WorldWideScience

Sample records for scanning force microscopy

  1. Spiral scanning method for atomic force microscopy.

    Science.gov (United States)

    Hung, Shao-Kang

    2010-07-01

    A spiral scanning method is proposed for atomic force microscopy with thoroughgoing analysis and implementation. Comparing with the traditional line-by-line scanning method, the spiral scanning method demonstrates higher imaging speed, minor image distortion, and lower acceleration, which can damage the piezoelectric scanner. Employing the spiral scanning method to replace the line-by-line scanning method, the experiment shows that the time to complete an imaging cycle can be reduced from 800 s to 314 s without sacrificing the image resolution.

  2. Chemical Phenomena of Atomic Force Microscopy Scanning.

    Science.gov (United States)

    Ievlev, Anton V; Brown, Chance; Burch, Matthew J; Agar, Joshua C; Velarde, Gabriel A; Martin, Lane W; Maksymovych, Petro; Kalinin, Sergei V; Ovchinnikova, Olga S

    2018-02-12

    Atomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample. However, an in-depth study of the confined chemical processes taking place at the tip-surface junction and the associated chemical changes to the material surface have been missing as of now. Here, we used a hybrid system that combines time-of-flight secondary ion mass spectrometry with an atomic force microscopy to investigate the chemical interactions that take place at the tip-surface junction. Investigations showed that even basic contact mode AFM scanning is able to modify the surface of the studied sample. In particular, we found that the silicone oils deposited from the AFM tip into the scanned regions and spread to distances exceeding 15 μm from the tip. These oils were determined to come from standard gel boxes used for the storage of the tips. The explored phenomena are important for interpreting and understanding results of AFM mechanical and electrical studies relying on the state of the tip-surface junction.

  3. Structural examination of lithium niobate ferroelectric crystals by combining scanning electron microscopy and atomic force microscopy

    Science.gov (United States)

    Efremova, P. V.; Ped'ko, B. B.; Kuznecova, Yu. V.

    2016-02-01

    The structure of lithium niobate single crystals is studied by a complex technique that combines scanning electron microscopy and atomic force microscopy. By implementing the piezoresponse force method on an atomic force microscope, the domain structure of lithium niobate crystals, which was not revealed without electron beam irradiation, is visualized

  4. Polarization contrast in photon scanning tunnelling microscopy combined with atomic force microscopy

    NARCIS (Netherlands)

    Propstra, K.; Propstra, K.; van Hulst, N.F.

    1995-01-01

    Photon scanning tunnelling microscopy combined with atomic force microscopy allows simultaneous acquisition and direct comparison of optical and topographical images, both with a lateral resolution of about 30 nm, far beyond the optical diffraction limit. The probe consists of a modified

  5. Humidity effects on scanning polarization force microscopy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue, E-mail: shenyue@isl.ac.cn [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, Yuan, E-mail: zhouy@isl.ac.cn [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Sun, Yanxia; Zhang, Lijuan [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Ying; Hu, Jun; Zhang, Yi [Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-08-01

    Highlights: • The humidity dramatically affects the contrast of scanning polarization force microscopy (SPFM) imaging on mica surface. • This influence roots in the sensitive dielectric constant of mica surface to the humidity change. • A strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM is proposed. - Abstract: Scanning polarization force microscopy (SPFM) is a useful surface characterization technique to visually characterize and distinguish nanomaterial with different local dielectric properties at nanometer scale. In this paper, taking the individual one-atom-thick graphene oxide (GO) and reduced graphene oxide (rGO) sheets on mica as examples, we described the influences of environmental humidity on SPFM imaging. We found that the apparent heights (AHs) or contrast of SPFM imaging was influenced significantly by relative humidity (RH) at a response time of a few seconds. And this influence rooted in the sensitive dielectric constant of mica surface to the RH change. While dielectric properties of GO and rGO sheets were almost immune to the humidity change. In addition, we gave the method to determine the critical humidity at which the contrast conversion happened under different conditions. And this is important to the contrast control and repeatable imaging of SPFM through RH adjusting. These findings suggest a strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM, which is critically important for further distinguishment, manipulation, electronic applications, etc.

  6. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Science.gov (United States)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  7. Humidity effects on scanning polarization force microscopy imaging

    Science.gov (United States)

    Shen, Yue; Zhou, Yuan; Sun, Yanxia; Zhang, Lijuan; Wang, Ying; Hu, Jun; Zhang, Yi

    2017-08-01

    Scanning polarization force microscopy (SPFM) is a useful surface characterization technique to visually characterize and distinguish nanomaterial with different local dielectric properties at nanometer scale. In this paper, taking the individual one-atom-thick graphene oxide (GO) and reduced graphene oxide (rGO) sheets on mica as examples, we described the influences of environmental humidity on SPFM imaging. We found that the apparent heights (AHs) or contrast of SPFM imaging was influenced significantly by relative humidity (RH) at a response time of a few seconds. And this influence rooted in the sensitive dielectric constant of mica surface to the RH change. While dielectric properties of GO and rGO sheets were almost immune to the humidity change. In addition, we gave the method to determine the critical humidity at which the contrast conversion happened under different conditions. And this is important to the contrast control and repeatable imaging of SPFM through RH adjusting. These findings suggest a strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM, which is critically important for further distinguishment, manipulation, electronic applications, etc.

  8. Observation of silicon carbide Schottky barrier diode under applied reverse bias using atomic force microscopy/Kelvin probe force microscopy/scanning capacitance force microscopy

    Science.gov (United States)

    Uruma, Takeshi; Satoh, Nobuo; Yamamoto, Hidekazu

    2017-08-01

    We have observed a commercial silicon-carbide Schottky barrier diode (SiC-SBD) using our novel analysis system, in which atomic force microscopy (AFM) is combined with both Kelvin probe force microscopy (KFM; for surface-potential measurement) and scanning capacitance force microscopy (SCFM; for differential-capacitance measurement). The results obtained for the SiC-SBD under an applied reverse bias indicate both the scan area in the sample and a peak value of the SCFM signal in the region where the existence of trapped electrons is deduced from the KFM analysis. Thus, our measurement system can be used to examine commercial power devices; however, novel polishing procedures are required in order to investigate the Schottky contact region.

  9. Simultaneous Scanning Ion Conductance Microscopy and Atomic Force Microscopy with Microchanneled Cantilevers.

    Science.gov (United States)

    Ossola, Dario; Dorwling-Carter, Livie; Dermutz, Harald; Behr, Pascal; Vörös, János; Zambelli, Tomaso

    2015-12-04

    We combined scanning ion conductance microscopy (SICM) and atomic force microscopy (AFM) into a single tool using AFM cantilevers with an embedded microchannel flowing into the nanosized aperture at the apex of the hollow pyramid. An electrode was positioned in the AFM fluidic circuit connected to a second electrode in the bath. We could thus simultaneously measure the ionic current and the cantilever bending (in optical beam deflection mode). First, we quantitatively compared the SICM and AFM contact points on the approach curves. Second, we estimated where the probe in SICM mode touches the sample during scanning on a calibration grid and applied the finding to image a network of neurites on a Petri dish. Finally, we assessed the feasibility of a double controller using both the ionic current and the deflection as input signals of the piezofeedback. The experimental data were rationalized in the framework of finite elements simulations.

  10. High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues

    Science.gov (United States)

    Bazaei, A.; Yong, Yuen K.; Moheimani, S. O. Reza

    2012-06-01

    Tracking of triangular or sawtooth waveforms is a major difficulty for achieving high-speed operation in many scanning applications such as scanning probe microscopy. Such non-smooth waveforms contain high order harmonics of the scan frequency that can excite mechanical resonant modes of the positioning system, limiting the scan range and bandwidth. Hence, fast raster scanning often leads to image distortion. This paper proposes analysis and design methodologies for a nonlinear and smooth closed curve, known as Lissajous pattern, which allows much faster operations compared to the ordinary scan patterns. A simple closed-form measure is formulated for the image resolution of the Lissajous pattern. This enables us to systematically determine the scan parameters. Using internal model controllers (IMC), this non-raster scan method is implemented on a commercial atomic force microscope driven by a low resonance frequency positioning stage. To reduce the tracking errors due to actuator nonlinearities, higher order harmonic oscillators are included in the IMC controllers. This results in significant improvement compared to the traditional IMC method. It is shown that the proposed IMC controller achieves much better tracking performances compared to integral controllers when the noise rejection performances is a concern.

  11. Plastic-to-Elastic Transition in Aggregated Emulsion Networks, Studied with Atomic Force Microscopy-Confocal Scanning Laser Microscopy Microrheology

    NARCIS (Netherlands)

    Filip, D.; Duits, Michael H.G.; Uricanu, V.I.; Mellema, J.

    2006-01-01

    In this paper, we demonstrate how the simultaneous application of atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM) can be used to characterize the (local) rheological properties of soft condensed matter at micrometer length scales. Measurement of AFM force curves as a

  12. Spectral analysis of irregular roughness artifacts measured by atomic force microscopy and laser scanning microscopy.

    Science.gov (United States)

    Chen, Yuhang; Luo, Tingting; Ma, Chengfu; Huang, Wenhao; Gao, Sitian

    2014-12-01

    Atomic force microscopy (AFM) and laser scanning microscopy (LSM) measurements on a series of specially designed roughness artifacts were performed and the results characterized by spectral analysis. As demonstrated by comparisons, both AFM and LSM can image the complex structures with high resolution and fidelity. When the surface autocorrelation length increases from 200 to 500 nm, the cumulative power spectral density spectra of the design, AFM and LSM data reach a better agreement with each other. The critical wavelength of AFM characterization is smaller than that of LSM, and the gap between the measured and designed critical wavelengths is reduced with an increase in the surface autocorrelation length. Topography measurements of surfaces with a near zero or negatively skewed height distribution were determined to be accurate. However, obvious discrepancies were found for surfaces with a positive skewness owing to more severe dilations of either the solid tip of the AFM or the laser tip of the LSM. Further surface parameter evaluation and template matching analysis verified that the main distortions in AFM measurements are tip dilations while those in LSM are generally larger and more complex.

  13. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses.

    Science.gov (United States)

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-09-01

    Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental

  14. Local analysis of semiconductor nanoobjects by scanning tunneling atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Natalia A. Lashkova

    2015-03-01

    Full Text Available The features of the current–voltage (I–V measurements in local regions of semiconductor nanostructures by conductive atomic force microscopy (AFM are discussed. The standard procedure of I–V measurements in conductive AFM leads not infrequently to the thermomechanical stresses in the sample and, as a consequence, nonreproducibility and unreliability of measurements. The technique of obtaining reproducible current–voltage characteristics is proposed. According to the technique, a series of measurements of the selected scanning area in the mode of conducting AFM should be taken, each at the certain value of the potential. According to a series of scans I–V curve at a particular point (for any point of the scan was plotted. The program is realized in the LabVIEW software. The proposed method extends the capabilities of scanning probe microscopy in the diagnosis of nanostructured semiconductor materials.

  15. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  16. Practical aspects of single-pass scan Kelvin probe force microscopy

    Science.gov (United States)

    Li, Guangyong; Mao, Bin; Lan, Fei; Liu, Liming

    2012-11-01

    The single-pass scan Kelvin probe force microscopy (KPFM) in ambient condition has a few advantages over the dual-pass lift-up scan KPFM. For example, its spatial resolution is expected to be higher; and its topographical errors caused by electrostatic forces are minimized because electrostatic forces are actively suppressed during the simultaneous topographical and KPFM measurement. Because single-pass scan KPFM in ambient condition is relatively new, it received little attention in the literature so far. In this article, we discuss several major practical aspects of single-pass scan KPFM especially in ambient condition. First, we define the resolution using a point spread function. With this definition, we analyze the relation between the resolution and the scanning parameters such as tip apex radius and tip-surface distance. We further study the accuracy of KPFM based on the point spread function. Then, we analyze the sensitivity of KPFM under different operation modes. Finally, we investigate the crosstalk between the topographical image and the surface potential image and demonstrate the practical ways to minimize the crosstalk. These discussions not only help us to understand the single-pass scan KPFM but also provide practical guidance in using single-pass scan KPFM.

  17. Application of scanning force and near field microscopies to the characterization of minimally adhesive polymer surfaces.

    Science.gov (United States)

    Akhremitchev, Boris B; Bemis, Jason E; al-Maawali, Sabah; Sun, Yujie; Stebounova, Larissa; Walker, Gilbert C

    2003-04-01

    This mini-review reports efforts to develop new scanning probe microscopies to characterize the function and aging of textured, minimally adhesive polymer surfaces used for antifouling applications in the marine environment. Novel atomic force and infrared near field microscopy techniques have been used to characterize the polymer surface adhesion and structural properties. These techniques may find promise for characterizing the deposition of the extracellular matrix of organisms as well as aging of the polymer coating itself. The reported work is part of a larger effort to reduce biofouling on ships' hulls through the development and use of improved coating materials.

  18. Quantitative imaging of electrospun fibers by PeakForce Quantitative NanoMechanics atomic force microscopy using etched scanning probes.

    Science.gov (United States)

    Chlanda, Adrian; Rebis, Janusz; Kijeńska, Ewa; Wozniak, Michal J; Rozniatowski, Krzysztof; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof J

    2015-05-01

    Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale. Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement. In the presented work the nanomechanical properties of four different polymer based electrospun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy

    Science.gov (United States)

    Stetsovych, Oleksandr; Todorović, Milica; Shimizu, Tomoko K.; Moreno, César; Ryan, James William; León, Carmen Pérez; Sagisaka, Keisuke; Palomares, Emilio; Matolín, Vladimír; Fujita, Daisuke; Perez, Ruben; Custance, Oscar

    2015-01-01

    Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials. PMID:26118408

  20. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses

    OpenAIRE

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-01-01

    Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron ...

  1. Plasma-deposited fluorocarbon films: insulation material for microelectrodes and combined atomic force microscopy-scanning electrochemical microscopy probes.

    Science.gov (United States)

    Wiedemair, Justyna; Balu, Balamurali; Moon, Jong-Seok; Hess, Dennis W; Mizaikoff, Boris; Kranz, Christine

    2008-07-01

    Pinhole-free insulation of micro- and nanoelectrodes is the key to successful microelectrochemical experiments performed in vivo or in combination with scanning probe experiments. A novel insulation technique based on fluorocarbon insulation layers deposited from pentafluoroethane (PFE, CF3CHF2) plasmas is presented as a promising electrical insulation approach for microelectrodes and combined atomic force microscopy-scanning electrochemical microscopy (AFM-SECM) probes. The deposition allows reproducible and uniform coating, which is essential for many analytical applications of micro- and nanoelectrodes such as, e.g., in vivo experiments and SECM experiments. Disk-shaped microelectrodes and frame-shaped AFM tip-integrated electrodes have been fabricated by postinsulation focused ion beam (FIB) milling. The thin insulation layer for combined AFM-SECM probes renders this fabrication technique particularly useful for submicro insulation providing radius ratios of the outer insulation versus the disk electrode (RG values) suitable for SECM experiments. Characterization of PFE-insulated AFM-SECM probes will be presented along with combined AFM-SECM approach curves and imaging.

  2. Smoking and fluidity of erythrocyte membranes: a high resolution scanning electron and atomic force microscopy investigation.

    Science.gov (United States)

    Pretorius, Etheresia; du Plooy, Jeanette N; Soma, Prashilla; Keyser, Ina; Buys, Antoinette V

    2013-11-30

    Smoking affects the general health of an individual, however, the red blood cells (RBCs) and their architecture are particularly vulnerable to inhaled toxins related to smoking. Smoking is one of the lifestyle diseases that are responsible for the most deaths worldwide and an individual who smokes is exposed to excessive amounts of oxidants and toxins which generate up to 10(18) free radicals in the human body. Recently, it was reported that smoking decreases RBC membrane fluidity. Here we confirm this and we show changes visible in the topography of RBC membranes, using scanning electron microscopy (SEM). RBC membranes show bubble formation of the phospholipid layer, as well as balloon-like smooth areas; while their general discoid shapes are changed to form pointed extensions. We also investigate membrane roughness using atomic force microscopy (AFM) and these results confirm SEM results. Due to the vast capability of RBCs to be adaptable, their state of well-being is a major indication for the general health status of an individual. We conclude that these changes, using an old technique in a novel application, may provide new insights and new avenues for future improvements in clinical medicine pertaining to conditions like COPD. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Application of triangular atomic force microscopy cantilevers to friction measurement with the improved parallel scan method.

    Science.gov (United States)

    Wang, Yu-Liang; Zhao, Xue-Zeng

    2009-02-01

    The atomic force microscopy (AFM) can provide tribological information in micro/nanoscale. However, the general measurement techniques require rigorous value of stiffness and relationship between AFM cantilever deformation and corresponding photodetector response. In this study, triangular AFM cantilevers with different dimensions are applied to quantitatively measure the coefficient of friction with the improved parallel scan method [Y. L. Wang, X. Z. Zhao, and F. Q. Zhou, Rev. Sci. Instrum. 78, 036107 (2007)]. An analytical model is first presented with the plan-view geometrical dimensions of cantilevers. Finite element analysis (FEA) models are set up to validate the analytical model. The results show good agreement between analytical calculation and FEA simulation. More importantly, the coefficient of friction obtained with different cantilevers on silicon surface shows a good consistency. At last, the factors which may affect measurement are discussed. The advantage of the model presented here is that the general uncertainties of thickness and Young's modulus are not necessary to be known for the friction force calibration in AFM application.

  4. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  5. Growth and dissolution on the CaF 2 (111) surface observed by scanning force microscopy

    Science.gov (United States)

    Jordan, Guntram; Rammensee, Werner

    1997-02-01

    Scanning force microscopy (SFM) was used for in situ growth and dissolution experiments on the CaF 2 (111) surface in various aqueous solutions in order to investigate chemical processes within the CaF 2-water interface. Apart from growth and dissolution, a further process, the formation of protrusions, takes place in the interfacial region. These protrusions are inhomogeneously distributed but uniform in height (2.5-4 nm). The areal density of protrusions depends on the pH value and degree of saturation of the solution. In addition, experiments with in situ exchanged solutions show that the areal density depends further on the sequence of application of the solutions. These and other observations indicate that surface defects which are considered to form surface hydroxyl groups lead to the formation of protrusions. Therefore, we conclude that the protrusions represent surface precipitates which consist of multinuclear calcium (aquo) hydroxo complexes connected to surface hydroxyl groups. The existence of these hydroxo complexes cannot be explained by classical equilibrium thermodynamics of bulk reactions. Their formation is enabled by the different dielectric constant in the electrical double layer. Depending on the composition of solution and the defect density, the complexes reduce the active surface area of CaF 2 and therefore affect the growth and dissolution rates.

  6. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy.

    Science.gov (United States)

    König, Thomas; Simon, Georg H; Heinke, Lars; Lichtenstein, Leonid; Heyde, Markus

    2011-01-01

    Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001) and line defects in aluminum oxide on NiAl(110), respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM) and the electronic structure by scanning tunneling spectroscopy (STS). On magnesium oxide, different color centers, i.e., F(0), F(+), F(2+) and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F(2+)-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  7. Precrystallization structures in supersaturated lysozyme solutions studied by dynamic light scattering and scanning force microscopy

    Science.gov (United States)

    Schaper, Achim; Georgalis, Yannis; Umbach, Patrick; Raptis, Jannis; Saenger, Wolfram

    1997-05-01

    A comparitive study of the nanostructure evolving during aggregation of hen-egg white lysozyme in supersaturated solution was carried out by dynamic light scattering (DLS) and scanning force microscopy (SFM). Lysozyme aggregate (cluster) formation was observed in solution in the presence of NaCl, (NH4)2SO4, and NaNO3 as precipitating agents. The growth kinetics were examined by DLS and revealed fractal growth of the clusters with a fractal dimension of 1.8 obtained independently of the type of inert salt. Such behavior is typical for diffusion-limited cluster-cluster (DLCA) aggregation. Initial lysozyme cluster sizes were in the range of 12-35 nm. SFM images of individual lysozyme clusters at the liquid-solid interface were obtained in the presence of NaCl and NaNO3 under crystallization conditions, and revealed cluster sizes in agreement with those determined by DLS. Extended domains of smaller sized clusters appeared on the mica surface after subjecting supersaturated lysozyme solutions to a dialysis step. The feasibility of DLS and SFM for monitoring the nano- and mesoscopic morphology of lysozyme aggregates in supersatured solutions and at the solid-liquid interface is discussed.

  8. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Thomas König

    2011-01-01

    Full Text Available Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001 and line defects in aluminum oxide on NiAl(110, respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM and the electronic structure by scanning tunneling spectroscopy (STS. On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  9. Scanning ultrafast electron microscopy

    OpenAIRE

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for whic...

  10. Scanning force microscopy with chemical specificity : An extensive study of chemically specific tip-surface interactions and the chemical imaging of surface functional groups

    NARCIS (Netherlands)

    van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    An extensive and systematic scanning force microscopy (SFM) study is presented. The observations are based on hydrogen bonding, van der Waals, and Coulombic interactions between the scanning probe (tip) and the substrate and provide the basis for scanning force microscopy with chemical specificity

  11. Scanning ion conductance microscopy with distance-modulated shear force control

    Science.gov (United States)

    Böcker, Matthias; Anczykowski, Boris; Wegener, Joachim; Schäffer, Tilman E.

    2007-04-01

    A scanning ion conductance microscope (SICM) is based on a tapered nanopipette as a nanoscale conductance probe that is scanned over a sample submerged in an electrolyte solution. In conventional SICM scanning the ion current through the pipette aperture is at the nano- and picoampere level and is influenced by both sample topography and local conductance. Here we present an SICM with integrated shear-force distance control that allows measuring the ion current independently of sample topography. The nanopipette is hereby transversally vibrated and the shear forces that arise are detected optically with the help of two periscopes that are partially submerged in the electrolyte. We also present a new imaging mode designed to facilitate shear-force imaging of soft samples. This mode is based on a periodic modulation of the pipette-sample distance combined with triggered sampling, reducing the probability for sample and pipette damage and increasing the image quality. We apply this imaging mode to polycarbonate membranes and mammalian cells.

  12. Transfected single-cell imaging by scanning electrochemical optical microscopy with shear force feedback regulation.

    Science.gov (United States)

    Takahashi, Yasufumi; Shiku, Hitoshi; Murata, Tatsuya; Yasukawa, Tomoyuki; Matsue, Tomokazu

    2009-12-01

    Gene-transfected single HeLa cells were characterized using a scanning electrochemical/optical microscope (SECM/OM) system with shear-force-based probe-sample distance regulation to simultaneously capture electrochemical, fluorescent, and topographic images. The outer and inner states of single living cells were obtained as electrochemical and fluorescent signals, respectively, by using an optical fiber-nanoelectrode probe. A focused ion beam (FIB) was used to mill the optical aperture and the ring electrode at the probe apex (the inner and outer radii of the ring electrode were 37 and 112 nm, respectively). To apply an appropriate shear force between the probe tip and the living cell surface, we optimized the amplitude of oscillation of the tuning fork to which the probe was attached. Field-programmable gate arrays (FPGA) were adopted to drastically increase the feedback speed of the tip-sample distance regulation, shorten the scanning time for imaging, and enhance the accuracy and quality of the living cell images. In employing these improvements, we simultaneously measured the cellular expression activity of both secreted alkaline phosphatase outside and GFP inside by using the SECM/OM with shear force distance regulation.

  13. In-situ scanning electron microscopy and atomic force microscopy Young's modulus determination of indium oxide microrods for micromechanical resonator applications

    Energy Technology Data Exchange (ETDEWEB)

    Bartolomé, Javier; Hidalgo, Pedro; Maestre, David; Cremades, Ana, E-mail: cremades@fis.ucm.es; Piqueras, Javier [Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2014-04-21

    Electric field induced mechanical resonances of In{sub 2}O{sub 3} microrods are studied by in-situ measurements in the chamber of a scanning electron microscope. Young's moduli of rods with different cross-sectional shapes are calculated from the resonance frequency, and a range of values between 131 and 152 GPa are obtained. A quality factor of 1180–3780 is measured from the amplitude-frequency curves, revealing the suitability of In{sub 2}O{sub 3} microrods as micromechanical resonators. The Young's modulus, E, of one of the rods is also measured from the elastic response in the force-displacement curve recorded in an atomic force microscope. E values obtained by in-situ scanning electron microscopy and by atomic force microscopy are found to differ in about 8%. The results provide data on Young's modulus of In{sub 2}O{sub 3} and confirm the suitability of in-situ scanning electron microscopy mechanical resonance measurements to investigate the elastic behavior of semiconductor microrods.

  14. The effect of different chemical agents on human enamel: an atomic force and scanning electron microscopy study

    Science.gov (United States)

    Rominu, Roxana O.; Rominu, Mihai; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Pop, Daniela; Petrescu, Emanuela

    2010-12-01

    PURPOSE: The goal of our study was to investigate the changes in enamel surface roughess induced by the application of different chemical substances by atomic force microscopy and scanning electron microscopy. METHOD: Five sound human first upper premolar teeth were chosen for the study. The buccal surface of each tooth was treated with a different chemical agent as follows: Sample 1 - 38% phosphoric acid etching (30s) , sample 2 - no surface treatment (control sample), 3 - bleaching with 37.5 % hydrogen peroxide (according to the manufacturer's instructions), 4 - conditioning with a self-etching primer (15 s), 5 - 9.6 % hydrofluoric acid etching (30s). All samples were investigated by atomic force microscopy in a non-contact mode and by scanning electron microscopy. Several images were obtained for each sample, showing evident differences regarding enamel surface morphology. The mean surface roughness and the mean square roughness were calculated and compared. RESULTS: All chemical substances led to an increased surface roughness. Phosphoric acid led to the highest roughness while the control sample showed the lowest. Hydrofluoric acid also led to an increase in surface roughness but its effects have yet to be investigated due to its potential toxicity. CONCLUSIONS: By treating the human enamel with the above mentioned chemical compounds a negative microretentive surface is obtained, with a morphology depending on the applied substance.

  15. Scanning ultrafast electron microscopy.

    Science.gov (United States)

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  16. Magnetic force microscopy of atherosclerotic plaque

    National Research Council Canada - National Science Library

    T A Alexeeva; S V Gorobets; O Yu Gorobets; I V Demianenko; O M Lazarenko

    2014-01-01

    In this work by methods of scanning probe microscopy, namely by atomic force microscopy and magnetic force microscopy the fragments of atherosclerotic plaque section of different nature were investigated...

  17. In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy.

    Science.gov (United States)

    Zhang, Yanshu; Yoshida, Aiko; Sakai, Nobuaki; Uekusa, Yoshitsugu; Kumeta, Masahiro; Yoshimura, Shige H

    2017-08-01

    Together with lamellipodia and stress fibers, a dynamic network of actin filaments in the cell cortex plays a major role in the maintenance of cell morphology and motility. In contrast to lamellipodia, which have been well studied in various motile cells, the dynamics of actin filaments in the cell cortex have not yet been clarified due to a lack of proper imaging techniques. Here, we utilized high-speed atomic force microscopy for live-cell imaging and analyzed cortical actin dynamics in living cells. We successfully measured the polymerization rate and the frequency of filament synthesis in living COS-7 cells, and examined the associated effects of various inhibitors and actin-binding proteins. Actin filaments are synthesized beneath the plasma membrane and eventually descend into the cytoplasm. The inhibitors, cytochalasin B inhibited the polymerization, while jasplakinolide, inhibited the turnover of actin filaments as well as descension of the newly synthesized filaments, suggesting that actin polymerization near the membrane drives turnover of the cortical actin meshwork. We also determined how actin turnover is maintained and regulated by the free G-actin pool and G-actin binding proteins such as profilin and thymosin β4, and found that only a small amount of free G-actin was present in the cortex. Finally, we analyzed several different cell types, and found that the mesh size and the orientation of actin filaments were highly divergent, indicating the involvement of various actin-binding proteins in the maintenance and regulation of cortical actin architecture in each cell type. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Quantitative analysis of sharp-force trauma: an application of scanning electron microscopy in forensic anthropology.

    Science.gov (United States)

    Bartelink, E J; Wiersema, J M; Demaree, R S

    2001-11-01

    Scanning electron microscopy (SEM) has occasionally been used by anthropologists and forensic scientists to look at morphological characteristics that certain implements leave on bone. However, few studies have addressed techniques or protocols for assessing quantitative differences between tool marks on bone made by different bladed implements. In this study, the statistical variation in cut mark width was examined between control and test samples on bone using a scalpel blade, paring knife, and kitchen utility knife. Statistically significant differences (p marks made by the same knife under control and test conditions for all three knife types used in the study. When the control sample and test samples were examined individually for differences in mean variation between knife types, significant differences were also found (p mark width were found, caution should be used in trying to classify individual cut marks as being inflicted by a particular implement, due to the overlap in cut mark width that exists between different knife types. When combined, both quantitative and qualitative analyses of cut marks should prove to be more useful in trying to identify a suspect weapon. Furthermore, the application of SEM can be particularly useful for assessing many of these features.

  19. Microstructure of Monoplacophora (Mollusca) shell examined by low-voltage field emission scanning electron and atomic force microscopy.

    Science.gov (United States)

    Cruz, Renato; Weissmüller, Gilberto; Farina, Marcos

    2003-01-01

    The shell of Micropilina arntzi (Mollusca: Monoplacophora), a primitive molluscan class, was examined by using field emission scanning electron microscopy (FESEM) at low voltage and atomic force microscopy (AFM). The use of these two techniques allowed the observation of fine details of Micropilina arntzi shell and contributed to bring new features concerning the study of molluscan shell microtexture. Imaging with low-voltage FESEM provided well-defined edge contours of shell structures, while analyzing the sample with AFM gave information about the step height of stacked internal structures as well as the dimension of the particles present in their surface at a nanometric level. The shell microstructure of Monoplacophora species presents different patterns and may be a taxonomic implication in the systematic studies of the group.

  20. High-Resolution Imaging of Polyethylene Glycol Coated Dendrimers via Combined Atomic Force and Scanning Tunneling Microscopy

    Directory of Open Access Journals (Sweden)

    Shawn Riechers

    2015-01-01

    Full Text Available Dendrimers have shown great promise as drug delivery vehicles in recent years because they can be synthesized with designed size and functionalities for optimal transportation, targeting, and biocompatibility. One of the most well-known termini used for biocompatibility is polyethylene glycol (PEG, whose performance is affected by its actual conformation. However, the conformation of individual PEG bound to soft materials such as dendrimers has not been directly observed. Using atomic force microscopy (AFM and scanning tunneling microscopy (STM, this work characterizes the structure adopted by PEGylated dendrimers with the highest resolution reported to date. AFM imaging enables visualization of the individual dendrimers, as well as the differentiation and characterization of the dendrimer core and PEG shell. STM provides direct imaging of the PEG extensions with high-resolution. Collectively, this investigation provides important insight into the structure of coated dendrimers, which is crucial for the design and development of better drug delivery vehicles.

  1. Atomic force microscopy and scanning electron microscopy evaluation of efficacy of scaling and root planing using magnification: A randomized controlled clinical study.

    Science.gov (United States)

    Mohan, Ranjana; Agrawal, Sudhanshu; Gundappa, Mohan

    2013-07-01

    A randomized controlled clinical study was undertaken to evaluate the effectiveness of scaling and root planing (SRP) by using Magnifying Loupes (ML) and dental operating microscope (DOM). A total of 90 human teeth scheduled for extraction from 18 patients aged between 25 and 65 years suffering from generalized chronic severe periodontitis were randomly assigned to three treatment groups. Group 1 consisted SRP performed without using magnification (unaided), Group 2-SRP with ML and Group 3-SRP with DOM. Following extractions, samples were prepared for (i) evaluation of surface topography by atomic force microscopy, (ii) presence of smear layer, debris by scanning electron microscopy (iii) elemental analysis by energy dispersive X-ray analysis. Data was subjected to statistical analysis using analysis of variance, post-hoc (Tukey-HSD) and Chi-square test. Statistically significant (P Magnification tools significantly enhance the efficacy of supragingival and subgingival SRP.

  2. Nano-scale imaging of chromosomes and DNA by scanning near-field optical/atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Tomoyuki; Sugiyama, Shigeru; Hagiwara, Shoji; Fukushi, Daisuke; Shichiri, Motoharu; Nakao, Hidenobu; Kim, J.-M.; Hirose, Tamaki; Muramatsu, Hiroshi; Ohtani, Toshio

    2003-10-15

    Nano-scale structures of the YOYO-1-stained barley chromosomes and lambda-phage DNA were investigated by scanning near-field optical/atomic force microscopy (SNOM/AFM). This technique enabled precise analysis of fluorescence structural images in relation to the morphology of the biomaterials. The results suggested that the fluorescence intensity does not always correspond to topographic height of the chromosomes, but roughly reflects the local amount and/or density of DNA. Various sizes of the bright fluorescence spots were clearly observed in fluorescence banding-treated chromosomes. Furthermore, fluorescence-stained lambda-phage DNA analysis by SNOM/AFM demonstrated the possibility of nanometer-scale imaging for a novel technique termed nano-fluorescence in situ hybridization (nano-FISH). Thus, SNOM/AFM is a powerful tool for analyzing the structure and the function of biomaterials with higher resolution than conventional optical microscopes.

  3. INVESTIGATION OF POLYMER SURFACES USING SCANNING FORCE MICROSCOPY (SFM) - A NEW DIRECT LOOK ON OLD POLYMER PROBLEMS

    NARCIS (Netherlands)

    GRIM, PCM; BROUWER, HJ; SEYGER, RM; OOSTERGETEL, GT; BERGSMASCHUTTER, WG; ARNBERG, AC; GUTHNER, P; DRANSFELD, K; HADZIIOANNOU, G

    In this contribution, the general concepts of force microscopy will be presented together with its application to polymer surfaces (Ref.1). Several examples will be presented to illustrate that force microscopy is a powerful and promising tool for investigation of (polymer) surfaces, such as the

  4. Scanning force microscopy at the air-water interface of an air bubble coated with pulmonary surfactant.

    Science.gov (United States)

    Knebel, D; Sieber, M; Reichelt, R; Galla, H-J; Amrein, M

    2002-01-01

    To study the structure-function relationship of pulmonary surfactant under conditions close to nature, molecular films of a model system consisting of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, and surfactant-associated protein C were prepared at the air-water interface of air bubbles about the size of human alveoli (diameter of 100 microm). The high mechanical stability as well as the absence of substantial film flow, inherent to small air bubbles, allowed for scanning force microscopy (SFM) directly at the air-water interface. The SFM topographical structure was correlated to the local distribution of fluorescent-labeled dipalmitoylphosphatidylcholine, as revealed from fluorescence light microscopy of the same bubbles. Although SFM has proven before to be exceptionally well suited to probe the structure of molecular films of pulmonary surfactant, the films so far had to be transferred onto a solid support from the air-water interface of a film balance, where they had been formed. This made them prone to artifacts imposed by the transfer. Moreover, the supported monolayers disallowed the direct observation of the structural dynamics associated with expansion and compression of the films as upon breathing. The current findings are compared in this respect to our earlier findings from films, transferred onto a solid support.

  5. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1995-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM. They provide essential reading and reference material for all students and researchers involved in this field. In this second edition the text has been updated and new methods are discussed.

  6. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1992-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.

  7. Atomic force microscopy and scanning electron microscopy evaluation of efficacy of scaling and root planing using magnification: A randomized controlled clinical study

    Directory of Open Access Journals (Sweden)

    Ranjana Mohan

    2013-01-01

    Full Text Available Aim: A randomized controlled clinical study was undertaken to evaluate the effectiveness of scaling and root planing (SRP by using Magnifying Loupes (ML and dental operating microscope (DOM. Materials and Methods: A total of 90 human teeth scheduled for extraction from 18 patients aged between 25 and 65 years suffering from generalized chronic severe periodontitis were randomly assigned to three treatment groups. Group 1 consisted SRP performed without using magnification (unaided, Group 2-SRP with ML and Group 3-SRP with DOM. Following extractions, samples were prepared for (i evaluation of surface topography by atomic force microscopy, (ii presence of smear layer, debris by scanning electron microscopy (iii elemental analysis by energy dispersive X-ray analysis. Data was subjected to statistical analysis using analysis of variance, post-hoc (Tukey-HSD and Chi-square test. Results: Statistically significant (P < 0.001 difference was found among the different treatment groups. Group 3 was the best while Group 1 was the least effective technique for SRP. Order of efficacy in terms of the surface was found to be - Palatal < Lingual < Distal ≅ Mesial < Buccal. Efficiency in mandibular to maxillary teeth was found to be significant (P < 0.05, also anterior to posterior teeth (P < 0.05. Conclusion: Magnification tools significantly enhance the efficacy of supragingival and subgingival SRP.

  8. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm.

    Science.gov (United States)

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S; Subramanian, Hariharan; Dravid, Vinayak P; Backman, Vadim

    2017-06-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass-density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass-density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass-density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.

  9. Polymer-based materials to be used as the active element in microsensors: a scanning force microscopy study

    Science.gov (United States)

    Porter; Eastman; Pace; Bradley

    2000-09-01

    Polymer-based materials can be incorporated as the active sensing elements in chemiresistor devices. Most of these devices take advantage of the fact that certain polymers will swell when exposed to gaseous analytes. To measure this response, a conducting material such as carbon black is incorporated within the nonconducting polymer matrix. In response to analytes, polymer swelling results in a measurable change in the conductivity of the polymer/carbon composite material. Arrays of these sensors may be used in conjunction with pattern recognition techniques for purposes of analyte recognition and quantification. We have used the technique of scanning force microscopy (SFM) to investigate microstructural changes in carbon-polymer composites formed from the polymers poly (isobutylene) (PIB), poly (vinyl alcohol) (PVA), and poly (ethylene-vinyl acetate) (PEVA) when exposed to the analytes hexane, toluene, water, ethanol, and acetone. Using phase-contrast imaging (PI), changes in the carbon nanoparticle distribution on the surface of the polymer matrix are measured as the polymers are exposed to the analytes in vapor phase. In some but not all cases, the changes were reversible (at the scale of the SFM measurements) upon removal of the analyte vapor. In this paper, we also describe a new type of microsensor based on piezoresistive microcantilever technology. With these new devices, polymeric volume changes accompanying exposure to analyte vapor are measured directly by a piezoresistive microcantilever in direct contact with the polymer. These devices may offer a number of advantages over standard chemiresistor-based sensors.

  10. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report is based on a metrological investigation on confocal microscopy technique carried out by Uffe Rolf Arlø Theilade and Paolo Bariani. The purpose of the experimental activity was twofold a metrological instrument characterization and application to assessment of rough PP injection moulded...... replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  11. Scanning electron and atomic force microscopy investigation of extracellular polymeric substances, hematite and EPS-hematite colloids and aggregates

    Science.gov (United States)

    Wieczorek, Arkadiusz K.; Narvekar, Sneha; Totsche, Kai Uwe

    2013-04-01

    Natural colloids are involved in a multitude of biogeochemical and physicochemical processes in aqueous systems. However, the chemical composition, mineralogical diversity and morphological variability of natural colloids are the reasons for the difficulty to understand their formation, stability and mechanisms of interaction with other solutes. In this study we explore the effects of different amount of extracellular polymeric substances (EPS) of Bacillus subtilis on the aggregation and stability of hematite colloids. The hematite colloids were synthesized using Schwertmann and Cornell method [1], where ferric nitrite solution slowly drops into the boiling water. Bacillus subtilis EPS was obtained using Omoike and Chorover method [2], where EPS was precipitated from the supernatant solution by using three volumes of cold ethanol. Then the mixture was centrifuged and dialyzed to remove ethanol and residual media components and stored at -20C. Synthetic hematite was mixed with different amounts of EPS resulting in solutions with EPS/hematite ratios of 1:5, 1:2, 1:0.5 and 1:0.2. Droplets of the colloidal suspension were put on silicon wafer and subject to air drying. The wafers were then analyzed by Scanning Electron Microscopy (SEM) with energy-dispersive Xray spectroscopy and Atomic Force Microscopy (AFM). A control sample with pure synthetic hematite colloid was also prepared and analyzed. Pure hematite colloids form homogenic distribution of relatively small aggregates of 40 to 100 nm size. Theses aggregates loosely connect to each other creating skeletal or fisher-net like structures. The smallest amount of EPS results in coagulation of hematite in very large (up to 80 µm) islands/aggregates of tightly packed hematite nanoparticles. Adding EPS decreases the size of islands to the point where again only 40 to 100 nm size aggregates are visible, but they are strictly separated in comparison to the pure hematite colloid. Although separation of hematite aggregates

  12. Scanning quantum decoherence microscopy.

    Science.gov (United States)

    Cole, Jared H; Hollenberg, Lloyd C L

    2009-12-09

    The use of qubits as sensitive nanoscale magnetometers has been studied theoretically and recently demonstrated experimentally. In this paper we propose a new concept, in which a scanning two-state quantum system is used to probe a sample through the subtle effects of decoherence. Mapping both the Hamiltonian and decoherence properties of a qubit simultaneously provides a unique image of the magnetic (or electric) field properties at the nanoscale. The resulting images are sensitive to the temporal as well as spatial variation in the fields created by the sample. As examples we theoretically study two applications; one from condensed matter physics, the other biophysics. The individual components required to realize the simplest version of this device (characterization and measurement of qubits, nanoscale positioning) have already been demonstrated experimentally.

  13. Atomic Force Microscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological Systems ... Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 ...

  14. Magnetic Force Microscopy

    NARCIS (Netherlands)

    Abelmann, Leon

    Principle of MFM In magnetic force microscopy (MFM), the magnetic stray field above a very flat specimen, or sample, is detected by placing a small magnetic element, the tip, mounted on a cantilever spring very close to the surface of the sample (Figure 1). Typical dimensions are a cantilever length

  15. Investigation of atomic species in Pt-induced nanowires on Ge(001) surface by combined atomic force and scanning tunneling microscopy

    Science.gov (United States)

    Inami, Eiichi; Sugimoto, Yoshiaki; Shinozaki, Takuya; Gurlu, Oguzhan; Yurtsever, Ayhan

    2017-10-01

    We have studied identification of atomic species in Pt-induced nanowires self-assembled on the Ge(001) surface by combining scanning tunneling microscopy (STM) and atomic force microscopy (AFM). A small number of Sn atoms substituted in the top atomic chains were utilized as references to identify the target atomic species. Force spectroscopy data taken above single atoms on the Sn-substituted nanowires showed that the ratio between the maximum attractive forces above the Sn and the pristine chain atoms exhibited a constant value of 0.86. The obtained ratio was identical to that between Sn and Ge atoms, strongly suggestive that the top ridge of the Pt-induced nanowire was composed of Ge dimers. Our findings also demonstrate that AFM chemical identification method can be used to identify the unknown atomic species on surfaces, regardless of the homogeneity in the atomic composition, which has not been addressed so far.

  16. Vacuum scanning capillary photoemission microscopy

    DEFF Research Database (Denmark)

    Aseyev, S.A.; Cherkun, A P; Mironov, B N

    2017-01-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting...

  17. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  18. Attempts to test an alternative electrodynamic theory of superconductors by low-temperature scanning tunneling and atomic force microscopy

    Science.gov (United States)

    Peronio, Angelo; Giessibl, Franz J.

    2016-09-01

    We perform an experiment to test between two theories of the electrodynamics of superconductors: the standard London theory and an alternative proposed by J. E. Hirsch [Phys. Rev. B 69, 214515 (2004), 10.1103/PhysRevB.69.214515]. The two alternatives give different predictions with respect to the screening of an electric field by a superconductor, and we try to detect this effect using atomic force microscopy on a niobium sample. We also perform the reverse experiment, where we demonstrate a superconductive tip mounted on a qPlus force sensor. Due to limited accuracy, we are able neither to prove nor to disprove Hirsch's hypothesis. Within our accuracy of 0.17 N/m, the superconductive transition does not alter the atomic-scale interaction between tip and sample.

  19. Analysis of the influence of the applied voltage and the scan speed in the atomic force microscopy local oxidation technique

    Science.gov (United States)

    Mendoza, C.; Plata, A.; Lizarazo, Z.; Chacón, C. A.

    2016-02-01

    The local nanolithography oxidation technique is implemented by using an atomic force microscope (AFM) for the fabrication of nanoscale patterning structures on a silicon substrate covered whit a thin film of silicon nitride. During the fabrication process, the microscope is operated on air and contact mode utilizing a silicon tip covered whit a hard Cobalt- Chromium coat. The dependence of the oxide growth with the applied voltage was investigated varying this parameter in a range of 1 to 10V to constant scanning speed; the influence of the writing speed in the dimensions of the oxide formed is also analysed varying the speed values between 0.1 to 1μm/s. Is found that the dimensions of lines depend of scanning speed and voltages applied.

  20. Electrochemical force microscopy

    Science.gov (United States)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  1. Introduction to scanning tunneling microscopy

    CERN Document Server

    Chen, C Julian

    2008-01-01

    The scanning tunneling and the atomic force microscope, both capable of imaging individual atoms, were crowned with the Physics Nobel Prize in 1986, and are the cornerstones of nanotechnology today. This is a thoroughly updated version of this 'bible' in the field.

  2. Magnetic force microscopy

    Science.gov (United States)

    Passeri, Daniele; Dong, Chunhua; Reggente, Melania; Angeloni, Livia; Barteri, Mario; Scaramuzzo, Francesca A; De Angelis, Francesca; Marinelli, Fiorenzo; Antonelli, Flavia; Rinaldi, Federica; Marianecci, Carlotta; Carafa, Maria; Sorbo, Angela; Sordi, Daniela; Arends, Isabel WCE; Rossi, Marco

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples at the nanoscale. Being a well established tool for the characterization of magnetic recording media, superconductors and magnetic nanomaterials, MFM is finding constantly increasing application in the study of magnetic properties of materials and systems of biological and biomedical interest. After reviewing these latter applications, three case studies are presented in which MFM is used to characterize: (i) magnetoferritin synthesized using apoferritin as molecular reactor; (ii) magnetic nanoparticles loaded niosomes to be used as nanocarriers for drug delivery; (iii) leukemic cells labeled using folic acid-coated core-shell superparamagnetic nanoparticles in order to exploit the presence of folate receptors on the cell membrane surface. In these examples, MFM data are quantitatively analyzed evidencing the limits of the simple analytical models currently used. Provided that suitable models are used to simulate the MFM response, MFM can be used to evaluate the magnetic momentum of the core of magnetoferritin, the iron entrapment efficiency in single vesicles, or the uptake of magnetic nanoparticles into cells. PMID:25050758

  3. Surface modification of Sylgard 184 polydimethylsiloxane by 254 nm excimer radiation and characterization by contact angle goniometry, infrared spectroscopy, atomic force and scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Emanuel A. [University of Alabama in Huntsville, Huntsville, AL (United States)], E-mail: ewaddell@chemistry.uah.edu; Shreeves, Stephen [University of Alabama in Huntsville, Huntsville, AL (United States); Carrell, Holly; Perry, Christopher [Oakwood College, Huntsville, AL (United States); Reid, Branden A. [Morgan State University, Baltimore, MD (United States); McKee, James [University of Alabama in Birmingham, Birmingham, AL (United States)

    2008-06-30

    The modification of polydimethylsiloxane (PDMS) by narrow band 254 nm excimer radiation under a nitrogen atmosphere was characterized by contact angle goniometry, attenuated total reflectance infrared spectroscopy, atomic force and scanning electron microscopy. UV irradiation results in the formation of the carboxylic acids that influences the wettability of the surface. Continued exposure results in the formation of an inorganic surface (SiO{sub x} (1 < x < 2)) which hinders the ability to continually increase the wettability. The continuity of this inorganic layer is disrupted by the formation of surface cracks. These results have implications in the fabrication and chemical modification of microfluidic or micro-electro-mechanical systems.

