WorldWideScience

Sample records for scanning fiber angle-resolved

  1. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    OpenAIRE

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chavez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to ...

  2. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  3. Angle-resolved imaging of single-crystal materials with MeV helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Strathman, M D; Baumann, S [Charles Evans and Associates, Redwood City, CA (United States)

    1992-02-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a {+-}2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.).

  4. Angle-resolved imaging of single-crystal materials with MeV helium ions

    International Nuclear Information System (INIS)

    Strathman, M.D.; Baumann, S.

    1992-01-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a ±2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.)

  5. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  6. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Bromberger, H.; Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi 2 Se 3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials

  7. Scanning small angle X-ray scattering investigations of bone

    International Nuclear Information System (INIS)

    Rinnerthaler, S.

    1998-06-01

    An important characteristic of bone is its strength, which is determined by bone mass, architecture and material quality. From a physical point of view bone is a composite material consisting of an organic matrix (collagen) and of inlets of mineral crystals (hydroxyapatite). These components build up a hierarchical, heterogeneous structure. The size of the mineral crystals lies in the nano-meter range and can be investigated by positionsensitive Small-Angle X-ray Scattering (Scanning-SAXS) in a non-destructive way. The average thickness, the degree and direction of the predominant orientation, as well as some information about shape and arrangement of the mineral crystals were determined in bones of humans, mice, and baboons by Scanning-SAXS with respect to age, bone diseases (osteogenesis imperfecta, pycnodysostosis) or medical treatments (fluoride or alendronate) of osteoporosis. The crystal thickness and the degree of orientation is much smaller in young individuals than in adults and the predominant orientation of the mineral crystals is different in a mixture of bone and mineralized cartilage compared to bone. Further, because position-resolved measurements are now possible, results from Scanning-SAXS measurements could be compared with the results of other position resolved methods. Due to this new feature it was possible, for the first time, to correlate directly 'mottled' bone visible in back-scattered electron imaging with small η-parameters evaluated from SAXS-patterns and the course of the collagen fibers with the predominant orientation of the mineral crystals. Scanning-SAXS proved to be a powerful tool to characterize bone nano-structure. (author)

  8. Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy.

    Science.gov (United States)

    Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M

    2018-03-01

    Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.

  9. Laser scanning endoscope via an imaging fiber bundle for fluorescence imaging

    Science.gov (United States)

    Yeboah, Lorenz D.; Nestler, Dirk; Steiner, Rudolf W.

    1994-12-01

    Based on a laser scanning endoscope via an imaging fiber bundle, a new approach for a tumor diagnostic system has been developed to assist physicians in the diagnosis before the actual PDT is carried out. Laser induced, spatially resolved fluorescence images of diseased tissue can be compared with images received by video endoscopy using a white light source. The set- up is required to produce a better contrast between infected and healthy tissue and might serve as a constructive diagnostic help for surgeons. The fundamental idea is to scan a low-power laser beam on an imaging fiber bundle and to achieve a spatially resolved projection on the tissue surface. A sufficiently high laser intensity from the diode laser is concentrated on each single spot of the tissue exciting fluorescence when a dye has previously been accumulated. Subsequently, video image of the tissue is recorded and stored. With an image processing unit, video and fluorescence images are overlaid producing a picture of the fluorescence intensity in the environment of the observed tissue.

  10. Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Jaillon, Franck; Zheng Wei; Huang Zhiwei

    2008-01-01

    In this study, we evaluate the feasibility of designing a beveled fiber-optic probe coupled with a ball lens for improving depth-resolved fluorescence measurements of epithelial tissue using Monte Carlo (MC) simulations. The results show that by using the probe configuration with a beveled tip collection fiber and a flat tip excitation fiber associated with a ball lens, discrimination of fluorescence signals generated in different tissue depths is achievable. In comparison with a flat-tip collection fiber, the use of a large bevel angled collection fiber enables a better differentiation between the shallow and deep tissue layers by changing the excitation-collection fiber separations. This work suggests that the beveled fiber-optic probe coupled with a ball lens has the potential to facilitate depth-resolved fluorescence measurements of epithelial tissues

  11. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt

    2017-01-01

    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  12. Fabrication and characterization of optical-fiber nanoprobes for scanning near-field optical microscopy.

    Science.gov (United States)

    Essaidi, N; Chen, Y; Kottler, V; Cambril, E; Mayeux, C; Ronarch, N; Vieu, C

    1998-02-01

    The current scanning near-field optical microscopy has been developed with optical-fiber probes obtained by use of either laser-heated pulling or chemical etching. For high-resolution near-field imaging, the detected signal is rapidly attenuated as the aperture size of the probe decreases. It is thus important to fabricate probes optimized for both spot size and optical transmission. We present a two-step fabrication that allowed us to achieve an improved performance of the optical-fiber probes. Initially, a CO(2) laser-heated pulling was used to produce a parabolic transitional taper ending with a top thin filament. Then, a rapid chemical etching with 50% buffered hydrofluoric acid was used to remove the thin filament and to result in a final conical tip on the top of the parabolic transitional taper. Systematically, we obtained optical-fiber nanoprobes with the apex size as small as 10 nm and the final cone angle varying from 15 degrees to 80 degrees . It was found that the optical transmission efficiency increases rapidly as the taper angle increases from 15 degrees to 50 degrees , but a further increase in the taper angle gives rise to important broadening of the spot size. Finally, the fabricated nanoprobes were used in photon-scanning tunneling microscopy, which allowed observation of etched double lines and grating structures with periods as small as 200 nm.

  13. Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT

    International Nuclear Information System (INIS)

    Kimura, Mikio; Usui, Junshi; Nozawa, Takeo

    2007-01-01

    In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT). We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography(3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image. (author)

  14. [Evaluation of the resolving power of different angles in MPR images of 16DAS-MDCT].

    Science.gov (United States)

    Kimura, Mikio; Usui, Junshi; Nozawa, Takeo

    2007-03-20

    In this study, we evaluated the resolving power of three-dimensional (3D) multiplanar reformation (MPR) images with various angles by using 16 data acquisition system multi detector row computed tomography (16DAS-MDCT) . We reconstructed the MPR images using data with a 0.75 mm slice thickness of the axial image in this examination. To evaluate resolving power, we used an original new phantom (RC phantom) that can be positioned at any slice angle in MPR images. We measured the modulation transfer function (MTF) by using the methods of measuring pre-sampling MTF, and used Fourier transform of image data of the square wave chart. The scan condition and image reconstruction condition that were adopted in this study correspond to the condition that we use for three-dimensional computed tomographic angiography (3D-CTA) examination of the head in our hospital. The MTF of MPR images showed minimum values at slice angles in parallel with the axial slice, and showed maximum values at the sagittal slice and coronal slice angles that are parallel to the Z-axis. With an oblique MPR image, MTF did not change with angle changes in the oblique sagittal slice plane, but in the oblique coronal slice plane, MTF increased as the tilt angle increased from the axial plane to the Z plane. As a result, we could evaluate the resolving power of a head 3D image by measuring the MTF of the axial image and sagittal image or the coronal image.

  15. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain.

  16. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  17. Structure-function correlations using scanning laser polarimetry in primary angle-closure glaucoma and primary open-angle glaucoma.

    Science.gov (United States)

    Lee, Pei-Jung; Liu, Catherine Jui-Ling; Wojciechowski, Robert; Bailey-Wilson, Joan E; Cheng, Ching-Yu

    2010-05-01

    To assess the correlations between retinal nerve fiber layer (RNFL) thickness measured with scanning laser polarimetry and visual field (VF) sensitivity in primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG). Prospective, comparative, observational cases series. Fifty patients with POAG and 56 patients with PACG were examined using scanning laser polarimetry with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, Inc.) and Humphrey VF analyzer (Carl Zeiss Meditec, Inc.) between August 2005 and July 2006 at Taipei Veterans General Hospital. Correlations between RNFL thickness and VF sensitivity, expressed as mean sensitivity in both decibel and 1/Lambert scales, were estimated by the Spearman rank correlation coefficient (r(s)) and multivariate median regression models (pseudo R(2)). The correlations were determined globally and for 6 RNFL sectors and their corresponding VF regions. The correlation between RNFL thickness and mean sensitivity (in decibels) was weaker in the PACG group (r(s) = 0.38; P = .004; pseudo R(2) = 0.17) than in the POAG group (r(s) = 0.51; P polarimetry. Compared with eyes with POAG, fewer RNFL sectors have significant structure-function correlations in eyes with PACG. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Angle-resolved diffraction grating biosensor based on porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Changwu; Li, Peng [School of Physical Science and Technology, Xinjiang University, Urumqi 830046 (China); Jia, Zhenhong, E-mail: jzhh@xju.edu.cn; Liu, Yajun; Mo, Jiaqing; Lv, Xiaoyi [College of Information Science and Engineering, Xinjiang University, Urumqi 830046 (China)

    2016-03-07

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  19. Difference structures from time-resolved small-angle and wide-angle x-ray scattering

    Science.gov (United States)

    Nepal, Prakash; Saldin, D. K.

    2018-05-01

    Time-resolved small-angle x-ray scattering/wide-angle x-ray scattering (SAXS/WAXS) is capable of recovering difference structures directly from difference SAXS/WAXS curves. It does so by means of the theory described here because the structural changes in pump-probe detection in a typical time-resolved experiment are generally small enough to be confined to a single residue or group in close proximity which is identified by a method akin to the difference Fourier method of time-resolved crystallography. If it is assumed, as is usual with time-resolved structures, that the moved atoms lie within the residue, the 100-fold reduction in the search space (assuming a typical protein has about 100 residues) allows the exaction of the structure by a simulated annealing algorithm with a huge reduction in computing time and leads to a greater resolution by varying the positions of atoms only within that residue. This reduction in the number of potential moved atoms allows us to identify the actual motions of the individual atoms. In the case of a crystal, time-resolved calculations are normally performed using the difference Fourier method, which is, of course, not directly applicable to SAXS/WAXS. The method developed in this paper may be thought of as a substitute for that method which allows SAXS/WAXS (and hence disordered molecules) to also be used for time-resolved structural work.

  20. Local crystallography analysis for atomically resolved scanning tunneling microscopy images

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Li, Qing; Belianinov, Alexei; Gai, Zheng; Baddorf, Arthur P; Pan, Minghu; Jesse, Stephen; Kalinin, Sergei V; Sales, Brian C; Sefat, Athena

    2013-01-01

    Scanning probe microscopy has emerged as a powerful and flexible tool for atomically resolved imaging of surface structures. However, due to the amount of information extracted, in many cases the interpretation of such data is limited to being qualitative and semi-quantitative in nature. At the same time, much can be learned from local atom parameters, such as distances and angles, that can be analyzed and interpreted as variations of local chemical bonding, or order parameter fields. Here, we demonstrate an iterative algorithm for indexing and determining atomic positions that allows the analysis of inhomogeneous surfaces. This approach is further illustrated by local crystallographic analysis of several real surfaces, including highly ordered pyrolytic graphite and an Fe-based superconductor FeTe 0.55 Se 0.45 . This study provides a new pathway to extract and quantify local properties for scanning probe microscopy images. (paper)

  1. Angle-resolved effective potentials for disk-shaped molecules

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de [Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Helmholtz Zentrum Berlin (HZB), Institute of Soft Matter and Functional Materials, Hahn-Meitner Platz 1, 14109 Berlin (Germany)

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  2. Scanning fiber microdisplay: design, implementation, and comparison to MEMS mirror-based scanning displays.

    Science.gov (United States)

    Khayatzadeh, Ramin; Civitci, Fehmi; Ferhanoglu, Onur; Urey, Hakan

    2018-03-05

    In this study, we propose a compact, lightweight scanning fiber microdisplay towards virtual and augmented reality applications. Our design that is tailored as a head-worn-display simply consists of a four-quadrant piezoelectric tube actuator through which a fiber optics cable is extended and actuated, and a reflective (or semi-reflective) ellipsoidal surface that relays the moving tip of the fiber onto the viewer's retina. The proposed display, offers significant advantages in terms of architectural simplicity, form-factor, fabrication complexity and cost over other fiber scanner and MEMS mirror counterparts towards practical realization. We demonstrate the display of various patterns with ∼VGA resolution and further provide analytical formulas for mechanical and optical constraints to compare the performance of the proposed scanning fiber microdisplay with that of MEMS mirror-based microdisplays. Also we discuss the road steps towards improving the performance of the proposed scanning fiber microdisplay to high-definition video formats (such as HD1440), which is beyond what has been achieved by MEMS mirror based laser scanning displays.

  3. Contact angle goniometry on single micron-scale fibers for composites

    DEFF Research Database (Denmark)

    Hansen, Daniel; Bomholt, Niels; Jeppesen, Jonas Camillus

    2017-01-01

    Probing the wetting properties of microfibers by polymer resins is of significant interest for the rational design of composite materials. Here, we demonstrate the measurement of contact angles on wetted micron scale fibers by imaging the fluid meniscus with telecentric optics at a spatial...... resolution of 4 um followed by automated image analysis. The meniscus is described as a catenary in the zero gravity approximation and by fitting this to the measured profile, the contact angle is obtained at the intersection between the fluid and the fiber surface. The method is validated by measuring...... agreement between con-tact angles for the PMMA/H2O system for fibers with diameters 20–800 um and for sessile drops. The ability of the method to discriminate contact angles for a series of commercial glass fibers against epoxy resin is successfully demonstrated. AFM imaging shows that the surface...

  4. Neighborhood resolved fiber orientation distributions (NRFOD) in automatic labeling of white matter fiber pathways.

    Science.gov (United States)

    Ugurlu, Devran; Firat, Zeynep; Türe, Uğur; Unal, Gozde

    2018-05-01

    Accurate digital representation of major white matter bundles in the brain is an important goal in neuroscience image computing since the representations can be used for surgical planning, intra-patient longitudinal analysis and inter-subject population connectivity studies. Reconstructing desired fiber bundles generally involves manual selection of regions of interest by an expert, which is subject to user bias and fatigue, hence an automation is desirable. To that end, we first present a novel anatomical representation based on Neighborhood Resolved Fiber Orientation Distributions (NRFOD) along the fibers. The resolved fiber orientations are obtained by generalized q-sampling imaging (GQI) and a subsequent diffusion decomposition method. A fiber-to-fiber distance measure between the proposed fiber representations is then used in a density-based clustering framework to select the clusters corresponding to the major pathways of interest. In addition, neuroanatomical priors are utilized to constrain the set of candidate fibers before density-based clustering. The proposed fiber clustering approach is exemplified on automation of the reconstruction of the major fiber pathways in the brainstem: corticospinal tract (CST); medial lemniscus (ML); middle cerebellar peduncle (MCP); inferior cerebellar peduncle (ICP); superior cerebellar peduncle (SCP). Experimental results on Human Connectome Project (HCP)'s publicly available "WU-Minn 500 Subjects + MEG2 dataset" and expert evaluations demonstrate the potential of the proposed fiber clustering method in brainstem white matter structure analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Quantitative evaluation of catheter radiopacity by fiber optic scanning densitometry

    International Nuclear Information System (INIS)

    Solomon, D.D.; Byron, M.P.; Lipton, M.J.

    1989-01-01

    A rapid accurate method has been developed utilizing fiber optic scanning densitometry to quantify the radiopacity of vascular catheters. The technique provides for computerized calculation of relative catheter radiopacity and an appropriate control standard. A densitometer with a 180 degree collection angle for diffuse transmission density measurements was selected based on the diffusing nature of X-ray film (Q-factor 1.80). A benchmark catheter and 2 mil thick brass shim stock were selected as control standards for evaluation of mono-and multilumen tubing using standard X-ray conditions and an aluminum block attenuator. The authors present results from reproducibility studies which show scan-to-scan repeatability is within ±1%, and day-to-day variability is less than 5%. Application studies demonstrate a linear relationship between percent barium sulfate loading and the radiopaqueness of 16 gauge monolumen tubing. Results were also obtained from a clinical chest X-ray film showing good in-vivo/in-vitro correlation

  6. Angle-tip Fiber Probe as Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Pabitra NATH

    2010-05-01

    Full Text Available In this paper, I present a simple fiber optic relative humidity sensor (FORHS using an angled-tip multimode optical fiber. The sensing region is fabricated by coating moisture sensitive Cobalt Chloride (CoCl2 doped polyvinyl alcohol (PVA film on the surface of fiber optic tip. Light signal introducing from flat-end of the fiber is back-reflected at the fiber tip-air interface by the effect of total internal refection. The change of relative humidity (RH in the outstanding medium affects of evanescent field absorption at the fiber tip-sensing film interface thus, modulates the back-reflected signal. With the present sensing investigation, RH ranging from 5 % to 95 % can be measured with high degree of repeatability and has a fast response time of about 2 seconds.

  7. Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: Numerical and experimental investigations

    International Nuclear Information System (INIS)

    Naghipour, P.; Bartsch, M.; Chernova, L.; Hausmann, J.; Voggenreiter, H.

    2010-01-01

    This paper focuses on the effect of fiber orientation and stacking sequence on the progressive mixed mode delamination failure in composite laminates using fracture experiments and finite element (FE) simulations. Every laminate is modelled numerically combining damageable layers with defined fiber orientations and cohesive zone interface elements, subjected to mixed mode bending. The numerical simulations are then calibrated and validated through experiments, conducted following standardized mixed mode delamination tests. The numerical model is able to successfully capture the experimentally observed effects of fiber angle orientations and variable stacking sequences on the global load-displacement response and mixed mode inter-laminar fracture toughness of the various laminates. For better understanding of the failure mechanism, fracture surfaces of laminates with different stacking sequences are also studied using scanning electron microscopy (SEM).

  8. Effect of stacking angles on mechanical properties and damage propagation of plain woven carbon fiber laminates

    Science.gov (United States)

    Zhuang, Weimin; Ao, Wenhong

    2018-03-01

    Damage propagation induced failure is a predominant damage mechanism. This study is aimed at assessing the damage state and damage propagation induced failure with different stacking angles, of woven carbon fiber/epoxy laminates subjected to quasi-static tensile and bending load. Different stages of damage processing and damage behavior under the bending load are investigated by Scanning Electron Microscopy (SEM). The woven carbon fiber/epoxy laminates which are stacked at six different angles (0°, 15°, 30°, 45°, 60°, 75°) with eight plies have been analyzed: [0]8, [15]8, [30]8, [45]8, [60]8, [75]8. Three-point bending test and quasi-static tensile test are used in validating the woven carbon fiber/epoxy laminates’ mechanical properties. Furthermore, the damage propagation and failure modes observed under flexural loading is correlated with flexural force and load-displacement behaviour respectively for the laminates. The experimental results have indicated that [45]8 laminate exhibits the best flexural performance in terms of energy absorption duo to its pseudo-ductile behaviour but the tensile strength and flexural strength drastically decreased compared to [0]8 laminate. Finally, SEM micrographs of specimens and fracture surfaces are used to reveal the different types of damage of the laminates with different stacking angles.

  9. Fiber Bragg grating based spatially resolved characterization of flux-pinning induced strain of rectangular-shaped bulk YBCO samples

    International Nuclear Information System (INIS)

    Latka, Ines; Habisreuther, Tobias; Litzkendorf, Doris

    2011-01-01

    Highlights: → Fiber Bragg gratings (FBG) act as strain sensors, also at cryogenic temperatures. → FBGs are not sensitive to magnetic fields. → Local, shape dependent magnetostriction was detected on rectangular samples. → Magnetostrictive effects of the top surface and in a gap between two samples are different. - Abstract: We report on measurements of the spatially resolved characterization of flux-pinning induced strain of rectangular-shaped bulk YBCO samples. The spatially resolved strain measurements are accomplished by the use 2 fiber Bragg grating arrays, which are with an included angle of 45 o fixed to the surface. In this paper first attempts to confirm the shape distortions caused by the flux-pinning induced strain as predicted in will be presented. Two sample setups, a single bulk and a 'mirror' arrangement, will be compared. This mirror setup represents a model configuration for a measurement inside the superconductor, where demagnetization effects can be neglected and the magnetic field merely has a z-component.

  10. Angle-resolved photoelectron spectrometry: new electron optics and detection system

    International Nuclear Information System (INIS)

    Hoof, H.A. van.

    1980-01-01

    A new spectrometer system is described, designed to measure angle-resolved energy distributions of photoemitted electrons efficiently. Some results are presented of measurements on a Si(001) surface. (Auth.)

  11. Scanning Angle Raman spectroscopy in polymer thin film characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vy H.T. [Iowa State Univ., Ames, IA (United States)

    2015-12-19

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directions for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.

  12. Fracture toughness of titanium–cement interfaces: effects of fibers and loading angles

    Directory of Open Access Journals (Sweden)

    Khandaker M

    2014-04-01

    Full Text Available Morshed Khandaker,1 Khatri Chhetri Utsaha,1 Tracy Morris21Department of Engineering and Physics, 2Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, USAAbstract: Ideal implant–cement or implant–bone interfaces are required for implant fixation and the filling of tissue defects created by disease. Micron- to nanosize osseointegrated features, such as surface roughness, fibers, porosity, and particles, have been fused with implants for improving the osseointegration of an implant with the host tissue in orthopedics and dentistry. The effects of fibers and loading angles on the interface fracture toughness of implant–cement specimens with and without fibers at the interface are not yet known. Such studies are important for the design of a long-lasting implant for orthopedic applications. The goal of this study was to improve the fracture toughness of an implant–cement interface by deposition of micron- to nanosize fibers on an implant surface. There were two objectives in the study: 1 to evaluate the influence of fibers on the fracture toughness of implant–cement interfaces with and without fibers at the interfaces, and 2 to evaluate the influence of loading angles on implant–cement interfaces with and without fibers at the interfaces. This study used titanium as the implant, poly(methyl methacrylate (PMMA as cement, and polycaprolactone (PCL as fiber materials. An electrospinning unit was fabricated for the deposition of PCL unidirectional fibers on titanium (Ti plates. The Evex tensile test stage was used to determine the interface fracture toughness (KC of Ti–PMMA with and without PCL fibers at 0°, 45°, and 90° loading angles, referred to in this article as tension, mixed, and shear tests. The study did not find any significant interaction between fiber and loading angles (P>0.05, although there was a significant difference in the KC means of Ti–PMMA samples for the loading angles (P<0

  13. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    International Nuclear Information System (INIS)

    Hellings, G.J.A.

    1986-01-01

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  14. Review of RDC Soft Computing Techniques for Accurate Measurement of Resolver Rotor Angle

    Directory of Open Access Journals (Sweden)

    Chandra Mohan Reddy Sivappagari

    2013-03-01

    Full Text Available A resolver is a position sensor or transducer that measures the instantaneous angular position of the rotating shaft to which it is attached. Resolver produces two amplitude modulated signals; SIN and COS as output signals. These two signals need to be demodulated and converted to digital signals before they can be used for control. There are several techniques available in the literature to measure the rotor shaft angle. This paper focuses on the design of both hardware and software based resolver to digital converter (RDC techniques available in the literature. This literature review helps the researchers to know about all these methods and plan future work on RDCs to improve the angle tracking performance.

  15. Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal

    Science.gov (United States)

    Nemtsev, Ivan V.; Tambasov, Igor A.; Ivanenko, Alexander A.; Zyryanov, Victor Ya.

    2018-02-01

    PMMA opal crystal was prepared by a simple hybrid method, which includes sedimentation, meniscus formation and evaporation. We investigated three surfaces of this crystal by angle-resolved reflective light spectroscopy and SEM study. The angle-resolved reflective measurements were carried out in the 400-1100 nm range. We have determined the high-quality ordered surface of the crystal region. Narrow particle size distribution of the surface has been revealed. The average particle diameter obtained with SEM was nearly 361 nm. The most interesting result was that reflectivity of the surface turned out up to 98% at normal light incidence. Using a fit of dependences of the maximum reflectivity wavelength from an angle based on the Bragg-Snell law, the wavelength of maximum 0° reflectivity, the particle diameter and the fill factor have been determined. For the best surface maximum reflectivity wavelength of a 0° angle was estimated to be 869 nm. The particle diameter and fill factor were calculated as 372 nm and 0.8715, respectively. The diameter obtained by fitting is in excellent agreement with the particle diameter obtained with SEM. The reflectivity maximum is assumed to increase significantly when increasing the fill factor. We believe that using our simple approach to manufacture PMMA opal crystals will significantly increase the fabrication of high-quality photonic crystal templates and thin films.

  16. Development of scanning micromirror with discrete steering angles

    International Nuclear Information System (INIS)

    Wang, Z F; Noell, W; Zickar, M; Rooij, N F de; Lim, S P

    2006-01-01

    This paper describes the development of a new MEMS-based optical mirror, which can perform optical switching (or scanning) function with discrete reflection angles in an outof- plane configuration. The device is fabricated through the Deep Reactive Ion Etching (DRIE) process on silicon-on-insulator (SOI) wafer, followed by wafer dicing and assembly with two metalised glass dies. The MEMS mirror can be tilted under electrostatic force between the opposite electrodes embedded on SOI and glass structures. The most outstanding feature of this MEMS mirror is the discrete and therefore, reliable tilting angles, which generated by its unique mechanical structural design and electrostatic-driven mechanism. In this paper, the concept of the new scanning mirror is presented, followed by the introduction of device design, mechanical simulation, microfabrication process, assembly solution, and some testing results. The potential applications of this new MEMS mirror include optical scanning, optical sensing (or detection), and optical switching

  17. Angle resolved characterization of nanostructured and conventionally textured silicon solar cells

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Ormstrup, Jeppe; Ommen, Martin Lind

    2015-01-01

    current, open circuit voltage, fill factor (FF) and power conversion efficiency are each measured as function of the relative incident angle between the solar cell and the light source. The relative incident angle is varied from 0° to 90° in steps of 10° in orthogonal axes, such that each solar cell......We report angle resolved characterization of nanostructured and conventionally textured silicon solar cells. The nanostructured solar cells are realized through a single step, mask-less, scalable reactive ion etching (RIE) texturing of the surface. Photovoltaic properties including short circuit...

  18. Energy- and angled-resolved photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    Energy- and angle-resolved photoelectron detachment spectroscopy is currently being used to investigate the structure of negative ions and their interaction with radiation. Measurements of the electron affinity of the Ca atom and the partial cross sections for photodetachment of the metastable negative ion, He - (1s2s2p 4 P), are reported. 5 refs., 5 figs

  19. Small Angle X-Ray Scattering Detector

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  20. Time-resolved small-angle neutron scattering study on soap-free emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Motokawa, Ryuhei [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Koizumi, Satoshi [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: koizumi@neutrons.tokai.jaeri.go.jp; Hashimoto, Takeji [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Nakahira, Takayuki [Department of Applied Chemistry and Biotechnology, Chiba University, Chiba-shi, Chiba 263-8522 (Japan); Annaka, Masahiko [Department of Chemistry, Kyushu University, Fukuoka 812-8581 (Japan)

    2006-11-15

    We investigated an aqueous soap-free emulsion polymerization process of Poly(N-isopropylacrylamide)-block-poly(ethylene glycol) by ultra-small-angle and time-resolved small-angle neutron scattering methods. The results indicate that the compartmentalization of chain end radicals into solid-like micelle cores crucially leads to the quasi-living behavior of the radical polymerization by prohibiting recombination process.

  1. Setup for angle-resolved electron spectrometry using monochromatised synchrotron radiation

    International Nuclear Information System (INIS)

    Derenbach, H.; Franke, C.; Malutzki, R.; Wachter, A.; Schmidt, V.

    1987-01-01

    An apparatus is described which is well suited for angle-resolved electron spectrometry of free atoms and molecules using monochromatised synchrotron radiation. Two variations are presented, one for room temperature gaseous species, the other for metallic vapours. The analyser is of the cylindrical mirror type, designed, however, so as to accept with one sector the entire source volume independently of the photon beam diameter. It can be equipped with a positon-sensitive detector instead of a channeltron, which extends its potentiality. The system consists of up to three cylindrical mirror sector analysers (CMAs) where a double-sector CMA can be rotated around the photon beam direction, allowing angular distribution measurements, and another sector CMA is mounted in a fixed position providing a signal for reference purposes. A detailed description and experimental tests are given for the performance of the CMA, i.e. its imaging properties, resolution and transmissions, as well as for possible instrumental asymmetries affecting angle-resolved experiments. (orig.)

  2. Angle-resolved photoemission investigation of SmB{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Hlawenka, Peter; Rader, Oliver; Siemensmeyer, Konrad; Weschke, Eugen; Varykhalov, Andrei; Rienks, Emile [Helmholtz-Zentrum Berlin (Germany); Shitsevalova, Natalya [Institute for Problems of Material Science, Kiev (Ukraine); Gabani, Slavomir; Flachbart, Karol [IEP, Slovak Academy of Science, Kosice (Slovakia)

    2015-07-01

    Recently the mixed valence compound SmB{sub 6} has drawn great attention. Theoretically predicted surface states, which should result from a hybridisation of localised f-bands with conduction electrons and a band inversion, would make SmB{sub 6} the first realisation of a so called topological Kondo insulator. Conductivity and transport measurements, as well as spin-resolved photoemission spectroscopy seem to fortify the scenario of a topological nature of the conductive surface. We investigate the surface electronic structure of SmB{sub 6} by means of high resolution angle-resolved photoemission spectroscopy measurements below 1 K. We will present new insights into the surface states that determine the low temperature conductivity of this material.

  3. Development of Field Angle Resolved Specific Heat Measurement System for Unconventional Superconductors

    International Nuclear Information System (INIS)

    Kitamura, Yasuhiro; Matsubara, Takeshi; Machida, Yo; Izawa, Koichi; Onuki, Yoshichika; Salce, Bernard; Flouquet, Jacques

    2015-01-01

    We developed a measurement system for field angle resolved specific heat under multiple extreme conditions at low temperature down to 50 mK, in magnetic field up to 7 T, and under high pressure up to 10 GPa. We demonstrated the performance of our developed system by measuring field angle dependence of specific heat of pressure induced unconventional superconductor CeIrSi 3

  4. FR4-Based Electromagnetic Scanning Micromirror Integrated with Angle Sensor

    Directory of Open Access Journals (Sweden)

    Hongjie Lei

    2018-05-01

    Full Text Available This paper presents a flame retardant 4 (FR4-based electromagnetic scanning micromirror, which aims to overcome the limitations of conventional microelectromechanical systems (MEMS micromirrors for the large-aperture and low-frequency scanning applications. This micromirror is fabricated through a commercial printed circuit board (PCB technology at a low cost and with a short process cycle, before an aluminum-coated silicon mirror plate with a large aperture is bonded on the FR4 platform to provide a high surface quality. In particular, an electromagnetic angle sensor is integrated to monitor the motion of the micromirror in real time. A prototype has been assembled and tested. The results show that the micromirror can reach the optical scan angle of 11.2 ∘ with a low driving voltage of only 425 mV at resonance (361.8 Hz. At the same time, the signal of the integrated angle sensor also shows good signal-to-noise ratio, linearity and sensitivity. Finally, the reliability of the FR4 based micro-mirror has been tested. The prototype successfully passes both shock and vibration tests. Furthermore, the results of the long-term mechanical cycling test (50 million cycles suggest that the maximum variations of resonant frequency and scan angle are less than 0.3% and 6%, respectively. Therefore, this simple and robust micromirror has great potential in being useful in a number of optical microsystems, especially when large-aperture or low-frequency is required.

  5. Near-field scanning optical microscopy using polymethylmethacrylate optical fiber probes

    International Nuclear Information System (INIS)

    Chibani, H.; Dukenbayev, K.; Mensi, M.; Sekatskii, S.K.; Dietler, G.

    2010-01-01

    We report the first use of polymethylmethacrylate (PMMA) optical fiber-made probes for scanning near-field optical microscopy (SNOM). The sharp tips were prepared by chemical etching of the fibers in ethyl acetate, and the probes were prepared by proper gluing of sharpened fibers onto the tuning fork in the conditions of the double resonance (working frequency of a tuning fork coincides with the resonance frequency of dithering of the free-standing part of the fiber) reported earlier for the case of glass fibers. Quality factors of the probes in the range 2000-6000 were obtained, which enables the realization of an excellent topographical resolution including state-of-art imaging of single DNA molecules. Near-field optical performance of the microscope is illustrated by the Photon Scanning Tunneling Microscope images of fluorescent beads with a diameter of 100 nm. The preparation of these plastic fiber probes proved to be easy, needs no hazardous material and/or procedures, and typical lifetime of a probe essentially exceeds that characteristic for the glass fiber probe.

  6. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  7. Retinal nerve fiber layer assessment by scanning laser polarimetry and standardized photography

    NARCIS (Netherlands)

    Niessen, A. G.; van den Berg, T. J.; Langerhorst, C. T.; Greve, E. L.

    1996-01-01

    To determine whether, in a clinical setting, scanning laser polarimetry and retinal nerve fiber layer photography provide equivalent information on the retinal nerve fiber layer. We prospectively studied 60 patients with glaucoma or ocular hypertension and 24 healthy subjects. With scanning laser

  8. A novel solid-angle tomosynthesis (SAT) scanning scheme

    International Nuclear Information System (INIS)

    Zhang Jin; Yu, Cedric

    2010-01-01

    Purpose: Digital tomosynthesis (DTS) recently gained extensive research interests in both diagnostic and radiation therapy fields. Conventional DTS images are generated by scanning an x-ray source and flat-panel detector pair on opposite sides of an object, with the scanning trajectory on a one-dimensional curve. A novel tomosynthesis method named solid-angle tomosynthesis (SAT) is proposed, where the x-ray source scans on an arbitrary shaped two-dimensional surface. Methods: An iterative algorithm in the form of total variation regulated expectation maximization is developed for SAT image reconstruction. The feasibility and effectiveness of SAT is corroborated by computer simulation studies using three-dimensional (3D) numerical phantoms including a 3D Shepp-Logan phantom and a volumetric CT image set of a human breast. Results: SAT is able to cover more space in Fourier domain more uniformly than conventional DTS. Greater coverage and more isotropy in the frequency domain translate to fewer artifacts and more accurately restored features in the in-plane reconstruction. Conclusions: Comparing with conventional DTS, SAT allows cone-shaped x-ray beams to project from more solid angles, thus provides more coverage in the spatial-frequency domain, resulting in better quality of reconstructed image.

  9. Pitch angle resolved measurements of escaping charged fusion products in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.J.

    1989-01-01

    Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs.

  10. Pitch angle resolved measurements of escaping charged fusion products in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.

