tran Phong; Salut, Roland; Thiery, Laurent; Teyssieux, Damien; Vairac, Pascal

    2016-06-01

    A novel probe for scanning thermal microscope using a micro-thermocouple probe placed on a Quartz Tuning Fork (QTF) is presented. Instead of using an external deflection with a cantilever beam for contact detection, an original combination of piezoelectric resonator and thermal probe is employed. Due to a non-contact photothermal excitation principle, the high quality factor of the QTF allows the probe-to-surface contact detection. Topographic and thermal scanning images obtained on a specific sample points out the interest of our system as an alternative to cantilevered resistive probe systems which are the most spread.

  16. Scanning thermal microscopy based on a quartz tuning fork and a micro-thermocouple in active mode (2ω method)

    Energy Technology Data Exchange (ETDEWEB)

    Bontempi, Alexia; Nguyen, Tran Phong; Salut, Roland; Thiery, Laurent; Teyssieux, Damien; Vairac, Pascal [FEMTO-ST Institute UMR 6174, Université de Franche-Comté, CNRS, ENSMM, UTBM, 15B Avenue des Montboucons, F-25030 Besançon (France)

    2016-06-15

    A novel probe for scanning thermal microscope using a micro-thermocouple probe placed on a Quartz Tuning Fork (QTF) is presented. Instead of using an external deflection with a cantilever beam for contact detection, an original combination of piezoelectric resonator and thermal probe is employed. Due to a non-contact photothermal excitation principle, the high quality factor of the QTF allows the probe-to-surface contact detection. Topographic and thermal scanning images obtained on a specific sample points out the interest of our system as an alternative to cantilevered resistive probe systems which are the most spread.

  17. Four-point probe measurements using current probes with voltage feedback to measure electric potentials

    Science.gov (United States)

    Lüpke, Felix; Cuma, David; Korte, Stefan; Cherepanov, Vasily; Voigtländer, Bert

    2018-02-01

    We present a four-point probe resistance measurement technique which uses four equivalent current measuring units, resulting in minimal hardware requirements and corresponding sources of noise. Local sample potentials are measured by a software feedback loop which adjusts the corresponding tip voltage such that no current flows to the sample. The resulting tip voltage is then equivalent to the sample potential at the tip position. We implement this measurement method into a multi-tip scanning tunneling microscope setup such that potentials can also be measured in tunneling contact, allowing in principle truly non-invasive four-probe measurements. The resulting measurement capabilities are demonstrated for \

  18. Preparation and optimization of submicron chitosan capsules by water-based electrospraying for food and bioactive packaging applications.

    Science.gov (United States)

    Sreekumar, Sruthi; Lemke, Philipp; Moerschbacher, Bruno M; Torres-Giner, Sergio; Lagaron, Jose M

    2017-10-01

    In the present study, a well-defined set of chitosans, with different degrees of acetylation (DA) and degrees of polymerization (DP), were processed by solution electrospraying from a water-based solvent. The solution properties, in terms of surface tension, conductivity, viscosity, and pH, were characterized and related to the physico-chemical properties of the chitosans. It was observed that both DA and DP values of a given chitosan, in combination with biopolymer concentration, mainly determined solution viscosity. This was, in turn, the major driving factor that defined the electrosprayability of chitosan. In addition, the physico-chemical properties of chitosans highly influenced solution conductivity and results indicated that the chitosan solutions with low or low-to-medium values of conductivity were the most optimal for electrospraying. The results obtained here also demonstrate that a good process control can be achieved by adjusting the working conditions, i.e. applied voltage, flow-rate, and tip-to-collector distance. Finally, it was also shown that electrosprayability of chitosan with inadequate physico-chemical properties can be improved by solution mixing of very different kinds of this polysaccharide. The resultant electrosprayed submicron chitosan capsules can be applied for encapsulation of food additives and to develop bioactive coatings of interest in food packaging, where these particles alone or containing functional ingredients can be released from the package into the food to promote a health benefit.

  19. Direct observation of atoms on surfaces by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Baldeschwieler, J.D.

    1989-01-01

    The scanning tunnelling microscope is a non-destructive means of achieving atomic level resolution of crystal surfaces in real space to elucidate surface structures, electronic properties and chemical composition. Scanning tunnelling microscope is a powerful, real space surface structure probe complementary to other techniques such as x-ray diffraction. 21 refs., 8 figs

  20. DESIGN OF THE CONTACT POTENTIALS DIFFERENCE PROBES

    Directory of Open Access Journals (Sweden)

    K. U. Pantsialeyeu

    2016-01-01

    Full Text Available The contact potential difference probes distinguished by great variety and produced mostly in the laboratory for specific experimental applications. As a rule, they consist of commercially available instrumentation, and have a number of disadvantages: large dimensions, complexity and high cost, small sensitivity, operating speed, noiseproof, etc. The purpose of this paper is to describe the basic approaches to design of the small dimension, complete contact potential difference probes, providing high sensitivity, operating speed, and noise immunity. In this paper the contact potential difference probe, which is a electrometer with dynamic capacitor plate at about 0.1–5 mm2 . These probes are could be used in scanning systems, such as a Scanning Kelvin Probe, as well as for controlling system of manufacturing processes, e.g. under friction. The design of such contact potential difference probes conducted using modern electronic components, unique circuitry and design solutions described in detail at paper. The electromechanical modulator applied for mechanical vibrations of the reference sample. To provide a high amplitude and phase stability the upgraded generator with Wien bridge was used instead traditional oscillation sensor. The preamplifier made on the base of modern operational amplifiers with femtoampere current input. The power of the preamplifier designed with «floating ground». It allows keeping the relation constant potential to the probe components when changing over a wide range the compensation voltage. The phase detector-integrator based on the electronic antiphase switches with the modulation frequency of the contact potential difference and the integrator. Fullwave phase detection would greatly increase the sensitivity of the probe. In addition, the application of the phase detection allows suppressing noise and crosstalk at frequencies different from the modulation frequency. The preamplifier and the reference sample

  1. Time displacement pictures with multi-mode probes from circumferential welds

    International Nuclear Information System (INIS)

    Wustenberg, H.; Jaffrey, D.; Ludwig, B.; Bertus, N.; Erhard, A.

    1985-01-01

    If a creeping wave probe is applied to butt welds typical echo patterns from weld defects can be received. It seems possible that echoes from the geometric shape of the root or the crown and defect echoes can be separated by simple means. This has been the reason for the development of a special presentation of the echo patterns received by this multi-mode creeping wave probe. The so called time displacement pictures show the AD-converted A-scans in a gray scale along a line corresponding to the time axis of the propagation. Perpendicular to this time axis results obtained from displacement of the probe parallel to the weld are presented. This kind of picture immediately provides the whole A-scan information. This paper presents some first results on simulated welds with artificial defects and on circumferential welds with typical geometric imperfections

  2. Scanning Ion Conductance Microscopy for Studying Biological Samples

    Directory of Open Access Journals (Sweden)

    Irmgard D. Dietzel

    2012-11-01

    Full Text Available Scanning ion conductance microscopy (SICM is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate the topography of delicate samples such as living cells. SICM has shown its potential in various applications such as high resolution and long-time imaging of living cells or the determination of local changes in cellular volume. Furthermore, SICM has been combined with various techniques such as fluorescence microscopy or patch clamping to reveal localized information about proteins or protein functions. This review details the various advantages and pitfalls of SICM and provides an overview of the recent developments and applications of SICM in biological imaging. Furthermore, we show that in principle, a combination of SICM and ion selective micro-electrodes enables one to monitor the local ion activity surrounding a living cell.

  3. Standardization in dimensional nanometrology: development of a calibration guideline for Scanning Probe Microscopy

    Science.gov (United States)

    Dziomba, Thorsten; Koenders, Ludger; Wilkening, Günter

    2005-10-01

    The continuing miniaturization in many technologies - among them the optical systems - demands high-resolution measurements with uncertainties in the nanometre-range or even well below. A brief introduction of measurement methods used at the micro- & nanometre scale is therefore given as introduction. While a wide range of these methods are well established for the determination of various physical properties down to the nanometric scale, it is Scanning Probe Microscopy (SPM) that provides a unique direct access to topographic surface features in the size range from atomic diameters to some ten or hundred micrometres. With the increasing use of SPMs as quantitative measurement instruments, the demand for standardized calibration routines also for this type of instruments rises. However, except for a few specially designed set-ups mainly at National Metrology Institutes (e. g. PTB in Germany), measurements made with SPMs usually lack traceability to the metre definition. A number of physical transfer standards have therefore been developed and are already available commercially. While detailed knowledge of the standards' properties is a prerequisite for their practical applicability, the calibration procedure itself deserves careful consideration as well. As there is, up to now, no generally accepted concept how to perform SPM calibrations, guidelines are now being developed on various national and international levels, e. g. VDI/VDE-GMA in Germany and ISO. This papers discusses the draft of an SPM calibration guideline by focusing on several critical practical aspects of SPM calibration. The paper intends to invite the readers to take active part in guideline discussions.

  4. A carbon nanofibre scanning probe assembled using an electrothermal microgripper

    DEFF Research Database (Denmark)

    Carlson, Kenneth; Dyvelkov, Karin Nordström; Eicchorn, V.

    2007-01-01

    Functional devices can be directly assembled using microgrippers with an in situ electron microscope. Two simple and compact silicon microgripper designs are investigated here. These are operated by electrothermal actuation, and are used to transfer a catalytically grown multi-walled carbon...... nanofibre from a fixed position on a substrate to the tip of an atomic force microscope cantilever, inside a scanning electron microscope. Scanning of high aspect ratio trenches using the nanofibre supertip shows a significantly better performance than that with standard pyramidal silicon tips. Based...... on manipulation experiments as well as a simple analysis, we show that shear pulling (lateral movement of the gripper) is far more effective than tensile pulling (vertical movement of gripper) for the mechanical removal of carbon nanotubes from a substrate....

  5. A carbon nanofibre scanning probe assembled using an electrothermal microgripper

    International Nuclear Information System (INIS)

    Carlson, K; Andersen, K N; Eichorn, V; Petersen, D H; Moelhave, K; Bu, I Y Y; Teo, K B K; Milne, W I; Fatikow, S; Boeggild, P

    2007-01-01

    Functional devices can be directly assembled using microgrippers with an in situ electron microscope. Two simple and compact silicon microgripper designs are investigated here. These are operated by electrothermal actuation, and are used to transfer a catalytically grown multi-walled carbon nanofibre from a fixed position on a substrate to the tip of an atomic force microscope cantilever, inside a scanning electron microscope. Scanning of high aspect ratio trenches using the nanofibre supertip shows a significantly better performance than that with standard pyramidal silicon tips. Based on manipulation experiments as well as a simple analysis, we show that shear pulling (lateral movement of the gripper) is far more effective than tensile pulling (vertical movement of gripper) for the mechanical removal of carbon nanotubes from a substrate

  6. Developing a Vacuum Electrospray Source To Implement Efficient Atmospheric Sampling for Miniature Ion Trap Mass Spectrometer.

    Science.gov (United States)

    Yu, Quan; Zhang, Qian; Lu, Xinqiong; Qian, Xiang; Ni, Kai; Wang, Xiaohao

    2017-12-05

    The performance of a miniature mass spectrometer in atmospheric analysis is closely related to the design of its sampling system. In this study, a simplified vacuum electrospray ionization (VESI) source was developed based on a combination of several techniques, including the discontinuous atmospheric pressure interface, direct capillary sampling, and pneumatic-assisted electrospray. Pulsed air was used as a vital factor to facilitate the operation of electrospray ionization in the vacuum chamber. This VESI device can be used as an efficient atmospheric sampling interface when coupled with a miniature rectilinear ion trap (RIT) mass spectrometer. The developed VESI-RIT instrument enables regular ESI analysis of liquid, and its qualitative and quantitative capabilities have been characterized by using various solution samples. A limit of detection of 8 ppb could be attained for arginine in a methanol solution. In addition, extractive electrospray ionization of organic compounds can be implemented by using the same VESI device, as long as the gas analytes are injected with the pulsed auxiliary air. This methodology can extend the use of the proposed VESI technique to rapid and online analysis of gaseous and volatile samples.

  7. Nanobits, Nembranes and Micro Four-Point Probes: Customizable Tools for insitu Manipulation and Characterisation of Nanostructures

    DEFF Research Database (Denmark)

    Bøggild, Peter; Petersen, Dirch Hjorth; Sardan Sukas, Özlem

    2010-01-01

    We present a range of highly adaptable microtools for direct interaction with nanoscale structures; (i) semiautomatic pick-and-place assembly of multiwalled carbon nanotubes onto cantilevers for high-aspect ratio scanning probe microscopy, using electrothermal microgrippers inside a SEM. Topology...... on a cantilever; (ii) scanning micro four point probes allow fast, non- destructive mapping of local electrical properties (sheet resistance and Hall mobility) and hysteresis effects of graphene sheets; (iii) sub 100 nm freestanding devices with wires, heaters, actuators, sensors, resonators and probes were...

  8. Microchip electrospray: improvements in spray and signal stability during gradient elution by an inverted postcolumn makeup flow.

    Science.gov (United States)

    Jung, Stephanie; Effelsberg, Uwe; Tallarek, Ulrich

    2011-12-01

    Dynamic changes in mobile phase composition during high-performance liquid chromatography (HPLC) gradient elution coupled to mass spectrometry (MS) sensitively affect electrospray modes. We investigate the impact of the eluent composition on spray stability and MS response by infusion and injection experiments with a small tetrapeptide in water-acetonitrile mixtures. The employed HPLC/electrospray (ESI)-MS configuration uses a microchip equipped with an enrichment column, a separation column, and a makeup flow (MUF) channel. One nano pump is connected to the separation column, while a second one delivers solvent of exactly inverted composition to the MUF channel. Both solvent streams are united behind the separation column, before the ESI tip, such that the resulting electrosprayed solution always has identical composition during a gradient elution. Analyte peak parameters without and with MUF compensation are determined and discussed with respect to the electrospray mode and eluent composition. The postcolumn MUF significantly improves spray and signal stability over the entire solvent gradient, without compromising the performance of the HPLC separation column. It can also be conveniently implemented on microchip platforms.