  4. Surface modification of Sylgard 184 polydimethylsiloxane by 254 nm excimer radiation and characterization by contact angle goniometry, infrared spectroscopy, atomic force and scanning electron microscopy

    Science.gov (United States)

    Waddell, Emanuel A.; Shreeves, Stephen; Carrell, Holly; Perry, Christopher; Reid, Branden A.; McKee, James

    2008-06-01

    The modification of polydimethylsiloxane (PDMS) by narrow band 254 nm excimer radiation under a nitrogen atmosphere was characterized by contact angle goniometry, attenuated total reflectance infrared spectroscopy, atomic force and scanning electron microscopy. UV irradiation results in the formation of the carboxylic acids that influences the wettability of the surface. Continued exposure results in the formation of an inorganic surface (SiO x (1 < x < 2)) which hinders the ability to continually increase the wettability. The continuity of this inorganic layer is disrupted by the formation of surface cracks. These results have implications in the fabrication and chemical modification of microfluidic or micro-electro-mechanical systems.

  5. Scanning Ion Conductance Microscopy of Live Keratinocytes

    Science.gov (United States)

    Hegde, V.; Mason, A.; Saliev, T.; Smith, F. J. D.; McLean, W. H. I.; Campbell, P. A.

    2012-07-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (monitoring the most delicate living structures with attendant high spatial resolutions.

  6. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  7. Scanned probe microscopy for thin film superconductor development

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, J. [National Institute of Standards and Technology, Boulder, CO (United States)

    1996-12-31

    Scanned probe microscopy is a general term encompassing the science of imaging based on piezoelectric driven probes for measuring local changes in nanoscale properties of materials and devices. Techniques like scanning tunneling microscopy, atomic force microscopy, and scanning potentiometry are becoming common tools in the production and development labs in the semiconductor industry. The author presents several examples of applications specific to the development of high temperature superconducting thin films and thin-film devices.

  8. Multifunctional scanning ion conductance microscopy.

    Science.gov (United States)

    Page, Ashley; Perry, David; Unwin, Patrick R

    2017-04-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential-time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science.

  9. Tunneling magnetic force microscopy

    Science.gov (United States)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  10. Scanning Probe Microscopy of Organic Solar Cells

    Science.gov (United States)

    Reid, Obadiah G.

    Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than tr

  11. Scanning Electrochemical Microscopy in Neuroscience

    Science.gov (United States)

    Schulte, Albert; Nebel, Michaela; Schuhmann, Wolfgang

    2010-07-01

    This article reviews recent work involving the application of scanning electrochemical microscopy (SECM) to the study of individual cultured living cells, with an emphasis on topographical and functional imaging of neuronal and secretory cells of the nervous and endocrine system. The basic principles of biological SECM and associated negative amperometric-feedback and generator/collector-mode SECM imaging are discussed, and successful use of the methodology for screening soft and fragile membranous objects is outlined. The drawbacks of the constant-height mode of probe movement and the benefits of the constant-distance mode of SECM operation are described. Finally, representative examples of constant-height and constant-distance mode SECM on a variety of live cells are highlighted to demonstrate the current status of single-cell SECM in general and of SECM in neuroscience in particular.

  12. Scanning Probe Microscopy of Graphene

    Science.gov (United States)

    Tautz, Pamela

    2011-10-01

    Scanning tunneling microscopy has been used to study the unusual electronic properties of graphene. In an effort to support the graphene with minimal interaction with the substrate, we used a hexagonal boron nitride (hBN) substrate. To minimize contaminants between the CVD graphene and boron nitride, the graphene samples were cleaned with distilled water and isopropanol prior to transfer to hBN substrate. We have also examined the growth of graphene flakes by chemical vapor deposition. In particular, we examined the relationship between the orientations of the first and second layer of CVD grown graphene. We found the growth mechanism preferentially resulted in rotations of 9^o or less indicating flakes with first and second layers aligned.

  13. Surface chemical properties of nanoscale domains on UV-treated polystyrene-poly(methyl methacrylate) diblock copolymer films studied using scanning force microscopy.

    Science.gov (United States)

    Ibrahim, Shaida; Ito, Takashi

    2010-02-02

    This paper reports the surface chemical properties of ca. 20 nm wide domains on a UV-treated thin film of a polystyrene-poly(methyl methacrylate) diblock copolymer (PS-b-PMMA; 0.3 as the PMMA volume fraction). UV irradiation and subsequent acetic acid (AcOH) treatment were used for selectively etching horizontally aligned PMMA domains on a thin PS-b-PMMA film to obtain nanoscale trenches and ridges. The surface charge and hydrophilicity of the trenches (etched PMMA domains) and ridges (PS domains) were investigated using three approaches based on scanning force microscopy. Chemical force titration data with a COOH-terminated tip showed a prominent decrease in adhesion force from pH 3 to 4.5 due to electrostatic repulsion between negatively charged functional groups on the tip and film surface but could not clarify the difference in chemical properties between the two nanoscale domains. Friction force images in n-dodecane showed higher friction over etched PMMA and PS domains with an OH-terminated tip and a CH(3)-terminated tip, respectively, exhibiting higher hydrophilicity of the etched PMMA domains. In an atomic force microscopy image of a UV/AcOH-treated PS-b-PMMA film upon immersion in a ferritin solution, approximately 80% of the ferritin deposited on the film was found on the PS domains. The preferential deposition of ferritin on the PS domains was probably due to the electrostatic repulsion between negatively charged ferritin and negatively charged etched PMMA surface in addition to the hydrophobic interaction between ferritin and the PS surface. These results indicated that the etched PMMA domains were more hydrophilic than the PS domains due to the presence of acidic functional groups (e.g., -COOH groups) at a higher density.

  14. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  15. Functionalization of atomic force microscopy Akiyama tips for magnetic force microscopy measurements

    OpenAIRE

    Stiller, Markus; Barzola-Quiquia, Jose; Esquinazi, Pablo D.; Sangiao, Soraya; De Teresa, Jose M.; Meijer, Jan; Abel, Bernd

    2017-01-01

    In this work we have used focused electron beam induced deposition of cobalt to functionalize atomic force microscopy Akiyama tips for application in magnetic force microscopy. The grown tips have a content of 90% Co after exposure to ambient air. The magnetic tips were characterized using energy dispersive X-ray spectroscopy and scanning electron microscopy. In order to investigate the magnetic properties, current loops were prepared by electron beam lithography. Measurements at room tempera...

  16. Hollow-tip scanning photoelectron microscopy

    Science.gov (United States)

    Cherkun, A. P.; Mironov, B. N.; Aseyev, S. A.; Chekalin, S. V.

    2014-07-01

    A new type of microscopy based on scanning in vacuum by a beam of charged particles transmitted through a hollow probe has been implemented. This approach provides controllable motion of spatially localized ion, electron, molecular (atomic), and soft X-ray beams and investigation of the surface in the shear force mode. In the photoelectron mode, in which electrons are transmitted through a 2-μm quartz capillary, a surface profile of gadolinium irradiated by 400-nm femtosecond laser pulses has been visualized with a subwave spatial resolution. The new method of microscopy opens an opportunity of investigations in the field of nanometer local photodesorption of molecular ions (one of the last ideas of V.S. Letokhov).

  17. Atomic Force Microscopy of Biological Membranes

    OpenAIRE

    Frederix, Patrick L.T.M.; Bosshart, Patrick D.; Engel, Andreas

    2009-01-01

    Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process...

  18. A dark mode in scanning thermal microscopy

    Science.gov (United States)

    Ramiandrisoa, Liana; Allard, Alexandre; Joumani, Youssef; Hay, Bruno; Gomés, Séverine

    2017-12-01

    The need for high lateral spatial resolution in thermal science using Scanning Thermal Microscopy (SThM) has pushed researchers to look for more and more tiny probes. SThM probes have consequently become more and more sensitive to the size effects that occur within the probe, the sample, and their interaction. Reducing the tip furthermore induces very small heat flux exchanged between the probe and the sample. The measurement of this flux, which is exploited to characterize the sample thermal properties, requires then an accurate thermal management of the probe-sample system and to reduce any phenomenon parasitic to this system. Classical experimental methodologies must then be constantly questioned to hope for relevant and interpretable results. In this paper, we demonstrate and estimate the influence of the laser of the optical force detection system used in the common SThM setup that is based on atomic-force microscopy equipment on SThM measurements. We highlight the bias induced by the overheating due to the laser illumination on the measurements performed by thermoresistive probes (palladium probe from Kelvin Nanotechnology). To face this issue, we propose a new experimental procedure based on a metrological approach of the measurement: a SThM "dark mode." The comparison with the classical procedure using the laser shows that errors between 14% and 37% can be reached on the experimental data exploited to determine the heat flux transferred from the hot probe to the sample.

  19. Force-gradient sensitive Kelvin probe force microscopy by dissipative electrostatic force modulation

    OpenAIRE

    Miyahara, Yoichi; Grutter, Peter

    2017-01-01

    We report a Kelvin probe force microscopy (KPFM) implementation using the dissipation signal of a frequency modulation atomic force microscopy that is capable of detecting the gradient of electrostatic force rather than electrostatic force. It features a simple implementation and faster scanning as it requires no low frequency modulation. We show that applying a coherent ac voltage with two times the cantilever oscillation frequency induces the dissipation signal proportional to the electrost...

  20. Deep atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H.; Drake, B.; Randall, C.; Hansma, P. K. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2013-12-15

    The Atomic Force Microscope (AFM) possesses several desirable imaging features including the ability to produce height profiles as well as two-dimensional images, in fluid or air, at high resolution. AFM has been used to study a vast selection of samples on the scale of angstroms to micrometers. However, current AFMs cannot access samples with vertical topography of the order of 100 μm or greater. Research efforts have produced AFM scanners capable of vertical motion greater than 100 μm, but commercially available probe tip lengths are still typically less than 10 μm high. Even the longest probe tips are below 100 μm and even at this range are problematic. In this paper, we present a method to hand-fabricate “Deep AFM” probes with tips of the order of 100 μm and longer so that AFM can be used to image samples with large scale vertical topography, such as fractured bone samples.

  1. Electrochemical current-sensing atomic force microscopy in conductive solutions

    OpenAIRE

    Pobelov, Ilya; Mohos, Miklos; Yoshida, Koji; Kolivoska, Viliam; Avdic, Amra; Lugstein, Alois; Bertagnolli, Emmerich; Leonhardt, Kelly; Guy, Denuault; Gollas, Bernhard; Wandlowski, Thomas

    2013-01-01

    Insulated atomic force microscopy probes carrying gold conductive tips were fabricated and employed as bifunctional force and current sensors in electrolyte solutions under electrochemical potential control. The application of the probes for current-sensing imaging, force and current–distance spectroscopy as well as scanning electrochemical microscopy experiments was demonstrated.

  2. Electrochemical current-sensing atomic force microscopy in conductive solutions.

    Science.gov (United States)

    Pobelov, Ilya V; Mohos, Miklós; Yoshida, Koji; Kolivoska, Viliam; Avdic, Amra; Lugstein, Alois; Bertagnolli, Emmerich; Leonhardt, Kelly; Denuault, Guy; Gollas, Bernhard; Wandlowski, Thomas

    2013-03-22

    Insulated atomic force microscopy probes carrying gold conductive tips were fabricated and employed as bifunctional force and current sensors in electrolyte solutions under electrochemical potential control. The application of the probes for current-sensing imaging, force and current-distance spectroscopy as well as scanning electrochemical microscopy experiments was demonstrated.

  3. Scanning Electron Microscopy in modern dentistry research

    OpenAIRE

    Paradella, Thaís Cachuté; Unesp-FOSJC; Bottino, Marco Antonio; Unesp-FOSJC

    2012-01-01

    The purpose of this article was to review the usage of Scanning Electron Microscopy (SEM) in dentistry research nowadays, through a careful and updated literature review. By using the key-words Scanning Electron Microscopy and one of the following areas of research in dentistry (Endodontics, Periodontics and Implant), in international database (PubMed), in the year of 2012 (from January to September), a total of 112 articles were found. This data was tabled and the articles were classified ac...

  4. Differential-concentration scanning ion conductance microscopy

    OpenAIRE

    Perry, David; Page, Ashley; Chen, Baoping; Frenguelli, Bruno G.; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based scanning probe microscopy technique that utilizes the ionic current flowing between an electrode inserted inside a nanopipette probe containing electrolyte solution and a second electrode placed in a bulk electrolyte bath, to provide information on a substrate of interest. For most applications to date, the composition and concentration of the electrolyte inside and outside the nanopipette is identical, but it is shown herein t...

  5. Magnetic Force Microscopy in Liquids.

    Science.gov (United States)

    Ares, Pablo; Jaafar, Miriam; Gil, Adriana; Gómez-Herrero, Julio; Asenjo, Agustina

    2015-09-01

    In this work, the use of magnetic force microscopy (MFM) to acquire images of magnetic nanostructures in liquid environments is presented. Optimization of the MFM signal acquisition in liquid media is performed and it is applied to characterize the magnetic signal of magnetite nanoparticles. The ability for detecting magnetic nanostructures along with the well-known capabilities of atomic force microscopy in liquids suggests potential applications in fields such as nanomedicine, nanobiotechnology, or nanocatalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. CLAFEM: Correlative light atomic force electron microscopy.

    Science.gov (United States)

    Janel, Sébastien; Werkmeister, Elisabeth; Bongiovanni, Antonino; Lafont, Frank; Barois, Nicolas

    2017-01-01

    Atomic force microscopy (AFM) is becoming increasingly used in the biology field. It can give highly accurate topography and biomechanical quantitative data, such as adhesion, elasticity, and viscosity, on living samples. Nowadays, correlative light electron microscopy is a must-have tool in the biology field that combines different microscopy techniques to spatially and temporally analyze the structure and function of a single sample. Here, we describe the combination of AFM with superresolution light microscopy and electron microscopy. We named this technique correlative light atomic force electron microscopy (CLAFEM) in which AFM can be used on fixed and living cells in association with superresolution light microscopy and further processed for transmission or scanning electron microscopy. We herein illustrate this approach to observe cellular bacterial infection and cytoskeleton. We show that CLAFEM brings complementary information at the cellular level, from on the one hand protein distribution and topography at the nanometer scale and on the other hand elasticity at the piconewton scales to fine ultrastructural details. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Plant cell wall characterization using scanning probe microscopy techniques

    Science.gov (United States)

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  8. Plant cell wall characterization using scanning probe microscopy techniques

    Directory of Open Access Journals (Sweden)

    Himmel Michael E

    2009-08-01

    Full Text Available Abstract Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy.

  9. Properties of Ca-rich and Mg-rich carbonate films on dolomite: implications for compositional surface mapping with scanning force microscopy.

    Science.gov (United States)

    Hu, Xiaoming; Cubillas, Pablo; Higgins, Steven R

    2010-04-06

    A self-limited monolayer grown on dolomite (CaMg(CO(3))(2)), showing distinct friction contrast with the substrate as reported earlier using lateral force microscopy, was investigated with in situ atomic force microscopy (AFM) adhesion mapping and force-modulation techniques. Force-modulation microscopy revealed lower stiffness on a Ca-rich film in comparison to that on the dolomite surface. The friction contrast therefore results from a larger tip-surface contact area when the AFM probe is in contact with the Ca-rich film as opposed to the contact area with dolomite. The Ca-rich film also exhibited a slightly higher adhesion than did the dolomite substrate; however, the critical shear stresses for the two tip-surface contacts were indistinguishable. A comparative study with a Mg-rich film did not yield noticeable force modulation contrast, indicating similar surface stiffness of the film and the dolomite surface. The similarity in these stiffness quantities was further corroborated by friction-load data that demonstrated similar friction forces on the two surfaces. The previously reported film strain in the Ca-rich system is likely linked to the lower stiffness observed, with both of these properties related to the Ca/Mg composition of the film.

  10. EDITORIAL: Scanning probe microscopy: a visionary development Scanning probe microscopy: a visionary development

    Science.gov (United States)

    Demming, Anna

    2013-07-01

    The development of scanning probe microscopy repositioned modern physics. When Rohrer and Binnig first used electronic tunnelling effects to image atoms and quantum states they did more than pin down theoretical hypotheses to real-world observables; the scanning tunnelling microscope fed imaginations, prompting researchers to consider new directions and possibilities [1]. As Rohrer once commented, 'We could show that you can easily manipulate or position something small in space with an accuracy of 10 pm.... When you can do that, you simply have ideas of what you can do' [2]. The development heralded a cavalry of scanning probe techniques—such as atomic force microscopy (AFM) [3-5], scanning near-field optical microscopy (SNOM) [6-8] and Kelvin probe force microscopy (KPFM) [9, 10]—that still continue to bring nanomaterials and nanoscale phenomena into fresh focus. Not long after the development of scanning tunnelling microscopy, Binnig, Quate and Gerber collaborating in California in the US published work on a new type of microscope also capable of atomic level resolution [3]. The original concept behind scanning tunnelling microscopy uses electrical conductance, which places substantial limitations on the systems that it can image. Binnig, Quate and Gerber developed the AFM to 'feel' the topology of surfaces like the needle of an old fashioned vinyl player. In this way insulators could be imaged as well. The development of a force modulation mode AFM extended the tool's reach to soft materials making images of biological samples accessible with the technique [4]. There have now been a number of demonstrations of image capture at rates that allow dynamics at the nanoscale to be tracked in real time, opening further possibilities in applications of the AFM as described in a recent review by Toshio Ando at Kanazawa University [5]. Researchers also found a way to retrieve optical information at 'super-resolution' [6, 7]. Optical microscopy provides spectral

  11. Time-Resolved Study of Nanomorphology and Nanomechanic Change of Early-Stage Mineralized Electrospun Poly(lactic acid) Fiber by Scanning Electron Microscopy, Raman Spectroscopy and Atomic Force Microscopy.

    Science.gov (United States)

    Wang, Mengmeng; Cai, Yin; Zhao, Bo; Zhu, Peizhi

    2017-08-17

    In this study, scanning electron microscopy (SEM), Raman spectroscopy and high-resolution atomic force microscopy (AFM) were used to reveal the early-stage change of nanomorphology and nanomechanical properties of poly(lactic acid) (PLA) fibers in a time-resolved manner during the mineralization process. Electrospun PLA nanofibers were soaked in simulated body fluid (SBF) for different periods of time (0, 1, 3, 5, 7 and 21 days) at 10 °C, much lower than the conventional 37 °C, to simulate the slow biomineralization process. Time-resolved Raman spectroscopy analysis can confirm that apatites were deposited on PLA nanofibers after 21 days of mineralization. However, there is no significant signal change among several Raman spectra before 21 days. SEM images can reveal the mineral deposit on PLA nanofibers during the process of mineralization. In this work, for the first time, time-resolved AFM was used to monitor early-stage nanomorphology and nanomechanical changes of PLA nanofibers. The Surface Roughness and Young's Modulus of the PLA nanofiber quantitatively increased with the time of mineralization. The electrospun PLA nanofibers with delicate porous structure could mimic the extracellular matrix (ECM) and serve as a model to study the early-stage mineralization. Tested by the mode of PLA nanofibers, we demonstrated that AFM technique could be developed as a potential diagnostic tool to monitor the early onset of pathologic mineralization of soft tissues.

  12. Towards high-speed scanning tunneling microscopy

    NARCIS (Netherlands)

    Tabak, Femke Chantal

    2013-01-01

    In this thesis, two routes towards high-speed scanning tunneling microscopy (STM) are described. The first possibility for high-speed scanning that is discussed is the use of MEMS (Micro-Electro Mechanical Systems) devices as high-speed add-ons in STM microscopes. The functionality of these devices

  13. Spectroscopic ellipsometric modeling of a Bi–Te–Se write layer of an optical data storage device as guided by atomic force microscopy, scanning electron microscopy, and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Madaan, Nitesh; Bagley, Jacob; Diwan, Anubhav [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Liu, Yiqun [Department of Chemistry, Lehigh University, Bethlehem, PA 18015 (United States); Davis, Robert C. [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Lunt, Barry M. [Department of Information Technology, Brigham Young University, Provo, UT 84602 (United States); Smith, Stacey J., E-mail: ssmith@chem.byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Linford, Matthew R., E-mail: mrlinford@chem.byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)

    2014-10-31

    Conventional magnetic tape is the most widely used medium for archival data storage. However, data stored on it need to be migrated every ca. 5 years. Recently, optical discs that store information for hundreds, or even more than 1000 years, have been introduced to the market. We recently proposed that technology in these optical discs be used to make an optical tape that would show greater permanence than its magnetic counterpart. Here we provide a detailed optical characterization of a sputtered thin film of bismuth, tellurium, and selenium (BTS) that is a proposed data storage layer for these devices. The methodology described herein should be useful in the future development of related materials. Spectroscopic ellipsometry (SE) data are obtained using interference enhancement, and the modeling of this data is guided by results from atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray reflectivity (XRR). By AFM, ca. 40 nm BTS films show ca. 10 nm roughness. SEM images also suggest considerable roughness in the films and indicate that they are composed of 13.1 ± 5.9 nm grains. XRD confirms that the films are crystalline and predicts a grain size of 17 ± 2 nm. XRD results are consistent with the composition of the films — a mildly oxidized BTS material. Three models of increasing complexity are investigated to explain the SE data. The first model consists of a smooth, homogeneous BTS film. The second model adds a roughness layer to the previous model. The third model also has two layers. The bottom layer is modeled as a mixture of BTS and void using a Bruggeman effective medium approximation. The upper layer is similarly modeled, but with a gradient. The first model was unable to adequately model the SE data. The second model was an improvement — lower MSE (4.4) and good agreement with step height measurements. The third model was even better — very low MSE (2.6) and good agreement with AFM results. The

  14. Scanning electron microscopy of bone.

    Science.gov (United States)

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  15. Spectroscopy and atomic force microscopy of biomass.

    Science.gov (United States)

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  16. Open Source Scanning Probe Microscopy Control Software Package Gxsm

    Energy Technology Data Exchange (ETDEWEB)

    Zahl P.; Wagner, T.; Moller, R.; Klust, A.

    2009-08-10

    Gxsm is a full featured and modern scanning probe microscopy (SPM) software. It can be used for powerful multidimensional image/data processing, analysis, and visualization. Connected toan instrument, it is operating many different avors of SPM, e.g., scanning tunneling microscopy(STM) and atomic force microscopy (AFM) or in general two-dimensional multi channel data acquisition instruments. The Gxsm core can handle different data types, e.g., integer and oating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor (DSP) subsystem runs the feedback loop, generates the scanning signals and acquires the data during SPM measurements. The programmable Gxsm vector probe engine performs virtually any thinkable spectroscopy and manipulation task, such as scanning tunneling spectroscopy (STS) or tip formation. The Gxsm software is released under the GNU general public license (GPL) and can be obtained via the Internet.

  17. Kelvin Probe Force Microscopy by Dissipative Electrostatic Force Modulation

    Science.gov (United States)

    Miyahara, Yoichi; Topple, Jessica; Schumacher, Zeno; Grutter, Peter

    2015-11-01

    We report an experimental technique for Kelvin probe force microscopy using the dissipation signal of frequency-modulation atomic force microscopy for bias-voltage feedback. It features a simple implementation and faster scanning as it requires no low-frequency modulation. The dissipation is caused by the oscillating electrostatic force that is coherent with the tip oscillation, which is induced by a sinusoidally oscillating voltage applied between the tip and sample. We analyze the effect of the phase of the oscillating force on the frequency shift and dissipation and found that the relative phase of 90° that causes only the dissipation is the most appropriate for Kelvin-probe-force-microscopy measurements. The present technique requires a significantly smaller ac-voltage amplitude by virtue of enhanced force detection due to the resonance enhancement and the use of fundamental flexural-mode oscillation for electrostatic force detection. This feature will be of great importance in the electrical characterizations of technically relevant materials whose electrical properties are influenced by the externally applied electric field as is the case in semiconductor electronic devices.

  18. Quantum state atomic force microscopy

    OpenAIRE

    Passian, Ali; Siopsis, George

    2017-01-01

    New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the paramete...

  19. Probing the structure and nano-scale mechanical properties of polymer surfaces with scanning force microscopy and sum frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gracias, David Hugo [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    Scanning Force Microscopy (SFM) has been used to quantitatively measure the elastic modulus, friction and hardness of polymer surfaces with special emphasis on polyethylene and polypropylene. In the experiments, tips of different radii of curvature ranging from 20 nm to 1000 nm have been used and the high pressure applied by the SFM have been observed to affect the values obtained in the measurements. The contact of the SFM tip with the polymer surface is explained by fitting the experimental curves to theoretical predictions of contact mechanics. Sum Frequency Generation (SFG) Vibrational Spectroscopy has been used to measure vibrational spectra of polymer surfaces in the vibrational range of 2700 to 3100 cm-1. Strong correlations are established between surface chemistry and surface structure as probed by SFG and mechanical properties measured by SFM on the surfaces. In these studies segregation of low surface energy moieties, from the bulk of the polymer to the surface have been studied. It was found that surface segregation occurs in miscible polymer blends and a small concentration of surface active polymer can be used to totally modify the surface properties of the blend. A novel high vacuum SFM was built to do temperature dependent measurements of mechanical changes occurring at the surface of polypropylene during the glass transition of the polymer. Using this instrument the modulus and friction of polypropylene was measured in the range of room temperature to ˜-60°C. An increase in the ordering of the backbone of the polymer chains below the glass transition measured by SFG correlates well with the increase in modulus measured on the same surface with SFM. Friction measurements have been done on polyethylene with three different instruments by applying loads ranging from nN to sub newton i.e. over eight orders of magnitude. Pressure and contact area effects were observed to play a significant role in determining the frictional response of the polymer

  20. Semiconductor Surface Characterization by Scanning Probe Microscopies

    Science.gov (United States)

    2001-01-01

    potentiometry (STP)8 and ballistic electron emission microscopy (BEEM)9 which allow mapping of lateral surface potential and local subsurface Schottky...A.P.Fein. "Tunneling Spectroscopy of the Si(1 1 1)2xl Surface", Surf.Sci. 181, 295- 306, 1987. 8. P.Muralt, D.W.Pohl, "Scanning tunneling potentiometry

  1. Scanning electron microscopy study of Trichomonas gallinae.

    Science.gov (United States)

    Tasca, Tiana; De Carli, Geraldo A

    2003-12-01

    A scanning electron microscopy (SEM) study of Trichomonas gallinae (Rivolta, 1878), provided more information about the morphology of this flagellated protozoan. SEM showed the morphological features of the trophozoites; the emergence of the anterior flagella, the structure of the undulating membrane, the position and shape of the pelta, axostyle and posterior flagellum. Of special interest were the pseudocyst forms.

  2. Laser scanning laser diode photoacoustic microscopy system.

    Science.gov (United States)

    Erfanzadeh, Mohsen; Kumavor, Patrick D; Zhu, Quing

    2018-03-01

    The development of low-cost and fast photoacoustic microscopy systems enhances the clinical applicability of photoacoustic imaging systems. To this end, we present a laser scanning laser diode-based photoacoustic microscopy system. In this system, a 905 nm, 325 W maximum output peak power pulsed laser diode with 50 ns pulsewidth is utilized as the light source. A combination of aspheric and cylindrical lenses is used for collimation of the laser diode beam. Two galvanometer scanning mirrors steer the beam across a focusing aspheric lens. The lateral resolution of the system was measured to be ∼21 μm using edge spread function estimation. No averaging was performed during data acquisition. The imaging speed is ∼370 A-lines per second. Photoacoustic microscopy images of human hairs, ex vivo mouse ear, and ex vivo porcine ovary are presented to demonstrate the feasibility and potentials of the proposed system.

  3. Aberration corrected Lorentz scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McVitie, S., E-mail: stephen.mcvitie@glasgow.ac.uk; McGrouther, D.; McFadzean, S.; MacLaren, D.A.; O’Shea, K.J.; Benitez, M.J.

    2015-05-15

    We present results from an aberration corrected scanning transmission electron microscope which has been customised for high resolution quantitative Lorentz microscopy with the sample located in a magnetic field free or low field environment. We discuss the innovations in microscope instrumentation and additional hardware that underpin the imaging improvements in resolution and detection with a focus on developments in differential phase contrast microscopy. Examples from materials possessing nanometre scale variations in magnetisation illustrate the potential for aberration corrected Lorentz imaging as a tool to further our understanding of magnetism on this lengthscale. - Highlights: • Demonstration of nanometre scale resolution in magnetic field free environment using aberration correction in the scanning transmission electron microscope (STEM). • Implementation of differential phase contrast mode of Lorentz microscopy in aberration corrected STEM with improved sensitivity. • Quantitative imaging of magnetic induction of nanostructures in amorphous and cross-section samples.

  4. Scanning conductance microscopy investigations on fixed human chromosomes

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Lange, Jacob Moresco; Jensen, Linda Boye

    2008-01-01

    Scanning conductance microscopy investigations were carried out in air on human chromosomes fixed on pre-fabricated SiO2 surfaces with a backgate. The point of the investigation was to estimate the dielectric constant of fixed human chromosomes in order to use it for microfluidic device...... optimization. The phase shift caused by the electrostatic forces, together with geometrical measurements of the atomic force microscopy (AFM) cantilever and the chromosomes were used to estimate a value,for the dielectric constant of different human chromosomes....

  5. High-speed atomic force microscopy: imaging and force spectroscopy.

    Science.gov (United States)

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Kelvin probe force microscopy in liquid using electrochemical force microscopy

    Directory of Open Access Journals (Sweden)

    Liam Collins

    2015-01-01

    Full Text Available Conventional closed loop-Kelvin probe force microscopy (KPFM has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe–sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present. Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl and ionically-inactive (non-polar decane liquids by electrochemical force microscopy (EcFM, a multidimensional (i.e., bias- and time-resolved spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids, KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions. EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.

  7. Analysing magnetism using scanning SQUID microscopy.

    Science.gov (United States)

    Reith, P; Renshaw Wang, X; Hilgenkamp, H

    2017-12-01

    Scanning superconducting quantum interference device microscopy (SSM) is a scanning probe technique that images local magnetic flux, which allows for mapping of magnetic fields with high field and spatial accuracy. Many studies involving SSM have been published in the last few decades, using SSM to make qualitative statements about magnetism. However, quantitative analysis using SSM has received less attention. In this work, we discuss several aspects of interpreting SSM images and methods to improve quantitative analysis. First, we analyse the spatial resolution and how it depends on several factors. Second, we discuss the analysis of SSM scans and the information obtained from the SSM data. Using simulations, we show how signals evolve as a function of changing scan height, SQUID loop size, magnetization strength, and orientation. We also investigated 2-dimensional autocorrelation analysis to extract information about the size, shape, and symmetry of magnetic features. Finally, we provide an outlook on possible future applications and improvements.

  8. Scanning electron microscopy of superficial white onychomycosis*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  9. Scanning electron microscopy of molluscum contagiosum*

    OpenAIRE

    Almeida Jr,Hiram Larangeira de; Abuchaim,Martha Oliveira; Schneide, Maiko Abel; Marques, Leandra; Castro, Luis Antônio Suíta de

    2013-01-01

    Molluscum contagiosum is a disease caused by a poxvirus. It is more prevalent in children up to 5 years of age. There is a second peak of incidence in young adults. In order to examine its ultrastructure, three lesions were curetted without disruption, cut transversely with a scalpel, and routinely processed for scanning electron microscopy (SEM). The oval structure of molluscum contagiosum could be easily identified. In its core, there was a central umbilication and just below this depressio...

  10. Scanning electron microscopy of cold gases

    Science.gov (United States)

    Santra, Bodhaditya; Ott, Herwig

    2015-06-01

    Ultracold quantum gases offer unique possibilities to study interacting many-body quantum systems. Probing and manipulating such systems with ever increasing degree of control requires novel experimental techniques. Scanning electron microscopy is a high resolution technique which can be used for in situ imaging, single site addressing in optical lattices and precision density engineering. Here, we review recent advances and achievements obtained with this technique and discuss future perspectives.

  11. Force-gradient sensitive Kelvin probe force microscopy by dissipative electrostatic force modulation

    Science.gov (United States)

    Miyahara, Yoichi; Grutter, Peter

    2017-04-01

    We report a Kelvin probe force microscopy (KPFM) implementation using the dissipation signal of a frequency modulation atomic force microscopy that is capable of detecting the gradient of electrostatic force rather than electrostatic force. It features a simple implementation and faster scanning as it requires no low frequency modulation. We show that applying a coherent ac voltage with two times the cantilever oscillation frequency induces the dissipation signal proportional to the electrostatic force gradient which depends on the effective dc bias voltage including the contact potential difference. We demonstrate the KPFM images of a MoS2 flake taken with the present method are in quantitative agreement with those taken with the frequency modulated Kelvin probe force microscopy technique.

  12. Investigation into scanning tunnelling luminescence microscopy

    CERN Document Server

    Manson-Smith, S K

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provi...

  13. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy

    Directory of Open Access Journals (Sweden)

    Stephen A. Boppart

    2008-06-01

    Full Text Available Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT, utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR. In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR.

  14. Development and testing of hyperbaric atomic force microscopy (AFM) and fluorescence microscopy for biological applications.

    Science.gov (United States)

    D'Agostino, D P; McNally, H A; Dean, J B

    2012-05-01

    A commercially available atomic force microscopy and fluorescence microscope were installed and tested inside a custom-designed hyperbaric chamber to provide the capability to study the effects of hyperbaric gases on biological preparations, including cellular mechanism of oxidative stress. In this report, we list details of installing and testing atomic force microscopy and fluorescence microscopy inside a hyperbaric chamber. The pressure vessel was designed to accommodate a variety of imaging equipment and ensures full functionality at ambient and hyperbaric conditions (≤85 psi). Electrical, gas and fluid lines were installed to enable remote operation of instrumentation under hyperbaric conditions, and to maintain viable biological samples with gas-equilibrated superfusate and/or drugs. Systems were installed for vibration isolation and temperature regulation to maintain atomic force microscopy performance during compression and decompression. Results of atomic force microscopy testing demonstrate sub-nanometre resolution at hyperbaric pressure in dry scans and fluid scans, in both contact mode and tapping mode. Noise levels were less when measurements were taken under hyperbaric pressure with air, helium (He) and nitrogen (N(2) ). Atomic force microscopy and fluorescence microscopy measurements were made on a variety of living cell cultures exposed to hyperbaric gases (He, N(2) , O(2) , air). In summary, atomic force microscopy and fluorescence microscopy were installed and tested for use at hyperbaric pressures and enables the study of cellular and molecular effects of hyperbaric gases and pressure per se in biological preparations. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  15. Pyramidal nanowire tip for atomic force microscopy and thermal imaging

    NARCIS (Netherlands)

    Burouni, N.; Sarajlic, Edin; Siekman, Martin Herman; Abelmann, Leon; Tas, Niels Roelof

    2012-01-01

    We present a novel 3D nanowire pyramid as scanning microscopy probe for thermal imaging and atomic force microscopy. This probe is fabricated by standard micromachining and conventional optical contact lithography. The probe features an AFM-type cantilever with a sharp pyramidal tip composed of four

  16. Nuclear magnetic resonance force microscopy at millikelvin temperatures

    NARCIS (Netherlands)

    Haan, Arthur Mattheus Johannes den

    2016-01-01

    Nuclear magnetic resonance force microscopy (MRFM) is a technique which combines magnetic resonance imaging (MRI) with scanning probe microscopy (SPM). The final goal is to develop this technique to such a level that the atomic structure of a virus or protein can be revealed by this microscope. This

  17. Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis

    Directory of Open Access Journals (Sweden)

    Omur E. Dagdeviren

    2017-03-01

    Full Text Available Quartz tuning forks that have a probe tip attached to the end of one of its prongs while the other prong is arrested to a holder (“qPlus” configuration have gained considerable popularity in recent years for high-resolution atomic force microscopy imaging. The small size of the tuning forks and the complexity of the sensor architecture, however, often impede predictions on how variations in the execution of the individual assembly steps affect the performance of the completed sensor. Extending an earlier study that provided numerical analysis of qPlus-style setups without tips, this work quantifies the influence of tip attachment on the operational characteristics of the sensor. The results using finite element modeling show in particular that for setups that include a metallic tip that is connected via a separate wire to enable the simultaneous collection of local forces and tunneling currents, the exact realization of this wire connection has a major effect on sensor properties such as spring constant, quality factor, resonance frequency, and its deviation from an ideal vertical oscillation.

  18. Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis.

    Science.gov (United States)

    Dagdeviren, Omur E; Schwarz, Udo D

    2017-01-01

    Quartz tuning forks that have a probe tip attached to the end of one of its prongs while the other prong is arrested to a holder ("qPlus" configuration) have gained considerable popularity in recent years for high-resolution atomic force microscopy imaging. The small size of the tuning forks and the complexity of the sensor architecture, however, often impede predictions on how variations in the execution of the individual assembly steps affect the performance of the completed sensor. Extending an earlier study that provided numerical analysis of qPlus-style setups without tips, this work quantifies the influence of tip attachment on the operational characteristics of the sensor. The results using finite element modeling show in particular that for setups that include a metallic tip that is connected via a separate wire to enable the simultaneous collection of local forces and tunneling currents, the exact realization of this wire connection has a major effect on sensor properties such as spring constant, quality factor, resonance frequency, and its deviation from an ideal vertical oscillation.

  19. Application of dynamic impedance spectroscopy to atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Kazimierz Darowicki, Artur Zieliński and Krzysztof J Kurzydłowski

    2008-01-01

    Full Text Available Atomic force microscopy (AFM is a universal imaging technique, while impedance spectroscopy is a fundamental method of determining the electrical properties of materials. It is useful to combine those techniques to obtain the spatial distribution of an impedance vector. This paper proposes a new combining approach utilizing multifrequency scanning and simultaneous AFM scanning of an investigated surface.

  20. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes.

    Science.gov (United States)

    Hempel, Casper

    2017-07-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions on the erythrocyte surface, called knobs. Current methods for studying these knobs include atomic force microscopy and electron microscopy. Standard electron microscopy methods rely on chemical fixation and dehydration modifying cell size. Here, a novel method is presented using rapid freezing and scanning electron microscopy under cryogenic conditions allowing for high resolution and magnification of erythrocytes. This novel technique can be used for precise estimates of knob density and for studies on cytoadhesion. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  1. Soft stylus probes for scanning electrochemical microscopy.

    Science.gov (United States)

    Cortés-Salazar, Fernando; Träuble, Markus; Li, Fei; Busnel, Jean-Marc; Gassner, Anne-Laure; Hojeij, Mohamad; Wittstock, Gunther; Girault, Hubert H

    2009-08-15

    A soft stylus microelectrode probe has been developed to carry out scanning electrochemical microscopy (SECM) of rough, tilted, and large substrates in contact mode. It is fabricated by first ablating a microchannel in a polyethylene terephthalate thin film and filling it with a conductive carbon ink. After curing the carbon track and lamination with a polymer film, the V-shaped stylus was cut thereby forming a probe, with the cross section of the carbon track at the tip being exposed either by UV-photoablation machining or by blade cutting followed by polishing to produce a crescent moon-shaped carbon microelectrode. The probe properties have been assessed by cyclic voltammetry, approach curves, and line scans over electrochemically active and inactive substrates of different roughness. The influence of probe bending on contact mode imaging was then characterized using simple patterns. Boundary element method simulations were employed to rationalize the distance-dependent electrochemical response of the soft stylus probes.

  2. Differential-Concentration Scanning Ion Conductance Microscopy.

    Science.gov (United States)

    Perry, David; Page, Ashley; Chen, Baoping; Frenguelli, Bruno G; Unwin, Patrick R

    2017-11-21

    Scanning ion conductance microscopy (SICM) is a nanopipette-based scanning probe microscopy technique that utilizes the ionic current flowing between an electrode inserted inside a nanopipette probe containing electrolyte solution and a second electrode placed in a bulk electrolyte bath, to provide information on a substrate of interest. For most applications to date, the composition and concentration of the electrolyte inside and outside the nanopipette is identical, but it is shown herein that it can be very beneficial to lift this restriction. In particular, an ionic concentration gradient at the end of the nanopipette, generates an ionic current with a greatly reduced electric field strength, with particular benefits for live cell imaging. This differential concentration mode of SICM (ΔC-SICM) also enhances surface charge measurements and provides a new way to carry out reaction mapping measurements at surfaces using the tip for simultaneous delivery and sensing of the reaction rate. Comprehensive finite element method (FEM) modeling has been undertaken to enhance understanding of SICM as an electrochemical cell and to enable the interpretation and optimization of experiments. It is shown that electroosmotic flow (EOF) has much more influence on the nanopipette response in the ΔC-SICM configuration compared to standard SICM modes. The general model presented advances previous treatments, and it provides a framework for quantitative SICM studies.

  3. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  4. Phase-contrast scanning transmission electron microscopy.

    Science.gov (United States)

    Minoda, Hiroki; Tamai, Takayuki; Iijima, Hirofumi; Hosokawa, Fumio; Kondo, Yukihito

    2015-06-01

    This report introduces the first results obtained using phase-contrast scanning transmission electron microscopy (P-STEM). A carbon-film phase plate (PP) with a small center hole is placed in the condenser aperture plane so that a phase shift is introduced in the incident electron waves except those passing through the center hole. A cosine-type phase-contrast transfer function emerges when the phase-shifted scattered waves interfere with the non-phase-shifted unscattered waves, which passed through the center hole before incidence onto the specimen. The phase contrast resulting in P-STEM is optically identical to that in phase-contrast transmission electron microscopy that is used to provide high contrast for weak phase objects. Therefore, the use of PPs can enhance the phase contrast of the STEM images of specimens in principle. The phase shift resulting from the PP, whose thickness corresponds to a phase shift of π, has been confirmed using interference fringes displayed in the Ronchigram of a silicon single crystal specimen. The interference fringes were found to abruptly shift at the edge of the PP hole by π. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Atomic Force Microscopy of Coccoliths: Implications for Biomineralisation and Diagenesis

    DEFF Research Database (Denmark)

    Henriksen, Karen; Young, Jette F.; Bown, P.R.

    2002-01-01

    geochemistry, diagenesis, coccoliths, biomineralization, biological calcite, atomic force microscopy......geochemistry, diagenesis, coccoliths, biomineralization, biological calcite, atomic force microscopy...

  6. Angular Approach Scanning Ion Conductance Microscopy.

    Science.gov (United States)

    Shevchuk, Andrew; Tokar, Sergiy; Gopal, Sahana; Sanchez-Alonso, Jose L; Tarasov, Andrei I; Vélez-Ortega, A Catalina; Chiappini, Ciro; Rorsman, Patrik; Stevens, Molly M; Gorelik, Julia; Frolenkov, Gregory I; Klenerman, David; Korchev, Yuri E

    2016-05-24

    Scanning ion conductance microscopy (SICM) is a super-resolution live imaging technique that uses a glass nanopipette as an imaging probe to produce three-dimensional (3D) images of cell surface. SICM can be used to analyze cell morphology at nanoscale, follow membrane dynamics, precisely position an imaging nanopipette close to a structure of interest, and use it to obtain ion channel recordings or locally apply stimuli or drugs. Practical implementations of these SICM advantages, however, are often complicated due to the limitations of currently available SICM systems that inherited their design from other scanning probe microscopes in which the scan assembly is placed right above the specimen. Such arrangement makes the setting of optimal illumination necessary for phase contrast or the use of high magnification upright optics difficult. Here, we describe the designs that allow mounting SICM scan head on a standard patch-clamp micromanipulator and imaging the sample at an adjustable approach angle. This angle could be as shallow as the approach angle of a patch-clamp pipette between a water immersion objective and the specimen. Using this angular approach SICM, we obtained topographical images of cells grown on nontransparent nanoneedle arrays, of islets of Langerhans, and of hippocampal neurons under upright optical microscope. We also imaged previously inaccessible areas of cells such as the side surfaces of the hair cell stereocilia and the intercalated disks of isolated cardiac myocytes, and performed targeted patch-clamp recordings from the latter. Thus, our new, to our knowledge, angular approach SICM allows imaging of living cells on nontransparent substrates and a seamless integration with most patch-clamp setups on either inverted or upright microscopes, which would facilitate research in cell biophysics and physiology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Imaging by in situ Scanning Tunnelling Microscopy and its Nanotechnological Perspectives

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2002-01-01

    in the interpretation of the imaging procedure. Other methods of in situ Scanning Probe Microscopy (in situ SPM), such as in situ Scanning Force Microscopy (in situ AFM) are considered for the sake of comparison and they are applied to imaging of non-conducting systems. Major results include demonstration of atomic...

  8. Non-contact lateral force microscopy

    Science.gov (United States)

    Weymouth, A. J.

    2017-08-01

    The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.

  9. Magnetic force microscopy : Quantitative issues in biomaterials

    NARCIS (Netherlands)

    Passeri, D.; Dong, C.; Reggente, M.; Angeloni, L.; Barteri, M.; Scaramuzzo, F.A.; De Angelis, F.; Marinelli, F.; Antonelli, F.; Rinaldi, F.; Marianecci, C.; Carafa, M.; Sorbo, A.; Sordi, D.; Arends, I.W.C.E.; Rossi, M.