    1989-01-01

    Measurements of the flux of charged fusion products escaping from the TFTR plasma have been made with a new type of detector which can resolve the particle flux vs. pitch angle, energy, and time. The design of this detector is described, and results from the 1987 TFTR run are presented. These results are roughly consistent with predictions from a simple first-orbit particle loss model with respect to the pitch angle, energy, time, and plasma current dependence of the signals. 11 refs., 9 figs

  11. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  12. Retinal nerve fiber layer in primary open-angle glaucoma with high myopia determined by optical coherence tomography and scanning laser polarimetry.

    Science.gov (United States)

    Wang, Xiao-en; Wang, Xiao-yu; Gu, Yang-shun; Huang, Zhu

    2013-01-01

    Fundus changes associated with high myopia (HM) may mask those associated with primary open-angle glaucoma (POAG). This study aim to determine the characteristics of RNFL thickness changes in patients with both POAG and HM and compare these to changes in patients with only HM. The diagnostic capabilities of both OCT and GDxVCC in this subset of patients are also evaluated. Twenty-two eyes with POAG and HM (spherical equivalent (SE) between -6.0 and -12.0 D) were evaluated, and 22 eyes with HM were used for comparison. Characteristic retinal nerve fiber layer (RNFL) thickness profiles in patients with POAG and HM were examined using optical coherence tomography (OCT) and scanning laser polarimetry with variable corneal compensation (GDxVCC), and the diagnostic capabilities of these imaging modalities were compared. RNFL parameters evaluated included superior average (Savg-GDx), inferior average (Iavg-GDx), temporal-superior-nasal- inferior-temporal (TSNIT) average, and nerve fiber indicator (NFI) on GDxVCC and superior average (Savg-OCT), inferior average (Iavg-OCT), nasal average (Navg-OCT), temporal average (Tavg-OCT), and average thickness (AvgThick-OCT) on OCT (fast RNFL scan). Visual field testing was performed and defects were evaluated using mean defect (MD) and pattern standard deviation (PSD). The RNFL parameters (P < 0.05) significantly different between groups included Savg-GDx, Iavg-GDx, TSNIT average, NFI, Savg-OCT, Iavg-OCT, Tavg-OCT, and AvgThick-OCT. Significant correlations existed between TSNIT average and AvgThick-OCT (r = 0.778), TSNIT average and MD (r = 0.749), AvgThick-OCT and MD (r = 0.647), TSNIT average and PSD (r = -0.756), and AvgThick-OCT and PSD (r = -0.784). The area under the receiver operating characteristic curve (AUROC) values of TSNIT average, Savg-GDx, Iavg-GDx, NFI, Savg-OCT, Iavg-OCT, Navg-OCT, Tavg-OCT, and AvgThick-OCT were 0.947, 0.962, 0.973, 0.994, 0.909, 0.917, 0.511, 0.906, and 0.913, respectively. The NFI AUROC was the

  13. Development of an angle-scanning spectropolarimeter: Preliminary results

    Science.gov (United States)

    Nouri, Sahar A.; Gregory, Don A.; Fuller, Kirk

    2018-02-01

    A fixed-angle spectropolarimeter capable of measuring the Mueller matrix of particle deposits and conventional optical elements over the 300-1100 nm spectral range has been built, calibrated and extensively tested. A second generation of this instrument is being built which can scan from 0° to near 180° in both scattering angle and sample orientation, enabling studies of the bidirectional Mueller matrices of nanoparticle arrays, atmospheric aerosol deposits, and nano- and microstructured surfaces. This system will also provide a much needed metrology capability for fully characterizing the performance of optical devices and device components from the near-infrared through the medium wave ultraviolet. Experimental results taken using the first generation fixed-angle arrangement will be presented along with the rationale for building the second.

  14. High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy.

    Science.gov (United States)

    Takayama, Kohei; Ooto, Sotaro; Hangai, Masanori; Ueda-Arakawa, Naoko; Yoshida, Sachiko; Akagi, Tadamichi; Ikeda, Hanako Ohashi; Nonaka, Atsushi; Hanebuchi, Masaaki; Inoue, Takashi; Yoshimura, Nagahisa

    2013-05-01

    To detect pathologic changes in retinal nerve fiber bundles in glaucomatous eyes seen on images obtained by adaptive optics (AO) scanning laser ophthalmoscopy (AO SLO). Prospective cross-sectional study. Twenty-eight eyes of 28 patients with open-angle glaucoma and 21 normal eyes of 21 volunteer subjects underwent a full ophthalmologic examination, visual field testing using a Humphrey Field Analyzer, fundus photography, red-free SLO imaging, spectral-domain optical coherence tomography, and imaging with an original prototype AO SLO system. The AO SLO images showed many hyperreflective bundles suggesting nerve fiber bundles. In glaucomatous eyes, the nerve fiber bundles were narrower than in normal eyes, and the nerve fiber layer thickness was correlated with the nerve fiber bundle widths on AO SLO (P fiber layer defect area on fundus photography, the nerve fiber bundles on AO SLO were narrower compared with those in normal eyes (P optic disc, the nerve fiber bundle width was significantly lower, even in areas without nerve fiber layer defect, in eyes with glaucomatous eyes compared with normal eyes (P = .026). The mean deviations of each cluster in visual field testing were correlated with the corresponding nerve fiber bundle widths (P = .017). AO SLO images showed reduced nerve fiber bundle widths both in clinically normal and abnormal areas of glaucomatous eyes, and these abnormalities were associated with visual field defects, suggesting that AO SLO may be useful for detecting early nerve fiber bundle abnormalities associated with loss of visual function. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F; Wieliczec, K; Becker, U

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  16. Angle-resolved photoemission study of NiO and CoO

    International Nuclear Information System (INIS)

    Shen, Z.X.; Lindberg, P.A.P.; Shih, C.K.; Spicer, W.E.; Lindau, I.

    1989-01-01

    The authors report an angle-resolved photoemission investigation of the electronic structures of NiO and CoO. The lattice effects on the photoemission spectra of these highly correlated materials are important. The magnitudes of dispersions of the oxygen bands agree with band calculations, but the experimental data of the localized 3d bands do not agree with the band calculations

  17. Angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs

  18. Supersonic Shear Imaging Elastography in Skeletal Muscles: Relationship Between In Vivo and Synthetic Fiber Angles and Shear Modulus.

    Science.gov (United States)

    Lima, Kelly; Rouffaud, Remi; Pereira, Wagner; Oliveira, Liliam F

    2018-04-30

    To verify a relationship between the pennation angle of synthetic fibers and muscle fibers with the shear modulus (μ) generated by Supersonic shear imaging (SSI) elastography and to compare the anisotropy of synthetic and in vivo pennate muscle fibers in the x 2 -x 3 plane (probe perpendicular to water surface or skin). First, the probe of Aixplorer ultrasound scanner (v.9, Supersonic Imagine, Aix-en-Provence, France) was placed in 2 positions (parallel [aligned] and transverse to the fibers) to test the anisotropy in the x 2 -x 3 plane. Subsequently, it was inclined (x 1 -x 3 plane) in relation to the fibers, forming 3 angles (18.25 °, 21.55 °, 36.86 °) for synthetic fibers and one (approximately 0 °) for muscle fibers. On the x 2 -x 3 plane, μ values of the synthetic and vastus lateralis fibers were significantly lower (P < .0001) at the transverse probe position than the longitudinal one. In the x 1 -x 3 plane, the μ values were significantly reduced (P < .0001) with the probe angle increasing, only for the synthetic fibers (approximately 0.90 kPa for each degree of pennation angle). The pennation angle was not related to the μ values generated by SSI elastography for the in vivo lateral head of the gastrocnemius and vastus lateralis muscles. However, a μ reduction with an angle increase in the synthetic fibers was observed. These findings contribute to increasing the applicability of SSI in distinct muscle architecture at normal or pathologic conditions. © 2018 by the American Institute of Ultrasound in Medicine.

  19. Research on Method of Photoelectric Measurement for Tilt Angle of Scanning Mirror of Infrared Earth Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X P; Zhang, G Y; Zhang, N; Wang, L Y [Changchun University of Science and Technology, 130022, Changchun (China)

    2006-10-15

    Tilt angle of scanning mirror is one of the important qualifications of performance measurement on the earth surface for swing scanning mode infrared the earth sensor. In order to settle the problem of measuring the tilt angle of scanning mirror in dynamic, real-time and non-contact, based on laser inspecting technology and CCD probing technology, a method of laser dynamical measurement for tilt angle of scanning mirror of the infrared earth sensor is presented. The measurement system developed in this paper can accomplish the dynamic and static laser non-contact measurement for the parameters of scanning mirror such as tilt angle, swing frequency, etc. In this paper the composition and overall structure of system are introduced. Emphasis on analyzing and discussing the theory of dynamically measuring tilt angle of scanning mirror, the problems of data processing and error correction are settled by established mathematic model of system. The accuracy of measurement system is verified by experiment, the results indicated that measurement range of system for tilt angle is 0{approx}{+-}12{sup 0}, accuracy of dynamic and static measurement is less than {+-}0.05{sup 0}, this method of dynamically measuring tilt angle is suitable.

  20. A fiber-optic technique for the measurement of contact angle in a clearance-fit pin-loaded hole

    Science.gov (United States)

    Prabhakaran, R.; Naik, R. A.

    1987-01-01

    A fiber-optic technique for measuring contact angle during pin loading of a specimen is proposed. The experimental design and procedures for loading a 49.8-mm-diameter instrumented pin into an quasi-isotropic graphite-epoxy specimen are described. The optical fiber was located just above the surface of the pin outer diameter in order to obtain accurate pin-hole contact-angle measurements at increasing load levels. The movement of the optical fiber through the no-contact, contact, and no-contact regions is discussed; the photodiode output decreased monotonically as the fiber moved from the no-contact to the contact region and then decreased monotonically as the fiber moved from the contact region to the no-contact region. Variations in the contact angle measurements are examined as function of applied load level. The measurements are compared to contact angle values obtained using a finite element analysis and an electrical technique; it is determined that the data correlate well.

  1. Angle-resolved photoluminescence spectrum of a uniform phosphor layer

    Science.gov (United States)

    Fujieda, Ichiro; Ohta, Masamichi

    2017-10-01

    A photoluminescence spectrum depends on an emission angle due to self-absorption in a phosphor material. Assuming isotropic initial emission and Lambert-Beer's law, we have derived simple expressions for the angle-resolved spectra emerging from the top and bottom surfaces of a uniform phosphor layer. The transmittance of an excitation light through the phosphor layer can be regarded as a design parameter. For a strongly-absorbing phosphor layer, the forward flux is less intense and more red-shifted than the backward flux. The red-shift is enhanced as the emission direction deviates away from the plane normal. When we increase the transmittance, the backward flux decreases monotonically. The forward flux peaks at a certain transmittance value. The two fluxes become similar to each other for a weakly-absorbing phosphor layer. We have observed these behaviors in experiment. In a practical application, self-absorption decreases the efficiency of conversion and results in angle-dependent variations in chromaticity coordinates. A patterned phosphor layer with a secondary optical element such as a remote reflector alleviates these problems.

  2. JPSS-1 VIIRS Pre-Launch Response Versus Scan Angle Testing and Performance

    Science.gov (United States)

    Moyer, David; McIntire, Jeff; Oudrari, Hassan; McCarthy, James; Xiong, Xiaoxiong; De Luccia, Frank

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) instruments on-board both the Suomi National Polar-orbiting Partnership (S-NPP) and the first Joint Polar Satellite System (JPSS-1) spacecraft, with launch dates of October 2011 and December 2016 respectively, are cross-track scanners with an angular swath of +/-56.06 deg. A four-mirror Rotating Telescope Assembly (RTA) is used for scanning combined with a Half Angle Mirror (HAM) that directs light exiting from the RTA into the aft-optics. It has 14 Reflective Solar Bands (RSBs), seven Thermal Emissive Bands (TEBs) and a panchromatic Day Night Band (DNB). There are three internal calibration targets, the Solar Diffuser, the BlackBody and the Space View, that have fixed scan angles within the internal cavity of VIIRS. VIIRS has calibration requirements of 2% on RSB reflectance and as tight as 0.4% on TEB radiance that requires the sensor's gain change across the scan or Response Versus Scan angle (RVS) to be well quantified. A flow down of the top level calibration requirements put constraints on the characterization of the RVS to 0.2%-0.3% but there are no specified limitations on the magnitude of response change across scan. The RVS change across scan angle can vary significantly between bands with the RSBs having smaller changes of approximately 2% and some TEBs having approximately 10% variation. Within aband, the RVS has both detector and HAM side dependencies that vary across scan. Errors in the RVS characterization will contribute to image banding and striping artifacts if their magnitudes are above the noise level of the detectors. The RVS was characterized pre-launch for both S-NPP and JPSS-1 VIIRS and a comparison of the RVS curves between these two sensors will be discussed.

  3. Bogoliubov Angle, Particle-Hole Mixture and Angular Resolved Photoemission Spectroscopy in Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, A.

    2010-05-04

    Superconducting excitations - Bogoliubov quasiparticles - are the quantum mechanical mixture of negatively charged electron (-e) and positively charged hole (+e). We propose a new observable for Angular Resolved Photoemission Spectroscopy (ARPES) studies that is the manifestation of the particle-hole entanglement of the superconducting quasiparticles. We call this observable a Bogoliubov angle. This angle measures the relative weight of particle and hole amplitude in the superconducting (Bogoliubov) quasiparticle. We show how this quantity can be measured by comparing the ratio of spectral intensities at positive and negative energies.

  4. Correlation, temperature and disorder: Recent developments in the one-step description of angle-resolved photoemission

    Science.gov (United States)

    Braun, Jürgen; Minár, Ján; Ebert, Hubert

    2018-04-01

    Various apparative developments extended the potential of angle-resolved photoemission spectroscopy tremendously during the last two decades. Modern experimental arrangements consisting of new photon sources, analyzers and detectors supply not only extremely high angle and energy resolution but also spin resolution. This provides an adequate platform to study in detail new materials like low-dimensional magnetic structures, Rashba systems, topological insulator materials or high TC superconductors. The interest in such systems has grown enormously not only because of their technological relevance but even more because of exciting new physics. Furthermore, the use of photon energies from few eV up to several keV makes this experimental technique a rather unique tool to investigate the electronic properties of solids and surfaces. The following article reviews the corresponding recent theoretical developments in the field of angle-resolved photoemission with a special emphasis on correlation effects, temperature and relativistic aspects. The most successful theoretical approach to deal with angle-resolved photoemission is the so-called spectral function or one-step formulation of the photoemission process. Nowadays, the one-step model allows for photocurrent calculations for photon energies ranging from a few eV to more than 10 keV, to deal with arbitrarily ordered and disordered systems, to account for finite temperatures, and considering in addition strong correlation effects within the dynamical mean-field theory or similar advanced approaches.

  5. Intra- and intercycle interference of angle-resolved electron emission in laser-assisted XUV atomic ionization

    Science.gov (United States)

    Gramajo, A. A.; Della Picca, R.; López, S. D.; Arbó, D. G.

    2018-03-01

    A theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser is presented. Well-established theories are usually used to describe the laser-assisted photoelectron effect: the well-known soft-photon approximation firstly posed by Maquet et al (2007 J. Mod. Opt. 54 1847) and Kazansky’s theory in (2010 Phys. Rev. A 82, 033420). However, these theories completely fail to predict the electron emission perpendicularly to the polarization direction. Making use of a semiclassical model (SCM), we study the angle-resolved energy distribution of PEs for the case that both fields are linearly polarized in the same direction. We thoroughly analyze and characterize two different emission regions in the angle-energy domain: (i) the parallel-like region with contribution of two classical trajectories per optical cycle and (ii) the perpendicular-like region with contribution of four classical trajectories per optical cycle. We show that our SCM is able to assess the interference patterns of the angle-resolved PE spectrum in the two different mentioned regions. Electron trajectories stemming from different optical laser cycles give rise to angle-independent intercycle interferences known as sidebands. These sidebands are modulated by an angle-dependent coarse-grained structure coming from the intracycle interference of the electron trajectories born during the same optical cycle. We show the accuracy of our SCM as a function of the time delay between the IR and the XUV pulses and also as a function of the laser intensity by comparing the semiclassical predictions of the angle-resolved PE spectrum with the continuum-distorted wave strong field approximation and the ab initio solution of the time-dependent Schrödinger equation.

  6. Optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy in retinal nerve fiber layer measurements of glaucoma patients.

    Science.gov (United States)

    Fanihagh, Farsad; Kremmer, Stephan; Anastassiou, Gerasimos; Schallenberg, Maurice

    2015-01-01

    To determine the correlations and strength of association between different imaging systems in analyzing the retinal nerve fiber layer (RNFL) of glaucoma patients: optical coherence tomography (OCT), scanning laser polarimetry (SLP) and confocal scanning laser ophthalmoscopy (CSLO). 114 eyes of patients with moderate open angle glaucoma underwent spectral domain OCT (Topcon SD-OCT 2000 and Zeiss Cirrus HD-OCT), SLP (GDx VCC and GDx Pro) and CSLO (Heidelberg Retina Tomograph, HRT 3). Correlation coefficients were calculated between the structural parameters yielded by these examinations. The quantitative relationship between the measured RNFL thickness globally and for the four regions (superior, inferior, nasal, temporal) were evaluated with different regression models for all used imaging systems. The strongest correlation of RNFL measurements was found between devices using the same technology like GDx VCC and GDx Pro as well as Topcon OCT and Cirrus OCT. In glaucoma patients, the strongest associations (R²) were found between RNFL measurements of the two optical coherence tomography devices Topcon OCT and Cirrus OCT (R² = 0.513) and between GDx VCC and GDx Pro (R² = 0.451). The results of the OCTs and GDX Pro also had a strong quantitative relationship (Topcon OCT R² = 0.339 and Cirrus OCT R² = 0.347). GDx VCC and the OCTs showed a mild to moderate association (Topcon OCT R² = 0.207 and Cirrus OCT R² = 0.258). The confocal scanning laser ophthalmoscopy (HRT 3) had the lowest association to all other devices (Topcon OCT R² = 0.254, Cirrus OCT R² = 0.158, GDx Pro R² = 0.086 and GDx VCC R² = 0.1). The measurements of the RNFL in glaucoma patients reveal a high correlation of OCT and GDx devices because OCTs can measure all major retinal layers and SLP can detect nerve fibers allowing a comparison between the results of this devices. However, CSLO by means of HRT topography can only measure height values of the retinal surface but it cannot distinguish

  7. Angle-resolved photoelectron spectroscopy of formaldehyde and methanol

    Science.gov (United States)

    Keller, P. R.; Taylor, J. W.; Grimm, F. A.; Carlson, Thomas A.

    1984-10-01

    Angle-resolved photoelectron spectroscopy was employed to obtain the angular distribution parameter, β, for the valence orbitals (IP < 21.1 eV) of formaldehyde and methanol over the 10-30 eV photon energy range using dispersed polarized synchrotron radiation as the excitation source. It was found that the energy dependence of β in the photoelectron energy range between 2 and 10 eV can be related to the molecular-orbital type from which ionization occurs. This generalized energy behavior is discussed with regard to earlier energy-dependence studies on molecules of different orbital character. Evidence is presented for the presence of resonance photoionization phenomena in formaldehyde in agreement with theoretical cross-section calculations.

  8. Angle-resolved photoemission spectroscopy on iron-chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Maletz, Janek; Zabolotnyy, Volodymyr; Evtushinsky, Daniil; Thirupathaiah, Setti; Wolter-Giraud, Anja; Harnagea, Luminita; Kordyuk, Alexander; Borisenko, Sergey [IFW Dresden (Germany); Yaresko, Alexander [MPI-FKF, Stuttgart (Germany); Vasiliev, Alexander [Moscow State University (Russian Federation); Chareev, Dimitri [RAS, Chernogolovka (Russian Federation); Rienks, Emile [Helmholtz-Zentrum Berlin (Germany); Buechner, Bernd [IFW Dresden (Germany); TU Dresden (Germany); Shermadini, Zurab; Luetkens, Hubertus; Sedlak, Kamil; Khasanov, Rustem; Amato, Alex; Krzton-Maziopa, Anna; Conder, Kazimierz; Pomjakushina, Ekaterina [Paul Scherrer Institute (Switzerland); Klauss, Hans-Henning [TU Dresden (Germany)

    2014-07-01

    The electronic structure of the iron chalcogenide superconductors FeSe{sub 1-x} and Rb{sub 0.77}Fe{sub 1.61}Se{sub 2} was investigated by high-resolution angle-resolved photoemission spectroscopy (ARPES). The results were compared to DFT calculations and μSR measurements. Both compounds share ''cigar-shaped'' Fermi surface sheets in their electronic structure, that can be found in almost all iron-pnictide superconductors. These features originate from a strong interplay of two hole- and electron-like bands in the Brillouin zone center, leading to a pronounced singularity in the density of states just below the Fermi level. This facilitates the coupling to a bosonic mode responsible for superconductivity.

  9. Carbon Fiber TOW Angle Determination Using Microwave Reflectometry

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.

  10. Fiber coupled ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We report on a scanning tunneling microscope with a photoconductive gate in the tunneling current circuit. The tunneling tip is attached to a coplanar transmission line with an integrated photoconductive switch. The switch is illuminated through a fiber which is rigidly attached to the switch...... waveguide. The measurements show that the probe works as a transient voltage detector in contact and a capacitively coupled transient field detector in tunneling mode. We do not measure the transient voltage change in the ohmic tunneling current. In this sense, the spatial resolution for propagating...... substrate. By using a firmly attached fiber we achieve an excellent reproducibility and unconstrained positioning of the tip. We observe a transient signal with 2.9 ps pulse width in tunneling mode and 5 ps in contact mode. The instrument is applied to investigating the mode structure on a coplanar...

  11. Robust depth selectivity in mesoscopic scattering regimes using angle-resolved measurements.

    Science.gov (United States)

    González-Rodríguez, P; Kim, A D; Moscoso, M

    2013-03-01

    We study optical imaging of tissues in the mesoscopic scattering regime in which light multiply scatters in tissues but is not fully diffusive. We use the radiative transport equation to model light propagation and an ℓ1-optimization method to solve the inverse source problem. We show that recovering the location and strength of several point-like sources that are close to each other is not possible when using angle-averaged measurements. The image reliability is limited by a spatial scale that is on the order of the transport mean-free path, even under the most ideal conditions. However, by using just a few angle-resolved measurements, the proposed method is able to overcome this limitation.

  12. Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu-Sn-Ni powder

    Science.gov (United States)

    Sabelle, Matías; Walczak, Magdalena; Ramos-Grez, Jorge

    2018-01-01

    Laser-based layer manufacturing of metals, also known as additive manufacturing, is a growing research field of academic and industrial interest. However, in the associated laser-driven processes (i.e. selective laser sintering (SLS) or melting (SLM)), optimization of some parameters has not been fully explored. This research aims at determining how the angle of laser scanning pattern (i.e. build orientation) in SLS affects the mechanical properties and structure of an individual Cu-Sn-Ni alloy metallic layer sintered in the process. Experiments consist in varying the angle of the scanning pattern (0°, 30°, 45° 60° and 90° relative to the transverse dimension of the piece), at constant scanning speed and laser beam power, producing specimens of different thicknesses. A noticeable effect of the scan angle on the mechanical strength and degree of densification of the sintered specimens is found. Thickness of the resulting monolayer correlates negatively with increasing scan angle, whereas relative density correlates positively. A minimum porosity and maximum UTS are found at the angle of 60°. It is concluded that angle of the scanning pattern angle plays a significant role in SLS of metallic monolayers.

  13. Thin resolver using the easy magnetization axis of the grain-oriented silicon steel as an angle indicator

    Directory of Open Access Journals (Sweden)

    Jisho Oshino

    2017-05-01

    Full Text Available A new type of thin resolver is presented, in which the easy axis of the magnetic anisotropy in the grain-oriented silicon steel is used as an angle indicator. The total thickness including a rotor, PCB coils and a back yoke can be made less than 4 mm. With a rotor of 50 mm diameter, a good linear response (non-linearity error < 0.4% between the mechanical angle input and the electrical angle output has been obtained. The influence of a weak magnetic anisotropy in the non-grain-oriented silicon steel used for the back yoke on the accuracy of the resolver can be deleted by the method proposed in this paper.

  14. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    Science.gov (United States)

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  15. Fiber structural analysis by synchrotron radiation

    CERN Document Server

    Kojima, J I; Kikutani, T

    2003-01-01

    Topics of fiber structural analysis by synchrotron radiation are explained. There are only three synchrotron radiation facilities in the world, SPring-8 (Super Photon ring-8) in Japan, APS (Advanced Photon Source) in U.S.A. and ESRF (European Synchrotron Radiation Facility) in France. Online measurement of melt spinning process of PET and Nylon6 is explained in detail. Polypropylene and PBO (poly-p-phenylenebenzobisoxazole) was measured by WAXD (Wide Angle X-ray Diffraction)/SAXS (Small Angle X-ray Scattering) at the same time. Some examples of measure of drawing process of fiber are described. The structure formation process of spider's thread was measured. Micro beam of X-ray of synchrotron facility was improved and it attained to 65nm small angle resolving power by 10 mu m beamsize. (S.Y.)

  16. Medical diagnosis and remote sensing at fiber-tip: picosecond resolved FRET sensor

    Science.gov (United States)

    Polley, Nabarun; Pal, Samir Kumar

    2016-03-01

    Förster Resonance Energy Transfer (FRET) strategy in popular in fiber-optic sensing. However, the steady state emission quenching of the donor is inadequate to conclude FRET. The resonance type energy transfer from one molecule (donor) to other (acceptor) should meet few key properties including donor to acceptor energy migration in non-radiative way. In the present study, we have coupled the evanescent field of an optical fiber to the covalently attached donor (dansyl) molecules at the fiber tip. By using picosecond resolved time correlated single photon counting (TCSPC) we have demonstrated that dansyl at the fiber tip transfers energy to a well known DNA-intercalating dye ethidium. Our ultrafast detection scheme selectively distinguishes the probe (dansyl) emission from the intrinsic emission of the fiber. We have also used the setup for the remote sensing of the dielectric constant (polarity) of an environment. We have finally implemented the detection mechanism to detect an industrial synthetic dye methylene blue (MB) in water.

  17. Composite cavity based fiber optic Fabry–Perot strain sensors demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror

    International Nuclear Information System (INIS)

    Zhang, Jianzhong; Yang, Jun; Sun, Weimin; Yuan, Libo; Jin, Wencai; Peng, G D

    2008-01-01

    A composite cavity based fiber optic Fabry–Perot strain sensor system, interrogated by a white light source and demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror, is proposed and demonstrated. Comparing with the traditional extrinsic fiber optic Fabry–Perot strain sensor, the potential multiplexing capability and the dynamic measurement range are improved simultaneously. At the same time, the measurement stability of the electrical scanning mirror system is improved by the self-referenced signal of the sensor structure

  18. Imaging by Electrochemical Scanning Tunneling Microscopy and Deconvolution Resolving More Details of Surfaces Nanomorphology

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    observed in high-resolution images of metallic nanocrystallites may be effectively deconvoluted, as to resolve more details of the crystalline morphology (see figure). Images of surface-crystalline metals indicate that more than a single atomic layer is involved in mediating the tunneling current......Upon imaging, electrochemical scanning tunneling microscopy (ESTM), scanning electrochemical micro-scopy (SECM) and in situ STM resolve information on electronic structures and on surface topography. At very high resolution, imaging processing is required, as to obtain information that relates...... to crystallographic-surface structures. Within the wide range of new technologies, those images surface features, the electrochemical scanning tunneling microscope (ESTM) provides means of atomic resolution where the tip participates actively in the process of imaging. Two metallic surfaces influence ions trapped...

  19. Structure-Function Correlations using Scanning Laser Polarimetry in Primary Angle-Closure Glaucoma and Primary Open Angle Glaucoma

    Science.gov (United States)

    Lee, Pei-Jung; Liu, Catherine Jui-Ling.; Wojciechowski, Robert; Bailey-Wilson, Joan E.; Cheng, Ching-Yu

    2010-01-01

    Purpose To assess the correlations between retinal nerve fiber layer (RNFL) thickness measured with scanning laser polarimetry (SLP) and visual field (VF) sensitivity in primary open angle glaucoma (POAG) and primary angle-closure glaucoma (PACG). Design Prospective, comparative, observational cases series Methods Fifty patients with POAG and 56 with PACG were examined using SLP with variable corneal compensation (GDx VCC) and Humphrey VF analyzer between August 2005 and July 2006 at Taipei Veterans General Hospital. Correlations between RNFL thickness and VF sensitivity, expressed as mean sensitivity (MS) in both decibel (dB) and 1/Lambert (L) scales, were estimated by Spearman's rank correlation coefficient (rs) and multivariate median regression models (pseudo R2). The correlations were determined globally and for six RNFL sectors and their corresponding VF regions. Results The correlation between RNFL thickness and MS (in dB) was weaker in the PACG group (rs = 0.38, P = 0.004, pseudo R2 = 0.17) than in the POAG group (rs = 0.51, P <0.001, pseudo R2 = 0.31), but the difference in the magnitude of correlation was not significant (P = 0.42).With Bonferroni correction, the structure-function correlation was significant in the superotemporal (rs = 0.62), superonasal (rs = 0.56), inferonasal (rs = 0.53), and inferotemporal (rs = 0.50) sectors in the POAG group (all P <0.001), while it was significant only in the superotemporal (rs = 0.53) and inferotemporal (rs = 0.48) sectors in the PACG group (both P <0.001). The results were similar when MS was expressed as 1/L scale. Conclusions Both POAG and PACG eyes had moderate structure-function correlations using SLP. Compared to eyes with POAG, fewer RNFL sectors have significant structure-function correlations in eyes with PACG. PMID:20202618

  20. Characterization of metal-coated fiber tip for NSOM lithography by tip-to-tip scan

    International Nuclear Information System (INIS)

    Kubicova, I.; Pudis, D.; Suslik, L.; Skriniarova, J.

    2011-01-01

    For the optical field characterization, a tip-to-tip scan of two metal-coated fiber tips with circular aperture at the apex was performed. The optical field irradiated from the fiber probe in illumination mode was analyzed by NSOM represented by fiber probe in collection mode. The near-field intensity profile of the source fiber tip in the plane perpendicular to the axis of the tip was taken. Experimental stage requires high resolution 3D motion system controlled by computer (Fig. 1). The source and the detector fiber tip were placed on the moving and static part of the 3D nanoposition system, respectively. As a light source, a modulated 473 nm DPSS laser was used. After the source fiber tip characterization, the NSOM lithography was performed. In the experimental setup from Fig. 1, the detector fiber tip was replaced by a sample fixed in a vacuum holder. As a sample, a 600 nm positive photoresist AZ 5214E was spin-coated on a GaAs substrate. Exposure was carried out by irradiation of the sample at desired positions through the fiber tip aperture. The sample was developed in AZ 400K developer for 30 s and rinsed in DI water. A promising tip-to-tip scanning technique for characterization of metal-coated fiber tips with aperture at the apex was presented. Nearly-circular aperture shapes were documented from NSOM measurements with diameter estimated to be less than 460 nm. By knowing the source-detector distance and the FWHM of the near-field intensity profile, the tip-to-tip scan proves an easy and fast method to analyze the fiber tip aperture properties. The fiber tip resolution was confirmed by preparation of 2D planar structures in thin photoresist layer, where the NSOM lithography uses the metal-coated fiber tip characterized in previous section. (authors)

  1. APPLICABILITY OF THE COBB ANGLE MEASUREMENT IN IDIOPATHIC SCOLIOSIS USING SCANNED IMAGING

    Directory of Open Access Journals (Sweden)

    ERASMO DE ABREU ZARDO

    Full Text Available ABSTRACT Objectives: To compare the measurement of the Cobb angle on printed radiographs and on scanned radiographs viewed through the software "PixViewer". Methods: Preoperative radiographs of 23 patients were evaluated on printed films and through the software "PixViewer". The same evaluator, a spine surgeon, chose the proximal and distal limiting vertebrae of the main curve on printed radiographs, without identification of patients, and measured the Cobb angle based on these parameters. The same parameters and measurements were applied to scanned radiographs. The measurements were compared, as well as the choice of limiting vertebrae. Results: The average variation of the Cobb angle between methods was 1.48 ± 1.73°. The intraclass correlation coefficient (ICC was 0.99, demonstrating excellent reproducibility. Conclusion: The Cobb method can be used to evaluate scoliosis through the "PixViewer" tool with the same reliability as the classic method on printed radiographs.

  2. Designing a compensating quartz fiber calorimeter for low angle calorimetry at LHC

    International Nuclear Information System (INIS)

    Ferrando, A.; Fouz, M.C.; Josa, M.I.; Khan, A.; Rosowsky, A.; Salicio, J.M.

    1996-01-01

    We present a design of a compensating quartz fiber calorimeter, made of a unique active section, and ment for the specific physics requirements of the low angle calorimetry in LHC experiments. The purposed calorimeter is exemplified for the case of the CMS experiment

  3. Angle resolved mass spectrometry of positive ions transmitted through high aspect ratio channels in a radio frequency discharge

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Tachibana, K.; Imai, S.

    1997-01-01

    The behavior of positive ions in high aspect ratio structures, relevant to the reactive ion etching of deep trenches, has been studied by means of energy resolved mass spectrometry. High aspect ratio trenches are simulated by capillary plates with various aspect ratios. Angle resolved measurements

  4. Angle transducer based on fiber Bragg gratings able for tunnel auscultation

    Science.gov (United States)

    Quintela, A.; Lázaro, J. M.; Quintela, M. A.; Mirapeix, J.; Muñoz-Berti, V.; López-Higuera, J. M.

    2010-09-01

    In this paper an angle transducer based on Fiber Bragg Grating (FBG) is presented. Two gratings are glued to a metallic platen, one in each side. It is insensitive to temperature changes, given that the temperature shifts affect equally to both FBG. When the platen is uniformly bent an uniform strain appears in both sides of the platen. It depends on the bend angle and the platen length and thickness. The transducer has been designed to be used in the auscultation of tunnels during their construction process and during their live time. The transducer design and its characterization are presented.