  9. Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds.

    Science.gov (United States)

    Gómez-Mascaraque, Laura G; Sanchez, Gloria; López-Rubio, Amparo

    2016-10-05

    The molecular weight of chitosan is one of its most determinant characteristics, which affects its processability and its performance as a biomaterial. However, information about the effect of this parameter on the formation of electrosprayed chitosan microcapsules is scarce. In this work, the impact of chitosan molecular weight on its electrosprayability was studied and correlated with its effect on the viscosity, surface tension and electrical conductivity of solutions. A Discriminant Function Analysis revealed that the morphology of the electrosprayed chitosan materials could be correctly predicted using these three parameters for almost 85% of the samples. The suitability of using electrosprayed chitosan capsules as carriers for bioactive agents was also assessed by loading them with a model active compound, (-)-epigallocatechin gallate (EGCG). This encapsulation, with an estimated efficiency of around 80% in terms of preserved antioxidant activity, showed the potential to prolong the antiviral activity of EGCG against murine norovirus via gradual bioactive release combined with its protection against degradation in simulated physiological conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The exploration of endocytic mechanisms of PLA-PEG nanoparticles prepared by coaxialtri-capillary electrospray-template removal method.

    Science.gov (United States)

    Chen, Jiaming; Cao, Lihua; Cui, Yuecheng; Tu, Kehua; Wang, Hongjun; Wang, Li-Qun

    2018-01-01

    The nano-sized poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) particles with core-shell structure were efficiently prepared by using coaxial tri-capillary electrospray-template removal method. The cellular uptake mechanism, intracellular distribution and exocytosis in A549 cell model of electrosprayed PLA-PEG nanoparticles were systemically studied. The drug release behavior of electrosprayed PLA-PEG nanoparticles were also investigated. Our results showed that PLA-PEG nanoparticles can be endocytosed quickly by A549 cells. The cellular uptake of PLA-PEG nanoparticles was an energy dependent endocytosis process. Caveolae-mediated endocytosis was only one of endocytosis pathways in A549 cells for PLA-PEG nanoparticles, while clathrin mediated endocytosis was not involved in the endocytosis process. The endocytosed PLA-PEG nanoparticles enriched in the head of A549 cells and only a small amount of them was transported into lysosome after 24h incubation. These findings provided insights into the application of electrosprayed PLA-PEG nanoparticles in nano drug delivery field. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Direct analysis of triterpenes from high-salt fermented cucumbers using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)

    Science.gov (United States)

    High-salt samples present a challenge to mass spectrometry (MS) analysis, particularly when electrospray ionization (ESI) is used, requiring extensive sample preparation steps such as desalting, extraction, and purification. In this study, infrared matrix-assisted laser desorption electrospray ioniz...

  12. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa{sub 2}Cu{sub 3}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Xing, W.; Heinrich, B. [Simon Fraser Univ., British Columbia (Canada); Zhou, H. [CTF Systems, Inc., British Columbia (Canada)] [and others

    1994-12-31

    Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  13. Development of thermal scanning probe microscopy for the determination of thin films thermal conductivity: application to ceramic materials for nuclear industry

    International Nuclear Information System (INIS)

    David, L.

    2006-10-01

    Since the 1980's, various thermal metrologies have been developed to understand and characterize the phenomena of transport of thermal energy at microscopic and submicroscopic scales. Thermal Scanning Probe Microscopy (SThM) is promising. Based on the analysis of the thermal interaction between an heated probe and a sample, it permits to probe the matter at the level of micrometric size in volumes. Performed in the framework of the development of this technique, this work more particularly relates to the study of thin films thermal conductivity. We propose a new modelling of the prediction of measurement with SThM. This model allows not only the calibration of the method for the measurement of bulk material thermal conductivity but also to specify and to better describe the probe - sample thermal coupling and to estimate, from its inversion, thin films thermal conductivity. This new approach of measurement has allowed the determination of the thermal conductivity of micrometric and sub-micrometric thicknesses of meso-porous silicon thin film in particular. Our estimates for the micrometric thicknesses are in agreement with those obtained by the use of Raman spectrometry. For the lower thicknesses of film, we give new data. Our model has, moreover, allowed a better definition of the in-depth resolution of the apparatus. This one is strongly linked to the sensitivity of SThM and strongly depends on the probe-sample thermal coupling area and on the geometry of the probe used. We also developed the technique by the vacuum setting of SThM. Our first results under this environment of measurement are encouraging and validate the description of the coupling used in our model. Our method was applied to the study of ceramics (SiC, TiN, TiC and ZrC) under consideration in the composition of future nuclear fuels. Because of the limitations of SThM in terms of sensitivity to thermal conductivity and in-depth resolution, measurements were also undertaken with a modulated thermo

  14. Terverticillate Penicillia studied by direct electrospray mass spectrometric profiling of crude extracts: I. Chemosystematics

    DEFF Research Database (Denmark)

    Smedsgaard, Jørn; Frisvad, Jens Christian

    1997-01-01

    ) and Yeast Extract Sucrose agar (YES) directly into the electrospray source of the mass spectrometer. A data matrix was made from each substrate by transferring the complete centroid mass spectrum from 200 to 700 amu as 501 variables to individual columns. No attempt was made to identify ions in the mass......A chemosystematic study of 339 isolates from all known terverticillate Penicillium taxa was performed using electrospray mass spectrometric analysis of extractable metabolites. The mass profiles were made by injecting crude plug extracts made from cultures grown on Czapek Yeast Autolysate agar (CYA...

  15. Crack detection by mobile photothermal probe

    International Nuclear Information System (INIS)

    Besnard, R.; Le Blanc, A.; Sellier, J.Y.

    1993-01-01

    This paper deals with an industrial method for crack detection. The apparatus presented is based on a mobile photothermal probe. It can be used under different modes (sinusoidal, pulsed or scanned excitation). Moreover, the description of the device provided includes theoretical and experimental results. (TEC). 7 refs., 6 figs

  16. Development of Ultrasonic Modulation Probe for Fluorescence Tomography Based on Acousto-Optic Effect

    Directory of Open Access Journals (Sweden)

    Trinh Quang Duc

    2011-01-01

    Full Text Available We have developed an ultrasonic probe for fluorescence modulation to image fluorescence within biological tissues. The probe consists of a focused ultrasonic transducer mounted on actuators for mechanical fan scanning, which can be used in contact with the measuring object aiming for clinical application. The mechanical fan scanning employed in the probe has a beneficial feature of portability. As a result, fluorescent beads, which were localized with the diameter of 2 mm at 20 mm depth in a pork meat tissue, were detected with resolution of 3 mm. The system performance denotes the feasibility of development towards the final goal of ultrasonic fluorescence modulation tomography for clinical applications.

  17. Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2-D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, Marijn Floris; Campagnolo, Filippo; Sjöholm, Mikael

    2017-01-01

    to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The duallidar system can provide fully synchronised trajectory scans with sampling timescales ranging from seconds to minutes. First, staring mode measurements were compared to hot-wire probe...... as wake area scans were executed to illustrate the applicability of lidar scanning to the measurement of small-scale wind flow effects. An extensive uncertainty analysis was executed to assess the accuracy of the method. The downsides of lidar with respect to the hotwire probes are the larger measurement...... probe volume, which compromises the ability to measure turbulence, and the possible loss of a small part of the measurements due to hard target beam reflection. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning and the fact that remote sensing...

  18. Electrosprayed Polyvinylpyrrolidone (PVP) Submicron Particles Loaded by Green Tea Extracts

    Science.gov (United States)

    Kamaruddin; Sriyanti, I.; Edikresnha, D.; Munir, M. M.; Khairurrijal, K.

    2018-05-01

    Electrospraying technique has been successfully used to synthesize composite submicron particles of polyvinylpyrrolidone (PVP) and green tea extract (GTE). The precursor solutions were PVP in ethanol (15 wt%) and GTE in ethanol (10 wt%), which were then mixed at varying ratio. The mixed solution then underwent electrospraying process at an applied voltage of 15 kV, a distance of collector to the nozzle at 15 cm, and a flow rate of 3 µL/min. The composite submicron particles of PVP-GTE showed smooth and fine spherical morphology without fibers or beaded fibers. To a certain degree, the increase of GTE content in the PVP-GTE mixed solution decreased the average diameter of PVP-GTE composite particles. Moreover, the analysis of the FTIR spectra confirmed the existing molecular interaction between PVP and GTE in the composite submicron particles as shown by the shift of PVP wavenumber towards GTE, which has typically smaller wavenumber.

  19. Toward single-cell analysis by plume collimation in laser ablation electrospray ionization mass spectrometry.

    Science.gov (United States)

    Stolee, Jessica A; Vertes, Akos

    2013-04-02

    Ambient ionization methods for mass spectrometry have enabled the in situ and in vivo analysis of biological tissues and cells. When an etched optical fiber is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass spectrometry, the analysis of large single cells becomes possible. However, because in this arrangement the ablation plume expands in three dimensions, only a small portion of it is ionized by the electrospray. Here we show that sample ablation within a capillary helps to confine the radial expansion of the plume. Plume collimation, due to the altered expansion dynamics, leads to greater interaction with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of ~13, reaching 600 amol for verapamil), and extended dynamic range (6 orders of magnitude) compared to conventional LAESI. This enhanced sensitivity enables the analysis of a range of metabolites from small cell populations and single cells in the ambient environment. This technique has the potential to be integrated with flow cytometry for high-throughput metabolite analysis of sorted cells.

  20. Novel piroxicam-loaded nanospheres generated by the electrospraying technique: physicochemical characterisation and oral bioavailability evaluation.

    Science.gov (United States)

    Mustapha, Omer; Din, Fakhar Ud; Kim, Dong Wuk; Park, Jong Hyuck; Woo, Kyu Bong; Lim, Soo-Jeong; Youn, Yu Seok; Cho, Kwan Hyung; Rashid, Rehmana; Yousaf, Abid Mehmood; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2016-06-01

    To determine if a novel electrospraying technique could be applied to an oral drug delivery system for improving the solubility and oral bioavailability of poorly water-soluble piroxicam; the nanospheres were generated with drug and polyvinylpyrrolidone (PVP) using electrospraying technique; and their physicochemical properties, solubility, release and pharmacokinetics were evaluated in comparison with piroxicam powder. All nanospheres had significantly increased drug solubility and dissolution rates in comparison with the drug powder. In particular, the nanosphere composed of piroxicam and PVP at a weight ratio of 2:8 gave about 600-fold higher solubility, 15-fold higher release rate and 3-fold higher AUC in comparison to piroxicam powder, leading to significantly enhanced oral bioavailability in rats, due to the mingled effect of nanonisation along with transformation to the amorphous state. Thus, this electrospraying technique can be utilised to produce a novel oral nanosphere delivery system with enhanced solubility and oral bioavailability for poorly water-soluble piroxicam.

  1. The new scanning nuclear microprobe in Uppsala

    International Nuclear Information System (INIS)

    Sunde, T.; Nystroem, J.; Lindh, U.

    1991-01-01

    During 1989/90 a scanning microprobe, developed for 2-4 MeV protons and submicron resolution, is being installed at the EN-tandem accelerator at the The Svedberg Laboratory, Uppsala University, Sweden. The probe-forming units (object diaphragm, aperture diaphragm and triplet of spark-eroded quadrupoles), the scanning unit of current-controlled ferrite cores and a current digitizer are of Oxford design. The other parts are commercial products or are constructed by ourselves. The latter includes the equipment for optical alignment by interference, a feedback-controlled magnetic beam steerer and stabiliser, a fast beam deflector, specially designed mechanical vibration reducers and dedicated AT expansion cards for scanning control and data acquisition. (orig.)

  2. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    International Nuclear Information System (INIS)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-01-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations

  3. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Energy Technology Data Exchange (ETDEWEB)

    Morawski, Ireneusz [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany); Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław (Poland); Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2015-12-15

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  4. Ultrafast terahertz scanning tunneling microscopy with atomic resolution

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2016-01-01

    We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...

  5. Magneto-optical Faraday effect probed in a scanning tunneling microscope

    NARCIS (Netherlands)

    Prins, M.W.J.; Wielen, van der M.C.M.M.; Abraham, D.L.; Kempen, van H.; Kesteren, van H.W.

    1994-01-01

    Semiconductor tips are used as local photodetectors in a scanning tunneling microscope. We demonstrate that this configuration is sensitive to small light intensity variations, as supported by a simple model. The principle is applied to the detection of Faraday ellipticity of a Pt/Co multilayer

  6. 1mN Electrospray Thruster with Safe Passive Propellant Delivery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a compact electrospray propulsion system with unprecedented capability. The 1500s Isp while requiring less than 45W of power. Compared with...