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples

  10. Scanning electron microscopy of molluscum contagiosum*

    Science.gov (United States)

    de Almeida Jr, Hiram Larangeira; Abuchaim, Martha Oliveira; Schneider, Maiko Abel; Marques, Leandra; de Castro, Luis Antônio Suíta

    2013-01-01

    Molluscum contagiosum is a disease caused by a poxvirus. It is more prevalent in children up to 5 years of age. There is a second peak of incidence in young adults. In order to examine its ultrastructure, three lesions were curetted without disruption, cut transversely with a scalpel, and routinely processed for scanning electron microscopy (SEM). The oval structure of molluscum contagiosum could be easily identified. In its core, there was a central umbilication and just below this depression, there was a keratinized tunnel. Under higher magnification, a proliferation similar to the epidermis was seen. Moreover, there were areas of cells disposed like a mosaic. Under higher magnification, rounded structures measuring 0.4 micron could be observed at the end of the keratinized tunnel and on the surface of the lesion. PMID:23539009

  11. Spin-polarized scanning tunnelling microscopy

    CERN Document Server

    Bode, M

    2003-01-01

    The recent experimental progress in spin-polarized scanning tunnelling microscopy (SP-STM) - a magnetically sensitive imaging technique with ultra-high resolution - is reviewed. The basics of spin-polarized electron tunnelling are introduced as they have been investigated in planar tunnel junctions for different electrode materials, i.e. superconductors, optically excited GaAs, and ferromagnets. It is shown that ferromagnets and antiferromagnets are suitable tip materials for the realization of SP-STM. Possible tip designs and modes of operations are discussed for both classes of materials. The results of recent spatially resolved measurements as performed with different magnetic probe tips and using different modes of operation are reviewed and discussed in terms of applicability to surfaces, thin films, and nanoparticles. The limits of spatial resolution, and the impact of an external magnetic field on the imaging process.

  12. New Applications of Scanning Tunneling Microscopy

    Science.gov (United States)

    Smith, Douglas Philip Edward

    This dissertation describes the application of the scanning tunneling microscope (STM) technique to four new fields of study: thin organic films, phonon spectroscopy of bulk surfaces, the vibrational spectroscopy of molecules, and the tribological forces which occur between STM tip and sample. Images with atomic resolution were obtained with speeds approaching video rates. Two types of microscopes were used: one operated at room temperature in air, another at 4.2K in liquid helium. At room temperature, the STM was able to image molecules of cadmium arachidate deposited onto graphite by the Langmuir-Blodgett technique. The packing of molecules in the lipid bilayer was found to be partially ordered, with density of 1 molecule per 19.4 square angstroms. At liquid-helium temperature, inelastic electron processes were detected, and it was possible to determine within an area of a few square angstroms where the vibrational excitations occurred. On a bare graphite substrate, phonons of the sample and tip caused step increases in the tunneling conductivity at the phonon energies. Molecules of sorbic acid could be resolved when deposited onto graphite, and these molecules caused spatially localized peaks in conductivity at the energies of the bond vibrations. Although the STM is usually considered a non-contact instrument, under certain circumstances the tip and sample exerted strong forces on each other. With a tungsten tip and a graphite sample, friction and mechanical deformations on the atomic scale were observed.

  13. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Lulu Zhou

    2017-04-01

    Full Text Available Atomic force microscopy (AFM has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.

  14. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy.

    Science.gov (United States)

    Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda

    2017-04-24

    Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.

  15. Material properties of viral nanocages explored by atomic force microscopy

    NARCIS (Netherlands)

    van Rosmalen, Mariska G M; Roos, Wouter H; Wuite, Gijs J L

    2015-01-01

    Single-particle nanoindentation by atomic force microscopy (AFM) is an emergent technique to characterize the material properties of nano-sized proteinaceous systems. AFM uses a very small tip attached to a cantilever to scan the surface of the substrate. As a result of the sensitive feedback loop

  16. [Atomic force microscopy involved in protein study].

    Science.gov (United States)

    Lu, Zhengjian; Chen, Guoping; Wang, Jianhua

    2010-06-01

    Atomic force microscopy is a rather new type of nano microscopic technology. It has some advantages, such as high resolution (sub-nano scale); avoidance of special sample preparation; real-time detection of samples under nearly physiological environment; in situ study of samples under water environment; feasibility of investigating physical and chemical properties of samples at molecular level, etc. In recent years, the application of atomic force microscopy in protein study has brought about outstanding achievements. In this paper are introduced the principle and operation modes of atomic force microscopy, also presented are its application in protein imaging, adsorption, folding-and-unfolding, assembly, and single molecular recognition. Additionally, the future application of atomic force microscopy in protein study is prospected.

  17. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  18. Functionalized Akiyama tips for magnetic force microscopy measurements

    Science.gov (United States)

    Stiller, Markus; Barzola-Quiquia, José; Esquinazi, Pablo D.; Sangiao, Soraya; De Teresa, José M.; Meijer, Jan; Abel, Bernd

    2017-12-01

    In this work we have used focused electron beam induced deposition of cobalt to functionalize atomic force microscopy Akiyama tips for application in magnetic force microscopy. The grown tips have a content of  ≈ 90~% Co after exposure to ambient air. The magnetic tips were characterized using energy dispersive x-ray spectroscopy and scanning electron microscopy. In order to investigate the magnetic properties, current loops were prepared by electron beam lithography. Measurements at room temperature as well as 4.2~K were carried out and the coercive field of  ≈6.8 mT of the Co tip was estimated by applying several external fields in the opposite direction of the tip magnetization. Magnetic Akiyama tips open new possibilities for wide-range temperature magnetic force microscopy measurements.

  19. Coffee Cup Atomic Force Microscopy

    Science.gov (United States)

    Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.

    2010-01-01

    In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…

  20. Force modulation for improved conductive-mode atomic force microscopy

    NARCIS (Netherlands)

    Koelmans, W.W.; Sebastian, Abu; Despont, Michel; Pozidis, Haris

    We present an improved conductive-mode atomic force microscopy (C-AFM) method by modulating the applied loading force on the tip. Unreliable electrical contact and tip wear are the primary challenges for electrical characterization at the nanometer scale. The experiments show that force modulation

  1. Preparation of platinum/iridium scanning probe microscopy tips

    DEFF Research Database (Denmark)

    Sørensen, Alexis Hammer; Hvid, U.; Mortensen, M.W.

    1999-01-01

    material being etched is platinum/iridium (10%) the influence of the stop phase of the ac current terminating each pulse in the second etching is found to be negligible, while in the case of second etching of tungsten wires it is important to break the pulse in a certain phase to avoid formation of a thick...... of platinum from the wire surface and hereby give rise to "etching" of the wire. In the second etching blunt tips become sharp while tips which are already sharp apparently stay sharp. Therefore, the second etching scheme with pulses separated by pauses is found to be a very important factor...... for the production of sharp tips. After being etched the tips are ready for use in scanning tunneling microscopes, or they may be bent to form integrated tip/cantilever systems in ordinary commercial atomic force microscopes, being applicable as tapping mode tips and as electrostatic force microscopy tips. ©1999...

  2. The Observation of Martensite and Magnetic Domain Structures in Ni53Mn24Ga23 Shape Memory Alloys by Scanning Electron Acoustic Microscopy and Scanning Thermal Microscopy

    Science.gov (United States)

    Zhao, Kun-Yu; Zeng, Hua-Rong; Song, Hong-Zhang; Hui, Sen-Xing; Li, Guo-Rong; Yin, Qing-Rui

    2012-05-01

    We present observations of martensite variants and ferromagnetic domain structures of Ni53Mn24Ga23 ferromagnetic shape memory alloys with a pure tetragonal martensitic phase by using scanning electron acoustic microscopy (SEAM) and scanning thermal microscopy (SThM). Electron acoustic images show a polycrystalline morphology with martensite variants. Direct coincidence between crystallographic martensitic twin variants and magnetic domains is found. A domain-like structure, obtained by SThM, is firstly reported, and then confirmed by magnetic force microscopy (MFM). The experimental results will be helpful for investigating the local thermal properties of ferromagnets and understanding the relationship between martensite variants and magnetic domains.

  3. Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy-magnetic force microscopy combination

    National Research Council Canada - National Science Library

    Jaafar, Miriam; Iglesias-Freire, Oscar; Serrano-Ramón, Luis; Ibarra, Manuel Ricardo; de Teresa, Jose Maria; Asenjo, Agustina

    2011-01-01

    .... In particular, magnetic force microscopy (MFM) is used to characterize the domain configuration in ferromagnetic materials such as thin films grown by physical techniques or ferromagnetic nanostructures...

  4. Near field plasmon and force microscopy

    NARCIS (Netherlands)

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the

  5. Scanning transmission electron microscopy imaging and analysis

    CERN Document Server

    Pennycook, Stephen J

    2011-01-01

    Provides the first comprehensive treatment of the physics and applications of this mainstream technique for imaging and analysis at the atomic level Presents applications of STEM in condensed matter physics, materials science, catalysis, and nanoscience Suitable for graduate students learning microscopy, researchers wishing to utilize STEM, as well as for specialists in other areas of microscopy Edited and written by leading researchers and practitioners

  6. Calcite biomineralization in coccoliths: Evidence from atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Henriksen, Karen; Stipp, S.L.S.

    2002-01-01

    geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy......geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy...

  7. Gold nanocone near-field scanning optical microscopy probes.

    Science.gov (United States)

    Fleischer, Monika; Weber-Bargioni, Alexander; Altoe, M Virginia P; Schwartzberg, Adam M; Schuck, P James; Cabrini, Stefano; Kern, Dieter P

    2011-04-26

    Near-field scanning optical microscopy enables the simultaneous topographical and subdiffraction limited optical imaging of surfaces. A process is presented for the implementation of single individually engineered gold cones at the tips of atomic force microscopy cantilevers. These cantilevers act as novel high-performance optical near-field probes. In the fabrication, thin-film metallization, electron beam induced deposition of etch masks, and Ar ion milling are combined. The cone constitutes a well-defined highly efficient optical antenna with a tip radius on the order of 10 nm and an adjustable plasmon resonance frequency. The sharp tip enables high resolution topographical imaging. By controllably varying the cone size, the resonance frequency can be adapted to the application of choice. Structural properties of these sharp-tipped probes are presented together with topographical images recorded with a cone probe. The antenna functionality is demonstrated by gathering the near-field enhanced Raman signature of individual carbon nanotubes with a gold cone scanning probe.

  8. Traction force microscopy in physics and biology.

    Science.gov (United States)

    Style, Robert W; Boltyanskiy, Rostislav; German, Guy K; Hyland, Callen; MacMinn, Christopher W; Mertz, Aaron F; Wilen, Larry A; Xu, Ye; Dufresne, Eric R

    2014-06-21

    Adherent cells, crawling slugs, peeling paint, sessile liquid drops, bearings and many other living and non-living systems apply forces to solid substrates. Traction force microscopy (TFM) provides spatially-resolved measurements of interfacial forces through the quantification and analysis of the deformation of an elastic substrate. Although originally developed for adherent cells, TFM has no inherent size or force scale, and can be applied to a much broader range of mechanical systems across physics and biology. In this paper, we showcase the wide range of applicability of TFM, describe the theory, and provide experimental details and code so that experimentalists can rapidly adopt this powerful technique.

  9. Imaging DNA Structure by Atomic Force Microscopy.

    Science.gov (United States)

    Pyne, Alice L B; Hoogenboom, Bart W

    2016-01-01

    Atomic force microscopy (AFM) is a microscopy technique that uses a sharp probe to trace a sample surface at nanometre resolution. For biological applications, one of its key advantages is its ability to visualize substructure of single molecules and molecular complexes in an aqueous environment. Here, we describe the application of AFM to determine superstructure and secondary structure of surface-bound DNA. The method is also readily applicable to probe DNA-DNA interactions and DNA-protein complexes.

  10. Optimal lens design and use in laser-scanning microscopy.

    NARCIS (Netherlands)

    Negrean, A.; Mansvelder, H.D.

    2014-01-01

    In laser-scanning microscopy often an off-the-shelf achromatic doublet is used as a scan lens which can reduce the available diffraction-limited field-of-view (FOV) by a factor of 3 and introduce chromatic aberrations that are scan angle dependent. Here we present several simple lens designs of

  11. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong Yongpeng [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China)], E-mail: yongpengt@yahoo.com.cn; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Liang Feng [Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen Jianmin [Shenzhen Municipal Hospital for Chronic Disease Control and Prevention, Guangdong 518020 (China); Zhang Hong; Liu Guoqing; Sun Huibin [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Luong, John H.T. [Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, H4P 2R2 (Canada)

    2008-12-15

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al{sub 2}O{sub 3} and TiO{sub 2}) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl{sub 2}) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe{sub 2}O{sub 3} nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  12. Confocal reference free traction force microscopy

    OpenAIRE

    Bergert, Martin; Lendenmann, Tobias; Z?ndel, Manuel; Ehret, Alexander E.; Panozzo, Daniele; Richner, Patrizia; Kim, David K.; Kress, Stephan J. P.; Norris, David J.; Sorkine-Hornung, Olga; Mazza, Edoardo; Poulikakos, Dimos; Ferrari, Aldo

    2016-01-01

    The mechanical wiring between cells and their surroundings is fundamental to the regulation of complex biological processes during tissue development, repair or pathology. Traction force microscopy (TFM) enables determination of the actuating forces. Despite progress, important limitations with intrusion effects in low resolution 2D pillar-based methods or disruptive intermediate steps of cell removal and substrate relaxation in high-resolution continuum TFM methods need to be overcome. Here ...

  13. Scanning probe microscopy investigation of complex-oxide heterostructures

    Science.gov (United States)

    Bi, Feng

    Advances in the growth of precisely tailored complex-oxide heterostructures have led to new emergent behavior and associated discoveries. One of the most successful examples consists of an ultrathin layer of LaAlO 3 (LAO) deposited on TiO2-terminated SrTiO3 (STO), where a high mobility quasi-two dimensional electron liquid (2DEL) is formed at the interface. Such 2DEL demonstrates a variety of novel properties, including field tunable metal-insulator transition, superconductivity, strong spin-orbit coupling, magnetic and ferroelectric like behavior. Particularly, for 3-unit-cell (3 u.c.) LAO/STO heterostructures, it was demonstrated that a conductive atomic force microscope (c-AFM) tip can be used to "write" or "erase" nanoscale conducting channels at the interface, making LAO/STO a highly flexible platform to fabricate novel nanoelectronics. This thesis is focused on scanning probe microscopy studies of LAO/STO properties. We investigate the mechanism of c-AFM lithography over 3 u.c. LAO/STO in controlled ambient conditions by using a vacuum AFM, and find that the water molecules dissociated on the LAO surface play a critical role during the c-AFM lithography process. We also perform electro-mechanical response measurements over top-gated LAO/STO devices. Simultaneous piezoresponse force microscopy (PFM) and capacitance measurements reveal a correlation between LAO lattice distortion and interfacial carrier density, which suggests that PFM could not only serve as a powerful tool to map the carrier density at the interface but also provide insight into previously reported frequency dependence of capacitance enhancement of top-gated LAO/STO structures. To study magnetism at the LAO/STO interface, magnetic force microscopy (MFM) and magnetoelectric force microscopy (MeFM) are carried out to search for magnetic signatures that depend on the carrier density at the interface. Results demonstrate an electronicallycontrolled ferromagnetic phase on top-gated LAO

  14. Water-Immersible MEMS scanning mirror designed for wide-field fast-scanning photoacoustic microscopy

    Science.gov (United States)

    Yao, Junjie; Huang, Chih-Hsien; Martel, Catherine; Maslov, Konstantin I.; Wang, Lidai; Yang, Joon-Mo; Gao, Liang; Randolph, Gwendalyn; Zou, Jun; Wang, Lihong V.

    2013-03-01

    By offering images with high spatial resolution and unique optical absorption contrast, optical-resolution photoacoustic microscopy (OR-PAM) has gained increasing attention in biomedical research. Recent developments in OR-PAM have improved its imaging speed, but have sacrificed either the detection sensitivity or field of view or both. We have developed a wide-field fast-scanning OR-PAM by using a water-immersible MEMS scanning mirror (MEMS-ORPAM). Made of silicon with a gold coating, the MEMS mirror plate can reflect both optical and acoustic beams. Because it uses an electromagnetic driving force, the whole MEMS scanning system can be submerged in water. In MEMS-ORPAM, the optical and acoustic beams are confocally configured and simultaneously steered, which ensures uniform detection sensitivity. A B-scan imaging speed as high as 400 Hz can be achieved over a 3 mm scanning range. A diffraction-limited lateral resolution of 2.4 μm in water and a maximum imaging depth of 1.1 mm in soft tissue have been experimentally determined. Using the system, we imaged the flow dynamics of both red blood cells and carbon particles in a mouse ear in vivo. By using Evans blue dye as the contrast agent, we also imaged the flow dynamics of lymphatic vessels in a mouse tail in vivo. The results show that MEMS-OR-PAM could be a powerful tool for studying highly dynamic and time-sensitive biological phenomena.

  15. Reconstruction of Undersampled Atomic Force Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Arildsen, Thomas; Østergaard, Jan

    2013-01-01

    Atomic force microscopy (AFM) is one of the most advanced tools for high-resolution imaging and manipulation of nanoscale matter. Unfortunately, standard AFM imaging requires a timescale on the order of seconds to minutes to acquire an image which makes it complicated to observe dynamic processes...

  16. Tapping mode atomic force microscopy in liquid

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1994-01-01

    We show that standard silicon nitride cantilevers can be used for tapping mode atomic force microscopy (AFM) in air, provided that the energy of the oscillating cantilever is sufficiently high to overcome the adhesion of the water layer. The same cantilevers are successfully used for tapping mode

  17. Prototype cantilevers for quantitative lateral force microscopy.

    Science.gov (United States)

    Reitsma, Mark G; Gates, Richard S; Friedman, Lawrence H; Cook, Robert F

    2011-09-01

    Prototype cantilevers are presented that enable quantitative surface force measurements using contact-mode atomic force microscopy (AFM). The "hammerhead" cantilevers facilitate precise optical lever system calibrations for cantilever flexure and torsion, enabling quantifiable adhesion measurements and friction measurements by lateral force microscopy (LFM). Critically, a single hammerhead cantilever of known flexural stiffness and probe length dimension can be used to perform both a system calibration as well as surface force measurements in situ, which greatly increases force measurement precision and accuracy. During LFM calibration mode, a hammerhead cantilever allows an optical lever "torque sensitivity" to be generated for the quantification of LFM friction forces. Precise calibrations were performed on two different AFM instruments, in which torque sensitivity values were specified with sub-percent relative uncertainty. To examine the potential for accurate lateral force measurements using the prototype cantilevers, finite element analysis predicted measurement errors of a few percent or less, which could be reduced via refinement of calibration methodology or cantilever design. The cantilevers are compatible with commercial AFM instrumentation and can be used for other AFM techniques such as contact imaging and dynamic mode measurements. © 2011 American Institute of Physics

  18. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    DEFF Research Database (Denmark)

    van der Heijden, Nadine J.; Smith, Daniel; Calogero, Gaetano

    2016-01-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy images...... as a benchmark, we show that the position of the dopant atoms can be determined using atomic force microscopy. Specifically, the frequency shift-distance curves Delta f(z) acquired above a N atom are significantly different from the curves measured over a C atom. Similar behavior was found for N-doped graphene...

  19. Full information acquisition in scanning probe microscopy and spectroscopy

    Science.gov (United States)

    Jesse, Stephen; Belianinov, Alex; Kalinin, Sergei V.; Somnath, Suhas

    2017-04-04

    Apparatus and methods are described for scanning probe microscopy and spectroscopy based on acquisition of full probe response. The full probe response contains valuable information about the probe-sample interaction that is lost in traditional scanning probe microscopy and spectroscopy methods. The full probe response is analyzed post data acquisition using fast Fourier transform and adaptive filtering, as well as multivariate analysis. The full response data is further compressed to retain only statistically significant components before being permanently stored.

  20. Further observations on cerebellar climbing fibers. A study by means of light microscopy, confocal laser scanning microscopy and scanning and transmission electron microscopy.

    Science.gov (United States)

    Castejón, O J; Castejón, H V; Alvarado, M V

    2000-12-01

    The intracortical pathways of climbing fibers were traced in several vertebrate cerebella using light microscopy, confocal laser scanning microscopy, scanning and transmission electron microscopy. They were identified as fine fibers up to 1(micron thick, with a characteristic crossing-over bifurcation pattern. Climbing fiber collaterals were tridimensionally visualized forming thin climbing fiber glomeruli in the granular layer. Confocal laser scanning microscopy revealed three types of collateral processes at the interface between granular and Purkinje cell layers. Scanning electron microscopy showed climbing fiber retrograde collaterals in the molecular layer. Asymmetric synaptic contacts of climbing fibers with Purkinje dendritic spines and stellate neuron dendrites were characterized by transmission electron microscopy. Correlative microscopy allowed us to obtain the basic three-dimensional morphological features of climbing fibers in several vertebrates and to show with more accuracy a higher degree of lateral collateralization of these fibers within the cerebellar cortex. The correlative microscopy approach provides new views in the cerebellar cortex information processing.

  1. Visualization of mobility by atomic force microscopy.

    Science.gov (United States)

    Ando, Toshio; Kodera, Noriyuki

    2012-01-01

    Intrinsically disordered regions (IDRs) of proteins are very thin and hence hard to be visualized by electron microscopy. Thus far, only high-speed atomic force microscopy (HS-AFM) can visualize them. The molecular movies identify the alignment of IDRs and ordered regions in an intrinsically disordered protein (IDP) and show undulation motion of the IDRs. The visualized tail-like structures contain the information of mechanical properties of the IDRs. Here, we describe methods of HS-AFM visualization of IDPs and methods of analyzing the obtained images to characterize IDRs.

  2. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ida [University of Tennessee, Knoxville (UTK); Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  3. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    NARCIS (Netherlands)

    Yoo, H.W.

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological

  4. Towards Automated Nanomanipulation under Scanning Electron Microscopy

    Science.gov (United States)

    Ye, Xutao

    Robotic Nanomaterial Manipulation inside scanning electron microscopes (SEM) is useful for prototyping functional devices and characterizing one-dimensional nanomaterial's properties. Conventionally, manipulation of nanowires has been performed via teleoperation, which is time-consuming and highly skill-dependent. Manual manipulation also has the limitation of low success rates and poor reproducibility. This research focuses on a robotic system capable of automated pick-place of single nanowires. Through SEM visual detection and vision-based motion control, the system transferred individual silicon nanowires from their growth substrate to a microelectromechanical systems (MEMS) device that characterized the nanowires' electromechanical properties. The performances of the nanorobotic pick-up and placement procedures were quantified by experiments. The system demonstrated automated nanowire pick-up and placement with high reliability. A software system for a load-lock-compatible nanomanipulation system is also designed and developed in this research.

  5. GaN nanowire tips for nanoscale atomic force microscopy

    Science.gov (United States)

    Behzadirad, Mahmoud; Nami, Mohsen; Rishinaramagalam, Ashwin K.; Feezell, Daniel F.; Busani, Tito

    2017-05-01

    Imaging of high-aspect-ratio nanostructures with sharp edges and straight walls in nanoscale metrology by atomic force microscopy (AFM) has been challenging due to the mechanical properties and conical geometry of the majority of available commercial tips. Here we report on the fabrication of GaN probes for nanoscale metrology of high-aspect-ratio structures to enhance the resolution of AFM imaging and improve the durability of AFM tips. GaN nanowires were fabricated using bottom-up and top-down techniques and bonded to Si cantilevers to scan vertical trenches on Si substrates. Over several scans, the GaN probes demonstrated excellent durability while scanning uneven structures and showed resolution enhancements in topography images, independent of scan direction, compared to commercial Si tips.

  6. Cadherin interaction probed by atomic force microscopy

    OpenAIRE

    Baumgartner, W.; Hinterdorfer, P.; Ness, W.; Raab, A.; Vestweber, D; Schindler, H; Drenckhahn, D

    2000-01-01

    Single molecule atomic force microscopy was used to characterize structure, binding strength (unbinding force), and binding kinetics of a classical cadherin, vascular endothelial (VE)-cadherin, secreted by transfected Chinese hamster ovary cells as cis-dimerized full-length external domain fused to Fc-portion of human IgG. In physiological buffer, the external domain of VE-cadherin dimers is a ≈20-nm-long rod-shaped molecule that collapses and dissociates into monomers (V-shaped structures) i...

  7. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.

    Science.gov (United States)

    Tomitori, Masahiko; Sasahara, Akira

    2014-11-01

    Over a hundred years an atomistic point of view has been indispensable to explore fascinating properties of various materials and to develop novel functional materials. High-resolution microscopies, rapidly developed during the period, have taken central roles in promoting materials science and related techniques to observe and analyze the materials. As microscopies with the capability of atom-imaging, field ion microscopy (FIM), scanning tunneling microscopy (STM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) can be cited, which have been highly evaluated as methods to ultimately bring forward the viewpoint of reductionism in materials science. On one hand, there have been difficulties to derive useful and practical information on large (micro) scale unique properties of materials using these excellent microscopies and to directly advance the engineering for practical materials. To make bridges over the gap between an atomic scale and an industrial engineering scale, we have to develop emergence science step-by-step as a discipline having hierarchical structures for future prospects by combining nanoscale and microscale techniques; as promising ways, the combined microscopic instruments covering the scale gap and the extremely sophisticated methods for sample preparation seem to be required. In addition, it is noted that spectroscopic and theoretical methods should implement the emergence science.Fundamentally, the function of microscope is to determine the spatial positions of a finite piece of material, that is, ultimately individual atoms, at an extremely high resolution with a high stability. To define and control the atomic positions, the STM and AFM as scanning probe microscopy (SPM) have successfully demonstrated their power; the technological heart of SPM lies in an atomically sharpened tip, which can be observed by FIM and TEM. For emergence science we would like to set sail using the tip as a base. Meanwhile, it is significant

  8. Bacterial adhesion force quantification by fluidic force microscopy

    Science.gov (United States)

    Potthoff, Eva; Ossola, Dario; Zambelli, Tomaso; Vorholt, Julia A.

    2015-02-01

    Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology.Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many

  9. Vector sensor for scanning SQUID microscopy

    Science.gov (United States)

    Dang, Vu The; Toji, Masaki; Thanh Huy, Ho; Miyajima, Shigeyuki; Shishido, Hiroaki; Hidaka, Mutsuo; Hayashi, Masahiko; Ishida, Takekazu

    2017-07-01

    We plan to build a novel 3-dimensional (3D) scanning SQUID microscope with high sensitivity and high spatial resolution. In the system, a vector sensor consists of three SQUID sensors and three pick-up coils realized on a single chip. Three pick-up coils are configured in orthogonal with each other to measure the magnetic field vector of X, Y, Z components. We fabricated some SQUID chips with one uniaxial pick-up coil or three vector pick-up coils and carried out fundamental measurements to reveal the basic characteristics. Josephson junctions (JJs) of sensors are designed to have the critical current density J c of 320 A/cm2, and the critical current I c becomes 12.5 μA for the 2.2μm × 2.2μm JJ. We carefully positioned the three pickup coils so as to keep them at the same height at the centers of all three X, Y and Z coils. This can be done by arranging them along single line parallel to a sample surface. With the aid of multilayer technology of Nb-based fabrication, we attempted to reduce an inner diameter of the pickup coils to enhance both sensitivity and spatial resolution. The method for improving a spatial resolution of a local magnetic field image is to employ an XYZ piezo-driven scanner for controlling the positions of the pick-up coils. The fundamental characteristics of our SQUID sensors confirmed the proper operation of our SQUID sensors and found a good agreement with our design parameters.

  10. Automated force controller for amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)

    2016-05-15

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.

  11. Cautions to predicate multiferroic by atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2017-05-01

    Full Text Available With the ever-increasing research activities in multiferroic driven by its profound physics and enormous potential for application, magnetic force microscopy (MFM, as a variety of atomic force microscope (AFM, has been brought to investigate the magnetic properties and the voltage controlled magnetism, especially in thin films and heterostructures. Here by taking a representative multiferroic system BiFeO3/La0.67Sr0.33MnO3 heterostructure and a ferroelectric PMN-PT single crystal for examples, we demonstrated that the MFM image is prone to be seriously interfered by the electrostatic interaction between the tip and sample surface, and misleads the predication of multiferroic. Assisted by the scanning Kelvin probe microscopy (SKPM, the origin and mechanism were discussed and an effective solution was proposed.

  12. Cautions to predicate multiferroic by atomic force microscopy

    Science.gov (United States)

    Liu, Chen; Ma, Jing; Ma, Ji; Zhang, Yujun; Chen, Jiahui; Nan, Ce-Wen

    2017-05-01

    With the ever-increasing research activities in multiferroic driven by its profound physics and enormous potential for application, magnetic force microscopy (MFM), as a variety of atomic force microscope (AFM), has been brought to investigate the magnetic properties and the voltage controlled magnetism, especially in thin films and heterostructures. Here by taking a representative multiferroic system BiFeO3/La0.67Sr0.33MnO3 heterostructure and a ferroelectric PMN-PT single crystal for examples, we demonstrated that the MFM image is prone to be seriously interfered by the electrostatic interaction between the tip and sample surface, and misleads the predication of multiferroic. Assisted by the scanning Kelvin probe microscopy (SKPM), the origin and mechanism were discussed and an effective solution was proposed.

  13. Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping

    Science.gov (United States)

    Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung

    2017-08-01

    Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.

  14. Ultrastable atomic force microscopy: improved force and positional stability.

    Science.gov (United States)

    Churnside, Allison B; Perkins, Thomas T

    2014-10-01

    Atomic force microscopy (AFM) is an exciting technique for biophysical studies of single molecules, but its usefulness is limited by instrumental drift. We dramatically reduced positional drift by adding two lasers to track and thereby actively stabilize the tip and the surface. These lasers also enabled label-free optical images that were spatially aligned to the tip position. Finally, sub-pN force stability over 100 s was achieved by removing the gold coating from soft cantilevers. These enhancements to AFM instrumentation can immediately benefit research in biophysics and nanoscience. Published by Elsevier B.V.

  15. Nanolithography on hydrogen terminateed silicon by scanning probe microscopy

    NARCIS (Netherlands)

    Schönenberger, Christian; Kramer, Niels; Kramer, N.

    1996-01-01

    Scanning-probe microscopes (SPM), i.e. the scanning-tunneling and force microscopes, can be used to locally oxidize hydrogen-terminated silicon and hydrogenated amorphous silicon. Because of its reliability and potential for pattern transfer, this lithography process has found great attention and

  16. FEATURES OF MEASURING IN LIQUID MEDIA BY ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Mikhail V. Zhukov

    2016-11-01

    Full Text Available Subject of Research.The paper presents results of experimental study of measurement features in liquids by atomic force microscope to identify the best modes and buffered media as well as to find possible image artifacts and ways of their elimination. Method. The atomic force microscope Ntegra Aura (NT-MDT, Russia with standard prism probe holder and liquid cell was used to carry out measurements in liquids. The calibration lattice TGQ1 (NT-MDT, Russia was chosen as investigated structure with a fixed shape and height. Main Results. The research of probe functioning in specific pH liquids (distilled water, PBS - sodium phosphate buffer, Na2HPO4 - borate buffer, NaOH 0.1 M, NaOH 0.5 M was carried out in contact and semi-contact modes. The optimal operating conditions and the best media for the liquid measurements were found. Comparison of atomic force microscopy data with the results of lattice study by scanning electron microscopy was performed. The features of the feedback system response in the «probe-surface» interaction were considered by the approach/retraction curves in the different environments. An artifact of image inversion was analyzed and recommendation for its elimination was provided. Practical Relevance. These studies reveal the possibility of fine alignment of research method for objects of organic and inorganic nature by atomic force microscopy in liquid media.

  17. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    Science.gov (United States)

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  18. Applications of orientation mapping by scanning and transmission electron microscopy

    DEFF Research Database (Denmark)

    Juul Jensen, D.

    1997-01-01

    The potentials of orientation mapping techniques (in the following referred to as OIM) for studies of thermomechanical processes are analysed. Both transmission electron microscopy (TEM) and scanning electron microscopy (SEM) based OIM techniques are considered. Among the thermomechanical processes...... information is achieved when the results of OIM and these various techniques are combined. Examples hereof are given to illustrate the potentials of OIM techniques. Finally, limitations of TEM and SEM based OIM for specific applications are discussed....

  19. Stacking it up: Exploring the limits of ultra-high resolution atomic force microscopy

    NARCIS (Netherlands)

    van der Heijden, N.J.|info:eu-repo/dai/nl/369392205

    2017-01-01

    Atomic force microscopy (AFM) is a technique wherein an atomically sharp needle raster scans across a surface, detecting forces between it and the sample. In state-of-the-art AFM experiments the measured forces are typically on the order of pico-Newtons, and the lateral resolution is on the order of

  20. Magnetic force microscopy of superparamagnetic nanoparticles.

    Science.gov (United States)

    Schreiber, Sharon; Savla, Mayur; Pelekhov, Denis V; Iscru, Daniel F; Selcu, Camelia; Hammel, P Chris; Agarwal, Gunjan

    2008-02-01

    The use of magnetic force microscopy (MFM) to detect probe-sample interactions from superparamagnetic nanoparticles in vitro in ambient atmospheric conditions is reported here. By using both magnetic and nonmagnetic probes in dynamic lift-mode imaging and by controlling the direction and magnitude of the external magnetic field applied to the samples, it is possible to detect and identify the presence of superparamagnetic nanoparticles. The experimental results shown here are in agreement with the estimated sensitivity of the MFM technique. The potential and challenges for localizing nanoscale magnetic domains in biological samples is discussed.

  1. System and method for compressive scanning electron microscopy

    Science.gov (United States)

    Reed, Bryan W

    2015-01-13

    A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.

  2. Outwitting the series resistance in scanning spreading resistance microscopy.

    Science.gov (United States)

    Schulze, A; Cao, R; Eyben, P; Hantschel, T; Vandervorst, W

    2016-02-01

    The performance of nanoelectronics devices critically depends on the distribution of active dopants inside these structures. For this reason, dopant profiling has been defined as one of the major metrology challenges by the international technology roadmap of semiconductors. Scanning spreading resistance microscopy (SSRM) has evolved as one of the most viable approaches over the last decade due to its excellent spatial resolution, sensitivity and quantification accuracy. However, in case of advanced device architectures like fins and nanowires a proper measurement of the spreading resistance is often hampered by the increasing impact of parasitic series resistances (e.g. bulk series resistance) arising from the confined nature of the aforementioned structures. In order to overcome this limitation we report in this paper the development and implementation of a novel SSRM mode (fast Fourier transform-SSRM: FFT-SSRM) which essentially decouples the spreading resistance from parasitic series resistance components. We show that this can be achieved by a force modulation (leading to a modulated spreading resistance signal) in combination with a lock-in deconvolution concept. In this paper we first introduce the principle of operation of the technique. We discuss in detail the underlying physical mechanisms as well as the technical implementation on a state-of-the-art atomic force microscope (AFM). We demonstrate the performance of FFT-SSRM and its ability to remove substantial series resistance components in practice. Eventually, the possibility of decoupling the spreading resistance from the intrinsic probe resistance will be demonstrated and discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Cadherin interaction probed by atomic force microscopy

    Science.gov (United States)

    Baumgartner, W.; Hinterdorfer, P.; Ness, W.; Raab, A.; Vestweber, D.; Schindler, H.; Drenckhahn, D.

    2000-04-01

    Single molecule atomic force microscopy was used to characterize structure, binding strength (unbinding force), and binding kinetics of a classical cadherin, vascular endothelial (VE)-cadherin, secreted by transfected Chinese hamster ovary cells as cis-dimerized full-length external domain fused to Fc-portion of human IgG. In physiological buffer, the external domain of VE-cadherin dimers is a 20-nm-long rod-shaped molecule that collapses and dissociates into monomers (V-shaped structures) in the absence of Ca2+. Trans-interaction of dimers is a low-affinity reaction (KD = 10-3-10-5 M, koff = 1.8 s-1, kon = 103-105 M-1·s-1) with relatively low unbinding force (35-55 pN at retrace velocities of 200-4,000 nm·s-1). Higher order unbinding forces, that increase with interaction time, indicate association of cadherins into complexes with cumulative binding strength. These observations favor a model by which the inherently weak unit binding strength and affinity of cadherin trans-interaction requires clustering and cytoskeletal immobilization for amplification. Binding is regulated by low-affinity Ca2+ binding sites (KD = 1.15 mM) with high cooperativity (Hill coefficient of 5.04). Local changes of free extracellular Ca2+ in the narrow intercellular space may be of physiological importance to facilitate rapid remodeling of intercellular adhesion and communication.

  4. Scanning Tunneling Microscopy, Atomic Force Microscopy, and Related Techniques

    Science.gov (United States)

    1992-02-26

    imaged the spiral structure, based on n-reverse turns, of the elastomeric wheat gluten proteins (D401). Masai et al. observed the sheet-type paracrystal 23...88, 68-71. (D402) Masai , J.; Shibata, T.; Kondo, S.; Isbiwata, S. J. Vac. Sci. Technol. B 1ŕ, 9, 1177-9. (D403) Heckl, W.M.; Smith, D.P.E.; Binnig, G

  5. Scanning near-field optical microscopy on rough surfaces: Applications in chemistry, biology, and medicine

    OpenAIRE

    Kaupp, Gerd

    2006-01-01

    Shear-force apertureless scanning near-field optical microscopy (SNOM) with very sharp uncoated tapered waveguides relies on the unexpected enhancement of reflection in the shear-force gap. It is the technique for obtaining chemical (materials) contrast in the optical image of “real world” surfaces that are rough and very rough without topographical artifacts, and it is by far less complicated than other SNOM techniques that can only be used for very flat surfaces. The ex...

  6. PSD microscopy: a new technique for adaptive local scanning of microscale objects.

    Science.gov (United States)

    Rahimi, Mehdi; Shen, Yantao

    2017-01-01

    A position-sensitive detector/device (PSD) is a sensor that is capable of tracking the location of a laser beam on its surface. PSDs are used in many scientific instruments and technical applications including but not limited to atomic force microscopy, human eye movement monitoring, mirrors or machine tool alignment, vibration analysis, beam position control and so on. This work intends to propose a new application using the PSD. That is a new microscopy system called scanning PSD microscopy. The working mechanism is about putting an object on the surface of the PSD and fast scanning its area with a laser beam. To achieve a high degree of accuracy and precision, a reliable framework was designed using the PSD. In this work, we first tried to improve the PSD reading and its measurement performance. This was done by minimizing the effects of noise, distortion and other disturbing parameters. After achieving a high degree of confidence, the microscopy system can be implemented based on the improved PSD measurement performance. Later to improve the scanning efficiency, we developed an adaptive local scanning system to scan the whole area of the PSD in a short matter of time. It was validated that our comprehensive and adaptive local scanning method can shorten the scanning time in order of hundreds of times in comparison with the traditional raster scanning without losing any important information about the scanned 2D objects. Methods are also introduced to scan very complicated objects with bifurcations and crossings. By incorporating all these methods, the new microscopy system is capable of scanning very complicated objects in the matter of a few seconds with a resolution that is in order of a few micrometers.

  7. Magnetic force microscopy: quantitative issues in biomaterials.

    Science.gov (United States)

    Passeri, Daniele; Dong, Chunhua; Reggente, Melania; Angeloni, Livia; Barteri, Mario; Scaramuzzo, Francesca A; De Angelis, Francesca; Marinelli, Fiorenzo; Antonelli, Flavia; Rinaldi, Federica; Marianecci, Carlotta; Carafa, Maria; Sorbo, Angela; Sordi, Daniela; Arends, Isabel Wce; Rossi, Marco

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples at the nanoscale. Being a well established tool for the characterization of magnetic recording media, superconductors and magnetic nanomaterials, MFM is finding constantly increasing application in the study of magnetic properties of materials and systems of biological and biomedical interest. After reviewing these latter applications, three case studies are presented in which MFM is used to characterize: (i) magnetoferritin synthesized using apoferritin as molecular reactor; (ii) magnetic nanoparticles loaded niosomes to be used as nanocarriers for drug delivery; (iii) leukemic cells labeled using folic acid-coated core-shell superparamagnetic nanoparticles in order to exploit the presence of folate receptors on the cell membrane surface. In these examples, MFM data are quantitatively analyzed evidencing the limits of the simple analytical models currently used. Provided that suitable models are used to simulate the MFM response, MFM can be used to evaluate the magnetic momentum of the core of magnetoferritin, the iron entrapment efficiency in single vesicles, or the uptake of magnetic nanoparticles into cells.

  8. Dynamic force microscopy imaging of native membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kienberger, Ferry; Stroh, Cordula; Kada, Gerald; Moser, Rosita; Baumgartner, Werner; Pastushenko, Vassili; Rankl, Christian; Schmidt, Ute; Mueller, Harald; Orlova, Elena; LeGrimellec, Christian; Drenckhahn, Detlev; Blaas, Dieter; Hinterdorfer, Peter

    2003-10-15

    We employed magnetic ACmode atomic force microscopy (MACmode AFM) as a novel dynamic force microscopy method to image surfaces of biological membranes in their native environments. The lateral resolution achieved under optimized imaging conditions was in the nanometer range, even when the sample was only weakly attached to the support. Purple membranes (PM) from Halobacterium salinarum were used as a test standard for topographical imaging. The hexagonal arrangement of the bacteriorhodopsin trimers on the cytoplasmic side of PM was resolved with 1.5 nm lateral accuracy, a resolution similar to images obtained in contact and tapping-mode AFM. Human rhinovirus 2 (HRV2) particles were attached to mica surfaces via nonspecific interactions. The capsid structure and 2 nm sized protein loops of HRV2 were routinely obtained without any displacement of the virus. Globular and filamentous structures on living and fixed endothelial cells were observed with a resolution of 5-20 nm. These examples show that MACmode AFM is a favorable method in studying the topography of soft and weakly attached biological samples with high resolution under physiological conditions.

  9. Understanding the Plasmonics of Nanostructured Atomic Force Microscopy Tips

    CERN Document Server

    Sanders, Alan; Zhang, Liwu; Turek, Vladimir; Sigle, Daniel O; Lombardi, Anna; Weller, Lee; Baumberg, Jeremy J

    2016-01-01

    Structured metallic tips are increasingly important for optical spectroscopies such as tip-enhanced Raman spectroscopy (TERS), with plasmonic resonances frequently cited as a mechanism for electric field enhancement. We probe the local optical response of sharp and spherical-tipped atomic force microscopy (AFM) tips using a scanning hyperspectral imaging technique to identify plasmonic behaviour. Localised surface plasmon resonances which radiatively couple with far-field light are found only for spherical AFM tips, with little response for sharp AFM tips, in agreement with numerical simulations of the near-field response. The precise tip geometry is thus crucial for plasmon-enhanced spectroscopies, and the typical sharp cones are not preferred.

  10. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  11. Challenges of scanning hall microscopy using batch fabricated probes

    NARCIS (Netherlands)

    Hatakeyama, Kodai

    2016-01-01

    Scanning Hall probe microscopy is a widely used technique for quantitative high resolution imaging of magnetic stray fields. Up to now probes with nanometer spatial resolution have only been realized by electron beam lithography, which is a slow and expensive fabrication technique. In this thesis,

  12. Nanochannel alignment analysis by scanning transmission ion microscopy

    DEFF Research Database (Denmark)

    Rajta, I.; Gál, G.A.B.; Szilasi, S.Z.

    2010-01-01

    In this paper a study on the ion transmission ratio of a nanoporous alumina sample is presented. The sample was investigated by scanning transmission ion microscopy (STIM) with different beam sizes. The hexagonally close-packed AlO nanocapillary array, realized as a suspended membrane of 15 νm...

  13. Scanning electron microscopy of Dermatobia hominis reveals cutaneous anchoring features.

    Science.gov (United States)

    Möhrenschlager, Matthias; Mempel, Martin; Weichenmeier, Ingrid; Engst, Reinhard; Ring, Johannnes; Behrendt, Heidrun

    2007-10-01

    We report the case of a 45-year-old Caucasian woman suffering from cutaneous myiasis. With the use of scanning electron microscopy, we placed special focus on the mechanisms by which Dermatobia hominis can fasten securely within the human skin.

  14. Ultrafast terahertz scanning tunneling microscopy with atomic resolution

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2016-01-01

    We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...

  15. Characterization of Polycaprolactone Films Biodeterioration by Scanning Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Hrubanová, Kamila; Voberková, S.; Hermanová, S.; Krzyžánek, Vladislav

    2014-01-01

    Roč. 20, S3 (2014), s. 1950-1951 ISSN 1431-9276 R&D Projects: GA MŠk EE.2.3.20.0103; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : polycaprolactone films * biodeterioration * scanning electron microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.877, year: 2014

  16. Nanostructural analysis by atomic force microscopy followed by light microscopy on the same archival slide.

    Science.gov (United States)

    Wagner, Mathias; Kaehler, Dirk; Anhenn, Olaf; Betz, Thomas; Awad, Sally; Shamaa, Ali; Theegarten, Dirk; Linder, Roland

    2009-07-01

    Integrated information on ultrastructural surface texture and chemistry increasingly plays a role in the biomedical sciences. Light microscopy provides access to biochemical data by the application of dyes. Ultrastructural representation of the surface structure of tissues, cells, or macromolecules can be obtained by scanning electron microscopy (SEM). However, SEM often requires gold or coal coating of biological samples, which makes a combined examination by light microscopy and SEM difficult. Conventional histochemical staining methods are not easily applicable to biological material subsequent to such treatment. Atomic force microscopy (AFM) gives access to surface textures down to ultrastructural dimensions without previous coating of the sample. A combination of AFM with conventional histochemical staining protocols for light microscopy on a single slide is therefore presented. Unstained cores were examined using AFM (tapping mode) and subsequently stained histochemically. The images obtained by AFM were compared with the results of histochemistry. AFM technology did not interfere with any of the histochemical staining protocols. Ultrastructurally analyzed regions could be identified in light microscopy and histochemical properties of ultrastructurally determined regions could be seen. AFM-generated ultrastructural information with subsequent staining gives way to novel findings in the biomedical sciences. (c) 2009 Wiley-Liss, Inc.

  17. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1996-01-01

    Scanning Tunneling Microscopy III provides a unique introduction to the theoretical foundations of scanning tunneling microscopy and related scanning probe methods. The different theoretical concepts developed in the past are outlined, and the implications of the theoretical results for the interpretation of experimental data are discussed in detail. Therefore, this book serves as a most useful guide for experimentalists as well as for theoreticians working in the filed of local probe methods. In this second edition the text has been updated and new methods are discussed.