  5. Reducing scan angle using adaptive prior knowledge for a limited-angle intrafraction verification (LIVE) system for conformal arc radiotherapy

    Science.gov (United States)

    Zhang, Yawei; Yin, Fang-Fang; Zhang, You; Ren, Lei

    2017-05-01

    The purpose of this study is to develop an adaptive prior knowledge guided image estimation technique to reduce the scan angle needed in the limited-angle intrafraction verification (LIVE) system for 4D-CBCT reconstruction. The LIVE system has been previously developed to reconstruct 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to further reduce the scanning angle needed to reconstruct the 4D-CBCT images for faster intrafraction verification. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on kV-MV projections acquired in extremely limited angle (orthogonal 3°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of the respiratory motion. The 4D digital extended-cardiac-torso (XCAT) phantom and a CIRS 008A dynamic thoracic phantom were used to evaluate the effectiveness of this technique. The reconstruction accuracy of the technique was evaluated by calculating both the center-of-mass-shift (COMS) and 3D volume-percentage-difference (VPD) of the tumor in reconstructed images and the true on-board images. The performance of the technique was also assessed with varied breathing signals against scanning angle, lesion size, lesion location, projection sampling interval, and scanning direction. In the XCAT study, using orthogonal-view of 3° kV and portal MV projections, this technique achieved an average tumor COMS/VPD of 0.4  ±  0.1 mm/5.5  ±  2.2%, 0.6  ±  0.3 mm/7.2  ±  2.8%, 0.5  ±  0.2 mm/7.1  ±  2.6%, 0.6  ±  0.2 mm/8.3  ±  2.4%, for baseline drift, amplitude variation, phase shift, and patient breathing signal variation

  6. Angle-resolved photoemission in high Tc cuprates from theoretical viewpoints

    International Nuclear Information System (INIS)

    Tohyama, T.; Maekawa, S.

    2000-01-01

    The angle-resolved photoemission (ARPES) technique has been developed rapidly over the last decade, accompanied by the improvement of energy and momentum resolutions. This technique has been established as the most powerful tool to investigate the high T c cuprate superconductors. We review recent ARPES data on the cuprates from a theoretical point of view, with emphasis on the systematic evolution of the spectral weight near the momentum (π, 0) from insulator to overdoped systems. The effects of charge stripes on the ARPES spectra are also reviewed. Some recent experimental and theoretical efforts to understand the superconducting state and the pseudogap phenomenon are discussed. (author)

  7. Atmospheric correction for JPSS-2 VIIRS response versus scan angle measurements

    Science.gov (United States)

    McIntire, Jeffrey; Moeller, Chris; Oudrari, Hassan; Xiong, Xiaoxiong

    2017-09-01

    The Joint Polar Satellite System 2 (JPSS-2) Visible Infrared Imaging Radiometer Suite (VIIRS) includes one spectral band centered in a strong atmospheric absorption region. As much of the pre-launch calibration is performed under laboratory ambient conditions, accurately accounting for the absorption, and thereby ensuring the transfer of the sensor calibration to on-orbit operations, is necessary to generate science quality data products. This work is focused on the response versus scan angle (RVS) measurements, which characterize the relative scan angle dependent reflectance of the JPSS-2 VIIRS instrument optics. The spectral band of interest, centered around 1378 nm, is within a spectral region strongly effected by water vapor absorption. The methodology used to model the absolute humidity and the atmospheric transmittance under the laboratory conditions is detailed. The application of this transmittance to the RVS determination is then described including an uncertainty estimate; a comparison to the pre-launch measurements from earlier sensor builds is also performed.

  8. Three dimensional phase imaging using a scanning optical fiber interferometer

    International Nuclear Information System (INIS)

    Walford, J.N.; Nugent, K.A.; Roberts, A.; Scholten, R.E.

    1998-01-01

    A quantitative method for measuring phase in three dimensions using a scanning optical fiber interferometer is described. By exploiting phase modulation in the reference arm, this technique is insensitive to large variations in the intensity of the field being studied, and is therefore highly suitable for measurement of phase within spatially confined optical beams. It uses only a single detector, and is not reliant on lock-in electronics. The technique is applied to the measurement of the near field of a cleaved optical fiber and shown to produce results in good agreement with theory. (authors)

  9. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.

    Science.gov (United States)

    Stankovic, Uros; van Herk, Marcel; Ploeger, Lennert S; Sonke, Jan-Jakob

    2014-06-01

    Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different acquisition

  10. An experimentalist's guide to the matrix element in angle resolved photoemission

    International Nuclear Information System (INIS)

    Moser, Simon

    2017-01-01

    Highlights: • An introduction to the art of angle resolved photoemission is presented. • Matrix element effects are described by a nearly free electron final state model. • ARPES spectral weight of a Bloch band can be calculated from the Fourier transform of its Wannier orbital. • Experimental handedness and improper polarization introduce dichroism. • Instructive showcases from modern ARPES are discussed in detail. - Abstract: Angle resolved photoemission spectroscopy (ARPES) is commonly known as a powerful probe of the one-electron removal spectral function in ordered solid state. With increasing efficiency of light sources and spectrometers, experiments over a wide range of emission angles become more and more common. Consequently, the angular variation of ARPES spectral weight – often times termed “matrix element effect” – enters as an additional source of information. In this tutorial, we develop a simple but instructive free electron final state approach based on the three-step model to describe the intensity distribution in ARPES. We find a compact expression showing that the ARPES spectral weight of a given Bloch band is essentially determined by the momentum distribution (the Fourier transform) of its associated Wannier orbital – times a polarization dependent pre-factor. While the former is giving direct information on the symmetry and shape of the electronic wave function, the latter can give rise to surprising geometric effects. We discuss a variety of modern and instructive experimental showcases for which this simplistic formalism works astonishingly well and discuss the limits of this approach.

  11. An experimentalist's guide to the matrix element in angle resolved photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Simon, E-mail: skmoser@lbl.gov [Advanced Light Source (ALS), Berkeley, CA 94720 (United States); Institute of Physics (IPHYS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2017-01-15

    Highlights: • An introduction to the art of angle resolved photoemission is presented. • Matrix element effects are described by a nearly free electron final state model. • ARPES spectral weight of a Bloch band can be calculated from the Fourier transform of its Wannier orbital. • Experimental handedness and improper polarization introduce dichroism. • Instructive showcases from modern ARPES are discussed in detail. - Abstract: Angle resolved photoemission spectroscopy (ARPES) is commonly known as a powerful probe of the one-electron removal spectral function in ordered solid state. With increasing efficiency of light sources and spectrometers, experiments over a wide range of emission angles become more and more common. Consequently, the angular variation of ARPES spectral weight – often times termed “matrix element effect” – enters as an additional source of information. In this tutorial, we develop a simple but instructive free electron final state approach based on the three-step model to describe the intensity distribution in ARPES. We find a compact expression showing that the ARPES spectral weight of a given Bloch band is essentially determined by the momentum distribution (the Fourier transform) of its associated Wannier orbital – times a polarization dependent pre-factor. While the former is giving direct information on the symmetry and shape of the electronic wave function, the latter can give rise to surprising geometric effects. We discuss a variety of modern and instructive experimental showcases for which this simplistic formalism works astonishingly well and discuss the limits of this approach.

  12. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S., E-mail: suhaimihas@uthm.edu.my; Yusof, M. S., E-mail: mdsalleh@uthm.edu.my; Maksud, M. I., E-mail: midris1973@gmail.com [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia); Embong, Z., E-mail: zaidi@uthm.edu.my [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia)

    2016-01-22

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La{sub 2}O{sub 3}) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La{sub 2}O{sub 3} deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La{sub 2}O{sub 3} and La(OH){sub 3}. The information of oxygen species, O{sup 2-} component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O{sup 2−}), two chemisorb component (La{sub 2}O{sub 3}) and La(OH){sub 3} and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  13. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Science.gov (United States)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2016-01-01

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La2O3 and La(OH)3. The information of oxygen species, O2- component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O2-), two chemisorb component (La2O3) and La(OH)3 and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  14. Angle-resolved environmental X-ray photoelectron spectroscopy: A new laboratory setup for photoemission studies at pressures up to 0.4 Torr

    International Nuclear Information System (INIS)

    Mangolini, F.; Wabiszewski, G. E.; Egberts, P.; Åhlund, J.; Backlund, K.; Karlsson, P. G.; Adiga, V. P.; Streller, F.; Wannberg, B.; Carpick, R. W.

    2012-01-01

    The paper presents the development and demonstrates the capabilities of a new laboratory-based environmental X-ray photoelectron spectroscopy system incorporating an electrostatic lens and able to acquire spectra up to 0.4 Torr. The incorporation of a two-dimensional detector provides imaging capabilities and allows the acquisition of angle-resolved data in parallel mode over an angular range of 14° without tilting the sample. The sensitivity and energy resolution of the spectrometer have been investigated by analyzing a standard Ag foil both under high vacuum (10 −8 Torr) conditions and at elevated pressures of N 2 (0.4 Torr). The possibility of acquiring angle-resolved data at different pressures has been demonstrated by analyzing a silicon/silicon dioxide (Si/SiO 2 ) sample. The collected angle-resolved spectra could be effectively used for the determination of the thickness of the native silicon oxide layer.

  15. The structure of formate on TiO{sub 2}(110) by scanned-energy and scanned-angle photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Thevuthasan, S.; Kim, Y.J.; Herman, G.S. [Pacific Northwest National Laboratory, Richland, WA (United States)] [and others

    1997-04-01

    There is a considerable interest in understanding the interaction of small organic molecules with oxide surfaces. The chemistry of formate interactions with TiO{sub 2}(110) has been investigated by several groups, but there is little information on the structure of the adsorbate/surface complex. Recently the authors combined high-energy x-ray photoelectron diffraction (XPD) measurements at PNNL with low-energy scanned-angle and scanned-energy photoelectron diffraction measurements at the ALS to investigate the structure of the formate ion on TiO{sub 2}(110) in detail. The high-energy XPD results reveal that formate binds through the oxygens in a bidentate fashion to Ti cation rows along the [001] direction with an O-C-O bond angle of about 126{degrees}. Low-energy photoelectron diffraction data, which is briefly described below, was used to identify the specific bonding geometry, including the bond length between the Ti cation and the oxygen in the formate.

  16. Solid Particle Erosion of Date Palm Leaf Fiber Reinforced Polyvinyl Alcohol Composites

    Directory of Open Access Journals (Sweden)

    Jyoti R. Mohanty

    2014-01-01

    Full Text Available Solid particle erosion behavior of short date palm leaf (DPL fiber reinforced polyvinyl alcohol (PVA composite has been studied using silica sand particles (200 ± 50 μm as an erodent at different impingement angles (15–90° and impact velocities (48–109 m/s. The influence of fiber content (wt% of DPL fiber on erosion rate of PVA/DPL composite has also been investigated. The neat PVA shows maximum erosion rate at 30° impingement angle whereas PVA/DPL composites exhibit maximum erosion rate at 45° impingement angle irrespective of fiber loading showing semiductile behavior. The erosion efficiency of PVA and its composites varies from 0.735 to 16.289% for different impact velocities studied. The eroded surfaces were observed under scanning electron microscope (SEM to understand the erosion mechanism.

  17. Electronic structure of Sr2RuO4 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Iwasawa, H.; Aiura, Y.; Saitoh, T.; Yoshida, Y.; Hase, I.; Ikeda, S.I.; Bando, H.; Kubota, M.; Ono, K.

    2007-01-01

    Electronic structure of the monolayer strontium ruthenate Sr 2 RuO 4 was investigated by high-resolution angle-resolved photoemission spectroscopy. We present photon-energy (hν) dependence of the electronic structure near the Fermi level along the ΓM line. The hν dependence has shown a strong spectral weight modulation of the Ru 4d xy and 4d zx bands

  18. Wettability modification of electrospun poly(ε-caprolactone) fibers by femtosecond laser irradiation in different gas atmospheres

    International Nuclear Information System (INIS)

    He Lingna; Chen Jian; Farson, Dave F.; Lannutti, John J.; Rokhlin, Stan I.

    2011-01-01

    The effect of femtosecond laser irradiation in air and in O 2 and CF 4 gas flows on the wettability of electrospun poly(ε-caprolactone) fiber tissue scaffolds was studied. Laser power, focus spot size, raster scan spacing and gas atmosphere were varied in experiments. SEM imaging showed the average fiber diameter and surface porosity sizes were both altered by ablation. The micro-scale surface roughness measured by scanning laser profilometry was found to have a non-monotonic relationship to the surface wettability measured by the contact angle of sessile water droplets. In contrast, surface water contact angle continuously decreased with increased oxygen atomic percentage and oxygen-containing group fraction as measured by XPS. Further, the oxygen content was larger for more extensively ablated fiber surfaces, regardless of whether the increased ablation was caused by high laser power, smaller scanning space or smaller defocusing distance. Of the three gas atmospheres, O 2 gas flow was the most favorable environment for increasing surface oxidization, resulting in the largest water contact angle decrease for given laser power. For CF 4 gas flow, the least oxidization occurred, and the magnitude of water contact angle decrease was smallest for treatment at a given laser power.

  19. Super-resolved terahertz microscopy by knife-edge scan

    Science.gov (United States)

    Giliberti, V.; Flammini, M.; Ciano, C.; Pontecorvo, E.; Del Re, E.; Ortolani, M.

    2017-08-01

    We present a compact, all solid-state THz confocal microscope operating at 0.30 THz that achieves super-resolution by using the knife-edge scan approach. In the final reconstructed image, a lateral resolution of 60 μm ≍ λ/17 is demonstrated when the knife-edge is deep in the near-field of the sample surface. When the knife-edge is lifted up to λ/4 from the sample surface, a certain degree of super-resolution is maintained with a resolution of 0.4 mm, i.e. more than a factor 2 if compared to the diffraction-limited scheme. The present results open an interesting path towards super-resolved imaging with in-depth information that would be peculiar to THz microscopy systems.

  20. An ultrafast angle-resolved photoemission apparatus for measuring complex materials

    Science.gov (United States)

    Smallwood, Christopher L.; Jozwiak, Christopher; Zhang, Wentao; Lanzara, Alessandra

    2012-12-01

    We present technical specifications for a high resolution time- and angle-resolved photoemission spectroscopy setup based on a hemispherical electron analyzer and cavity-dumped solid state Ti:sapphire laser used to generate pump and probe beams, respectively, at 1.48 and 5.93 eV. The pulse repetition rate can be tuned from 209 Hz to 54.3 MHz. Under typical operating settings the system has an overall energy resolution of 23 meV, an overall momentum resolution of 0.003 Å-1, and an overall time resolution of 310 fs. We illustrate the system capabilities with representative data on the cuprate superconductor Bi2Sr2CaCu2O8+δ. The descriptions and analyses presented here will inform new developments in ultrafast electron spectroscopy.

  1. Electrospun Porous PDLLA Fiber Membrane Coated with nHA

    Directory of Open Access Journals (Sweden)

    Linhui Qiang

    2018-05-01

    Full Text Available Porous poly- D, L-lactic acid (PDLLA electrospinning fiber membrane was prepared, and nano-hydroxyapatite (nHA was adsorbed and wrapped into it during the unique shrinking process of the PDLLA fiber membrane to fabricate the PDLLA/nHA composite membrane scaffold for tissue engineering. Compare with the composite fibers prepared by blend electrospinning, most of nHA particles are observed to distribute on the surface of new type composite fibers, which could significantly improve the water wettability and induce the cellular adherence. FTIR analysis indicated that the PDLLA/nHA composite fibrous membrane was formed by physical adsorption. The combination was probed by scanning electron microscope, thermo-gravimetric, water contact angle and mechanical property analysis. It was proved that the nHA particles’ content and distribution, surface wettability, modulus and tensile strength of PDLLA/nHA composite fibrous membrane were influenced by the concentration of nHA dispersion and pores on the PDLLA fiber surface. The 10.6 wt % PDLLA/nHA composite fibrous membrane exhibits a more balanced tensile strength (3.28 MPa and surface wettability (with a water contact angle of 0° of the composite mats. Scanning electron microscope and confocal laser scanning microscopy images of chondrocyte proliferation further showed that the composite scaffold is non-toxic. The adherence and proliferation of chondrocytes on the 10.6 wt % PDLLA/nHA fibrous membrane was significantly improved, compared with PDLLA mat. The 10.6 wt % PDLLA/nHA composite fibrous membrane has potential application value as scaffold material in tissue engineering.

  2. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    International Nuclear Information System (INIS)

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.; Sonke, Jan-Jakob

    2014-01-01

    Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different

  3. Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments

    NARCIS (Netherlands)

    Rubio-Bollinger, G.; Castellanos-Gomez, A.; Bilan, S.; Zotti, L.A.; Arroyo, C.R.; Agraït, N.; Cuevas, J.

    2012-01-01

    We fabricate and characterize carbon-fiber tips for their use in combined scanning tunneling and force microscopy based on piezoelectric quartz tuning fork force sensors. An electrochemical fabrication procedure to etch the tips is used to yield reproducible sub-100-nm apex. We also study electron

  4. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.

    Science.gov (United States)

    Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji

    2006-03-15

    We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.

  5. Evaluation of the Anterior Segment Angle-to-Angle Scan of Cirrus High-Definition Optical Coherence Tomography and Comparison With Gonioscopy and With the Visante OCT.

    Science.gov (United States)

    Tun, Tin A; Baskaran, Mani; Tan, Shayne S; Perera, Shamira A; Aung, Tin; Husain, Rahat

    2017-01-01

    To evaluate the diagnostic performance of the anterior segment angle-to-angle scan of the Cirrus high-definition optical coherence tomography (HD-OCT) in detecting eyes with closed angles. All subjects underwent dark-room gonioscopy by an ophthalmologist. A technician performed anterior segment imaging with Cirrus (n = 202) and Visante OCT (n = 85) under dark-room conditions. All eyes were categorized by two masked graders as per number of closed quadrants. Each quadrant of anterior chamber angle was categorized as a closed angle if posterior trabecular meshwork could not be seen on gonioscopy or if there was any irido-corneal contact anterior to scleral spur in Cirrus and Visante images. An eye was graded as having a closed angle if two or more quadrants were closed. Agreement and area under the curve (AUC) were performed. There were 50 (24.8%) eyes with closed angles. The agreements of closed-angle diagnosis (by eye) between Cirrus HD-OCT and gonioscopy (k = 0.59; 95% confidence interval (CI) 0.45-0.72; AC1 = 0.76) and between Cirrus and Visante OCT (k = 0.65; 95% CI 0.48-0.82, AC1 = 0.77) were moderate. The AUC for diagnosing the eye with gonioscopic closed angle by Cirrus HD-OCT was good (AUC = 0.86; sensitivity = 83.33; specificity = 77.78). The diagnostic performance of Cirrus HD-OCT in detecting the eyes with closed angles was similar to that of Visante (AUC 0.87 vs. 0.9, respectively; P = 0.51). The anterior segment angle-to-angle scans of Cirrus HD-OCT demonstrated similar diagnostic performance as Visante in detecting gonioscopic closed angles. The agreement between Cirrus and gonioscopy for detecting eyes with closed angles was moderate.

  6. Heat accumulation between scans during multi-pass cutting of carbon fiber reinforced plastics

    Science.gov (United States)

    Kononenko, T. V.; Freitag, C.; Komlenok, M. S.; Weber, R.; Graf, T.; Konov, V. I.

    2018-02-01

    Matrix evaporation caused by heat accumulation between scans (HAS) was studied in the case of multi-pass scanning of a laser beam over the surface of carbon fiber reinforced plastic (CFRP). The experiments were performed in two regimes, namely, in the process of CFRP cutting and in the regime of low-fluence irradiation avoiding ablation of carbon fibers. The feature of the ablation-free regime is that all absorbed energy remains in the material as heat, while in the cutting regime the fraction of residual heat is unknown. An analytical model based on two-dimensional (2D) heat flow was applied to predict the critical number of scans, after which the HAS effect causes a distinct growth of the matrix evaporation zone (MEZ). According to the model, the critical number of scans decreases exponentially with increasing laser power, while no dependence on the feed rate is expected. It was found that the model fits well to the experimental data obtained in the ablation-free regime where the heat input is well defined and known. In the cutting regime the measured significant reduction of the critical number of scans observed in deep grooves may be attributed to transformation of the heat flow geometry and to an expected increase of the residual heat fraction.

  7. An ultrafast angle-resolved photoemission apparatus for measuring complex materials

    International Nuclear Information System (INIS)

    Smallwood, Christopher L.; Lanzara, Alessandra; Jozwiak, Christopher; Zhang Wentao

    2012-01-01

    We present technical specifications for a high resolution time- and angle-resolved photoemission spectroscopy setup based on a hemispherical electron analyzer and cavity-dumped solid state Ti:sapphire laser used to generate pump and probe beams, respectively, at 1.48 and 5.93 eV. The pulse repetition rate can be tuned from 209 Hz to 54.3 MHz. Under typical operating settings the system has an overall energy resolution of 23 meV, an overall momentum resolution of 0.003 Å −1 , and an overall time resolution of 310 fs. We illustrate the system capabilities with representative data on the cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ . The descriptions and analyses presented here will inform new developments in ultrafast electron spectroscopy.

  8. Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients.

    Science.gov (United States)

    Mayer, Markus A; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P

    2010-11-08

    Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis.

  9. Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Sebnem DUZYER

    2016-11-01

    Full Text Available The aim of this study to investigate the effects of different sterilization methods on electrospun polyester. Ethylene oxide (EO, autoclave (AU and ultraviolet (UV sterilization methods were applied to electrospun fibers produced from polyethylene terephthalate (PET solutions with concentrations of 10, 15 and 20 wt.%. The surface characteristics of the fibers were examined by scanning electron microscope (SEM, atomic force microscope (AFM, surface pore size studies and contact angle measurements. Differential scanning calorimetry (DSC tests were carried out to characterize the thermal properties. Fourier Transform Infrared spectroscopy (FTIR tests were performed to analyze the micro structural properties. SEM studies showed that different sterilization methods made significant changes on the surfaces of the fibers depending on the PET concentration. Although the effects were decreased with the increasing polymer concentration, the fiber structure was damaged especially with the EO sterilization. The contact angle values were decreased with the UV sterilization method the most.

  10. Novel Technique for Quantitative Fast Scanning Calorimetry on Electrospun Fibers

    Science.gov (United States)

    Thomas, David; Govinna, Nelaka; Schick, Christoph; Cebe, Peggy

    Fast scanning chip calorimetry allows for the study of polymers which have rapid nucleation and/or crystallization kinetics, or degrade within their melting range. Heating rates used, up to 4000 K/s, allow studies of hetero and homogeneous nucleation at time scales inaccessible with conventional calorimeters, whose rates are typically alcohol (PVA) were chosen in the development of a new methodology to obtain quantitative fast scanning thermal data from electrospun nanofibers using a Flash DSC1. The structure of nanofibers requires special methods to load nanogram-sized samples onto a UFSC1 sensor. Fibers were directly spun onto TEM grids which provide a durable substrate to support bundles of nanofibers and possess excellent thermal conductivity allowing for a strong, repeatable signal and ensure good sample to sensor contact. As spun samples were held isothermally at temperatures ranging from Tg to Tm then heated at 2,000 K/s to assess as-spun crystallinity and cold crystallization behaviors. Above Tm the fibers break up into micro- and nano-droplets. On these samples, melt crystallization experiments were performed to study nucleation and crystallization of polymer confined to nanodroplet morphology. NSF DMR-1608125.

  11. Multi-distance diffuse optical spectroscopy with a single optode via hypotrochoidal scanning.

    Science.gov (United States)

    Applegate, Matthew B; Roblyer, Darren

    2018-02-15

    Frequency-domain diffuse optical spectroscopy (FD-DOS) is an established technique capable of determining optical properties and chromophore concentrations in biological tissue. Most FD-DOS systems use either manually positioned, handheld probes or complex arrays of source and detector fibers to acquire data from many tissue locations, allowing for the generation of 2D or 3D maps of tissue. Here, we present a new method to rapidly acquire a wide range of source-detector (SD) separations by mechanically scanning a single SD pair. The source and detector fibers are mounted on a scan head that traces a hypotrochoidal pattern over the sample that, when coupled with a high-speed FD-DOS system, enables the rapid collection of dozens of SD separations for depth-resolved imaging. We demonstrate that this system has an average error of 4±2.6% in absorption and 2±1.8% in scattering across all SD separations. Additionally, by linearly translating the device, the size and location of an absorbing inhomogeneity can be determined through the generation of B-scan images in a manner conceptually analogous to ultrasound imaging. This work demonstrates the potential of single optode diffuse optical scanning for depth resolved visualization of heterogeneous biological tissues at near real-time rates.

  12. 3-d chemical imaging using angle-scan nanotomography in a soft X-ray scanning transmission X-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A.P.; Johansson, G.A. [McMaster, BIMR, Hamilton (Canada); Mitchell, G.E. [Dow Chemical, Analytical Science, Midland, MI (United States); Keefe, M.H. [Dow Chemical, Dow Latex, Midland, MI (United States); Tyliszcak, T. [LBNL, Advanced Light Source, Berkeley, CA (United States)

    2008-08-15

    Three-dimensional chemical mapping using angle scan nanotomography in a soft X-ray scanning transmission X-ray microscope (STXM) has been used to investigate the spatial distributions of a low density polyacrylate polyelectrolyte ionomer inside submicron sized polystyrene microspheres. Acquisition of tomograms at multiple photon energies provides true, quantifiable 3-d chemical sensitivity. Both pre-O 1s and C 1s results are shown. The study reveals aspects of the 3-d distribution of the polyelectrolyte that were inferred indirectly or had not been known prior to this study. The potential and challenges for extension of the technique to studies of other polymeric and to biological systems is discussed. (orig.)

  13. Surface Quality of Staggered PCD End Mill in Milling of Carbon Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Guangjun Liu

    2017-02-01

    Full Text Available Machined surface quality determines the reliability, wear resistance and service life of carbon fiber reinforced plastic (CFRP workpieces. In this work, the formation mechanism of the surface topography and the machining defects of CFRPs are proposed, and the influence of milling parameters and fiber cutting angles on the surface quality of CFRPs is obtained, which can provide a reference for extended tool life and good surface quality. Trimming and slot milling tests of unidirectional CFRP laminates are performed. The surface roughness of the machined surface is measured, and the influence of milling parameters on the surface roughness is analyzed. A regression model for the surface roughness of CFRP milling is established. A significance test of the regression model is conducted. The machined surface topography of milling CFRP unidirectional laminates with different fiber orientations is analyzed, and the effect of fiber cutting angle on the surface topography of the machined surface is presented by using a digital super depth-of-field microscope and scanning electron microscope (SEM. To study the influence of fiber cutting angle on machining defects, the machined topography under different fiber orientations is analyzed. The slot milling defects and their formation mechanism under different fiber cutting angles are investigated.

  14. Time-resolved C-arm cone beam CT angiography (TR-CBCTA) imaging from a single short-scan C-arm cone beam CT acquisition with intra-arterial contrast injection

    Science.gov (United States)

    Li, Yinsheng; Garrett, John W.; Li, Ke; Wu, Yijing; Johnson, Kevin; Schafer, Sebastian; Strother, Charles; Chen, Guang-Hong

    2018-04-01

    Time-resolved C-arm cone-beam CT (CBCT) angiography (TR-CBCTA) images can be generated from a series of CBCT acquisitions that satisfy data sufficiency condition in analytical image reconstruction theory. In this work, a new technique was developed to generate TR-CBCTA images from a single short-scan CBCT data acquisition with contrast media injection. The reconstruction technique enabling this application is a previously developed image reconstruction technique, synchronized multi-artifact reduction with tomographic reconstruction (SMART-RECON). In this new application, the acquired short-scan CBCT projection data were sorted into a union of several sub-sectors of view angles and each sub-sector of view angles corresponds to an individual image volume to be reconstructed. The SMART-RECON method was then used to jointly reconstruct all of these individual image volumes under two constraints: (1) each individual image volume is maximally consistent with the measured cone-beam projection data within the corresponding view angle sector and (2) the nuclear norm of the image matrix is minimized. The difference between these reconstructed individual image volumes is used to generated the desired subtracted angiograms. To validate the technique, numerical simulation data generated from a fractal tree angiogram phantom were used to quantitatively study the accuracy of the proposed method and retrospective in vivo human subject studies were used to demonstrate the feasibility of generating TR-CBCTA in clinical practice.

  15. Industrial site particulate pollution monitoring with an eye-safe and scanning industrial fiber lidar

    Science.gov (United States)

    Belanger, Brigitte; Fougeres, Andre; Talbot, Mario

    2001-02-01

    12 Over the past few years, INO has developed an Industrial Fiber Lidar (IFL). It enables the particulate pollution monitoring on industrial sites. More particularly, it has been used to take measurements of particulate concentration at Port Facilities of an aluminum plant during boat unloading. It is an eye-safe and portable lidar. It uses a fiber laser also developed at INO emitting 1.7 microJoules at 1534 nm with a pulse repetition frequency of 5 kHz. Given the harsh environment of an industrial site, all the sensitive equipment like the laser source, detector, computer and acquisition electronics are located in a building and connected to the optical module, placed outside, via optical fibers up to 500 m long. The fiber link also offers all the flexibility for placing the optical module at a proper location. The optical module is mounted on a two axis scanning platform, able to perform an azimuth scan of 0 to 355 deg and an elevation scan of +/- 90 deg, which enables the scanning of zones defined by the user. On this industrial site, materials like bauxite, alumina, spathfluor and calcined coke having mass extinction coefficients ranging from 0.53 to 2.7 m2/g can be detected. Data for different measurement configurations have been obtained. Concentration values have been calculated for measurements in a hopper, along a wharf and over the urban area close to the port facilities. The lidar measurements have been compared to high volume samplers. Based on these comparisons, it has been established that the IFL is able to monitor the relative fluctuations of dust concentrations. It can be integrated to the process control of the industrial site for alarm generation when concentrations are above threshold.

  16. Fermi Surface and Band Structure of (Ca,La)FeAs2 Superconductor from Angle-Resolved Photoemission Spectroscopy

    International Nuclear Information System (INIS)

    Liu Xu; Liu De-Fa; Zhao Lin; Guo Qi; Mu Qing-Ge; Chen Dong-Yun; Shen Bing; Yi He-Mian; Huang Jian-Wei; He Jun-Feng; Peng Ying-Ying; Liu Yan; He Shao-Long; Liu Guo-Dong; Dong Xiao-Li; Zhang Jun; Ren Zhi-An; Zhou Xing-Jiang; Chen Chuang-Tian; Xu Zu-Yan

    2013-01-01

    The (Ca,R)FeAs 2 (R=La, Pr, etc.) superconductors with a signature of superconductivity transition above 40 K possess a new kind of block layers that consist of zig-zag As chains. We report the electronic structure of the new (Ca,La)FeAs 2 superconductor investigated by both band structure calculations and high resolution angle-resolved photoemission spectroscopy measurements. Band structure calculations indicate that there are four hole-like bands around the zone center Γ(0,0) and two electron-like bands near the zone corner M(π, π) in CaFeAs 2 . In our angle-resolved photoemission measurements on (Ca 0.9 La 0.1 )FeAs 2 , we have observed three hole-like bands around the Γ point and one electron-like Fermi surface near the M(π, π) point. These results provide important information to compare and contrast with the electronic structure of other iron-based compounds in understanding the superconductivity mechanism in the iron-based superconductors. (express letter)

  17. Transient measurements with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    We use a photoconductively gated ultrafast scanning tunneling microscope to resolve laser-induced transients on transmission lines and photoconductors. The photoconductive switch on the tunneling probe is illuminated through a rigidly attached fiber. The use of the fiber enables us to scan across...... the transmission line while the change in delay time between pump beam (on the sample) and probe beam (on the probe) provides the temporal information. The investigated photoconductor sample is a low-temperature-grown GaAs layer placed on a sapphire substrate with a thin, semitransparent gold layer. In tunneling...... mode the probe is sensitive to laser-induced field changes in the semiconductor layer. Laser-induced transient signals of 2.2 ps widths are detected. As for the transmission lines, the signals can be explained by a capacitive coupling across the tunneling gap....

  18. Linear and circular dichroism in angle resolved Fe 3p photomission. Revision 1

    International Nuclear Information System (INIS)

    Tamura, E.; Waddill, G.D.; Tobin, J.G.; Sterne, P.A.

    1994-01-01

    Using a recently developed spin-polarized, fully relativistic, multiple scattering approach based on the layer KKR Green function method, we have reproduced the Fe 3p angle-resolved soft x-ray photoemission spectra and analyzed the associated large magnetic dichroism effects for excitation with both linearly and circularly polarized light. Comparison between theory and experiment yields a spin-orbit splitting of 1.0--1.2 eV and an exchange splitting of 0.9-- 1.0 eV for Fe 3p. These values are 50--100% larger than those hitherto obtained experimentally

  19. Determination of electronic states in crystalline semiconductors and metals by angle-resolved photoemission

    International Nuclear Information System (INIS)

    Mills, K.A.

    1979-08-01

    An important part of the theoretical description of the solid state is band structure, which relies on the existence of dispersion relations connecting the electronic energy and wavevector in materials with translational symmetry. These relations determine the electronic behavior of such materials. The elaboration of accurate band structures, therefore, is of considerable fundamental and practical importance. Angle-resolved photoemission (ARP) spectroscopy provides the only presently available method for the detailed experimental investigation of band structures. This work is concerned with its application to both semiconducting and metallic single crystals

  20. Characterization of polyethersulfone-polyimide hollow fiber membranes by atomic force microscopy and contact angle goniometery

    NARCIS (Netherlands)

    Khulbe, K.C.; Feng, C.; Matsuura, T.; Kapantaidakis, G.; Wessling, Matthias; Koops, G.H.

    2003-01-01

    Asymmetric blend polyethersulfone-polyimide (PES-PI) hollow fiber membranes prepared at different air gap and used for gas separation are characterized by atomic force microscopy (inside and out side surfaces) and by measuring the contact angle of out side surface. The outer surface was entirely

  1. Trade-off between angular and spatial resolutions in in vivo fiber tractography

    OpenAIRE

    Vos, Sjoerd B.; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J.; Maclaren, Julian; Viergever, Max A.; Leemans, Alexander; Bammer, Roland

    2016-01-01

    Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angul...

  2. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    Science.gov (United States)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  3. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Manami; Yamamoto, Susumu; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kakizaki, Akito; Matsuda, Iwao [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8581 (Japan); Kousa, Yuka; Kondoh, Hiroshi [Department of Chemistry, Keio University, Yokohama 223-8522 (Japan); Tanaka, Yoshihito [RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2012-02-15

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  4. Improved Fast, Deep Record Length, Time-Resolved Visible Spectroscopy of Plasmas Using Fiber Grids

    Science.gov (United States)

    Brockington, S.; Case, A.; Cruz, E.; Williams, A.; Witherspoon, F. D.; Horton, R.; Klauser, R.; Hwang, D.