  7. Origin of supercharging in electrospray ionization of noncovalent complexes from aqueous solution.

    Science.gov (United States)

    Sterling, Harry J; Williams, Evan R

    2009-10-01

    The use of m-nitrobenzyl alcohol (m-NBA) to enhance charging of noncovalent complexes formed by electrospray ionization from aqueous solutions was investigated. Addition of up to 1% m-NBA can result in a significant increase in the average charging of complexes, ranging from approximately 13% for the homo-heptamer of NtrC4-RC (317 kDa; maximum charge state increases from 42+ to 44+) to approximately 49% for myoglobin (17.6 kDa; maximum charge state increases from 9+ to 16+). Charge state distributions of larger complexes obtained from heated solutions to which no m-NBA was added are remarkably similar to those containing small amounts of m-NBA. Dissociation of the complexes through identical channels both upon addition of higher concentrations of m-NBA and heating is observed. These results indicate that the enhanced charging upon addition of m-NBA to aqueous electrospray solutions is a result of droplet heating owing to the high boiling point of m-NBA, which results in a change in the higher-order structure and/or dissociation of the complexes. For monomeric proteins and small complexes, the enhancement of charging is lower for heated aqueous solutions than from solutions with m-NBA because rapid folding of proteins from heated solutions that do not contain m-NBA can occur after the electrospray droplet is formed and is evaporatively cooled.

  8. Analysis of multiple types of human cells subsequent to bioprinting with electrospraying technology.

    Science.gov (United States)

    Xin, Yu; Chai, Gang; Zhang, Ting; Wang, Xiangsheng; Qu, Miao; Tan, Andy; Bogari, Melia; Zhu, Ming; Lin, Li; Hu, Qingxi; Liu, Yuanyuan; Zhang, Yan

    2016-12-01

    The aim of the present study was to investigate bioprinting with electrospraying technology using multiple types of human cell suspensions as bio-ink, in order to lay the initial foundations for the application of the bioprinting technology in tissue engineering. In the current study, six types of human cells were selected and cultured, including human fibroblasts, human adipose-derived stem cells (hADSCs), human periodontal ligament cells (HPDLCs), adult human retinal pigment epithelial cells (ARPE-19), human umbilical vascular endothelial cells (HUVECs) and human gastric epithelial cell line (GES-1). Each cell type was divided into two groups, the experimental and control group. All the experimental group cells were electrosprayed using an electrospraying printer (voltage, 15 kV; flow rate, 150 µl/min) and collected in a petri dish placed 15 cm away from the needle (needle diameter, 0.5 mm). Subsequently, cell viability was detected by flow cytometry with a Live/Dead Viability kit. In addition, the cell morphological characteristics were observed with a phase-contrast microscope after 6 h of culturing in order to obtain adherent cells, while cell proliferation was analyzed using a Cell Counting Kit-8 assay. The control groups, without printing, were subjected to the same procedures as the experimental groups. The results of the cell viability and proliferation assays indicated a statistically significant difference after printing between the experiments and control groups only for the hADSCs (P0.05). In addition, there were no observable differences between all experimental and the control groups at any examined time point in the terms of cell morphological characteristics. In conclusion, bioprinting based on electrospraying technology demonstrated no distinct negative effect on cell vitality, proliferation and morphology in the present study, and thus the application of this novel technology to cell printing may provide a promising method in tissue engineering.

  9. Signal of microstrip scanning near-field optical microscope in far- and near-field zones.

    Science.gov (United States)

    Morozov, Yevhenii M; Lapchuk, Anatoliy S

    2016-05-01

    An analytical model of interference between an electromagnetic field of fundamental quasi-TM(EH)00-mode and an electromagnetic field of background radiation at the apex of a near-field probe based on an optical plasmon microstrip line (microstrip probe) has been proposed. The condition of the occurrence of electromagnetic energy reverse flux at the apex of the microstrip probe was obtained. It has been shown that the nature of the interference depends on the length of the probe. Numerical simulation of the sample scanning process was conducted in illumination-reflection and illumination-collection modes. Results of numerical simulation have shown that interference affects the scanning signal in both modes. However, in illumination-collection mode (pure near-field mode), the signal shape and its polarity are practically insensible to probe length change; only signal amplitude (contrast) is slightly changed. However, changing the probe length strongly affects the signal amplitude and shape in the illumination-reflection mode (the signal formed in the far-field zone). Thus, we can conclude that even small background radiation can significantly influence the signal in the far-field zone and has practically no influence on a pure near-field signal.

  10. Combined scanning probe and light scattering characterization of multi-stage self-assembly of targeted liposome-based delivery systems

    International Nuclear Information System (INIS)

    Farkas, N; Dagata, J A; Yang, C; Rait, A; Pirollo, K F; Chang, E H

    2011-01-01

    The mean size and size distribution of a targeted nanoparticle delivery system (NDS) strongly influences the intrinsic stability and functionality of this molecular complex, affects its performance as a systemic drug delivery platform and ultimately determines its efficacy toward early detection and treatment of cancer. Since its components undergo significant reorganization during multiple stages of self-assembly, it is essential to monitor the size and stability of the complex throughout the NDS formulation in order to ensure its potency and manufacturability prior to entering clinical trials. This work combines scanning probe microscopy (SPM) and dynamic light scattering (DLS) techniques to obtain quantitative and reliable size measurements of the NDS, and to investigate how variations in the NDS formulation or self-assembly process impact the size, structure and functionality of the complex with various therapeutic and diagnostic agent payloads. These combined SPM and DLS methods, when implemented at an early stage of the NDS formulation, present a potential measurement approach to facilitate drug discovery and development, optimization and quality control during manufacturing of the NDS

  11. Spin-polarized scanning-tunneling probe for helical Luttinger liquids.

    Science.gov (United States)

    Das, Sourin; Rao, Sumathi

    2011-06-10

    We propose a three-terminal spin-polarized STM setup for probing the helical nature of the Luttinger liquid edge state that appears in the quantum spin Hall system. We show that the three-terminal tunneling conductance depends on the angle (θ) between the magnetization direction of the tip and the local orientation of the electron spin on the edge while the two terminal conductance is independent of this angle. We demonstrate that chiral injection of an electron into the helical Luttinger liquid (when θ is zero or π) is associated with fractionalization of the spin of the injected electron in addition to the fractionalization of its charge. We also point out a spin current amplification effect induced by the spin fractionalization.

  12. Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy

    DEFF Research Database (Denmark)

    Bork, Jakob

    tunneling microscope (STM). Especially at low temperatures the Kondo resonance is used to probe magnetic interaction with ferromagnetic islands and between two atoms. The latter showing a crossover between Kondo screened atoms and antiferromagnetically coupled atoms close to the quantum critical point....... This is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at low...

  13. ANALYSIS OF THE ELECTROPHYSICAL AND PHOTOELECTRIC PROPERTIES OF NANOCOMPOSITE POLYMERS BY THE MODIFIED KELVIN PROBE

    Directory of Open Access Journals (Sweden)

    K. U. Pantsialeyeu

    2017-01-01

    Full Text Available At present for analysis of the homogeneity of materials properties are becoming widely used various modifications of a scanning Kelvin probe. These methods allow mapping the spatial distribution of the electrostatic potential. Analysis of the electropotential profile is not sufficient to describe any specific physical parameters of the polymer nanocomposites. Therefore, we use an external energy impact, such as light. Purpose of paper is the modification of the Kelvin scanning probe and the conduct of experimental studies of the spatial distribution and response of the electrostatic potential of the actual polymer nanocomposites to the optical probing.Carried out the investigations on experimental Low density polyethylene composites. Carbon nanomaterials and nanoparticles of silicon dioxide or aluminum as fillers are used. As a result, maps of the spatial distribution of the electrostatic potential relative values and the surface photovoltage. Statistical analysis of the electrophysical and photoelectric properties homogeneity, depending on the component composition of the composites carried out. In addition, with reference to matrix polymers, the Kelvin scanning probe, in combination with the optical probing, made it possible to detect a piezoelectric effect. The latter, can used as a basis for the development of new methods for studying the mechanical properties of matrix polymers.

  14. Fabrication of a novel nano-probe slide for near-field optical microscopy

    International Nuclear Information System (INIS)

    Yim, Sang-Youp; Jeang, Eun-Hee; Lee, Jae-Hoon; Park, Seung-Han; Cho, Kyu-Man

    2004-01-01

    A novel probe structure, which can act as a planar nano-probe slide for near-field microscopy, was proposed and fabricated. Sub-wavelength apertures on a Si substrate are successfully produced by means of standard photolithography techniques with properly selected masks. In particular, the anisotropic etching characteristics of Si substrate and the hardness of the Si 3 N 4 film are utilized. Probe-to-probe scanning of the fabricated near-field nano-probe slide shows sub-wavelength confinement of light and comparable throughput to the conventional optical fiber probe. We also show that the nano-probe slide can serve as a supporting base and a sub-wavelength aperture to obtain the near-field photoluminescence spectra of a limited number of CdSe nanocrystals.

  15. Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devices

    NARCIS (Netherlands)

    Wouters, D.; Schubert, U.S.

    2004-01-01

    The size regime for devices produced by photolithographic techniques is limited. Therefore, other patterning techniques have been intensively studied to create smaller structures. Scanning-probe-based patterning techniques, such as dip-pen lithography, local force-induced patterning, and local-probe

  16. Screening of acetylcholinesterase inhibitors in snake venom by electrospray mass spectrometry

    NARCIS (Netherlands)

    Liesener, A.; Perchuc, Anna-Maria; Schöni, Reto; Schebb, Nils Helge; Wilmer, Marianne; Karst, U.

    2007-01-01

    An electrospray ionization/mass spectrometry (ESI/MS)-based assay for the determination of acetylcholinesterase (AChE)-inhibiting activity in snake venom was developed. It allows the direct monitoring of the natural AChE substrate acetylcholine (AC) and the respective product choline. The assay

  17. Characterization of cationic glycoporphyrins by electrospray tandem mass spectrometry.

    Science.gov (United States)

    Silva, Eduarda M P; Serra, Vanda Vaz; Ribeiro, Anderson O; Tomé, João P C; Domingues, Pedro; Faustino, M Amparo F; Neves, M Graça P M S; Tomé, Augusto C; Cavaleiro, José A S; Ferrer-Correia, António J; Iamamoto, Yassuko; Domingues, M Rosário M

    2006-01-01

    Novel cationic porphyrin derivatives having a galactose or a bis(isopropylidene)galactose unit linked directly to a pyridine or to an aminophenyl group were characterized by electrospray tandem mass spectrometry (ESI-MS/MS). The electrospray mass spectra (ESI-MS) show the M(+) ions, since these porphyrins are already monocharged in solution. The fragmentation of these ions under ESI-MS/MS conditions was studied and it was found that elimination of the sugar residue as a radical (-163 or -243 Da) is a common fragmentation pathway. Loss of the sugar unit as a neutral fragment (-162 or -242 Da) and cross-ring fragmentations typical of glyco-derivatives are also observed for the pyridinium glycoporphyrins, but they are absent in the case of ammonium glycoporphyrins. The cationic beta-pyridiniumvinyl porphyrins show an atypical fragmentation due to the cleavage of the C(5)-C(6) bond of the sugar unit. Overall, the different patterns of fragmentation observed in the ESI-MS/MS spectra of the sugar pyridinium porphyrins and of the sugar ammonium phenyl porphyrins can give important information about the type of spacer between the porphyrin and the sugar unit. Copyright (c) 2006 John Wiley & Sons, Ltd.

  18. Electronic transport at semiconductor surfaces - from point-contact transistor to micro-four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Grey, Francois

    2002-01-01

    show that this type of conduction is measurable using new types of experimental probes, such as the multi-tip scanning tunnelling microscope and the micro-four-point probe. The resulting electronic transport properties are intriguing, and suggest that semiconductor surfaces should be considered...

  19. Superconducting β-ZrNClx probed by scanning-tunnelling and break-junction spectroscopy

    International Nuclear Information System (INIS)

    Ekino, Toshikazu; Sugimoto, Akira; Gabovich, Alexander M.; Zheng, Zhanfeng; Yamanaka, Shoji

    2013-01-01

    Highlights: •STM/STS combined with break-junction tunnelling spectroscopy (BJTS) on β-ZrNCl. •STM image on the ab plane shows triangular atomic lattice spots with a period of 0.36 nm. •The gap peaks are widely distributed (Δ p–p = 9–28 meV)over the area of 100 nm 2 . •Average gap ratio 2Δ/k B T c ∼ 10 is confirmed by both STS and BJTS. -- Abstract: Superconducting layered compound β-ZrNCl x (x = 0.7) with the critical temperature T c = 13–14 K was investigated by means of scanning tunnelling microscopy/spectroscopy. The single-crystal domain facet of ∼100 μm 2 in the c-axis-oriented polycrystal was used as a probing surface. The STM image at 4.9 K shows triangular atomic lattice spots with the period of ∼0.36 nm, which agrees with the X-ray diffraction measurements. The STS measurements of the local conductance, dI/dV, exhibit broadened gap structures with a substantial distribution of the gap-edge values. Most frequently observed peak-to-peak value of ∼20 mV is remarkably similar to the superconducting gap edge of the isostructural β-HfNCl x with T c = 24 K. Temperature, T, dependence of the dI/dV shows that the gap structure disappears above T c ∼ 13 K. Fitting of the dI/dV curve by the broadened BCS density of states leads to the superconducting gap of 2Δ(4.9 K) = 11–13 meV. This is in accordance with our former break-junction data confirming the intrinsic character of the previously obtained extremely large gap to T c ratio 2Δ(0)/k B T c ≈ 10 (k B is the Boltzmann constant), thereby pointing to the unusual superconducting properties of this compound

  20. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng

    2015-01-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  1. A dark mode in scanning thermal microscopy

    Science.gov (United States)

    Ramiandrisoa, Liana; Allard, Alexandre; Joumani, Youssef; Hay, Bruno; Gomés, Séverine

    2017-12-01

    The need for high lateral spatial resolution in thermal science using Scanning Thermal Microscopy (SThM) has pushed researchers to look for more and more tiny probes. SThM probes have consequently become more and more sensitive to the size effects that occur within the probe, the sample, and their interaction. Reducing the tip furthermore induces very small heat flux exchanged between the probe and the sample. The measurement of this flux, which is exploited to characterize the sample thermal properties, requires then an accurate thermal management of the probe-sample system and to reduce any phenomenon parasitic to this system. Classical experimental methodologies must then be constantly questioned to hope for relevant and interpretable results. In this paper, we demonstrate and estimate the influence of the laser of the optical force detection system used in the common SThM setup that is based on atomic-force microscopy equipment on SThM measurements. We highlight the bias induced by the overheating due to the laser illumination on the measurements performed by thermoresistive probes (palladium probe from Kelvin Nanotechnology). To face this issue, we propose a new experimental procedure based on a metrological approach of the measurement: a SThM "dark mode." The comparison with the classical procedure using the laser shows that errors between 14% and 37% can be reached on the experimental data exploited to determine the heat flux transferred from the hot probe to the sample.