  18. Electron beam detection of a Nanotube Scanning Force Microscope.

    Science.gov (United States)

    Siria, Alessandro; Niguès, Antoine

    2017-09-14

    Atomic Force Microscopy (AFM) allows to probe matter at atomic scale by measuring the perturbation of a nanomechanical oscillator induced by near-field interaction forces. The quest to improve sensitivity and resolution of AFM forced the introduction of a new class of resonators with dimensions at the nanometer scale. In this context, nanotubes are the ultimate mechanical oscillators because of their one dimensional nature, small mass and almost perfect crystallinity. Coupled to the possibility of functionalisation, these properties make them the perfect candidates as ultra sensitive, on-demand force sensors. However their dimensions make the measurement of the mechanical properties a challenging task in particular when working in cavity free geometry at ambient temperature. By using a focused electron beam, we show that the mechanical response of nanotubes can be quantitatively measured while approaching to a surface sample. By coupling electron beam detection of individual nanotubes with a custom AFM we image the surface topography of a sample by continuously measuring the mechanical properties of the nanoresonators. The combination of very small size and mass together with the high resolution of the electron beam detection method offers unprecedented opportunities for the development of a new class of nanotube-based scanning force microscopy.

  19. Investigating cell mechanics with atomic force microscopy.

    Science.gov (United States)

    Haase, Kristina; Pelling, Andrew E

    2015-03-06

    Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells 'feel', we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Microbial cells analysis by atomic force microscopy.

    Science.gov (United States)

    Alsteens, David

    2012-01-01

    Unraveling the structure of microbial cells is a major challenge in current microbiology and offers exciting prospects in biomedicine. Atomic force microscopy (AFM) appears as a powerful method to image the surface ultrastructure of live cells under physiological conditions and allows real-time imaging to follow dynamic processes such as cell growth, and division and effects of drugs and chemicals. The following chapter introduces different methods of sample preparation to gain insights into the microbial cell organization. Successful strategies to immobilize microorganisms, including physical entrapment and chemical attachment, are described. This step is a key step and a prerequisite of any analysis and persists as an important limitation to the application of AFM to microbiology due to the wide diversity of microorganisms. Finally, some applications are depicted which underlie the ability of AFM to explore living microbes with unprecedented resolution. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Atomic Force Microscopy for DNA SNP Identification

    Science.gov (United States)

    Valbusa, Ugo; Ierardi, Vincenzo

    The knowledge of the effects of single-nucleotide polymorphisms (SNPs) in the human genome greatly contributes to better comprehension of the relation between genetic factors and diseases. Sequence analysis of genomic DNA in different individuals reveals positions where variations that involve individual base substitutions can occur. Single-nucleotide polymorphisms are highly abundant and can have different consequences at phenotypic level. Several attempts were made to apply atomic force microscopy (AFM) to detect and map SNP sites in DNA strands. The most promising approach is the study of DNA mutations producing heteroduplex DNA strands and identifying the mismatches by means of a protein that labels the mismatches. MutS is a protein that is part of a well-known complex of mismatch repair, which initiates the process of repairing when the MutS binds to the mismatched DNA filament. The position of MutS on the DNA filament can be easily recorded by means of AFM imaging.

  2. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  3. Atomic force microscopy of virus shells.

    Science.gov (United States)

    Moreno-Madrid, Francisco; Martín-González, Natalia; Llauró, Aida; Ortega-Esteban, Alvaro; Hernando-Pérez, Mercedes; Douglas, Trevor; Schaap, Iwan A T; de Pablo, Pedro J

    2017-04-15

    Microscopes are used to characterize small objects with the help of probes that interact with the specimen, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study just as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in a liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages, but also the characterization of every physicochemical property capable of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In the present revision, we start revising some recipes for adsorbing protein shells on surfaces. Then, we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted to extracting physical information, such as mechanical and electrostatic properties. We also explain how a convenient combination of AFM and fluorescence methodologies entails monitoring genome release from individual viral shells during mechanical unpacking. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  4. Atomic force microscopy of virus shells.

    Science.gov (United States)

    de Pablo, Pedro J

    2017-08-26

    Microscopes are used to characterize small specimens with the help of probes, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM) the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study as a blind person manages a white cane to explore the surrounding. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables the manipulation of single protein cages, and the characterization of every physico-chemical property able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. Here we describe several AFM approaches to study individual protein cages, including imaging and spectroscopic methodologies for extracting mechanical and electrostatic properties. In addition, AFM allows discovering and testing the self-healing capabilities of protein cages because occasionally they may recover fractures induced by the AFM tip. Beyond the protein shells, AFM also is able of exploring the genome inside, obtaining, for instance, the condensation state of dsDNA and measuring its diffusion when the protein cage breaks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Non-linear image scanning microscopy (Conference Presentation)

    Science.gov (United States)

    Gregor, Ingo; Ros, Robert; Enderlein, Jörg

    2017-02-01

    Nowadays, multiphoton microscopy can be considered as a routine method for the observation of living cells, organs, up to whole organisms. Second-harmonics generation (SHG) imaging has evolved to a powerful qualitative and label-free method for studying fibrillar structures, like collagen networks. However, examples of super-resolution non-linear microscopy are rare. So far, such approaches require complex setups and advanced synchronization of scanning elements limiting the image acquisition rates. We describe theory and realization of a super-resolution image scanning microscope [1, 2] using two-photon excited fluorescence as well as second-harmonic generation. It requires only minor modifications compared to a classical two-photon laser-scanning microscope and allows image acquisition at the high frame rates of a resonant galvo-scanner. We achieve excellent sensitivity and high frame-rate in combination with two-times improved lateral resolution. We applied this method to fixed cells, collagen hydrogels, as well as living fly embryos. Further, we proofed the excellent image quality of our setup for deep tissue imaging. 1. Müller C.B. and Enderlein J. (2010) Image scanning microscopy. Phys. Rev. Lett. 104(19), 198101. 2. Sheppard C.J.R. (1988) Super-resolution in confocal imaging. Optik (Stuttg) 80 53-54.

  6. Investigations in optoelectronic image processing in scanning laser microscopy

    Science.gov (United States)

    Chaliha, Hiranya Kumar

    A considerable amount of work has been done on scann-ing laser microscopy since its applications were first pointed out by Roberts and Young[1], Minsky [2] and Davidovits et al [3]. The advent of laser has made it possible to focus an intense beam of laser light in a scanning optical microscope (SOM) [4, 5] and hence explore regions of microscopy[6] uncovered by conven-tional microscopy. In the simple SOM [7, 8, 9], the upper spatial frequency in amplitude transmittance or reflectance of an object for which transfer function is nonzero is same as that in a conventional optical microscope. However, in Type II SOM [7] or confocal SOM that employs a coherent or a point detector, the spatial frequency bandwidth is twice that obtained in a conventional microscope. Besides this confocal set-up is found to be very useful in optical sectioning and consequently in 3-D image processing[10, 11, 12] specially of biological specimens. Such systems are also suitable for studies of semiconductor materials [13], super-resolution [14] and various imaginative ways of image processing[15, 16, 17] including phase imaging[18]. A brief survey of related advances in scanning optical microscopy has been covered in the chapter 1 of the thesis. The performance of SOM may be investigated by concent-rating also on signal derived by one dimensional scan of the object specimen. This simplified mode may also be adapted to give wealth of information for biological and semiconductor specimens. Hence we have investigated the design of a scanning laser system suited specifically for studies of line scan image signals of microscopic specimens when probed through a focused laser spot. An electro-mechanical method of scanning of the object specimen has been designed with this aim in mind. Chapter 2, Part A of the thesis deals with the design consider-ations of such a system. For analysis of scan signals at a later instant of time so as to facilitate further processing, an arrangement of microprocessor

  7. Multifarious applications of atomic force microscopy in forensic science investigations.

    Science.gov (United States)

    Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y

    2017-04-01

    Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Surface morphology of Trichinella spiralis by scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.W. (State Univ. of New York, Stony Brook); Ledbetter, M.C.

    1980-02-01

    The surface morphology of larval and adult Trichinella spiralis was studied by scanning electron microscopy (SEM) of fixed, dried, and metal-coated specimens. The results are compared with those found earlier by various investigators using light and transmission electron microscopy. Some morphological features reported here are revealed uniquely by SEM. These include the pores of the cephalic sense organs, the character of secondary cuticular folds, variations of the hypodermal gland cell openings or pores, and the presence of particles on the copulatory bell.

  9. Ultrafast Photon Counting Applied to Resonant Scanning STED Microscopy

    Science.gov (United States)

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2014-01-01

    Summary To take full advantage of fast resonant scanning in super-resolution STimulated Emission Depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multi-giga-sample per second analog-to-digital conversion (ADC) chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (~50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave (CW) STED technology to the usage of resonant scanning with hardware based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning CW-STED microscopy with on-line time-gated detection. PMID:25227160

  10. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Calibration and examination of piezoresistive Wheatstone bridge cantilevers for scanning probe microscopy.

    Science.gov (United States)

    Gotszalk, Teodor; Grabiec, Piotr; Rangelow, Ivo W

    2003-01-01

    This paper describes the method of determining the force constant and displacement sensitivity of piezoresistive Wheatstone bridge cantilevers applied in scanning probe microscopy (SPM). In the procedure presented here, the force constant for beams with various geometry is determined based on resonance frequency measurement. The displacement sensitivity is measured by the deflection of the cantilever with the calibrated piezoactuator stage. Preliminary results show that our method is capable of measuring the force constant of Wheatstone bridge cantilevers with an accuracy of better than 5% and this is used as feedback for improvement of sensor micromachining process.

  12. [Advances of in vivo confocal scanning laser microscopy].

    Science.gov (United States)

    Tian, Ke-bin; Zhou, Guo-yu

    2006-02-01

    In vivo confocal scanning laser microscopy is being widely established as a time-saving, non-invasive, investigative methods in the study of body surfaces. Skin can be observed in its native state in vivo without the fixing, sectioning and staining that is necessary for routine histology. It is a new technology that can provide detailed images of tissue architecture and cellular morphology of living tissue. This paper reviews the fundamentals of in vivo confocal imaging and its clinical applications.

  13. Sub-Kelvin scanning tunneling microscopy on magnetic molecules

    OpenAIRE

    Zhang, Lei

    2012-01-01

    Magnetic molecules have attracted lots interest. In this work, an ultra-stable and low noise scanning tunneling microscopy operating at 400 mK using He-3 (930 mK using He-4) has been developed. The magnetic behavior of different magnetic molecules on substrates, especially the exchange interaction between the magnetic ions, the magnetic anisotropy on the surface, the magnetic excitations as well as the Kondo effect, were studied by using STM.

  14. Scanning Electron Microscopy of Cristispira Species in Chesapeake Bay Oysters

    OpenAIRE

    Tall, Ben D.; Nauman, Robert K.

    1981-01-01

    Scanning electron microscopy was employed to observe the physical interactions between Cristispira spp. and the crystalline style of the Chesapeake Bay oyster (Crassostrea virginica Gmelin 1791). Cristispira organisms were found associated with both the inner and outer layers of the posterior two-thirds of the style. The spirochetes possessed blunt-tipped ends, a cell diameter range of 0.6 to 0.8 μm, and distended spirochetal envelopes which followed the contour of the cells. Transmission ele...

  15. Playing peekaboo with graphene oxide: a scanning electrochemical microscopy investigation.

    Science.gov (United States)

    Rapino, Stefania; Treossi, Emanuele; Palermo, Vincenzo; Marcaccio, Massimo; Paolucci, Francesco; Zerbetto, Francesco

    2014-11-07

    Scanning electrochemical microscopy (SECM) can image graphene oxide (GO) flakes on insulating and conducting substrates. The contrast between GO and the substrate is controlled by the electrostatic interactions that are established between the charges of the molecular redox mediator and the charges present in the sheet/substrate. SECM also allows quantitative measurement - at the nano/microscale - of the charge transfer kinetics between single monolayer sheets and agent molecules.

  16. Scanning gate microscopy of ultra clean carbon nanotube quantum dots

    OpenAIRE

    Xue, Jiamin; Dhall, Rohan; Cronin, Stephen B.; LeRoy, Brian J.

    2015-01-01

    We perform scanning gate microscopy on individual suspended carbon nanotube quantum dots. The size and position of the quantum dots can be visually identified from the concentric high conductance rings. For the ultra clean devices used in this study, two new effects are clearly identified. Electrostatic screening creates non-overlapping multiple sets of Coulomb rings from a single quantum dot. In double quantum dots, by changing the tip voltage, the interactions between the quantum dots can b...

  17. Abrasion of 6 dentifrices measured by vertical scanning interference microscopy

    Science.gov (United States)

    PASCARETTI-GRIZON, Florence; MABILLEAU, Guillaume; CHAPPARD, Daniel

    2013-01-01

    Objectives The abrasion of dentifrices is well recognized to eliminate the dental plaque. The aims of this study were to characterize the abrasive powders of 6 dentifrices (3 toothpastes and 3 toothpowders) and to measure the abrasion on a test surface by Vertical Scanning Interference microscopy (VSI). Material and Methods Bright field and polarization microscopy were used to identify the abrasive particles on the crude dentifrices and after prolonged washes. Scanning electron microscopy and microanalysis characterized the shape and nature of the particles. Standardized and polished blocks of poly(methylmethacrylate) were brushed with a commercial electric toothbrush with the dentifrices. VSI quantified the mean roughness (Ra) and illustrated in 3D the abraded areas. Results Toothpastes induced a limited abrasion. Toothpowders induced a significantly higher roughness linked to the size of the abrasive particles. One powder (Gencix® produced a high abrasion when used with a standard testing weight. However, the powder is based on pumice particles covered by a plant homogenate that readily dissolves in water. When used in the same volume, or after dispersion in water, Ra was markedly reduced. Conclusion Light and electron microscopy characterize the abrasive particles and VSI is a new tool allowing the analysis of large surface of abraded materials. PMID:24212995

  18. Abrasion of 6 dentifrices measured by vertical scanning interference microscopy.

    Science.gov (United States)

    Pascaretti-Grizon, Florence; Mabilleau, Guillaume; Chappard, Daniel

    2013-01-01

    The abrasion of dentifrices is well recognized to eliminate the dental plaque. The aims of this study were to characterize the abrasive powders of 6 dentifrices (3 toothpastes and 3 toothpowders) and to measure the abrasion on a test surface by Vertical Scanning Interference microscopy (VSI). Bright field and polarization microscopy were used to identify the abrasive particles on the crude dentifrices and after prolonged washes. Scanning electron microscopy and microanalysis characterized the shape and nature of the particles. Standardized and polished blocks of poly(methylmethacrylate) were brushed with a commercial electric toothbrush with the dentifrices. VSI quantified the mean roughness (Ra) and illustrated in 3D the abraded areas. Toothpastes induced a limited abrasion. Toothpowders induced a significantly higher roughness linked to the size of the abrasive particles. One powder (Gencix® produced a high abrasion when used with a standard testing weight. However, the powder is based on pumice particles covered by a plant homogenate that readily dissolves in water. When used in the same volume, or after dispersion in water, Ra was markedly reduced. Light and electron microscopy characterize the abrasive particles and VSI is a new tool allowing the analysis of large surface of abraded materials.

  19. Mathematical framework for traction force microscopy

    Directory of Open Access Journals (Sweden)

    Michel R.

    2013-12-01

    Full Text Available This paper deals with the Traction Force Microscopy (TFM problem. It consists in obtaining stresses by solving an inverse problem in an elastic medium, from known experimentally measured displacements. In this article, the application is the determination of the stresses exerted by a living cell at the surface of an elastic gel. We propose an abstract framework which formulates this inverse problem as a constrained minimization one. The mathematical constraints express the biomechanical conditions that the stress field must satisfy. From this framework, two methods currently used can be derived, the adjoint method (AM and the Fourier Transform Traction Cytometry (FTTC method. An improvement of the FTTC method is also derived using this framework. The numerical results are compared and show the advantage of the AM, in particular its ability to capture details more accurately. Cet article est consacré au problème de la Microscopie à Force de Traction (TFM. Ce problème consiste à déterminer les contraintes exercées par une cellule lors de sa migration sur un substrat élastique à partir d’une mesure expérimentale des déplacements induits dans ce substrat. Mathématiquement, il s’agit de résoudre un problème inverse pour lequel nous proposons une formulation abstraite de type optimisation sous contraintes. Les contraintes mathématiques expriment les constraintes biomécaniques que doit satisfaire le champ de contraintes exercé par la cellule. Ce cadre abstrait permet de retrouver deux des méthodes de résolution utilisées en pratique, à savoir la méthode adjointe (AM et la méthode de Cytométrie de Traction par Transformée de Fourier (FTTC. Il permet aussi d’ameliorer la méthode FTTC. Les résultats numériques obtenus sont ensuite comparés et démontrent l’avantage de la méthode adjointe, en particulier par sa capacité à capturer des détails avec une meilleure précision.

  20. Microscopic FMR Using Magnetic Resonance Force Microscopy

    Science.gov (United States)

    Zhang, Z.; Hammel, P. C.; Wigen, P. E.

    1996-03-01

    Magnetic resonance force microscopy (MRFM) is a new 3-D imaging technique with ultra-high spatial resolution. This technique, discussed primarily in the context of nuclear magnetic resonance, can also be applied as a microscopic ferromagnetic resonance probe to investigate the distributions of magnetic anisotropy and magnetic exchange interactions within magnetic materials (for example, magnetic multilayer systems). We report the first MRFM experiment on a single crystal Yittrium Iron Garnet film. A non-resonance mode and a family of magneto-static modes were observed in the MRFM spectra. The non-resonance mode is due to the response of the sample magnetization to the applied, time dependent bias field. This will be the main noise source when a magnet is mounted on the cantilever, an arrangement which is necessary in order to perform 3-D imaging in MRFM. The behavior of the magneto-static modes is in qualitative accord with theoretical expectations. The MRFM signal intensity is so large that the experiment is performed under ambient pressure instead of vacuum to reduce the response of the detector (cantilever). This indicates that MRFM will allow micron or sub-micron spatial resolution in studies of a wide variety of magnetic materials.

  1. Investigating bioconjugation by atomic force microscopy

    Science.gov (United States)

    2013-01-01

    Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. PMID:23855448

  2. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode.

    Science.gov (United States)

    Biczysko, P; Dzierka, A; Jóźwiak, G; Rudek, M; Gotszalk, T; Janus, P; Grabiec, P; Rangelow, I W

    2017-09-20

    Scanning probe microscopy (SPM) encompasses several techniques for imaging of the physical and chemical material properties at nanoscale. The scanning process is based on the detection of the deflection of the cantilever, which is caused by near field interactions, while the tip runs over the sample's surface. The variety of deflection detection methods including optical, piezoresistive, piezoelectric technologies has been developed and applied depending on the measurement mode and measurement environment. There are many advantages (compactness, vacuum compatibility, etc.) of the piezoresistive detection method, which makes it very attractive for almost all SPM experiments. Due to the technological limitations the stiffness of the piezoresistive beams is usually higher than the stiffness of the cantilever detected using optical methods. This is the basic constraint for the application of the piezoresistive beams in contact mode (CM) atomic force microscopy (AFM) investigations performed at low load forces (usually less than 20 nN). Drift of the deflection signal, which is related to thermal fluctuations of the measurement setup, causes that the microscope controller compensates the fluctuations instead of compensating the strength of tip-surface interactions. Therefore, it is quite difficult to keep near field interaction precisely at the setpoint level during the whole scanning process. This can lead to either damage of the cantilever's tip and material surface or loosing the contact with the investigated sample and making the measurement unreliable. For these reasons, load force modulation (LoFM) scanning mode, in which the interaction at the tip is precisely controlled at every point of the sample surface, is proposed to enable precise AFM surface investigations using the piezoresistive cantilevers. In this article we describe the developed measurement algorithm as well as proposed and introduced hardware and software solutions. The results of the experiments

  4. Observation of the sweating in lipstick by scanning electron microscopy.

    Science.gov (United States)

    Seo, S Y; Lee, I S; Shin, H Y; Choi, K Y; Kang, S H; Ahn, H J

    1999-06-01

    The relationship between the wax matrix in lipstick and sweating has been investigated by observing the change of size and shape of the wax matrix due to sweating by Scanning Electron Microscopy (SEM). For observation by SEM, a lipstick sample was frozen in liquid nitrogen. The oil in the lipstick was then extracted in cold isopropanol (-70 degrees C) for 1-3 days. After the isopropanol was evaporated, the sample was sputtered with gold and examined by SEM. The change of wax matrix underneath the surface from fine, uniform structure to coarse, nonuniform structure resulted from the caking of surrounding wax matrix. The oil underneath the surface migrated to the surface of lipstick with sweating; consequently the wax matrix in that region was rearranged into the coarse matrix. In case of flamed lipstick, sweating was delayed and the wax matrix was much coarser than that of the unflamed one. The larger wax matrix at the surface region was good for including oil. The effect of molding temperature on sweating was also studied. As the molding temperature rose, sweating was greatly reduced and the size of the wax matrix increased. It was found that sweating was influenced by the compatibility of wax and oil. A formula consisting of wax and oil that have good compatibility has a tendency to reduce sweating and increase the size of the wax matrix. When pigments were added to wax and oil, the size of the wax matrix was changed, but in all cases sweating was increased due to the weakening of the binding force between wax and oil. On observing the thick membrane of wax at the surface of lipstick a month after molding it was also found that sweating was influenced by ageing. In conclusion, the structure of the wax matrix at the surface region of lipstick was changed with the process of flaming, molding temperature, compatibility of wax and oil, addition of pigment, and ageing. In most cases, as the size of the wax matrix was increased, sweating was reduced and delayed.

  5. Scanning probe microscopy: instrumentation and applications on thin films and magnetic multilayers.

    Science.gov (United States)

    Karoutsos, Vagelis

    2009-12-01

    In this article we present a review on instrumentation and the modes of operation of a scanning probe microscope. In detail, we review the main techniques of Scanning Probe Microscopy (SPM), which are Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM), focusing our attention on the latter one. The AFM instrument provides information on the roughness and grain size of thin films. As an example we review recent results on two metallic thin film systems: thin Ag films deposited on glass, and Ni/Pt compositionally modulated multilayers deposited on glass, Si, and polyimide substrates. To show the validity of the grain size measurements, we compare the data with the ones resulting from X-ray diffraction (XRD) measurements. We show that the AFM results are reliable for grain diameters as small as 14 nm, which is approximately comparable to the tip radius. Finally, we deal with Magnetic Force Microscopy (MFM) results on Co/Pt and Co/Au multilayers. We observe perpendicularly magnetized domains. The domain configurations are correlated to the magnetization hysteresis curves.

  6. Microvascular quantification based on contour-scanning photoacoustic microscopy

    Science.gov (United States)

    Yeh, Chenghung; Soetikno, Brian; Hu, Song; Maslov, Konstantin I.; Wang, Lihong V.

    2014-09-01

    Accurate quantification of microvasculature remains of interest in fundamental pathophysiological studies and clinical trials. Current photoacoustic microscopy can noninvasively quantify properties of the microvasculature, including vessel density and diameter, with a high spatial resolution. However, the depth range of focus (i.e., focal zone) of optical-resolution photoacoustic microscopy (OR-PAM) is often insufficient to encompass the depth variations of features of interest-such as blood vessels-due to uneven tissue surfaces. Thus, time-consuming image acquisitions at multiple different focal planes are required to maintain the region of interest in the focal zone. We have developed continuous three-dimensional motorized contour-scanning OR-PAM, which enables real-time adjustment of the focal plane to track the vessels' profile. We have experimentally demonstrated that contour scanning improves the signal-to-noise ratio of conventional OR-PAM by as much as 41% and shortens the image acquisition time by 3.2 times. Moreover, contour-scanning OR-PAM more accurately quantifies vessel density and diameter, and has been applied to studying tumors with uneven surfaces.

  7. In Situ Scanning Probe Microscopy and New Perspectives in Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Zhang, Jingdong; Chi, Qijin

    1999-01-01

    for molecular- and mesoscopic-scale analytical chemistry, are then reviewed. They are illustrated by metallic electro-crystallisation and -dissolution, and in situ STM spectroscopy of large redox molecules. The biophysically oriented analytical options of in situ atomic force microscopy, and analytical chemical......The resolution of scanning probe microscopies is unpresedented but the techniques are fraught with limitations as analytical tools. These limitations and their relationship to the physical mechanisms of image contrast are first discussed. Some new options based on in situ STM, which hold prospects...

  8. High Resolution Helium Ion Scanning Microscopy of the Rat Kidney

    Science.gov (United States)

    Rice, William L.; Van Hoek, Alfred N.; Păunescu, Teodor G.; Huynh, Chuong; Goetze, Bernhard; Singh, Bipin; Scipioni, Larry; Stern, Lewis A.; Brown, Dennis

    2013-01-01

    Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details and provide

  9. High resolution helium ion scanning microscopy of the rat kidney.

    Science.gov (United States)

    Rice, William L; Van Hoek, Alfred N; Păunescu, Teodor G; Huynh, Chuong; Goetze, Bernhard; Singh, Bipin; Scipioni, Larry; Stern, Lewis A; Brown, Dennis

    2013-01-01

    Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details and provide

  10. High resolution helium ion scanning microscopy of the rat kidney.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details

  11. High-resolution low-dose scanning transmission electron microscopy.

    Science.gov (United States)

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  12. Evaluation of the bleached human enamel by Scanning Electron Microscopy

    DEFF Research Database (Denmark)

    Miranda, Carolina Baptista; Pagani, Clovis; Benetti, Ana Raquel

    2005-01-01

    Since bleaching has become a popular procedure, the effect of peroxides on dental hard tissues is of great interest in research. Purpose: The aim of this in vitro study was to perform a qualitative analysis of the human enamel after the application of in-office bleaching agents, using Scanning...... Electron Microscopy (SEM). Materials and Methods: Twenty intact human third molars extracted for orthodontic reasons were randomly divided into four groups (n=5) treated as follows: G1- storage in artificial saliva (control group); G2- four 30-minute applications of 35% carbamide peroxide (total exposure...

  13. [Pulmonary hydatidosis. Comparison of cytology and scanning electron microscopy].

    Science.gov (United States)

    Lavaud, F; Nou, J M; Sadrin, R; de Montreynaud, J M; Adnet, J J

    1986-01-01

    The puncture of a hydatid cyst with a fine needle is not generally recommended as a procedure and may even be contra-indicated in the first instance. Sometimes, however, the cytologist will be surprised to discover some scolices in the aspirate when the radiology is misleading, or not suggestive, and the serology is negative. We report two cases where the diagnosis was made by the cytological examination of the aspirate. The cytological study of the liquids was compared with electron microscopy scanning, enabling the stages of development of the parasite in the tissue of the pulmonary parenchyma to be assessed.

  14. Advanced Scanning Electron Microscopy and X Ray Microanalysis

    Science.gov (United States)

    Krinsley, David

    This text is the third in a group that evolved from a short course taught annually at Lehigh University, Bethlehem, Pa., since 1972. Chapters on magnetic contrast a nd electron channeling, dropped from the second volume for reasons of space, are included here along with new topics such as image processing. The first seven chapters should be oT value to those geologists interested in scanning electron microscopy (SEM) and microanalysis. Chapters 8 and 9, concerned with specimen preparation for biological SEM a nd cryomicroscopy, make up about one third of the text.

  15. Transfer functions in collection scanning near-field optical microscopy

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Vohnsen, Brian; Bozhevolnaya, Elena A.

    1999-01-01

    are considered with respect to the relation between near-field optical images and the corresponding intensity distributions. Our conclusions are supported with numerical simulations and experimental results obtained by using a photon scanning tunneling microscope with an uncoated fiber tip.......It is generally accepted that, if in collection near-field optical microscopy the probe-sample coupling can be disregarded, a fiber probe can be considered as a detector of the near-field intensity whose size can be accounted for via an intensity transfer function. We show that, in general...

  16. Nanometrology using a through-focus scanning optical microscopy method

    Science.gov (United States)

    Attota, Ravikiran; Silver, Richard

    2011-02-01

    We present an initial review of a novel through-focus scanning optical microscopy (TSOM pronounced as 'tee-som') imaging method that produces nanometer-dimensional measurement sensitivity using a conventional bright-field optical microscope. In the TSOM method a target is scanned through the focus of an optical microscope, acquiring conventional optical images at different focal positions. The TSOM images are constructed using the through-focus optical images. A TSOM image is unique under given experimental conditions and is sensitive to changes in the dimensions of a target in a distinct way. We use this characteristic for nanoscale-dimensional metrology. This technique can be used to identify the dimension which is changing between two nanosized targets and to determine the dimensions using a library-matching method. This methodology has potential utility for a wide range of target geometries and application areas, including nanometrology, nanomanufacturing, defect analysis, inspection, process control and biotechnology.

  17. Quantitative phase imaging with scanning holographic microscopy: an experimental assessment.

    Science.gov (United States)

    Indebetouw, Guy; Tada, Yoshitaka; Leacock, John

    2006-11-28

    This paper demonstrates experimentally how quantitative phase information can be obtained in scanning holographic microscopy. Scanning holography can operate in both coherent and incoherent modes, simultaneously if desired, with different detector geometries. A spatially integrating detector provides an incoherent hologram of the object's intensity distribution (absorption and/or fluorescence, for example), while a point detector in a conjugate plane of the pupil provides a coherent hologram of the object's complex amplitude, from which a quantitative measure of its phase distribution can be extracted. The possibility of capturing simultaneously holograms of three-dimensional specimens, leading to three-dimensional reconstructions with absorption contrast, reflectance contrast, fluorescence contrast, as was previously demonstrated, and quantitative phase contrast, as shown here for the first time, opens up new avenues for multimodal imaging in biological studies.

  18. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    Science.gov (United States)

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  19. Elimination of periodic damped artifacts in scanning probe microscopy images

    Science.gov (United States)

    Chen, Yuhang; Huang, Wenhao

    2010-04-01

    When scanning probe microscopy (SPM) is operated at high scan rates, stripe-like artifacts will appear frequently in the SPM images. The removal of the image artifacts is highly demanded because they will distort the results in precise measurements. In this work, a method based on Prony analysis has been introduced to erase such periodic damped artifacts. Results demonstrate that this method prevails against the conventional fast Fourier transformation (FFT) method. Clean eliminations of the image artifacts are obtained, with almost no sacrifice of the detailed surface information. Even for arbitrary rough surfaces, the image artifacts can also be reduced by more than one order of magnitude. However, small amounts of stripes may still remain in the images. In these cases, the Prony analysis combined with locally weighted smoothing will provide better image quality. The artifacts reduction can have a meaning in the SPM-based visualization of dynamic phenomena with a nanoscale resolution.

  20. Quantitative phase imaging with scanning holographic microscopy: an experimental assesment

    Directory of Open Access Journals (Sweden)

    Tada Yoshitaka

    2006-11-01

    Full Text Available Abstract This paper demonstrates experimentally how quantitative phase information can be obtained in scanning holographic microscopy. Scanning holography can operate in both coherent and incoherent modes, simultaneously if desired, with different detector geometries. A spatially integrating detector provides an incoherent hologram of the object's intensity distribution (absorption and/or fluorescence, for example, while a point detector in a conjugate plane of the pupil provides a coherent hologram of the object's complex amplitude, from which a quantitative measure of its phase distribution can be extracted. The possibility of capturing simultaneously holograms of three-dimensional specimens, leading to three-dimensional reconstructions with absorption contrast, reflectance contrast, fluorescence contrast, as was previously demonstrated, and quantitative phase contrast, as shown here for the first time, opens up new avenues for multimodal imaging in biological studies.

  1. Fast and gentle side approach for atomic force microscopy

    NARCIS (Netherlands)

    Wessels, W.A.; Broekmaat, Joska Johannes; Beerends, R.J.L.; Koster, Gertjan; Rijnders, Augustinus J.H.M.

    2013-01-01

    Atomic force microscopy is one of the most popular imaging tools with atomic resolution in different research fields. Here, a fast and gentle side approach for atomic force microscopy is proposed to image the same surface location and to reduce the time delay between modification and imaging without

  2. Scanning probe microscopy estimation of the wear resistance of the surface of a modified PVC film

    Science.gov (United States)

    Kochetkova, A. S.; Gorbushin, P. N.; Sosnov, E. A.; Kolert, K.; Malygin, A. A.

    2017-04-01

    An atomic force microscopy technique is proposed to determine the wear resistance of a protective coating deposited by the sol-gel method on the surface of a polyvinylchloride film. The force of action of a probe on a sample is estimated under various scanning conditions. It is shown that the obtained data on the resistance of a coating to the action of a probe in the contact mode can be used to qualitatively estimate the adhesion of the coating to the surface of a polymer matrix.

  3. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    Science.gov (United States)

    De Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-03-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial resolution and signal-to-noise ratio, are characterized and compared with properties of standard confocal microscopy. The results show that the lateral resolution of RCM is ~170 nm compared to ~240 nm of confocal microscopy for 488 nm excitation and 1.49 NA. As the theory predicts, this improved lateral resolution is independent of the pinhole diameter. In standard confocal microscopy, the same lateral resolution can only be achieved with an almost closed pinhole and, consequently, with a major loss of signal. We show that the sectioning capabilities of the standard confocal microscope are preserved in RCM and that the axial resolution of RCM is slightly better (~15%) than the standard confocal microscope. Furthermore, the signal-to-noise ratio in RCM is a factor of 2 higher than in standard confocal microscopy, also due to the use of highly sensitive modern cameras. In case the pinhole of a confocal microscope is adjusted in such way that the lateral resolution is comparable to that of RCM, the signal-to-noise ratio in RCM is 4 times higher than standard confocal microscopy. Therefore, RCM offers a good alternative to standard confocal microscopy for higher lateral resolution with the main advantage of strongly improved sensitivity.

  4. Combined nanoprobes for scanning probe microscopy: laser technology for processing and testing

    Science.gov (United States)

    Veiko, V. P.; Golubok, A. O.; Zuong, Z.; Varkentina, N. V.; Yakovlev, E. B.

    2008-02-01

    Scanning probe microscopy (SPM) is a high spatial resolution method of surface topography visualization and measurement of its local properties. The detecting of interaction arising between the sharp solid-state probe and the sample surface is the foundation of SPM. In dependence from nature of this interaction the scanning tunnel microscopy (STM), scanning force microscopy (SFM), scanning near field optical microscopy (SNOM), etc. are distinguished. The spatial resolution of all types of probe microscopy determins both sharpness of increasing of interaction between a probe and a sample at their approach, and shape and size of a top of a solid-state probe. So, the progress in SPM information capabilities is highly depends from probe properties and first of all from properly fabricated aperture size. Fabrication procedures are rather complicated because of nanometric scale size of aperture and hard requirements to reproducibility and need to be improved. The way how to do it is involving of feed-back in a processing procedure-results in two types of feedback for the process of drawing-out has been suggested, tested and installed into the technological set-up. Different probes have been fabricated by laser-assisted drawing-out during this work: SNOM types from optical fibers, micropipettes from quartz glass capillaries, micropipettes with microwires inside and with metallic covers outside. Some examples of application of above mentioned combined probes for cell membrane technology are described. Most important from them are topographical studying of cells and bacteria in living condition (in liquid) and studying of the mechanical properties of cell (rigidity of cell membrane) using the nanopipette as a tip of a force sensor. Also measurement of ion current that runs through cell membrane during its metabolic process using the nanopipette as well as in the well-known patch-clamp method have been done.

  5. Quality of corneal lamellar cuts quantified using atomic force microscopy

    Science.gov (United States)

    Ziebarth, Noël M.; Dias, Janice; Hürmeriç, Volkan; Shousha, Mohamed Abou; Yau, Chiyat Ben; Moy, Vincent T.; Culbertson, William; Yoo, Sonia H.

    2012-01-01

    PURPOSE To quantify the cut quality of lamellar dissections made with the femtosecond laser using atomic force microscopy (AFM). SETTING Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA. DESIGN Experimental study. METHODS Experiments were performed on 3 pairs of human cadaver eyes. The cornea was thinned to physiologic levels by placing the globe, cornea side down, in 25% dextran for 24 hours. The eyes were reinflated to normal pressures by injecting a balanced salt solution into the vitreous cavity. The eyes were placed in a holder, the epithelium was removed, and the eyes were cut with a Visumax femtosecond laser. The energy level was 180 nJ for the right eye and 340 nJ for the left eye of each pair. The cut depths were 200 μm, 300 μm, and 400 μm, with the cut depth maintained for both eyes of each pair. A 12.0 mm trephination was then performed. The anterior portion of the lamellar surface was placed in a balanced salt solution and imaged with AFM. As a control, the posterior surface was placed in 2% formalin and imaged with environmental scanning electron microscopy (SEM). Four quantitative parameters (root-mean-square deviation, average deviation, skewness, kurtosis) were calculated from the AFM images. RESULTS From AFM, the 300 μm low-energy cuts were the smoothest. Similar results were seen qualitatively in the environmental SEM images. CONCLUSION Atomic force microscopy provided quantitative information on the quality of lamellar dissections made using a femtosecond laser, which is useful in optimizing patient outcomes in refractive and lamellar keratoplasty surgeries. PMID:23141078

  6. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  7. Atomic Force Microscopy Application in Biological Research: A Review Study

    Directory of Open Access Journals (Sweden)

    Surena Vahabi

    2013-06-01

    Full Text Available Atomic force microscopy (AFM is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.

  8. Atomic force microscopy application in biological research: a review study.

    Science.gov (United States)

    Vahabi, Surena; Nazemi Salman, Bahareh; Javanmard, Anahita

    2013-06-01

    Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.

  9. Two-color two-photon fluorescence laser scanning microscopy.

    Science.gov (United States)

    Quentmeier, S; Denicke, S; Gericke, K-H

    2009-11-01

    We present the first realization of a Two-Color Two-Photon Laser-Scanning Microscope (2c2pLSM) and UV fluorescence images of cells acquired with this technique. Fluorescence is induced by two-color two-photon absorption using the fundamental and the second harmonic of a Ti:Sa femtosecond laser. Simultaneous absorption of an 800 nm photon and a 400 nm photon energetically corresponds to one-photon absorption at 266 nm. This technique for Laser-Scanning Microscopy extends the excitation wavelength range of a Ti:Sa powered fluorescence microscope to the UV. In addition to the known advantages of multi-photon microscopy like intrinsic 3D resolution, reduced photo damage and high penetration depth 2c2pLSM offers the possibility of using standard high numeric aperture objectives for UV fluorescence imaging. The effective excitation wavelength of 266 nm corresponds especially well to the excitation spectrum of tryptophan. Hence, it is an ideal tool for label free fluorescence studies and imaging of intrinsic protein fluorescence which originates mainly from tryptophan. Thus a very sensitive natural lifetime probe can be used for monitoring protein reactions or changes in conformation. First measurements of living MIN-6 cells reveal differences between the UV fluorescence lifetimes of the nucleus and cytoplasm. The significance of this method was further demonstrated by monitoring the binding of biotin to avidin.

  10. Scanning ion microscopy with low energy lithium ions

    Energy Technology Data Exchange (ETDEWEB)

    Twedt, Kevin A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Maryland NanoCenter, University of Maryland, College Park, MD 20742 (United States); Chen, Lei [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); McClelland, Jabez J., E-mail: jabez.mcclelland@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2014-07-01

    Using an ion source based on photoionization of laser-cooled lithium atoms, we have developed a scanning ion microscope with probe sizes of a few tens of nanometers and beam energies from 500 eV to 5 keV. These beam energies are much lower than the typical operating energies of the helium ion microscope or gallium focused ion beam systems. We demonstrate how low energy can be advantageous in ion microscopy when detecting backscattered ions, due to a decreased interaction volume and the potential for surface sensitive composition analysis. As an example application that demonstrates these advantages, we non-destructively image the removal of a thin residual resist layer during plasma etching in a nano-imprint lithography process. - Highlights: • We use an ion source based on photoionization of laser-cooled lithium atoms. • The ion source makes possible a low energy (500 eV to 5 keV) scanning ion microscope. • Low energy is preferred for ion microscopy with backscattered ions. • We use the microscope to image a thin resist used in nano-imprint lithography.

  11. Confocal laser scanning microscopy in study of bone calcification

    Science.gov (United States)

    Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio

    2012-12-01

    Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  12. Fractal analysis of pharmaceutical particles by atomic force microscopy.

    Science.gov (United States)

    Li, T; Park, K

    1998-08-01

    Reliable methods are needed to characterize the surface roughness of pharmaceutical solid particles for quality control and for finding the correlations with other properties. In this study, we used fractal analysis to describe the surface roughness. Atomic force microscopy (AFM) was used to obtain three-dimensional surface profiles. The variation method was used to calculate fractal dimensions. We have measured fractal dimensions of four granule samples, four powders, and two freeze-dried powders. A computer-program was written to implement the variation method. The implementation was verified using the model surfaces generated by fractional Brownian motion. The fractal dimensions of most particles and granules were between 2.1 and 2.2, and were independent of the scan size we measured. The freeze-dried samples, however showed wide variation in the values of fractal dimension, which were dependent on the scan size. As scan size increased, the fractal dimension also increased up to 2.5. Fractal analysis can be used to describe surface roughness of pharmaceutical particles. The variation method allows calculation of reliable fractal dimensions of surface profiles obtained by AFM. Careful analysis is required for the estimation of fractal dimension, since the estimates are dependent on the algorithm and the digitized model size (i.e., number of data points of the measured surface profile) used. The fractal dimension of pharmaceutical materials is also a function of the observation scale i.e., the scan size) used in the profile measurement. The multi-fractal features and the scale-dependency of fractal dimension result from the artificial processes controlling the surface morphology.

  13. Characterization of tip size and geometry of the pipettes used in scanning ion conductance microscopy.

    Science.gov (United States)

    Tognoni, Elisabetta; Baschieri, Paolo; Ascoli, Cesare; Pellegrini, Monica; Pellegrino, Mario

    2016-04-01

    Scanning ion-conductance microscopy (SICM) belongs to the family of scanning-probe microscopies. The spatial resolution of these techniques is limited by the size of the probe. In SICM the probe is a pipette, obtained by heating and pulling a glass capillary tubing. The size of the pipette tip is therefore an important parameter in SICM experiments. However, the characterization of the tip is not a consolidated routine in SICM experimental practice. In addition, potential and limitations of the different methods available for this characterization may not be known to all users. We present an overview of different methods for characterizing size and geometry of the pipette tip, with the aim of collecting and facilitating the use of several pieces of information appeared in the literature in a wide interval of time under different disciplines. In fact, several methods that have been developed for pipettes used in cell physiology can be also fruitfully employed in the characterization of the SICM probes. The overview includes imaging techniques, such as scanning electron microscopy and atomic Force microscopy, and indirect methods, which measure some physical parameter related to the size of the pipette. Examples of these parameters are the electrical resistance of the pipette filled with a saline solution and the surface tension at the pipette tip. We discuss advantages and drawbacks of the methods, which may be helpful in answering a wide range of experimental questions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Principles and applications of force spectroscopy using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Kyu; Kim, Woong; Park, Joon Won [Dept. of Chemistry, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-12-15

    Single-molecule force spectroscopy is a powerful technique for addressing single molecules. Unseen structures and dynamics of molecules have been elucidated using force spectroscopy. Atomic force microscope (AFM)-based force spectroscopy studies have provided picoNewton force resolution, subnanometer spatial resolution, stiffness of substrates, elasticity of polymers, and thermodynamics and kinetics of single-molecular interactions. In addition, AFM has enabled mapping the distribution of individual molecules in situ, and the quantification of single molecules has been made possible without modification or labeling. In this review, we describe the basic principles, sample preparation, data analysis, and applications of AFM-based force spectroscopy and its future.

  15. Handbook of Microscopy for Nanotechnology

    Science.gov (United States)

    Yao, Nan; Wang, Zhong L.

    This handbook highlights various key microcopic techniques and their applications in this fast-growing field. Topics to be covered include the following: scanning near field optical microscopy, confocal optical microscopy, atomic force microscopy, magnetic force microscopy, scanning turning microscopy, high-resolution scanning electron microscopy, and many more.

  16. EDITORIAL: Three decades of scanning tunnelling microscopy that changed the course of surface science Three decades of scanning tunnelling microscopy that changed the course of surface science

    Science.gov (United States)

    Ramachandra Rao, M. S.; Margaritondo, Giorgio

    2011-11-01

    Three decades ago, with a tiny tip of platinum, the scientific world saw the real space imaging of single atoms with unprecedented spatial resolution. This signalled the birth of one of the most versatile surface probes, based on the physics of quantum mechanical tunnelling: the scanning tunnelling microscope (STM). Invented in 1981 by Gerd Binnig and Heinrich Rohrer of IBM, Zurich, it led to their award of the 1986 Nobel Prize. Atoms, once speculated to be abstract entities used by theoreticians for mere calculations, can be seen to exist for real with the nano-eye of an STM tip that also gives real-space images of molecules and adsorbed complexes on surfaces. From a very fundamental perspective, the STM changed the course of surface science and engineering. STM also emerged as a powerful tool to study various fundamental phenomena relevant to the properties of surfaces in technological applications such as tribology, medical implants, catalysis, sensors and biology—besides elucidating the importance of local bonding geometries and defects, non-periodic structures and the co-existence of nano-scale phases. Atom-level probing, once considered a dream, has seen the light with the evolution of STM. An important off-shoot of STM was the atomic force microscope (AFM) for surface mapping of insulating samples. Then followed the development of a flurry of techniques under the general name of scanning probe microscopy (SPM). These techniques (STM, AFM, MFM, PFM etc) designed for atomic-scale-resolution imaging and spectroscopy, have led to brand new developments in surface analysis. All of these novel methods enabled researchers in recent years to image and analyse complex surfaces on microscopic and nanoscopic scales. All of them utilize a small probe for sensing the surface. The invention of AFM by Gerd Binnig, Calvin Quate and Christopher Gerber opened up new opportunities for characterization of a variety of materials, and various industrial applications could be

  17. Immunolabeling for scanning electron microscopy (SEM) and field emission SEM.

    Science.gov (United States)

    Goldberg, Martin W

    2008-01-01

    Scanning electron microscopy (SEM) is a high resolution surface imaging technique. Many biological process and structures occur at surfaces and if antibodies are available, their components can be located within the surface structure. This is usually done in a similar way to immuno-fluorescence, using an unconjugated primary antibody followed by a tagged secondary antibody against the primary. In this case the tag is usually a colloidal gold particle instead of a fluorophore. Therefore it is quite straightforward to adapt an immuno-fluorescence procedure for SEM, as long as certain precautions are followed, as discussed here. Progressing from immuno-fluorescence, which essentially only indicates the position of a protein within the volume of a cell, to immuno-SEM, puts the labeling into the context of cellular structures. The principles and practices of sample preparation, labeling and imaging are described here.