    2017-10-01

    HyperV Technologies is developing a fiber-coupled, deep record-length, low-light camera head for performing high time resolution spectroscopy on visible emission from plasma events. By coupling the output of a spectrometer to an imaging fiber bundle connected to a bank of amplified silicon photomultipliers, time-resolved spectroscopic imagers of 100 to 1,000 pixels can be constructed. A second generation prototype 32-pixel spectroscopic imager employing this technique was constructed and successfully tested at the University of California at Davis Compact Toroid Injection Experiment (CTIX). Pixel performance of 10 Megaframes/sec with record lengths of up to 256,000 frames ( 25.6 milliseconds) were achieved. Pixel resolution was 12 bits. Pixel pitch can be refined by using grids of 100 μm to 1000 μm diameter fibers. Experimental results will be discussed, along with future plans for this diagnostic. Work supported by USDOE SBIR Grant DE-SC0013801.

  5. T839 fiber tracking transporter at New Muon Lab

    International Nuclear Information System (INIS)

    Krider, J.

    1991-01-01

    A darkbox and its transporter have been designed for T839 fiber tracking tests. The darkbox is 3.35 m x 0.76 m x 0.25 m (1·w·h) and contains a scintillating fiber ribbon suspension system and mechanical hardware to support the readout electronics. The transporter provides 3.0 m of horizontal motion transverse to the beam for linear scans of fiber characteristics. In addition, 70 degrees of rotation about a vertical axis is provided to simulate tracking of particles emanating from a collision point at lab angles in the range 0 degrees--70 degrees. The transporter, which is located inside a radiation area, is remotely controlled to permit scanning the fiber array through the region defined by four small stationary triggering scintillators without disabling beam. The transporter rails extend 20 feet to the west beyond a gate in the radiation enclosure fencing. This provides a staging area to work on the apparatus, while the beam is on. 4 figs

  6. Time- and position-resolved synchrotron x-ray scattering for structure research on biological connective tissue

    International Nuclear Information System (INIS)

    Zizak, I.

    2000-03-01

    ELETTRA in Trieste. The results obtained during this thesis can be summarized in the following way: - If the tendon is stretched fast (0.1 %/second), the collagen fibers are not stretched an equal amount. Interfibrillar connections are responsible for about 50 % of the elongation of the tendon. - If the tendon is slowly stretched, the fibers creep, so they are stretched even less. At stretching speeds of 0.001 %/second the fibers are stretched only 10 % of the total tendon elongation. - There are two different processes in the collagen fiber which occur during the stretching. Stretching of the collagen triple helix is responsible for about 1/4 of the fibril elongation, and the rest can be described with the slippage of the helices, where only the cross-links between the molecules are stretched. There are indications that this process also depends on the velocity, what would include the viscose processes on the molecular level. Scanning small angle x-ray scattering of bone and cartilage Bone and cartilage are composite tissues consisting of an organic matrix (collagen) and small mineral particles (hydroxyapatite). The mineral particles have a typical thickness of about 3 nm and a length of a few hundreds of nanometers. At a higher hierarchical levels (sub-mm), the tissues have a foam like, trabecular structure with the trabeculae oriented along the main tension lines. The mechanical properties of bone depend on the structure at all levels of hierarchical organization. At the nanometer level, they are determined mainly by the size, shape and orientation of the (hard) mineral crystals within the (soft) organic matrix. In the course of this work, the hierarchical structure of the bone and cartilage was investigated using light- and scanning electron microscopy as well as position resolved scattering methods. A great advantage is the use of scanning small angle x-ray scattering (sSAXS) and wide angle scattering (WAXD, also x-ray diffraction, XRD), which provides simultaneous

  7. Comparative study of the retinal nerve fibre layer thickness performed with optical coherence tomography and GDx scanning laser polarimetry in patients with primary open-angle glaucoma.

    Science.gov (United States)

    Wasyluk, Jaromir T; Jankowska-Lech, Irmina; Terelak-Borys, Barbara; Grabska-Liberek, Iwona

    2012-03-01

    We compared the parameters of retinal nerve fibre layer in patients with advanced glaucoma with the use of different OCT (Optical Coherence Tomograph) devices in relation to analogical measurements performed with GDx VCC (Nerve Fiber Analyzer with Variable Corneal Compensation) scanning laser polarimetry. Study subjects had advanced primary open-angle glaucoma, previously treated conservatively, diagnosed and confirmed by additional examinations (visual field, ophthalmoscopy of optic nerve, gonioscopy), A total of 10 patients were enrolled (9 women and 1 man), aged 18-70 years of age. Nineteen eyes with advanced glaucomatous neuropathy were examined. 1) Performing a threshold perimetry Octopus, G2 strategy and ophthalmoscopy of optic nerve to confirm the presence of advanced primary open-angle glaucoma; 2) performing a GDx VCC scanning laser polarimetry of retinal nerve fibre layer; 3) measuring the retinal nerve fibre layer thickness with 3 different optical coherence tomographs. The parameters of the retinal nerve fibre layer thickness are highly correlated between the GDx and OCT Stratus and 3D OCT-1000 devices in mean retinal nerve fibre layer thickness, retinal nerve fibre layer thickness in the upper sector, and correlation of NFI (GDx) with mean retinal nerve fibre layer thickness in OCT examinations. Absolute values of the retinal nerve fibre layer thickness (measured in µm) differ significantly between GDx and all OCT devices. Examination with OCT devices is a sensitive diagnostic method of glaucoma, with good correlation with the results of GDx scanning laser polarimetry of the patients.

  8. Scanning laser polarimetry retinal nerve fiber layer thickness measurements after LASIK.

    Science.gov (United States)

    Zangwill, Linda M; Abunto, Teresa; Bowd, Christopher; Angeles, Raymund; Schanzlin, David J; Weinreb, Robert N

    2005-02-01

    To compare retinal nerve fiber layer (RNFL) thickness measurements before and after LASIK. Cohort study. Twenty participants undergoing LASIK and 14 normal controls. Retinal nerve fiber layer thickness was measured before LASIK and approximately 3 months after surgery in one eye each of 20 patients using a scanning laser polarimeter (GDx Nerve Fiber Analyzer) with fixed corneal compensation (FCC), one with variable corneal compensation (GDx VCC), and optical coherence tomography (OCT). Fourteen normal controls also were tested at baseline and approximately 3 months later. Retinal nerve fiber layer thicknesses measured with the GDx FCC, GDx VCC, and OCT. At baseline, mean (95% confidence interval [CI]) RNFL thicknesses for the GDx FCC, GDx VCC, and OCT were 78.1 microm (72.2-83.9), 54.3 microm (52.7-56.0), and 96.8 microm (93.2-100.5), respectively. In both LASIK and control groups, there were no significant changes between baseline and follow-up examinations in GDx VCC and OCT RNFL thickness measurements globally or in the superior and inferior quadrants (mean change, FCC measurements between baseline and follow-up. In LASIK patients, significant reductions were observed in GDx FCC RNFL measurements. Average absolute values of the mean (95% CI) change in thickness were 12.4 microm (7.7-17.2), 15.3 microm (9.6-20.9), and 12.9 microm (7.6-18.1) for GDx FCC RNFL measurements superiorly, inferiorly, and globally, respectively (all Ps FCC RNFL thickness measurements after LASIK is a measurement artifact and is most likely due to erroneous compensation for corneal birefringence. With scanning laser polarimetry, it is mandatory to compensate individually for change in corneal birefringence after LASIK to ensure accurate RNFL assessment.

  9. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...... hydroxide. Numerical simulations of the electromagnetic field around the probe-sample interaction region are used to explain the experimental observations. With an aluminum-coated fiber probe, lines of 35 nm in width were transferred into the amorphous silicon layer. (C) 1997 American Institute of Physics....

  10. The development of angle-resolved photoelectron spectroscopy; 1900-1960

    International Nuclear Information System (INIS)

    Jenkin, J.G.; La Trobe Univ., Bundoora

    1981-01-01

    Angle-resolved photoelectron spectroscopy (ARPES) is now a sophisticated and particularly powerful technique for studying the electronic structure of matter, in addition the photoelectric effect has been of great significance in the history of 20th-century physics. This article seeks to uncover the origins and chart the development of the ARPES field, and focusses on the first half of this century; that is, up to the beginnings of the modern phase in the late 1960's. It is suggested that present workers will find interest in, and indeed profit from a knowledge of, the enormous experimental effort that was made to acquire quality data, the frustrating attempts that were initially made to understand them theoretically, and the contribution of early wave-mechanics, which brought order to a troubled field and thereby provided the necessary foundation for current studies. In addition, it is noted that the physicists involved often obtained inspiration and important insights which led them into studies of other significant problems of 20th-century physics. (orig.)

  11. Tunable erbium-doped fiber laser based on optical fiber Sagnac interference loop with angle shift spliced polarization maintaining fibers

    Science.gov (United States)

    Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning

    2018-05-01

    In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.

  12. Electronic structure of superconducting Bi2212 crystal by angle resolved ultra violet photoemission

    International Nuclear Information System (INIS)

    Saini, N.L.; Shrivastava, P.; Garg, K.B.

    1993-01-01

    The electronic structure of a high quality superconducting Bi 2 Sr 2 CaCu 2 Osub(8+δ) (Bi2212) single crystal is studied by angle resolved ultra violet photoemission (ARUPS) using He I (21.2 eV). Our results appear to show two bands crossing the Fermi level in ΓX direction of the Brillouin zone as reported by Takahashi et al. The bands at higher binding energy do not show any appreciable dispersion. The nature of the states near the Fermi level is discussed and the observed band structure is compared with the band structure calculations. (author)

  13. Angle-resolved X-ray fluorescence spectrometry using synchrotron radiation at ELSA

    International Nuclear Information System (INIS)

    Schmitt, W.; Rothe, J.; Hormes, J.; Gries, W.H.

    1994-01-01

    Measurements on the centroid depth of ion-implanted phosphorus-in-silicon specimen by the method of angle-resolved, self-ratio X-ray fluorescence spectrometry (AR/SR/XFS) have been carried out using 'white' synchrotron radiation (SR). The measurements were performed using a modified wavelength-dispersive fluorescence spectrometer. Problems due to the use of SR, like carbonaceous specimen contamination and sample heating were overcome by flooding the specimen chamber with helium and by pre-absorbing the non-exciting parts of the incident SR with suitable filters, respectively. The decaying primary intensity was monitored by measuring the compensation current of the photoelectrons emitted from a tungsten wire stretched across the primary beam. Results have been obtained for specimen with dose density levels of 10 16 cm -2 and 3x10 15 cm -2 . (orig.)

  14. Probing superconductors. Spectroscopic-imaging scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hanaguri, Tetsuo

    2011-01-01

    Discovery of high-temperature superconductivity in a cuprate triggered developments of various spectroscopic tools which have been utilized to elucidate electronic states of this mysterious compound. Particularly, angle-resolved photoemission spectroscopy and scanning-tunneling microscopy/spectroscopy are improved considerably. It is now possible to map the superconducting gap in both momentum and real spaces using these two techniques. Here we review spectroscopic-imaging scanning tunneling microscopy which is able to explore momentum-space phase structure of the superconducting gap, as well as real-space structure. Applications of this technique to a cuprate and an iron-based superconductor are discussed. (author)

  15. Time-dependent first-principles study of angle-resolved secondary electron emission from atomic sheets

    Science.gov (United States)

    Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2018-02-01

    Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.

  16. Fourier-domain angle-resolved low coherence interferometry for clinical detection of dysplasia

    Science.gov (United States)

    Terry, Neil G.; Zhu, Yizheng; Wax, Adam

    2010-02-01

    Improved methods for detecting dysplasia, or pre-cancerous growth are a current clinical need, particularly in the esophagus. The currently accepted method of random biopsy and histological analysis provides only a limited examination of tissue in question while being coupled with a long time delay for diagnosis. Light scattering spectroscopy, in contrast, allows for inspection of the cellular structure and organization of tissue in vivo. Fourier-domain angle-resolved low-coherence interferometry (a/LCI) is a novel light scattering spectroscopy technique that provides quantitative depth-resolved morphological measurements of the size and optical density of the examined cell nuclei, which are characteristic biomarkers of dysplasia. Previously, clinical viability of the a/LCI system was demonstrated through analysis of ex vivo human esophageal tissue in Barrett's esophagus patients using a portable a/LCI, as was the development of a clinical a/LCI system. Data indicating the feasibility of the technique in other organ sites (colon, oral cavity) will be presented. We present an adaptation of the a/LCI system that will be used to investigate the presence of dysplasia in vivo in Barrett's esophagus patients.

  17. Feasibility study for image reconstruction in circular digital tomosynthesis (CDTS) from limited-scan angle data based on compressed-sensing theory

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Je, Uikyu; Cho, Hyosung, E-mail: hscho1@yonsei.ac.kr; Hong, Daeki; Park, Chulkyu; Cho, Heemoon; Choi, Sungil; Woo, Taeho

    2015-03-21

    In this work, we performed a feasibility study for image reconstruction in a circular digital tomosynthesis (CDTS) from limited-scan angle data based on compressed-sensing (CS) theory. Here, the X-ray source moves along an arc within a limited-scan angle (≤ 180°) on a circular path set perpendicularly to the axial direction during the image acquisition. This geometry, compared to full-angle (360°) scan geometry, allows imaging system to be designed more compactly and gives better tomographic quality than conventional linear digital tomosynthesis (DTS). We implemented an efficient CS-based reconstruction algorithm for the proposed geometry and performed systematic simulations to investigate the image characteristics. We successfully reconstructed CDTS images with incomplete projections acquired at several selected limited-scan angles of 45°, 90°, 135°, and 180° for a given tomographic angle of 80° and evaluated the reconstruction quality. Our simulation results indicate that the proposed method can provide superior tomographic quality for axial view and even for the other views (i.e., sagittal and coronal), as in computed tomography, to conventional DTS. - Highlights: • Image reconstruction is done in circular digital tomosynthesis (CDTS). • The designed geometry allows imaging system to be the better image. • An efficient compressed-sensing (CS)-based reconstruction algorithm is performed. • Proposed method can provide superior tomographic quality for the axial view.

  18. a Study on SODIUM(110) and Other Nearly Free Electron Metals Using Angle Resolved Photoemission Spectroscopy.

    Science.gov (United States)

    Lyo, In-Whan

    Electronic properties of the epitaxially grown Na(110) film have been studied using angle resolved ultraviolet photoemission spectroscopy with synchrotron radiation as the light source. Na provides an ideal ground to study the fundamental aspects of the electron-electron interactions in metals, because of its simple Fermi surface and small pseudopotential. The absolute band structure of Na(110) using angle resolved photoemission spectroscopy has been mapped out using the extrema searching method. The advantage of this approach is that the usual assumption of the unoccupied state dispersion is not required. We have found that the dispersion of Na(1l0) is very close to the parabolic band with the effective mass 1.21 M_{rm e} at 90 K. Self-consistent calculations of the self-energy for the homogeneous electron gas have been performed using the Green's function technique within the framework of the GW approximation, in the hope of understanding the narrowing mechanism of the bandwidth observed for all the nearly-free-electron (NFE) metals. Good agreements between the experimental data and our calculated self-energy were obtained not only for our data on k-dependency from Na(l10), but also for the total bandwidth corrections for other NFE metals, only if dielectric functions beyond the random phase approximation were used. Our findings emphasize the importance of the screening by long wavelength plasmons. Off-normal spectra of angle resolved photoemission from Na(110) show strong asymmetry of the bulk peak intensity for the wide range of photon energies. Using a simple analysis, we show this asymmetry has an origin in the interference of the surface Umklapp electrons with the normal electrons. We have also performed the detailed experimental studies of the anomalous Fermi level structure observed in the forbidden gap region of Na. This was claimed by A. W. Overhauser as the evidence of the charge density wave in the alkali metal. The possibility of this hypothesis is

  19. 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    Science.gov (United States)

    Flynn, Connor; Dahlgren, R. P.; Dunagan, S.; Johnson, R.; Kacenelenbogen, M.; LeBlanc, S.; Livingston, J.; Redemann, J.; Schmid, B.; Segal Rozenhaimer, M.; hide

    2015-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyper spectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT).From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy TCAP I II campaigns, and NASAs SEAC4RS and ARISE campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2, and from in situ measurements.

  20. Discrete element simulation studies of angles of repose and shear flow of wet, flexible fibers.

    Science.gov (United States)

    Guo, Y; Wassgren, C; Ketterhagen, W; Hancock, B; Curtis, J

    2018-04-18

    A discrete element method (DEM) model is developed to simulate the dynamics of wet, flexible fibers. The angles of repose of dry and wet fibers are simulated, and the simulation results are in good agreement with experimental results, validating the wet, flexible fiber model. To study wet fiber flow behavior, the model is used to simulate shear flows of wet fibers in a periodic domain under Lees-Edwards boundary conditions. Significant agglomeration is observed in dilute shear flows of wet fibers. The size of the largest agglomerate in the flow is found to depend on a Bond number, which is proportional to liquid surface tension and inversely proportional to the square of the shear strain rate. This Bond number reflects the relative importance of the liquid-bridge force to the particle's inertial force, with a larger Bond number leading to a larger agglomerate. As the fiber aspect ratio (AR) increases, the size of the largest agglomerate increases, while the coordination number in the largest agglomerate initially decreases and then increases when the AR is greater than four. A larger agglomerate with a larger coordination number is more likely to form for more flexible fibers with a smaller bond elastic modulus due to better connectivity between the more flexible fibers. Liquid viscous force resists pulling of liquid bridges and separation of contacting fibers, and therefore it facilitates larger agglomerate formation. The effect of liquid viscous force is more significant at larger shear strain rates. The solid-phase shear stress is increased due to the presence of liquid bridges in moderately dense flows. As the solid volume fraction increases, the effect of fiber-fiber friction coefficient increases sharply. When the solid volume fraction approaches the maximum packing density, the fiber-fiber friction coefficient can be a more dominant factor than the liquid bridge force in determining the solid-phase shear stress.

  1. Depth profile analysis of polymerized fluorine compound on photo-resist film with angle-resolved XPS

    International Nuclear Information System (INIS)

    Iijima, Yoshitoki; Kubota, Toshio; Oinaka, Syuhei

    2013-01-01

    Angle-resolved XPS (ARXPS) is an observation technique which is very effective in chemical depth analysis method less than photoelectron detected depth. For the analysis of depth profile, several analysis methods have been proposed to calculate the depth profile using the ARXPS method. The present report is the measurements of depth profile of the fluorine in a fluorine-containing photo-resist film using the ARXPS method and the depth profile of concentration have been successfully determined using the ARCtick 1.0 software. It has been observed that thickness of the fluorocarbon enriched surface layer of the photo-resist was 2.7 nm, and so that the convert of the ARXPS data from the angle profile to the depth profile was proved to be useful analysis method for the ultrathin layer depth. (author)

  2. Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy.

    Science.gov (United States)

    Fernández, A; Grüner-Nielsen, L; Andreana, M; Stadler, M; Kirchberger, S; Sturtzel, C; Distel, M; Zhu, L; Kautek, W; Leitgeb, R; Baltuska, A; Jespersen, K; Verhoef, A

    2017-08-01

    A simple and completely all-fiber Yb chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor is applied in nonlinear optical microscopy. This stretching-compression approach improves compressibility and helps to maximize the fluorescence signal in two-photon laser scanning microscopy as compared with approaches that use standard single mode fibers as stretcher. We also show that in femtosecond all-fiber systems, compensation of higher order dispersion terms is relevant even for pulses with relatively narrow bandwidths for applications relying on nonlinear optical effects. The completely all-fiber system was applied to image green fluorescent beads, a stained lily-of-the-valley root and rat-tail tendon. We also demonstrated in vivo imaging in zebrafish larvae, where we simultaneously measure second harmonic and fluorescence from two-photon excited red-fluorescent protein. Since the pulses are compressed in a fiber, this source is especially suited for upgrading existing laser scanning (confocal) microscopes with multiphoton imaging capabilities in space restricted settings or for incorporation in endoscope-based microscopy.

  3. Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends

    International Nuclear Information System (INIS)

    Chen, Changzhong; Wang, Linge; Huang, Yong

    2011-01-01

    Highlights: → Ultrafine PEG/CA phase change fibers were fabricated by electrospinning. → PEG content dramatically influenced the fiber morphology and phase change behaviors. → The electrospun fibers have excellent thermal properties for thermal energy storage. - Abstract: Ultrafine phase change fibers based on polyethylene glycol (PEG)/cellulose acetate (CA) blends in which PEG acts as a model phase change material (PCM) and CA acts as a supporting material, were successfully prepared via electrospinning. The effect of PEG content on the morphology, crystalline properties, phase change behaviors and tensile properties of the composite fibers was studied systematically by field-emission scanning electron microscopy (FE-SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and a tensile tester, respectively. The SEM observation indicates that maximum PEG content in the fibers could reach up to 70 wt%, and the morphology and average diameter of the composite fibers vary with PEG content. Thermal analysis results show that the latent heats of the phase change fibers increase with the increasing of PEG content in the fibers, and the PEG/CA fibers with high enthalpies have a good capability to regulate their interior temperature as the ambient temperature alters. Therefore, the developed phase change fibers have enormous applicable potentials in thermal energy storage and temperature regulation.

  4. Solid-State Spun Fibers from 1 mm Long Carbon Nanotube Forests Synthesized by Water-Assisted Chemical Vapor Deposition

    Science.gov (United States)

    Zhang, Shanju; Zhu, Lingbo; Minus, Marilyn L.; Chae, han Gi; Jagannathan, Sudhakar; Wong, Ching-Ping; Kowalik, Janusz; Roberson, Luke B.; Kumar, Satish

    2007-01-01

    In this work, we report continuous carbon nanotube fibers dry-drawn directly from water-assisted CVD grown forests with millimeter scale length. As-drawn nanotube fibers exist as aerogel and can be transformed into more compact fibers through twisting or densification with a volatile liquid. Nanotube fibers are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman microscopy and wide-angle X-ray diffraction (WAXD). Mechanical behavior and electrical conductivity of the post-treated nanotube fibers are investigated.

  5. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurments of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  6. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  7. Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle.

    Science.gov (United States)

    Andresen, Esben Ravn; Bouwmans, Géraud; Monneret, Serge; Rigneault, Hervé

    2013-03-01

    We report a step toward scanning endomicroscopy without distal optics. The focusing of the beam at the distal end of a fiber bundle is achieved by imposing a parabolic phase profile across the exit face with the aid of a spatial light modulator. We achieve video-rate images by galvanometric scanning of the phase tilt at the proximal end. The approach is made possible by the bundle, designed to have very low coupling between cores.

  8. Assessment of stability of the response versus scan angle for the S-NPP VIIRS reflective solar bands using pseudo-invariant desert and Dome C sites

    Science.gov (United States)

    Wu, Aisheng; Xiong, Xiaoxiong J.; Cao, Changyong

    2017-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP (National Polar-orbiting Partnership) satellite has been in operation for over five years. VIIRS has 22 bands with a spectral range from 0.4 μm to 2.2 μm for the reflective solar bands (RSB). The Earth view swath covers a distance of 3000 km over scan angles of +/- 56.0° off nadir. The on-board calibration of the RSB relies on a solar diffuser (SD) located at a fixed scan angle and a solar diffuser stability monitor (SDSM). The response versus scan angle (RVS) was characterized prelaunch in ambient conditions and is currently used to determine the on-orbit response for all scan angles relative to the SD scan angle. Since the RVS is vitally important to the quality of calibrated level 1B products, it is important to monitor its on-orbit stability, particularly at the short wavelengths (blue) where the most degradation occurs. In this study, the RVS stability is examined based on reflectance trends collected at various scan angles over the selected pseudo-invariant desert sites in Northern Africa and the Dome C snow site in Antarctica. These trends are corrected by the site dependent BRDF (bi-directional reflectance function) model to reduce seasonally related fluctuations. The BRDF corrected trends are examined so any systematic drifts in the scan angle direction would indicate a potential change in RVS. The results of this study provide useful information on VIIRS RVS on-orbit stability performance.

  9. Time-resolved scanning tunnelling microscopy

    NARCIS (Netherlands)

    van Houselt, Arie; Zandvliet, Henricus J.W.

    2010-01-01

    Scanning tunneling microscopy has revolutionized our ability to image, study, and manipulate solid surfaces on the size scale of atoms. One important limitation of the scanning tunneling microscope (STM) is, however, its poor time resolution. Recording a standard image with a STM typically takes

  10. Elasticity of Tantalum to 105 Gpa using a stress and angle-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Cynn, H; Yoo, C S

    1999-01-01

    Determining the mechanical properties such as elastic constants of metals at Mbar pressures has been a difficult task in experiment. Following the development of anisotropic elastic theory by Singh et al.[l], Mao et a1.[2] have recently developed a novel experimental technique to determine the elastic constants of Fe by using the stress and energy-dispersive x-ray diffraction (SEX). In this paper, we present an improved complementary technique, stress and angle-resolved x-ray diffraction (SAX), which we have applied to determine the elastic constants of tantalum to 105 GPa. The extrapolation of the tantalum elastic data shows an excellent agreement with the low-pressure ultrasonic data[3]. We also discuss the improvement of this SAX method over the previous SEX.[elastic constant, anisotropic elastic theory, angle-dispersive synchrotron x-ray diffraction, mechanical properties

  11. Band structure and Fermi surface of UPd2Al3 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Fujimori, Shin-ichi; Saitoh, Yuji; Okane, Tetsuo; Yamagami, Hiroshi; Fujimori, Atsushi; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika

    2007-01-01

    We have observed the band structure and Fermi surfaces of the heavy Fermion superconductor UPd 2 Al 3 by angle-resolved photoemission experiments in the soft X-ray region. We observed renormalized quasi-particle bands in the vicinity of the Fermi level and strongly dispersive bands on the higher binding energy side. Our observation suggests that the structure previously assigned to contributions from localized states in the U 5f spectrum has strong energy dispersions

  12. Temperature-induced band shift in bulk γ-InSe by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Xu, Huanfeng; Wang, Wei; Zhao, Yafei; Zhang, Xiaoqian; Feng, Yue; Tu, Jian; Gu, Chenyi; Sun, Yizhe; Liu, Chang; Nie, Yuefeng; Edmond Turcu, Ion C.; Xu, Yongbing; He, Liang

    2018-05-01

    Indium selenide (InSe) has recently become popular research topics because of its unique layered crystal structure, direct band gap and high electron mobilities. In this work, we have acquired the electronic structure of bulk γ-InSe at various temperatures using angle-resolved photoemission spectroscopy (ARPES). We have also found that as the temperature decreases, the valence bands of γ-InSe exhibit a monotonic shift to lower binding energies. This band shift is attributed to the change of lattice parameters and has been validated by variable temperature X-ray diffraction measurements and theoretical calculations.

  13. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  14. Time-resolved small-angle neutron scattering of a micelle-to-vesicle transition

    Energy Technology Data Exchange (ETDEWEB)

    Egelhaaf, S U [Institut Max von Laue - Paul Langevin (ILL), 38 -Grenoble (France); Schurtenberger, P [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-04-01

    Amphiphilic molecules spontaneously self-assemble in solution to form a variety of aggregates. Only limited information is available on the kinetics of the structural transitions as well as on the existence of non-equilibrium or metastable states. Aqueous mixtures of lecithin and bile salt are very interesting biological model-systems which exhibit a spontaneous transition from polymer-like mixed micelles to vesicles upon dilution. The small-angle neutron scattering (SANS) instrument D22, with its very high neutron flux and the broad range of scattering vectors covered in a single instrumental setting, allowed us for the first time to perform time-resolved scattering experiments in order to study the micelle-to-vesicle transition. The temporal evolution of the aggregate structures were followed and detailed information was obtained even on molecular length-scales. (author). 5 refs.

  15. Equilibrium Configurations of a Fiber in a Flow

    Science.gov (United States)

    Guerron, Pamela; Berghout, Christopher; Nita, Bogdan; Vaidya, Ashwin

    2013-11-01

    The aim of this study is to understand the coupled dynamics of flexible fibers in a fluid flow. In particular, we examine the equilibrium configurations of the fiber with changing Reynolds numbers, orientations and lengths of the fiber. Our study is motivated by biological phenomena such as ciliary bending, flexing of plants and trees in winds etc. Our approach to resolving this problem has been threefold: experimental, numerical and theoretical. In our experiments we create physical models of variable length fibers inserted into a basal body structure, which is then suspended in a flow tank and positioned at different angles. The structure (fibers) are subjected to different velocities of water flow, ranging from 0m/s to 0.53 m/s in increments of 0.038 m/s. The results of the experiment were analyzed using Adobe Photoshop and the effect of the above mentioned parameters upon the shape of the fiber is analyzed. In addition, we also simulate this problem using the software Comsol and also create a simple, toy mathematical model incorporating the competing effects of tension and fluid drag on the fiber to obtain a closed form expression. Our various approaches point to consistent results.

  16. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  17. Atomic origin of the scanning tunneling microscopy images of charge-density-waves on 1T-TaSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stoltz, D. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)], E-mail: stoltz@physics.leidenuniv.nl; Bielmann, M.; Schlapbach, L. [Swiss Federal Lab for Materials Science and Technology (EMPA), CH-8600 Duebendorf (Switzerland); Bovet, M. [Institut de Physique, Universite de Neuchatel, CH-2000 Neuchatel (Switzerland); Berger, H. [Institut de Physique Appliquee, EPF, 1015 Lausanne (Switzerland); Goethelid, M. [Materialfysik, MAP, KTH-Electrum, SE-16440 Kista (Sweden); Stoltz, S.E. [MAX-Lab, Lund University, SE-22100 Lund (Sweden); Starnberg, H.I. [Department of Physics, Goeteborg University and Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2008-07-01

    We show atomically resolved scanning tunneling microscopy (STM) images of charge density waves (CDWs) at room temperature together with angle-resolved photoelectron band-mapping of 1T-TaSe{sub 2}. By comparing the results of these two techniques, we demonstrate the atomic structure of the CDW-features observed by the STM and atomic origin of the reconstructed band-structure in this material.

  18. Structural features of various kinds of carbon fibers as determined by small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Denghua; Du, Sujun [Shanxi Transportation Research Institute, National and Local Joint Engineering Laboratory of Advanced Road Materials, Taiyuan (China); Lu, Chunxiang; Wu, Gangping; Yang, Yu; Wang, Lina [Chinese Academy of Sciences, National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Taiyuan (China)

    2016-11-15

    The structural features of polyacrylonitrile and pitch-based carbon fibers were analyzed from a comprehensive point of view by X-ray measurements and related techniques. The results indicated that the undulating graphite ribbon with embedded microvoid was the main structural unit for graphitic fibers. The void's parameters for these fibers could be obtained directly by small-angle X-ray scattering following the classic method deduced based on the typical two-phase system (i.e., Porod's law, Guinier's law and Debye's law). The non-graphitic fibers, however, were composed of two-dimensional turbostratic crystallites in the aggregation of microfibril and thus had a quasi two-phase structure (microfibril, interfibrillar amorphous structure and microvoid embedded within the microfibril). The extended Debye or Beaucage model in this case should be applied in order to obtain the structural parameters. It also revealed that the quasi two-phase system would complete its transformation to two-phase system during high-temperature graphitization. Therefore, the degree of graphitization was speculated to be the essential indicator distinguishing graphitic fibers from non-graphitic ones and would be helpful in understanding the transformation of structural features during the graphitization of carbon fibers. (orig.)

  19. Spectrally resolved luminescence from an InGaAs quantum well induced by an ambient scanning tunneling microscope

    NARCIS (Netherlands)

    Kemerink, M.; Gerritsen, J.W.; Koenraad, P.M.; Kempen, van H.; Wolter, J.H.

    1999-01-01

    Spectrally resolved scanning tunneling microscope-induced luminescence has been obtained under ambient conditions, i.e., at room temperature, in air, by passivating the sample surface with sulfur. This passivation turned out to be essential to suppress the local anodic oxidation induced by the

  20. Time-resolved triton burnup measurement using the scintillating fiber detector in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Nishitani, T.; Murakami, S.; Seki, R.; Nakata, M.; Takada, E.; Kawase, H.; Pu, N.; LHD Experiment Group

    2018-03-01

    Time-resolved measurement of triton burnup is performed with a scintillating fiber detector system in the deuterium operation of the large helical device. The scintillating fiber detector system is composed of the detector head consisting of 109 scintillating fibers having a diameter of 1 mm and a length of 100 mm embedded in the aluminum substrate, the magnetic registrant photomultiplier tube, and the data acquisition system equipped with 1 GHz sampling rate analogies to digital converter and the field programmable gate array. The discrimination level of 150 mV was set to extract the pulse signal induced by 14 MeV neutrons according to the pulse height spectra obtained in the experiment. The decay time of 14 MeV neutron emission rate after neutral beam is turned off measured by the scintillating fiber detector. The decay time is consistent with the decay time of total neutron emission rate corresponding to the 14 MeV neutrons measured by the neutron flux monitor as expected. Evaluation of the diffusion coefficient is conducted using a simple classical slowing-down model FBURN code. It is found that the diffusion coefficient of triton is evaluated to be less than 0.2 m2 s-1.

  1. Extracting interface locations in multilayer polymer waveguide films using scanning angle Raman spectroscopy

    International Nuclear Information System (INIS)

    Bobbitt, Jonathan M.; Smith, Emily A.

    2017-01-01

    There is an increasing demand for nondestructive in situ techniques that measure chemical content, total thickness, and interface locations for multilayer polymer films, and SA Raman spectroscopy in combination with appropriate data models can provide this information. A scanning angle (SA) Raman spectroscopy method was developed to measure the chemical composition of multilayer polymer waveguide films and to extract the location of buried interfaces between polymer layers with 7–80-nm axial spatial resolution. The SA Raman method measures Raman spectra as the incident angle of light upon a prism-coupled thin film is scanned. Six multilayer films consisting of poly(methyl methacrylate)/polystyrene or poly(methyl methacrylate)/polystyrene/poly(methyl methacrylate) were prepared with total thicknesses ranging from 330-1260 nm. The interface locations were varied by altering the individual layer thicknesses between 140-680 nm. The Raman amplitude ratio of the 1605 cm -1 peak for PS and 812 cm -1 peak for PMMA was used in calculations of the electric field intensity within the polymer layers to model the SA Raman data and extract the total thickness and interface locations. There is an average 8% and 7% difference in the measured thickness between the SA Raman and profilometry measurements for bilayer and trilayer films, respectively.

  2. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.