  2. Multifunctional scanning ion conductance microscopy

    Science.gov (United States)

    Page, Ashley; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science. PMID:28484332

  3. Restoration of high-resolution AFM images captured with broken probes

    Science.gov (United States)

    Wang, Y. F.; Corrigan, D.; Forman, C.; Jarvis, S.; Kokaram, A.

    2012-03-01

    A type of artefact is induced by damage of the scanning probe when the Atomic Force Microscope (AFM) captures a material surface structure with nanoscale resolution. This artefact has a dramatic form of distortion rather than the traditional blurring artefacts. Practically, it is not easy to prevent the damage of the scanning probe. However, by using natural image deblurring techniques in image processing domain, a comparatively reliable estimation of the real sample surface structure can be generated. This paper introduces a novel Hough Transform technique as well as a Bayesian deblurring algorithm to remove this type of artefact. The deblurring result is successful at removing blur artefacts in the AFM artefact images. And the details of the fibril surface topography are well preserved.

  4. Observation of Magnetic Induction Distribution by Scanning Interference Electron Microscopy

    Science.gov (United States)

    Takahashi, Yoshio; Yajima, Yusuke; Ichikawa, Masakazu; Kuroda, Katsuhiro

    1994-09-01

    A scanning interference electron microscope (SIEM) capable of observing magnetic induction distribution with high sensitivity and spatial resolution has been developed. The SIEM uses a pair of fine coherent scanning probes and detects their relative phase change by magnetic induction, giving raster images of microscopic magnetic distributions. Its performance has been demonstrated by observing magnetic induction distributed near the edge of a recorded magnetic storage medium. Obtained images are compared with corresponding images taken in the scanning Lorentz electron microscope mode using the same microscope, and the differences between them are discussed.

  5. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy.

    Science.gov (United States)

    Yang, Joon-Mo; Chen, Ruimin; Favazza, Christopher; Yao, Junjie; Li, Chiye; Hu, Zhilin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2012-10-08

    We have created a 2.5-mm outer diameter integrated photo-acoustic and ultrasonic mini-probe which can be inserted into a standard video endoscope's instrument channel. A small-diameter focused ultrasonic transducer made of PMN-PT provides adequate signal sensitivity, and enables miniaturization of the probe. Additionally, this new endoscopic probe utilizes the same scanning mirror and micromotor-based built-in actuator described in our previous reports; however, the length of the rigid distal section of the new probe has been further reduced to ~35 mm. This paper describes the technical details of the mini-probe and presents experimental results that both quantify the imaging performance and demonstrate its in vivo imaging capability, which suggests that it could work as a mini-probe for certain clinical applications.

  6. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy

    Science.gov (United States)

    Yang, Joon-Mo; Chen, Ruimin; Favazza, Christopher; Yao, Junjie; Li, Chiye; Hu, Zhilin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2012-01-01

    We have created a 2.5-mm outer diameter integrated photo-acoustic and ultrasonic mini-probe which can be inserted into a standard video endoscope’s instrument channel. A small-diameter focused ultrasonic transducer made of PMN-PT provides adequate signal sensitivity, and enables miniaturization of the probe. Additionally, this new endoscopic probe utilizes the same scanning mirror and micromotor-based built-in actuator described in our previous reports; however, the length of the rigid distal section of the new probe has been further reduced to ~35 mm. This paper describes the technical details of the mini-probe and presents experimental results that both quantify the imaging performance and demonstrate its in vivo imaging capability, which suggests that it could work as a mini-probe for certain clinical applications. PMID:23188360

  7. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    Science.gov (United States)

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.

  8. Coaxial Electrospray of Curcumin-Loaded Microparticles for Sustained Drug Release.

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    Full Text Available Curcumin exhibits superior anti-inflammatory, antiseptic and analgesic activities without significant side effects. However, clinical dissemination of this natural medicine is limited by its low solubility and poor bio-availability. To overcome this limitation, we propose to encapsulate curcumin in poly(lactic-co-glycolic acid (PLGA microparticles (MPs by an improved coaxial electrospray (CES process. This process is able to generate a stable cone-jet mode in a wide range of operation parameters in order to produce curcumin-loaded PLGA MPs with a clear core-shell structure and a designated size of several micrometers. In order to optimize the process outcome, the effects of primary operation parameters such as the applied electric voltages and the liquid flow rates are studied systemically. In vitro drug release experiments are also carried out for the CES-produced MPs in comparison with those by a single axial electrospray process. Our experimental results show that the CES process can be effectively controlled to encapsulate drugs of low aqueous solubility for high encapsulation efficiency and optimal drug release profiles.

  9. Self-aligning subatmospheric hybrid liquid junction electrospray interface for capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Křenková, Jana; Klepárník, Karel; Grym, Jakub; Luksch, Jaroslav; Foret, František

    2016-01-01

    Roč. 37, č. 3 (2016), s. 414-417 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : capillary electrophoresis * electrospray interfacing * microfabrication Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.744, year: 2016

  10. Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air

    Energy Technology Data Exchange (ETDEWEB)

    Abdellatif, M.H. [Department of Nanostructures, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Physics Department, National Research Center, Elbehoos st., 12622, Dokki, Giza (Egypt); Salerno, M., E-mail: marco.salerno@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Polovitsyn, Anatolii [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Dipartimentodi Fisica, Università di Genova, via Dodecaneso 33, I-16146 Genova (Italy); Marras, Sergio [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); De Angelis, Francesco [Department of Nanostructures, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy)

    2017-05-01

    Highlights: • The surface potential of drop cast nanocrystals was measured by SKPM in ambient air. • The nanocrystal facet work function was derived by theory. • By comparing theory and experiment we distinguished the nanocrystal facets. • Nanocrystal facet control is of practical interest for optoelectronic devices. - Abstract: The work function of nano-materials is important for a full characterization of their electronic properties. Because the band alignment, band bending and electronic noise are very sensitive to work function fluctuations, the dependence of the work function of nano-scale crystals on facet orientation can be a critical issue in optimizing optoelectronic devices based on these materials. We used scanning Kelvin probe microscopy to assess the local work function on samples of silver nano-plates at sub-micrometric spatial resolution. With the appropriate choice of the substrate and based on statistical analysis, it was possible to distinguish the surface potential of the different facets of silver nano-plates even if the measurements were done in ambient conditions without the use of vacuum. A phenomenological model was used to calculate the differences of facet work function of the silver nano-plates and the corresponding shift in Fermi level. This theoretical prediction and the experimentally observed difference in surface potential on the silver nano-plates were in good agreement. Our results show the possibility to sense the nano-crystal facets by appropriate choice of the substrate in ambient conditions.

  11. Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air

    International Nuclear Information System (INIS)

    Abdellatif, M.H.; Salerno, M.; Polovitsyn, Anatolii; Marras, Sergio; De Angelis, Francesco

    2017-01-01

    Highlights: • The surface potential of drop cast nanocrystals was measured by SKPM in ambient air. • The nanocrystal facet work function was derived by theory. • By comparing theory and experiment we distinguished the nanocrystal facets. • Nanocrystal facet control is of practical interest for optoelectronic devices. - Abstract: The work function of nano-materials is important for a full characterization of their electronic properties. Because the band alignment, band bending and electronic noise are very sensitive to work function fluctuations, the dependence of the work function of nano-scale crystals on facet orientation can be a critical issue in optimizing optoelectronic devices based on these materials. We used scanning Kelvin probe microscopy to assess the local work function on samples of silver nano-plates at sub-micrometric spatial resolution. With the appropriate choice of the substrate and based on statistical analysis, it was possible to distinguish the surface potential of the different facets of silver nano-plates even if the measurements were done in ambient conditions without the use of vacuum. A phenomenological model was used to calculate the differences of facet work function of the silver nano-plates and the corresponding shift in Fermi level. This theoretical prediction and the experimentally observed difference in surface potential on the silver nano-plates were in good agreement. Our results show the possibility to sense the nano-crystal facets by appropriate choice of the substrate in ambient conditions.

  12. Electrical Field Guided Electrospray Deposition for Production of Gradient Particle Patterns.

    Science.gov (United States)

    Yan, Wei-Cheng; Xie, Jingwei; Wang, Chi-Hwa

    2018-06-06

    Our previous work demonstrated the uniform particle pattern formation on the substrates using electrical field guided electrospray deposition. In this work, we reported for the first time the fabrication of gradient particle patterns on glass slides using an additional point, line, or bar electrode based on our previous electrospray deposition configuration. We also demonstrated that the polydimethylsiloxane (PDMS) coating could result in the formation of uniform particle patterns instead of gradient particle patterns on glass slides using the same experimental setup. Meanwhile, we investigated the effect of experimental configurations on the gradient particle pattern formation by computational simulation. The simulation results are in line with experimental observations. The formation of gradient particle patterns was ascribed to the gradient of electric field and the corresponding focusing effect. Cell patterns can be formed on the particle patterns deposited on PDMS-coated glass slides. The formed particle patterns hold great promise for high-throughput screening of biomaterial-cell interactions and sensing.

  13. Pulsed voltage electrospray ion source and method for preventing analyte electrolysis

    Science.gov (United States)

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-12-27

    An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.

  14. Optimal scanning and image processing with the STEM

    International Nuclear Information System (INIS)

    Crewe, A.V.; Ohtsuki, M.

    1981-01-01

    We have recently published a theory of an optimal scanning system which is particularly suited for the STEM. One concludes from the theory that the diffraction limit of the electron probe should be a fixed fraction of the full-scale deflection in order to avoid scanning artifacts. More recently, we have confirmed the value of this technique by direct experiments. Our program now is to combine the use of optimal scanning with the use of a programmable digital refresh memory for image analysis. Limited experience to date indicates that false color conversion is probably more useful than histogram equalization in black and white and that this system is particularly valuable for rotational averaging and selected area Fourier transforms. (orig.)

  15. [Microinjection Monitoring System Design Applied to MRI Scanning].

    Science.gov (United States)

    Xu, Yongfeng

    2017-09-30

    A microinjection monitoring system applied to the MRI scanning was introduced. The micro camera probe was used to stretch into the main magnet for real-time video injection monitoring of injection tube terminal. The programming based on LabVIEW was created to analysis and process the real-time video information. The feedback signal was used for intelligent controlling of the modified injection pump. The real-time monitoring system can make the best use of injection under the condition that the injection device was away from the sample which inside the magnetic room and unvisible. 9.4 T MRI scanning experiment showed that the system in ultra-high field can work stability and doesn't affect the MRI scans.

  16. Nanojets, Electrospray, and Ion Field Evaporation: Molecular Dynamics Simulations and Laboratory Experiments

    National Research Council Canada - National Science Library

    Luedtke, W. D; Landman, Uzi; Chiu, Y. H; Levandier, D. J; Dressler, R. A; Sok, S; Gordon, M. S

    2008-01-01

    ... experiment and using molecular dynamics (MD) simulations. The electrospray source is operated in a Taylor cone-jet mode, with the nanojet that forms being characterized by high surface-normal electric field strengths in the vicinity of I V/nm...

  17. Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control

    DEFF Research Database (Denmark)

    Frimmer, Martin; Chen, Yuntian; Koenderink, A. Femius

    2011-01-01

    We report an experimental technique to map and exploit the local density of optical states of arbitrary planar nanophotonic structures. The method relies on positioning a spontaneous emitter attached to a scanning probe deterministically and reversibly with respect to its photonic environment while...

  18. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe...... is precisely positioned on targeted areas of the sample surface by using piezoactuators. This apparatus enables conductivity measurement with extremely high surface sensitivity, resulting in direct access to surface-state conductivity of the surface superstructures, and clarifying the influence of atomic steps...

  19. Scanning laser microscope for imaging nanostructured superconductors

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-01-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  20. Scanning laser microscope for imaging nanostructured superconductors

    Science.gov (United States)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-10-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  1. Eddy current array probe for detection of surface breaking cracks in the extrados of feeder bends

    International Nuclear Information System (INIS)

    Obrutsky, L.S.; Cassidy, R.A.; Chaplin, K.; Martin, P.; Bureau, J.F.