  18. Ultramicrosensors based on transition metal hexacyanoferrates for scanning electrochemical microscopy

    Directory of Open Access Journals (Sweden)

    Maria A. Komkova

    2013-10-01

    Full Text Available We report here a way for improving the stability of ultramicroelectrodes (UME based on hexacyanoferrate-modified metals for the detection of hydrogen peroxide. The most stable sensors were obtained by electrochemical deposition of six layers of hexacyanoferrates (HCF, more specifically, an alternating pattern of three layers of Prussian Blue and three layers of Ni–HCF. The microelectrodes modified with mixed layers were continuously monitored in 1 mM hydrogen peroxide and proved to be stable for more than 5 h under these conditions. The mixed layer microelectrodes exhibited a stability which is five times as high as the stability of conventional Prussian Blue-modified UMEs. The sensitivity of the mixed layer sensor was 0.32 A·M−1·cm−2, and the detection limit was 10 µM. The mixed layer-based UMEs were used as sensors in scanning electrochemical microscopy (SECM experiments for imaging of hydrogen peroxide evolution.

  19. Confocal laser scanning microscopy-guided surgery for neurofibroma.

    Science.gov (United States)

    Koller, S; Horn, M; Weger, W; Massone, C; Smolle, J; Gerger, A

    2009-12-01

    The neurofibromatoses comprise at least two separate genetic disorders with variable clinical features and an unpredictable course. The most common type, neurofibromatosis 1, is characterized by > or = 6 café-au-lait spots and the occurrence of neurofibromas, which may present as cutaneous, subcutaneous or plexiform lesions. Normally, excision of neurofibromas is only indicated in the presence of neurological symptoms, suspicion of malignancy or for exceptional cosmetic reasons. For a good functional and aesthetic result with the least danger of recurrence, the surgeon's goal is to excise as much tissue as necessary and as little tissue as possible. One of the main issues during the surgical procedure is to distinguish between neurofibroma and surrounding tissue. We report for the first time the use of confocal laser scanning microscopy to differentiate between neurofibroma and healthy skin.

  20. Cryo-Scanning Electron Microscopy of Captured Cirrus Ice Particles

    Science.gov (United States)

    Magee, N. B.; Boaggio, K.; Bandamede, M.; Bancroft, L.; Hurler, K.

    2016-12-01

    We present the latest collection of high-resolution cryo-scanning electron microscopy images and microanalysis of cirrus ice particles captured by high-altitude balloon (ICE-Ball, see abstracts by K. Boaggio and M. Bandamede). Ice particle images and sublimation-residues are derived from particles captured during approximately 15 balloon flights conducted in Pennsylvania and New Jersey over the past 12 months. Measurements include 3D digital elevation model reconstructions of ice particles, and associated statistical analyses of entire particles and particle sub-facets and surfaces. This 3D analysis reveals that morphologies of most ice particles captured deviate significantly from ideal habits, and display geometric complexity and surface roughness at multiple measureable scales, ranging from 100's nanometers to 100's of microns. The presentation suggests potential a path forward for representing scattering from a realistically complex array of ice particle shapes and surfaces.

  1. Local deposition of anisotropic nanoparticles using scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    Fedorov, Roman G; Mandler, Daniel

    2013-02-28

    We demonstrate localized electrodeposition of anisotropic metal nanoobjects, namely Au nanorods (GNR), on indium tin oxide (ITO) using scanning electrochemical microscopy (SECM). A gold microelectrode was the source of the gold ions whereby double pulse chronoamperometry was employed to generate initially Au seeds which were further grown under controlled conditions. The distance between the microelectrode and the ITO surface as well as the different experimental parameters (electrodeposition regime, solution composition and temperature) were optimized to produce faceted gold seeds with the required characteristics (size and distribution). Colloidal chemical synthesis was successfully exploited for better understanding the role of the surfactant and different additives in breaking the crystallographic symmetry and anisotropic growth of GNR. Experiments performed in a conventional three-electrode cell revealed the most appropriate electrochemical conditions allowing high yield synthesis of nanorods with well-defined shape as well as nanocubes and bipyramids.

  2. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels

    2010-01-18

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. © 2010 Microscopy Society of America.

  3. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  4. Scanning electron microscopy of the neuropathology of murine cerebral malaria

    Directory of Open Access Journals (Sweden)

    Brenneis Christian

    2006-11-01

    Full Text Available Abstract Background The mechanisms leading to death and functional impairments due to cerebral malaria (CM are yet not fully understood. Most of the knowledge about the pathomechanisms of CM originates from studies in animal models. Though extensive histopathological studies of the murine brain during CM are existing, alterations have not been visualized by scanning electron microscopy (SEM so far. The present study investigates the neuropathological features of murine CM by applying SEM. Methods C57BL/6J mice were infected with Plasmodium berghei ANKA blood stages. When typical symptoms of CM developed perfused brains were processed for SEM or light microscopy, respectively. Results Ultrastructural hallmarks were disruption of vessel walls, parenchymal haemorrhage, leukocyte sequestration to the endothelium, and diapedesis of macrophages and lymphocytes into the Virchow-Robin space. Villous appearance of observed lymphocytes were indicative of activated state. Cerebral oedema was evidenced by enlargement of perivascular spaces. Conclusion The results of the present study corroborate the current understanding of CM pathophysiology, further support the prominent role of the local immune system in the neuropathology of CM and might expose new perspectives for further interventional studies.

  5. Scanning electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1985-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions, imaging modes, the interpretation of micrographs and the use of quantitative modes "in scanning electron microscopy (SEM). lt forms a counterpart to Transmission Electron Microscopy (Vol. 36 of this Springer Series in Optical Sciences) . The book evolved from lectures delivered at the University of Münster and from a German text entitled Raster-Elektronenmikroskopie (Springer-Verlag), published in collaboration with my colleague Gerhard Pfefferkorn. In the introductory chapter, the principles of the SEM and of electron­ specimen interactions are described, the most important imaging modes and their associated contrast are summarized, and general aspects of eiemental analysis by x-ray and Auger electron emission are discussed. The electron gun and electron optics are discussed in Chap. 2 in order to show how an electron probe of small diameter can be formed, how the elec­ tron beam can be blanked at high fre...

  6. Measuring the charge state of an adatom with noncontact atomic force microscopy

    NARCIS (Netherlands)

    Gross, L.; Mohn, F.; Liljeroth, P.|info:eu-repo/dai/nl/314007423; Repp, J.; Meyer, G.; Giessibl, F.J.

    2009-01-01

    Charge states of atoms can be investigated with scanning tunneling microscopy, but this method requires a conducting substrate. We investigated the charge-switching of individual adsorbed gold and silver atoms (adatoms) on ultrathin NaCl films on Cu(111) using a qPlus tuning fork atomic force

  7. Confocal laser scanning microscopy in study of bone calcification

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Tetsunari, E-mail: tetsu-n@cc.osaka-dent.ac.jp [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Kokubu, Mayu; Kato, Hirohito [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Imai, Koichi [Department of Biomaterials, Osaka Dental University, Osaka (Japan); Tanaka, Akio [Department of Oral Pathology, Osaka Dental University, Osaka (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer High-magnification images with depth selection, and thin sections were observed using CLSM. Black-Right-Pointing-Pointer The direction and velocity of calcification of the bone was observed by administration of 2 fluorescent dyes. Black-Right-Pointing-Pointer In dog femora grafted with coral blocks, newly-formed bone was observed in the coral block space with a rough surface. Black-Right-Pointing-Pointer Twelve weeks after dental implant was grafted in dog femora, the space between screws was filled with newly-formed bones. - Abstract: Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 {mu}m/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  8. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Muhunthan, N.; Singh, Om Pal [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India); Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N., E-mail: singhvn@nplindia.org [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India)

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  9. The use of scanning ion conductance microscopy to image A6 cells.

    Science.gov (United States)

    Gorelik, Julia; Zhang, Yanjun; Shevchuk, Andrew I; Frolenkov, Gregory I; Sánchez, Daniel; Lab, Max J; Vodyanoy, Igor; Edwards, Christopher R W; Klenerman, David; Korchev, Yuri E

    2004-03-31

    Continuous high spatial resolution observations of living A6 cells would greatly aid the elucidation of the relationship between structure and function and facilitate the study of major physiological processes such as the mechanism of action of aldosterone. Unfortunately, observing the micro-structural and functional changes in the membrane of living cells is still a formidable challenge for a microscopist. Scanning ion conductance microscopy (SICM), which uses a glass nanopipette as a sensitive probe, has been shown to be suitable for imaging non-conducting surfaces bathed in electrolytes. A specialized version of this microscopy has been developed by our group and has been applied to image live cells at high-resolution for the first time. This method can also be used in conjunction with patch clamping to study both anatomy and function and identify ion channels in single cells. This new microscopy provides high-resolution images of living renal cells which are comparable with those obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Continuous 24h observations under normal physiological conditions showed how A6 kidney epithelial cells changed their height, volume, and reshaped their borders. The changes in cell area correlated with the density of microvilli on the surface. Surface microvilli density ranged from 0.5 microm(-2) for extended cells to 2.5 microm(2) for shrunk cells. Patch clamping of individual cells enabled anatomy and function to be correlated. Scanning ion conductance microscopy provides unique information about living cells that helps to understand cellular function. It has the potential to become a powerful tool for research on living renal cells.

  10. Computer vision distortion correction of scanning probe microscopy images.

    Science.gov (United States)

    Gaponenko, Iaroslav; Tückmantel, Philippe; Ziegler, Benedikt; Rapin, Guillaume; Chhikara, Manisha; Paruch, Patrycja

    2017-04-06

    Since its inception, scanning probe microscopy (SPM) has established itself as the tool of choice for probing surfaces and functionalities at the nanoscale. Although recent developments in the instrumentation have greatly improved the metrological aspects of SPM, it is still plagued by the drifts and nonlinearities of the piezoelectric actuators underlying the precise nanoscale motion. In this work, we present an innovative computer-vision-based distortion correction algorithm for offline processing of functional SPM measurements, allowing two images to be directly overlaid with minimal error - thus correlating position with time evolution and local functionality. To demonstrate its versatility, the algorithm is applied to two very different systems. First, we show the tracking of polarisation switching in an epitaxial Pb(Zr0.2Ti0.8)O3 thin film during high-speed continuous scanning under applied tip bias. Thanks to the precise time-location-polarisation correlation we can extract the regions of domain nucleation and track the motion of domain walls until the merging of the latter in avalanche-like events. Secondly, the morphology of surface folds and wrinkles in graphene deposited on a PET substrate is probed as a function of applied strain, allowing the relaxation of individual wrinkles to be tracked.

  11. Scanning X-ray microscopy of superconductor/ferromagnet bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Claudia; Ruoss, Stephen; Weigand, Markus; Schuetz, Gisela [Max Planck Institute for Intelligent Systems, Stuttgart (Germany); Zahn, Patrick; Bayer, Jonas [Max Planck Institute for Intelligent Systems, Stuttgart (Germany); Research Institute for Innovative Surfaces, FINO, Aalen University (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)

    2016-07-01

    The magnetic flux distribution arising from a high-T{sub c} superconductor is detected and visualized with high spatial resolution using scanning x-ray microscopy (SXM). Therefore, we introduce a sensor layer, namely, an amorphous, soft-magnetic CoFeB cover layer. The magnetic stray fields of the supercurrents lead to a local reorientation of the magnetic moments in the ferromagnet, which is visualized using the large x-ray magnetic circular dichroism (XMCD) effect of the Co and Fe L3-edge. We show that the XMCD contrast in the sensor layer corresponds to the in-plane magnetic flux distribution of the superconductor and can hence be used to image magnetic structures in superconductors with high spatial resolution. Using the total electron yield (TEY) mode the surface structure and the magnetic domains can be imaged simultaneously and can be correlated. The measurements are carried out at our scanning x-ray microscope MAXYMUS at Bessy II, Berlin with the new low temperature setup.

  12. Ferritin protein imaging and detection by magnetic force microscopy.

    Science.gov (United States)

    Hsieh, Chiung-Wen; Zheng, Bin; Hsieh, Shuchen

    2010-03-14

    Magnetic force microscopy was used to image and detect ferritin proteins and the strength of the magnetic signal is discussed, revealing a large workable lift height between the magnetic tip and the ferritin sample.

  13. Post-processing strategies in image scanning microscopy.

    Science.gov (United States)

    McGregor, J E; Mitchell, C A; Hartell, N A

    2015-10-15

    Image scanning microscopy (ISM) coupled with pixel reassignment offers a resolution improvement of √2 over standard widefield imaging. By scanning point-wise across the specimen and capturing an image of the fluorescent signal generated at each scan position, additional information about specimen structure is recorded and the highest accessible spatial frequency is doubled. Pixel reassignment can be achieved optically in real time or computationally a posteriori and is frequently combined with the use of a physical or digital pinhole to reject out of focus light. Here, we simulate an ISM dataset using a test image and apply standard and non-standard processing methods to address problems typically encountered in computational pixel reassignment and pinholing. We demonstrate that the predicted improvement in resolution is achieved by applying standard pixel reassignment to a simulated dataset and explore the effect of realistic displacements between the reference and true excitation positions. By identifying the position of the detected fluorescence maximum using localisation software and centring the digital pinhole on this co-ordinate before scaling around translated excitation positions, we can recover signal that would otherwise be degraded by the use of a pinhole aligned to an inaccurate excitation reference. This strategy is demonstrated using experimental data from a multiphoton ISM instrument. Finally we investigate the effect that imaging through tissue has on the positions of excitation foci at depth and observe a global scaling with respect to the applied reference grid. Using simulated and experimental data we explore the impact of a globally scaled reference on the ISM image and, by pinholing around the detected maxima, recover the signal across the whole field of view. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Metal particles in a ceramic matrix--scanning electron microscopy and transmission electron microscopy characterization.

    Science.gov (United States)

    Konopka, K

    2006-09-01

    This paper is concerned with ceramic matrix (Al(2)O(3)) composites with introduced metal particles (Ni, Fe). The composites were obtained via sintering of powders under very high pressure (2.5 GPa). Scanning electron microscopy and transmission electron microscopy were chosen as the tools for the identification and description of the shape, size and distribution of the metal particles. The Al(2)O(3)-Ni composite contained agglomerates of the Ni particles surrounded by ceramic grains and nanometre-size Ni particles located inside the ceramic grains and at the ceramic grain boundaries. In the Al(2)O(3)-Fe composite, the Fe particles were mostly surrounded by ceramic grains. Moreover, holes left by the Fe particles were found. The high pressure used in the fabrication of the composites changed the shape of the metal and ceramic powder grains via plastic deformation.

  15. Investigation of Nematode Diversity using Scanning Electron Microscopy and Fluorescent Microscopy

    Science.gov (United States)

    Seacor, Taylor; Howell, Carina

    2013-03-01

    Nematode worms account for the vast majority of the animals in the biosphere. They are colossally important to global public health as parasites, and to agriculture both as pests and as beneficial inhabitants of healthy soil. Amphid neurons are the anterior chemosensory neurons in nematodes, mediating critical behaviors including chemotaxis and mating. We are examining the cellular morphology and external anatomy of amphid neurons, using fluorescence microscopy and scanning electron microscopy, respectively, of a wide range of soil nematodes isolated in the wild. We use both classical systematics (e.g. diagnostic keys) and molecular markers (e.g. ribosomal RNA) to classify these wild isolates. Our ultimate aim is to build a detailed anatomical database in order to dissect genetic pathways of neuronal development and function across phylogeny and ecology. Research supported by NSF grants 092304, 0806660, 1058829 and Lock Haven University FPDC grants

  16. Photon scanning tunneling microscope in combination with a force microscope

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Tack, R.G.; van Hulst, N.F.; Bölger, B.; Bölger, B.

    1994-01-01

    The simultaneous operation of a photon scanning tunneling microscope with an atomic force microscope is presented. The use of standard atomic force silicon nitride cantilevers as near-field optical probes offers the possibility to combine the two methods. Vertical forces and torsion are detected

  17. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.

    Science.gov (United States)

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2015-09-01

    The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Investigating Recording Patterns Using Magnetic Force Microscopy

    NARCIS (Netherlands)

    Groenland, J.P.J.; van Engelen, G.J.P. (Peter); Bernards, Jan P.C.; Bernards, J.P.C.; Cramer, H.A.J.; Cramer, Hugo A.J.

    1993-01-01

    The magnetic force microscope is a valuable tool for the qualitative analysis of local phenomena in magnetic recording media. To study the possibilities for a more quantitative analysis, the MFM results have been compared with recording results. It is shown that such analysis is hampered by the

  19. Nanoindentation and atomic force microscopy measurements on ...

    Indian Academy of Sciences (India)

    The films were deposited on silicon (111) substrates at various process conditions, e.g. substrate bias voltage (B) and nitrogen partial pressure. Mechanical properties of the coatings were investigated by a nanoindentation technique. Force vs displacement curves generated during loading and unloading of a Berkovich ...

  20. Role of attractive forces in tapping tip force microscopy

    DEFF Research Database (Denmark)

    Kyhle, Anders; Sørensen, Alexis Hammer; Bohr, Jakob

    1997-01-01

    We present experimental and numerical results demonstrating the drastic influence of attractive forces on the behaviour of the atomic force microscope when operated in the resonant tapping tip mode in an ambient environment. It is often assumed that tapping is related to repulsive interaction...

  1. Intermittent contact atomic force microscopy in electrochemical environment

    Energy Technology Data Exchange (ETDEWEB)

    Haering, P.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H. [Bern Univ., Bern (Switzerland)

    1997-06-01

    In situ measurements with Atomic Force Microscopy may cause surface modifications due to the tip-surface interactions. As an alternative and less destructive method, Intermittent Contact Atomic Force Microscopy (ICAFM) has been tested in an electrolytic environment. In the ICAFM mode the tip is not constantly in contact with the surface under investigation but is tapping onto the surface with a certain frequency. A commercial Park Scientific Instruments Microscopy has been modified to enable in situ experiment with ICAFM. It was possible to image iridium oxide films with ICAFM in the electrolytic environment without any noticeable surface modifications. (author) 3 figs., 4 refs.

  2. First-principles modelling of scanning tunneling microscopy using non-equilibrium Green's functions

    DEFF Research Database (Denmark)

    Lin, H.P.; Rauba, J.M.C.; Thygesen, Kristian Sommer

    2010-01-01

    The investigation of electron transport processes in nano-scale architectures plays a crucial role in the development of surface chemistry and nano-technology. Experimentally, an important driving force within this research area has been the concurrent refinements of scanning tunneling microscopy...... into account. As an illustrating example we apply the NEGF-STM method to the Si(001)(2x1):H surface with sub-surface P doping and discuss the results in comparison to the Bardeen and Tersoff-Hamann methods....

  3. Preliminary Study of In Vivo Formed Dental Plaque Using Confocal Microscopy and Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    KA. Al-Salihi

    2009-12-01

    Full Text Available Objective: Confocal laser scanning microscopy (CLSM is relatively a new light microscopical imaging technique with a wide range of applications in biological sciences. The primary value of CLSM for the biologist is its ability to provide optical sections from athree-dimensional specimen. The present study was designed to assess the thickness and content of in vivo accumulated dental plaque using CLSM and scanning electron microscopy (SEM.Materials and Methods: Acroflat lower arch splints (acrylic appliance were worn by five participants for three days without any disturbance. The formed plaques were assessed using CLSM combined with vital fluorescence technique and SEM.Results: In this study accumulated dental plaque revealed varied plaque microflora vitality and thickness according to participant’s oral hygiene. The thickness of plaque smears ranged from 40.32 to 140.72 μm and 65.00 to 128.88 μm for live (vital and dead accumulated microorganisms, respectively. Meanwhile, the thickness of plaque on the appliance ranged from 101 μm to 653 μm. CLSM revealed both dead and vital bacteria on the surface of the dental plaque. In addition, SEM revealed layers of various bacterial aggregations in all dental plaques.Conclusion: This study offers a potent non-invasive tool to evaluate and assess the dental plaque biofilm, which is a very important factor in the development of dental caries.

  4. Reflection across plant cell boundaries in confocal laser scanning microscopy.

    Science.gov (United States)

    Liu, D Y T; Kuhlmey, B T; Smith, P M C; Day, D A; Faulkner, C R; Overall, R L

    2008-08-01

    The fluorescence patterns of proteins tagged with the green fluorescent protein (GFP) and its derivatives are routinely used in conjunction with confocal laser scanning microscopy to identify their sub-cellular localization in plant cells. GFP-tagged proteins localized to plasmodesmata, the intercellular junctions of plants, are often identified by single or paired punctate labelling across the cell wall. The observation of paired puncta, or 'doublets', across cell boundaries in tissues that have been transformed through biolistic bombardment is unexpected if there is no intercellular movement of the GFP-tagged protein, since bombardment usually leads to the transformation of single, isolated cells. We expressed a putative plasmodesmal protein tagged with GFP by bombarding Allium porrum epidermal cells and assessed the nature of the doublets observed at the cell boundaries. Doublets were formed when fluorescent spots were abutting a cell boundary and were only observable at certain focal planes. Fluorescence emitted from the half of a doublet lying outside the transformed cells was polarized. Optical simulations performed using finite-difference time-domain computations showed a dramatic distortion of the confocal microscope's point spread function when imaging voxels close to the plant cell wall due to refractive index differences between the wall and the cytosol. Consequently, axially and radially out-of-focus light could be detected. A model of this phenomenon suggests how a doublet may form when imaging only a single real fluorescent body in the vicinity of a plant cell wall using confocal microscopy. We suggest, therefore, that the appearance of doublets across cell boundaries is insufficient evidence for plasmodesmal localization due to the effects of the cell wall on the reflection and scattering of light.

  5. Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging.

    Science.gov (United States)

    U-Thainual, Paweena; Kim, Do-Hyun

    2015-12-01

    Optical-resolution photoacoustic microscopy (ORPAM) in theory provides lateral resolution equivalent to the optical diffraction limit. Scattering media, such as biological turbid media, attenuates the optical signal and also alters the diffraction-limited spot size of the focused beam. The ORPAM signal is generated only from a small voxel in scattering media with dimensions equivalent to the laser spot size after passing through scattering layers and is detected by an acoustic transducer, which is not affected by optical scattering. Thus, both ORPAM and confocal laser scanning microscopy (CLSM) reject scattered light. A multimodal optical microscopy platform that includes ORPAM and CLSM was constructed, and the lateral resolution of both modes was measured using patterned thin metal film with and without a scattering barrier. The effect of scattering media on the lateral resolution was studied using different scattering coefficients and was compared to computational results based on Monte Carlo simulations. It was found that degradation of lateral resolution due to optical scattering was not significant for either ORPAM or CLSM. The depth discrimination capability of ORPAM and CLSM was measured using microfiber embedded in a light scattering phantom material. ORPAM images demonstrated higher contrast compared to CLSM images partly due to reduced acoustic signal scattering.

  6. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy

    Science.gov (United States)

    Lerner, Thomas R.; Burden, Jemima J.; Nkwe, David O.; Pelchen-Matthews, Annegret; Domart, Marie-Charlotte; Durgan, Joanne; Weston, Anne; Jones, Martin L.; Peddie, Christopher J.; Carzaniga, Raffaella; Florey, Oliver; Marsh, Mark; Gutierrez, Maximiliano G.

    2017-01-01

    ABSTRACT The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research. PMID:27445312

  7. Scanning near-field infrared microscopy on semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rainer

    2011-01-15

    literature. While the structures of the first system were in the micrometer regime, the capability to probe buried nanostructures is demonstrated at a sample of indium arsenide quantum dots. Those dots are covered by a thick layer of gallium arsenide. For the first time ever, it is shown experimentally that transitions between electron states in single quantum dots can be investigated by near-field microscopy. By monitoring the near-field response of these quantum dots while scanning the wavelength of the incident light beam, it was possible to obtain characteristic near-field signatures of single dots. Near-field contrasts up to 30 % could be measured for resonant excitation of electrons in the conduction band of the indium arsenide dots. (orig.)

  8. Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy

    Science.gov (United States)

    Ito, Takashi

    2008-01-01

    This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…

  9. Atomic force microscopy in biomaterials surface science.

    Science.gov (United States)

    Variola, Fabio

    2015-02-07

    Recent progress in surface science, nanotechnology and biophysics has cast new light on the correlation between the physicochemical properties of biomaterials and the resulting biological response. One experimental tool that promises to generate an increasingly more sophisticated knowledge of how proteins, cells and bacteria interact with nanostructured surfaces is the atomic force microscope (AFM). This unique instrument permits to close in on interfacial events at the scale at which they occur, the nanoscale. This perspective covers recent developments in the exploitation of the AFM, and suggests insights on future opportunities that can arise from the exploitation of this powerful technique.

  10. Structural and nanomechanical properties of paperboard coatings studied by peak force tapping atomic force microscopy.

    Science.gov (United States)

    Sababi, Majid; Kettle, John; Rautkoski, Hille; Claesson, Per M; Thormann, Esben

    2012-10-24

    Paper coating formulations containing starch, latex, and clay were applied to paperboard and have been investigated by scanning electron microscopy and Peak Force tapping atomic force microscopy. A special focus has been on the measurement of the variation of the surface topography and surface material properties with a nanometer scaled spatial resolution. The effects of coating composition and drying conditions were investigated. It is concluded that the air-coating interface of the coating is dominated by close-packed latex particles embedded in a starch matrix and that the spatial distribution of the different components in the coating can be identified due to their variation in material properties. Drying the coating at an elevated temperature compared to room temperature changes the surface morphology and the surface material properties due to partial film formation of latex. However, it is evident that the chosen elevated drying temperature and exposure time is insufficient to ensure complete film formation of the latex which in an end application will be needed.

  11. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  12. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy.

    Science.gov (United States)

    Neuman, Keir C; Nagy, Attila

    2008-06-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.

  13. Use of Kelvin probe force microscopy for identification of CVD grown graphene flakes on copper foil

    Science.gov (United States)

    Kumar, Rakesh; Mehta, B. R.; Kanjilal, D.

    2017-05-01

    Graphene flakes have been grown by chemical vapour deposition (CVD) method on Cu foils. The obtained graphene flakes have been characterized by optical microscopy, field emission scanning electron microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy. The graphene flakes grown on Cu foil comprise mainly single layer graphene and confirm that the nucleation for graphene growth starts very quickly. Moreover, KPFM has been found to be a valuable technique to differentiate between covered and uncovered portion of Cu foil by graphene flakes deposited for shorter duration. The results show that KPFM can be a very useful technique in understanding the mechanism of graphene growth.

  14. Microfluidics, Chromatography, and Atomic-Force Microscopy

    Science.gov (United States)

    Anderson, Mark

    2008-01-01

    A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.

  15. Cryo-planing for cryo-scanning electron microscopy.

    Science.gov (United States)

    Nijsse, J; van Aelst, A C

    1999-01-01

    In the past decade, investigators of cryo-planing for low-temperature scanning electron microscopy (cryo-SEM) have developed techniques that enable observations of flat sample surfaces. This study reviews these sample preparation techniques, compares and contrasts their results, and introduces modifications that improve results from cryo-planing. A prerequisite for all successful cryo-planing required a stable attachment of the specimen to a holder. In most cases, clamping with a screw mechanism and using indium as space-filler sufficed. Once this problem was solved, any of three existing cryo-planing methods could be used to provide successful results: cryo-milling, microtomy in a cold room, and cryo-ultramicrotomy. This study introduces modifications to the cryo-planing technique that produces flat surfaces of any desired plane through a specimen. These flat surfaces of frozen, fully hydrated samples can be used to improve observations from cryo-SEM as well as to enhance results from x-ray microanalysis and (digital) image analysis. Cryo-planing results of chrysanthemum (Dendranthema x grandiflorum Tzvelev) stems, hazel (Corylus avelane L.) stems, and repeseed (Brassica napus L.) pistils are presented to illustrate the use of the planing method on fibrous, hard, and delicate materials, respectively.

  16. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    Energy Technology Data Exchange (ETDEWEB)

    Lunov, O., E-mail: lunov@fzu.cz; Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A. [Institute of Physics AS CR, Prague 18221 (Czech Republic); Deyneka, I. G.; Meshkovskii, I. K. [St. Petersburg State University of Information Technologies, Mechanics and Optics, St. Petersburg 197101 (Russian Federation); Syková, E. [Institute of Experimental Medicine AS CR, Prague 14220 (Czech Republic); Kubinová, Š. [Institute of Physics AS CR, Prague 18221 (Czech Republic); Institute of Experimental Medicine AS CR, Prague 14220 (Czech Republic)

    2015-02-02

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  17. Band excitation method applicable to scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  18. Scanning reflection ion microscopy in a helium ion microscope

    Directory of Open Access Journals (Sweden)

    Yuri V. Petrov

    2015-05-01

    Full Text Available Reflection ion microscopy (RIM is a technique that uses a low angle of incidence and scattered ions to form an image of the specimen surface. This paper reports on the development of the instrumentation and the analysis of the capabilities and limitations of the scanning RIM in a helium ion microscope (HIM. The reflected ions were detected by their “conversion” to secondary electrons on a platinum surface. An angle of incidence in the range 5–10° was used in the experimental setup. It was shown that the RIM image contrast was determined mostly by surface morphology but not by the atomic composition. A simple geometrical analysis of the reflection process was performed together with a Monte Carlo simulation of the angular dependence of the reflected ion yield. An interpretation of the RIM image formation and a quantification of the height of the surface steps were performed. The minimum detectable step height was found to be approximately 5 nm. RIM imaging of an insulator surface without the need for charge compensation was successfully demonstrated.

  19. Breast tissue characterization with high-frequency scanning acoustic microscopy

    Science.gov (United States)

    Kumon, R. E.; Bruno, I.; Heartwell, B.; Maeva, E.

    2004-05-01

    We have performed imaging of breast tissue using scanning acoustic microscopy (SAM) in the range of 25-50 MHz with the goal of accurately and rapidly determining the structure and composition throughout the volume of the samples. In contrast to traditional histological slides, SAM images can be obtained without special preparation, sometimes even without sectioning, but with sufficiently high spatial resolution to give information comparable to surface optical images. As a result, the use of high-frequency SAM at the time of breast lumpectomy to identify disease-free margins has the potential to reduce reoperative rates, patient anxiety, and local recurrence. However, only limited work has been performed to characterize breast tissue in the frequency range above clinical ultrasound devices. The samples are 4-cm2-thick sections (2-3 mm) taken from mastectomies and preserved in formalin. They are placed between two plates and immersed in water during imaging. Attenuation images are acquired by focusing the acoustic beam at the top and bottom of the samples, although better results were obtained for bottom focusing. For purposes of comparison and identification of histological features, acoustical images will be presented along with optical images obtained from the same samples. [Work supported by CIHR.

  20. An overview on bioaerosols viewed by scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wittmaack, K. [GSF-National Research Centre for Environment and Health, Institute of Radiation Protection, 85758 Neuherberg (Germany)]. E-mail: wittmaack@gsf.de; Wehnes, H. [GSF-National Research Centre for Environment and Health, Institute of Pathology, 85758 Neuherberg (Germany); Heinzmann, U. [GSF-National Research Centre for Environment and Health, Institute of Pathology, 85758 Neuherberg (Germany); Agerer, R. [Ludwig-Maximilians University Munich, Department Biology, Biodiversity Research: Mycology, Menzinger Stasse 67, 80638 Munich (Germany)

    2005-06-15

    Bioaerosols suspended in ambient air were collected with single-stage impactors at a semiurban site in southern Germany during late summer and early autumn. Sampling was mostly carried out at a nozzle velocity of 35 m/s, corresponding to a minimum aerodynamic diameter (cut-off diameter) of aerosol particles of 0.8 {mu}m. The collected particles, sampled for short periods ({approx}15 min) to avoid pile-up, were characterized by scanning electron microscopy (SEM). The observed bioaerosols include brochosomes, fungal spores, hyphae, insect scales, hairs of plants and, less commonly, bacteria and epicuticular wax. Brochosomes, which serve as a highly water repellent body coating of leafhoppers, are hollow spheroids with diameters around 400 nm, resembling C{sub 60} or footballs (soccer balls). They are usually airborne not as individuals but in the form of large clusters containing up to 10,000 individual species or even more. Various types of spores and scales were observed, but assignment turned out be difficult due to the large number of fungi and insects from which they may have originated. Pollens were observed only once. The absence these presumably elastic particles suggests that they are frequently lost, at the comparatively high velocities, due to bounce-off from the nonadhesive impaction surfaces.

  1. Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM).

    Science.gov (United States)

    Wu, Ryan J; Mittal, Anudha; Odlyzko, Michael L; Mkhoyan, K Andre

    2017-08-01

    Sub-angstrom scanning transmission electron microscopy (STEM) allows quantitative column-by-column analysis of crystalline specimens via annular dark-field images. The intensity of electrons scattered from a particular location in an atomic column depends on the intensity of the electron probe at that location. Electron beam channeling causes oscillations in the STEM probe intensity during specimen propagation, which leads to differences in the beam intensity incident at different depths. Understanding the parameters that control this complex behavior is critical for interpreting experimental STEM results. In this work, theoretical analysis of the STEM probe intensity reveals that intensity oscillations during specimen propagation are regulated by changes in the beam's angular distribution. Three distinct regimes of channeling behavior are observed: the high-atomic-number (Z) regime, in which atomic scattering leads to significant angular redistribution of the beam; the low-Z regime, in which the probe's initial angular distribution controls intensity oscillations; and the intermediate-Z regime, in which the behavior is mixed. These contrasting regimes are shown to exist for a wide range of probe parameters. These results provide a new understanding of the occurrence and consequences of channeling phenomena and conditions under which their influence is strengthened or weakened by characteristics of the electron probe and sample.

  2. Scanning electron microscopy of eggs of Sabethes cyaneus.

    Science.gov (United States)

    Santos-Mallet, Jacenir; Sarmento, Juliana Soares; Alencar, Jeronimo; Müller, Gerson Azulim; Oliveira, Eliana Medeiros; Foster, Woodbridge A; Marcondes, Carlos Brisola

    2013-03-01

    Mosquitoes of the Neotropical genus Sabethes, some species of which are yellow fever vectors, most often develop through the immature stages in tree holes. Sabethes eggs have not been previously characterized using scanning electron microscopy. Eggs of Sabethes cyaneus (length: 349.6 +/- 2.7 microm; width: 172.6 +/- 1.14 microm; n = 10) are almost biconical when examined from the top. From a lateral perspective 2 surfaces can be seen. One surface is smooth and more convex, whereas the other is less convex and partially covered by a network from which many fungiform tubercles arise. The micropyle is situated on the smooth surface of the pointed anterior tip and is surrounded by an irregular row of tubercles, some of which are leaf shaped. No structures possibly involved in adhesion to surfaces are visible. When hatching, the egg splits dorsoventrally approximately two-thirds of the length from the anterior end. The tubercles appear to be water repellent, and the more convex/smoother surface is downturned, and this position on water was confirmed by direct observation. The eggs float free on the water surface.

  3. Scanning electron microscopy applied to seed-borne fungi examination.

    Science.gov (United States)

    Alves, Marcelo de Carvalho; Pozza, Edson Ampélio

    2009-07-01

    The aim of this study was to test the standard scanning electron microscopy (SEM) as a potential alternative to study seed-borne fungi in seeds, by two different conditions of blotter test and water restriction treatment. In the blotter test, seeds were subjected to conditions that enabled pathogen growth and expression, whereas the water restriction method consisted in preventing seed germination during the incubation period, resulting in the artificial inoculation of fungi. In the first condition, seeds of common bean (Phaseolus vulgaris L.), maize (Zea mays L.), and cotton (Gossypium hirsutum L.) were submitted to the standard blotter test and then prepared and observed with SEM. In the second condition, seeds of cotton (G. hirsutum), soybean (Glycine max L.), and common bean (P. vulgaris L.) were, respectively, inoculated with Colletotrichum gossypii var. cephalosporioides, Colletotrichum truncatum, and Colletotrichum lindemuthianum by the water restriction technique, followed by preparation and observation with SEM. The standard SEM methodology was adopted to prepare the specimens. Considering the seeds submitted to the blotter test, it was possible to identify Fusarium sp. on maize, C. gossypii var. cephalosporioides, and Fusarium oxysporum on cotton, Aspergillus flavus, Penicillium sp., Rhizopus sp., and Mucor sp. on common bean. Structures of C. gossypii var. cephalosporioides, C. truncatum, and C. lindemuthianum were observed in the surface of inoculated seeds. (c) 2009 Wiley-Liss, Inc.

  4. [Scanning electron microscopy findings in titanium middle ear prostheses].

    Science.gov (United States)

    Schwager, K

    2000-12-01

    Titanium as a biomaterial in ossicular replacement has widely spread within the last couple of years. 23 prostheses (12 PORPs, partial ossicular replacement prostheses and 11 TORPs total ossicular replacement prostheses) removed during revision surgery were studied using scanning electron microscopy. The average implantation time was 8 (range 3-15) months. The specimens were investigated regarding tissue growth, epithelialization, inflammation and cellular signs of rejection. Only few prostheses were totally covered by connective tissue or epithelium due to technical problems in removing the implant and the covering tissue as one specimen. But this offered the possibility to study the interface at the edges where the tissue was torn off. The connective tissue looked unremarkable. Polygonal squamous epithelium was detected on several implants. Respiratory epithelium with ciliated cells and mucus producing goblet cells was seen in two specimens. In cases of cholesteatoma or protrusion the explanted prostheses showed typical rosette-like formation of hornifying squamous epithelium. According to underlying disease a lymphocytic infiltration could be seen. There were no cellular signs of incompatibility noticed neither macrophages nor foreign body giant cells. From these investigations titanium seems to be a favorable biomaterial for ossicular replacement with good acceptance also in an implantation site showing chronic inflammation.

  5. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.

    Science.gov (United States)

    Balke, Nina; Jesse, Stephen; Yu, Pu; Ben Carmichael; Kalinin, Sergei V; Tselev, Alexander

    2016-10-21

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ∼1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.

  6. Switching Magnetization Magnetic Force Microscopy — An Alternative to Conventional Lift-Mode MFM

    Science.gov (United States)

    Cambel, Vladimír; Gregušová, Dagmar; Eliáš, Peter; Fedor, Ján; Kostič, Ivan; Maňka, Ján; Ballo, Peter

    2011-01-01

    In the paper we present an overview of the latest progress in the conventional lift-mode magnetic force microscopy (MFM) technique, achieved by advanced MFM tips and by lowering the lift height. Although smaller lift height offers improved spatial resolution, we show that lowered tip-sample distance mixes magnetic, atomic and electric forces. We describe an alternative to the lift-mode procedure - Switching Magnetization Magnetic Force Microscopy [SM-MFM], which is based on two-pass scanning in tapping mode AFM with reversed tip magnetization between the scans. We propose design and calculate the magnetic properties of such SM-MFM tips. For best performance the tips must exhibit low magnetic moment, low switching field, and single-domain state at remanence. The switching field of such tips is calculated for Permalloy hexagons.

  7. Feasibility and limitation of track studies using atomic force microscopy

    CERN Document Server

    Nikezic, D; Yip, C W Y; Koo, V S Y; Yu, K N

    2002-01-01

    Atomic force microscopy (AFM) has been employed to investigate characteristics of tracks of heavy charged particles in solid state nuclear track detectors (SSNTDs). In the present work, we have performed simulations of the track structures revealed by AFM based only on geometrical considerations of the tracks and two types of probes (the ultralever and the ultrahigh aspect ration probe). The purpose of this work is to determine the limitations and constraints of the AFM technique when it is applied to track investigations. The ultralever has comparable dimensions as the tracks in SSNTDs etched for a short time. In some cases, the ultralever is too large or its geometry does not match those of the tracks, so these tracks cannot be scanned properly. In most cases, the ultralever can measure the diameter of the tracks with a rather high precision, but measurements of the depths can be misleading if the track depths are larger than the length of the ultralever. The ultrahigh aspect ratio probe, with an aspect rat...

  8. Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale.

    Science.gov (United States)

    Legleiter, Justin; Park, Matthew; Cusick, Brian; Kowalewski, Tomasz

    2006-03-28

    One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip-sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip-sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by "comb" filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach.

  9. Two-dimensional dopant profiling of gallium nitride p–n junctions by scanning capacitance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lamhamdi, M. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Ecole national des sciences appliquées khouribga, Université Hassan 1er, 26000 Settat (Morocco); Cayrel, F. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Frayssinet, E. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Bazin, A.E.; Yvon, A.; Collard, E. [STMicroelectronics, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Cordier, Y. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Alquier, D. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France)

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p–n and unipolar junctions. For both p–n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p–n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  10. Atomic force microscopy and direct surface force measurements

    NARCIS (Netherlands)

    Ralston, J.; Larson, I.; Rutland, M.; Feiler, A.; Kleijn, J.M.

    2005-01-01

    The atomic force microscope (AFM) is designed to provide high-resolution (in the ideal case, atomic) topographical analysis, applicable to both conducting and nonconducting surfaces. The basic imaging principle is very simple: a sample attached to a piezoelectric positioner is rastered beneath a

  11. [Application of atomic force microscopy (AFM) in ophthalmology].

    Science.gov (United States)

    Milka, Michał; Mróz, Iwona; Jastrzebska, Maria; Wrzalik, Roman; Dobrowolski, Dariusz; Roszkowska, Anna M; Moćko, Lucyna; Wylegała, Edward

    2012-01-01

    Atomic force microscopy (AFM) allows to examine surface of different biological objects in the nearly physiological conditions at the nanoscale. The purpose of this work is to present the history of introduction and the potential applications of the AFM in ophthalmology research and clinical practice. In 1986 Binnig built the AFM as a next generation of the scanning tunnelling microscope (STM). The functional principle of AFM is based on the measurement of the forces between atoms on the sample surface and the probe. As a result, the three-dimensional image of the surface with the resolution on the order of nanometres can be obtained. Yamamoto used as the first the AFM on a wide scale in ophthalmology. The first investigations used the AFM method to study structure of collagen fibres of the cornea and of the sclera. Our research involves the analysis of artificial intraocular lenses (IOLs). According to earlier investigations, e.g. Lombardo et al., the AFM was used to study only native IOLs. Contrary to the earlier investigations, we focused our measurements on lenses explanted from human eyes. The surface of such lenses is exposed to the influence of the intraocular aqueous environment, and to the related impacts of biochemical processes. We hereby present the preliminary results of our work in the form of AFM images depicting IOL surface at the nanoscale. The images allowed us to observe early stages of the dye deposit formation as well as local calcinosis. We believe that AFM is a very promising tool for studying the structure of IOL surface and that further observations will make it possible to explain the pathomechanism of artificial intraocular lens opacity formation.

  12. Novel fractal characteristic of atomic force microscopy images.

    Science.gov (United States)

    Starodubtseva, Maria N; Starodubtsev, Ivan E; Starodubtsev, Evgenii G

    2017-05-01

    Fractal dimension (DF) is one of the important parameters in the description of object's properties in different fields including biology and medicine. The present paper is focused on the application of the fractal dimension (the box counting dimension) in the analysis of the properties of cell surface on the base of its images obtained by atomic force microscopy (AFM). Fractal dimension of digital 3D AFM images depends on interpoint distances determined by the scanning step in the XY-plane and Z-scale factor t. We have studied the dependence of DF of AFM images on the Z-scale factor (DF=φ(t)) with purpose to reveal the features of the dependence and its usefulness in the analysis of the maps of surface properties. Using the model digital surfaces such as the plane, sinusoidal surfaces and "hilly" surface, we revealed that the sizes and spatial frequency of surface structural elements determined the basic features of the dependence (the parameters of peaks on the curve DF=φ(t)) and the element of chance in the localization of the structural elements on the surface had no significant influence on the dependence. Our findings demonstrate that the dependence of the fractal dimension on the Z-scale factor characterizes the structure of the AFM images more comprehensively than the roughness Ra and fractal dimension DF evaluated at a certain t. The dependence DF=φ(t) can be considered as a novel characteristic of AFM images. On analyzing the AFM images (lateral force maps) of glutaraldehyde-fixed adhered human fibroblasts and A549 human lung epithelial cells we found the significant difference in the dependences DF=φ(t) for different cell types that could be related to the difference of structural and mechanical surface properties of the studied cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. MRT letter: An extended scanning probe microscopy system for macroscopic topography imaging.

    Science.gov (United States)

    Fu, Ji; Li, Faxin

    2014-10-01

    Enlightened by the principle of scanning probe microscopy or atomic force microscope (AFM), we proposed a novel surface topography imaging system based on the scanning of a piezoelectric unimorph cantilever. The height of sample surface can be obtained by recording the cantilever's strain using an ultra-sensitive strain gauge and the Z-axis movement is realized by electric bending of the cantilever. This system can be operated in the way similar to the contact mode in AFM, with the practical height detection resolution better than 100 nm. Imaging of the inner surface of a steel tube and on a transparent wing of a honey bee were conducted and the obtained results showed that this proposed system is a very promising solution for in situ topography mapping. © 2014 Wiley Periodicals, Inc.

  14. Improved Visualization of Vertebrate Nuclear Pore Complexes by Field Emission Scanning Electron Microscopy

    National Research Council Canada - National Science Library

    Shaulov, Lihi; Harel, Amnon

    2012-01-01

    Field emission scanning electron microscopy (FESEM) can provide high-resolution three-dimensional surface imaging of many biological structures, including nuclear envelopes and nuclear pore complexes (NPCs...

  15. Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform.

    Science.gov (United States)

    Collins, Liam; Ahmadi, Mahshid; Wu, Ting; Hu, Bin; Kalinin, Sergei V; Jesse, Stephen

    2017-09-26

    Atomic force microscopy (AFM) offers unparalleled insight into structure and material functionality across nanometer length scales. However, the spatial resolution afforded by the AFM tip is counterpoised by slow detection speeds compared to other common microscopy techniques (e.g., optical, scanning electron microscopy, etc.). In this work, we develop an ultrafast AFM imaging approach allowing direct reconstruction of the tip-sample forces with ∼3 order of magnitude higher time resolution than is achievable using standard AFM detection methods. Fast free force recovery (F(3)R) overcomes the widely viewed temporal bottleneck in AFM, that is, the mechanical bandwidth of the cantilever, enabling time-resolved imaging at sub-bandwidth speeds. We demonstrate quantitative recovery of electrostatic forces with ∼10 μs temporal resolution, free from influences of the cantilever ring-down. We further apply the F(3)R method to Kelvin probe force microscopy (KPFM) measurements. F(3)R-KPFM is an open loop imaging approach (i.e., no bias feedback), allowing ultrafast surface potential measurements (e.g., work, we demonstrate quantitative F(3)R-KPFM measurements-however, we fully expect the F(3)R approach to be valid for all modes of noncontact AFM operation, including noninvasive probing of ultrafast electrical and magnetic dynamics.