    Science.gov (United States)

    Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  3. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes

    Directory of Open Access Journals (Sweden)

    A. Smirnov

    2018-01-01

    Full Text Available In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm and the probe’s tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000 of the TF + probe system (Cherkun et al., 2006. We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  4. A Study of Atmospheric Plasma Treatment on Surface Energetics of Carbon Fibers

    International Nuclear Information System (INIS)

    Park, Soo Jin; Chang, Yong Hwan; Moon, Cheol Whan; Suh, Dong Hack; Im, Seung Soon; Kim, Yeong Cheol

    2010-01-01

    In this study, the atmospheric plasma treatment with He/O 2 was conducted to modify the surface chemistry of carbon fibers. The effects of plasma treatment parameters on the surface energetics of carbon fibers were experimentally investigated with respect to gas flow ratio, power intensity, and treatment time. Surface characteristics of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Fourier transform infrared (FT-IR), Zeta-potential, and contact angle measurements. The results indicated that oxygen plasma treatment led to a large amount of reactive functional groups onto the fiber surface, and these groups can form together as physical intermolecular bonding to improve the surface wettability with a hydrophilic polymer matrix

  5. Comparison of capacity for diagnosis and visuality of auditory ossicles at different scanning angles in the computed tomography of temporal bone

    International Nuclear Information System (INIS)

    Ogura, Akio; Nakayama, Yoshiki

    1992-01-01

    Computed tomographic (CT) scanning has made significant contributions to the diagnosis and evaluation of temporal bone lesions by the thin-section, high-resolution techniques. However, these techniques involve greater radiation exposure to the lens of patients. A mean was thus sought for reducing the radiation exposure at different scanning angles such as +15 degrees and -10 degrees to the Reid's base line. Purposes of this study were to measure radiation exposure to the lens using the two tomographic planes and to compare the ability to visualize auditory ossicles and labyrinthine structures. Visual evaluation of tomographic images on auditory ossicles was made by blinded methods using four rankings by six radiologists. The statistical significance of the intergroup difference in the visualization of tomographic planes was assessed for a significance level of 0.01. Thermoluminescent dosimeter chips were placed on the cornea of tissue equivalent to the skull phantom to evaluate radiation exposure for two separate tomographic planes. As the result, tomographic plane at an angle of -10 degrees to Reid's base line allowed better visualization than the other plane for the malleus, incus, facial nerve canal, and tuba auditiva (p<0.01). Scannings at an angle of -10 degrees to Reid's base line reduced radiation exposure to approximately one-fiftieth (1/50) that with the scans at the other angle. (author)

  6. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    Science.gov (United States)

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  7. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.

    Science.gov (United States)

    Zhang, Tao; Gao, Feng; Jiang, Xiangqian

    2017-10-02

    This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

  8. Fibrinogen species as resolved by HPLC-SAXS data processing within the UltraScan Solution Modeler (US-SOMO) enhanced SAS module.

    Science.gov (United States)

    Brookes, Emre; Pérez, Javier; Cardinali, Barbara; Profumo, Aldo; Vachette, Patrice; Rocco, Mattia

    2013-12-01

    Fibrinogen is a large heterogeneous aggregation/degradation-prone protein playing a central role in blood coagulation and associated pathologies, whose structure is not completely resolved. When a high-molecular-weight fraction was analyzed by size-exclusion high-performance liquid chromatography/small-angle X-ray scattering (HPLC-SAXS), several composite peaks were apparent and because of the stickiness of fibrinogen the analysis was complicated by severe capillary fouling. Novel SAS analysis tools developed as a part of the UltraScan Solution Modeler ( US-SOMO ; http://somo.uthscsa.edu/), an open-source suite of utilities with advanced graphical user interfaces whose initial goal was the hydrodynamic modeling of biomacromolecules, were implemented and applied to this problem. They include the correction of baseline drift due to the accumulation of material on the SAXS capillary walls, and the Gaussian decomposition of non-baseline-resolved HPLC-SAXS elution peaks. It was thus possible to resolve at least two species co-eluting under the fibrinogen main monomer peak, probably resulting from in-column degradation, and two others under an oligomers peak. The overall and cross-sectional radii of gyration, molecular mass and mass/length ratio of all species were determined using the manual or semi-automated procedures available within the US-SOMO SAS module. Differences between monomeric species and linear and sideways oligomers were thus identified and rationalized. This new US-SOMO version additionally contains several computational and graphical tools, implementing functionalities such as the mapping of residues contributing to particular regions of P ( r ), and an advanced module for the comparison of primary I ( q ) versus q data with model curves computed from atomic level structures or bead models. It should be of great help in multi-resolution studies involving hydrodynamics, solution scattering and crystallographic/NMR data.

  9. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ravnsborg Beierholm, A.

    2011-05-15

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  10. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    International Nuclear Information System (INIS)

    Ravnsborg Beierholm, A.

    2011-05-01

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  11. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Nengchao Lyu

    2017-02-01

    Full Text Available In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.

  12. Electronic structure of heavy fermion system CePt2In7 from angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Shen Bing; Yu Li; Lyu Shou-Peng; Jia Xiao-Wen; Zhang Yan; Wang Chen-Lu; Hu Cheng; Ding Ying; Sun Xuan; Hu Yong; Liu Jing; Gao Qiang; Zhao Lin; Liu Guo-Dong; Liu Kai; Lu Zhong-Yi; Bauer, E D; Thompson, J D; Xu Zu-Yan; Chen Chuang-Tian

    2017-01-01

    We have carried out high-resolution angle-resolved photoemission measurements on the Ce-based heavy fermion compound CePt 2 In 7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn 5 . Multiple Fermi surface sheets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt 2 In 7 . The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt 2 In 7 . A comparison of the common features of the electronic structure of CePt 2 In 7 and CeCoIn 5 indicates that CeCoIn 5 shows a much stronger band renormalization effect than CePt 2 In 7 . These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems. (paper)

  13. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  14. Impact of beam angle choice on pencil beam scanning breath-hold proton therapy for lung lesions

    DEFF Research Database (Denmark)

    Gorgisyan, Jenny; Perrin, Rosalind; Lomax, Antony J

    2017-01-01

    INTRODUCTION: The breath-hold technique inter alia has been suggested to mitigate the detrimental effect of motion on pencil beam scanned (PBS) proton therapy dose distributions. The aim of this study was to evaluate the robustness of incident proton beam angles to day-to-day anatomical variation...

  15. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets

    Directory of Open Access Journals (Sweden)

    Yingying Wei

    2015-10-01

    Full Text Available The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond tool, CVD (chemical vapor deposition diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE signals.

  16. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets.

    Science.gov (United States)

    Wei, Yingying; An, Qinglong; Cai, Xiaojiang; Chen, Ming; Ming, Weiwei

    2015-10-02

    The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond) tool, CVD (chemical vapor deposition) diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE) signals.

  17. Auto-calibrated scanning-angle prism-type total internal reflection microscopy for nanometer-precision axial position determination and optional variable-illumination-depth pseudo total internal reflection microscopy

    Science.gov (United States)

    Fang, Ning; Sun, Wei

    2015-04-21

    A method, apparatus, and system for improved VA-TIRFM microscopy. The method comprises automatically controlled calibration of one or more laser sources by precise control of presentation of each laser relative a sample for small incremental changes of incident angle over a range of critical TIR angles. The calibration then allows precise scanning of the sample for any of those calibrated angles for higher and more accurate resolution, and better reconstruction of the scans for super resolution reconstruction of the sample. Optionally the system can be controlled for incident angles of the excitation laser at sub-critical angles for pseudo TIRFM. Optionally both above-critical angle and sub critical angle measurements can be accomplished with the same system.

  18. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    Science.gov (United States)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  19. High Resolution Angle Resolved Photoemission Studies on Quasi-Particle Dynamics in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Leem, C.S.

    2010-06-02

    We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.

  20. Direct observation of superconducting gaps in MgB 2 by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J. C.; Sasaki, S.; Kadowaki, K.

    2004-08-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB 2. We observed three bands crossing the Fermi level, which are ascribed to B2p-σ, π and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of σ and surface bands are 6.5 ± 0.5 and 6.0 ± 0.5 meV, respectively, while that of the π band is much smaller (1.5 ± 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB 2.

  1. Direct observation of superconducting gaps in MgB2 by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J.C.; Sasaki, S.; Kadowaki, K.

    2004-01-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB 2 . We observed three bands crossing the Fermi level, which are ascribed to B2p-σ, π and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of σ and surface bands are 6.5 ± 0.5 and 6.0 ± 0.5 meV, respectively, while that of the π band is much smaller (1.5 ± 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB 2

  2. Penetration route of functional molecules in stratum corneum studied by time-resolved small- and wide-angle x-ray diffraction

    International Nuclear Information System (INIS)

    Hatta, Ichiro; Ohta, Noboru; Yagi, Naoto; Nakazawa, Hiromitsu; Obata, Yasuko; Inoue, Katsuaki

    2011-01-01

    We studied effects of functional molecules on corneocytes in stratum corneum using time-resolved small- and wide-angle x-ray diffraction after applying a functional molecule. From these results it was revealed that in the stratum corneum a typical hydrophilic molecule, ethanol, penetrates via the transcellular route and on the other hand a typical hydrophobic molecule, d-limonene, penetrates via the intercellular route.

  3. Measurement of the lateral recess angle as a possible alternative for evaluation of the lateral recess stenosis on a CT scan

    International Nuclear Information System (INIS)

    Strojnik, T.

    2001-01-01

    Stenosis of the lateral recess in the lumbar spinal canal is a clinical problem, especially in terms of surgical management. Criteria for the diagnosis and surgical treatment of lateral recess stenosis (LRS) are not clearly defined. Several authors have suggested measurement of the lateral recess height (LRH) on computed tomography (CT) scans as a helpful tool for making decisions in regard of management. The present study is based an the assumption that measurement of the lateral recess angle (LRA) may be useful in the clinical management of lateral recess stenosis. The reliability and significance of the results have been analyzed. In 35 patients, the stenosis was confirmed by intraoperative measurement of the lateral recess height. Fifty-three affected lateral recesses were analyzed. Before surgery, the heights on CT scans were measured. The mean value was 3.3 mm (SD = 0.9 mm), while 41 of them were 3.6 mm or less. Furthermore, the angles on CT scans were evaluated. The mean value was 25.9 degrees (SD = 4.9 degrees), 48 of them were 30 degrees or less and only 5 of them achieved more than 30 degrees. Results reveal that the best quantitative determination of a lateral recess stenosis is a CT scan angle measurement with a critical value of 30 degrees. A CT scan height of 3.6 mm or less is also indicative of stenosis. Statistical evaluation of the data by multiple regression analysis revealed agreement between intraoperative findings and measured heights (p = 0.02), while even better results were noted for angles (p < 0.01). Interfacet distance (IF) was found to be least predictive (p = 0.04). (author)

  4. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  5. Age-related compaction of lens fibers affects the structure and optical properties of rabbit lenses

    Directory of Open Access Journals (Sweden)

    Al-Ghoul Walid M

    2007-12-01

    Full Text Available Abstract Background The goal of this investigation was to correlate particular age-related structural changes (compaction to the amount of scatter in rabbit lenses and to determine if significant fiber compaction occurred in the nuclear and inner cortical regions. Methods New Zealand White rabbits at 16–20 months old (adult; n = 10 and at 3.5–4 years old (aged; n = 10 were utilized for this study. Immediately after euthanising, scatter was assessed in fresh lenses by low power helium-neon laser scan analysis. Scatter data was analyzed both for whole lenses and regionally, to facilitate correlation with morphometric data. After functional analysis, lenses were fixed and processed for scanning electron microcopy (SEM; right eyes and light microscopy (LM; left eyes. Morphometric analysis of SEM images was utilized to evaluate compaction of nuclear fibers. Similarly, measurements from LM images were used to assess compaction of inner cortical fibers. Results Scatter was significantly greater in aged lenses as compared to adult lenses in all regions analyzed, however the difference in the mean was slightly more pronounced in the inner cortical region. The anterior and posterior elliptical angles at 1 mm (inner fetal nucleus were significantly decreased in aged vs. adult lenses (anterior, p = 0.040; posterior, p = 0.036. However, the average elliptical angles at 2.5 mm (outer fetal nucleus were not significantly different in adult and aged lenses since all lenses examined had comparable angles to inner fetal fibers of aged lenses, i.e. they were all compacted. In cortical fibers, measures of average cross-sectional fiber area were significantly different at diameters of both 6 and 7 mm as a function of age (p = 0.011 and p = 0.005, respectively. Accordingly, the estimated fiber volume was significantly decreased in aged as compared to adult lenses at both 6 mm diameter (p = 0.016 and 7 mm diameter (p = 0.010. Conclusion Morphometric data indicates

  6. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    International Nuclear Information System (INIS)

    Deng, Chao; Jiang, Jianjun; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-01-01

    Graphical abstract: Carbon nanotube/carbon fiber hybrid fiber was proposed by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition process. - Highlights: • Carbon nanotube coated carbon fiber was prepared by two methods. • Uniform and dense CNTs network formed by oxidative treatments combined with EPD. • Pretreatment of the CF is beneficial to EPD of CNTs on carbon fiber surface. • CNTs enhanced the surface activity and wettability of carbon fibers. • CNTs have contributed to the interfacial properties of composite. - Abstract: To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed

  7. Focus scanning with feedback control for fiber-optic nonlinear endomicroscopy (Conference Presentation)

    Science.gov (United States)

    Li, Ang; Liang, Wenxuan; Li, Xingde

    2017-02-01

    Fiber-optic nonlinear endomicroscopy represents a strong promise to enable translation of nonlinear microscopy technologies to in vivo applications, particularly imaging of internal organs. Two-dimensional imaging beam scanning has been accomplished by using fiber-optic scanners or MEMS scanners. Yet nonlinear endomicroscopy still cannot perform rapid and reliable depth or focus scanning while maintaining a small form factor. Shape memory alloy (SMA) wire had shown promise in extending 2D endoscopic imaging to the third dimension. By Joule heating, the SMA wire would contract and move the endomicroscope optics to change beam focus. However, this method suffered from hysteresis, and was susceptible to change in ambient temperature, making it difficult to achieve accurate and reliable depth scanning. Here we present a feedback-controlled SMA actuator which addressed these challenges. The core of the feedback loop was a Hall effect sensor. By measuring the magnetic flux density from a tiny magnet attached to the SMA wire, contraction distance of the SMA wire could be tracked in real time. The distance was then fed to the PID algorithm running in a microprocessor, which computed the error between the command position and the current position of the actuator. The current running through the SMA wire was adjusted accordingly. Our feedback-controlled SMA actuator had a tube-like shape with outer diameter of 5.5 mm and length of 25 mm, and was designed to house the endomicroscope inside. Initial test showed that it allowed more than 300 microns of travel distance, with an average positioning error of less than 2 microns. 3D imaging experiments with the endomicroscope is underway, and its imaging performance will be assessed and discussed.

  8. Angle-resolved photoemission spectroscopy of rare earth LaSb{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Michiardi, Matteo; Arnold, Fabian; Faerch Fisher, Karl Frederik; Svane, Axel; Bianchi, Marco; Brummerstedt Iversen, Bo; Hofmann, Philip [Aarhus University (Denmark); Shwetha, G.; Kanchana, V. [IIT-Hyderabad (India); Ganapathy, Vaitheeswaran [University of Hyderabad (India)

    2016-07-01

    Several rare earth diantimonides have been found to exhibit intriguing electronic properties such as anisotropic linear and non-saturating magnetoresistance. Among these materials, LaSb{sub 2} is not only considered for application in magnetoresistive devices but it is also found to be superconducting at low temperatures and it is investigated as candidate material to host charge density wave phases. Despite the several studies on its transport properties, the electronic structure of LaSb{sub 2} is still largely unknown. Here we present an angle-resolved photoemission spectroscopy and ab-initio calculation study of LaSb{sub 2}(001). The observed band structure is found to be in good agreement with theoretical predictions. Our results reveal that LaSb{sub 2} is a semimetal with a strongly nested two-dimensional Fermi surface. The low energy spectrum is characterized by four massive hole pockets and by four shallow, strongly directional, electron pockets that exhibit Dirac-like dispersion. We speculate on the possibility that this peculiar electronic structure drives the magnetoresistance to its quantum limit, explaining its unconventional behavior.

  9. Resolving a discrete ambiguity in the CKM angle β through Bu,d → J/ψK* and Bs → J/ψφ decays

    International Nuclear Information System (INIS)

    Dighe, A.S.; Dunietz, I.; Fleischer, R.

    1998-04-01

    It is well known that sin(2β), where β is one of the angles of the unitarity triangle of the CKM matrix, can be determined in a theoretically clean way by measuring mixing-induced CP violation in the decay B d →J/ψK S . Another clean extraction of this CKM angle is provided by the time-dependent angular distribution for the decay products of B d →J/ψ(→l + l - )K* 0 (→π 0 K S ), where we have more observables at our disposal than in the case of B d →J/ψK S , so that in addition to sin(2β) also cos(2β) can be probed in a direct way. Unfortunately a sign ambiguity remains in cos(2β). If it could be resolved, a discrete ambiguity in the extraction of the CKM angle β could be resolved as well, which would allow a more incisive test of the CKM model of CP violation. This note shows that detailed time-dependent studies of B u,d →J/ψK * and B s →J/ψφ decay processes can determine the sign of cos(2β), thereby removing the corresponding ambiguity in the extraction of the CKM angle β. (author)

  10. Electronic structure of the dilute magnetic semiconductor G a1 -xM nxP from hard x-ray photoelectron spectroscopy and angle-resolved photoemission

    Science.gov (United States)

    Keqi, A.; Gehlmann, M.; Conti, G.; Nemšák, S.; Rattanachata, A.; Minár, J.; Plucinski, L.; Rault, J. E.; Rueff, J. P.; Scarpulla, M.; Hategan, M.; Pálsson, G. K.; Conlon, C.; Eiteneer, D.; Saw, A. Y.; Gray, A. X.; Kobayashi, K.; Ueda, S.; Dubon, O. D.; Schneider, C. M.; Fadley, C. S.

    2018-04-01

    We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) G a0.98M n0.02P and compared it to that of an undoped GaP reference sample, using hard x-ray photoelectron spectroscopy (HXPS) and hard x-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about 3 keV. We present experimental data, as well as theoretical calculations, to understand the role of the Mn dopant in the emergence of ferromagnetism in this material. Both core-level spectra and angle-resolved or angle-integrated valence spectra are discussed. In particular, the HARPES experimental data are compared to free-electron final-state model calculations and to more accurate one-step photoemission theory. The experimental results show differences between G a0.98M n0.02P and GaP in both angle-resolved and angle-integrated valence spectra. The G a0.98M n0.02P bands are broadened due to the presence of Mn impurities that disturb the long-range translational order of the host GaP crystal. Mn-induced changes of the electronic structure are observed over the entire valence band range, including the presence of a distinct impurity band close to the valence-band maximum of the DMS. These experimental results are in good agreement with the one-step photoemission calculations and a prior HARPES study of G a0.97M n0.03As and GaAs [Gray et al., Nat. Mater. 11, 957 (2012), 10.1038/nmat3450], demonstrating the strong similarity between these two materials. The Mn 2 p and 3 s core-level spectra also reveal an essentially identical state in doping both GaAs and GaP.

  11. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    Science.gov (United States)

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W. H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 1016 cm-2) and sulfur (200 keV, 1014 cm-2) in silicon wafers using ``white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 1014 cm-2. Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular.

  12. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    International Nuclear Information System (INIS)

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W.H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 10 16 cm -2 ) and sulfur (200 keV, 10 14 cm -2 ) in silicon wafers using ''white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 10 14 cm -2 . Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular

  13. Near-infrared dental imaging using scanning fiber endoscope

    Science.gov (United States)

    Zhou, Yaxuan; Lee, Robert; Sadr, Alireza; Seibel, Eric J.

    2018-02-01

    Near-infrared (NIR) wavelength range of 1300-1500nm has the potential to outperform or augment other dental imaging modalities such as fluorescence imaging, owing to its lower scattering coefficient in enamel and trans- parency on stains and non-cariogenic plaque. However, cameras in this wavelength range are bulky and expensive, which lead to difficulties for in-vivo use and commercialization. Thus, we have proposed a new imaging device combining the scanning fiber endoscopy (SFE) and NIR imaging technology. The NIR SFE system has the advantage of miniature size (1.6 mm), flexible shaft, video frame rate (7Hz) and expandable wide field-of-view (60 degrees). Eleven extracted human teeth with or without occlusal caries were scanned by micro-computed X-ray tomography (micro-CT) to obtain 3D micro-CT images, which serve as the standard for comparison. NIR images in reflection mode were then taken on all the occlusal surfaces, using 1310nm super luminescent diode and 1460nm laser diode respectively. Qualitative comparison was performed between near-infrared im- ages and micro-CT images. Enamel demineralization in NIR appeared as areas of increased reflectivity, and distinguished from non-carious staining at the base of occlusal fissures or developmental defects on cusps. This preliminary work presented proof for practicability of combining NIR imaging technology with SFE for reliable and noninvasive dental imaging with miniaturization and low cost.

  14. A method to control the fabrication of etched optical fiber probes with nanometric tips

    International Nuclear Information System (INIS)

    Tao, Miaomiao; Gu, Ning; Huang, Lan; Jin, Yonglong

    2010-01-01

    Optical fiber probes with small size tips have attracted much interest in the areas of biosensor and near-field scanning optical microscopy. Chemical etching is a common useful method to fabricate such probes. But it is difficult to study or determine the etching time and control the shape of the fiber during the etching. In this work, a new method combining a fiber optic spectrometer with static chemical etching has been developed to fabricate optical fiber probe nanotips, where the fiber optic spectrometer is used to measure the optical signal during the etching. By calculating and analyzing the testing data, the relationship between the apex angle and the optical signal can be obtained. Accordingly, the process of fabricating optical fibers based on the optical signal can be controlled

  15. Electronic structure of C r2AlC as observed by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Ito, Takahiro; Pinek, Damir; Fujita, Taishi; Nakatake, Masashi; Ideta, Shin-ichiro; Tanaka, Kiyohisa; Ouisse, Thierry

    2017-11-01

    We investigate the electronic band structure and Fermi surfaces (FSs) of C r2AlC single crystals with angle-resolved photoemission spectroscopy. We evidence hole bands centered around the M points and electron bands centered around the Γ point in reciprocal space. Electron and hole bands exhibit an open, tubular structure along the c axis, confirming the quasi-two-dimensional character of this highly anisotropic, nanolamellar compound. Dependence of the photoionization cross sections on beam light polarization and orientation allows us to assess the orbital character of each observed band locally. Despite some differences, density functional theory calculations show a good agreement with experiment.

  16. A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy

    International Nuclear Information System (INIS)

    Zhang Feng-Feng; Yang Feng; Zhang Shen-Jin; Wang Zhi-Min; Xu Feng-Liang; Peng Qin-Jun; Zhang Jing-Yuan; Xu Zu-Yan; Wang Xiao-Yang; Chen Chuang-Tian

    2012-01-01

    We report on a polarization-adjustable picosecond deep-ultraviolet (DUV) laser at 177.3 nm. The DUV laser was produced by second harmonic generation from a mode-locked laser at 355 nm in nonlinear optical crystal KBBF. The laser delivered a maximum average output power of 1.1 mW at 177.3 nm. The polarization of the 177.3 nm beam was adjusted with linear and circular polarization by means of λ/4 and λ/2 wave plates. To the best of our knowledge, the laser has been employed as the circularly polarized and linearly polarized DUV light source for a spin- and angle-resolved photoemission spectroscopy with high resolution for the first time. (fundamental areas of phenomenology(including applications))

  17. Angle and Spin Resolved Auger Emission Theory and Applications to Atoms and Molecules

    CERN Document Server

    Lohmann, Bernd

    2009-01-01

    The Auger effect must be interpreted as the radiationless counterpart of photoionization and is usually described within a two-step model. Angle and spin resolved Auger emission physics deals with the theoretical and numerical description, analysis and interpretation of such types of experiments on free atoms and molecules. This monograph derives the general theory applying the density matrix formalism and, in terms of irreducible tensorial sets, so called state multipoles and order parameters, for parameterizing the atomic and molecular systems, respectively. Propensity rules and non-linear dependencies between the angular distribution and spin polarization parameters are included in the discussion. The numerical approaches utilizing relativistic distorted wave (RDWA), multiconfigurational Dirac-Fock (MCDF), and Greens operator methods are described. These methods are discussed and applied to theoretical predictions, numerical results and experimental data for a variety of atomic systems, especially the rare...

  18. Assessment of cumulative damage by using ultrasonic C-scan on carbon fiber/epoxy composites under thermal cycling

    Directory of Open Access Journals (Sweden)

    Marcos Yutaka Shiino

    2012-08-01

    Full Text Available In recent years, structural composites manufactured by carbon fiber/epoxy laminates have been employed in large scale in aircraft industries. These structures require high strength under severe temperature changes of -56° until 80 °C. Regarding this scenario, the aim of this research was to reproduce thermal stress in the laminate plate developed by temperature changes and tracking possible cumulative damages on the laminate using ultrasonic C-scan inspection. The evaluation was based on attenuation signals and the C-scan map of the composite plate. The carbon fiber/epoxy plain weave laminate underwent temperatures of -60° to 80 °C, kept during 10 minutes and repeated for 1000, 2000, 3000 and 4000 times. After 1000 cycles, the specimens were inspected by C-scanning. A few changes in the laminate were observed using the inspection methodology only in specimens cycled 3000 times, or so. According to the found results, the used temperature range did not present enough conditions to cumulative damage in this type of laminate, which is in agreement with the macro - and micromechanical theory.

  19. Precision angle-resolved autoionization resonances in Ar and Ne

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, N.; Langer, B.; Gorczyca, T.W. [Western Michigan Univ., Kalamazoo, MI (United States)] [and others

    1997-04-01

    Theoretical work has shown that the electron angular distribution and the shape of the autoionization resonances are crucial to the understanding of certain types of electron-electron correlation. Autoionization resonances in Ne (Ar) result from the decay of the excited discrete state Ne{sup *} 2s2p{sup 6} np (Ar{sup *} 3s3p{sup 6} np) into the continuum state Ne{sup +} 2s{sup 2}2p{sup 5} + e{sup {minus}} (ks,kd) (Ar{sup +} 3s{sup 2}3p{sup 5} + e{sup {minus}} (ks,kd)). Since the continuum can also be reached by direct photoionization, both paths add coherently, giving rise to interferences that produce the characteristic Beutler-Fano line shape. In this work, the authors report on quantitative angle-resolved electron spectrometry studies of (a) the Ne 2s{sup 2}2p{sup 6} {r_arrow} 2s2p{sup 6} np (n=3-5) autoionizing resonances and the 2s{sup 2}2p{sup 6} {r_arrow} 2p{sup 4}3s3p doubly excited resonance, (b) the Ar 3s{sup 2}3p{sup 6} {r_arrow} 3s3p{sup 6} np (n=4-9) autoionization resonances and extended R-matrix calculations of the angular-distribution parameters for both Ne and Ar measurements. Their results are compared with previous theoretical work by Taylor.

  20. Interfacial fracture of dentin adhesively bonded to quartz-fiber reinforced composite

    International Nuclear Information System (INIS)

    Melo, Renata M.; Rahbar, Nima; Soboyejo, Wole

    2011-01-01

    The paper presents the results of an experimental study of interfacial failure in a multilayered structure consisting of a dentin/resin cement/quartz-fiber reinforced composite (FRC). Slices of dentin close to the pulp chamber were sandwiched by two half-circle discs made of a quartz-fiber reinforced composite, bonded with bonding agent (All-bond 2, BISCO, Schaumburg) and resin cement (Duo-link, BISCO, Schaumburg) to make Brazil-nut sandwich specimens for interfacial toughness testing. Interfacial fracture toughness (strain energy release rate, G) was measured as a function of mode mixity by changing loading angles from 0 deg. to 15 deg. The interfacial fracture surfaces were then examined using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) to determine the failure modes when loading angles changed. A computational model was also developed to calculate the driving forces, stress intensity factors and mode mixities. Interfacial toughness increased from ∼ 1.5 to 3.2 J/m 2 when the loading angle increases from ∼ 0 to 15 deg. The hybridized dentin/cement interface appeared to be tougher than the resin cement/quartz-fiber reinforced epoxy. The Brazil-nut sandwich specimen was a suitable method to investigate the mechanical integrity of dentin/cement/FRC interfaces.

  1. Angle-resolved photoemission study and first-principles calculation of the electronic structure of LaSb2

    International Nuclear Information System (INIS)

    Acatrinei, Alice I; Browne, D; Losovyj, Y B; Young, D P; Moldovan, M; Chan, Julia Y; Sprunger, P T; Kurtz, Richard L

    2003-01-01

    In this work we present valence band studies of LaSb 2 using angle-resolved photoelectron spectroscopy with synchrotron radiation and compare these data with band structure calculations. Valence band spectra reveal that Sb 5p states are dominant near the Fermi level and are hybridized with the La 5d states just below. The calculations show a fair agreement with the experimentally determined valence band spectra, allowing an identification of the observed features. We measured some dispersion for kbar, especially for Sb 5p states; no significant dispersion was found for k || . (letter to the editor)

  2. The use of angle resolved electron and photon stimulated desorption for the determination of molecular structure at surfaces

    International Nuclear Information System (INIS)

    Madey, T.E.; Stockbauer, R.

    1983-01-01

    A brief review of recent data related to the use of angle-resolved electron stimulated desorption and photon stimulated desorption in determining the structures of molecules at surfaces is made. Examples include a variety of structural assignments based on ESIAD (electron stimulated desorption ion angular distributions), the observation of short-range local ordering effects induced in adsorbed molecules by surface impurities, and the application of photon stimulated desorption to both ionic and covalent adsorbate systems. (Author) [pt

  3. Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Angal, Amit; Chen, Hongda; Wu, Aisheng; Geng, Xu

    2014-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently operate onboard the National Aeronautics and Space Administration (NASA's) Terra and Aqua spacecraft, launched on December 18, 1999 and May 4, 2002, respectively. MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) covering a spectral range from 0.412 to 2.13 µm. The RSBs are calibrated on orbit using a solar diffuser (SD) and an SD stability monitor and with additional measurements from lunar observations via a space view (SV) port. Selected pseudo-invariant desert sites are also used to track the RSB on-orbit gain change, particularly for short-wavelength bands. MODIS views the Earth surface, SV, and the onboard calibrators using a two-sided scan mirror. The response versus scan angle (RVS) of the scan mirror was characterized prior to launch, and its changes are tracked using observations made at different angles of incidence from onboard SD, lunar, and Earth view (EV) measurements. These observations show that the optical properties of the scan mirror have experienced large wavelength-dependent degradation in both the visible and near infrared spectral regions. Algorithms have been developed to track the on-orbit RVS change using the calibrators and the selected desert sites. These algorithms have been applied to both Terra and Aqua MODIS Level 1B (L1B) to improve the EV data accuracy since L1B Collection 4, refined in Collection 5, and further improved in the latest Collection 6 (C6). In C6, two approaches have been used to derive the time-dependent RVS for MODIS RSB. The first approach relies on data collected from sensor onboard calibrators and mirror side ratios from EV observations. The second approach uses onboard calibrators and EV response trending from selected desert sites. This approach is mainly used for the bands with much larger changes in their time-dependent RVS, such as the Terra MODIS bands 1-4, 8, and 9 and the Aqua MODIS bands 8- and 9

  4. Atomic force microscopy deep trench and sidewall imaging with an optical fiber probe

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hui, E-mail: xiehui@hit.edu.cn; Hussain, Danish; Yang, Feng [The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, 150080 Harbin (China); Sun, Lining [The State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, 150080 Harbin (China); Robotics and Microsystems Center, Soochow University, 215021 Suzhou (China)

    2014-12-15

    We report a method to measure critical dimensions of micro- and nanostructures using the atomic force microscope (AFM) with an optical fiber probe (OFP). This method is capable of scanning narrow and deep trenches due to the long and thin OFP tip, as well as imaging of steep sidewalls with unique profiling possibilities by laterally tilting the OFP without any modifications of the optical lever. A switch control scheme is developed to measure the sidewall angle by flexibly transferring feedback control between the Z- and Y-axis, for a serial scan of the horizontal surface (raster scan on XY-plane) and sidewall (raster scan on the YZ-plane), respectively. In experiments, a deep trench with tapered walls (243.5 μm deep) and a microhole (about 14.9 μm deep) have been imaged with the orthogonally aligned OFP, as well as a silicon sidewall (fabricated by deep reactive ion etching) has been characterized with the tilted OFP. Moreover, the sidewall angle of TGZ3 (AFM calibration grating) was accurately measured using the switchable scan method.

  5. Highlights from 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    Science.gov (United States)

    Dunagan, Stephen E.

    2016-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET (Aerosol Robotic Network)-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyperspectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT). From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy's TCAP (Two-Column Aerosol Project) I & II campaigns, and NASA's SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) and ARISE (Arctic Radiation - IceBridge Sea & Ice Experiment) campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2 (High Spectral Resolution Lidar), and from in situ measurements.

  6. Time-Resolved Small-Angle X-Ray Scattering

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Besselink, R.; Stawski, Tomasz; Castricum, H.L.; Levy, D.; Zayat, M.

    2015-01-01

    This chapter focuses on time-resolved studies of nanostructure development in sol-gel liquids, that is, diluted sols, wet gels, and drying thin fffilms. The most commonly investigated classes of sol-gel materials are silica, organically modified silica, template-directed mesostructured silica,

  7. Thickness determination of thin solid films by angle-resolved X-ray fluorescence spectrometry using monochromatized synchrotron radiation

    Science.gov (United States)

    Schmitt, W.; Drotbohm, P.; Rothe, J.; Hormes, J.; Ottermann, C. R.; Bange, K.

    1995-05-01

    Thickness measurements by the method of angle-resolved, self-ratio X-ray fluorescence spectrometry (AR/SR/XFS) have been carried out on thin solid films using monochromatized synchrotron radiation at the Bonn storage ring ELSA. Synchrotron radiation was monochromatized by means of a double-crystal monochromator and fluorescence radiation was detected by a Si(Li) semiconductor detector. The results for sample systems consisting of Au on Si, Cr on SiO2 and TiO2 on alkali-free glass are very satisfactory and agree well with results obtained by other methods.

  8. Direct observation of superconducting gaps in MgB{sub 2} by angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S.-C.; Ding, H.; Kaminski, A.; Campuzano, J.C.; Sasaki, S.; Kadowaki, K

    2004-08-01

    High-resolution angle-resolved photoemission spectroscopy has been carried out to clarify the anomalous superconductivity of MgB{sub 2}. We observed three bands crossing the Fermi level, which are ascribed to B2p-{sigma}, {pi} and surface bands. We have succeeded for the first time in directly observing the superconducting gaps of these bands separately. We have found that the superconducting-gap sizes of {sigma} and surface bands are 6.5 {+-} 0.5 and 6.0 {+-} 0.5 meV, respectively, while that of the {pi} band is much smaller (1.5 {+-} 0.5 meV). The present experimental result unambiguously demonstrates the validity of the two-band superconductivity in MgB{sub 2}.