    2006-01-01

    A new eddy current array probe has been implemented as a straightforward and promising technique for detection of outer diameter (OD) surface-breaking cracks on the extrados of feeder bends. The design is based on previous work performed at AECL, which had demonstrated that eddy current probes with laterally displaced transmit-receive coils can overcome some of the limitations of inspecting ferritic steel components for surface-breaking cracks. The Feeder Integrity Joint Program-CANDU Owners Group Inc. (FIJP-COG) Non-Destructive Evaluation (NDE) Team members commissioned AECL to work in collaboration with the probe manufacturer ZETEC, to develop a field usable eddy current array probe. The objective was to acquire a technique with the following capabilities: fast scanning non-contact inspection technique for surface breaking discontinuities; full inspection of the bend extrados OD surface in a single scan; ability to inspect first and second bends with similar settings and capabilities; permanent record for future reference; axial and circumferential crack detection in a single scan; capability to detect OD surface-breaking cracks, which can provide additional information to that provided by ultrasonic testing (UT) for flaw characterization, and detection threshold: Surface breaking cracks equivalent to a 0.5 mm deep, 10 mm long EDM notch located on the OD of the bend extrados. This paper discusses the basis for probe design, summarizes the experimental work to evaluate probe capabilities and analyzes the results from the field trial. (author)

  2. Eddy current array probe for detection of surface breaking cracks in the extrados of feeder bends

    Energy Technology Data Exchange (ETDEWEB)

    Obrutsky, L.S.; Cassidy, R.A.; Chaplin, K. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)]. E-mail: obrutskyl@aecl.ca; Martin, P. [NB Power, Point Lepreau NGS, Point Lepreau, New Brunswick (Canada)]. E-mail: PMartin@nbpower.com; Bureau, J.F. [Zetec, Quebec, Quebec (Canada)]. E-mail: jean-francois.bureau@zetec.com

    2006-07-01

    A new eddy current array probe has been implemented as a straightforward and promising technique for detection of outer diameter (OD) surface-breaking cracks on the extrados of feeder bends. The design is based on previous work performed at AECL, which had demonstrated that eddy current probes with laterally displaced transmit-receive coils can overcome some of the limitations of inspecting ferritic steel components for surface-breaking cracks. The Feeder Integrity Joint Program-CANDU Owners Group Inc. (FIJP-COG) Non-Destructive Evaluation (NDE) Team members commissioned AECL to work in collaboration with the probe manufacturer ZETEC, to develop a field usable eddy current array probe. The objective was to acquire a technique with the following capabilities: fast scanning non-contact inspection technique for surface breaking discontinuities; full inspection of the bend extrados OD surface in a single scan; ability to inspect first and second bends with similar settings and capabilities; permanent record for future reference; axial and circumferential crack detection in a single scan; capability to detect OD surface-breaking cracks, which can provide additional information to that provided by ultrasonic testing (UT) for flaw characterization, and detection threshold: Surface breaking cracks equivalent to a 0.5 mm deep, 10 mm long EDM notch located on the OD of the bend extrados. This paper discusses the basis for probe design, summarizes the experimental work to evaluate probe capabilities and analyzes the results from the field trial. (author)

  3. Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Kalle, W.H.J.; Kalle, W.H.J.; Ruiter, A.G.T.; Wiegant, J.C.A.G.; Raap, A.K.; Greve, Jan; de Grooth, B.G.; van Hulst, N.F.

    1996-01-01

    Fluorescence in situ hybridization o­n human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments o­n a single

  4. Scanning Hall-probe microscopy system for two-dimensional imaging of critical current density in RE-123 coated conductors

    International Nuclear Information System (INIS)

    Higashikawa, K.; Inoue, M.; Kawaguchi, T.; Shiohara, K.; Imamura, K.; Kiss, T.; Iijima, Y.; Kakimoto, K.; Saitoh, T.; Izumi, T.

    2011-01-01

    Nondestructive characterization method of in-plane distribution of critical current density for coated conductors. Current distribution in a coated conductor compared with that from theoretical analysis. Relationship between local critical current density and local magnetic field. We have developed a characterization method for two-dimensional imaging of critical current density in coated conductors (CCs) based on scanning Hall-probe microscopy (SHPM). The distributions of the magnetic field around a sample were measured for several different conditions of external magnetic fields, and then were converted to those of the sheet current density which flowed to shield the external magnetic field or to trap the penetrated magnetic field. As a result, it was found that the amplitude of the sheet current density corresponded to that of critical current density almost in all the area of the sample except for the region where current direction changed. This indicates that we could obtain an in-plane distribution of the critical current density with a spatial resolution of around 100 μm in non-destructive manner by this method. We believe that this measurement will be a multifunctional and comprehensive characterization method for coated conductors.

  5. A decade of microfluidic analysis coupled with electrospray mass spectrometry: An overview

    NARCIS (Netherlands)

    Koster, S.; Verpoorte, E.

    2007-01-01

    This review presents a thorough overview covering the period 1997-2006 of microfluidic chips coupled to mass spectrometry through an electrospray interface. The different types of fabrication processes and materials used to fabricate these chips throughout this period are discussed. Three 'eras' of

  6. A decade of microfluidic analysis coupled with electrospray mass spectrometry : An overview

    NARCIS (Netherlands)

    Koster, Sander; Verpoorte, Elisabeth

    2007-01-01

    This review presents a thorough overview covering the period 1997-2006 of microfluidic chips coupled to mass spectrometry through an electrospray interface. The different types of fabrication processes and materials used to fabricate these chips throughout this period are discussed. Three 'eras' of

  7. Fast reciprocating probe system on the EAST superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Chang, J. F.; Wan, B. N.; Xu, G. S.; Li, B.; Xu, C. S.; Yan, N.; Wang, L.; Liu, S. C.; Jiang, M.; Liu, P. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Xiao, C. J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Department of Physics and Engineering Physics, Plasma Physics Laboratory, University of Saskatchewan, Saskatoon SK S7N 5E2 (Canada)

    2010-11-15

    A new fast reciprocating probe system (FRPS) has been built and installed on the outer midplane of the EAST tokamak to investigate the profiles of the boundary plasma parameters such as electron density and temperature. The system consists of a two-stage motion drive mechanism: slow motion and fast motion. The fast motion is powered by a servo motor, which drives the probe horizontally up to 50 cm to scan the edge region of the EAST tokamak. The maximum velocity achieved is 2 m/s. High velocity and flexible control of the fast motion are the remarkable features of this FRPS. A specially designed connector installed at the front end of the probe shaft makes it easy to install or replace the probe head on FRPS. During the latest experimental campaign in the spring of 2010, a probe head with seven tips, including two tips for a Mach probe, has been used. An example is given for simultaneous profile measurements of the plasma temperature, plasma density, and the plasma flow velocity.

  8. Darkfield microspectroscopy of nanostructures on silver tip-enhanced Raman scattering probes

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tamitake, E-mail: tamitake-itou@aist.go.jp [Nano-Bioanalysis Team, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395 (Japan); Yamamoto, Yuko S., E-mail: yamayulab@gmail.com [Research Fellow of the Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-8472 (Japan); Department of Chemistry, School of Science and Technology, Kagawa University, Takamatsu, Kagawa 761-0396 (Japan); Suzuki, Toshiaki [UNISOKU Co. Ltd., 2-4-3 Kasugano, Hirakata, Osaka 573-0131 (Japan); Kitahama, Yasutaka; Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337 (Japan)

    2016-01-11

    We report an evaluation method employing darkfield microspectroscopy for silver probes used in tip-enhanced Raman scattering (TERS). By adjusting the darkfield illumination, the diffracted light from the probe outlines disappears and the diffracted light from the surface nanostructures and tips of the probes appears as colorful spots. Scanning electron microscopy reveals that the spectral variations in these spots reflect the shapes of the surface nanostructures. The tip curvatures correlate to the spectral maxima of their spots. Temporal color changes in the spots indicate the deterioration due to the oxidation of the silver surfaces. These results show that the proposed method is useful for in situ evaluation of plasmonic properties of TERS probes.

  9. Design, demonstration and performance of a versatile electrospray aerosol generator for nanomaterial research and applications

    International Nuclear Information System (INIS)

    Jennerjohn, Nancy; Fung, David C; Hirakawa, Karen S; Hinds, William; Kennedy, Nola J; Eiguren-Fernandez, Arantzazu; Prikhodko, Sergey; Zavala-Mendez, Jose D

    2010-01-01

    Carbon nanotubes are difficult to aerosolize in a controlled manner. We present a method for generating aerosols not only of carbon nanotubes, but also of many reference and proprietary materials including quantum dots, diesel particulate matter, urban dust, and their mixtures, using electrospraying. This method can be used as a teaching tool, or as the starting point for advanced research, or to deliver nanomaterials in animal exposure studies. This electrospray system generates 180 μg of nanotubes per m 3 of carrier gas, and thus aerosolizes an occupationally relevant mass concentration of nanotubes. The efficiency achievable for single-walled carbon nanotubes is 9.4%. This system is simple and quick to construct using ordinary lab techniques and affordable materials. Since it is easy to replace soiled parts with clean ones, experiments on different types of nanomaterial can be performed back to back without contamination from previous experiments. In this paper, the design, fabrication, operation and characterization of our versatile electrospray method are presented. Also, the morphological changes that carbon nanotubes undergo as they make the transition from dry powders to aerosol particles are presented.

  10. An Ultrasonic Wheel-Array Probe

    Science.gov (United States)

    Drinkwater, B. W.; Brotherhood, C. J.; Freemantle, R. J.

    2004-02-01

    This paper describes the development and modeling of an ultrasonic array wheel probe scanning system. The system operates at 10 MHz using a 64 element array transducer which is 50 mm in length and located in a fluid filled wheel. The wheel is coupled to the test structure dry, or with a small amount of liquid couplant. When the wheel is rolled over the surface of the test structure a defect map (C-Scan) is generated in real-time. The tyre is made from a soft, durable polymer which has very little acoustic loss. Two application studies are presented; the inspection of sealant layers in an aluminum aircraft wing structure and the detection of embedded defects in a thick section carbon composite sample.

  11. Clinical Application of Colour Modulation of Gamma Energy and Depth by Dual-Channel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E.; Ben-Porath, M. [Veterans Administration Hospital, Hines, IL (United States)

    1969-01-15

    A dual-channel scanning system has been described permitting the simultaneous imaging in individual color of the distribution of two gamma-emitting radioisotopes. In those cases where two organs are adjacent and concentrate the same isotope, they may be displayed in separate color if one of the organs concentrates another gamma-emitting isotope with a different energy. This is accomplished by individual color readout of this isotope and the display of the subtraction of this isotope from the common isotope in another color. By using two facing scintillation probes on either side of the individual being scanned, two overlapping organs at different depths concentrating the same isotope can be color differentiated by a dual-channel playout of each probe. The principal application of these dual-channel scanning methods to date has been the simultaneous display of the liver and pancreas in individual colors using {sup 198}Au and {sup 75}selenomethionine. Characteristic scans have been obtained which differentiate a number of disease states from the normal pancreas and liver. The pancreatic and liver diseases studied and characterized are carcinoma of the pancreas, pancreatic insufficiency, acute recurrent pancreatitis, pancreatic pseudocyst and Laennec's cirrhosis, hepatoma and metastatic malignancy in the liver. The uptake of {sup 75}selenomethionine in malignant lesions in many instances produces positive scans of these tumors in contrasting color to the liver. Depth discrimination in color with the two-probe system has permitted the lateralization of intracranial lesions, the color of the display being proportional to the depth of the lesion. The discrimination of depth and gamma-ray energy by dual-channel color scanning and its general application in visualizing other organs has been accomplished. (author)

  12. Near-field circular polarization probed by chiral polyfluorene

    NARCIS (Netherlands)

    Savoini, M.; Biagioni, P.; Lakhwani, G.; Meskers, S.C.J.; Duò, L.; Finazzi, M.

    2009-01-01

    We demonstrate that a high degree of circular polarization can be delivered to the near field (NF) of an aperture at the apex of hollow-pyramid probes for scanning optical microscopy. This result is achieved by analyzing the dichroic properties of an annealed thin polymer film containing a chiral

  13. Vacuum scanning capillary photoemission microscopy.

    Science.gov (United States)

    Aseyev, S A; Cherkun, A P; Mironov, B N; Petrunin, V V; Chekalin, S V

    2017-08-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ, was measured by the conical probe operating in shear force mode. In shear force regime, the dielectric capillary has been used as a "classical" SPM tip, which provided images reflecting the surface topology. In a photoelectron regime photoelectrons passed through hollow tip and entered a detector. The spatial distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element resolution using the combination of a hollow-tip scanner with time-of-flight technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. IVVS probe mechanical concept design

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it; Neri, Carlo; De Collibus, Mario Ferri; Mugnaini, Giampiero; Pollastrone, Fabio; Crescenzi, Fabio

    2015-10-15

    Highlights: • ENEA designed, developed and tested a laser based In Vessel Viewing System (IVVS). • IVVS mechanical design has been revised from 2011 to 2013 to meet ITER requirements. • Main improvements are piezoceramic actuators and a step focus system. • Successful qualification activities validated the concept design for ITER environment. - Abstract: ENEA has been deeply involved in the design, development and testing of a laser based In Vessel Viewing System (IVVS) required for the inspection of ITER plasma-facing components. The IVVS probe shall be deployed into the vacuum vessel, providing high resolution images and metrology measurements to detect damages and possible erosion. ENEA already designed and manufactured an IVVS probe prototype based on a rad-hard concept and driven by commercial micro-step motors, which demonstrated satisfying viewing and metrology performances at room conditions. The probe sends a laser beam through a reflective rotating prism. By rotating the axes of the prism, the probe can scan all the environment points except those present in a shadow cone and the backscattered light signal is then processed to measure the intensity level (viewing) and the distance from the probe (metrology). During the last years, in order to meet all the ITER environmental conditions, such as high vacuum, gamma radiation lifetime dose up to 5 MGy, cumulative neutron fluence of about 2.3 × 10{sup 17} n/cm{sup 2}, temperature of 120 °C and magnetic field of 8 T, the probe mechanical design was significantly revised introducing a new actuating system based on piezo-ceramic actuators and improved with a new step focus system. The optical and mechanical schemes have been then modified and refined to meet also the geometrical constraints. The paper describes the mechanical concept design solutions adopted in order to fulfill IVVS probe functional performance requirements considering ITER working environment and geometrical constraints.