  16. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    Science.gov (United States)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become

  17. Environmental scanning electron microscopy observation of the ultrastructure of Demodex.

    Science.gov (United States)

    Jing, Xu; Shuling, Guo; Ying, Liu

    2005-12-01

    In this study, numbers of Demodex of hair follicles and sebaceous glands were prepared and the ultrastructure (especially the mouthparts) of Demodex was observed firstly with environmental scanning electron microscopy (ESEM). The most suitable treatment methods and optimal environmental condition for observing the genus samples were found. The samples were washed with detergent and rinsed with distilled water, and then were taken to the specimen stage, on which there was carbon adhesive tape, using special tools. When the temperature was at 5 degrees C and chamber pressure at 5 mbar respectively, the surface of the samples could be fully imaged without covering water or dehydration. The sample surfaces were plump and clear without postmortem changes and charging artifacts. Detailed information about each part of Demodex was observed by ESEM, and clear three-dimensional images were recorded. The mouthparts of D. folliculorum were composed of a complex set of structures, which included a round oral opening, a sharp oral needle, and a special hypostome that looked like a longitudinal spindle in the central position. On the end segment of palpus, there were seven strong palpal claws located on each side of the mouthparts. D. folliculorum had special piercing mouthparts, while the mouthparts of D. brevis were a simpler structure. We could not observe the oral needle of D. brevis, and there were only five pairs of palpal claws on the end segment of palpus. The offensive organs of Demodex resulted in its pathogenic effects. After studying hundreds of Demodex, we identified both female and male species of D. folliculorum, but only females of D. brevis in our sample. (c) 2005 Wiley-Liss, Inc.

  18. Visualizing subsurface defects in graphite by acoustic atomic force microscopy.

    Science.gov (United States)

    Wang, Tian; Ma, Chengfu; Hu, Wei; Chen, Yuhang; Chu, Jiaru

    2017-01-01

    We describe a versatile platform, which combines atomic force acoustic microscopy, ultrasonic atomic force microscopy and heterodyne force microscopy. The AFM system can enable in-situ switching among these operation modes flexibly and thus benefit the discrimination of differences in mechanical properties and buried subsurface nanostructures. We demonstrate the potential of this platform for visualizing the subsurface defects of graphite. Our results show that tiny topographic edges are enhanced in acoustic oscillation signals whilst embedded defects and inhomogeneous in mechanical properties are made clearly distinguishable. The possibility of detecting subsurface defects in few-layer graphene is further discussed with first-principles calculations. Microsc. Res. Tech. 80:66-74, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Gold-coated conducting-atomic force microscopy probes.

    Science.gov (United States)

    John, Neena Susan; Kulkarni, G U

    2005-04-01

    Some aspects of the performance of gold-coated conductive probes used in conducting atomic force microscopy (C-AFM) technique are discussed. The resistance of the nanocontact between the gold-coated AFM tip and the graphite substrate has been monitored at various applied forces. For small forces (forces in the range 100-150 nN, beyond which the tip seems to undergo plastic deformation. The resistance of the nanocontact increased when current on the order of 100 microA was allowed to pass through, finally resulting in melting of the gold coating.

  20. Force microscopy of layering and friction in an ionic liquid.

    Science.gov (United States)

    Hoth, Judith; Hausen, Florian; Müser, Martin H; Bennewitz, Roland

    2014-07-16

    The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.

  1. An Undergraduate Nanotechnology Engineering Laboratory Course on Atomic Force Microscopy

    Science.gov (United States)

    Russo, D.; Fagan, R. D.; Hesjedal, T.

    2011-01-01

    The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…

  2. Scanning tunneling microscopy III theory of STM and related scanning probe methods

    CERN Document Server

    Güntherodt, Hans-Joachim

    1993-01-01

    While the first two volumes on Scanning Tunneling Microscopy (STM) and its related scanning probe (SXM) methods have mainly concentrated on intro­ ducing the experimental techniques, as well as their various applications in different research fields, this third volume is exclusively devoted to the theory of STM and related SXM methods. As the experimental techniques including the reproducibility of the experimental results have advanced, more and more theorists have become attracted to focus on issues related to STM and SXM. The increasing effort in the development of theoretical concepts for STM/SXM has led to considerable improvements in understanding the contrast mechanism as well as the experimental conditions necessary to obtain reliable data. Therefore, this third volume on STM/SXM is not written by theorists for theorists, but rather for every scientist who is not satisfied by just obtaining real­ space images of surface structures by STM/SXM. After a brief introduction (Chap. 1), N. D. Lang first co...

  3. Influence of biosurfactant on interactive forces between mutans streptococci and enamel measured by atomic force microscopy

    NARCIS (Netherlands)

    van Hoogmoed, CG; Dijkstra, RJB; van der Mei, HC; Busscher, HJ

    Although interactive forces, influenced by environmental conditions, between oral bacteria and tooth surfaces are important for the development of plaque, they have never been estimated. It is hypothesized that interactive forces, as measured by atomic force microscopy, between enamel with or

  4. Atomic force microscopy as a tool for the investigation of living cells.

    Science.gov (United States)

    Morkvėnaitė-Vilkončienė, Inga; Ramanavičienė, Almira; Ramanavičius, Arūnas

    2013-01-01

    Atomic force microscopy is a valuable and useful tool for the imaging and investigation of living cells in their natural environment at high resolution. Procedures applied to living cell preparation before measurements should be adapted individually for different kinds of cells and for the desired measurement technique. Different ways of cell immobilization, such as chemical fixation on the surface, entrapment in the pores of a membrane, or growing them directly on glass cover slips or on plastic substrates, result in the distortion or appearance of artifacts in atomic force microscopy images. Cell fixation allows the multiple use of samples and storage for a prolonged period; it also increases the resolution of imaging. Different atomic force microscopy modes are used for the imaging and analysis of living cells. The contact mode is the best for cell imaging because of high resolution, but it is usually based on the following: (i) image formation at low interaction force, (ii) low scanning speed, and (iii) usage of "soft," low resolution cantilevers. The tapping mode allows a cell to behave like a very solid material, and destructive shear forces are minimized, but imaging in liquid is difficult. The force spectroscopy mode is used for measuring the mechanical properties of cells; however, obtained results strongly depend on the cell fixation method. In this paper, the application of 3 atomic force microscopy modes including (i) contact, (ii) tapping, and (iii) force spectroscopy for the investigation of cells is described. The possibilities of cell preparation for the measurements, imaging, and determination of mechanical properties of cells are provided. The applicability of atomic force microscopy to diagnostics and other biomedical purposes is discussed.

  5. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events

    OpenAIRE

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optic...

  6. Comment on 'Field ion microscopy characterized tips in noncontact atomic force microscopy: Quantification of long-range force interactions'

    OpenAIRE

    Paul, William; Grütter, Peter

    2013-01-01

    A recent article by Falter et al. (Phys. Rev. B 87, 115412 (2013)) presents experimental results using field ion microscopy characterized tips in noncontact atomic force microscopy in order to characterize electrostatic and van der Waals long range forces. In the article, the tip radius was substantially underestimated at ~4.7 nm rather than ~8.1 nm due to subtleties in the application of the ring counting method. We point out where common errors in ring counting arise in order to benefit fut...

  7. Detection of Percolating Paths in PMMA/CB Segregated Network Composites Using Electrostatic Force Microscopy and Conductive Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, J. [Georgia Institute of Technology; Ou, R. [Georgia Institute of Technology; Gupta, S. [Georgia Institute of Technology; Parker, A. [Georgia Institute of Technology; Gerhardt, Dr. Rosario [Georgia Institute of Technology; Seal, Katyayani [ORNL; Kalinin, Sergei V [ORNL; Baddorf, Arthur P [ORNL

    2009-01-01

    Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.

  8. A scanning force microscope for simultaneous force and patch-clamp measurements on living cell tissues

    Science.gov (United States)

    Langer, M. G.; Öffner, W.; Wittmann, H.; Flösser, H.; Schaar, H.; Häberle, W.; Pralle, A.; Ruppersberg, J. P.; Hörber, J. K. H.

    1997-06-01

    For the investigation of mechanosensitive ion channels of living cells it is of great interest to apply very local forces in the piconewton range and to measure, simultaneously, ion currents down to 1 pA. Scanning force microscopy (SFM) is a suitable technique, that allows the application of such small forces with a lateral resolution in the range of 10 nm. We developed a novel type of experimental setup, because no existing SFM, home built or commercial, allows a simultaneous investigation of ion currents and mechanical properties of living cells. The construction consists of a SFM that is combined with an upright infrared differential interference contrast (DIC) video microscope and a conventional patch-clamp setup. Instead of the object, the force sensor is scanned to prevent relative movements between the patch pipette and the patched cell. The deflection of the SFM cantilever is detected with the so-called optical deflection method through the objective of the optical microscope. In opposite to common optical setups the laser beam was not focused on the force sensor. The presented optic creates a parallel laser beam between the objective and the SFM cantilever, which allows a vertical displacement of the sensor without any changes of the detector signal. For the three-dimensional positioning of the specimen chamber a two-axis translation stage including a vertical piezoelectric translation device was developed. The SFM tip is fixed on a combined lateral and vertical translation stage including a piezoelectric tube scanner for three-dimensional fine positioning. Thus the instrument enables an easy approach of the SFM tip to any optically identified cell structure. The head stage of the patch-clamp electronics and the patch pipette are directly fixed on the specimen stage. This prevents relative movements between patched cells and patch pipette during the approach to the SFM tip. The three-axis positioning of the patch pipette is done by a compact hydraulic

  9. High temperature surface imaging using atomic force microscopy

    NARCIS (Netherlands)

    Broekmaat, Joska Johannes; Brinkman, Alexander; Blank, David H.A.; Rijnders, Augustinus J.H.M.

    2008-01-01

    Atomic force microscopy (AFM) is one of the most important tools in nanotechnology and surface science. Because of recent developments, nowadays, it is also used to study dynamic processes, such as thin film growth and surface reaction mechanisms. These processes often take place at high temperature

  10. Atomic force microscopy of torus-bearing pit membranes

    Science.gov (United States)

    Roland R. Dute; Thomas Elder

    2011-01-01

    Atomic force microscopy was used to compare the structures of dried, torus-bearing pit membranes from four woody species, three angiosperms and one gymnosperm. Tori of Osmanthus armatus are bipartite consisting of a pustular zone overlying parallel sets of microfibrils that form a peripheral corona. Microfibrils of the corona form radial spokes as they traverse the...

  11. Nanoscale optical imaging by atomic force infrared microscopy

    OpenAIRE

    Rice, James H.

    2010-01-01

    This review outlines progress in atomic force infrared microscopy, reviewing the methodology and its application in nanoscale infrared absorption imaging of both biological and functional materials, including an outline of where this emerging method has been applied to image cellular systems in aqueous environments.

  12. High Speed Atomic Force Microscopy of Biomolecules by Image Tracking

    NARCIS (Netherlands)

    van Noort, S.J.T.; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    1999-01-01

    An image-tracking procedure for atomic force microscopy is proposed and tested, which allows repeated imaging of the same area without suffering from lateral drift. The drift correction procedure is based on on-line cross-correlation of succeeding images. Using the image-tracking procedure allows

  13. [Application of atomic force microscopy in chromosome research].

    Science.gov (United States)

    Li, Qi; Zheng, Qi; Ding, Yan; Ma, Lu; Li, Li-Jia

    2009-06-01

    Atomic force microscopy (AFM) is an effective apparatus for examination of the surface structure of specimens with a higher resolution. It can be used for real-time observation in vacuum, air, and liquid conditions. This review presented the basic principle of AFM and its significant advantages in biological sample research relative to other types of microscopes and summarized its application in chromosome research.

  14. Quantitative Atomic Force Microscopy with Carbon Monoxide Terminated Tips

    NARCIS (Netherlands)

    Sun, Zhixiang|info:eu-repo/dai/nl/314075674; Boneschanscher, Mark P.; Swart, Ingmar|info:eu-repo/dai/nl/304837652; Vanmaekelbergh, Daniel|info:eu-repo/dai/nl/304829137; Liljeroth, Peter|info:eu-repo/dai/nl/314007423

    2011-01-01

    Noncontact atomic force microscopy (AFM) has recently progressed tremendously in achieving atomic resolution imaging through the use of small oscillation amplitudes and well-defined modification of the tip apex. In particular, it has been shown that picking up simple inorganic molecules (such as CO)

  15. Chaos : The speed limiting phenomenon in dynamic atomic force microscopy

    NARCIS (Netherlands)

    Keyvani Janbahan, A.; Alijani, F.; Sadeghian, Hamed; Maturova, Klara; Goosen, J.F.L.; van Keulen, A.

    2017-01-01

    This paper investigates the closed-loop dynamics of the Tapping Mode Atomic Force Microscopy using a new mathematical model based on the averaging method in Cartesian coordinates. Experimental and numerical observations show that the emergence of chaos in conventional tapping mode AFM strictly

  16. Imaging and manipulation of single viruses by atomic force microscopy

    NARCIS (Netherlands)

    Baclayon, M.; Wuite, G. J. L.; Roos, W. H.

    2010-01-01

    The recent developments in virus research and the application of functional viral particles in nanotechnology and medicine rely on sophisticated imaging and manipulation techniques at nanometre resolution in liquid, air and vacuum. Atomic force microscopy (AFM) is a tool that combines these

  17. Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001

    Science.gov (United States)

    Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.

    1998-01-01

    A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.

  18. Single molecule probing of SNARE proteins by Atomic Force Microscopy

    Science.gov (United States)

    Liu, Wei; Parpura, Vladimir

    2009-01-01

    Atomic Force Microscopy (AFM) in force spectroscopy mode has recently emerged as a technique of choice for studying mechanical interactions between the proteins of the core Soluble N-ethylmalmeimide-sensitive fusion protein Attachment protein REceptor (SNARE) complex. In these experiments, the rupture force, extension, spontaneous dissociation times and interaction energy for SNARE protein-protein interactions can be obtained at the single molecule level. These measurements, which are complementary to results and conclusions drawn from other techniques, improve our understanding of the role of the SNARE complex in exocytosis. PMID:19161382

  19. Error sources in atomic force microscopy for dimensional measurements: Taxonomy and modeling

    DEFF Research Database (Denmark)

    Marinello, F.; Voltan, A.; Savio, E.

    2010-01-01

    This paper aimed at identifying the error sources that occur in dimensional measurements performed using atomic force microscopy. In particular, a set of characterization techniques for errors quantification is presented. The discussion on error sources is organized in four main categories......: scanning system, tip-surface interaction, environment, and data processing. The discussed errors include scaling effects, squareness errors, hysteresis, creep, tip convolution, and thermal drift. A mathematical model of the measurement system is eventually described, as a reference basis for errors...

  20. Quantification of fenestrations in liver sinusoidal endothelial cells by atomic force microscopy.

    Science.gov (United States)

    Zapotoczny, Bartlomiej; Szafranska, Karolina; Kus, Edyta; Chlopicki, Stefan; Szymonski, Marek

    2017-10-01

    Liver sinusoidal endothelial cells present unique morphology characterized by the presence of transmembrane pores called fenestrations. The size and number of fenestrations in live cells change dynamically in response to variety of chemical and physical factors. Although scanning electron microscopy is a well-established method for investigation of fixed liver sinusoidal endothelial cells morphology, atomic force microscopy is the interesting alternative providing detailed 3D topographical information. Moreover, simple sample preparation, only by wet-fixation, minimizing sample preparation artifacts enable high-resolution atomic force microscopy-based measurements. In this work, we apply imaging methods based on atomic force microscopy, to describe characteristic features of glutaraldehyde-fixed primary murine liver sinusoidal endothelial cells, namely: mean fenestration diameter, porosity, and fenestrations frequency. We also investigate the effect of different tip apex radius on evaluation of single fenestration diameter. By quantitative description of fenestrations, we demonstrate that atomic force microscopy became a well competing tool for nondestructive quantitative investigation of the liver sinusoidal endothelial cell morphology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Elasticity measurement of breast cancer cells by atomic force microscopy

    Science.gov (United States)

    Xu, Chaoxian; Wang, Yuhua; Jiang, Ningcheng; Yang, Hongqin; Lin, Juqiang; Xie, Shusen

    2014-09-01

    Mechanical properties of living cells play an important role in understanding various cells' function and state. Therefore cell biomechanics is expected to become a useful tool for cancer diagnosis. In this study, atomic force microscopy (AFM) using a square pyramid probe was performed to investigate cancerous (MCF-7) and benign (MCF-10A) human breast epithelial cells. The new QITM mode was used to acquire high-resolution topographic images and elasticity of living cells. Furthermore, individual force curves were recorded at maximum loads of 0.2, 0.5 and 1 nN, and the dependence of cell's elasticity with loading force was discussed. It was showed that the cancerous cells exhibited smaller elasticity modulus in comparison to non-cancerous counterparts. The elasticity modulus increased as the loading force increased from 0.2 nN to 1 nN. This observation indicates that loading force affects the cell's apparent elasticity and it is important to choose the appropriate force applied to cells in order to distinguish normal and cancer cells. The results reveal that the mechanical properties of living cells measured by atomic force microscopy may be a useful indicator of cell type and disease.

  2. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

    OpenAIRE

    Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.

    2016-01-01

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called ?big-data? methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient ima...

  3. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz

    Science.gov (United States)

    Gratz, A. J.; Manne, S.; Hansma, P. K.

    1991-01-01

    The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.

  4. Microwave atomic force microscopy imaging for nanometer-scale electrical property characterization.

    Science.gov (United States)

    Zhang, Lan; Ju, Yang; Hosoi, Atsushi; Fujimoto, Akifumi

    2010-12-01

    We introduce a new type of microscopy which is capable of investigating surface topography and electrical property of conductive and dielectric materials simultaneously on a nanometer scale. The microwave atomic force microscopy is a combination of the principles of the scanning probe microscope and the microwave-measurement technique. As a result, under the noncontact AFM working conditions, we successfully generated a microwave image of a 200-nm Au film coating on a glass wafer substrate with a spatial resolution of 120 nm and a measured voltage difference of 19.2 mV between the two materials.

  5. Resolution theory and static- and frequency dependent cross-talk in piezoresponse force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, Stephen [ORNL; Guo, Senli [ORNL; Kumar, Amit [ORNL; Rodriguez, Brian [University College, Dublin; Proksch, Roger [Asylum Research, Santa Barbara, CA; Kalinin, Sergei V [ORNL

    2010-01-01

    Probing materials functionality locally by scanning probe microscopy requires reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, i.e. instrumental and topographical cross-talk. Here we develop the linear resolution theory framework to describe the cross-talk effects, and apply it for elucidation of frequency dependent cross-talk mechanisms in the Piezoresponse Force Microscopy. The use of band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of functional fit approach and multivariate statistical analysis methods for data identification in band excitation SPM is explored.

  6. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.; Williams, C. C., E-mail: clayton@physics.utah.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  7. Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids.

    Science.gov (United States)

    Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank

    2011-01-01

    The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situ scanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situ STM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situ microscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).

  8. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies.

    Science.gov (United States)

    Cazaux, Séverine; Sadoun, Anaïs; Biarnes-Pelicot, Martine; Martinez, Manuel; Obeid, Sameh; Bongrand, Pierre; Limozin, Laurent; Puech, Pierre-Henri

    2016-01-01

    A method is presented for combining atomic force microscopy (AFM) force mode and fluorescence microscopy in order to (a) mechanically stimulate immune cells while recording the subsequent activation under the form of calcium pulses, and (b) observe the mechanical response of a cell upon photoactivation of a small G protein, namely Rac. Using commercial set-ups and a robust signal coupling the fluorescence excitation light and the cantilever bending, the applied force and activation signals were very easily synchronized. This approach allows to control the entire mechanical history of a single cell up to its activation and response down to a few hundreds of milliseconds, and can be extended with very minimal adaptations to other cellular systems where mechanotransduction is studied, using either purely mechanical stimuli or via a surface bound specific ligand. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. The memory effect of nanoscale memristors investigated by conducting scanning probe microscopy methods

    Directory of Open Access Journals (Sweden)

    César Moreno

    2012-11-01

    Full Text Available We report on the use of scanning force microscopy as a versatile tool for the electrical characterization of nanoscale memristors fabricated on ultrathin La0.7Sr0.3MnO3 (LSMO films. Combining conventional conductive imaging and nanoscale lithography, reversible switching between low-resistive (ON and high-resistive (OFF states was locally achieved by applying voltages within the range of a few volts. Retention times of several months were tested for both ON and OFF states. Spectroscopy modes were used to investigate the I–V characteristics of the different resistive states. This permitted the correlation of device rectification (reset with the voltage employed to induce each particular state. Analytical simulations by using a nonlinear dopant drift within a memristor device explain the experimental I–V bipolar cycles.

  10. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    Science.gov (United States)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. High-Resolution Scanning Tunneling Microscopy Studies of Molecular Nanostructures on Surfaces

    DEFF Research Database (Denmark)

    Song, Xin

    . First, to study the role of hydrogen bonding in self-assembly, we investigate the monomolecular self-assembled system of pyrene-4,5,9,10-tetrone and phenanthrene- 9,10-dione molecules on Au(111) and HOPG surface respectively and the binary molecular self-assembled system of stearic acid and guanine...... molecules co-adsorbed on HOPG surface. Hydrogen bonding plays a key role in these self-assembled nanostructures and the substrate could also give an effect in the self-assembly. Second, to study the self-assembly across the terrace steps as a defect on surface, the chiral self-assembled supramolecular...... of nanostructures requires deeper insight into the adsorption sites, adsorption configurations, diffusion behaviour and driving forces for self-assembly of different molecules or atoms on different substrates. To study these fundamental issues, scanning tunneling microscopy (STM) has proven to be an ideal choice...

  12. Local surface cleaning and cluster assembly using contact mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, D.-Q.; Sacher, E

    2003-04-15

    Conventional contact mode atomic force microscopy (AFM) has been used for local surface cleaning and cluster alignment. By using the AFM tip to sweep and push in contact mode, we have demonstrated that Cu clusters, prepared by vacuum evaporation onto Dow Cyclotene 3022 polymer and subsequent exposure to atmosphere, can easily be moved by the AFM tip, and assembled at the outer edge of the scanned region to form a line of clusters. We have found that the force applied by the tip plays an important role in the ease of cluster motion. Cyclotene surface treatment that enhances cluster adhesion hinders this ability, and may be used as a method of nanofabrication.

  13. Improved atomic force microscopy cantilever performance by partial reflective coating

    Directory of Open Access Journals (Sweden)

    Zeno Schumacher

    2015-07-01

    Full Text Available Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM. Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor. In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m and stiff (≈28 N/m rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds.

  14. Improved atomic force microscopy cantilever performance by partial reflective coating.

    Science.gov (United States)

    Schumacher, Zeno; Miyahara, Yoichi; Aeschimann, Laure; Grütter, Peter

    2015-01-01

    Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM). Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor). In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m) and stiff (≈28 N/m) rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds.

  15. Characterisation of dry powder inhaler formulations using atomic force microscopy.

    Science.gov (United States)

    Weiss, Cordula; McLoughlin, Peter; Cathcart, Helen

    2015-10-15

    Inhalation formulations are a popular way of treating the symptoms of respiratory diseases. The active pharmaceutical ingredient (API) is delivered directly to the site of action within the deep lung using an inhalation device such as the dry powder inhaler (DPI). The performance of the formulation and the efficiency of the treatment depend on a number of factors including the forces acting between the components. In DPI formulations these forces are dominated by interparticulate interactions. Research has shown that adhesive and cohesive forces depend on a number of particulate properties such as size, surface roughness, crystallinity, surface energetics and combinations of these. With traditional methods the impact of particulate properties on interparticulate forces could be evaluated by examining the bulk properties. Atomic force microscopy (AFM), however, enables the determination of local surface characteristics and the direct measurement of interparticulate forces using the colloidal probe technique. AFM is considered extremely useful for evaluating the surface topography of a substrate (an API or carrier particle) and even allows the identification of crystal faces, defects and polymorphs from high-resolution images. Additionally, information is given about local mechanical properties of the particles and changes in surface composition and energetics. The assessment of attractive forces between two bodies is possible by using colloidal probe AFM. This review article summarises the application of AFM in DPI formulations while specifically focussing on the colloidal probe technique and the evaluation of interparticulate forces. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. [Application of atomic force microscopy (AFM) to study bacterial biofilms].

    Science.gov (United States)

    Yang, Shanshan; Huang, Qiaoyun; Cai, Peng

    2017-09-25

    Because of the nanometre resolution, piconewton force sensitivity, label-free technique and the ability to operate in liquid environments, atomic force microscopy (AFM) has emerged as a powerful tool to explore the biofilm development processes. AFM provides three-dimensional topography and structural details of biofilm surfaces under in-situ conditions. It also helps to generate key information on the mechanical properties of biofilm surfaces, such as elasticity and stickiness. Additionally, single-molecule and single-cell force spectroscopies can be applied to measure the strength of adhesion, attraction, and repulsion forces between cell-solid and cell-cell surfaces. This paper outlined the basic principle of AFM technique and introduced recent advances in the application of AFM for the investigation of ultra-morphological, mechanical and interactive properties of biofilms. Furthermore, the existing problems and future prospects were discussed.

  17. Adhesive properties of Staphylococcus epidermidis probed by atomic force microscopy

    DEFF Research Database (Denmark)

    Hu, Yifan; Ulstrup, Jens; Zhang, Jingdong

    2011-01-01

    Mapping of the surface properties of Staphylococcus epidermidis and of biofilm forming bacteria in general is a key to understand their functions, particularly their adhesive properties. To gain a comprehensive view of the structural and chemical properties of S. epidermidis, four different strains...... (biofilm positive and biofilm negative strains) were analyzed using in situ atomic force microscopy (AFM). Force measurements performed using bare hydrophilic silicon nitride tips disclosed similar adhesive properties for each strain. However, use of hydrophobic tips showed that hydrophobic forces...... are not the driving forces for adhesion of the four strains. Rather, the observation of sawtooth force–distance patterns on the surface of biofilm positive strains documents the presence of modular proteins such as Aap that may mediate cell adhesion. Treatment of two biofilm positive strains with two chemical...

  18. Interaction between polystyrene spheres by atomic force microscopy

    CERN Document Server

    Looi, L

    2002-01-01

    The interaction between a single polystyrene particle and a polystyrene substrate has been previously reported by a number of investigators. However, the effects of relative humidity, applied load and contact time on the adhesion of polystyrene surfaces have not been investigated and these effects are poorly understood. It is the primary aim of the current work to characterise the effect of the aforementioned parameters on the adhesion of polystyrene surfaces using atomic force microscopy. The polystyrene used in this study contained 1% of di-vinyl benzene as a cross-linking agent. From the work conducted using the custom-built instrument, the dependency of adhesion forces on the relative humidity is greatest at relative humidities above 60% where capillary forces cause a sharp increase in adhesion with increasing relative humidity. Hysteresis was observed in the solid-solid contact gradient of the accompanying force curves, suggesting non-elastic behaviour at the contact area of the surfaces

  19. Calibration of Friction Force Signals in Atomic Force Microscopy in Liquid Media

    NARCIS (Netherlands)

    Tocha, E.; Song, Jing; Schönherr, Holger; Vancso, Gyula J.

    2007-01-01

    The calibration factors for atomic force microscopy (AFM) friction force measurements in liquid media are shown to be different by 25-74% compared to measurements in air. Even though it is significantly more precise, the improved wedge calibration method using a universal calibration specimen

  20. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Millaku, Agron, E-mail: agron.mi@hotmail.com [Limnos-Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana (Slovenia); Drobne, Damjana [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Centre of Excellence, Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova cesta 39, 1000 Ljubljana (Slovenia); Centre of Excellence, Nanoscience and Nanotechnology (Nanocentre), Jamova cesta 39, 1000 Ljubljana (Slovenia); Torkar, Matjaz [Institute of Metals and Technology IMT, Lepi pot 11, 1000 Ljubljana (Slovenia); Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Novak, Sara [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Remškar, Maja [Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Pipan-Tkalec, Živa [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia)

    2013-09-15

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  1. Theory of Q-Controlled Dynamic Force Microscopy in Liquids

    Science.gov (United States)

    Holscher, Hendrik; Schwarz, Udo D.

    2006-03-01

    The so-called Q-control method allows the active modification of the effective cantilever damping in dynamic force microscopy (DFM) by increasing or decreasing the Q-value of the cantilever. This feature has been used in recent years in numerous experimental studies to improve the apparent imaging capabilities of DFM in liquids. However, it is striking that an in-depth analytic description that would allow a rigorous theoretical explanation of the various features of Q-controlled dynamic force microscopy (QC-DFM) is still missing. Here, we present an analysis of QC-DFM based on the analytical solution of the equation of motion considering a model tip-sample interaction force. Explicit formulas allowing for the calculation of relevant parameters such as amplitude, surface deformation, and maximum forces during an individual oscillation cycle are given. It is found that higher effective Q-factors assist in reducing the maximum tip-sample forces. This helps suppressing unwanted deformations of the sample surface, leading to the reported enhanced image quality. Finally, the results are discussed in relation to the situation in air.

  2. Second-harmonic scanning optical microscopy of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Vohnsen, B.; Bozhevolnyi, S.I.; Pedersen, K.

    2001-01-01

    Second-harmonic (SH) optical imaging of self-assembled InAlGaAs quantum dots (QD's) grown on a GaAs(0 0 1) substrate has been accomplished at room temperature by use of respectively a scanning far-field optical microscope in reflection mode and a scanning near-field optical microscope...... in transmission mode. In both cases the SH signal peaks at a pump wavelength of similar to 885 nm in correspondence to the maximum in the photoluminescence spectrum of the QD sample. SH near-field optical images exhibit spatial signal variations on a subwavelength scale that depend on the pump wavelength. We...

  3. Atomic force microscopy in biomedical research - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available Pier Carlo Braga and Davide Ricci are old friends not only for those researchers familiar with Atomic force microscopy (AFM but also for those beginners (like the undersigned that already enthusiastically welcomed their 2004 edition (for the same Humana press printing types of Atomic force microscopy: Biomedical methods and applications, eventhough I never had used the AFM. That book was much intended to overview the possible AFM applications for a wide range of readers so that they can be in some way stimulated toward the AFM use. In fact, the great majority of scientists is afraid both of the technology behind AFM (that is naturally thought highly demanding in term of concepts not so familiar to biologists and physicians and of the financial costs: both these two factors are conceived unapproachable by the medium range granted scientist usually not educated in terms of biophysics and electronic background....

  4. Probing stem cell differentiation using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaobin [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan); Shi, Xuetao, E-mail: mrshixuetao@gmail.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ostrovidov, Serge [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Wu, Hongkai, E-mail: chhkwu@ust.hk [Department of Chemistry & Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Nakajima, Ken [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  5. Correlative atomic force microscopy and localization-based super-resolution microscopy: revealing labelling and image reconstruction artefacts.

    Science.gov (United States)

    Monserrate, Aitor; Casado, Santiago; Flors, Cristina

    2014-03-17

    Hybrid microscopy: A correlative microscopy tool that combines in situ super-resolution fluorescence microscopy based on single-molecule localization and atomic force microscopy is presented. Direct comparison with high- resolution topography allows the authors to improve fluorescence labeling and image analysis in super-resolution imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Improved atomic force microscopy cantilever performance by partial reflective coating

    OpenAIRE

    Zeno Schumacher; Yoichi Miyahara; Laure Aeschimann; Peter Grütter

    2015-01-01

    Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM). Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor). In dynamic mode operation in ...

  7. Quantitative Atomic Force Microscopy with Carbon Monoxide Terminated Tips

    OpenAIRE

    Sun, Zhixiang; Boneschanscher, Mark P.; Swart, Ingmar; Vanmaekelbergh, Daniel; Liljeroth, Peter

    2011-01-01

    Noncontact atomic force microscopy (AFM) has recently progressed tremendously in achieving atomic resolution imaging through the use of small oscillation amplitudes and well-defined modification of the tip apex. In particular, it has been shown that picking up simple inorganic molecules (such as CO) by the AFM tip leads to a well-defined tip apex and to enhanced image resolution. Here, we use the same approach to study the three-dimensional intermolecular interaction potential between two mol...

  8. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies

    Energy Technology Data Exchange (ETDEWEB)

    Cazaux, Séverine; Sadoun, Anaïs; Biarnes-Pelicot, Martine; Martinez, Manuel; Obeid, Sameh [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France); Bongrand, Pierre [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France); APHM, Hôpital de la Conception, Laboratoire d’Immunologie, Marseille F-13385 (France); Limozin, Laurent [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France); Puech, Pierre-Henri, E-mail: pierre-henri.puech@inserm.fr [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France)

    2016-01-15

    A method is presented for combining atomic force microscopy (AFM) force mode and fluorescence microscopy in order to (a) mechanically stimulate immune cells while recording the subsequent activation under the form of calcium pulses, and (b) observe the mechanical response of a cell upon photoactivation of a small G protein, namely Rac. Using commercial set-ups and a robust signal coupling the fluorescence excitation light and the cantilever bending, the applied force and activation signals were very easily synchronized. This approach allows to control the entire mechanical history of a single cell up to its activation and response down to a few hundreds of milliseconds, and can be extended with very minimal adaptations to other cellular systems where mechanotransduction is studied, using either purely mechanical stimuli or via a surface bound specific ligand. - Highlights: • A signal coupling AFM and fluorescence microscopy was characterized for soft cantilevers. • It can be used as an intrinsic timer to synchronize images and forces. • Mechanical stimulation of single immune cells while recording calcium fluxes was detailed. • Light-induced mechanical modifications of lymphocytes using a PA-Rac protein were demonstrated. • The precautions and limitations of use of this effect were presented.

  9. Focusing and scanning microscopy with propagating surface plasmons

    NARCIS (Netherlands)

    Gjonaj, B.; Aulbach, Jochen; Johnson, P.M.; Mosk, Allard; Kuipers, L.; Lagendijk, Aart

    2013-01-01

    Here we demonstrate a novel surface plasmon polariton (SPP) microscope which is capable of imaging below the optical diffraction limit. A plasmonic lens, generated through phase-structured illumination, focuses SPPs down to their diffraction limit and scans the focus with steps as small as 10 nm.

  10. Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control

    DEFF Research Database (Denmark)

    Frimmer, Martin; Chen, Yuntian; Koenderink, A. Femius

    2011-01-01

    We report an experimental technique to map and exploit the local density of optical states of arbitrary planar nanophotonic structures. The method relies on positioning a spontaneous emitter attached to a scanning probe deterministically and reversibly with respect to its photonic environment while...

  11. Apparent Barrier Height in Scanning Tunneling Microscopy Revisited

    DEFF Research Database (Denmark)

    Olesen, L.; Brandbyge, Mads; Sørensen, Mads Reinholdt

    1996-01-01

    The apparent barrier height phi(ap), that is, the rate of change of the logarithm of the conductance with tip-sample separation in a scanning tunneling microscope (STM), has been measured for Ni, Pt, and Au single crystal surfaces. The results show that phi(ap) is constant until point contact is ...

  12. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

    Directory of Open Access Journals (Sweden)

    Urs Gysin

    2015-12-01

    Full Text Available Background: The resolution in electrostatic force microscopy (EFM, a descendant of atomic force microscopy (AFM, has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection.Results: We present Kelvin probe force microscopy (KPFM measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  13. General three-dimensional image simulation and surface reconstruction in scanning probe microscopy using a dexel representation.

    Science.gov (United States)

    Qian, Xiaoping; Villarrubia, J S

    2007-12-01

    The ability to image complex general three-dimensional (3D) structures, including reentrant surfaces and undercut features using scanning probe microscopy, is becoming increasing important in many small length-scale applications. This paper presents a dexel data representation and its algorithm implementation for scanning probe microscope (SPM) image simulation (morphological dilation) and surface reconstruction (erosion) on such general 3D structures. Validation using simulations, some of which are modeled upon actual atomic force microscope data, demonstrates that the dexel representation can efficiently simulate SPM imaging and reconstruct the sample surface from measured images, including those with reentrant surfaces and undercut features.

  14. Application of atomic force microscopy in bacterial research.

    Science.gov (United States)

    Dorobantu, Loredana S; Gray, Murray R

    2010-01-01

    The atomic force microscope (AFM) has evolved from an imaging device into a multifunctional and powerful toolkit for probing the nanostructures and surface components on the exterior of bacterial cells. Currently, the area of application spans a broad range of interesting fields from materials sciences, in which AFM has been used to deposit patterns of thiol-functionalized molecules onto gold substrates, to biological sciences, in which AFM has been employed to study the undesirable bacterial adhesion to implants and catheters or the essential bacterial adhesion to contaminated soil or aquifers. The unique attribute of AFM is the ability to image bacterial surface features, to measure interaction forces of functionalized probes with these features, and to manipulate these features, for example, by measuring elongation forces under physiological conditions and at high lateral resolution (force spectroscopy modes, such as chemical force microscopy, single-cell force spectroscopy, and single-molecule force spectroscopy, have been used to map the spatial arrangement of chemical groups and electrical charges on bacterial surfaces, to measure cell-cell interactions, and to stretch biomolecules. In this review, we present the fascinating options offered by the rapid advances in AFM with emphasizes on bacterial research and provide a background for the exciting research articles to follow. 2010 Wiley Periodicals, Inc.

  15. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

    Science.gov (United States)

    Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.

    2016-05-01

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.

  16. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography.

    Science.gov (United States)

    Jesse, S; Chi, M; Belianinov, A; Beekman, C; Kalinin, S V; Borisevich, A Y; Lupini, A R

    2016-05-23

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called "big-data" methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.

  17. Scanning near-field optical microscopy on rough surfaces: applications in chemistry, biology, and medicine

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Shear-force apertureless scanning near-field optical microscopy (SNOM with very sharp uncoated tapered waveguides relies on the unexpected enhancement of reflection in the shear-force gap. It is the technique for obtaining chemical (materials contrast in the optical image of “real world” surfaces that are rough and very rough without topographical artifacts, and it is by far less complicated than other SNOM techniques that can only be used for very flat surfaces. The experimental use of the new photophysical effect is described. The applications of the new technique are manifold. Important mechanistic questions in solid-state chemistry (oxidation, diazotization, photodimerization, surface hydration, hydrolysis are answered with respect to simultaneous AFM (atomic force microscopy and detailed crystal packing. Prehistoric petrified bacteria and concomitant pyrite inclusions are also investigated with local RAMAN SNOM. Polymer beads and unstained biological objects (rabbit heart, shrimp eye allow for nanoscopic analysis of cell organelles. Similarly, human teeth and a cancerous tissue are analyzed. Bladder cancer tissue is clearly differentiated from healthy tissue without staining and this opens a new highly promising diagnostic tool for precancer diagnosis. Industrial applications are demonstrated at the corrosion behavior of dental alloys (withdrawal of a widely used alloy, harmless substitutes, improvement of paper glazing, behavior of blood bags upon storage, quality assessment of metal particle preparations for surface enhanced RAMAN spectroscopy, and determination of diffusion coefficient and light fastness in textile fiber dyeing. The latter applications include fluorescence SNOM. Local fluorescence SNOM is also used in the study of partly aggregating dye nanoparticles within resin/varnish preparations. Unexpected new insights are obtained in all of the various fields that cannot be obtained by other techniques.

  18. Simulation study of secondary electron images in scanning ion microscopy

    CERN Document Server

    Ohya, K

    2003-01-01

    The target atomic number, Z sub 2 , dependence of secondary electron yield is simulated by applying a Monte Carlo code for 17 species of metals bombarded by Ga ions and electrons in order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM). In addition to the remarkable reversal of the Z sub 2 dependence between the Ga ion and electron bombardment, a fine structure, which is correlated to the density of the conduction band electrons in the metal, is calculated for both. The brightness changes of the secondary electron images in SIM and SEM are simulated using Au and Al surfaces adjacent to each other. The results indicate that the image contrast in SIM is much more sensitive to the material species and is clearer than that for SEM. The origin of the difference between SIM and SEM comes from the difference in the lateral distribution of secondary electrons excited within the escape depth.

  19. Optical characterication of probes for photon scanning tunnelling microscopy

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    The photon scanning tunnelling microscope is a well-established member of the family of scanning near-field optical microscopes used for optical imaging at the sub-wavelength scale. The quality of the probes, typically pointed uncoated optical fibres, used is however difficult to evaluate...... in a direct manner and has most often been inferred from the apparent quality of recorded optical images. Complicated near-field optical imaging characteristics, together with the possibility of topographically induced artefacts, however, has increased demands for a more reliable probe characterization...... technique. Here we present experimental results obtained for optical characterization of two different probes by imaging of a well-specified near-field intensity distribution at various spatial frequencies. In particular, we observe that a sharply pointed dielectric probe can be highly suitable for imaging...

  20. Video rate near-field scanning optical microscopy

    Science.gov (United States)

    Bukofsky, S. J.; Grober, R. D.

    1997-11-01

    The enhanced transmission efficiency of chemically etched near-field optical fiber probes makes it possible to greatly increase the scanning speed of near-field optical microscopes. This increase in system bandwidth allows sub-diffraction limit imaging of samples at video rates. We demonstrate image acquisition at 10 frames/s, rate-limited by mechanical resonances in our scanner. It is demonstrated that the optical signal to noise ratio is large enough for megahertz single pixel acquisition rates.

  1. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment.

    Science.gov (United States)

    Legleiter, Justin

    2009-06-17

    In tapping mode atomic force microscopy (AFM), a sharp probe tip attached to an oscillating cantilever is allowed to intermittently strike a surface. By raster scanning the probe while monitoring the oscillation amplitude of the cantilever via a feedback loop, topographical maps of surfaces with nanoscale resolution can be acquired. While numerous studies have employed numerical simulations to elucidate the time-resolved tapping force between the probe tip and surface, until recent technique developments, specific read-outs from such models could not be experimentally verified. In this study, we explore, via numerical simulation, the impact of imaging parameters, i.e. set point ratio and drive frequency as a function of resonance, on time-varying tip-sample force interactions, which are directly compared to reconstructed tapping forces from real AFM experiments. As the AFM model contains a feedback loop allowing for the simulation of the entire scanning process, we further explore the impact that various tip-sample force have on the entire imaging process.

  2. Contribution of Metal Layer Thickness for Quantitative Backscattered Electron Imaging of Field Emission Scanning Electron Microscopy

    National Research Council Canada - National Science Library

    Kim, Hyonchol; Takei, Hiroyuki; Negishi, Tsutomu; Kudo, Masato; Terazono, Hideyuki; Yasuda, Kenji

    2012-01-01

    ...) imaging in field emission scanning electron microscopy (FE-SEM) were studied to evaluate the potential of using these particles as simultaneously distinguishable labels of target molecules in FE-SEM studies...

  3. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by Scanning Electron Microscopy

    NARCIS (Netherlands)

    Hartsuiker, Liesbeth; van Es, Peter; Petersen, Wilhelmina; van Leeuwen, Ton; Terstappen, Leonardus Wendelinus Mathias Marie; Otto, Cornelis

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  4. Combination of scanning probe microscopy techniques for evaluating the electrical parameters of individual multiwalled carbon nanotubes

    Science.gov (United States)

    Sokolov, D. V.; Davletkildeev, N. A.; Bolotov, V. V.; Lobov, I. A.

    2017-10-01

    Using two techniques of scanning probe microscopy, the electrical properties (work function, Fermi level position, free carriers’ concentration, electrical resistance, conductivity, and carriers’ mobility) of individual multiwalled carbon nanotubes were evaluated.

  5. Photothermally excited force modulation microscopy for broadband nanomechanical property measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ryan, E-mail: ryan.wagner@nist.gov; Killgore, Jason P. [Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2015-11-16

    We demonstrate photothermally excited force modulation microscopy (PTE FMM) for mechanical property characterization across a broad frequency range with an atomic force microscope (AFM). Photothermal excitation allows for an AFM cantilever driving force that varies smoothly as a function of drive frequency, thus avoiding the problem of spurious resonant vibrations that hinder piezoelectric excitation schemes. A complication of PTE FMM is that the sub-resonance cantilever vibration shape is fundamentally different compared to piezoelectric excitation. By directly measuring the vibrational shape of the cantilever, we show that PTE FMM is an accurate nanomechanical characterization method. PTE FMM is a pathway towards the characterization of frequency sensitive specimens such as polymers and biomaterials with frequency range limited only by the resonance frequency of the cantilever and the low frequency limit of the AFM.

  6. Dynamic force microscopy for imaging of viruses under physiological conditions

    Directory of Open Access Journals (Sweden)

    Kienberger Ferry

    2004-01-01

    Full Text Available Dynamic force microscopy (DFM allows imaging of the structure and the assessment of the function of biological specimens in their physiological environment. In DFM, the cantilever is oscillated at a given frequency and touches the sample only at the end of its downward movement. Accordingly, the problem of lateral forces displacing or even destroying bio-molecules is virtually inexistent as the contact time and friction forces are reduced. Here, we describe the use of DFM in studies of human rhinovirus serotype 2 (HRV2 weakly adhering to mica surfaces. The capsid of HRV2 was reproducibly imaged without any displacement of the virus. Release of the genomic RNA from the virions was initiated by exposure to low pH buffer and snapshots of the extrusion process were obtained. In the following, the technical details of previous DFM investigations of HRV2 are summarized.

  7. Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules.

    Science.gov (United States)

    Stukalov, Oleg; Korenevsky, Anton; Beveridge, Terry J; Dutcher, John R

    2008-09-01

    Bacteria can possess an outermost assembly of polysaccharide molecules, a capsule, which is attached to their cell wall. We have used two complementary, high-resolution microscopy techniques, atomic force microscopy (AFM) and transmission electron microscopy (TEM), to study bacterial capsules of four different gram-negative bacterial strains: Escherichia coli K30, Pseudomonas aeruginosa FRD1, Shewanella oneidensis MR-4, and Geobacter sulfurreducens PCA. TEM analysis of bacterial cells using different preparative techniques (whole-cell mounts, conventional embeddings, and freeze-substitution) revealed capsules for some but not all of the strains. In contrast, the use of AFM allowed the unambiguous identification of the presence of capsules on all strains used in the present study, including those that were shown by TEM to be not encapsulated. In addition, the use of AFM phase imaging allowed the visualization of the bacterial cell within the capsule, with a depth sensitivity that decreased with increasing tapping frequency.

  8. Time-resolved scanning electron microscopy with polarization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Frömter, Robert, E-mail: rfroemte@physik.uni-hamburg.de; Oepen, Hans Peter [Institut für Nanostruktur-und Festkörperphysik, Universität Hamburg, Jungiusstraße 11, 20355 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Kloodt, Fabian; Rößler, Stefan; Frauen, Axel; Staeck, Philipp; Cavicchia, Demetrio R. [Institut für Nanostruktur-und Festkörperphysik, Universität Hamburg, Jungiusstraße 11, 20355 Hamburg (Germany); Bocklage, Lars [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Röbisch, Volker; Quandt, Eckhard [Institute for Materials Science, Christian-Albrechts-Universität zu Kiel, 24143 Kiel (Germany)

    2016-04-04

    We demonstrate the feasibility of investigating periodically driven magnetization dynamics in a scanning electron microscope with polarization analysis based on spin-polarized low-energy electron diffraction. With the present setup, analyzing the time structure of the scattering events, we obtain a temporal resolution of 700 ps, which is demonstrated by means of imaging the field-driven 100 MHz gyration of the vortex in a soft-magnetic FeCoSiB square. Owing to the efficient intrinsic timing scheme, high-quality movies, giving two components of the magnetization simultaneously, can be recorded on the time scale of hours.