  9. Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Directory of Open Access Journals (Sweden)

    Y.-B. Huang

    2012-12-01

    Full Text Available The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of the momentum location in the Brillouin zone. We show that while this observation seems inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that a smaller lifetime of the superconducting Cooper pairs induced by the momentum dependent interband scattering inherent to these materials could affect the residual density of states at low energies, which is critical for a proper evaluation of the superconducting gap.

  10. Angle-resolved photoemission spectroscopy of liquid water at 29.5 eV.

    Science.gov (United States)

    Nishitani, Junichi; West, Christopher W; Suzuki, Toshinori

    2017-07-01

    Angle-resolved photoemission spectroscopy of liquid water was performed using extreme ultraviolet radiation at 29.5 eV and a time-of-flight photoelectron spectrometer. SiC/Mg coated mirrors were employed to select the single-order 19th harmonic from laser high harmonics, which provided a constant photon flux for different laser polarizations. The instrument was tested by measuring photoemission anisotropy for rare gases and water molecules and applied to a microjet of an aqueous NaI solution. The solute concentration was adjusted to eliminate an electric field gradient around the microjet. The observed photoelectron spectra were analyzed considering contributions from liquid water, water vapor, and an isotropic background. The anisotropy parameters of the valence bands (1 b 1 , 3 a 1 , and 1 b 2 ) of liquid water are considerably smaller than those of gaseous water, which is primarily attributed to electron scattering in liquid water.

  11. Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO{sub 3}/SrTiO{sub 3} Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Eiteneer, D. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Pálsson, G.K., E-mail: gunnar.palsson@physics.uu.se [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Nemšák, S. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Peter-Grünberg-Institut PGI-6, Forschungszentrum Julich, 52425 Julich (Germany); Gray, A.X. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kaiser, A.M. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Son, J.; LeBeau, J. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Conti, G. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); and others

    2016-08-15

    Highlights: • Depth resolved electronic structure of LaNiO{sub 3}/SrTiO{sub 3} superlattices is measured. • The structure is determined by x-ray standing wave angle-resolved photoemission. • Similarity to the electronic structure of La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} is discussed. - Abstract: LaNiO{sub 3} (LNO) is an intriguing member of the rare-earth nickelates in exhibiting a metal-insulator transition for a critical film thickness of about 4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such thin films also show a transition to a metallic state in superlattices with SrTiO{sub 3} (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to better understand this transition, we have studied a strained LNO/STO superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} substrate using soft x-ray standing-wave-excited angle-resolved photoemission (SWARPES), together with soft- and hard- x-ray photoemission measurements of core levels and densities-of-states valence spectra. The experimental results are compared with state-of-the-art density functional theory (DFT) calculations of band structures and densities of states. Using core-level rocking curves and x-ray optical modeling to assess the position of the standing wave, SWARPES measurements are carried out for various incidence angles and used to determine interface-specific changes in momentum-resolved electronic structure. We further show that the momentum-resolved behavior of the Ni 3d e{sub g} and t{sub 2g} states near the Fermi level, as well as those at the bottom of the valence bands, is very similar to recently published SWARPES results for a related La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} superlattice that was studied using the same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which further validates this experimental approach and our conclusions. Our

  12. The Effect of Muscle Fiber Direction on the Cut Surface Angle of Frozen Fish Muscular Tissue Cut by Bending Force

    OpenAIRE

    岡本, 清; 羽倉, 義雄; 鈴木, 寛一; 久保田, 清

    1996-01-01

    We have proposed a new cutting method named "Cryo-cutting" for frozen foodstuffs by applying a bending force instead of conventional cutting methods with band saw. This paper investigated the effect of muscle fiber angle (θf) to cut surface angle (θs) of frozen tuna muscular tissue at -70, -100 and -130°C for the purpose of evaluating the applicability of the cryo-cutting method to frozen fishes. The results were as follows : (1) There were two typical cutting patterns ("across the muscle fib...

  13. Geometric phase due to orbit-orbit interaction: rotating LP11 modes in a two-mode fiber

    Science.gov (United States)

    Pradeep Chakravarthy, T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2017-10-01

    Accumulation of geometric phase due to non-coplanar propagation of higher-order modes in an optical fiber is experimentally demonstrated. Vertically-polarized LP11 fiber mode, excited in a horizontally-held, torsion-free, step-index, two-mode optical fiber, rotates due to asymmetry in the propagating k-vectors, arising due to off-centered beam location at the fiber input. Perceiving the process as due to rotation of the fiber about the off-axis launch position, the orbital Berry phase accumulation upon scanning the launch position in a closed-loop around the fiber axis manifests as rotational Doppler effect, a consequence of orbit-orbit interaction. The anticipated phase accumulation as a function of the input launch position, observed through interferometry is connected to the mode rotation angle, quantified using the autocorrelation method.

  14. Gecko-Inspired Electrospun Flexible Fiber Arrays for Adhesion

    Science.gov (United States)

    Najem, Johnny F.

    The ability of geckos to adhere to vertical solid surfaces comes from their remarkable feet with millions of projections terminating in nanometer spatulae. We present a simple yet robust method for fabricating directionally sensitive dry adhesives. By using electrospun nylon 6 nanofiber arrays, we create gecko-inspired dry adhesives, that are electrically insulating, and that show shear adhesion strength of 27 N/cm2 on a glass slide. This measured value is 270% that reported of gecko feet and 97-fold above normal adhesion strength of the same arrays. The data indicate a strong shear binding-on and easy normal lifting-off. This anisotropic strength distribution is attributed to an enhanced shear adhesion strength with decreasing fiber diameter (d) and an optimum performance of nanofiber arrays in the shear direction over a specific range of thicknesses. With use of electrospinning, we report the fabrication of nylon 6 nanofiber arrays that show a friction coefficient (mu) of 11.5. These arrays possess significant shear adhesion strength and low normal adhesion strength. Increasing the applied normal load considerably enhances the shear adhesion strength and mu, irrespective of d and fiber arrays thickness (T). Fiber bending stiffness and fiber surface roughness are considerably decreased with diminishing d while fiber packing density is noticeably increased. These enhancements are proposed to considerably upsurge the shear adhesion strength between nanofiber arrays and a glass slide. The latter upsurge is mainly attributed to a sizeable proliferation in van der Waals (vdW) forces. These nanofiber arrays can be alternatively bound-on and lifted-off over a glass slide with a trivial decrease in the initial mu and adhesion strength. By using selective coating technique, we have also created hierarchical structures having closely packed nanofibers with d of 50 nm. We determine the effects of applied normal load, fiber surface roughness, loading angle, d, T, and repeated

  15. Bulk electronic state of high-Tc cuprate La2-xSrxCuO4 observed by high-energy angle integrated and resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kasai, S.; Sekiyama, A.; Tsunekawa, M.; Ernst, P.T.; Shigemoto, A.; Yamasaki, A.; Irizawa, A.; Imada, S.; Sing, M.; Muro, T.; Sasagawa, T.; Takagi, H.; Suga, S.

    2005-01-01

    The high-energy core-level photoemission spectroscopy (PES) and angle-resolved photoemission spectroscopy (ARPES) measurements have been performed for La 2-x Sr x CuO 4 (LSCO). Polar-angle dependence of the Cu 2p core-level PES has revealed a discrepancy between bulk and surface. We have observed by the high-energy ARPES that the Fermi surface of LSCO with x=0.16 is electron-like, in contrast to previous low-energy ARPES results

  16. Bulk electronic structures of n-type superconductor Nd1.85Ce0.15CuO4 probed by high energy angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Tsunekawa, M.; Sekiyama, A.; Kasai, S.; Yamasaki, A.; Fujiwara, H.; Sing, M.; Shigemoto, A.; Imada, S.; Onose, Y.; Tokura, Y.; Muro, T.; Suga, S.

    2005-01-01

    We report on a high-energy angle-resolved photoemission (ARPES) study of the n-type high-T C cuprate, Nd 1.85 Ce 0.15 CuO 4 (NCCO). Our bulk sensitive results suggest a hole-like Fermi surface as seen by the so far reported low-energy ARPES studies. The soft X-ray Cu 2p core-level photoemission spectra show clear polar-angle dependence, suggesting the difference in electron states between the bulk and surface

  17. Initial angle resolved measurements of fast neutrals using a multichannel linear AXUV detector system on LHD

    International Nuclear Information System (INIS)

    Veshchev, E. A.; Ozaki, T.; Goncharov, P. R.; Sudo, S.

    2006-01-01

    A new multichannel diagnostic for fast ion distribution studies has been developed and successfully tested on the Large Helical Device (LHD) in different plasma heating conditions. The diagnostic is based on a linear array AXUV detector consisting of 20 segments, charge sensitive preamplifiers, and a set of pulse height analysis channels. The main advantage of this system is the possibility to make time, energy, and angle-resolved measurements of charge exchange neutral particles in a single plasma discharge. This feature makes the new diagnostic a very helpful and powerful tool intended to contribute to the understanding of fast ion behavior in a complex helical plasma geometry like the one of LHD

  18. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Zhang Ruiyun; Pan Xianlin; Jiang Muwen; Peng Shujing; Qiu Yiping

    2012-01-01

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  19. Influence of forming conditions on fiber tilt

    Science.gov (United States)

    David W. Vahey; John M. Considine; Michael A. and MacGregor

    2013-01-01

    Fiber tilt describes the projection of fiber length in the thickness direction of paper. The projection is described by the tilt angle of fibers with respect to the plane of the sheet. A simple model for fiber tilt is based on jet-to-wire velocity differential in combination with cross-flows on the wire. The tilt angle of a fiber is found to vary as the sine of its in-...

  20. Development of angle-resolved low coherence interferometry for clinical detection of dysplasia

    Directory of Open Access Journals (Sweden)

    Yizheng Zhu

    2011-01-01

    Full Text Available This review covers the development of angle-resolved low coherence interferometry (a/LCI from initial development through clinical application. In the first applications, the approach used a time-domain interferometry scheme and was validated using animal models of carcinogenesis to assess the feasibility of detecting dysplasia in situ. Further development of the approach led to Fourier-domain interferometry schemes with higher throughput and endoscope-compatible probes to enable clinical application. These later implementations have been applied to clinical studies of dysplasia in Barrett′s esophagus tissues, a metaplastic tissue type that is associated with an increased risk of esophageal adenocarcinoma. As an alternative to systematic biopsy, the a/LCI approach offers high sensitivity and specificity for detecting dysplasia in these tissues while avoiding the need for tissue removal or exogenous contrast agents. Here, the various implementations of a/LCI are discussed and the results of the preliminary animal experiments and ex vivo human tissue studies are reviewed. A review of a recent in vivo clinical study is also presented.

  1. Performance of carbon fiber reinforced rubber composite armour against shaped charge jet penetration

    Directory of Open Access Journals (Sweden)

    Yue Lian-yong

    2016-01-01

    Full Text Available Natural rubber is reinforced with carbon fiber; the protective performances of the carbonfiber reinforced rubber composite armour to shaped charge jet have been studied based on the depth of penetration experiments. The craters on the witness blocks, the nature rubber based composite plates’ deformation and the Scanning Electron Microscopy for the hybrid fiber reinforced rubber plate also is analyzed. The results showed that the composite armour can affect the stability of the jet and made part of the jet fracture. The carbon fiber reinforced rubber composite armour has good defence ablity especially when the nature rubber plate hybrid 15% volume percentage carbonfiber and the obliquity angle is 68°. The hybrid fiber reinforced rubber composite armour can be used as a new kind of light protective armour.

  2. Diagnostic capability of optic nerve head rim width and retinal nerve fiber thickness in open-angle glaucoma.

    Science.gov (United States)

    Di Staso, Silvio; Agnifili, Luca; Di Staso, Federico; Climastone, Hilary; Ciancaglini, Marco; Scuderi, Gian Luca

    2018-03-01

    This study was performed to test the diagnostic capability of the minimum rim width compared to peripapillary retinal nerve fiber layer thickness in patients with glaucoma. A case control, observer masked study, was conducted. Minimum rim width and retinal nerve fiber layer thickness were assessed using the patient-specific axis traced between fovea-to-Bruch's membrane opening center axis. For both minimum rim width and retinal nerve fiber layer thickness, the regionalization in six sectors (nasal, superior-nasal, superior-temporal, temporal, inferior-temporal, and inferior-nasal) was analyzed. Eyes with at least one sector with value below the 5% or 1% normative limit of the optical coherence tomography normative database were classified as glaucomatous. The area under the receiver operator characteristic curve, the accuracy, sensitivity, specificity, and predictive positive and negative values were calculated for both minimum rim width and retinal nerve fiber layer thickness. A total of 118 eyes of 118 Caucasian subjects (80 eyes with open-angle glaucoma and 38 control eyes) were enrolled in the study. Accuracy, sensitivity, and specificity were 79.7%, 77.5%, and 84.2%, respectively, for minimum rim width and 84.7%, 82.5%, and 89.5% for retinal nerve fiber layer thickness. The positive predictive values were 0.91% and 0.94% for minimum rim width and retinal nerve fiber layer thickness, respectively, whereas the negative predictive values were 0.64% and 0.70%. The area under the receiver operator characteristic curve was 0.892 for minimum rim width and 0.938 for retinal nerve fiber layer thickness. Our results indicated that the sector analysis based on Bruch's membrane opening and fovea to disk alignment is able to detect glaucomatous defects, and that Bruch's membrane opening minimum rim width and retinal nerve fiber layer thickness showed equivalent diagnostic ability.

  3. Angle-resolved photoemission spectroscopy of liquid water at 29.5 eV

    Directory of Open Access Journals (Sweden)

    Junichi Nishitani

    2017-07-01

    Full Text Available Angle-resolved photoemission spectroscopy of liquid water was performed using extreme ultraviolet radiation at 29.5 eV and a time-of-flight photoelectron spectrometer. SiC/Mg coated mirrors were employed to select the single-order 19th harmonic from laser high harmonics, which provided a constant photon flux for different laser polarizations. The instrument was tested by measuring photoemission anisotropy for rare gases and water molecules and applied to a microjet of an aqueous NaI solution. The solute concentration was adjusted to eliminate an electric field gradient around the microjet. The observed photoelectron spectra were analyzed considering contributions from liquid water, water vapor, and an isotropic background. The anisotropy parameters of the valence bands (1b1, 3a1, and 1b2 of liquid water are considerably smaller than those of gaseous water, which is primarily attributed to electron scattering in liquid water.

  4. General theoretical description of angle-resolved photoemission spectroscopy of van der Waals structures

    Science.gov (United States)

    Amorim, B.

    2018-04-01

    We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.

  5. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    International Nuclear Information System (INIS)

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  6. Dimensional Crossover in a Charge Density Wave Material Probed by Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Nicholson, C. W.; Berthod, C.; Puppin, M.; Berger, H.; Wolf, M.; Hoesch, M.; Monney, C.

    2017-05-01

    High-resolution angle-resolved photoemission spectroscopy data reveal evidence of a crossover from one-dimensional (1D) to three-dimensional (3D) behavior in the prototypical charge density wave (CDW) material NbSe3 . In the low-temperature 3D regime, gaps in the electronic structure are observed due to two incommensurate CDWs, in agreement with x-ray diffraction and electronic-structure calculations. At higher temperatures we observe a spectral weight depletion that approaches the power-law behavior expected in one dimension. From the warping of the quasi-1D Fermi surface at low temperatures, we extract the energy scale of the dimensional crossover. This is corroborated by a detailed analysis of the density of states, which reveals a change in dimensional behavior dependent on binding energy. Our results offer an important insight into the dimensionality of excitations in quasi-1D materials.

  7. Targeted detection of murine colonic dysplasia in vivo with flexible multispectral scanning fiber endoscopy

    Science.gov (United States)

    Joshi, Bishnu P.; Miller, Sharon J.; Lee, Cameron; Gustad, Adam; Seibel, Eric J.; Wang, Thomas D.

    2012-02-01

    We demonstrate a multi-spectral scanning fiber endoscope (SFE) that collects fluorescence images in vivo from three target peptides that bind specifically to murine colonic adenomas. This ultrathin endoscope was demonstrated in a genetically engineered mouse model of spontaneous colorectal adenomas based on somatic Apc (adenomatous polyposis coli) gene inactivation. The SFE delivers excitation at 440, 532, 635 nm with human patients by simultaneously visualizing multiple over expressed molecular targets unique to dysplasia.

  8. Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser

    Science.gov (United States)

    Mullick, Suvradip; Agrawal, Arpit Kumar; Nath, Ashish Kumar

    2016-07-01

    Fiber laser has potential to outperform the more traditionally used CO2 lasers in sheet metal cutting applications due to its higher efficiency, better beam quality, reliability and ease of beam delivery through optical fiber. It has been however, reported that the higher focusability and shorter wavelength are advantageous for cutting thin metal sheets up to about 2 mm only. Better focasability results in narrower kerf-width, which leads to an earlier flow separation in the flow of assist gas within the kerf, resulting in uncontrolled material removal and poor cut quality. However, the advarse effect of tight focusability can be taken care by shifting the focal point position towards the bottom surface of work-piece, which results in a wider kerf size. This results in a more stable flow within the kerf for a longer depth, which improves the cut quality. It has also been reported that fiber laser has an unfavourable angle of incidence during cutting of thick sections, resulting in poor absorption at the metal surface. Therefore, the effect of laser incidence angle, along with other process parameters, viz. cutting speed and assist gas pressure on the cut quality of 4 mm thick steel sheet has been investigated. The change in laser incidence angle has been incorporated by inclining the beam towards and away from the cut front, and the quality factors are taken as the ratio of kerf width and the striation depth. Besides the absorption of laser radiation, beam inclination is also expected to influence the gas flow characteristics inside the kerf, shear force phenomena on the molten pool, laser beam coupling and laser power distribution at the inclined cut surface. Design of experiment has been used by implementing response surface methodology (RSM) to study the parametric dependence of cut quality, as well as to find out the optimum cut quality. An improvement in quality has been observed for both the inclination due to the combined effect of multiple phenomena.

  9. Mapping of trap densities and hotspots in pentacene thin-film transistors by frequency-resolved scanning photoresponse microscopy.

    Science.gov (United States)

    Westermeier, Christian; Fiebig, Matthias; Nickel, Bert

    2013-10-25

    Frequency-resolved scanning photoresponse microscopy of pentacene thin-film transistors is reported. The photoresponse pattern maps the in-plane distribution of trap states which is superimposed by the level of trap filling adjusted by the gate voltage of the transistor. Local hotspots in the photoresponse map thus indicate areas of high trap densities within the pentacene thin film. © 2013 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim.

  10. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-15

    We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power.

  11. The UHV Experimental Chamber For Optical Measurements (Reflectivity and Absorption) and Angle Resolved Photoemission of the BEAR Beamline at ELETTRA

    International Nuclear Information System (INIS)

    Pasquali, L.; Nannarone, S.; De Luisa, A.

    2004-01-01

    The experimental station of the BEAR (Bending magnet for Emission, Absorption and Reflectivity) beamline at ELETTRA (Trieste, Italy) is an UHV chamber conceived to fully exploit the spectroscopic possibilities offered by the light spot produced by the beamline. Spectroscopies include reflectivity (θ-2θ and diffuse), optical absorption, fluorescence and angle resolved photoemission. The chamber can be rotated around the beam axis to select the s (TE) or p (TM) incidence conditions and/or the position of the ellipse of polarization with respect to the sample. Photon detectors (e.g. photodiodes) and electron detector (hemispherical analyzer - 1 deg. angular resolution, 20 meV energy resolution) cover about completely the full 2π solid angle above the sample surface in any light incidence condition

  12. Dimyristoylphosphatidylcholine/C16 : 0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Holopainen, J. M.; Lemmich, Jesper; Richter, F.

    2000-01-01

    hydrated binary membranes composed of dimyristoylphosphatidylcholine (DMPC) and N-palmitoyl-ceramide (C16:0-ceramide, up to a mole fraction X-cer = 0.35) were resolved in further detail by high-sensitivity differential scanning calorimetry (DSC) and x-ray diffraction. Both methods reveal very strong...... hysteresis in the thermal phase behavior of ceramide-containing membranes. A partial phase diagram was constructed based on results from a combination of these two methods. DSC heating scans show that with increased X-cer the pretransition temperature T-P first increases, whereafter at X-cer > 0.06 it can...... no longer be resolved. The main transition enthalpy Delta H remains practically unaltered while its width increases significantly, and the upper phase boundary temperature of the mixture shifts to similar to 63 degrees C at X-cer = 0.30. Upon cooling, profound phase separation is evident, and for all...

  13. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  14. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation

    Science.gov (United States)

    Ma, Chaojie; Di, Jianglei; Li, Ying; Xiao, Fajun; Zhang, Jiwei; Liu, Kaihui; Bai, Xuedong; Zhao, Jianlin

    2018-06-01

    We demonstrate, for the first time, the rotational memory effect of a multimode fiber (MMF) based on digital optical phase conjugation (DOPC) to achieve multiple-spot focusing. An implementation interferometer is used to address the challenging alignments in DOPC. By rotating the acquired phase conjugate pattern, rotational scanning through a MMF could be achieved by recording a single off-axis hologram. The generation of two focal spots through a MMF is also demonstrated by combining the rotational memory effect with the superposition principle. The results may be useful for ultrafast scanning imaging and optical manipulation of multiple objects through a MMF.

  15. Scanning mass spectrometer setup for spatially resolved reactivity studies on model catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Matthias; Schirling, Christian; Kielbassa, Stefan; Bansmann, Joachim; Behm, Juergen [Institut fuer Oberflaechenchemie und Katalyse, Universitaet Ulm, D-89069 Ulm (Germany)

    2007-07-01

    A scanning mass spectrometer with micrometer-scale resolution was developed for investigations on the catalytic activity of microstructured planar model catalysts. Products of local surface reactions can be detected via a fine capillary orifice in a differentially pumped quadrupole mass spectrometer. The position of the sample with respect to the capillary is controlled by three piezo-driven translators. The surface reactivity of a resistive heated sample can be depicted in a spatially resolved topogram, taking into account the influence of the distance between sample and capillary on the magnitude of the QMS signal and the lateral resolution. Photolithographic structured reactive patterns on top of an inactive substrate enable investigations of mesoscopic transport effects such as coupling between catalytically active areas and of (reverse) spillover phenomena on one sample by varying the size and the distances of the active areas.

  16. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  17. High-resolution angle-resolved photoemission investigation of potassium and phosphate tungsten bronzes

    International Nuclear Information System (INIS)

    Paul, Sanhita; Kumari, Spriha; Raj, Satyabrata

    2016-01-01

    Highlights: • Electronic structure of potassium and phosphate tungsten bronzes. • Origin of transport anomalies in bronzes. • Flat segments of Fermi surfaces are connected by a nesting vector, q. • Nesting driven charge-density wave is responsible for the anomalies. - Abstract: We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) and density functional ab initio theoretical calculation to study the electronic structure of potassium (K_0_._2_5WO_3) and phosphate (P_4W_1_2O_4_4) tungsten bronzes. We have experimentally determined the band dispersions and Fermi surface topology of these bronzes and compared with our theoretical calculations and a fair agreement has been seen between them. Our experimental as well as theoretical investigation elucidates the origin of transport anomalies in these bronzes. The Fermi surfaces of these bronzes consist of flat patches, which can be connected with each other by a constant nesting wave vector, q. The scattering wave vectors found from diffraction measurements match with these nesting vectors and the anomalies in the transport properties of these bronzes can be well explained by the evolution of charge-density wave with a partial nesting between the flat segments of the Fermi surfaces.

  18. Extracting the temperature of hot carriers in time- and angle-resolved photoemission

    International Nuclear Information System (INIS)

    Ulstrup, Søren; Hofmann, Philip; Johannsen, Jens Christian; Grioni, Marco

    2014-01-01

    The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment

  19. Extracting the temperature of hot carriers in time- and angle-resolved photoemission.

    Science.gov (United States)

    Ulstrup, Søren; Johannsen, Jens Christian; Grioni, Marco; Hofmann, Philip

    2014-01-01

    The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment.

  20. High-sensitivity bend angle measurements using optical fiber gratings.

    Science.gov (United States)

    Rauf, Abdul; Zhao, Jianlin; Jiang, Biqiang

    2013-07-20

    We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.

  1. Sorption of diesel oil from polyurethane composite reinforced with palm fiber

    International Nuclear Information System (INIS)

    Dantas, I.R.; Cipriano, J.P.; Costa, I.L.M.; Mulinari, D.R.

    2016-01-01

    One of the methods to contain the diesel oil spill is the application of materials polymeric sorbents and the polyurethane is an option of porous sorbents. In this way, the objective of this study was to evaluate the use of polyurethane composites derivative of castor oil reinforced with palm fibers to sorption of diesel oil and compare with pure polyurethane. The composites were reinforced with 5 to 20% w/w of fibers. Subsequently, the sorption capacity of the composite in function of inserted fiber content in the matrix was analyzed. The physical and morphological characteristics were evaluated by scanning electron microscopy techniques (SEM) and diffraction X-ray (XRD) and the contact angle. The results showed that the composite with 20% w /w showed higher sorption capacity oil diesel compared to pure PU and other composites this fact was due to the heterogeneity of the pores and dispersion of fiber in the matrix. (author)

  2. Crystallization behavior of polyethylene on silicon wafers in solution casting processes traced by time-resolved measurements of synchrotron grazing-incidence small-angle and wide-angle X-ray scattering

    International Nuclear Information System (INIS)

    Sasaki, S; Masunaga, H; Takata, M; Itou, K; Tashiro, K; Okuda, H; Takahara, A

    2009-01-01

    Crystallization behavior of polyethylene (PE) on silicon wafers in solution casting processes has been successfully traced by time-resolved grazing-incidence small-angle and wide-angle X-ray scattering (GISWAXS) measurements utilizing synchrotron radiation. A p-xylene solution of PE kept at ca. 343 K was dropped on a silicon wafer at ca. 298 K. While the p-xylene evaporated naturally from the dropped solution sample, PE chains crystallized to be a thin film. Raman spectral measurements were performed simultaneously with the GISWAXS measurements to evaluate quantitatively the p-xylene the dropped solution contained. Grazing-incidence wide-angle X-ray scattering (GIWAXS) patterns indicated nucleation and crystal growth in the dropped solution and the following as-cast film. GIWAXS and Raman spectral data revealed that crystallization of PE was enhanced after complete evaporation of the p-xylene from the dropped solution. The [110] and [200] directions of the orthorhombic PE crystal became relatively parallel to the wafer surface with time, which implied that the flat-on lamellae with respect to the wafer surface were mainly formed in the as-cast film. On the other hand, grazing-incidence small-angle X-ray scattering (GISAXS) patterns implied formation of isolated lamellae in the dropped solution. The lamellae and amorphous might alternatively be stacked in the preferred direction perpendicular to the wafer surface. The synchrotron GISWAXS experimental method could be applied for kinetic study on hierarchical structure of polymer thin films.

  3. Scanning laser topography and scanning laser polarimetry: comparing both imaging methods at same distances from the optic nerve head.

    Science.gov (United States)

    Kremmer, Stephan; Keienburg, Marcus; Anastassiou, Gerasimos; Schallenberg, Maurice; Steuhl, Klaus-Peter; Selbach, J Michael

    2012-01-01

    To compare the performance of scanning laser topography (SLT) and scanning laser polarimetry (SLP) on the rim of the optic nerve head and its surrounding area and thereby to evaluate whether these imaging technologies are influenced by other factors beyond the thickness of the retinal nerve fiber layer (RNFL). A total of 154 eyes from 5 different groups were examined: young healthy subjects (YNorm), old healthy subjects (ONorm), patients with normal tension glaucoma (NTG), patients with open-angle glaucoma and early glaucomatous damage (OAGE) and patients with open-angle glaucoma and advanced glaucomatous damage (OAGA). SLT and SLP measurements were taken. Four concentric circles were superimposed on each of the images: the first one measuring at the rim of the optic nerve head (1.0 ONHD), the next measuring at 1.25 optic nerve head diameters (ONHD), at 1.5 ONHD and at 1.75 ONHD. The aligned images were analyzed using GDx/NFA software. Both methods showed peaks of RNFL thickness in the superior and inferior segments of the ONH. The maximum thickness, registered by the SLT device was at the ONH rim where the SLP device tended to measure the lowest values. SLT measurements at the ONH were influenced by other tissues besides the RNFL like blood vessels and glial tissues. SLT and SLP were most strongly correlated at distances of 1.25 and 1.5 ONHD. While both imaging technologies are valuable tools in detecting glaucoma, measurements at the ONH rim should be interpreted critically since both methods might provide misleading results. For the assessment of the retinal nerve fiber layer we would like to recommend for both imaging technologies, SLT and SLP, measurements in 1.25 and 1.5 ONHD distance of the rim of the optic nerve head.

  4. Time-resolved ultraviolet near-field scanning optical microscope for characterizing photoluminescence lifetime of light-emitting devices.

    Science.gov (United States)

    Park, Kyoung-Duck; Jeong, Hyun; Kim, Yong Hwan; Yim, Sang-Youp; Lee, Hong Seok; Suh, Eun-Kyung; Jeong, Mun Seok

    2013-03-01

    We developed a instrument consisting of an ultraviolet (UV) near-field scanning optical microscope (NSOM) combined with time-correlated single photon counting, which allows efficient observation of temporal dynamics of near-field photoluminescence (PL) down to the sub-wavelength scale. The developed time-resolved UV NSOM system showed a spatial resolution of 110 nm and a temporal resolution of 130 ps in the optical signal. The proposed microscope system was successfully demonstrated by characterizing the near-field PL lifetime of InGaN/GaN multiple quantum wells.

  5. Soft X-ray angle-resolved photoemission spectroscopy of heavily boron-doped superconducting diamond films

    Directory of Open Access Journals (Sweden)

    T. Yokoya, T. Nakamura, T. Matushita, T. Muro, H. Okazaki, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada and T. Oguchi

    2006-01-01

    Full Text Available We have performed soft X-ray angle-resolved photoemission spectroscopy (SXARPES of microwave plasma-assisted chemical vapor deposition diamond films with different B concentrations in order to study the origin of the metallic behavior of superconducting diamond. SXARPES results clearly show valence band dispersions with a bandwidth of ~23 eV and with a top of the valence band at gamma point in the Brillouin zone, which are consistent with the calculated valence band dispersions of pure diamond. Boron concentration-dependent band dispersions near the Fermi level (EF exhibit a systematic shift of EF, indicating depopulation of electrons due to hole doping. These SXARPES results indicate that diamond bands retain for heavy boron doping and holes in the diamond band are responsible for the metallic states leading to superconductivity at low temperature. A high-resolution photoemission spectroscopy spectrum near EF of a heavily boron-doped diamond superconductor is also presented.

  6. SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.

    2016-08-01

    SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.

  7. Application of carbon nanotubes to topographical resolution enhancement of tapered fiber scanning near field optical microscopy probes

    Science.gov (United States)

    Huntington, S. T.; Jarvis, S. P.

    2003-05-01

    Scanning near field optical microscopy (SNOM) probes are typically tapered optical fibers with metallic coatings. The tip diameters are generally in excess of 300 nm and thus provide poor topographical resolution. Here we report on the attachment multiwalled carbon nanotubes to the probes in order to substantially enhance the topographical resolution, without adversely affecting the optical resolution.

  8. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves.

    Science.gov (United States)

    Ning, Huiming; Li, Yuan; Hu, Ning; Cao, Yanping; Yan, Cheng; Azuma, Takesi; Peng, Xianghe; Wu, Liangke; Li, Jinhua; Li, Leilei

    2014-06-01

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m -2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%-73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.

  9. Micro-Mechanical Analysis About Kink Band in Carbon Fiber/Epoxy Composites Under Longitudinal Compression

    Science.gov (United States)

    Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi

    2017-10-01

    Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.

  10. Development of an optical fiber sensor for angular displacement measurements.

    Science.gov (United States)

    Jung, Gu-In; Kim, Ji-Sun; Lee, Tae-Hee; Choi, Ju-Hyeon; Oh, Han-Byeol; Kim, A-Hee; Eom, Gwang-Moon; Lee, Jeong-Hwan; Chung, Soon-Cheol; Park, Jong-Rak; Lee, Young-Jae; Park, Hee-Jung; Jun, Jae-Hoon

    2014-01-01

    For diagnostic and therapeutic purposes, the joint angle measurement of a patient after an accident or a surgical operation is significant for monitoring and evaluating the recovering process. This paper proposed an optical fiber sensor for the measurement of angular displacement. The effect of beveled fiber angle on the detected light signal was investigated to find an appropriate mathematical model. Beveled fiber tips redirected the light over a range of angles away from the fiber axis. Inverse polynomial models were applied to directly obtain and display the joint angle change in real time with the Lab-VIEW program. The actual joint angle correlated well with the calculated LabVIEW output angle over the test range. The proposed optical sensor is simple, cost effective, small in size, and can evaluate the joint angle in real time. This method is expected to be useful in the field of rehabilitation and sport science.

  11. Age-related differences in diffusion tensor indices and fiber architecture in the medial and lateral gastrocnemius.

    Science.gov (United States)

    Sinha, Usha; Csapo, Robert; Malis, Vadim; Xue, Yanjie; Sinha, Shantanu

    2015-04-01

    To investigate age related changes in diffusion tensor indices and fiber architecture of the medial and lateral gastrocnemius (MG and LG) muscles using diffusion tensor imaging (DTI). The lower leg of five young and five senior subjects was scanned at 3 Tesla and DTI indices extracted using three methods: region of interest, histogram, and tract based. Tracked fibers were automatically edited to ensure physiologically relevant tracks. Pennation angles were measured with respect to the deep and superficial aponeuroses of both muscles. The three methods provided internally consistent measures of the DTI indices (correlation coefficient in the range of 0.90-0.99). The primary, secondary, and tertiary eigenvalues in the MG and LG increased significantly in the senior cohort (P < 0.05), while the small increase in fractional anisotropy with age was not significant (MG/LG: P = 0.39/0.85; 95% confidence interval: [-0.059/-0.056, 0.116/0.064]). Fiber lengths of MG fibers originating distally were significantly decreased in seniors (P < 0.05) while pennation angles decreased with age in the MG and LG but this was not significant. Fiber atrophy and increased fibrosis have opposing effects on the diffusion indices resulting in a complicated dependence with aging. Fiber architectural changes could play a role in determining aging muscle function. © 2014 Wiley Periodicals, Inc.