  15. A combined scanning tunnelling microscope and x-ray interferometer

    Science.gov (United States)

    Yacoot, Andrew; Kuetgens, Ulrich; Koenders, Ludger; Weimann, Thomas

    2001-10-01

    A monolithic x-ray interferometer made from silicon and a scanning tunnelling microscope have been combined and used to calibrate grating structures with periodicities of 100 nm or less. The x-ray interferometer is used as a translation stage which moves in discrete steps of 0.192 nm, the lattice spacing of the silicon (220) planes. Hence, movements are traceable to the definition of the metre and the nonlinearity associated with the optical interferometers used to measure displacement in more conventional metrological scanning probe microscopes (MSPMs) removed.

  16. PC-based digital feedback control for scanning force microscope

    International Nuclear Information System (INIS)

    Mohd Ashhar Khalid

    2002-01-01

    In the past, most digital feedback implementation for scanned-probe microscope were based on a digital signal processor (DSP). At present DSP plug-in card with the input-output interface module is still expensive compared to a fast pentium PC motherboard. For a magnetic force microscope (MFM) digital feedback has an advantage where the magnetic signal can be easily separated from the topographic signal. In this paper, a simple low-cost PC-based digital feedback and imaging system for Scanning Force Microscope (SFM) is presented. (Author)

  17. Development of phased-array ultrasonic testing probe

    International Nuclear Information System (INIS)

    Kawanami, Seiichi; Kurokawa, Masaaki; Taniguchi, Masaru; Tada, Yoshihisa

    2001-01-01

    Phased-array ultrasonic testing was developed for nondestructive evaluation of power plants. Phased-array UT scans and focuses an ultrasonic beam to inspect areas difficult to inspect by conventional UT. We developed a highly sensitive piezoelectric composite, and designed optimized phased-array UT probes. We are applying our phased-array UT to different areas of power plants. (author)

  18. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    International Nuclear Information System (INIS)

    Silva, C E R; Alvarenga, A V; Costa-Felix, R P B

    2011-01-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Oe 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  19. Ultrasonic immersion probes characterization for use in nondestructive testing according to EN 12668-2:2001

    Science.gov (United States)

    Silva, C. E. R.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2011-02-01

    Ultrasound is often used as a Non-Destructive Testing (NDT) technique to analyze components and structures to detect internal and surface flaws. To guarantee reliable measurements, it is necessary to calibrate instruments and properly assess related uncertainties. An important device of an ultrasonic instrument system is its probe, which characterization should be performed according to EN 12668-2. Concerning immersion probes beam profile, the parameters to be assessed are beam divergence, focal distance, width, and zone length. Such parameters are determined by scanning a reflector or a hydrophone throughout the transducer beam. Within the present work, a methodology developed at Inmetro's Laboratory of Ultrasound to evaluate relevant beam parameters is presented, based on hydrophone scan. Water bath and positioning system to move the hydrophone were used to perform the scan. Studied probes were excited by a signal generator, and the waterborne signals were detected by the hydrophone and acquired using an oscilloscope. A user-friendly virtual instrument was developed in LabVIEW to automate the system. The initial tests were performed using 1 and 2.25 MHz-ultrasonic unfocused probes (Ø 1.27 cm), and results were consistent with the manufacturer's specifications. Moreover, expanded uncertainties were lower than 6% for all parameters under consideration.

  20. Scanning tunneling microscope with two-dimensional translator.

    Science.gov (United States)

    Nichols, J; Ng, K-W

    2011-01-01

    Since the invention of the scanning tunneling microscope (STM), it has been a powerful tool for probing the electronic properties of materials. Typically STM designs capable of obtaining resolution on the atomic scale are limited to a small area which can be probed. We have built an STM capable of coarse motion in two dimensions, the z- and x-directions which are, respectively, parallel and perpendicular to the tip. This allows us to image samples with very high resolution at sites separated by macroscopic distances. This device is a single unit with a compact design making it very stable. It can operate in either a horizontal or vertical configuration and at cryogenic temperatures.

  1. The combination of electrospray and flow focusing

    Science.gov (United States)

    Gañán-Calvo, Alfonso M.; López-Herrera, José M.; Riesco-Chueca, Pascual

    2006-11-01

    An ultra-fine liquid atomization procedure combining the advantages of electrospray and flow focusing is presented. Both techniques are known to produce strikingly small and steady liquid micro-jets issuing from menisci held by capillary forces. Such menisci take the form of a cusp-like drop attached to the feeding tube (flow focusing: FF) or a Taylor cone (electrospray: ES). The issuing micro-jets are forced or ‘sucked’ from the parent meniscus either by pressure or electrohydrodynamic forces. Subsequent capillary breakup of the jet leads to fine sprays of remarkable quality. Here we describe the joint effect of pressurization and electrification in a flow focusing device, and the subsequent coupling of both ES and FF phenomena. For any given liquid and flow rate, the combined procedure gives rise to significantly smaller droplet sizes than observed in any of the source techniques. The co-flowing gas stream removes space charges; in addition, the perforated plate facing the feed tube provides an electric barrier, shielding the jet-meniscus or ‘production’ area from the spray or ‘product’ area. As a result, space charges and electrified droplets are removed from the production area, thus avoiding the ambient electric saturation which becomes a limiting factor in ES-spraying: a significantly enhanced spraying stability ensues, with a much wider operation range than FF or ES. Other unexpected outcomes from the combination are also shown. A theoretical model is developed to predict the emitted droplet size: a first integral of the momentum equation yielding a generalized Bernoulli equation, and an explicit approximation for the jet diameter and droplet size, accurate within a broad parametrical band.

  2. Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography

    Science.gov (United States)

    Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea

    2013-09-01

    Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.

  3. Study of submelt laser induced junction nonuniformities using Therma-Probe

    DEFF Research Database (Denmark)

    Rosseel, E.; Bogdanowicz, J; Clarysse, T.

    2010-01-01

    to standard and micro-four-point probe sheet resistance data, secondary ion mass spectrometry, and Hall measurements obtained during earlier studies. Besides the impact of the nonuniformities on the “conventional” thermal wave signal, they found a strong correlation to the dc reflectance of the probe laser...... both at macroscopic and microscopic levels. In this work, the authors present high resolution Therma-Probe® measurements to assess the junction nonuniformity on 0.5 keV boron junctions and zoom in on the effect of temperature variations and multiple subsequent laser scans. The results are compared...... (lambda = 675 nm). The dc probe reflectance is dominated by free carriers and is highly correlated to the sheet resistance both on blanket wafers and on real device wafers. ©2010 American Vacuum Society...

  4. Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments

    NARCIS (Netherlands)

    Rubio-Bollinger, G.; Castellanos-Gomez, A.; Bilan, S.; Zotti, L.A.; Arroyo, C.R.; Agraït, N.; Cuevas, J.

    2012-01-01

    We fabricate and characterize carbon-fiber tips for their use in combined scanning tunneling and force microscopy based on piezoelectric quartz tuning fork force sensors. An electrochemical fabrication procedure to etch the tips is used to yield reproducible sub-100-nm apex. We also study electron

  5. Probing Single Nanometer-scale Particles with Scanning Tunneling Microscopy and Spectroscopies

    International Nuclear Information System (INIS)

    McCarty, G.S.; Love, J.C.; Kushmerick, J.G.; Charles, L.F.; Keating, C.D.; Toleno, B.J.; Lyn, M.E.; Castleman, A.W.; Natan, M.J.; Weiss, P.S.

    1999-01-01

    Scanning tunneling microscopy can be used to isolate single particles on surfaces for further study. Local optical and electronic properties coupled with topographic information collected by the scanning tunneling microscope (STM) give insight into the intrinsic properties of the species under study. Since each spectroscopic measurement is done on a single particle, each sample is 'monodisperse', regardless of the degree of heterogeneity of the original preparation. We illustrate this with three example systems - a metal cluster of known atomic structure, metal nanoparticles dispersed from colloid suspensions, and metallocarbohedrenes (Met-Cars) deposited with other reaction products. Au and Ag nanoparticles were imaged using a photon emission STM. The threshold voltage, the lowest bias voltage at which photons are produced, was determined for Au nanoparticles. Electronic spectra of small clusters of Ni atoms on MoS 2 were recorded. Preliminary images of Zr-based Met-Car-containing soot were obtained on Au and MoS 2 substrates and partial electronic spectra were recorded of these possible Met-Car particles

  6. Nano-slit electrospray emitters fabricated by a micro- to nanofluidic via technology

    NARCIS (Netherlands)

    Dijkstra, Marcel; Berenschot, Johan W.; de Boer, Meint J.; van der Linden, H.J.; Hankemeier, T.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2012-01-01

    This article presents nano-slit electrospray emitters fabricated by a micro- to nanofluidic via technology. The main advantage of the technology is the ability to position freely suspended nanochannels anywhere on a microfluidic chip, where leak-tight delivery of fluid from a fluid reservoir can be

  7. Automatic emissive probe apparatus for accurate plasma and vacuum space potential measurements

    Science.gov (United States)

    Jianquan, LI; Wenqi, LU; Jun, XU; Fei, GAO; Younian, WANG

    2018-02-01

    We have developed an automatic emissive probe apparatus based on the improved inflection point method of the emissive probe for accurate measurements of both plasma potential and vacuum space potential. The apparatus consists of a computer controlled data acquisition card, a working circuit composed by a biasing unit and a heating unit, as well as an emissive probe. With the set parameters of the probe scanning bias, the probe heating current and the fitting range, the apparatus can automatically execute the improved inflection point method and give the measured result. The validity of the automatic emissive probe apparatus is demonstrated in a test measurement of vacuum potential distribution between two parallel plates, showing an excellent accuracy of 0.1 V. Plasma potential was also measured, exhibiting high efficiency and convenient use of the apparatus for space potential measurements.

  8. Local crystallography analysis for atomically resolved scanning tunneling microscopy images

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Li, Qing; Belianinov, Alexei; Gai, Zheng; Baddorf, Arthur P; Pan, Minghu; Jesse, Stephen; Kalinin, Sergei V; Sales, Brian C; Sefat, Athena

    2013-01-01

    Scanning probe microscopy has emerged as a powerful and flexible tool for atomically resolved imaging of surface structures. However, due to the amount of information extracted, in many cases the interpretation of such data is limited to being qualitative and semi-quantitative in nature. At the same time, much can be learned from local atom parameters, such as distances and angles, that can be analyzed and interpreted as variations of local chemical bonding, or order parameter fields. Here, we demonstrate an iterative algorithm for indexing and determining atomic positions that allows the analysis of inhomogeneous surfaces. This approach is further illustrated by local crystallographic analysis of several real surfaces, including highly ordered pyrolytic graphite and an Fe-based superconductor FeTe 0.55 Se 0.45 . This study provides a new pathway to extract and quantify local properties for scanning probe microscopy images. (paper)

  9. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Svensson, B; Roepstorff, P

    1996-01-01

    Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy is presen......Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy...... is presented encompassing protein characterization prior to and after cloning of the corresponding gene....

  10. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  11. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    International Nuclear Information System (INIS)

    Weis, Christoph D.

    2011-01-01

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  12. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  13. Near-field study with a photon scanning tunneling microscope: Comparison between dielectric nanostructure and metallic nanostructure

    International Nuclear Information System (INIS)

    Mahmoud, Mahmoud Youcef; Bassou, Ghaouti; Salomon, Laurant; Chekroun, Z.; Djamai, Nesrine

    2007-01-01

    Scanning near-field optical microscopy (SNOM) integrates standard optical methods with scanning probe microscopy (SPM) techniques allowing to collect optical information with resolution well beyond the diffraction limit. We study the influence on image formation of several parameters in scanning near-field microscopy. The numerical calculations have been carried out using the differential method. We investigate a 2D-PSTM configuration with a dielectric rectangular object. We will focus on the collection type SNOM in a constant height scanning mode. Various oscillation patterns are observed from both sides of the nanostructure, which we interpret as interference between the diffracted waves scattered by the nanostructure (with the components of the wave vector parallel to the surface) and the evanescent incident wave above the surface. Using an optical near-field analysis and by calculating the electric field intensity distribution, we investigate the probe-sample distance effect. It is found that the distribution of the intensity related to the electric field is depending on sample-probe distance. We noticed the loss of details in the image and the presence of dramatic oscillations. Also, both of the polarization state of the illuminating light effect and the angle of incidence are investigated. We conclude that a differential method provides physical insight into the main features of the different images

  14. Near-field study with a photon scanning tunneling microscope: Comparison between dielectric nanostructure and metallic nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Mahmoud Youcef [Laboratoire d' elaboration et caracterisation des materiaux, Groupe de Microscopie et Microanalyse, Universite Djilali Liabes de Sidi Bel-Abbes, Faculte des sciences (Algeria)], E-mail: mahmoudhamoud@yahoo.com; Bassou, Ghaouti [Laboratoire d' elaboration et caracterisation des materiaux, Groupe de Microscopie et Microanalyse, Universite Djilali Liabes de Sidi Bel-Abbes, Faculte des sciences (Algeria); Laboratoire de Physique (LPUB), CNRS UMR 5027, Groupe d' Optique de Champ Proche, Faculte des Sciences Mirande, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47 870, 21078 Dijon Cedex (France); Salomon, Laurant [Laboratoire de Physique (LPUB), CNRS UMR 5027, Groupe d' Optique de Champ Proche, Faculte des Sciences Mirande, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47 870, 21078 Dijon Cedex (France); Chekroun, Z. [Laboratoire d' elaboration et caracterisation des materiaux, Groupe de Microscopie et Microanalyse, Universite Djilali Liabes de Sidi Bel-Abbes, Faculte des sciences (Algeria); Djamai, Nesrine [Laboratoire de telecommunications et de traitement numerique du signal (LTTNS), Universite Djilali Liabes de Sidi Bel-Abbes, Faculte des sciences de l' ingenieur, Departement d' electronique (Algeria)

    2007-08-25

    Scanning near-field optical microscopy (SNOM) integrates standard optical methods with scanning probe microscopy (SPM) techniques allowing to collect optical information with resolution well beyond the diffraction limit. We study the influence on image formation of several parameters in scanning near-field microscopy. The numerical calculations have been carried out using the differential method. We investigate a 2D-PSTM configuration with a dielectric rectangular object. We will focus on the collection type SNOM in a constant height scanning mode. Various oscillation patterns are observed from both sides of the nanostructure, which we interpret as interference between the diffracted waves scattered by the nanostructure (with the components of the wave vector parallel to the surface) and the evanescent incident wave above the surface. Using an optical near-field analysis and by calculating the electric field intensity distribution, we investigate the probe-sample distance effect. It is found that the distribution of the intensity related to the electric field is depending on sample-probe distance. We noticed the loss of details in the image and the presence of dramatic oscillations. Also, both of the polarization state of the illuminating light effect and the angle of incidence are investigated. We conclude that a differential method provides physical insight into the main features of the different images.