  9. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  10. Scanning transmission electron microscopy: Albert Crewe's vision and beyond.

    Science.gov (United States)

    Krivanek, Ondrej L; Chisholm, Matthew F; Murfitt, Matthew F; Dellby, Niklas

    2012-12-01

    Some four decades were needed to catch up with the vision that Albert Crewe and his group had for the scanning transmission electron microscope (STEM) in the nineteen sixties and seventies: attaining 0.5Å resolution, and identifying single atoms spectroscopically. With these goals now attained, STEM developments are turning toward new directions, such as rapid atomic resolution imaging and exploring atomic bonding and electronic properties of samples at atomic resolution. The accomplishments and the future challenges are reviewed and illustrated with practical examples. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [Scanning electron microscopy of heat-damaged bone tissue].

    Science.gov (United States)

    Harsanyl, L

    1977-02-01

    Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.

  12. Evaluation of the bleached human enamel by Scanning Electron Microscopy

    DEFF Research Database (Denmark)

    Miranda, Carolina Baptista; Pagani, Clovis; Benetti, Ana Raquel

    2005-01-01

    Since bleaching has become a popular procedure, the effect of peroxides on dental hard tissues is of great interest in research. Purpose: The aim of this in vitro study was to perform a qualitative analysis of the human enamel after the application of in-office bleaching agents, using Scanning...... characteristic of an erosive process that took place on human enamel. Depression areas, including the formation of craters, and exposure of enamel rods could also be detected. Conclusion: Bleaching effects on enamel morphology were randomly distributed throughout enamel surface and various degrees of enamel...

  13. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    Science.gov (United States)

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  14. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jorge R., E-mail: jorge.rr@cea.cu [Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Canto Blanco, 28049 Madrid, España (Spain)

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  15. Anticipating, measuring, and minimizing MEMS mirror scan error to improve laser scanning microscopy's speed and accuracy.

    Science.gov (United States)

    Giannini, John P; York, Andrew G; Shroff, Hari

    2017-01-01

    We describe a method to speed up microelectromechanical system (MEMS) mirror scanning by > 20x, while also improving scan accuracy. We use Landweber deconvolution to determine an input voltage which would produce a desired output, based on the measured MEMS impulse response. Since the MEMS is weakly nonlinear, the observed behavior deviates from expectations, and we iteratively improve our input to minimize this deviation. This allows customizable MEMS angle vs. time with <1% deviation from the desired scan pattern. We demonstrate our technique by optimizing a point scanning microscope's raster patterns to image mammal submandibular gland and pollen at ~10 frames/s.

  16. Regenerating titanium ventricular assist device surfaces after gold/palladium coating for scanning electron microscopy.

    Science.gov (United States)

    Achneck, Hardean E; Serpe, Michael J; Jamiolkowski, Ryan M; Eibest, Leslie M; Craig, Stephen L; Lawson, Jeffrey H

    2010-01-01

    Titanium is one of the most commonly used materials for implantable devices in humans. Scanning electron microscopy (SEM) serves as an important tool for imaging titanium surfaces and analyzing cells and other organic matter adhering to titanium implants. However, high-vacuum SEM imaging of a nonconductive sample requires a conductive coating on the surface. A gold/palladium coating is commonly used and to date no method has been described to "clean" such gold/palladium covered surfaces for repeated experiments without etching the titanium itself. This constitutes a major problem with titanium-based implantable devices which are very expensive and thus in short supply. Our objective was to devise a protocol to regenerate titaniumsurfaces after SEM analysis. In a series of experiments, titanium samples from implantable cardiac assist devices were coated with fibronectin, seeded with cells and then coated with gold/palladium for SEM analysis. X-ray photoelectron spectroscopy spectra were obtained before and after five different cleaning protocols. Treatment with aqua regia (a 1:3 solution of concentrated nitric and hydrochloric acid), with or without ozonolysis, followed by sonication in soap solution and sonication in deionized water, allowed regenerating titanium surfaces to their original state. Atomic force microscopy confirmed that the established protocol did not alter the titanium microstructure. The protocol described herein is applicable to almost all titanium surfaces used in biomedical sciences and because of its short exposure time to aqua regia, will likely work for many titanium alloys as well. (c) 2009 Wiley-Liss, Inc.

  17. Advantages of environmental scanning electron microscopy in studies of microorganisms.

    Science.gov (United States)

    Collins, S P; Pope, R K; Scheetz, R W; Ray, R I; Wagner, P A; Little, B J

    1993-08-01

    Microorganisms, including bacteria, fungi, protozoa, and microalgae, are composed predominantly of water which prohibits direct observation in a traditional scanning electron microscope (SEM). Preparation for SEM requires that microorganisms be fixed, frozen or dehydrated, and coated with a conductive film before observation in a high vacuum environment. Sample preparation may mechanically disturb delicate samples, compromise morphological information, and introduce other artifacts. The environmental scanning electron microscope (ESEM) provides a technology for imaging hydrated or dehydrated biological samples with minimal manipulation and without the need for conductive coatings. Sporulating cultures of three fungi, Aspergillus sp., Cunninghamella sp., and Mucor sp., were imaged in the ESEM to assess usefulness of the instrument in the direct observation of delicate, uncoated, biological specimens. Asexual sporophores showed no evidence of conidial displacement or disruption of sporangia. Uncoated algal cells of Euglena gracilis and Spirogyra sp. were examined using the backscatter electron detector (BSE) and the environmental secondary electron detector (ESD) of the ESEM. BSE images had more clearly defined intracellular structures, whereas ESD gave a clearer view of the surface E. gracilis cells fixed with potassium permanganate, Spirogyra sp. stained with Lugol's solution, and Saprolegnia sp. fixed with osmium tetroxide were compared using BSE and ESD to demonstrate that cellular details could be enhanced by the introduction of heavy metals. The effect of cellular water on signal quality was evaluated by comparing hydrated to critical point dried specimens.

  18. In-situ Scanning Transmission X-Ray Microscopy of Catalytic Solids and Related Nanomaterials

    NARCIS (Netherlands)

    de Groot, F.M.F.; de Smit, E.; van Schooneveld, M.M.; Aramburo, L.R.; Weckhuysen, B.M.

    2013-01-01

    The present status of in-situ scanning transmission X-ray microscopy (STXM) is reviewed, with an emphasis on the abilities of the STXM technique in comparison with electron microscopy. The experimental aspects and interpretation of X-ray absorption spectroscopy (XAS) are briefly introduced and the

  19. Core/shell nanofiber characterization by Raman scanning microscopy

    Science.gov (United States)

    Sfakis, Lauren; Sharikova, Anna; Tuschel, David; Costa, Felipe Xavier; Larsen, Melinda; Khmaladze, Alexander; Castracane, James

    2017-01-01

    Core/shell nanofibers are becoming increasingly popular for applications in tissue engineering. Nanofibers alone provide surface topography and increased surface area that promote cellular attachment; however, core/shell nanofibers provide the versatility of incorporating two materials with different properties into one. Such synthetic materials can provide the mechanical and degradation properties required to make a construct that mimics in vivo tissue. Many variations of these fibers can be produced. The challenge lies in the ability to characterize and quantify these nanofibers post fabrication. We developed a non-invasive method for the composition characterization and quantification at the nanoscale level of fibers using Confocal Raman microscopy. The biodegradable/biocompatible nanofibers, Poly (glycerol-sebacate)/Poly (lactic-co-glycolic) (PGS/PLGA), were characterized as a part of a fiber scaffold to quickly and efficiently analyze the quality of the substrate used for tissue engineering. PMID:28271000

  20. Customized patterned substrates for highly versatile correlative light-scanning electron microscopy

    Science.gov (United States)

    Benedetti, Lorena; Sogne, Elisa; Rodighiero, Simona; Marchesi, Davide; Milani, Paolo; Francolini, Maura

    2014-01-01

    Correlative light electron microscopy (CLEM) combines the advantages of light and electron microscopy, thus making it possible to follow dynamic events in living cells at nanometre resolution. Various CLEM approaches and devices have been developed, each of which has its own advantages and technical challenges. We here describe our customized patterned glass substrates, which improve the feasibility of correlative fluorescence/confocal and scanning electron microscopy. PMID:25391455

  1. Invited review article: A 10 mK scanning probe microscopy facility.

    Science.gov (United States)

    Song, Young Jae; Otte, Alexander F; Shvarts, Vladimir; Zhao, Zuyu; Kuk, Young; Blankenship, Steven R; Band, Alan; Hess, Frank M; Stroscio, Joseph A

    2010-12-01

    We describe the design, development and performance of a scanning probe microscopy (SPM) facility operating at a base temperature of 10 mK in magnetic fields up to 15 T. The microscope is cooled by a custom designed, fully ultra-high vacuum (UHV) compatible dilution refrigerator (DR) and is capable of in situ tip and sample exchange. Subpicometer stability at the tip-sample junction is achieved through three independent vibration isolation stages and careful design of the dilution refrigerator. The system can be connected to, or disconnected from, a network of interconnected auxiliary UHV chambers, which include growth chambers for metal and semiconductor samples, a field-ion microscope for tip characterization, and a fully independent additional quick access low temperature scanning tunneling microscope (STM) and atomic force microscope (AFM) system. To characterize the system, we present the cooling performance of the DR, vibrational, tunneling current, and tip-sample displacement noise measurements. In addition, we show the spectral resolution capabilities with tunneling spectroscopy results obtained on an epitaxial graphene sample resolving the quantum Landau levels in a magnetic field, including the sublevels corresponding to the lifting of the electron spin and valley degeneracies.

  2. Scanning MWCNT-Nanopipette and Probe Microscopy: Li Patterning and Transport Studies.

    Science.gov (United States)

    Larson, Jonathan M; Bharath, Satyaveda C; Cullen, William G; Reutt-Robey, Janice E

    2015-10-07

    A carbon-nanotube-enabling scanning probe technique/nanotechnology for manipulating and measuring lithium at the nano/mesoscale is introduced. Scanning Li-nanopipette and probe microscopy (SLi-NPM) is based on a conductive atomic force microscope (AFM) cantilever with an open-ended multi-walled carbon nanotube (MWCNT) affixed to its apex. SLi-NPM operation is demonstrated with a model system consisting of a Li thin film on a Si(111) substrate. By control of bias, separation distance, and contact time, attograms of Li can be controllably pipetted to or from the MWCNT tip. Patterned surface Li features are then directly probed via noncontact AFM measurements with the MWCNT tip. The subsequent decay of Li features is simulated with a mesoscale continuum model, developed here. The Li surface diffusion coefficient for a four (two) Li layer thick film is measured as D=8(±1.2)×10(-15) cm(2) s(-1) (D=1.75(±0.15)×10(-15) cm(2) s(-1)). Dual-Li pipetting/measuring with SLi-NPM enables a broad range of time-dependent Li and nanoelectrode characterization studies of fundamental importance to energy-storage research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An atomic force microscopy study of Eurofer-97 steel

    Directory of Open Access Journals (Sweden)

    Stamopoulos D.

    2014-07-01

    Full Text Available In recent years the microstructure, mechanical and magnetic properties of Eurofer-97 steel are studied intensively due to its application in nuclear fusion power plants. Its microstructure is usually accessed by means of electron microscopy. Here we present an alternative approach utilizing Atomic Force Microscopy (AFM to study as-received Eurofer-97 steel. We recorded both the Height Signal (HS and Phase Signal (PS that provided information on the morphologic and inelastic topography, respectively. With the HS we detected spherical particles (SPs of size 50-2000 nm. Interestingly, micrometer SPs (0.1-2.0 μm are randomly distributed, while nanometer SPs (50-100 nm are sometimes arranged in correlation to grain boundaries. The PS clearly revealed that the micrometer SPs exhibit inelastic properties. Though we cannot identify the elemental composition of the SPs with AFM, based on relevant electron microscopy data we ascribe the nanometer ones to the TaC, TiN and VN and the coarse micrometer ones to M23C6 (M=Cr, Fe. The latter class of SPs can probably be active sites that influence the mechanical properties of Eurofer-97 steel upon annealing as observed in relevant electron microscopy based studies.

  4. Ultrastructural analysis of buckwheat starch components using atomic force microscopy.

    Science.gov (United States)

    Neethirajan, Suresh; Tsukamoto, Kazumi; Kanahara, Hiroko; Sugiyama, Shigeru

    2012-01-01

    Morphological and structural features of buckwheat starch granules and nanocrystals were examined using atomic force microscopy and dynamic light scattering. Partially digested starch granules revealed a clear pattern of growth rings with the central core revealing lamellar structure. Atomic force microscopy and dynamic light scattering experiments revealed that the buckwheat starch granules were polygonal in shape and were in the range of 2 to 19 μm in diameter. The optimized acid hydrolysis process produced nanocrystals with the shape of spherical structure with lengths ranging from 120 to 200 nm, and the diameter from 4 to 30 nm from aqueous suspensions of buckwheat starch solution. The sorption isotherms on buckwheat starch nanocrystal/glycerol composite exhibited a 3-stage transition of moisture in the blending. The biocompatible nature of buckwheat starch nanocrystals and their structural properties make them a promising green nanocomposite material. Buckwheat starches had never been studied on a nanoscale, but we have achieved new understanding of starch granule morphology and concentric growth rings using nanoscale imaging. Since buckwheat is an underutilized crop, we foresee the potential application of buckwheat starch, starch-based nanocrystals, and nanoparticles, to expand markets and encourage producers to expand their buckwheat acreage. The atomic force image analysis suggests that buckwheat starch could be used as a new biopolymer material in food industries. © 2011 Institute of Food Technologists®

  5. Identification of sandstone core damage using scanning electron microscopy

    Science.gov (United States)

    Ismail, Abdul Razak; Jaafar, Mohd Zaidi; Sulaiman, Wan Rosli Wan; Ismail, Issham; Shiunn, Ng Yinn

    2017-12-01

    Particles and fluids invasion into the pore spaces causes serious damage to the formation, resulting reduction in petroleum production. In order to prevent permeability damage for a well effectively, the damage mechanisms should be identified. In this study, water-based drilling fluid was compared to oil-based drilling fluids based on microscopic observation. The cores were damaged by several drilling fluid systems. Scanning electron microscope (SEM) was used to observe the damage mechanism caused by the drilling fluids. Results showed that the ester based drilling fluid system caused the most serious damage followed by synthetic oil based system and KCI-polymer system. Fine solids and filtrate migration and emulsion blockage are believed to be the major mechanisms controlling the changes in flow properties for the sandstone samples.

  6. The theory and practice of high resolution scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Joy, D.C. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA))

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  7. Contact force and scanning velocity during active roughness perception.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Tanaka

    Full Text Available Haptic perception is bidirectionally related to exploratory movements, which means that exploration influences perception, but perception also influences exploration. We can optimize or change exploratory movements according to the perception and/or the task, consciously or unconsciously. This paper presents a psychophysical experiment on active roughness perception to investigate movement changes as the haptic task changes. Exerted normal force and scanning velocity are measured in different perceptual tasks (discrimination or identification using rough and smooth stimuli. The results show that humans use a greater variation in contact force for the smooth stimuli than for the rough stimuli. Moreover, they use higher scanning velocities and shorter break times between stimuli in the discrimination task than in the identification task. Thus, in roughness perception humans spontaneously use different strategies that seem effective for the perceptual task and the stimuli. A control task, in which the participants just explore the stimuli without any perceptual objective, shows that humans use a smaller contact force and a lower scanning velocity for the rough stimuli than for the smooth stimuli. Possibly, these strategies are related to aversiveness while exploring stimuli.

  8. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rhodes, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schemer-Kohrn, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guzman, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-30

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  9. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rhodes, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schemer-Kohrn, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guzman, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-01

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  10. Learning about Modes in Atomic Force Microscopy by Means of Hands-On Activities Based on a Simple Apparatus

    Science.gov (United States)

    Phuapaiboon, Unchada; Panijpan, Bhinyo; Osotchan, Tanakorn

    2009-01-01

    This study was conducted to examine the results of using a low-cost hands-on setup in combination with accompanying activities to promote understanding of the contact mode of atomic force microscopy (AFM). This contact mode setup enabled learners to study how AFM works by hand scanning using probing cantilevers with different characteristics on…

  11. Characterization of bacterial polysaccharide capsules and detection in the presence of deliquescent water by atomic force microscopy.

    Science.gov (United States)

    Su, Hai-Nan; Chen, Zhi-Hua; Liu, Sheng-Bo; Qiao, Li-Ping; Chen, Xiu-Lan; He, Hai-Lun; Zhao, Xian; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2012-05-01

    We detected polysaccharide capsules from Zunongwangia profunda SM-A87 with atomic force microscopy (AFM). The molecular organization of the capsules at the single-polysaccharide-chain level was reported. Furthermore, we found that with ScanAsyst mode the polysaccharide capsules could be detected even in the presence of deliquescent water covering the capsule.

  12. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy.

    Science.gov (United States)

    Soumetz, Federico Caneva; Saenz, Jose F; Pastorino, Laura; Ruggiero, Carmelina; Nosi, Daniele; Raiteri, Roberto

    2010-03-01

    The transforming growth factor beta1 (TGF-beta1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-beta1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalized with monoclonal antibodies specific to the beta1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-beta1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the beta1 integrin subunit was enhanced by TGF-beta1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-beta1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale. (c) 2010 Elsevier B.V. All rights reserved.

  13. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Caneva Soumetz, Federico [Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia, 13-16145 Genova (Italy); Saenz, Jose F. [Biophysical and Electronic Engineering Department, University of Genova, Via All' Opera Pia 11a, 16145 Genova (Italy); Pastorino, Laura; Ruggiero, Carmelina [Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia, 13-16145 Genova (Italy); Nosi, Daniele [Department of Anatomy, Histology and Forensic Medicine, Bio-photonic Laboratory, University of Florence, viale Morgagni, 85 Firenze, CAP 50134 Florence (Italy); Raiteri, Roberto, E-mail: rr@unige.it [Biophysical and Electronic Engineering Department, University of Genova, Via All' Opera Pia 11a, 16145 Genova (Italy)

    2010-03-15

    The transforming growth factor {beta}1 (TGF-{beta}1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-{beta}1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalised with monoclonal antibodies specific to the {beta}1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-{beta}1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the {beta}1 integrin subunit was enhanced by TGF-{beta}1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-{beta}1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale.

  14. Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy

    OpenAIRE

    Mi Li; Dan Dang; Lianqing Liu; Ning Xi; Yuechao Wang

    2017-01-01

    The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used ...

  15. Bituminous emulsions and their characterization by atomic force microscopy

    Science.gov (United States)

    Loeber; Alexandre; Muller; Triquigneaux; Jolivet; Malot

    2000-04-01

    We present a new method for observing oil-in-water emulsions with a continuous water phase and a dispersed bitumen phase. The fine polydispersed bitumen micelles were adsorbed to an atomically smooth mica substrate and imaged in solution by atomic force microscopy in a liquid cell. The height of the adsorbed bitumen sheet in wet and dry states can be measured and the homogeneity of film formation by coalescence can be determined. Localization of surfactant onto and between bitumen micelles is also visualized.

  16. Chemical Force Microscopy of Chemical and Biological Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noy, A

    2006-01-02

    Interactions between chemical functionalities define outcomes of the vast majority of important events in chemistry, biology and materials science. Chemical Force Microscopy (CFM)--a technique that uses direct chemical functionalization of AFM probes with specific functionalities--allows researchers to investigate these important interactions directly. We review the basic principles of CFM, some examples of its application, and theoretical models that provide the basis for understanding the experimental results. We also emphasize application of modern kinetic theory of non-covalent interactions strength to the analysis of CFM data.

  17. Note: Double-hole cantilevers for harmonic atomic force microscopy

    Science.gov (United States)

    Zhang, Weijie; Chen, Yuhang; Chu, Jiaru

    2017-10-01

    To enhance the harmonic signals in intermittent contact atomic force microscopy, we proposed the double-hole structural modification. Finite element analyses and experiments demonstrated the capability and advantages of the developed method. An infinite set of harmonic cantilevers can be optimized by proper selections of hole size, position, and inter-distance. The second and third resonance frequencies are simultaneously regulated to be integer multiples of the fundamental frequency. In the meanwhile, the alteration of cantilever stiffness is kept minimum. The double-hole modifications have prominent advantages of regular geometry, flexible selection of cutting positions/dimensions, and easy-to-meet fabrication tolerances.

  18. Electrochemical atomic force microscopy: In situ monitoring of electrochemical processes

    Science.gov (United States)

    Reggente, Melania; Passeri, Daniele; Rossi, Marco; Tamburri, Emanuela; Terranova, Maria Letizia

    2017-08-01

    The in-situ electrodeposition of polyaniline (PANI), one of the most attractive conducting polymers (CP), has been monitored performing electrochemical atomic force microscopy (EC-AFM) experiments. The electropolymerization of PANI on a Pt working electrode has been observed performing cyclic voltammetry experiments and controlling the evolution of current flowing through the electrode surface, together with a standard AFM image. The working principle and the potentialities of this emerging technique are briefly reviewed and factors limiting the studying of the in-situ electrosynthesis of organic compounds discussed.

  19. Visualizing water molecule distribution by atomic force microscopy.

    Science.gov (United States)

    Kimura, Kenjiro; Ido, Shinichiro; Oyabu, Noriaki; Kobayashi, Kei; Hirata, Yoshiki; Imai, Takashi; Yamada, Hirofumi

    2010-05-21

    Hydration structures at biomolecular surfaces are essential for understanding the mechanisms of the various biofunctions and stability of biomolecules. Here, we demonstrate the measurement of local hydration structures using an atomic force microscopy system equipped with a low-noise deflection sensor. We applied this method to the analysis of the muscovite mica/water interface and succeeded in visualizing a hydration structure that is site-specific on a crystal. Furthermore, at the biomolecule/buffer solution interface, we found surface hydration layers that are more packed than those at the muscovite mica/water interface.

  20. Quantitative three-dimensional ice roughness from scanning electron microscopy

    Science.gov (United States)

    Butterfield, Nicholas; Rowe, Penny M.; Stewart, Emily; Roesel, David; Neshyba, Steven

    2017-03-01

    We present a method for inferring surface morphology of ice from scanning electron microscope images. We first develop a novel functional form for the backscattered electron intensity as a function of ice facet orientation; this form is parameterized using smooth ice facets of known orientation. Three-dimensional representations of rough surfaces are retrieved at approximately micrometer resolution using Gauss-Newton inversion within a Bayesian framework. Statistical analysis of the resulting data sets permits characterization of ice surface roughness with a much higher statistical confidence than previously possible. A survey of results in the range -39°C to -29°C shows that characteristics of the roughness (e.g., Weibull parameters) are sensitive not only to the degree of roughening but also to the symmetry of the roughening. These results suggest that roughening characteristics obtained by remote sensing and in situ measurements of atmospheric ice clouds can potentially provide more facet-specific information than has previously been appreciated.

  1. Scanning Electron Microscopy with Samples in an Electric Field

    Science.gov (United States)

    Frank, Ludĕk; Hovorka, Miloš; Mikmeková, Šárka; Mikmeková, Eliška; Müllerová, Ilona; Pokorná, Zuzana

    2012-01-01

    The high negative bias of a sample in a scanning electron microscope constitutes the “cathode lens” with a strong electric field just above the sample surface. This mode offers a convenient tool for controlling the landing energy of electrons down to units or even fractions of electronvolts with only slight readjustments of the column. Moreover, the field accelerates and collimates the signal electrons to earthed detectors above and below the sample, thereby assuring high collection efficiency and high amplification of the image signal. One important feature is the ability to acquire the complete emission of the backscattered electrons, including those emitted at high angles with respect to the surface normal. The cathode lens aberrations are proportional to the landing energy of electrons so the spot size becomes nearly constant throughout the full energy scale. At low energies and with their complete angular distribution acquired, the backscattered electron images offer enhanced information about crystalline and electronic structures thanks to contrast mechanisms that are otherwise unavailable. Examples from various areas of materials science are presented.

  2. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  3. Sequencing of adenine in DNA by scanning tunneling microscopy

    Science.gov (United States)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2017-08-01

    The development of DNA sequencing technology utilizing the detection of a tunnel current is important for next-generation sequencer technologies based on single-molecule analysis technology. Using a scanning tunneling microscope, we previously reported that dI/dV measurements and dI/dV mapping revealed that the guanine base (purine base) of DNA adsorbed onto the Cu(111) surface has a characteristic peak at V s = -1.6 V. If, in addition to guanine, the other purine base of DNA, namely, adenine, can be distinguished, then by reading all the purine bases of each single strand of a DNA double helix, the entire base sequence of the original double helix can be determined due to the complementarity of the DNA base pair. Therefore, the ability to read adenine is important from the viewpoint of sequencing. Here, we report on the identification of adenine by STM topographic and spectroscopic measurements using a synthetic DNA oligomer and viral DNA.

  4. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy

    Science.gov (United States)

    Levin, Barnaby D. A.; Padgett, Elliot; Chen, Chien-Chun; Scott, M. C.; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D.; Robinson, Richard D.; Ercius, Peter; Kourkoutis, Lena F.; Miao, Jianwei; Muller, David A.; Hovden, Robert

    2016-06-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.

  5. Active current-noise cancellation for Scanning Tunneling Microscopy

    Science.gov (United States)

    Pabbi, Lavish; Shoop, Conner; Banerjee, Riju; Dusch, Bill; Hudson, E. W.

    The high sensitivity of the scanning tunneling microscope (STM) poses a barrier to its use in a noisy environment. Vibrational noise, whether structural or acoustic in source, manifests as relative motion between the probe tip and the sample, then appearing in the Z feedback that tries to cancel it. Here we describe an active noise cancellation process that nullifies this motion by adding a drive signal into the existing Z feedback loop. The drive is digitally calculated by actively monitoring vibrations measured by an accelerometer placed in-situ close to the STM head. By transferring the vibration cancellation effort to this drive signal, vibration-created noise in the Z-feedback (during topography) or current (during spectroscopy) is significantly reduced. This inexpensive and easy solution, requiring no major instrumental modifications, is ideal for those looking to place their STM in a noisier environment, for example in the presence of active refrigeration systems (e.g. pulse tube cryocoolers) or coupled to high-vibration instrumentation. This material is based upon work supported by the National Science Foundation under Grant No. 1229138.

  6. Scanning electron microscopy investigations regarding Adonis vernalis L. flower morphology

    Directory of Open Access Journals (Sweden)

    Irina Neta GOSTIN

    2009-11-01

    Full Text Available The floral morphology of Adonis vernalis L. was observed with a scanning electron microscope (SEM. The investigations are important to clarify some taxonomical problems and also could provide useful diagnostic elements for the identification of this medicinal plant in powdered materials. All floral organs are initiated spirally and centripetally and develop centripetally. The petals (8-12 are shorter than the sepals (5-6 in early developmental stages. The petals are disposed on spiral (with 3-4 whorls. The stamens (numerous are unbranched and reach maturity centripetally; they are free of the perianth. The anther walls consisting of a single layer epidermis in the anther wall surrounding the sporagenous tissue, one row of endothecium, two to four rows of middle layer and one row of tapetum layer. In the anther walls, the tapetal cells, by glandular type, persist later in ontogenesis. Pollen grains are tricolpate with echinate surface. The gynoecium is multiple, apocarpous with distinct carpels. The carpels are ascidiate from the beginning. At the base of each carpel, numerousness short, unicellular, trichomes are present. The stigma differentiates as two crests along the ventral slit of the ovary. Each carpel contains a single ovule inside the ovary cavity. The mature ovule is anatropous, with two integuments. It is almost parallel to the funicle.

  7. Fabrication and characterization of probes for combined scanning electrochemical/optical microscopy experiments.

    Science.gov (United States)

    Lee, Youngmi; Bard, Allen J

    2002-08-01

    A technique that combines scanning electrochemical microscopy (SECM) and optical microscopy (OM) was implemented with a new probe tip. The tip for scanning electrochemicaVoptical microscopy (SECM/OM) was constructed by insulating a typical gold-coated near-field scanning optical microscopy tip using electrophoretic anodic paint. Once fabricated, the tip was characterized by steady-state cyclic voltammetry, as well as optical and electrochemical approach experiments. This tip generated a stable steady-state current and well-defined SECM approach curves for both conductive and insulating substrates. Durable tips whose geometry was a ring with < 1 microm as outer ring radius could be consistently fabricated. Simultaneous electrochemical and optical images of an interdigitated array electrode were obtained with a resolution on the micrometer scale, demonstrating good performance of the tip as both an optical and an electrochemical probe for imaging microstructures. The SECM feedback current measurements were successfully employed to determine tip-substrate distances for imaging.

  8. Capillary force between wetted nanometric contacts and its application to atomic force microscopy.

    Science.gov (United States)

    Crassous, Jérôme; Ciccotti, Matteo; Charlaix, Elisabeth

    2011-04-05

    We extend to the case of perfect wetting the exact calculation of Orr et al. (J. Fluid. Mech. 1975, 67, 723) for a pendular ring connecting two dry surfaces. We derive an approximate analytical expression for the capillary force between two highly curved surfaces covered by a wetting liquid film. The domain of validity of this expression is assessed and extended by a custom-made numerical simulation based on the full exact mathematical description. In the case of attractive liquid-solid van der Waals interactions, the capillary force increases monotonically with decreasing vapor pressure up to several times its saturation value. This accurate description of the capillary force makes it possible to estimate the adhesion force between wet nanoparticles; it can also be used to quantitatively interpret pull-off forces measured by atomic force microscopy.

  9. Potential Role of Atomic Force Microscopy in Systems Biology

    Science.gov (United States)

    Ramachandran, Srinivasan; Arce, Fernando Teran; Lal, Ratnesh

    2011-01-01

    Systems biology is a quantitative approach for understanding a biological system at its global level through systematic perturbation and integrated analysis of all its components. Simultaneous acquisition of information datasets pertaining to the system components (e.g., genome, proteome) is essential to implement this approach. There are limitations to such an approach in measuring gene expression levels and accounting for all proteins in the system. The success of genomic studies is critically dependent on PCR for its amplification, but PCR is very uneven in amplifying the samples, ineffective in scarce samples and unreliable in low copy number transcripts. On the other hand, lack of amplifying techniques for proteins critically limits their identification to only a small fraction of high concentration proteins. Atomic force microscopy (AFM), AFM cantilever sensors and AFM force spectroscopy in particular, could address these issues directly. In this article, we reviewed and assessed their potential role in systems biology. PMID:21766465

  10. Mechanical characterization of cellulose single nanofiber by atomic force microscopy

    Science.gov (United States)

    Zhai, Lindong; Kim, Jeong Woong; Lee, Jiyun; Kim, Jaehwan

    2017-04-01

    Cellulose fibers are strong natural fibers and they are renewable, biodegradable and the most abundant biopolymer in the world. So to develop new cellulose fibers based products, the mechanical properties of cellulose nanofibers would be a key. The atomic microscope is used to measure the mechanical properties of cellulose nanofibers based on 3-points bending of cellulose nanofiber. The cellulose nanofibers were generated for an aqueous counter collision system. The cellulose microfibers were nanosized under 200 MPa high pressure. The cellulose nanofiber suspension was diluted with DI water and sprayed on the silicon groove substrate. By performing a nanoscale 3-points bending test using the atomic force microscopy, a known force was applied on the center of the fiber. The elastic modulus of the single nanofiber is obtained by calculating the fiber deflection and several parameters. The elastic modulus values were obtained from different resources of cellulose such as hardwood, softwood and cotton.

  11. Subsurface contrast due to friction in heterodyne force microscopy

    Science.gov (United States)

    Verbiest, G. J.; Oosterkamp, T. H.; Rost, M. J.

    2017-02-01

    The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different excitation schemes, heterodyne force microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative subsurface-AFM imaging.

  12. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.

    NARCIS (Netherlands)

    Sweers, K.K.; Werf, K.O.; Bennink, M.L.; Subramaniam, V.

    2012-01-01

    Recently several atomic force microscopy (AFM)-based surface property mapping techniques like pulsed force microscopy (PFM), harmonic force microscopy or Peakforce QNM(R) have been introduced to measure the nano- and micro-mechanical properties of materials. These modes all work at different

  13. Candida albicans morphologies revealed by scanning electron microscopy analysis

    Directory of Open Access Journals (Sweden)

    M. Staniszewska

    2013-09-01

    Full Text Available Scanning electron microscope (SEM observations were used to analyze particular morphologies of Candida albicans clinical isolate (strain 82 and mutants defective in hyphae-promoting genes EFG1 (strain HLC52 and/ or CPH1 (strains HLC54 and Can16. Transcription factors Efg1 and Cph1 play role in regulating filamentation and adhesion of C. albicans' morphologies. Comparative analysis of such mutants and clinical isolate showed that Efg1 is required for human serum-induced cell growth and morphological switching. In the study, distinct differences between ultrastructural patterns of clinical strain's and null mutants' morphologies were observed (spherical vs tube-like blastoconidia, or solid and fragile constricted septa vs only the latter observed in strains with EFG1 deleted. In addition, wild type strain displayed smooth colonies of cells in comparison to mutants which exhibited wrinkled phenotype. It was observed that blastoconidia of clinical strain exhibited either polarly or randomly located budding. Contrariwise, morphotypes of mutants showed either multiple polar budding or a centrally located single bud scar (mother-daughter cell junction distinguishing tube-like yeast/ pseudohyphal growth (the length-to-width ratios larger than 1.5. In their planktonic form of growth, blastoconidia of clinical bloodstream isolate formed constitutively true hyphae under undiluted human serum inducing conditions. It was found that true hyphae are essential elements for developing structural integrity of conglomerate, as mutants displaying defects in their flocculation and conglomerate-forming abilities in serum. While filamentation is an important virulence trait in C. albicans the true hyphae are the morphologies which may be expected to play a role in bloodstream infections.

  14. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    Science.gov (United States)

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-11-16

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  15. Atomic force microscopy for university students: applications in biomaterials

    Science.gov (United States)

    Kontomaris, S. V.; Stylianou, A.

    2017-05-01

    Atomic force microscopy (AFM) is a powerful tool used in the investigation of the structural and mechanical properties of a wide range of materials including biomaterials. It provides the ability to acquire high resolution images of biomaterials at the nanoscale. It also provides information about the response of specific areas under controlled applied force, which leads to the mechanical characterization of the sample at the nanoscale. The wide range of information provided by AFM has established it as a powerful research tool. In this paper, we present a general overview of the basic operation and functions of AFM applications in biomaterials. The basic operation of AFM is explained in detail with a focus on the real interactions that take place at the nanoscale level during imaging. AFM’s ability to provide the mechanical characterization (force curves) of specific areas at the nanoscale is also explained. The basic models of applied mechanics that are used for processing the data obtained by the force curves are presented. The aim of this paper is to provide university students and young scientists in the fields of biophysics and nanotechnology with a better understanding of AFM.

  16. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    Science.gov (United States)

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  17. Studying the Adhesion Force and Glass Transition of Thin Polystyrene Films by Atomic Force Microscopy

    DEFF Research Database (Denmark)

    Kang, Hua; Qian, Xiaoqin; Guan, Li

    2018-01-01

    microscopy (AFM)-based forcedistance curve to study the relaxation dynamics and the film thickness dependence of glass transition temperature (T-g) for normal thin polystyrene (PS) films supported on silicon substrate. The adhesion force (F-ad) between AFM tip and normal thin PS film surfaces...

  18. Piezoelectric tuning fork probe for atomic force microscopy imaging and specific recognition force spectroscopy of an enzyme and its ligand.

    Science.gov (United States)

    Makky, Ali; Viel, Pascal; Chen, Shu-wen Wendy; Berthelot, Thomas; Pellequer, Jean-Luc; Polesel-Maris, Jérôme

    2013-11-01

    Piezoelectric quartz tuning fork has drawn the attention of many researchers for the development of new atomic force microscopy (AFM) self-sensing probes. However, only few works have been done for soft biological materials imaging in air or aqueous conditions. The aim of this work was to demonstrate the efficiency of the AFM tuning fork probe to perform high-resolution imaging of proteins and to study the specific interaction between a ligand and its receptor in aqueous media. Thus, a new kind of self-sensing AFM sensor was introduced to realize imaging and biochemical specific recognition spectroscopy of glucose oxidase enzyme using a new chemical functionalization procedure of the metallic tips based on the electrochemical reduction of diazonium salt. This scanning probe as well as the functionalization strategy proved to be efficient respectively for the topography and force spectroscopy of soft biological materials in buffer conditions. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Indirect modulation of nonmagnetic probes for force modulation atomic force microscopy.

    Science.gov (United States)

    Li, Jie-Ren; Garno, Jayne C

    2009-02-15

    Frequency-dependent changes for phase and amplitude images are demonstrated with test platforms of organosilane ring patterns, using force modulation atomic force microscopy (FM-AFM) with an alternate instrument configuration. The imaging setup using indirect magnetic modulation (IMM) is based on indirect oscillation of soft, nonmagnetic cantilevers, with spring constants coating is not required to drive the periodic oscillation of the tip. The instrument configuration for IMM may not be practical for intermittent imaging modes, which often work best with stiff cantilevers. However, indirect actuation provides an effective approach for imaging with low force setpoints and is well-suited for dynamic AFM modes using continuous contact imaging.

  20. Effects of nonlinear forces on dynamic mode atomic force microscopy and spectroscopy.

    Science.gov (United States)

    Das, Soma; Sreeram, P A; Raychaudhuri, A K

    2007-06-01

    In this paper, we describe the effects of nonlinear tip-sample forces on dynamic mode atomic force microscopy and spectroscopy. The jumps and hysteresis observed in the vibration amplitude (A) versus tip-sample distance (h) curves have been traced to bistability in the resonance curve. A numerical analysis of the basic dynamic equation was used to explain the hysteresis in the experimental curve. It has been found that the location of the hysteresis in the A-h curve depends on the frequency of the forced oscillation relative to the natural frequency of the cantilever.

  1. Electrostatic Force Microscopy of Self Assembled Peptide Structures

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Pantagos, Spyros P.

    2011-01-01

    In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures. In partic...... compared to the radius of the AFM tip used. Finally, an agreement between the detected signal and the structure of the hollow peptide tubes is demonstrated.......In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures....... In particular we use EFM to investigate the structures of diphenylalanine peptide tubes, particles, and CSGAITIG peptide particles placed on pre-fabricated SiO2 surfaces with a backgate. We show that the cavity in the peptide tubes could be to the presence of water residues. Additionally we show that self...

  2. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.

    Science.gov (United States)

    Kilpatrick, Jason I; Revenko, Irène; Rodriguez, Brian J

    2015-11-18

    The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparative study of clinical pulmonary surfactants using atomic force microscopy

    Science.gov (United States)

    Zhang, Hong; Fan, Qihui; Wang, Yi E.; Neal, Charles R.; Zuo, Yi Y.

    2016-01-01

    Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinical surfactants currently used throughout the world, i.e., Survanta, Curosurf, Infasurf and BLES. These modified-natural surfactants are further compared to dipalmitoyl phosphatidylcholine (DPPC), a synthetic model surfactant of DPPC:palmitoyl-oleoyl phosphatidylglycerol (POPG) (7:3), and endogenous bovine natural surfactant. Atomic force microscopy reveals significant differences in the lateral structure and molecular organization of these surfactant preparations. These differences are discussed in terms of DPPC and cholesterol contents. We conclude that all animal-derived clinical surfactants assume a similar structure of multilayers of fluid phospholipids closely attached to an interfacial monolayer enriched in DPPC, at physiologically relevant surface pressures. This study provides the first comprehensive survey of the lateral structure of clinical surfactants at various surface pressures. It may have clinical implications on future application and development of surfactant preparations. PMID:21439262

  4. Nanosecond switching in GeSe phase change memory films by atomic force microscopy

    Science.gov (United States)

    Bosse, James L.; Grishin, Ilya; Gyu Choi, Yong; Cheong, Byung-ki; Lee, Suyoun; Kolosov, Oleg V.; Huey, Bryan D.

    2014-02-01

    Nanosecond scale threshold switching is investigated with conducting atomic force microscopy (AFM) for an amorphous GeSe film. Switched bits exhibit 2-3 orders of magnitude variations in conductivity, as demonstrated in phase change based memory devices. Through the nm-scale AFM probe, this crystallization was achieved with pulse durations of as low as 15 ns, the fastest reported with scanning probe based methods. Conductance AFM imaging of the switched bits further reveals correlations between the switched volume, pulse amplitude, and pulse duration. The influence of film heterogeneities on switching is also directly detected, which is of tremendous importance for optimal device performance.

  5. Imaging stability in force-feedback high-speed atomic force microscopy.

    Science.gov (United States)

    Kim, Byung I; Boehm, Ryan D

    2013-02-01

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force-distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Resonant Scanning with Large Field of View Reduces Photobleaching and Enhances Fluorescence Yield in STED Microscopy.

    Science.gov (United States)

    Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico

    2015-10-01

    Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm(-2) depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy.

  7. Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy.

    Science.gov (United States)

    Welker, Joachim; Illek, Esther; Giessibl, Franz J

    2012-01-01

    In frequency-modulation atomic force microscopy the direct observable is the frequency shift of an oscillating cantilever in a force field. This frequency shift is not a direct measure of the actual force, and thus, to obtain the force, deconvolution methods are necessary. Two prominent methods proposed by Sader and Jarvis (Sader-Jarvis method) and Giessibl (matrix method) are investigated with respect to the deconvolution quality. Both methods show a nontrivial dependence of the deconvolution quality on the oscillation amplitude. The matrix method exhibits spikelike features originating from a numerical artifact. By interpolation of the data, the spikelike features can be circumvented. The Sader-Jarvis method has a continuous amplitude dependence showing two minima and one maximum, which is an inherent property of the deconvolution algorithm. The optimal deconvolution depends on the ratio of the amplitude and the characteristic decay length of the force for the Sader-Jarvis method. However, the matrix method generally provides the higher deconvolution quality.

  8. Liquid Atomic Force Microscopy: Solvation Forces, Molecular Order, and Squeeze-Out

    Science.gov (United States)

    O'Shea, Sean J.; Gosvami, Nitya N.; Lim, Leonard T. W.; Hofbauer, Wulf

    2010-08-01

    We review the use of atomic force microscopy (AFM) in liquids to measure oscillatory solvation forces. We find solvation layering can occur for all the liquids studied (linear and branched alkanes) but marked variations in the force and dissipation may arise dependent on: a) the temperature, b) the tip shape/radius of curvature, and c) the degree of molecular branching. Several findings (e.g., the strong temperature dependence in measured solvation forces, solvation oscillations using branched molecules) differ from those observed using the Surface Force Apparatus, because of the nanoscale area probed by AFM. Conduction AFM is used to explore how liquid is squeezed out of the tip-sample gap, and enables the change in contact area of the tip-sample junction to be monitored and compared to mechanical models. We find elastic models provide a good description of the deformation of ordered, solid-like solvation layers but not disordered, liquid-like layers.

  9. Artifact mitigation of ptychography integrated with on-the-fly scanning probe microscopy

    Science.gov (United States)

    Huang, Xiaojing; Yan, Hanfei; Ge, Mingyuan; Öztürk, Hande; Nazaretski, Evgeny; Robinson, Ian K.; Chu, Yong S.

    2017-07-01

    We report our experiences with conducting ptychography simultaneously with the X-ray fluorescence measurement using the on-the-fly mode for efficient multi-modality imaging. We demonstrate that the periodic artifact inherent to the raster scan pattern can be mitigated using a sufficiently fine scan step size to provide an overlap ratio of >70%. This allows us to obtain transmitted phase contrast images with enhanced spatial resolution from ptychography while maintaining the fluorescence imaging with continuous-motion scans on pixelated grids. This capability will greatly improve the competence and throughput of scanning probe X-ray microscopy.

  10. Scanning electron microscopy and transmission electron microscopy study of hot-deformed gamma-TiAl-based alloy microstructure.

    Science.gov (United States)

    Chrapoński, J; Rodak, K

    2006-09-01

    The aim of this work was to assess the changes in the microstructure of hot-deformed specimens made of alloys containing 46-50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 degrees C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.

  11. Spontaneous Polarization in Bio-organic Materials Studied by Scanning Pyroelectric Microscopy (SPEM) and Second Harmonic Generation Microscopy (SHGM)

    Science.gov (United States)

    Putzeys, T.; Wübbenhorst, M.; van der Veen, M. A.

    2015-06-01

    Bio-organic materials such as bones, teeth, and tendon generally show nonlinear optical (Masters and So in Handbook of Biomedical Nonlinear Optical Microscopy, 2008), pyro- and piezoelectric (Fukada and Yasuda in J Phys Soc Jpn 12:1158, 1957) properties, implying a permanent polarization, the presence of which can be rationalized by describing the growth of the sample and the creation of a polar axis according to Markov's theory of stochastic processes (Hulliger in Biophys J 84:3501, 2003; Batagiannis et al. in Curr Opin Solid State Mater Sci 17:107, 2010). Two proven, versatile techniques for probing spontaneous polarization distributions in solids are scanning pyroelectric microscopy (SPEM) and second harmonic generation microscopy (SHGM). The combination of pyroelectric scanning with SHG-microscopy in a single experimental setup leading to complementary pyroelectric and nonlinear optical data is demonstrated, providing us with a more complete image of the polarization in organic materials. Crystals consisting of a known polar and hyperpolarizable material, CNS (4-chloro-4-nitrostilbene) are used as a reference sample, to verify the functionality of the setup, with both SPEM and SHGM images revealing the same polarization domain information. In contrast, feline and human nails exhibit a pyroelectric response, but a second harmonic response is absent for both keratin containing materials, implying that there may be symmetry-allowed SHG, but with very inefficient second harmonophores. This new approach to polarity detection provides additional information on the polar and hyperpolar nature in a variety of (bio) materials.