  12. Age Related Differences in Diffusion Tensor Indices and Fiber Architecture in the Medial and Lateral Gastrocnemius

    Science.gov (United States)

    Sinha, Usha; Csapo, Robert; Malis, Vadim; Xue, Yanjie; Sinha, Shantanu

    2014-01-01

    Purpose To investigate age related changes in diffusion tensor indices and fiber architecture of the medial and lateral gastrocnemius (MG and LG) muscles using diffusion tensor imaging (DTI). Materials and Methods The lower leg of five young and five senior subjects was scanned at 3T and DTI indices extracted using three methods: ROI, histogram and tract based. Tracked fibers were automatically edited to ensure physiologically relevant tracks. Pennation angles were measured with respect to the deep and superficial aponeuroses of both muscles. Results The three methods provided internally consistent measures of the DTI indices (correlation coefficient in the range of 0.90-0.99). The primary, secondary and tertiary eigenvalues in the MG and LG increased significantly in the senior cohort (p<0.05), while the small increase in fractional anisotropy (FA) with age was not significant (MG/LG: p=0.39/0.85; 95% CI:[ −0.059/-0.056, 0.116/0.064]). Fiber lengths of MG fibers originating distally were significantly decreased in seniors (p<0.05) while pennation angles decreased with age in the MG and LG but this was not significant. Conclusion Fiber atrophy and increased fibrosis have opposing effects on the diffusion indices resulting in a complicated dependence with aging. Fiber architectural changes could play a role in determining aging muscle function. PMID:24771672

  13. MICROSTRUCTURAL PARAMETERS IN 8 MeV ELECTRON‐IRRADIATED BOMBYX MORI SILK FIBERS BY Wide‐ANGLE X‐RAY SCATTERING STUDIES (WAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Sangappa,, E-mail: sangappa@mangaloreuniversity.ac.in; Asha, S, E-mail: sangappa@mangaloreuniversity.ac.in [Department of Studies in Physics, Mangalore University, Mangalagangotri‐574 199 (India); Sanjeev, Ganesh, E-mail: sangappa@mangaloreuniversity.ac.in [Microtron Center, Mangalore University, Mangalagangotri‐574 199 (India); Subramanya, G, E-mail: sangappa@mangaloreuniversity.ac.in [Department of Studies in Sericulture, University of Mysore, Manasagangotri, Mysore‐570 006 (India); Parameswara, P, E-mail: sangappa@mangaloreuniversity.ac.in; Somashekar, R, E-mail: sangappa@mangaloreuniversity.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore‐570 006 (India)

    2010-01-05

    The present work looks into the microstructural modification in electron irradiated Bombyx mori P31 silk fibers. The irradiation process was performed in air at room temperature using 8 MeV electron accelerator at different doses: 0, 25, 50 and 100 kGy. Irradiation of polymer is used to cross‐link or degrade the desired component or to fix the polymer morphology. The changes in microstructural parameters in these natural polymer fibers have been computed using wide angle X‐ray scattering (WAXS) data and employing line profile analysis (LPA) using Fourier transform technique of Warren. Exponential, Lognormal and Reinhold functions for the column length distributions have been used for the determination of crystal size, lattice strain and enthalpy parameters.

  14. Microstructural Parameters in 8 MeV Electron-Irradiated BOMBYX MORI Silk Fibers by Wide-ANGLE X-Ray Scattering Studies (waxs)

    Science.gov (United States)

    Sangappa, Asha, S.; Sanjeev, Ganesh; Subramanya, G.; Parameswara, P.; Somashekar, R.

    2010-01-01

    The present work looks into the microstructural modification in electron irradiated Bombyx mori P31 silk fibers. The irradiation process was performed in air at room temperature using 8 MeV electron accelerator at different doses: 0, 25, 50 and 100 kGy. Irradiation of polymer is used to cross-link or degrade the desired component or to fix the polymer morphology. The changes in microstructural parameters in these natural polymer fibers have been computed using wide angle X-ray scattering (WAXS) data and employing line profile analysis (LPA) using Fourier transform technique of Warren. Exponential, Lognormal and Reinhold functions for the column length distributions have been used for the determination of crystal size, lattice strain and enthalpy parameters.

  15. MICROSTRUCTURAL PARAMETERS IN 8 MeV ELECTRON‐IRRADIATED BOMBYX MORI SILK FIBERS BY Wide‐ANGLE X‐RAY SCATTERING STUDIES (WAXS)

    International Nuclear Information System (INIS)

    Sangappa,; Asha, S; Sanjeev, Ganesh; Subramanya, G; Parameswara, P; Somashekar, R

    2010-01-01

    The present work looks into the microstructural modification in electron irradiated Bombyx mori P31 silk fibers. The irradiation process was performed in air at room temperature using 8 MeV electron accelerator at different doses: 0, 25, 50 and 100 kGy. Irradiation of polymer is used to cross‐link or degrade the desired component or to fix the polymer morphology. The changes in microstructural parameters in these natural polymer fibers have been computed using wide angle X‐ray scattering (WAXS) data and employing line profile analysis (LPA) using Fourier transform technique of Warren. Exponential, Lognormal and Reinhold functions for the column length distributions have been used for the determination of crystal size, lattice strain and enthalpy parameters.

  16. MICROSTRUCTURING OF SILICON SINGLE CRYSTALS BY FIBER LASER IN HIGH-SPEED SCANNING MODE

    Directory of Open Access Journals (Sweden)

    T. A. Trifonova

    2015-11-01

    Full Text Available Subject of Study. The surface structure of the silicon wafers (substrate with a thermally grown silicon dioxide on the surface (of SiO2/Si is studied after irradiation by pulse fiber laser of ILI-1-20 type. The main requirements for exposure modes of the system are: the preservation of the integrity of the film of silicon dioxide in the process of microstructuring and the absence of interference of surrounding irradiated areas of the substrate. Method. Studies were carried out on silicon wafers KEF-4,5 oriented in the crystallographic plane (111 with the source (natural silicon dioxide (SiO2 with thickness of about 4 nm, and SiO2 with 40 nm and 150 nm thickness, grown by thermal oxidation in moist oxygen. Also, wafers KHB-10 oriented in the plane (100 with 500 nm thickness of thermal oxide were investigated. Irradiation of SiO2/Si system was produced by laser complex based on ytterbium fiber pulse laser ILI-1-20. Nominal output power of the laser was 20 W, and the laser wavelength was λ = 1062 nm. Irradiation was carried out by a focused beam spot with a diameter of 25 microns and a pulse repetition rate of 99 kHz. The samples with 150 nm and 40 nm thickness of SiO2 were irradiated at a power density equal to 1,2·102 W/cm2, and the samples of SiO2 with 500 nm thickness were irradiated at a power density equal to 2,0·102 W/cm2. Scanning was performed using a two-axis Coordinate Scanning Device based on VM2500+ drives with control via a PC with the software package "SinMarkTM." Only one scan line was used at the maximum speed of the beam equal to 8750 mm/s. Morphology control of the irradiated samples was conducted by an optical microscope ZeissA1M with high-resolution CCD array. A scanning probe microscope Nanoedicator of the NT-MDT company was used for structural measurements. Main Results. It has been shown that at a single exposure of high-frequency pulsed laser radiation on SiO2/Si system, with maintaining the integrity of the SiO2 film

  17. Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads

    International Nuclear Information System (INIS)

    Valkass, Robert A. J.; Spicer, Timothy M.; Burgos Parra, Erick; Hicken, Robert J.; Bashir, Muhammad A.; Gubbins, Mark A.; Czoschke, Peter J.; Lopusnik, Radek

    2016-01-01

    To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of “flux beaming.” In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable to the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.

  18. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    Science.gov (United States)

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  19. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    Directory of Open Access Journals (Sweden)

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  20. Retinal nerve fiber layer measurements by scanning laser polarimetry with enhanced corneal compensation in healthy subjects.

    Science.gov (United States)

    Rao, Harsha L; Venkatesh, Chirravuri R; Vidyasagar, Kelli; Yadav, Ravi K; Addepalli, Uday K; Jude, Aarthi; Senthil, Sirisha; Garudadri, Chandra S

    2014-12-01

    To evaluate the (i) effects of biological (age and axial length) and instrument-related [typical scan score (TSS) and corneal birefringence] parameters on the retinal nerve fiber layer (RNFL) measurements and (ii) repeatability of RNFL measurements with the enhanced corneal compensation (ECC) protocol of scanning laser polarimetry (SLP) in healthy subjects. In a cross-sectional study, 140 eyes of 73 healthy subjects underwent RNFL imaging with the ECC protocol of SLP. Linear mixed modeling methods were used to evaluate the effects of age, axial length, TSS, and corneal birefringence on RNFL measurements. One randomly selected eye of 48 subjects from the cohort underwent 3 serial scans during the same session to determine the repeatability. Age significantly influenced all RNFL measurements. RNFL measurements decreased by 1 µm for every decade increase in age. TSS affected the overall average RNFL measurement (β=-0.62, P=0.003), whereas residual anterior segment retardance affected the superior quadrant measurement (β=1.14, P=0.01). Axial length and corneal birefringence measurements did not influence RNFL measurements. Repeatability, as assessed by the coefficient of variation, ranged between 1.7% for the overall average RNFL measurement and 11.4% for th nerve fiber indicator. Age significantly affected all RNFL measurements with the ECC protocol of SLP, whereas TSS and residual anterior segment retardance affected the overall average and the superior average RNFL measurements, respectively. Axial length and corneal birefringence measurements did not influence any RNFL measurements. RNFL measurements had good intrasession repeatability. These results are important while evaluating the change in structural measurements over time in glaucoma patients.

  1. Large Scale Scanning Probe Microscope "Making Shear Force Scanning visible."

    NARCIS (Netherlands)

    Bosma, E.; Offerhaus, Herman L.; van der Veen, Jan T.; van der Veen, J.T.; Segerink, Franciscus B.; Wessel, I.M.

    2010-01-01

    We describe a demonstration of a scanning probe microscope with shear-force tuning fork feedback. The tuning fork is several centimeters long, and the rigid fiber is replaced by a toothpick. By scaling this demonstration to visible dimensions the accessibility of shear-force scanning and tuning fork

  2. Wet spinning of PVA composite fibers with a large fraction of multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Dengpan Lai

    2015-10-01

    Full Text Available PVA composites fibers with a large fraction of multi-walled carbon nanotubes modified by both covalent and non-covalent functionalization were produced by a wet-spinning process. Model XQ-1 tensile tester, thermogravimetric analysis, scanning electron microscopy, differential scanning calorimetry, and wide-angle X-ray diffraction were used to characterize the properties of PVA/MWNT composite fibers. The TGA results suggested that MWNTs content in composite fibers were ranged from 5.3 wt% to 27.6 wt%. The mechanical properties of PVA/MWNT composite fibers were obviously superior to pure PVA fiber. The Young׳s modulus of composite fibers enhanced with increasing the content of MWNTs, and it rised gradually from 6.7 GPa for the pure PVA fiber to 12.8 GPa for the composite fibers with 27.6 wt% MWNTs. Meanwhile, the tensile strength increased gradually from 0.39 GPa for the pure PVA fiber to 0.74 GPa for the composite fibers with 14.4 wt% MWNTs. Nevertheless, the tensile strength of the composite fibers decreased as the MWNTs content up to 27.6 wt%. SEM results indicated that the MWNTs homogeneously dispersed in the composite fibers, however some agglomerates also existed when the content of MWNTs reached 27.6 wt%. DSC results proved strong interfacial interaction between MWNTs and PVA chain, which benefited composite fibers in the efficient stress-transfer. WXAD characterization showed that the orientation of PVA molecules declined from 94.1% to 90.9% with the increasing of MWNTs content. The good dispersibility of MWNTs throughout PVA matrix and efficient stress-transfer between MWNTs and PVA matrix may contributed to significant enhancement in the mechanical properties.

  3. Investigations of time resolved x-ray wide-angle scattering and x-ray small-angle scattering at DESY

    International Nuclear Information System (INIS)

    Zachmann, H.G.; Gehrke, R.; Prieske, W.; Riekel, C.

    1985-01-01

    Instrumentation is described for the simultaneous wide-angle and small-angle x-ray scattering. The method was applied to the study of the isothermal crystallization of polyethylene terephthalates. In agreement with the classical theories of crystallization, the data showed that the density difference between the crystals and the non-crystalline regions does not change with time. The mechanisms of melting, recrystallization, and crystal thickening were investigated by small-angle x-ray scattering with stepwise changes and continuous changes of temperature using polyethylene terephthalate

  4. STUDY OF THE EFFECT OF ENDFACES POLISHING ANGLE FOR ANISOTROPIC WAVEGUIDES ON STATE CONVERSION OF LIGHT POLARIZATION

    Directory of Open Access Journals (Sweden)

    V. A. Shulepov

    2016-05-01

    Full Text Available The paper deals with optical scheme for research of polarization state transformation at the junction of anisotropic waveguides. It consists of a light source, polarization controller, multifunctional integrated optical scheme (MIOS, single-mode fiber for input and output of optical radiation in MIOS and the polarization scanning Michelson interferometer. Optical radiation from the source of the plant comes through the polarization controller in one of the MIOS ports. Further, in one of the opposite ports the radiation is received by different fibers, polished at the angles of 19.5˚, 10.5˚ and 0˚. After that, the optical radiation gets into polarization Michelson interferometer. With that, the picture visibility is analyzed at different displacement of one arm upon which the value has been determined in the polarization conversion point connections. At the course of work it was obtained that the polarization state conversion at a splicing point rises with the slant angle deviation from its optimal value. Anisotropic waveguides splicing is one of the main tasks during fabrication of any fiber-optic sensor with integrated optical elements. The results of this work are of great interest for the wide range of specialists in the optical waveguides application field.

  5. Design and characterization of a wearable macrobending fiber optic sensor for human joint angle determination

    Science.gov (United States)

    Silva, Ana S.; Catarino, André; Correia, Miguel V.; Frazão, Orlando

    2013-12-01

    The work presented here describes the development and characterization of intensity fiber optic sensor integrated in a specifically designed piece of garment to measure elbow flexion. The sensing head is based on macrobending incorporated in the garment, and the increase of curvature number was studied in order to investigate which scheme provided a good result in terms of sensitivity and repeatability. Results showed the configuration that assured a higher sensitivity (0.644 dBm/deg) and better repeatability was the one with four loops. Ultimately, this sensor can be used for rehabilitation purposes to monitor human joint angles, namely, elbow flexion on stroke survivors while performing the reach functional task, which is the most common upper-limb human gesture.

  6. Nanocrystals of [Cu3(btc)2] (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study.

    Science.gov (United States)

    Zacher, Denise; Liu, Jianing; Huber, Klaus; Fischer, Roland A

    2009-03-07

    The formation of [Cu(3)(btc)(2)] (HKUST-1; btc = 1,3,5-benzenetricarboxylate) nanocrystals from a super-saturated mother solution at room temperature was monitored by time-resolved light scattering (TLS); the system is characterized by a rapid growth up to a size limit of 200 nm within a few minutes, and the size and shape of the crystallites were also determined by scanning electron microscopy (SEM).

  7. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu; Vishik, Inna M.; Yi, Ming; Yang, Shuolong; Lee, James J.; Chen, Sudi; Rebec, Slavko N.; Leuenberger, Dominik; Shen, Zhi-Xun [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Liu, Zhongkai [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); Zong, Alfred [Department of Physics, Stanford University, Stanford, California 94305 (United States); Jefferson, C. Michael; Merriam, Andrew J. [Lumeras LLC, 207 McPherson St, Santa Cruz, California 95060 (United States); Moore, Robert G.; Kirchmann, Patrick S. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-01-15

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10{sup 12} photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å{sup −1}, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å{sup −1}, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  8. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings

  9. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Wang Qian; Chen Ping; Jia Caixia; Chen, Mingxin; Li Bin

    2011-01-01

    In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. -O-C=O) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.

  10. Dynamic drainage of froth with wood fibers

    Science.gov (United States)

    J.Y. Zhu; Freya Tan

    2005-01-01

    Understanding froth drainage with fibers (or simply called fiber drainage in froth) is important for improving fiber yield in the flotation deinking operation. In this study, the data of water and fiber mass in foams collected at different froth heights were used to reconstruct the time dependent and spatially resolved froth density and fiber volumetric concentration...

  11. Alternative Method of On-Orbit Response-Versus-Scan-Angle Characterization for MODIS Reflective Solar Bands

    Science.gov (United States)

    Chen, Hongda; Xiong, Xiaoxiong; Angal, Amit; Geng, Xu; Wu, Aisheng

    2016-01-01

    The moderate resolution imaging spectroradiometer (MODIS) has 20 reflective solar bands (RSB), covering a spectral range from 0.41 to 2.2 microns, which are calibrated on-orbit using its onboard calibrators, which include a solar diffuser, a solar diffuser stability monitor, and a spectroradiometric calibration assembly. A space view (SV) port is used to provide a background reference and also facilitates near-monthly lunar observations through a spacecraft roll. In every scan, the Earth's surface, SV, and onboard calibrators are viewed via a two-sided scan mirror, the reflectance of which depends on the angle of incidence (AOI) as well as the wavelength of the incident light. Response-versus-scan-angle (RVS) is defined as a dependence function of the scan mirror's reflectance over AOI. An initial RVS for each RSB was measured prelaunch for both Terra and Aqua MODIS. Algorithms have been developed to track the on-orbit RVS variation using the measurements from the onboard calibrators, supplemented with the earth view (EV) trends from pseudoinvariant desert targets obtained at different AOI. Since the mission beginning, the MODIS characterization support team (MCST) has dedicated efforts in evaluating approaches of characterizing the on-orbit RVS. A majority of the approaches focused on fitting the data at each AOI over time and then deriving the relative change at different AOI. The current version of the on-orbit RVS algorithm, as implemented in the collection 6 (C6) level-1B (L1B), is also based on the above rationale. It utilizes the EV response trends from the pseudoinvariant Libyan desert targets to supplement the gain derived from the onboard calibrators. The primary limitation of this approach is the assumption of the temporal stability of these desert sites. Consequently, MCST developed an approach that derives the on-orbit RVS change using measurements from a single desert site, combined with the on-orbit lunar measurements. In addition, the EV and onboard

  12. A conjunct near-surface spectroscopy system for fix-angle and multi-angle continuous measurements of canopy reflectance and sun-induced chlorophyll fluorescence

    Science.gov (United States)

    Zhang, Qian; Fan, Yifeng; Zhang, Yongguang; Chou, Shuren; Ju, Weimin; Chen, Jing M.

    2016-09-01

    An automated spectroscopy system, which is divided into fix-angle and multi-angle subsystems, for collecting simultaneous, continuous and long-term measurements of canopy hyper-spectra in a crop ecosystem is developed. The fix-angle subsystem equips two spectrometers: one is HR2000+ (OceanOptics) covering the spectral range 200-1100 nm with 1.0 nm spectral resolution, and another one is QE65PRO (OceanOptics) providing 0.1 nm spectral resolution within the 730-780 nm spectral range. Both spectrometers connect a cosine-corrected fiber-optic fixed up-looking to collect the down-welling irradiance and a bare fiber-optic to measure the up-welling radiance from the vegetation. An inline fiber-optic shutter FOS-2x2-TTL (OceanOptics) is used to switch between input fibers to collect the signal from either the canopy or sky at one time. QE65PRO is used to permit estimation of vegetation Sun-Induced Fluorescence (SIF) in the O2-A band. The data collection scheme includes optimization of spectrometer integration time to maximize the signal to noise ratio and measurement of instrument dark currency. The multi-angle subsystem, which can help understanding bidirectional reflectance effects, alternatively use HR4000 (OceanOptics) providing 0.1 nm spectral resolution within the 680-800 nm spectral range to measure multi-angle SIF. This subsystem additionally includes a spectrometer Unispec-DC (PPSystems) featuring both up-welling and down-welling channels with 3 nm spectral resolution covering the 300-1100 nm spectral range. Two down-looking fiber-optics are mounted on a rotating device PTU-D46 (FLIR Systems), which can rotate horizontally and vertically at 10° angular step widths. Observations can be used to calculate canopy reflectance, vegetation indices and SIF for monitoring plant physiological processes.

  13. Method to map one-dimensional electronic wave function by using multiple Brillouin zone angle resolved photoemission

    Directory of Open Access Journals (Sweden)

    Dong-Wook Lee

    2010-10-01

    Full Text Available Angle resolved photoemission spectroscopy (ARPES is a powerful tool to investigate electronic structures in solids and has been widely used in studying various materials. The electronic structure information by ARPES is obtained in the momentum space. However, in the case of one-dimensional system, we here show that we extract the real space information from ARPES data taken over multiple Brillouin zones (BZs. Intensities in the multiple BZs are proportional to the photoemission matrix element which contains information on the coefficient of the Bloch wave function. It is shown that the Bloch wave function coefficients can be extracted from ARPES data, which allows us to construct the real space wave function. As a test, we use ARPES data from proto-typical one-dimensional system SrCuO2 and construct the real space wave function.

  14. Fingerprints of entangled spin and orbital physics in itinerant ferromagnets via angle-resolved resonant photoemission

    Science.gov (United States)

    Da Pieve, F.

    2016-01-01

    A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.

  15. Measurement of the optical fiber numeric aperture exposed to thermal and radiation aging

    Science.gov (United States)

    Vanderka, Ales; Bednarek, Lukas; Hajek, Lukas; Latal, Jan; Poboril, Radek; Zavodny, Petr; Vasinek, Vladimir

    2016-12-01

    This paper deals with the aging of optical fibers influenced by temperature and radiation. There are analyzed changes in the structure of the optical fiber, related to the propagation of light in the fiber structure. In this case for numerical aperture. For experimental measurement was used MM fiber OM1 with core diameter 62.5 μm, cladding diameter 125 μm in 2.8 mm secondary coating. Aging of the optical fiber was achieved with dry heat and radiation. For this purpose, we were using a temperature chamber with a stable temperature of 105 °C where the cables after two months. Cables were then irradiated with gamma radiation 60Co in doses of 1.5 kGy and then 60 kGy. These conditions simulated 50 years aging process of optical cables. According to European Standard EN 60793-1-43:2015 was created the automatic device for angular scan working with LabVIEW software interface. Numerical aperture was tested at a wavelength of 850 nm, with an output power 1 mW. Scanning angle was set to 50° with step 0.25°. Numerical aperture was calculated from the position where power has fallen from maximal power at e2 power. The measurement of each sample was performed 10 hours after thermal and radiation aging. The samples were subsequently tested after six months from the last irradiation. In conclusion, the results of the experiment were analyzed and compared.

  16. Wetting morphologies on randomly oriented fibers.

    Science.gov (United States)

    Sauret, Alban; Boulogne, François; Soh, Beatrice; Dressaire, Emilie; Stone, Howard A

    2015-06-01

    We characterize the different morphologies adopted by a drop of liquid placed on two randomly oriented fibers, which is a first step toward understanding the wetting of fibrous networks. The present work reviews previous modeling for parallel and touching crossed fibers and extends it to an arbitrary orientation of the fibers characterized by the tilting angle and the minimum spacing distance. Depending on the volume of liquid, the spacing distance between fibers and the angle between the fibers, we highlight that the liquid can adopt three different equilibrium morphologies: 1) a column morphology in which the liquid spreads between the fibers, 2) a mixed morphology where a drop grows at one end of the column or 3) a single drop located at the node. We capture the different morphologies observed using an analytical model that predicts the equilibrium configuration of the liquid based on the geometry of the fibers and the volume of liquid.

  17. Computed tomography with energy-resolved detection: a feasibility study

    Science.gov (United States)

    Shikhaliev, Polad M.

    2008-03-01

    The feasibility of computed tomography (CT) with energy-resolved x-ray detection has been investigated. A breast CT design with multi slit multi slice (MSMS) data acquisition was used for this study. The MSMS CT includes linear arrays of photon counting detectors separated by gaps. This CT configuration allows for efficient scatter rejection and 3D data acquisition. The energy-resolved CT images were simulated using a digital breast phantom and the design parameters of the proposed MSMS CT. The phantom had 14 cm diameter and 50/50 adipose/glandular composition, and included carcinoma, adipose, blood, iodine and CaCO3 as contrast elements. The x-ray technique was 90 kVp tube voltage with 660 mR skin exposure. Photon counting, charge (energy) integrating and photon energy weighting CT images were generated. The contrast-to-noise (CNR) improvement with photon energy weighting was quantified. The dual energy subtracted images of CaCO3 and iodine were generated using a single CT scan at a fixed x-ray tube voltage. The x-ray spectrum was electronically split into low- and high-energy parts by a photon counting detector. The CNR of the energy weighting CT images of carcinoma, blood, adipose, iodine, and CaCO3 was higher by a factor of 1.16, 1.20, 1.21, 1.36 and 1.35, respectively, as compared to CT with a conventional charge (energy) integrating detector. Photon energy weighting was applied to CT projections prior to dual energy subtraction and reconstruction. Photon energy weighting improved the CNR in dual energy subtracted CT images of CaCO3 and iodine by a factor of 1.35 and 1.33, respectively. The combination of CNR improvements due to scatter rejection and energy weighting was in the range of 1.71-2 depending on the type of the contrast element. The tilted angle CZT detector was considered as the detector of choice. Experiments were performed to test the effect of the tilting angle on the energy spectrum. Using the CZT detector with 20° tilting angle decreased the

  18. Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure.

    Science.gov (United States)

    Baskaran, Mani; Iyer, Jayant V; Narayanaswamy, Arun K; He, Yingke; Sakata, Lisandro M; Wu, Renyi; Liu, Dianna; Nongpiur, Monisha E; Friedman, David S; Aung, Tin

    2015-12-01

    To investigate the incidence of gonioscopic angle closure after 4 years in subjects with gonioscopically open angles but varying degrees of angle closure detected on anterior segment optical coherence tomography (AS OCT; Visante; Carl Zeiss Meditec, Dublin, CA) at baseline. Prospective, observational study. Three hundred forty-two subjects, mostly Chinese, 50 years of age or older, were recruited, of whom 65 were controls with open angles on gonioscopy and AS OCT at baseline, and 277 were cases with baseline open angles on gonioscopy but closed angles (1-4 quadrants) on AS OCT scans. All subjects underwent gonioscopy and AS OCT at baseline (horizontal and vertical single scans) and after 4 years. The examiner performing gonioscopy was masked to the baseline and AS OCT data. Angle closure in a quadrant was defined as nonvisibility of the posterior trabecular meshwork by gonioscopy and visible iridotrabecular contact beyond the scleral spur in AS OCT scans. Gonioscopic angle closure in 2 or 3 quadrants after 4 years. There were no statistically significant differences in age, ethnicity, or gender between cases and controls. None of the control subjects demonstrated gonioscopic angle closure after 4 years. Forty-eight of the 277 subjects (17.3%; 95% confidence interval [CI], 12.8-23; P < 0.0001) with at least 1 quadrant of angle closure on AS OCT at baseline demonstrated gonioscopic angle closure in 2 or more quadrants, whereas 28 subjects (10.1%; 95% CI, 6.7-14.6; P < 0.004) demonstrated gonioscopic angle closure in 3 or more quadrants after 4 years. Individuals with more quadrants of angle closure on baseline AS OCT scans had a greater likelihood of gonioscopic angle closure developing after 4 years (P < 0.0001, chi-square test for trend for both definitions of angle closure). Anterior segment OCT imaging at baseline predicts incident gonioscopic angle closure after 4 years among subjects who have gonioscopically open angles and iridotrabecular contact on AS OCT at

  19. Fiber tracking for brain tumor

    International Nuclear Information System (INIS)

    Yamada, Kei; Nakamura, Hisao; Ito, Hirotoshi; Tanaka, Osamu; Kubota, Takao; Yuen, Sachiko; Kizu, Osamu; Nishimura, Tsunehiko

    2003-01-01

    The purpose of this study was to validate an innovative scanning method for patients diagnosed with brain tumors. Using a 1.5 Tesla whole body magnetic resonance (MR) imager, 23 patients with brain tumors were scanned. The recorded data points of the diffusion-tensor imaging (DTI) sequences were 128 x 37 with the parallel imaging technique. The parallel imaging technique was equivalent to a true resolution of 128 x 74. The scan parameters were repetition time (TR)=6000, echo time (TE)=88, 6 averaging with a b-value of 800 s/mm 2 . The total scan time for DTI was 4 minutes and 24 seconds. DTI scans and subsequent fiber tracking were successfully applied in all cases. All fiber tracts on the contralesional side were visualized in the expected locations. Fiber tracts on the lesional side had varying degrees of displacement, disruption, or a combination of displacement and disruption due to the tumor. Tract disruption resulted from direct tumor involvement, compression upon the tract, and vasogenic edema surrounding the tumor. This DTI method using a parallel imaging technique allows for clinically feasible fiber tracking that can be incorporated into a routine MR examination. (author)

  20. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  1. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  2. Structure evolution and mechanical behavior of poly(ethylene terephthalate fibers drawn at different number of drawing stages

    Directory of Open Access Journals (Sweden)

    Haji Aminoddin

    2012-01-01

    Full Text Available In this work, the structure, mechanical and thermal properties of PET fiber obtained by hot multi-stage drawing have been investigated in terms of their dependence on the number of drawing steps at an equivalent total draw ratio. Differential scanning calorimetry, birefringence, wide-angle x-ray diffraction, FTIR spectroscopy, tensile properties, and taut-tie molecules were used to characterize the fine structure and physical properties of the fibers. Results have been explained in terms of a higher drawing residence time at an equivalent drawing speed. For single stage drawn fiber, a high tensile strength is obtained, whereas a high initial modulus is obtained for fiber drawn at three-stage drawing. According to the results, an important finding is that three-stage drawing process has the potential to produce high-modulus fibers. The enhanced fraction of taut-tie molecules is found in three-stage drawn fiber, which is believed to be one of the important factors leading to the high modulus achieved in fibers drawn in hot multistage.

  3. Ultrafast photoinduced carrier dynamics in GaNAs probed using femtosecond time-resolved scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Terada, Yasuhiko; Aoyama, Masahiro; Kondo, Hiroyuki; Taninaka, Atsushi; Takeuchi, Osamu; Shigekawa, Hidemi

    2007-01-01

    The combination of scanning tunnelling microscopy (STM) with optical excitation using ultrashort laser pulses enables us, in principle, to simultaneously obtain ultimate spatial and temporal resolutions. We have developed the shaken-pulse-pair-excited STM (SPPX-STM) and succeeded in detecting a weak time-resolved tunnelling current signal from a low-temperature-grown GaNAs sample. To clarify the underlying physics in SPPX-STM measurements, we performed optical pump-probe reflectivity measurements with a wavelength-changeable ultrashort-pulse laser. By comparing the results obtained from the two methods with an analysis based on the nonlinear relationship between the photocarrier density and tunnelling current, we obtained a comprehensive explanation that the photocarrier dynamics is reflected in the SPPX-STM signal through the surface photovoltage effect

  4. Quartz fiber calorimeter

    International Nuclear Information System (INIS)

    Akchurin, N.; Doulas, S.; Ganel, O.; Gershtein, Y.; Gavrilov, V.; Kolosov, V.; Kuleshov, S.; Litvinsev, D.; Merlo, J.-P.; Onel, Y.; Osborne, D.; Rosowsky, A.; Stolin, V.; Sulak, L.; Sullivan, J.; Ulyanov, A.; Wigmans, R.; Winn, D.

    1996-01-01

    A calorimeter with optical quartz fibers embedded into an absorber matrix was proposed for the small angle region of the CMS detector at LHC (CERN). This type of calorimeter is expected to be radiation hard and to produce extremely fast signal. Some results from beam tests of the quartz fiber calorimeter prototype are presented. (orig.)

  5. Influence of ethylene glycol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers

    International Nuclear Information System (INIS)

    Wen Ying; Li Ranxing; Cai Fang; Fu Kun; Peng Shujing; Jiang Qiuran; Yao Lan; Qiu Yiping

    2010-01-01

    For atmospheric pressure plasma treatments, the results of plasma treatments may be influenced by liquids adsorbed into the substrate. This paper studies the influence of ethylene glycol (EG) pretreatment on the effectiveness of atmospheric plasma jet (APPJ) treatment of ultrahigh molecular weight polyethylene (UHMWPE) fibers with 0.31% and 0.42% weight gain after soaked in EG/water solution with concentration of 0.15 and 0.3 mol/l for 24 h, respectively. Scanning electron microscopy (SEM) shows that the surface of fibers pretreated with EG/water solution does not have observable difference from that of the control group. The X-ray photoelectron spectroscopy (XPS) results show that the oxygen concentration on the surface of EG-pretreated fibers is increased less than the plasma directly treated fibers. The interfacial shear strength (IFSS) of plasma directly treated fibers to epoxy is increased almost 3 times compared with the control group while that of EG-pretreated fibers to epoxy does not change except for the fibers pretreated with lower EG concentration and longer plasma treatment time. EG pretreatment reduces the water contact angle of UHMWPE fibers. In conclusion, EG pretreatment can hamper the effect of plasma treatment of UHMWPE fibers and therefore longer plasma treatment duration is required for fibers pretreated with EG.

  6. Time-resolved laser-excited Shpol'skii spectrometry with a fiber-optic probe and ICCD camera

    International Nuclear Information System (INIS)

    Bystol, Adam J.; Campiglia, Andres D.; Gillispie, Gregory D.

    2000-01-01

    Improved methodology for chemical analysis via laser-excited Shpol'skii spectrometry is reported. The complications of traditional methodology for measurements at liquid nitrogen temperature are avoided by freezing the distal end of a bifurcated fiber-optic probe directly into the sample matrix. Emission wavelength-time matrices were rapidly collected by automatically incrementing the gate delay of an intensified charge-coupled device (ICCD) camera relative to the laser excitation pulse. The excitation source is a compact frequency-doubled tunable dye laser whose bandwidth (<0.03 nm) is well matched for Shpol'skii spectroscopy. Data reproducibility for quantitative analysis purposes and analytical figures of merit are demonstrated for several polycyclic aromatic hydrocarbons at 77 K. Although not attempted in this study, time-resolved excitation-emission matrices could easily be collected with this instrumental system. (c) 2000 Society for Applied Spectroscopy

  7. Angle-resolved-photoemission study of Bi2Sr2CaCu2O8+δ: Metallicity of the Bi-O plane

    International Nuclear Information System (INIS)

    Wells, B.O.; Shen, Z.; Dessau, D.S.; Spicer, W.E.; Olson, C.G.; Mitzi, D.B.; Kapitulnik, A.; List, R.S.; Arko, A.