  15. Fast reciprocating probe system on the HL-2A tokamak

    International Nuclear Information System (INIS)

    Yan Longwen; Hong Wenyu; Qian Jun; Luo Cuiwen; Pan Li

    2005-01-01

    A reciprocating probe system has been installed at the midplane of the HL-2A tokamak. The probe is used to measure plasma edge density, temperature, floating potential, and corresponding fluctuation profiles with 8 cm scan from the scrape-off layer to the plasma boundary. The reciprocating probe can move at a speed of 1 m/s. A digital grating displacement measurement system that can provide a high displacement resolution of 0.04 mm is applied to the reciprocating probe system for the first time. A port located behind the vacuum isolation valve is designed for viewing and the exchange of the probe head. Different probe heads can be used to satisfy different experimental requirements. The first probe head had four graphite measurement tips. For high frequency response, no isolation amplifier is used in the electric circuit of the probe measurement. A personal computer via an analog-to-digital digitizer card acquires probe system data, which are sent to a data server by optical fiber after a discharge. All data are sent to the centralized data management system of the HL-2A. In this article we presented the edge temperature and density profiles for the limiter and divertor configurations of a selected plasma discharge

  16. Determination of the mechanical behavior of lithium disilicate glass ceramics by nanoindentation and scanning probe microscopy

    International Nuclear Information System (INIS)

    Smith, Calvin M.; Jiang, Danyu; Gong, Jianghong; Yin, Ling

    2014-01-01

    This paper reports on the mechanical behavior of high-strength dental ceramics, lithium disilicate glass ceramics (LDGC) using nanoindentation and in situ scanning probe microscopy (SPM). The nanoindentation hardness and Young's moduli of LDGC were measured as a function of the applied indentation load. The indentation load/size effect (ISE) was analyzed for both measured nanoindentation hardness and Young's moduli. The true hardness, i.e., the load-independent hardness, was determined based on the proportional specimen resistance (PSR) model. Nanoindentation-induced plasticity in LDGC was characterized by in situ SPM imaging of the indented volumes and by measuring pile-up heights of indented cross-sections. The results show that both nanoindentation hardness and Young's modulus are load-dependent following the expended Meyer's law using a power series. At the nanoindentation loads, indented LDGC can be mainly plastically deformed by limiting cracking events. This unusual behavior, for nominally brittle materials, influences the mode of contact damage in applications such as machining, polishing, wear, impact damage and hardness testing for dental restorations. - Highlights: • Both hardness and Young's modulus of LDGC were load-dependent following the expended Meyer's law. • The true hardness of LDGC was determined based on the proportional specimen resistance (PSR) model. • Nanoindentation-induced plasticity in LDGC was characterized by in situ SPM imaging. • At low nanoindentation loads, indented LDGC can be mainly plastically deformed by limiting cracking events

  17. Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van

    2000-01-01

    Chemical analysis for the characterisation of micro-organisms is rapidly evolving, after the recent advent of new ionisation methods in mass spectrometry (MS): electrospray (ES) and matrix-assisted laser desorption/ionisation (MALDI). These methods allow quick characterisation of micro-organisms,

  18. Response of an electrostatic probe for a right cylindrical spacer

    DEFF Research Database (Denmark)

    Rerup, T; Crichton, George C; McAllister, Iain Wilson

    1994-01-01

    During the last decade many experimental studies of surface charge phenomena have been undertaken employing right cylindrical spacers. Measurement of the surface charge was performed using small electrostatic field probes to scan across the dielectric surface. Charges are electrostatically induced...

  19. On-tip sub-micrometer Hall probes for magnetic microscopy prepared by AFM lithography

    International Nuclear Information System (INIS)

    Gregusova, D.; Martaus, J.; Fedor, J.; Kudela, R.; Kostic, I.; Cambel, V.

    2009-01-01

    We developed a technology of sub-micrometer Hall probes for future application in scanning hall probe microscopy (SHPM) and magnetic force microscopy (MFM). First, the Hall probes of ∼9-μm dimensions are prepared on the top of high-aspect-ratio GaAs pyramids with an InGaP/AlGaAs/GaAs active layer using wet-chemical etching and non-planar lithography. Then we show that the active area of planar Hall probes can be downsized to sub-micrometer dimensions by local anodic oxidation technique using an atomic force microscope. Such planar probes are tested and their noise and magnetic field sensitivity are evaluated. Finally, the two technologies are combined to fabricate sub-micrometer Hall probes on the top of high-aspect ratio mesa for future SHPM and MFM techniques.

  20. Formation of ROS and RNS in Water Electro-Sprayed through Transient Spark Discharge in Air and their Bactericidal Effects

    Czech Academy of Sciences Publication Activity Database

    Machala, Z.; Tarabová, B.; Hensel, K.; Doležalová, Eva; Šikurová, L.; Lukeš, Petr

    2013-01-01

    Roč. 10, č. 7 (2013), s. 649-659 ISSN 1612-8850 R&D Projects: GA AV ČR IAAX00430802; GA ČR(CZ) GD104/09/H080; GA MŠk(CZ) MEB0810116 Institutional support: RVO:61389021 Keywords : Plasma electrospray * water * bacteria * hydrogen peroxide * peroxynitrite * cold plasma * water electro-spray Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.964, year: 2013 http://dx.doi.org/10.1002/ppap.201200113

  1. What Protein Charging (and Supercharging) Reveal about the Mechanism of Electrospray Ionization

    Science.gov (United States)

    Ogorzalek Loo, Rachel R.; Lakshmanan, Rajeswari; Loo, Joseph A.

    2014-10-01

    Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range, and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate with those observed by ESI-MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase, the extent of charging. This region incorporates properties (e.g., basicities) intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging ("supercharging") such as m-NBA, sulfolane, and 3-nitrobenzonitrile increase analyte charge from "denaturing" and "native" solvent systems. It is suggested that additives' Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carrying fewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte).

  2. Photon scanning tunneling microscope in combination with a force microscope

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Tack, R.G.; van Hulst, N.F.; Bölger, B.; Bölger, B.

    1994-01-01

    The simultaneous operation of a photon scanning tunneling microscope with an atomic force microscope is presented. The use of standard atomic force silicon nitride cantilevers as near-field optical probes offers the possibility to combine the two methods. Vertical forces and torsion are detected

  3. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization.

    Science.gov (United States)

    Talaty, Nari; Takáts, Zoltán; Cooks, R Graham

    2005-12-01

    Desorption electrospray ionization (DESI) mass spectrometry is applied to the in situ detection of alkaloids in the tissue of poison hemlock (Conium maculatum), jimsonweed (Datura stramonium) and deadly nightshade (Atropa belladonna). The experiment is carried out by electrospraying micro-droplets of solvent onto native or freshly-cut plant tissue surfaces. No sample preparation is required and the mass spectra are recorded under ambient conditions, in times of a few seconds. The impact of the sprayed droplets on the surface produces gaseous ions from organic compounds originally present in the plant tissue. The effects of operating parameters, including the electrospray high voltage, heated capillary temperature, the solvent infusion rate and the carrier gas pressure on analytical performance are evaluated and optimized. Different types of plant material are analyzed including seeds, stems, leaves, roots and flowers. All the previously reported alkaloids have been detected in C. maculatum, while fifteen out of nineteen known alkaloids for D. stramonium and the principal alkaloids of A. belladonna were also identified. All identifications were confirmed by tandem mass spectrometry. Results obtained show similar mass spectra, number of alkaloids, and signal intensities to those obtained when extraction and separation processes are performed prior to mass spectrometric analysis. Evidence is provided that DESI ionization occurs by both a gas-phase ionization process and by a droplet pick-up mechanism. Quantitative precision of DESI is compared with conventional electrospray ionization mass spectrometry (after sample workup) and the RSD values for the same set of 25 dicotyledonous C. maculatum seeds (one half of each seed analyzed by ESI and the other by DESI) are 9.8% and 5.2%, respectively.

  4. Experimental design and instability analysis of coaxial electrospray process for microencapsulation of drugs and imaging agents.

    Science.gov (United States)

    Si, Ting; Zhang, Leilei; Li, Guangbin; Roberts, Cynthia J; Yin, Xiezhen; Xu, Ronald

    2013-07-01

    Recent developments in multimodal imaging and image-guided therapy requires multilayered microparticles that encapsulate several imaging and therapeutic agents in the same carrier. However, commonly used microencapsulation processes have multiple limitations such as low encapsulation efficiency and loss of bioactivity for the encapsulated biological cargos. To overcome these limitations, we have carried out both experimental and theoretical studies on coaxial electrospray of multilayered microparticles. On the experimental side, an improved coaxial electrospray setup has been developed. A customized coaxial needle assembly combined with two ring electrodes has been used to enhance the stability of the cone and widen the process parameter range of the stable cone-jet mode. With this assembly, we have obtained poly(lactide-co-glycolide) microparticles with fine morphology and uniform size distribution. On the theoretical side, an instability analysis of the coaxial electrified jet has been performed based on the experimental parameters. The effects of process parameters on the formation of different unstable modes have been studied. The reported experimental and theoretical research represents a significant step toward quantitative control and optimization of the coaxial electrospray process for microencapsulation of multiple drugs and imaging agents in multimodal imaging and image-guided therapy.

  5. Simulation of Probe Position-Dependent Electron Energy-Loss Fine Structure

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, M. P.; Kapetanakis, M. D.; Prange, Micah P.; Varela, M.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2014-03-31

    We present a theoretical framework for calculating probe-position-dependent electron energy-loss near-edge structure for the scanning transmission electron microscope by combining density functional theory with dynamical scattering theory. We show how simpler approaches to calculating near-edge structure fail to include the fundamental physics needed to understand the evolution of near-edge structure as a function of probe position and investigate the dependence of near-edge structure on probe size. It is within this framework that density functional theory should be presented, in order to ensure that variations of near-edge structure are truly due to local electronic structure and how much from the diffraction and focusing of the electron beam.

  6. Use of an Open Port Sampling Interface Coupled to Electrospray Ionization for the On-Line Analysis of Organic Aerosol Particles

    Science.gov (United States)

    Swanson, Kenneth D.; Worth, Anne L.; Glish, Gary L.

    2018-02-01

    A simple design for an open port sampling interface coupled to electrospray ionization (OPSI-ESI) is presented for the analysis of organic aerosols. The design uses minimal modifications to a Bruker electrospray (ESI) emitter to create a continuous flow, self-aspirating open port sampling interface. Considerations are presented for introducing aerosol to the open port sampling interface including aerosol gas flow and solvent flow rates. The device has been demonstrated for use with an aerosol of nicotine as well as aerosol formed in the pyrolysis of biomass. Upon comparison with extractive electrospray ionization (EESI), this device has similar sensitivity with increased reproducibility by nearly a factor of three. The device has the form factor of a standard Bruker/Agilent ESI emitter and can be used without any further instrument modifications.

  7. Scanning electron microscopy and electron probe microanalyses of the crystalline components of human and animal dental calculi

    International Nuclear Information System (INIS)

    LeGeros, R.Z.; Orly, I.; LeGeros, J.P.; Gomez, C.; Kazimiroff, J.; Tarpley, T.; Kerebel, B.

    1988-01-01

    A review of the use of scanning electron microscopy (SEM) and electron probe microanalyses in the study of dental calculus showed that such studies provided confirmatory and supplementary data on the morphological features of human dental calculi but gave only limited information on the identity of the crystalline or inorganic components. This study aimed to explore the potential of combined SEM and microanalyses in the identification of the crystalline components of the human and animal dental calculi. Human and animal calculi were analyzed. Identification of the crystalline components were made based on the combined information of the morphology (SEM) and Ca/P molar ratios of the crystals with the morphology and Ca/P molar ratio of synthetic calcium phosphates (brushite or DCPD; octacalcium phosphate, OCP; Mg-substituted whitlockite, beta-TCMP; CO 3 -substituted apatite, (CHA); and calcite. SEM showed similarities in morphological features of human and animal dental calculi but differences in the forms of crystals present. Microanalyses and crystal morphology data suggested the presence of CaCO 3 (calcite) and CHA in the animal (cat, dog, tiger) and of OCP, beta-TCMP and CHA in human dental calculi. X-ray diffraction and infrared (IR) absorption analyses confirmed these results. This exploratory study demonstrated that by taking into consideration what is known about the crystalline components of human and animal dental calculi, combined SEM and microanalyses can provide qualitative identification

  8. LPG sensing characteristics of electrospray deposited SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Gürbüz, Mevlüt; Günkaya, Göktuğ; Doğan, Aydın

    2014-01-01

    Highlights: • SnO 2 nanopowder was deposited on conductive substrates using ESD technique. • Solution flow rate, coating time, substrate–nozzle distance and solid/alcohol ratio were studied to optimize SnO 2 film structure. • The gas sensing properties of tin oxide films were investigated using LPG. • The sensitivity of the films was increased with operating temperature. • The best sensitivity was observed for 20 LEL LPG at 450 °C operating temperature. - Abstract: In this study, SnO 2 films were fabricated on conductive substrate such as aluminum and platinum coated alumina using electro-spray deposition (ESD) method for gas sensor applications. Solution flow rate, coating time, substrate–nozzle distance and solid/alcohol ratio were studied to optimize SnO 2 film structure. The morphology of the deposited films was characterized by stereo and scanning electron microscopy (SEM). The gas sensing properties of tin oxide films were investigated using liquid petroleum gas (LPG) for various lower explosive limit (LEL). The results obtained from microscopic analyses show that optimum SnO 2 films were evaluated at flow rate of 0.05 ml/min, at distance of 6 cm, for 10 min deposition time, for 20 gSnO 2 /L ethanol ratio and at 7 kV DC electric field. By the results obtained from the gas sensing behavior, the sensitivity of the films was increased with operating temperature. The films showed better sensitivity for 20 LEL LPG concentration at 450 °C operating temperature

  9. New directions in point-contact spectroscopy based on scanning tunneling microscopy techniques (Review Article)

    International Nuclear Information System (INIS)

    Tartaglini, E.; Verhagen, T.G.A.; Galli, F.; Trouwborst, M.L.; Aarts, J.; Van-Ruitebbeek, J.M.; Muller, R.; Shiota, T.