  12. Role of lateral forces on atom manipulation process on Si(111)-(7 ×7 ) surface in dynamic force microscopy

    Science.gov (United States)

    Yurtsever, Ayhan; Abe, Masayuki; Morita, Seizo; Sugimoto, Yoshiaki

    2017-10-01

    We investigated the role of lateral force components on the lateral manipulation of intrinsic Si adatoms toward a vacancy site on a Si(111)-(7 ×7 ) surface using noncontact atomic force microscopy at room temperature. Lateral atom manipulation was accomplished via constant-height scans using a set of tips with varying chemical reactivities. We determined the vertical and lateral force as well as the interaction energy profiles associated with the lateral manipulation of a Si adatom on a Si(111)-(7 ×7 ) surface. Our results demonstrate that lateral forces do not play a decisive role in the manipulation process while the vertical force component is key for the manipulation process, and the ability to manipulate the Si adatom depends primarily on the chemical nature of the tip apex. Our results further reveal that the tips that exhibit high chemical reactivity with Si adatoms have a sharper interaction energy profile above Si adatoms than tips with less chemical reactivity, indicating the stronger atom-trapping ability of the chemically reactive tips. This characteristic property gives tips the ability to create localized reductions in the energy barrier required for adatom movement, thereby enabling thermally induced adatom hopping toward the tip. These findings can enhance our understanding of the underlying mechanisms involved in the lateral manipulation of intrinsic adatoms of semiconductor surfaces, as well as adsorbate atoms/molecules forming covalent bonds with tip-surface systems, i.e., chemisorption systems.

  13. Atomic force microscopy as an advanced tool in neuroscience

    Science.gov (United States)

    Jembrek, Maja Jazvinšćak; Šimić, Goran; Hof, Patrick R.; Šegota, Suzana

    2015-01-01

    This review highlights relevant issues about applications and improvements of atomic force microscopy (AFM) toward a better understanding of neurodegenerative changes at the molecular level with the hope of contributing to the development of effective therapeutic strategies for neurodegenerative illnesses. The basic principles of AFM are briefly discussed in terms of evaluation of experimental data, including the newest PeakForce Quantitative Nanomechanical Mapping (QNM) and the evaluation of Young’s modulus as the crucial elasticity parameter. AFM topography, revealed in imaging mode, can be used to monitor changes in live neurons over time, representing a valuable tool for high-resolution detection and monitoring of neuronal morphology. The mechanical properties of living cells can be quantified by force spectroscopy as well as by new AFM. A variety of applications are described, and their relevance for specific research areas discussed. In addition, imaging as well as non-imaging modes can provide specific information, not only about the structural and mechanical properties of neuronal membranes, but also on the cytoplasm, cell nucleus, and particularly cytoskeletal components. Moreover, new AFM is able to provide detailed insight into physical structure and biochemical interactions in both physiological and pathophysiological conditions. PMID:28123795

  14. Atomic force microscopy-based shape analysis of heart mitochondria.

    Science.gov (United States)

    Lee, Gi-Ja; Park, Hun-Kuk

    2015-01-01

    Atomic force microscopy (AFM) has become an important medical and biological tool for the noninvasive imaging of cells and biomaterials in medical, biological, and biophysical research. The major advantages of AFM over conventional optical and electron microscopes for bio-imaging include the facts that no special coating is required and that imaging can be done in all environments-air, vacuum, or aqueous conditions. In addition, it can also precisely determine pico-nano Newton force interactions between the probe tip and the sample surface from force-distance curve measurements.It is widely known that mitochondrial swelling is one of the most important indicators of the opening of the mitochondrial permeability transition (MPT) pore. As mitochondrial swelling is an ultrastructural change, quantitative analysis of this change requires high-resolution microscopic methods such as AFM. Here, we describe the use of AFM-based shape analysis for the characterization of nanostructural changes in heart mitochondria resulting from myocardial ischemia-reperfusion injury.

  15. Near-field scanning microwave microscopy of few-layer graphene.

    Energy Technology Data Exchange (ETDEWEB)

    Kalugin, Nikolai G. (New Mexico Tech, Socorro. NM); Gonzales, Edward; Kalichava, Irakli (New Mexico Tech, Socorro. NM); Gin, Aaron V.; Wickey, Lee (New Mexico Tech, Socorro. NM); Del Barga, Christopher (New Mexico Tech, Socorro. NM); Talanov, Vladimir V. (Semilab USA, Billerica, MA); Shaner, Eric Arthur

    2010-08-01

    Near-field microwave microscopy can be used as an alternative to atomic-force microscopy or Raman microscopy in determination of graphene thickness. We evaluated the values of AC impedance for few layer graphene. The impedance of mono and few-layer graphene at 4GHz was found predominantly active. Near-field microwave microscopy allows simultaneous imaging of location, geometry, thickness, and distribution of electrical properties of graphene without device fabrication. Our results may be useful for design of future graphene-based microwave devices.

  16. Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues.

    Science.gov (United States)

    Nakajima, Masato; Mizutani, Yusuke; Iwata, Futoshi; Ushiki, Tatsuo

    2018-01-01

    Scanning ion conductance microscopy (SICM), which belongs to the family of scanning probe microscopy, regulates the tip-sample distance by monitoring the ion current through the use of an electrolyte-filled nanopipette as the probing tip. Thus, SICM enables "contact-free" imaging of cell surface topography in liquid conditions. In this paper, we applied hopping mode SICM for obtaining topographical images of convoluted tissue samples such as trachea and kidney in phosphate buffered saline. Some of the SICM images were compared with the images obtained by scanning electron microscopy (SEM) after drying the same samples. We showed that the imaging quality of hopping mode SICM was excellent enough for investigating the three-dimensional surface structure of the soft tissue samples. Thus, SICM is expected to be used for imaging a wide variety of cells and tissues - either fixed or alive- at high resolution under physiologically relevant liquid conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    Science.gov (United States)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  18. Identifying dynamic membrane structures with atomic-force microscopy and confocal imaging.

    Science.gov (United States)

    Timmel, Tobias; Schuelke, Markus; Spuler, Simone

    2014-04-01

    Combining the biological specificity of fluorescence microscopy with topographical features revealed by atomic force microscopy (AFM) provides new insights into cell biology. However, the lack of systematic alignment capabilities especially in scanning-tip AFM has limited the combined application approach as AFM drift leads to increasing image mismatch over time. We present an alignment correction method using the cantilever tip as a reference landmark. Since the precise tip position is known in both the fluorescence and AFM images, exact re-alignment becomes possible. We used beads to demonstrate the validity of the method in a complex artificial sample. We then extended this method to biological samples to depict membrane structures in fixed and living human fibroblasts. We were able to map nanoscale membrane structures, such as clathrin-coated pits, to their respective fluorescent spots. Reliable alignment between fluorescence signals and topographic structures opens possibilities to assess key biological processes at the cell surface such as endocytosis and exocytosis.

  19. Application of atomic force microscopy on rapid determination of microorganisms for food safety.

    Science.gov (United States)

    Yang, H; Wang, Y

    2008-10-01

    Rapid detection and quantification of microorganisms is important for food quality, safety, and security. In this field, nanotechnology appears to be promising in its ability to characterize an individual microorganism and detect heterogeneous distribution of microbes in food samples. In this study, atomic force microscopy (AFM), a nanotechnology tool, was used to investigate Escherichia coli (E. coli) qualitatively and quantitatively. E. coli strains B and K12 were used as surrogates to represent pathogenic strains, such as E. coli O157: H7. The results from AFM were compared with those from scanning/transmission electron microscopy (SEM/TEM). The qualitative determination was obtained using morphology and characteristic parameters from AFM images, and the quantitative determination was obtained by calculating the microorganisms in AFM images. The results show that AFM provides a new approach for rapid determination of microorganisms for food safety.

  20. Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jesse, S; Guo, S; Kumar, A; Kalinin, S V [The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Rodriguez, B J [Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Proksch, R [Asylum Research, Santa Barbara, CA 93117 (United States)

    2010-10-08

    Probing the functionality of materials locally by means of scanning probe microscopy (SPM) requires a reliable framework for identifying the target signal and separating it from the effects of surface morphology and instrument non-idealities, e.g. instrumental and topographical cross-talk. Here we develop a linear resolution theory framework in order to describe the cross-talk effects, and apply it for elucidation of frequency-dependent cross-talk mechanisms in piezoresponse force microscopy. The use of a band excitation method allows electromechanical/electrical and mechanical/topographic signals to be unambiguously separated. The applicability of a functional fit approach and multivariate statistical analysis methods for identification of data in band excitation SPM is explored.

  1. Primate lens capsule elasticity assessed using Atomic Force Microscopy

    Science.gov (United States)

    Ziebarth, Noël M.; Arrieta, Esdras; Feuer, William J.; Moy, Vincent T.; Manns, Fabrice; Parel, Jean-Marie

    2011-01-01

    The purpose of this project is to measure the elasticity of the human and non-human primate lens capsule at the microscopic scale using Atomic Force Microscopy (AFM). Elasticity measurements were performed using AFM on the excised anterior lens capsule from 9 cynomolgus monkey (5.9–8.0 years), 8 hamadryas baboon (2.8–10.1 years), and 18 human lenses (33–79 years). Anterior capsule specimens were obtained by performing a 5mm continuous curvilinear capsulorhexis and collecting the resulting disk of capsular tissue. To remove the lens epithelial cells the specimen was soaked in 0.1% trypsin and 0.02% EDTA for five minutes, washed, and placed on a Petri dish and immersed in DMEM. Elasticity measurements of the capsule were performed with a laboratory-built AFM system custom designed for force measurements of ophthalmic tissues. The capsular specimens were probed with an AFM cantilever tip to produce force-indentation curves for each specimen. Young’s modulus was calculated from the force-indentation curves using the model of Sneddon for a conical indenter. Young’s modulus of elasticity was 20.1–131kPa for the human lens capsule, 9.19–117kPa for the cynomolgus lens capsule, and 13.1–62.4kPa for the baboon lens capsule. Young’s modulus increased significantly with age in humans (p=0.03). The age range of the monkey and baboon samples was not sufficient to justify an analysis of age dependence. The capsule elasticity of young humans (<45 years) was not statistically different from that of the monkey and baboon. In humans, there is an increase in lens capsule stiffness at the microscale that could be responsible for an increase in lens capsule bulk stiffness. PMID:21420953

  2. Studying Dynamic Processes of Nano-sized Objects in Liquid using Scanning Transmission Electron Microscopy

    OpenAIRE

    Hermannsd?rfer, Justus; de Jonge, Niels

    2017-01-01

    Samples fully embedded in liquid can be studied at a nanoscale spatial resolution with Scanning Transmission Electron Microscopy (STEM) using a microfluidic chamber assembled in the specimen holder for Transmission Electron Microscopy (TEM) and STEM. The microfluidic system consists of two silicon microchips supporting thin Silicon Nitride (SiN) membrane windows. This article describes the basic steps of sample loading and data acquisition. Most important of all is to ensure that the liquid c...

  3. Data analysis using the Internet: the World Wide Web scanning probe microscopy data analysis system.

    Science.gov (United States)

    Williams, P M; Davies, M C; Roberts, C J; Tendler, S J

    1997-10-01

    The first interactive world-wide web-based image analysis system is presented (http://pharm6.pharm.nottingham.ac.uk/processing/main. html). The system, currently tailored to scanning probe microscopy image data, has been developed to permit the use of software algorithms developed within our laboratory by researchers throughout the world. The implementation and functionality of the scanning probe microscopy server is described. Feedback from users of the facility has demonstrated its value within the research community, and highlighted key operational issues which are to be addressed. A future role of Internet-based data processing software is also discussed.

  4. Scanning tunneling microscopy I general principles and applications to clean and adsorbate-covered surfaces

    CERN Document Server

    Wiesendanger, Roland

    1992-01-01

    Scanning Tunneling Microscopy I provides a unique introduction to a novel and fascinating technique that produces beautiful images of nature on an atomic scale. It is the first of three volumes that together offer a comprehensive treatment of scanning tunneling microscopy, its diverse applications, and its theoretical treatment. In this volume the reader will find a detailed description of the technique itself and of its applications to metals, semiconductors, layered materials, adsorbed molecules and superconductors. In addition to the many representative results reviewed, extensive references to original work will help to make accessible the vast body of knowledge already accumulated in this field.

  5. Microbe repelling coated stainless steel analysed by field emission scanning electron microscopy and physicochemical methods.

    Science.gov (United States)

    Raulio, Mari; Järn, Mikael; Ahola, Juhana; Peltonen, Jouko; Rosenholm, Jarl B; Tervakangas, Sanna; Kolehmainen, Jukka; Ruokolainen, Timo; Narko, Pekka; Salkinoja-Salonen, Mirja

    2008-07-01

    Coating of stainless steel with diamond-like carbon or certain fluoropolymers reduced or almost eliminated adhesion and biofilm growth of Staphylococcus epidermidis, Deinococcus geothermalis, Meiothermus silvanus and Pseudoxanthomonas taiwanensis. These species are known to be pertinent biofilm formers on medical implants or in the wet-end of paper machines. Field emission scanning electron microscopic analysis showed that Staph. epidermidis, D. geothermalis and M. silvanus grew on stainless steel using thread-like organelles for adhesion and biofilm formation. The adhesion threads were fewer in number on fluoropolymer-coated steel than on plain steel and absent when the same strains were grown in liquid culture. Psx. taiwanensis adhered to the same surfaces by a mechanism involving cell ghosts on which the biofilm of live cells grew. Hydrophilic (diamond-like carbon) or hydrophobic (fluoropolymer) coatings reduced the adherence of the four test bacteria on different steels. Selected topographic parameters, including root-mean-square roughness (S (q)), skewness (S (sk)) and surface kurtosis (S (ku)), were analysed by atomic force microscopy. The surfaces that best repelled microbial adhesion of the tested bacteria had higher skewness values than those only slightly repelling. Water contact angle, measured (theta (m)) or roughness corrected (theta (y)), affected the tendency for biofilm growth in a different manner for the four test bacteria.

  6. Micromorphology of cactus-pear (Opuntia ficus-indica (L.) Mill) cladodes based on scanning microscopies.

    Science.gov (United States)

    Ben Salem-Fnayou, Asma; Zemni, Hassène; Nefzaoui, Ali; Ghorbel, Abdelwahed

    2014-01-01

    Cladode ultrastructural features of two prickly and two spineless Opuntia ficus-indica cultivars were examined using environmental scanning electron and atomic force microscopies. Observations focused on cladode as well as spine and glochid surface micromorphologies. Prickly cultivars were characterized by abundant cracked epicuticular wax deposits covering the cladode surface, with an amorphous structure as observed by AFM, while less abundant waxy plates were observed by ESEM on spineless cultivar cladodes. Further AFM observations allowed a rough granular and crystalloid epicuticular wax structure to be distinguished in spineless cultivars. Regarding spine micromorphology, prickly cultivars had strong persistent spines, observed by ESEM as a compact arrangement of oblong epidermal cells with a rough granular structure. However, deciduous spines in spineless cultivars had a broken transversely fissured epidermis covering a parallel arrangement of fibres. Through AFM, the deciduous spine surface presented an irregular hilly and smooth microrelief while persistent spines exhibited rough helical filamentous prints. ESEM and AFM studies of cladode surfaces from prickly and spineless cactus pear cultivars revealed valuable micro-morphological details that ought to be extended to a large number of O. ficus-indica cultivars. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling

    Directory of Open Access Journals (Sweden)

    Svetlana Kilina

    2011-01-01

    Full Text Available We present a combined approach that relies on computational simulations and scanning tunneling microscopy (STM measurements to reveal morphological properties and stability criteria of carbon nanotube-DNA (CNT-DNA constructs. Application of STM allows direct observation of very stable CNT-DNA hybrid structures with the well-defined DNA wrapping angle of 63.4° and a coiling period of 3.3 nm. Using force field simulations, we determine how the DNA-CNT binding energy depends on the sequence and binding geometry of a single strand DNA. This dependence allows us to quantitatively characterize the stability of a hybrid structure with an optimal π-stacking between DNA nucleotides and the tube surface and better interpret STM data. Our simulations clearly demonstrate the existence of a very stable DNA binding geometry for (6,5 CNT as evidenced by the presence of a well-defined minimum in the binding energy as a function of an angle between DNA strand and the nanotube chiral vector. This novel approach demonstrates the feasibility of CNT-DNA geometry studies with subnanometer resolution and paves the way towards complete characterization of the structural and electronic properties of drug-delivering systems based on DNA-CNT hybrids as a function of DNA sequence and a nanotube chirality.

  8. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    Science.gov (United States)

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

  9. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

    Directory of Open Access Journals (Sweden)

    Philipp Leinen

    2015-11-01

    Full Text Available Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926–1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf of the non-contact atomic force microscope (NC-AFM tuning fork sensor as well as the magnitude of the electric current (I flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111 surface.

  10. Stochastic Micro-Pattern for Automated Correlative Fluorescence - Scanning Electron Microscopy

    Science.gov (United States)

    Begemann, Isabell; Viplav, Abhiyan; Rasch, Christiane; Galic, Milos

    2015-01-01

    Studies of cellular surface features gain from correlative approaches, where live cell information acquired by fluorescence light microscopy is complemented by ultrastructural information from scanning electron micrographs. Current approaches to spatially align fluorescence images with scanning electron micrographs are technically challenging and often cost or time-intensive. Relying exclusively on open-source software and equipment available in a standard lab, we have developed a method for rapid, software-assisted alignment of fluorescence images with the corresponding scanning electron micrographs via a stochastic gold micro-pattern. Here, we provide detailed instructions for micro-pattern production and image processing, troubleshooting for critical intermediate steps, and examples of membrane ultra-structures aligned with the fluorescence signal of proteins enriched at such sites. Together, the presented method for correlative fluorescence – scanning electron microscopy is versatile, robust and easily integrated into existing workflows, permitting image alignment with accuracy comparable to existing approaches with negligible investment of time or capital. PMID:26647824

  11. Unlocking higher harmonics in atomic force microscopy with gentle interactions

    Directory of Open Access Journals (Sweden)

    Sergio Santos

    2014-03-01

    Full Text Available In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity.

  12. Factor Va alternative conformation reconstruction using atomic force microscopy.

    Science.gov (United States)

    Chaves, R C; Dahmane, S; Odorico, M; Nicolaes, G A F; Pellequer, J-L

    2014-12-01

    Protein conformational variability (or dynamics) for large macromolecules and its implication for their biological function attracts more and more attention. Collective motions of domains increase the ability of a protein to bind to partner molecules. Using atomic force microscopy (AFM) topographic images, it is possible to take snapshots of large multi-component macromolecules at the single molecule level and to reconstruct complete molecular conformations. Here, we report the application of a reconstruction protocol, named AFM-assembly, to characterise the conformational variability of the two C domains of human coagulation factor Va (FVa). Using AFM topographic surfaces obtained in liquid environment, it is shown that the angle between C1 and C2 domains of FVa can vary between 40° and 166°. Such dynamical variation in C1 and C2 domain arrangement may have important implications regarding the binding of FVa to phospholipid membranes.

  13. Novel insights into cardiomyocytes provided by atomic force microscopy.

    Science.gov (United States)

    Borin, Daniele; Pecorari, Ilaria; Pena, Brisa; Sbaizero, Orfeo

    2017-07-04

    Cardiovascular diseases (CVDs) are the number one cause of death globally, therefore interest in studying aetiology, hallmarks, progress and therapies for these disorders is constantly growing. Over the last decades, the introduction and development of atomic force microscopy (AFM) technique allowed the study of biological samples at the micro- and nanoscopic level, hence revealing noteworthy details and paving the way for investigations on physiological and pathological conditions at cellular scale. The present work is aimed to collect and review the literature on cardiomyocytes (CMs) studied by AFM, in order to emphasise the numerous potentialities of this approach and provide a platform for researchers in the field of cardiovascular diseases. Original data are also presented to highlight the application of AFM to characterise the viscoelastic properties of CMs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Atomic force microscopy spring constant determination in viscous liquids.

    Science.gov (United States)

    Pirzer, Tobias; Hugel, Thorsten

    2009-03-01

    The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this "thermal noise method" is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities.

  15. Destabilization induced by electropermeabilization analyzed by atomic force microscopy.

    Science.gov (United States)

    Chopinet, Louise; Roduit, Charles; Rols, Marie-Pierre; Dague, Etienne

    2013-09-01

    Electropermeabilization is a physical method that uses electric field pulses to deliver molecules into cells and tissues. Despite its increasing interest in clinics, little is known about plasma membrane destabilization process occurring during electropermeabilization. In this work, we took advantage of atomic force microscopy to directly visualize the consequences of electropermeabilization in terms of membrane reorganization and to locally measure the membrane elasticity. We visualized transient rippling of membrane surface and measured a decrease in membrane elasticity by 40%. Our results obtained both on fixed and living CHO cells give evidence of an inner effect affecting the entire cell surface that may be related to cytoskeleton destabilization. Thus, AFM appears as a useful tool to investigate basic process of electroporation on living cells in absence of any staining or cell preparation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Atomic force microscopy studies on cellular elastic and viscoelastic properties.

    Science.gov (United States)

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-06-29

    In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.

  17. Atomic force microscopy and spectroscopy of native membrane proteins.

    Science.gov (United States)

    Müller, Daniel J; Engel, Andreas

    2007-01-01

    Membrane proteins comprise 30% of the proteome of higher organisms. They mediate energy conversion, signal transduction, solute transport and secretion. Their native environment is a bilayer in a physiological buffer solution, hence their structure and function are preferably assessed in this environment. The surface structure of single membrane proteins can be determined in buffer solutions by atomic force microscopy (AFM) at a lateral resolution of less than 1 nm and a vertical resolution of 0.1-0.2 nm. Moreover, single proteins can be directly addressed, stuck to the AFM stylus and subsequently unfolded, revealing the molecular interactions of the protein studied. The examples discussed here illustrate the power of AFM in the structural analysis of membrane proteins in a native environment.

  18. Thermoelectric measurements using different tips in atomic force microscopy

    Science.gov (United States)

    Kushvaha, S. S.; Hofbauer, W.; Loke, Y. C.; Singh, Samarendra P.; O'Shea, S. J.

    2011-04-01

    We use conducting atomic force microscopy (AFM) in ultra high vacuum to measure the thermoelectric power of Au, Pt, and 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) films. Tips coated with thick (1200 nm) Pt films or highly doped diamond film give reproducible data. The thermoelectric power of metal junctions formed with diamond tips is high but dominated by the diamond material thus making diamond tips of limited applicability in thermovoltage AFM. Pt coated tips on Au or Pt films gives small thermovoltage signal, making quantitative analysis of the thermopower on metal sample problematic. The thermovoltage AFM technique appears best suited to study organic thin films and the thermoelectric power of 1.5 nm and 2 nm thick PTCDA deposited on Au measured with Pt tips is -342 and -372 μV/K, respectively. The negative sign indicates that the lowest unoccupied molecular orbital level dominates electrical transport.

  19. Shear force microscopy using piezoresistive cantilevers in surface metrology

    Science.gov (United States)

    Gotszalk, Teodor; Kopiec, Daniel; Sierakowski, Andrzej; Janus, Paweł; Grabiec, Piotr; Rangelow, Ivo W.

    2014-09-01

    In this article we describe application of piezoresistive cantilevers in surface investigations carried out with the use of shear force microscopy (ShFM). The novel piezoresistive cantilevers integrate a Wheatstone piezoresistive bridge was used to detect the cantilever deflection, thermal deflection detector and planar tip protruding out of the spring beam. Because the planar tip deflection can be detected and controlled electronically the described technology is very flexible and can be applied in many surface investigations. In this article we will present operation theory of the described solution, experimental setup, methods for calibration of the tip deflection detection and actuation The analysis will be illustrated with example results of topography measurements performed using the described technology.

  20. Atomic force microscopy with sub-picoNewton force stability for biological applications

    Science.gov (United States)

    Sullan, Ruby May A.; Churnside, Allison B.; Nguyen, Duc M.; Bull, Matthew S.; Perkins, Thomas T.

    2013-01-01

    Atomic force microscopy (AFM) is widely used in the biological sciences. Despite 25 years of technical developments, two popular modes of bioAFM, imaging and single molecule force spectroscopy, remain hindered by relatively poor force precision and stability. Recently, we achieved both sub-pN force precision and stability under biologically useful conditions (in liquid at room temperature). Importantly, this sub-pN level of performance is routinely accessible using a commercial cantilever on a commercial instrument. The two critical results are that (i) force precision and stability were limited by the gold coating on the cantilevers, and (ii) smaller yet stiffer cantilevers did not lead to better force precision on time scales longer than 25 ms. These new findings complement our previous work that addressed tip-sample stability. In this review, we detail the methods needed to achieve this sub-pN force stability and demonstrate improvements in force spectroscopy and imaging when using uncoated cantilevers. With this improved cantilever performance, the widespread use of nonspecific biomolecular attachments becomes a limiting factor in high-precision studies. Thus, we conclude by briefly reviewing site-specific covalent-immobilization protocols for linking a biomolecule to the substrate and to the AFM tip. PMID:23562681

  1. Atomic force microscopy with sub-picoNewton force stability for biological applications.

    Science.gov (United States)

    Sullan, Ruby May A; Churnside, Allison B; Nguyen, Duc M; Bull, Matthew S; Perkins, Thomas T

    2013-04-01

    Atomic force microscopy (AFM) is widely used in the biological sciences. Despite 25 years of technical developments, two popular modes of bioAFM, imaging and single molecule force spectroscopy, remain hindered by relatively poor force precision and stability. Recently, we achieved both sub-pN force precision and stability under biologically useful conditions (in liquid at room temperature). Importantly, this sub-pN level of performance is routinely accessible using a commercial cantilever on a commercial instrument. The two critical results are that (i) force precision and stability were limited by the gold coating on the cantilevers, and (ii) smaller yet stiffer cantilevers did not lead to better force precision on time scales longer than 25 ms. These new findings complement our previous work that addressed tip-sample stability. In this review, we detail the methods needed to achieve this sub-pN force stability and demonstrate improvements in force spectroscopy and imaging when using uncoated cantilevers. With this improved cantilever performance, the widespread use of nonspecific biomolecular attachments becomes a limiting factor in high-precision studies. Thus, we conclude by briefly reviewing site-specific covalent-immobilization protocols for linking a biomolecule to the substrate and to the AFM tip. Published by Elsevier Inc.

  2. Molecular dynamics and forces of a motile cell simultaneously visualized by TIRF and force microscopies.

    Science.gov (United States)

    Iwadate, Yoshiaki; Yumura, Shigehiko

    2008-05-01

    Cells must exert traction forces onto the substratum for continuous migration. Molecular dynamics such as actin polymerization at the front of the cell and myosin II accumulation at the rear should play important roles in the exertion of forces required for migration. Therefore, it is important to reveal the relationships between the traction forces and molecular dynamics. Traction forces can be calculated from the deformation of the elastic substratum under a migrating cell. A transparent and colorless elastic substratum with a high refractive index (1.40) and a low Young's modulus (1.0 kPa) were made from a pair of platinum-catalyzed silicones. We used this substratum to develop a new method for simultaneous recording of molecular dynamics and traction forces under a migrating cell in which total internal refractive fluorescence (TIRF) and force microscopies were combined. This new method allows the detection of the spatiotemporal distribution of traction forces produced by individual filopodia in migrating Dictyostelium cells, as well as simultaneous visualization of these traction forces and the dynamics of filamentous myosin II.

  3. Carbon Nanotube Tip Probes: Stability and Lateral Resolution in Scanning Probe Microscopy and Application to Surface Science to Semiconductors

    Science.gov (United States)

    Nguyen, Cattien V.; Chao, Kuo-Jen; Stevens, Ramsey M. D.; Delzeit, Lance; Cassell, Alan; Han, Jie; Meyyappan, M.; Arnold, James (Technical Monitor)

    2001-01-01

    In this paper we present results on the stability and lateral resolution capability of carbon nanotube (CNT) scanning probes as applied to atomic force microscopy (AFM). Surface topography images of ultra-thin films (2-5 nm thickness) obtained with AFM are used to illustrate the lateral resolution capability of single-walled carbon nanotube probes. Images of metal films prepared by ion beam sputtering exhibit grain sizes ranging from greater than 10 nm to as small as approximately 2 nm for gold and iridium respectively. In addition, imaging stability and lifetime of multi-walled carbon nanotube scanning probes are studied on a relatively hard surface of silicon nitride (Si3N4). AFM images Of Si3N4 surface collected after more than 15 hrs of continuous scanning show no detectable degradation in lateral resolution. These results indicate the general feasibility of CNT tips and scanning probe microscopy for examining nanometer-scale surface features of deposited metals as well as non-conductive thin films. AFM coupled with CNT tips offers a simple and nondestructive technique for probing a variety of surfaces, and has immense potential as a surface characterization tool in integrated circuit manufacturing.

  4. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers

    Science.gov (United States)

    Unsay, Joseph D.; Cosentino, Katia; García-Sáez, Ana J.

    2015-01-01

    Atomic force microscopy (AFM) is a versatile, high-resolution imaging technique that allows visualization of biological membranes. It has sufficient magnification to examine membrane substructures and even individual molecules. AFM can act as a force probe to measure interactions and mechanical properties of membranes. Supported lipid bilayers are conventionally used as membrane models in AFM studies. In this protocol, we demonstrate how to prepare supported bilayers and characterize their structure and mechanical properties using AFM. These include bilayer thickness and breakthrough force. The information provided by AFM imaging and force spectroscopy help define mechanical and chemical properties of membranes. These properties play an important role in cellular processes such as maintaining cell hemostasis from environmental stress, bringing membrane proteins together, and stabilizing protein complexes. PMID:26273958

  5. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    Science.gov (United States)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  6. Artifact characterization and reduction in scanning X-ray Zernike phase contrast microscopy.

    Science.gov (United States)

    Vartiainen, Ismo; Holzner, Christian; Mohacsi, Istvan; Karvinen, Petri; Diaz, Ana; Pigino, Gaia; David, Christian

    2015-05-18

    Zernike phase contrast microscopy is a well-established method for imaging specimens with low absorption contrast. It has been successfully implemented in full-field microscopy using visible light and X-rays. In microscopy Cowley's reciprocity principle connects scanning and full-field imaging. Even though the reciprocity in Zernike phase contrast has been discussed by several authors over the past thirty years, only recently it was experimentally verified using scanning X-ray microscopy. In this paper, we investigate the image and contrast formation in scanning Zernike phase contrast microscopy with a particular and detailed focus on the origin of imaging artifacts that are typically associated with Zernike phase contrast. We demonstrate experimentally with X-rays the effect of the phase mask design on the contrast and halo artifacts and present an optimized design of the phase mask with respect to photon efficiency and artifact reduction. Similarly, due to the principle of reciprocity the observations and conclusions of this work have direct applicability to Zernike phase contrast in full-field microscopy as well.

  7. Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy

    Science.gov (United States)

    Gillis, Annika; Dupres, Vincent; Delestrait, Guillaume; Mahillon, Jacques; Dufrêne, Yves F.

    2012-02-01

    Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in cell surface appendages.Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in

  8. Atomic force microscopy of red-light photoreceptors using peakforce quantitative nanomechanical property mapping.

    Science.gov (United States)

    Kroeger, Marie E; Sorenson, Blaire A; Thomas, J Santoro; Stojković, Emina A; Tsonchev, Stefan; Nicholson, Kenneth T

    2014-10-24

    Atomic force microscopy (AFM) uses a pyramidal tip attached to a cantilever to probe the force response of a surface. The deflections of the tip can be measured to ~10 pN by a laser and sectored detector, which can be converted to image topography. Amplitude modulation or "tapping mode" AFM involves the probe making intermittent contact with the surface while oscillating at its resonant frequency to produce an image. Used in conjunction with a fluid cell, tapping-mode AFM enables the imaging of biological macromolecules such as proteins in physiologically relevant conditions. Tapping-mode AFM requires manual tuning of the probe and frequent adjustments of a multitude of scanning parameters which can be challenging for inexperienced users. To obtain high-quality images, these adjustments are the most time consuming. PeakForce Quantitative Nanomechanical Property Mapping (PF-QNM) produces an image by measuring a force response curve for every point of contact with the sample. With ScanAsyst software, PF-QNM can be automated. This software adjusts the set-point, drive frequency, scan rate, gains, and other important scanning parameters automatically for a given sample. Not only does this process protect both fragile probes and samples, it significantly reduces the time required to obtain high resolution images. PF-QNM is compatible for AFM imaging in fluid; therefore, it has extensive application for imaging biologically relevant materials. The method presented in this paper describes the application of PF-QNM to obtain images of a bacterial red-light photoreceptor, RpBphP3 (P3), from photosynthetic R. palustris in its light-adapted state. Using this method, individual protein dimers of P3 and aggregates of dimers have been observed on a mica surface in the presence of an imaging buffer. With appropriate adjustments to surface and/or solution concentration, this method may be generally applied to other biologically relevant macromolecules and soft materials.

  9. Dynamics of podosome stiffness revealed by atomic force microscopy

    Science.gov (United States)

    Labernadie, Anna; Thibault, Christophe; Vieu, Christophe; Maridonneau-Parini, Isabelle; Charrière, Guillaume M.

    2010-01-01

    Podosomes are unique cellular entities specifically found in macrophages and involved in cell–matrix interactions, matrix degradation, and 3D migration. They correspond to a core of F-actin surrounded at its base by matrix receptors. To investigate the structure/function relationships of podosomes, soft lithography, atomic force microscopy (AFM), and correlative fluorescence microscopy were used to characterize podosome physical properties in macrophages differentiated from human blood monocytes. Podosome formation was restricted to delineated areas with micropatterned fibrinogen to facilitate AFM analyses. Podosome height and stiffness were measured with great accuracy in living macrophages (578 ± 209 nm and 43.8 ± 9.3 kPa) and these physical properties were independent of the nature of the underlying matrix. In addition, time-lapse AFM revealed that podosomes harbor two types of overlapping periodic stiffness variations throughout their lifespan, which depend on F-actin and myosin II activity. This report shows that podosome biophysical properties are amenable to AFM, allowing the study of podosomes in living macrophages at nanoscale resolution and the analysis of their intimate dynamics. Such an approach opens up perspectives to better understand the mechanical functionality of podosomes under physiological and pathological contexts. PMID:21081699

  10. Simultaneous Bright-Field and Dark-Field Scanning Transmission Electron Microscopy in Scanning Electron Microscopy: A New Approach for Analyzing Polymer System Morphology

    Science.gov (United States)

    Patel, Binay S.

    Scanning transmission electron microscopy in scanning electron microscopy (STEM-IN-SEM) is a convenient technique for polymer characterization. Utilizing the lower accelerating voltages, larger field of view and, exclusion of post-specimen projection lens in an SEM; STEM-IN-SEM has shown results comparable to transmission electron microscopy (TEM) observation of polymer morphology. Various specimen-holder geometries and detector arrangements have been used for bright field (BF) STEM-IN-SEM imaging. To further the characterization potential of STEM-IN-SEM a new specimen holder has been developed to facilitate simultaneous BF and dark field (DF) STEM-IN-SEM imaging. A new specimen holder and a new microscope configuration were designed for this new imaging technique. BF and DF signals were maximized for optimal STEM-IN-SEM imaging. BF signal intensities were found to be twice as large as DF signal intensities. BF and DF STEM-IN-SEM imaging spatial resolutions are limited to 1.8 nm and approximately 5 nm, respectively. Simultaneous BF & DF STEM-IN-SEM imaging is applicable to both industrial and academic research environments. Examples of commodity and engineering polymer morphology characterization are provided. Results are comparable to TEM observation and may serve as a suitable precursor to STEM characterization of polymer systems. Finally, future developments of various accessories for this technique are discussed.

  11. Surface properties and interaction forces of biopolymer-doped conductive polypyrrole surfaces by atomic force microscopy.

    Science.gov (United States)

    Pelto, Jani M; Haimi, Suvi P; Siljander, Aliisa S; Miettinen, Susanna S; Tappura, Kirsi M; Higgins, Michael J; Wallace, Gordon G

    2013-05-21

    Surface properties and electrical charges are critical factors elucidating cell interactions on biomaterial surfaces. The surface potential distribution and the nanoscopic and microscopic surface elasticity of organic polypyrrole-hyaluronic acid (PPy-HA) were studied by atomic force microscopy (AFM) in a fluid environment in order to explain the observed enhancement in the attachment of human adipose stem cells on positively charged PPy-HA films. The electrostatic force between the AFM tip and a charged PPy-HA surface, the tip-sample adhesion force, and elastic moduli were estimated from the AFM force curves, and the data were fitted to electrostatic double-layer and elastic contact models. The surface potential of the charged and dried PPy-HA films was assessed with Kelvin probe force microscopy (KPFM), and the KPFM data were correlated to the fluid AFM data. The surface charge distribution and elasticity were both found to correlate well with the nodular morphology of PPy-HA and to be sensitive to the electrochemical charging conditions. Furthermore, a significant change in the adhesion was detected when the surface was electrochemically charged positive. The results highlight the potential of positively charged PPy-HA as a coating material to enhance the stem cell response in tissue-engineering scaffolds.

  12. Interactive forces between lignin and cellulase as determined by atomic force microscopy

    Science.gov (United States)

    2014-01-01

    Background Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups involved in binding of cellulase to lignin. Results Trichoderma reesei, ATCC 26921, a commercial cellulase system, was immobilized onto silicon wafers and used as a substrate to measure forces involved in cellulase non-productive binding to lignin. Attraction forces between cellulase and lignin, and between cellulase and cellulose were compared using kraft lignin- and hydroxypropyl cellulose-coated tips with the immobilized cellulase substrate. The measured adhesion forces between kraft lignin and cellulase were on average 45% higher than forces between hydroxypropyl cellulose and cellulase. Specialized AFM tips with hydrophobic, -OH, and -COOH chemical characteristics were used with immobilized cellulase to represent hydrophobic, H-bonding, and charge-charge interactions, respectively. Forces between hydrophobic tips and cellulase were on average 43% and 13% higher than forces between cellulase with tips exhibiting OH and COOH groups, respectively. A strong attractive force during the AFM tip approach to the immobilized cellulase was observed with the hydrophobic tip. Conclusions This work shows that there is a greater overall attraction between kraft lignin and cellulase than between hydroxypropyl cellulose and cellulase, which may have implications during the enzymatic reaction process. Furthermore, hydrophobic interactions appear to be the dominating attraction force in cellulase binding to lignin, while a number of other interactions may establish the irreversible binding

  13. Interactive forces between lignin and cellulase as determined by atomic force microscopy.

    Science.gov (United States)

    Qin, Chengrong; Clarke, Kimberley; Li, Kecheng

    2014-01-01

    Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups involved in binding of cellulase to lignin. Trichoderma reesei, ATCC 26921, a commercial cellulase system, was immobilized onto silicon wafers and used as a substrate to measure forces involved in cellulase non-productive binding to lignin. Attraction forces between cellulase and lignin, and between cellulase and cellulose were compared using kraft lignin- and hydroxypropyl cellulose-coated tips with the immobilized cellulase substrate. The measured adhesion forces between kraft lignin and cellulase were on average 45% higher than forces between hydroxypropyl cellulose and cellulase. Specialized AFM tips with hydrophobic, -OH, and -COOH chemical characteristics were used with immobilized cellulase to represent hydrophobic, H-bonding, and charge-charge interactions, respectively. Forces between hydrophobic tips and cellulase were on average 43% and 13% higher than forces between cellulase with tips exhibiting OH and COOH groups, respectively. A strong attractive force during the AFM tip approach to the immobilized cellulase was observed with the hydrophobic tip. This work shows that there is a greater overall attraction between kraft lignin and cellulase than between hydroxypropyl cellulose and cellulase, which may have implications during the enzymatic reaction process. Furthermore, hydrophobic interactions appear to be the dominating attraction force in cellulase binding to lignin, while a number of other interactions may establish the irreversible binding.

  14. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy.

    Science.gov (United States)

    Jarvis, Samuel Paul

    2015-08-21

    A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions.

  15. Confocal laser scanning microscopy. Using new technology to answer old questions in forensic investigations.

    Science.gov (United States)

    Turillazzi, Emanuela; Karch, Steven B; Neri, Margherita; Pomara, Cristoforo; Riezzo, Irene; Fineschi, Vittorio

    2008-03-01

    Confocal laser scanning microscopy (CLSM) is a relatively new technique for microscopic imaging. It has found a wide field of application in the general sphere of biological sciences. It has completely changed the study of cells and tissues by allowing greater resolution, optical sectioning of the sample and three-dimensional sanoke reconstruction. Confocal microscopy represents a valid, precious and useful tool capable of providing data (images) of unrivalled clearness and definition. This review discusses the possible applications of confocal microscopy in specific fields of forensic investigation, with specific regard to ballistics, forensic histopathology and toxicological pathology.

  16. Atomic Force Microscopy and pharmacology: from microbiology to cancerology.

    Science.gov (United States)

    Pillet, Flavien; Chopinet, Louise; Formosa, Cécile; Dague, Etienne

    2014-03-01

    Atomic Force Microscopy (AFM) has been extensively used to study biological samples. Researchers take advantage of its ability to image living samples to increase our fundamental knowledge (biophysical properties/biochemical behavior) on living cell surface properties, at the nano-scale. AFM, in the imaging modes, can probe cells morphological modifications induced by drugs. In the force spectroscopy mode, it is possible to follow the nanomechanical properties of a cell and to probe the mechanical modifications induced by drugs. AFM can be used to map single molecule distribution at the cell surface. We will focus on a collection of results aiming at evaluating the nano-scale effects of drugs, by AFM. Studies on yeast, bacteria and mammal cells will illustrate our discussion. Especially, we will show how AFM can help in getting a better understanding of drug mechanism of action. This review demonstrates that AFM is a versatile tool, useful in pharmacology. In microbiology, it has been used to study the drugs fighting Candida albicans or Pseudomonas aeruginosa. The major conclusions are a better understanding of the microbes' cell wall and of the drugs mechanism of action. In cancerology, AFM has been used to explore the effects of cytotoxic drugs or as an innovative diagnostic technology. AFM has provided original results on cultured cells, cells extracted from patient and directly on patient biopsies. This review enhances the interest of AFM technologies for pharmacology. The applications reviewed range from microbiology to cancerology. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Measurement of nanomechanical properties of biomolecules using atomic force microscopy.

    Science.gov (United States)

    Kurland, Nicholas E; Drira, Zouheir; Yadavalli, Vamsi K

    2012-02-01

    The capabilities of atomic force microscopy (AFM) have been rapidly expanding beyond topographical imaging to now allow for the analysis of a wide range of properties of diverse materials. The technique of nanoindentation, traditionally performed via dedicated indenters can now be reliably achieved using AFM instrumentation, enabling mechanical property determination at the nanoscale using the high spatial and force resolutions of the AFM. In the study of biological systems, from biomolecules to complexes, this technique provides insight into how mesoscale properties and functions may arise from a myriad of single biomolecules. In vivo and in situ analyses of native structures under physiological conditions as well as the rapid analysis of molecular species under a variety of experimental treatments are made possible with this technique. As a result, AFM nanoindentation has emerged as a critical tool for the study of biological systems in their natural state, further contributing to both biomaterial design and pharmacological research. In this review, we detail the theory and progression of AFM-based nanoindentation, and present several applications of this technique as it has been used to probe biomolecules and biological nanostructures from single proteins to complex assemblies. We further detail the many challenges associated with mechanical models and required assumptions for model validity. AFM nanoindentation capabilities have provided an excellent improvement over conventional nanomechanical tools and by integration of topographical data from imaging, enabled the rapid extraction and presentation of mechanical data for biological samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Improving tapping mode atomic force microscopy with piezoelectric cantilevers.

    Science.gov (United States)

    Rogers, B; Manning, L; Sulchek, T; Adams, J D

    2004-08-01

    This article summarizes improvements to the speed, simplicity and versatility of tapping mode atomic force microscopy (AFM). Improvements are enabled by a piezoelectric microcantilever with a sharp silicon tip and a thin, low-stress zinc oxide (ZnO) film to both actuate and sense deflection. First, we demonstrate self-sensing tapping mode without laser detection. Similar previous work has been limited by unoptimized probe tips, cantilever thicknesses, and stress in the piezoelectric films. Tests indicate self-sensing amplitude resolution is as good or better than optical detection, with double the sensitivity, using the same type of cantilever. Second, we demonstrate self-oscillating tapping mode AFM. The cantilever's integrated piezoelectric film serves as the frequency-determining component of an oscillator circuit. The circuit oscillates the cantilever near its resonant frequency by applying positive feedback to the film. We present images and force-distance curves using both self-sensing and self-oscillating techniques. Finally, high-speed tapping mode imaging in liquid, where electric components of the cantilever require insulation, is demonstrated. Three cantilever coating schemes are tested. The insulated microactuator is used to simultaneously vibrate and actuate the cantilever over topographical features. Preliminary images in water and saline are presented, including one taken at 75.5 microm/s-a threefold improvement in bandwidth versus conventional piezotube actuators.

  19. Atomic force microscopy-based characterization and design of biointerfaces

    Science.gov (United States)

    Alsteens, David; Gaub, Hermann E.; Newton, Richard; Pfreundschuh, Moritz; Gerber, Christoph; Müller, Daniel J.

    2017-03-01

    Atomic force microscopy (AFM)-based methods have matured into a powerful nanoscopic platform, enabling the characterization of a wide range of biological and synthetic biointerfaces ranging from tissues, cells, membranes, proteins, nucleic acids and functional materials. Although the unprecedented signal-to-noise ratio of AFM enables the imaging of biological interfaces from the cellular to the molecular scale, AFM-based force spectroscopy allows their mechanical, chemical, conductive or electrostatic, and biological properties to be probed. The combination of AFM-based imaging and spectroscopy structurally maps these properties and allows their 3D manipulation with molecular precision. In this Review, we survey basic and advanced AFM-related approaches and evaluate their unique advantages and limitations in imaging, sensing, parameterizing and designing biointerfaces. It is anticipated that in the next decade these AFM-related techniques will have a profound influence on the way researchers view, characterize and construct biointerfaces, thereby helping to solve and address fundamental challenges that cannot be addressed with other techniques.

  20. Atomic force microscopy of polymer and oligomer surfaces

    CERN Document Server

    Winkel, A K

    2001-01-01

    The surface of ultra-thin films of polyethylene, isotactic polypropylene, polybutene, isotactic polystyrene and polytetrafluoroethylene was studied using an atomic force microscope and resolution of individual molecules was achieved. Comparison of the images with Connolly surfaces enabled identification of which plane was observed in the AFM images, with greater accuracy than conclusions drawn on the basis of surface feature measurement alone. In particular, the results from the experiments with polybutene show that for samples aged sufficiently so that the stable phase is expected in the bulk, this phase is also stable on the surface. The samples were aged sufficiently to ensure that the bulk would be in the stable phase. It is found that this phase is also stable on the surface. Additionally, the annealing behaviour of once folded crystals of the long-chain alkane, C sub 1 sub 6 sub 2 H sub 3 sub 2 sub 6 , is examined in situ, in real time, by atomic force microscopy. Regions of thickening material can be c...