    2013-01-01

    Igor Yanson showed 38 years ago for the first time a point-contact measurement where he probed the energy resolved spectroscopy of the electronic scattering inside the metal. Since this first measurement, the pointcontact spectroscopy (PCS) technique improved enormously. The application of the scanning probe microscopy (SPM) techniques in the late 1980s allowed achieving contacts with a diameter of a single atom. With the introduction of the mechanically controlled break junction technique, even spectroscopy on freely suspended chains of atoms could be performed. In this paper, we briefly review the current developments of PCS and show recent experiments in advanced scanning PCS based on SPM techniques. We describe some results obtained with both needle-anvil type of point contacts and scanning tunneling microscopy (STM). We also show our first attempt to lift up with a STM a chain of single gold atoms from a Au(110) surface.

  10. Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzenberg, Johannes [David Geffen School of Medicine, University of California, Department of Molecular and Medical Pharmacology, Ahmanson Biological Imaging Division, Los Angeles, CA (United States); Medical University of Vienna, Department of Pediatrics, Vienna (Austria); Radu, Caius G.; Tran, Andrew Q.; Phelps, Michael E.; Satyamurthy, Nagichettiar [David Geffen School of Medicine, University of California, Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, Los Angeles, CA (United States); Benz, Matthias; Fueger, Barbara; Czernin, Johannes; Schiepers, Christiaan [David Geffen School of Medicine, University of California, Department of Molecular and Medical Pharmacology, Ahmanson Biological Imaging Division, Los Angeles, CA (United States); Witte, Owen N. [David Geffen School of Medicine, University of California, Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA (United States)

    2011-04-15

    Deoxycytidine kinase (dCK) is a rate-limiting enzyme in deoxyribonucleoside salvage, a metabolic pathway involved in the production and maintenance of a balanced pool of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis. dCK phosphorylates and therefore activates nucleoside analogs such as cytarabine, gemcitabine, decitabine, cladribine, and clofarabine that are used routinely in cancer therapy. Imaging probes that target dCK might allow stratifying patients into likely responders and nonresponders with dCK-dependent prodrugs. Here we present the biodistribution and radiation dosimetry of three fluorinated dCK substrates, {sup 18}F-FAC, L-{sup 18}F-FAC, and L-{sup 18}F-FMAC, developed for positron emission tomography (PET) imaging of dCK activity in vivo. PET studies were performed in nine healthy human volunteers, three for each probe. After a transmission scan, the radiopharmaceutical was injected intravenously and three sequential emission scans acquired from the base of the skull to mid-thigh. Regions of interest encompassing visible organs were drawn on the first PET scan and copied to the subsequent scans. Activity in target organs was determined and absorbed dose estimated with OLINDA/EXM. The standardized uptake value was calculated for various organs at different times. Renal excretion was common to all three probes. Bone marrow had higher uptake for L-{sup 18}F-FAC and L-{sup 18}F-FMAC than {sup 18}F-FAC. Prominent liver uptake was seen in L-{sup 18}F-FMAC and L-{sup 18}F-FAC, whereas splenic activity was highest for {sup 18}F-FAC. Muscle uptake was also highest for {sup 18}F-FAC. The critical organ was the bladder wall for all three probes. The effective dose was 0.00524, 0.00755, and 0.00910 mSv/MBq for {sup 18}F-FAC, L-{sup 18}F-FAC, and L-{sup 18}F-FMAC, respectively. The biodistribution of {sup 18}F-FAC, L-{sup 18}F-FAC, and L-{sup 18}F-FMAC in humans reveals similarities and differences. Differences may be explained by different probe

  11. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Directory of Open Access Journals (Sweden)

    Héctor Corte-León

    2017-05-01

    Full Text Available Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM. Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE and anomalous Hall effects (AHE. The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  12. Magnetic scanning gate microscopy of CoFeB lateral spin valve

    Science.gov (United States)

    Corte-León, Héctor; Scarioni, Alexander Fernandez; Mansell, Rhodri; Krzysteczko, Patryk; Cox, David; McGrouther, Damien; McVitie, Stephen; Cowburn, Russell; Schumacher, Hans W.; Antonov, Vladimir; Kazakova, Olga

    2017-05-01

    Devices comprised of CoFeB nanostructures with perpendicular magnetic anisotropy and non-magnetic Ta channel were operated in thermal lateral spin valve (LSV) mode and studied by magnetotransport measurements and magnetic scanning gate microscopy (SGM). Due to the short spin diffusion length of Ta, the spin diffusion signal was suppressed, allowing the study of the contribution from the anomalous Nernst (ANE) and anomalous Hall effects (AHE). The magnetotransport measurements identified the switching fields of the CoFeB nanostructures and demonstrated a combination of AHE and ANE when the devices were operated in thermally-driven spin-injection mode. Modified scanning probe microscopy probes were fabricated by placing a NdFeB magnetic bead (MB) on the apex of a commercial Si probe. The dipole magnetic field distribution around the MB was characterized by using differential phase contrast technique and direct measurement of the switching field induced by the bead in the CoFeB nanodevices. Using SGM we demonstrate the influence of localized magnetic field on the CoFeB nanostructures near the non-magnetic channel. This approach provides a promising route towards the study of thermal and spin diffusion effects using local magnetic fields.

  13. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V. [Laboratoire de Photonique Quantique et Moleculaire, Ecole Normale Superieure de Cachan and CNRS UMR 8537, 94235 Cachan Cedex (France); Dal Savio, C.; Karrai, K. [Attocube systems AG, Koeniginstrasse 11A RGB, Munich 80539 (Germany); Dantelle, G. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique and CNRS UMR 7643, 91128 Palaiseau (France); Thiaville, A.; Rohart, S. [Laboratoire de Physique des Solides, Universite Paris-Sud and CNRS UMR 8502, 91405 Orsay (France)

    2012-04-09

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  14. Fischer Indole Synthesis in the Gas Phase, the Solution Phase, and at the Electrospray Droplet Interface.

    Science.gov (United States)

    Bain, Ryan M; Ayrton, Stephen T; Cooks, R Graham

    2017-07-01

    Previous reports have shown that reactions occurring in the microdroplets formed during electrospray ionization can, under the right conditions, exhibit significantly greater rates than the corresponding bulk solution-phase reactions. The observed acceleration under electrospray ionization could result from a solution-phase, a gas-phase, or an interfacial reaction. This study shows that a gas-phase ion/molecule (or ion/ion) reaction is not responsible for the observed rate enhancement in the particular case of the Fischer indole synthesis. The results show that the accelerated reaction proceeds in the microdroplets, and evidence is provided that an interfacial process is involved. Graphical Abstract GRAPHICAL ABSTRACT TEXT HERE] -->.

  15. On-chip electromembrane extraction for monitoring drug metabolism in real time by electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Petersen, Nickolaj J.; Pedersen, Jacob Sønderby; Poulsen, Nicklas Nørgård

    2012-01-01

    A temperature controlled (37 °C) metabolic reaction chamber with a volume of 1 mL was coupled directly to electrospray ionization mass spectrometry (ESI-MS) by the use of a 50 µm deep counter flow micro-chip electromembrane extraction (EME) system. The EME/ESI-MS system was used to study the in v......A temperature controlled (37 °C) metabolic reaction chamber with a volume of 1 mL was coupled directly to electrospray ionization mass spectrometry (ESI-MS) by the use of a 50 µm deep counter flow micro-chip electromembrane extraction (EME) system. The EME/ESI-MS system was used to study...

  16. Atomic physics with the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kleber, M.; Bracher, C.; Riza, M.

    1999-01-01

    Backscattering of atomic beams above a given surface yields information similar to the one obtained from scanning the same surface with a scanning tunneling microscope (STM): In both cases the experimentally accessible quantity is the local density of states (LDOS) n(r,E) of the surface. For the case of backscattering, the LDOS at the turning point of the atom is an important ingredient of the potential between atom and surface. In experiments performed with an STM, the LDOS at the apex of an atomically sharp tip can be determined directly. Probing surfaces locally by an STM allows for the study of basic phenomena in atomic physics, with tunneling of electrons in three dimensions being a central issue

  17. Probe-guided surgery: metastases of a papillary thyroid carcinoma. Surgical Excision

    International Nuclear Information System (INIS)

    Kowadlo, A.R.; Zund, S.; Perez Irigoyen, C.

    2008-01-01

    A male patient with papillary thyroid cancer -follicular variety- is chosen to be presented. After thyroidectomy, lymphadenectomy and therapeutic dose of radioiodine treatments, cancer relapse was observed. After thyrotrophin suppressive therapy with l-thyroxine, a high serum thyroglobulin concentration was observed. The Ultrasonography (US) and Magnetic Resonance (MR) images showed visible node structures in the neck. This node structures were probably going to concentrate I-131 as seen in the fi rst whole body scan after therapeutic dose. Therefore a radio-guided surgery was planned as the best choice. (Institute Gustave Roussy protocol). A therapeutic dose of radioiodine (I-131) was given and up to the 4th day a whole body scan was performed. In the 5th day a gamma- probe-guided surgery was performed as well, and localized metastatic foci in the pretracheal region and under right recurrent laryngeal nerve. No other foci were identified ed with the probe at surgery. Forty eight hours after surgery a new whole-body scan was made again. The procedure was successful. The metastatic lesions were completely dissected. The last whole body scan showed that radioiodine concentration had disappeared at all. Forty fi ve days and three months after surgery under levothyroxine treatment, the serum thyroglobulin level concentration decrease to very low values. (authors) [es

  18. Displaced dual-mode imaging with desorption electrospray ionization for simultaneous mass spectrometry imaging in both polarities and with several scan modes

    DEFF Research Database (Denmark)

    Janfelt, Christian; Wellner, Niels; Hansen, Harald S

    2013-01-01

    only. Simultaneous full-scan and MS/MS imaging was demonstrated on the same mouse kidney, as the mouse had been given a relatively low dose of the antidepressive drug amitriptyline. While the full-scan data allowed imaging of the endogenous phospholipids, the drug and its metabolites were only visible...

  19. A novel “Turn-On” fluorescent probe for F− detection in aqueous solution and its application in live-cell imaging

    International Nuclear Information System (INIS)

    Xu, Jian; Sun, Shaobo; Li, Qian; Yue, Ying; Li, Yingdong; Shao, Shijun

    2014-01-01

    Highlights: • A novel BODIPY-based “Turn-On” fluorescent probe was synthesized. • Highly selective detection of fluoride ions in 100% aqueous solution. • Study of sensing mechanism using density functional theory (DFT) calculations. • Fluorescent bioimaging of F − ion in A549 and ATII cells. - Abstract: A novel probe incorporating quaternized 4-pyridinium group into a BODIPY molecule was synthesized and studied for the selective detection of fluoride ions (F − ) in aqueous solution. The design was based on a fluoride-specific desilylation reaction and the “Turn-On” fluorescent response of probe 1 to F − was ascribed to the inhibition of photoinduced electron transfer (PET) process. The probe displayed many desired properties such as high specificity, appreciable solubility, desirable response time and low toxicity to mammalian cells. There was a good linearity between the fluorescence intensity and the concentrations of F − in the range of 0.1–1 mM with a detection limit of 0.02 mM. The sensing mechanism was confirmed by the NMR, electrospray ionization mass spectrum, optical spectroscopy and the mechanism of “Turn-On” fluorescent response was also determinated by a density functional theory (DFT) calculation using Gaussian 03 program. Moreover, the probe was successfully applied for the fluorescence imaging of F − in human epithelial lung cancer (A549) cells and alveolar type II (ATII) cells under physiological conditions

  20. Measurement of electro-sprayed 238 and 239+240 plutonium isotopes using 4π-alpha spectrometry. Application to environmental samples

    International Nuclear Information System (INIS)

    Charmoille-Roblot, M.

    1999-01-01

    A new protocol for plutonium deposition using the electro-spray technique coupled with 4π-α spectrometry is proposed to improve the detection limit, shorten the counting time. In order to increase the detection efficiency, it was proposed to measure 238 and 239+240 plutonium isotopes electro-sprayed deposit simultaneously on both sides of the source support, that must be as transparent as possible to alpha-emissions, in a two-alpha detectors chamber. A radiochemical protocol was adapted to electro-spray constraints and a very thin carbon foil was selected for 4π -alpha spectrometry. The method was applied to a batch of sediment samples and gave the same results as an electrodeposited source measured using conventional alpha spectrometry with a 25 % gain on counting time and 10 % on plutonium 238 detection limit. Validation and application of the technique have been made on reference samples. (author)