    1990-01-01

    We have performed high-resolution angle-resolved-photoemission experiments on Bi 2 Sr 2 CaCu 2 O 8+δ single crystals with different annealing histories. By depositing a small amount of Au on the surface, we were able to distinguish electronic states associated with the Bi-O surface layer. We found that the Bi-O atomic surface layer is metallic and superconducting for samples that were high-temperature annealed in oxygen but not for as-grown samples. The Cu-O plane is found to be superconducting in all samples

  8. Early stages of spinodal decomposition in Fe-Cr resolved by in-situ small-angle neutron scattering

    Science.gov (United States)

    Hörnqvist, M.; Thuvander, M.; Steuwer, A.; King, S.; Odqvist, J.; Hedström, P.

    2015-02-01

    In-situ, time-resolved small-angle neutron scattering (SANS) investigations of the early stages of the spinodal decomposition process in Fe-35Cr were performed at 773 and 798 K. The kinetics of the decomposition, both in terms of characteristic distance and peak intensity, followed a power-law behaviour from the start of the heat treatment (a'= 0.10-0.11 and a″ = 0.67-0.86). Furthermore, the method allows tracking of the high-Q slope, which is a sensitive measure of the early stages of decomposition. Ex-situ SANS and atom probe tomography were used to verify the results from the in-situ investigations. Finally, the in-situ measurement of the evolution of the characteristic distance at 773 K was compared with the predictions from the Cahn-Hilliard-Cook model, which showed good agreement with the experimental data (a'= 0.12-0.20 depending on the assumed mobility).

  9. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A.

    1997-01-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from (√3x√3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N 2 /Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature

  10. Effect of laser peripheral iridotomy on anterior chamber angle anatomy in primary angle closure spectrum eyes

    Science.gov (United States)

    Kansara, Seema; Blieden, Lauren S.; Chuang, Alice Z.; Baker, Laura A.; Bell, Nicholas P.; Mankiewicz, Kimberly A.; Feldman, Robert M.

    2015-01-01

    Purpose To evaluate the change in trabecular-iris circumference volume (TICV) after laser peripheral iridotomy (LPI) in primary angle closure (PAC) spectrum eyes Patients and Methods Forty-two chronic PAC spectrum eyes from 24 patients were enrolled. Eyes with anterior chamber abnormalities affecting angle measurement were excluded. Intraocular pressure, slit lamp exam, and gonioscopy were recorded at each visit. Anterior segment optical coherence tomography (ASOCT) with 3D mode angle analysis scans were taken with the CASIA SS-1000 (Tomey Corp., Nagoya, Japan) before and after LPI. Forty-two pre-LPI ASOCT scans and 34 post-LPI ASOCT scans were analyzed using the Anterior Chamber Analysis and Interpretation (ACAI, Houston, TX) software. A mixed-effect model analysis was used to compare the trabecular-iris space area (TISA) changes among 4 quadrants, as well as to identify potential factors affecting TICV. Results There was a significant increase in all average angle parameters after LPI (TISA500, TISA750, TICV500, and TICV750). The magnitude of change in TISA500 in the superior angle was significantly less than the other angles. The changes in TICV500 and TICV750 were not associated with any demographic or ocular characteristics. Conclusion TICV is a useful parameter to quantitatively measure the effectiveness of LPI in the treatment of eyes with PAC spectrum disease. PMID:26066504

  11. Surface analysis of graphite fiber reinforced polyimide composites

    Science.gov (United States)

    Messick, D. L.; Progar, D. J.; Wightman, J. P.

    1983-01-01

    Several techniques have been used to establish the effect of different surface pretreatments on graphite-polyimide composites. Composites were prepared from Celion 6000 graphite fibers and the polyimide LARC-160. Pretreatments included mechanical abrasion, chemical etching and light irradiation. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used in the analysis. Contact angle of five different liquids of varying surface tensions were measured on the composites. SEM results showed polymer-rich peaks and polymer-poor valleys conforming to the pattern of the release cloth used durng fabrication. Mechanically treated and light irradiated samples showed varying degrees of polymer peak removal, with some degradation down to the graphite fibers. Minimal changes in surface topography were observed on concentrations of surface fluorine even after pretreatment. The light irradiation pretreatment was most effective at reducing surface fluorine concentrations whereas chemical pretreatment was the least effective. Critical surface tensions correlated directly with the surface fluorine to carbon ratios as calculated from XPS.

  12. Three-dimensional imaging of individual point defects using selective detection angles in annular dark field scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jared M.; Im, Soohyun; Windl, Wolfgang; Hwang, Jinwoo, E-mail: hwang.458@osu.edu

    2017-01-15

    We propose a new scanning transmission electron microscopy (STEM) technique that can realize the three-dimensional (3D) characterization of vacancies, lighter and heavier dopants with high precision. Using multislice STEM imaging and diffraction simulations of β-Ga{sub 2}O{sub 3} and SrTiO{sub 3}, we show that selecting a small range of low scattering angles can make the contrast of the defect-containing atomic columns substantially more depth-dependent. The origin of the depth-dependence is the de-channeling of electrons due to the existence of a point defect in the atomic column, which creates extra “ripples” at low scattering angles. The highest contrast of the point defect can be achieved when the de-channeling signal is captured using the 20–40 mrad detection angle range. The effect of sample thickness, crystal orientation, local strain, probe convergence angle, and experimental uncertainty to the depth-dependent contrast of the point defect will also be discussed. The proposed technique therefore opens new possibilities for highly precise 3D structural characterization of individual point defects in functional materials. - Highlights: • A new electron microscopy technique that can visualize 3D position of point defect is proposed. • The technique relies on the electron de-channeling signals at low scattering angles. • The technique enables precise determination of the depth of vacancies and lighter impurity atoms.

  13. Comparison of slitlamp optical coherence tomography and scanning peripheral anterior chamber depth analyzer to evaluate angle closure in Asian eyes.

    Science.gov (United States)

    Wong, Hon-Tym; Chua, Jocelyn L L; Sakata, Lisandro M; Wong, Melissa H Y; Aung, Han T; Aung, Tin

    2009-05-01

    To evaluate the effectiveness of slitlamp optical coherence tomography (SL-OCT) and Scanning Peripheral Anterior Chamber depth analyzer (SPAC) in detecting angle closure, using gonioscopy as the reference standard. A total of 153 subjects underwent gonioscopy, SL-OCT, and SPAC. The anterior chamber angle (ACA) was classified as closed on gonioscopy if the posterior trabecular meshwork could not be seen; with SL-OCT, closure was determined by contact between the iris and angle wall anterior to the scleral spur; and with SPAC by a numerical grade of 5 or fewer and/or a categorical grade of suspect or potential. A closed ACA was identified in 51 eyes with gonioscopy, 86 eyes with SL-OCT, and 61 eyes with SPAC (gonioscopy vs SL-OCT, P gonioscopy vs SPAC, P = .10; SL-OCT vs SPAC, P gonioscopy, SL-OCT detected a closed ACA in 43, whereas SPAC identified 41 (P = .79). An open angle in all 4 quadrants was observed in 102 eyes with gonioscopy, but SL-OCT and SPAC identified 43 and 20 of these eyes, respectively, as having angle closure. The overall sensitivity and specificity for SL-OCT were 84% and 58% vs 80% and 80% for SPAC. Using gonioscopy as the reference, SL-OCT and SPAC showed good sensitivity for detecting eyes at risk of angle closure.

  14. A study on thermal residual stresses in the matrix and fiber of a misoriented short fiber composite

    International Nuclear Information System (INIS)

    Son, Bong Jin; Lee, Joon Hyun

    1994-01-01

    An elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two special cases of fiber misorientation; two-dimensional in-plane and three-dimensional axisymmetric. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. The model is more general than past models and it is able to treat prior analyses of the simpler composite systems as extream cases. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for both in-plane and axisymmetric fiber misorientation. Fiber volume fraction, aspect ratio, and disturbution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distrubution type for both in-plane and axisymmetric misorientation.

  15. Oseltamivir (Tamiflu-induced bilateral acute angle closure glaucoma and transient myopia

    Directory of Open Access Journals (Sweden)

    Ji Woong Lee

    2014-01-01

    Full Text Available A 27-year-old woman developed bilateral acute angle closure glaucoma (AACG and transient myopia after taking oseltamivir for four days. On the fourth day, she received systemic and topical intraocular pressure (IOP-lowering agents, and IOP decreased in both eyes. However, her visual acuity was unchanged. A myopic shift of -5.25 D OD and -5.0 D OS was estimated to have occurred in the acute phase. A-scan ultrasonography and Pentacam showed markedly shallow anterior chambers and increased lens thickness. Ultrasound biomicroscopy revealed an annular ciliochoroidal effusion with forward displacement of the lens-iris diaphragm. Ciliochoroidal effusion and transient myopia were resolved after discontinuation of oseltamivir.

  16. Knowledge Extraction from Atomically Resolved Images.

    Science.gov (United States)

    Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V

    2017-10-24

    Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.

  17. The Fermi surface and band folding in La{sub 2-x}Sr{sub x}CuO{sub 4}, probed by angle-resolved photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Razzoli, E; Radovic, M; Patthey, L; Shi, M [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Sassa, Y; Chang, J [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Drachuck, G; Keren, A; Shay, M [Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Maansson, M; Mesot, J [Laboratory for Synchrotron and Neutron Spectroscopy, EPF Lausanne, CH-1015 Lausanne (Switzerland); Berntsen, M H; Tjernberg, O [Materials Physics, KTH Royal Institute of Technology, S-16440 Kista (Sweden); Pailhes, S [CEA, CNRS, CE Saclay, Laboratoire Leon Brillouin, F-91191 Gif Sur Yvette (France); Momono, N [Department of Applied Sciences, Muroran Institute of Technology, Muroran 050-8585 (Japan); Oda, M; Ido, M [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Lipscombe, O J; Hayden, S M, E-mail: ming.shi@psi.c [H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2010-12-15

    A systematic angle-resolved photoemission study of the electronic structure of La{sub 2-x}Sr{sub x}CuO{sub 4} in a wide doping range is presented in this paper. In addition to the main energy band, we observed a weaker additional band, the ({pi}, {pi}) folded band, which shows unusual doping dependence. The appearance of the folded band suggests that a Fermi surface reconstruction is doping dependent and could already occur at zero magnetic field.

  18. Electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yun [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    The discovery of quantum Hall e ect has motivated the use of topology instead of broken symmetry to classify the states of matter. Quantum spin Hall e ect has been proposed to have a separation of spin currents as an analogue of the charge currents separation in quantum Hall e ect, leading us to the era of topological insulators. Three-dimensional analogue of the Dirac state in graphene has brought us the three-dimensional Dirac states. Materials with three-dimensional Dirac states could potentially be the parent compounds for Weyl semimetals and topological insulators when time-reversal or space inversion symmetry is broken. In addition to the single Dirac point linking the two dispersion cones in the Dirac/Weyl semimetals, Dirac points can form a line in the momentum space, resulting in a topological node line semimetal. These fascinating novel topological quantum materials could provide us platforms for studying the relativistic physics in condensed matter systems and potentially lead to design of new electronic devices that run faster and consume less power than traditional, silicon based transistors. In this thesis, we present the electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES).

  19. LIDAR COMBINED SCANNING UNIT

    Directory of Open Access Journals (Sweden)

    V. V. Elizarov

    2016-11-01

    Full Text Available Subject of Research. The results of lidar combined scanning unit development for locating leaks of hydrocarbons are presented The unit enables to perform high-speed scanning of the investigated space in wide and narrow angle fields. Method. Scanning in a wide angular field is produced by one-line scanning path by means of the movable aluminum mirror with a frequency of 20Hz and amplitude of 20 degrees of swing. Narrowband scanning is performed along a spiral path by the deflector. The deflection of the beam is done by rotation of the optical wedges forming part of the deflector at an angle of ±50. The control function of the scanning node is performed by a specialized software product written in C# programming language. Main Results. This scanning unit allows scanning the investigated area at a distance of 50-100 m with spatial resolution at the level of 3 cm. The positioning accuracy of the laser beam in space is 15'. The developed scanning unit gives the possibility to browse the entire investigated area for the time not more than 1 ms at a rotation frequency of each wedge from 50 to 200 Hz. The problem of unambiguous definition of the beam geographical coordinates in space is solved at the software level according to the rotation angles of the mirrors and optical wedges. Lidar system coordinates are determined by means of GPS. Practical Relevance. Development results open the possibility for increasing the spatial resolution of scanning systems of a wide range of lidars and can provide high positioning accuracy of the laser beam in space.

  20. The electronic structure of clean and adsorbate-covered Bi2Se3: an angle-resolved photoemission study

    DEFF Research Database (Denmark)

    Bianchi, Marco; Hatch, Richard; Guan, Dandan

    2012-01-01

    Angle-resolved photoelectron spectroscopy is used for a detailed study of the electronic structure of the topological insulator Bi2Se3. Nominally stoichiometric and calcium-doped samples were investigated. The pristine surface shows the topological surface state in the bulk band gap. As time passes....... For a sufficiently strong band bending, additional states appear at the Fermi level. These are interpreted as quantized conduction band states. For large band bendings, these states are found to undergo a strong Rashba splitting. The formation of quantum well states is also observed for the valence band states......, the Dirac point moves to higher binding energies, indicating an increasingly strong downward bending of the bands near the surface. This time-dependent band bending is related to a contamination of the surface and can be accelerated by intentionally exposing the surface to carbon monoxide and other species...

  1. Multi-angle compound imaging

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  2. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Q., E-mail: qwan2@sheffield.ac.uk [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Masters, R.C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Lidzey, D. [Department of Physics and Astronomy, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Abrams, K.J. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Dapor, M. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), via Sommarive 18, I-38123 Trento (Italy); Plenderleith, R.A. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Rimmer, S. [Department of Chemistry, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Claeyssens, F.; Rodenburg, C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-12-15

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  3. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    International Nuclear Information System (INIS)

    Wan, Q.; Masters, R.C.; Lidzey, D.; Abrams, K.J.; Dapor, M.; Plenderleith, R.A.; Rimmer, S.; Claeyssens, F.; Rodenburg, C.

    2016-01-01

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  4. Surface State Dynamics of Topological Insulators Investigated by Femtosecond Time- and Angle-Resolved Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hamoon Hedayat

    2018-04-01

    Full Text Available Topological insulators (TI are known for striking quantum phenomena associated with their spin-polarized topological surface state (TSS. The latter in particular forms a Dirac cone that bridges the energy gap between valence and conduction bands, providing a unique opportunity for prospective device applications. In TI of the BixSb2−xTeySe3−y (BSTS family, stoichiometry determines the morphology and position of the Dirac cone with respect to the Fermi level. In order to engineer specific transport properties, a careful tuning of the TSS is highly desired. Therefore, we have systematically explored BSTS samples with different stoichiometries by time- and angle-resolved photoemission spectroscopy (TARPES. This technique provides snapshots of the electronic structure and discloses the carrier dynamics in surface and bulk states, providing crucial information for the design of electro-spin current devices. Our results reveal the central role of doping level on the Dirac cone structure and its femtosecond dynamics. In particular, an extraordinarily long TSS lifetime is observed when the the vertex of the Dirac cone lies at the Fermi level.

  5. Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study

    Science.gov (United States)

    Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.

    2013-01-01

    The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471

  6. Early stages of spinodal decomposition in Fe–Cr resolved by in-situ small-angle neutron scattering

    International Nuclear Information System (INIS)

    Hörnqvist, M.; Thuvander, M.; Steuwer, A.; King, S.; Odqvist, J.; Hedström, P.

    2015-01-01

    In-situ, time-resolved small-angle neutron scattering (SANS) investigations of the early stages of the spinodal decomposition process in Fe–35Cr were performed at 773 and 798 K. The kinetics of the decomposition, both in terms of characteristic distance and peak intensity, followed a power-law behaviour from the start of the heat treatment (a′   = 0.10–0.11 and a″ = 0.67–0.86). Furthermore, the method allows tracking of the high–Q slope, which is a sensitive measure of the early stages of decomposition. Ex-situ SANS and atom probe tomography were used to verify the results from the in-situ investigations. Finally, the in-situ measurement of the evolution of the characteristic distance at 773 K was compared with the predictions from the Cahn-Hilliard-Cook model, which showed good agreement with the experimental data (a′   = 0.12–0.20 depending on the assumed mobility)

  7. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N{sub 2}/Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature.

  8. Early stages of spinodal decomposition in Fe–Cr resolved by in-situ small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hörnqvist, M., E-mail: magnus.hornqvist@chalmers.se; Thuvander, M. [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, S-412 96 Gothenburg (Sweden); Steuwer, A. [MAX IV Laboratory, Lund University, S-221 00 Lund (Sweden); Nelson Mandela Metropolitan University, Gardham Ave., Port Elizabeth 6031 (South Africa); King, S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Odqvist, J.; Hedström, P. [Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, S-100 44 Stockholm (Sweden)

    2015-02-09

    In-situ, time-resolved small-angle neutron scattering (SANS) investigations of the early stages of the spinodal decomposition process in Fe–35Cr were performed at 773 and 798 K. The kinetics of the decomposition, both in terms of characteristic distance and peak intensity, followed a power-law behaviour from the start of the heat treatment (a′{sup  }= 0.10–0.11 and a″ = 0.67–0.86). Furthermore, the method allows tracking of the high–Q slope, which is a sensitive measure of the early stages of decomposition. Ex-situ SANS and atom probe tomography were used to verify the results from the in-situ investigations. Finally, the in-situ measurement of the evolution of the characteristic distance at 773 K was compared with the predictions from the Cahn-Hilliard-Cook model, which showed good agreement with the experimental data (a′{sup  }= 0.12–0.20 depending on the assumed mobility)

  9. Optical fiber head for providing lateral viewing

    Science.gov (United States)

    Everett, Matthew J.; Colston, Billy W.; James, Dale L.; Brown, Steve; Da Silva, Luiz

    2002-01-01

    The head of an optical fiber comprising the sensing probe of an optical heterodyne sensing device includes a planar surface that intersects the perpendicular to axial centerline of the fiber at a polishing angle .theta.. The planar surface is coated with a reflective material so that light traveling axially through the fiber is reflected transverse to the fiber's axial centerline, and is emitted laterally through the side of the fiber. Alternatively, the planar surface can be left uncoated. The polishing angle .theta. must be no greater than 39.degree. or must be at least 51.degree.. The emitted light is reflected from adjacent biological tissue, collected by the head, and then processed to provide real-time images of the tissue. The method for forming the planar surface includes shearing the end of the optical fiber and applying the reflective material before removing the buffer that circumscribes the cladding and the core.

  10. Non-scanning fiber-optic near-infrared beam led to two-photon optogenetic stimulation in-vivo.

    Directory of Open Access Journals (Sweden)

    Kamal R Dhakal

    Full Text Available Stimulation of specific neurons expressing opsins in a targeted region to manipulate brain function has proved to be a powerful tool in neuroscience. However, the use of visible light for optogenetic stimulation is invasive due to low penetration depth and tissue damage owing to larger absorption and scattering. Here, we report, for the first time, in-depth non-scanning fiber-optic two-photon optogenetic stimulation (FO-TPOS of neurons in-vivo in transgenic mouse models. In order to optimize the deep-brain stimulation strategy, we characterized two-photon activation efficacy at different near-infrared laser parameters. The significantly-enhanced in-depth stimulation efficiency of FO-TPOS as compared to conventional single-photon beam was demonstrated both by experiments and Monte Carlo simulation. The non-scanning FO-TPOS technology will lead to better understanding of the in-vivo neural circuitry because this technology permits more precise and less invasive anatomical delivery of stimulation.

  11. Glancing angle x-ray studies of oxide films

    International Nuclear Information System (INIS)

    Davenport, A.J.; Isaacs, H.S.

    1989-01-01

    High brightness synchrotron radiation incident at glancing angles has been used to study inhibiting species present in low concentrations in oxide films on aluminum. Glancing incident angle fluorescence measurements give surface-sensitive information on the valence state of elements from the shape of the x-ray absorption edge. Angle-resolved measurements show the depth distribution of the species present. 15 refs., 4 figs

  12. Characterization of weakly absorbing thin films by multiple linear regression analysis of absolute unwrapped phase in angle-resolved spectral reflectometry.

    Science.gov (United States)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-30

    The simultaneous determination of t, n(λ), and κ(λ) of thin films can be a tough task for the high correlation of fit parameters. The strong assumptions about the type of dispersion relation are commonly used as a consequence to alleviate correlation concerns by reducing the free parameters before the nonlinear regression analysis. Here we present an angle-resolved spectral reflectometry for the simultaneous determination of weakly absorbing thin film parameters, where a reflectance interferogram is recorded in both angular and spectral domains in a single-shot measurement for the point of the sample being illuminated. The variations of the phase recovered from the interferogram as functions of t, n, and κ reveals that the unwrapped phase is monotonically related to t, n, and κ, thereby allowing the problem of correlation to be alleviated by multiple linear regression. After removing the 2π ambiguity of the unwrapped phase, the merit function based on the absolute unwrapped phase performs a 3D data cube with variables of t, n and κ at each wavelength. The unique solution of t, n, and κ can then be directly determined from the extremum of the 3D data cube at each wavelength with no need of dispersion relation. A sample of GaN thin film grown on a polished sapphire substrate is tested. The experimental data of t and [n(λ), κ(λ)] are confirmed by the scanning electron microscopy and the comparison with the results of other related works, respectively. The consistency of the results shows the proposed method provides a useful tool for the determination of the thickness and optical constants of weakly absorbing thin films.

  13. Angle-resolved photoemission spectroscopy with quantum gas microscopes

    Science.gov (United States)

    Bohrdt, A.; Greif, D.; Demler, E.; Knap, M.; Grusdt, F.

    2018-03-01

    Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. So far, they were limited to measurements of instantaneous correlation functions of the form 〈O ̂(t ) 〉 , even though extensions to frequency-resolved response functions 〈O ̂(t ) O ̂(0 ) 〉 would provide important information about the elementary excitations in a many-body system. For example, single-particle spectral functions, which are usually measured using photoemission experiments in electron systems, contain direct information about fractionalization and the quasiparticle excitation spectrum. Here, we propose a measurement scheme to experimentally access the momentum and energy-resolved spectral function in a quantum gas microscope with currently available techniques. As an example for possible applications, we numerically calculate the spectrum of a single hole excitation in one-dimensional t -J models with isotropic and anisotropic antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral weight appears when a hole is created in an isotropic Heisenberg spin chain. This effect slowly vanishes for anisotropic spin interactions and disappears completely in the case of pure Ising interactions. The asymmetry strongly depends on the total magnetization of the spin chain, which can be tuned in experiments with quantum gas microscopes. An intuitive picture for the observed behavior is provided by a slave-fermion mean-field theory. The key properties of the spectra are visible at currently accessible temperatures.

  14. Novel Implementations of Wideband Tightly Coupled Dipole Arrays for Wide-Angle Scanning

    Science.gov (United States)

    Yetisir, Ersin

    Ultra-wideband (UWB) antennas and arrays are essential for high data rate communications and for addressing spectrum congestion. Tightly coupled dipole arrays (TCDAs) are of particular interest due to their low-profile, bandwidth and scanning range. But existing UWB (>3:1 bandwidth) arrays still suffer from limited scanning, particularly at angles beyond 45° from broadside. Almost all previous wideband TCDAs have employed dielectric layers above the antenna aperture to improve scanning while maintaining impedance bandwidth. But even so, these UWB arrays have been limited to no more than 60° away from broadside. In this work, we propose to replace the dielectric superstrate with frequency selective surfaces (FSS). In effect, the FSS is used to create an effective dielectric layer placed over the antenna array. FSS also enables anisotropic responses and more design freedom than conventional isotropic dielectric substrates. Another important aspect of the FSS is its ease of fabrication and low weight, both critical for mobile platforms (e.g. unmanned air vehicles), especially at lower microwave frequencies. Specifically, it can be fabricated using standard printed circuit technology and integrated on a single board with active radiating elements and feed lines. In addition to the FSS superstrate, a modified version of the stripline-based folded Marchand balun is presented. As usual the balun serves to match the 50Ω coaxial cable to the high input impedance ( 200Ω) at the terminals of array elements. Doing so, earlier Wilkinson power dividers, which degrade efficiency during E-plane scanning, are eliminated. To verify the proposed array concept, 12x12 TCDA prototype was fabricated using the modified balun and the new FSS superstrate layer. The design and experimental data showed an impedance bandwidth of 6.1:1 with VSWR<3.2. The latter VSWR was achieved even when scanning down to +/-60° in the H-plane, +/-70° in the D-plane and +/-75° in the E-plane. All array

  15. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    Science.gov (United States)

    Maeda, M.; Yamamoto, K.; Mizokawa, T.; Saini, N. L.; Arita, M.; Namatame, H.; Taniguchi, M.; Tan, G.; Zhao, L. D.; Kanatzidis, M. G.

    2018-03-01

    We have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. The large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  16. Influence of substrate miscut angle on surface morphology and luminescence properties of AlGaN

    International Nuclear Information System (INIS)

    Kusch, Gunnar; Edwards, Paul R.; Bruckbauer, Jochen; Martin, Robert W.; Li, Haoning; Parbrook, Peter J.; Sadler, Thomas C.

    2014-01-01

    The influence of substrate miscut on Al 0.5 Ga 0.5  N layers was investigated using cathodoluminescence (CL) hyperspectral imaging and secondary electron imaging in an environmental scanning electron microscope. The samples were also characterized using atomic force microscopy and high resolution X-ray diffraction. It was found that small changes in substrate miscut have a strong influence on the morphology and luminescence properties of the AlGaN layers. Two different types are resolved. For low miscut angle, a crack-free morphology consisting of randomly sized domains is observed, between which there are notable shifts in the AlGaN near band edge emission energy. For high miscut angle, a morphology with step bunches and compositional inhomogeneities along the step bunches, evidenced by an additional CL peak along the step bunches, are observed

  17. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle

    Energy Technology Data Exchange (ETDEWEB)

    Woehl, Taylor, E-mail: tjwoehl@umd.edu; Keller, Robert

    2016-12-15

    An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30 kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150 mrad) and on thick substrates (>50 nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses. - Highlights: • Developed a

  18. Optimized respiratory-resolved motion-compensated 3D Cartesian coronary MR angiography.

    Science.gov (United States)

    Correia, Teresa; Ginami, Giulia; Cruz, Gastão; Neji, Radhouene; Rashid, Imran; Botnar, René M; Prieto, Claudia

    2018-04-22

    To develop a robust and efficient reconstruction framework that provides high-quality motion-compensated respiratory-resolved images from free-breathing 3D whole-heart Cartesian coronary magnetic resonance angiography (CMRA) acquisitions. Recently, XD-GRASP (eXtra-Dimensional Golden-angle RAdial Sparse Parallel MRI) was proposed to achieve 100% scan efficiency and provide respiratory-resolved 3D radial CMRA images by exploiting sparsity in the respiratory dimension. Here, a reconstruction framework for Cartesian CMRA imaging is proposed, which provides respiratory-resolved motion-compensated images by incorporating 2D beat-to-beat translational motion information to increase sparsity in the respiratory dimension. The motion information is extracted from interleaved image navigators and is also used to compensate for 2D translational motion within each respiratory phase. The proposed Optimized Respiratory-resolved Cartesian Coronary MR Angiography (XD-ORCCA) method was tested on 10 healthy subjects and 2 patients with cardiovascular disease, and compared against XD-GRASP. The proposed XD-ORCCA provides high-quality respiratory-resolved images, allowing clear visualization of the right and left coronary arteries, even for irregular breathing patterns. Compared with XD-GRASP, the proposed method improves the visibility and sharpness of both coronaries. Significant differences (p respiratory phases with larger motion amplitudes and subjects with irregular breathing patterns. A robust respiratory-resolved motion-compensated framework for Cartesian CMRA has been proposed and tested in healthy subjects and patients. The proposed XD-ORCCA provides high-quality images for all respiratory phases, independently of the regularity of the breathing pattern. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  19. Coaxial electro-spun PEG/PA6 composite fibers: Fabrication and characterization

    International Nuclear Information System (INIS)

    Babapoor, Aziz; Karimi, Gholamreza; Golestaneh, Seyyed Iman; Mezjin, Mehdi Ahmadi

    2017-01-01

    Highlights: • Core-shell PCM nanofibers are fabricated by coaxial electrospinning. • PEG1000 (core) and PA6 (shell) are used to fabricate nanofibers. • The peak temperature is increased by raising the PEG concentration. • The shell structure can prevent PEG leakage at high temperatures. - Abstract: Energy storage systems have been recognized as one of the most important technologies for conservation and utilization of renewable energy sources. In this study, core-shell phase change material (PCM) nanofibers were fabricated by using coaxial electrospinning of polyethylene glycol (PEG1000) as the core material (i.e., PCM) and polyamide 6 (PA6) as the shell (supporting) material. The effects of inner core solution flow rate and PEG content on the morphology, structure, and phase change behavior of the produced composite fibers were studied thoroughly by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The experimental results indicated that by increasing the flow rate of the core solution, slightly thicker fibers can be produced, and the onset temperature of melting is reduced. Also, as the PEG concentration rises, the peak temperature increases and higher amounts of latent heat enthalpy are achieved. The results indicate that the fabricated core-shell structure has almost resolved the leakage instability normally associated with other types of PCM fibers and hence, has the potential to improve thermal storage capacity.

  20. Mapping exciton quenching in photovoltaic-applicable polymer blends using time-resolved scanning near-field optical microscopy

    Science.gov (United States)

    Cadby, A.; Khalil, G.; Fox, A. M.; Lidzey, D. G.

    2008-05-01

    We have used time-resolved scanning near-field microscopy to image the fluorescence decay lifetime across a phase-separated blend of the photovoltaic-applicable polymers poly(9,9'-dioctylfluorene-alt-benzothiadiazole) (F8BT) and poly(9,9'-dioctylfluorene-alt-bis- N ,N'-(4-butylphenyl)-bis-N ,N'-phenyl-1,4-phenylenediamine) (PFB). We show that the efficiency of local fluorescence quenching is composition dependent, with excitons on F8BT molecules being more effectively quenched when F8BT is trapped at a low concentration in a PFB-rich phase. Despite such presumed differences in charge-carrier generation efficiency, our results demonstrate that charge extraction from F8BT:PFB devices is the most dominant mechanism limiting their operational efficiency.

  1. Note: An X-ray powder diffractometer with a wide scattering-angle range of 72° using asymmetrically positioned one-dimensional detectors

    Energy Technology Data Exchange (ETDEWEB)

    Katsuya, Yoshio; Tanaka, Masahiko [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Song, Chulho [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Global Research Center for Environment and Energy based Nanomaterials Science (GREEN), Lithium Air Battery Specially Promoted Research Team, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Ito, Kimihiko; Kubo, Yoshimi [Global Research Center for Environment and Energy based Nanomaterials Science (GREEN), Lithium Air Battery Specially Promoted Research Team, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Global Research Center for Environment and Energy based Nanomaterials Science (GREEN), Lithium Air Battery Specially Promoted Research Team, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Synchrotron X-ray Group, Quantum Beam Unit, NIMS, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)

    2016-01-15

    An X-ray powder diffractometer has been developed for a time-resolved measurement without the requirement of a scattering angle (2θ) scan. Six one-dimensional detector modules are asymmetrically arranged in a vertical line at a designed distance of 286.5 mm. A detector module actually covers a diffraction angle of about 12° with an angular resolution of 0.01°. A diffracted intensity pattern is simultaneously recorded in a 2θ angular range from 1.63° to 74.37° in a “one shot” measurement. We tested the performance of the diffractometer with reference CeO{sub 2} powders and demonstrated diffraction measurements from an operating lithium-air battery.

  2. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  3. Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillation in dual-nanoweb fiber

    Directory of Open Access Journals (Sweden)

    J. R. Koehler

    2016-08-01

    Full Text Available It is interesting to pose the question: How best to design an optomechanical device, with no electronics, optical cavity, or laser gain, that will self-oscillate when pumped in a single pass with only a few mW of single-frequency laser power? One might begin with a mechanically resonant and highly compliant system offering very high optomechanical gain. Such a system, when pumped by single-frequency light, might self-oscillate at its resonant frequency. It is well-known, however, that this will occur only if the group velocity dispersion of the light is high enough so that phonons causing pump-to-Stokes conversion are sufficiently dissimilar to those causing pump-to-anti-Stokes conversion. Recently it was reported that two light-guiding membranes 20 μm wide, ∼500 nm thick and spaced by ∼500 nm, suspended inside a glass fiber capillary, oscillated spontaneously at its mechanical resonant frequency (∼6 MHz when pumped with only a few mW of single-frequency light. This was surprising, since perfect Raman gain suppression would be expected. In detailed measurements, using an interferometric side-probing technique capable of resolving nanoweb movements as small as 10 pm, we map out the vibrations along the fiber and show that stimulated intermodal scattering to a higher-order optical mode frustrates gain suppression, permitting the structure to self-oscillate. A detailed theoretical analysis confirms this picture. This novel mechanism makes possible the design of single-pass optomechanical oscillators that require only a few mW of optical power, no electronics nor any optical resonator. The design could also be implemented in silicon or any other suitable material.

  4. Guiding hard x rays with glass polycapillary fiber

    International Nuclear Information System (INIS)

    Xiao, Q.F.; Ponomarev, I.Y.; Kolomitsev, A.I.; Gibson, D.M.; Dilmanian, F.A.; Nachaliel, E.

    1993-01-01

    X rays can be guided through a polycapillary fiber by multiple total reflections from the smooth channel walls of the fiber. Using monochromatic Synchrotron Radiation at energies of 22 and 44 keV, we measured the efficiency of transmission of x rays through polycapillary fibers with channel diameters of about 13 μm. Efficiencies of 57.3% and 54.5% for 22 keV and 44 keV x rays, respectively, were obtained with a 120-mm-long straight polycapillary fiber aligned with the incident beam. These values are close to the open fraction of the fiber, which is about 60%. In addition, transmission efficiency was measured as a function of the tilt angle between the incident beam and the axis of the fiber. We also measured the transmission efficiency as a function of the deflection angle for a 114-mm-long curved polycapillary fiber. The measurements are compared with a ray-tracing simulation

  5. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang, E-mail: chunxl@sxicc.ac.cn [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); He, Shuqing [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); An, Feng [National Engineering Laboratory for carbon fiber technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2013-08-15

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  6. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    International Nuclear Information System (INIS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang; He, Shuqing; An, Feng

    2013-01-01

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  7. Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC).

    Science.gov (United States)

    Dada, Tanuj; Aggarwal, A; Bali, S J; Sharma, A; Shah, B M; Angmo, D; Panda, A

    2013-01-01

    Myopia presents a significant challenge to the ophthalmologist as myopic discs are often large, tilted, with deep cups and have a thinner neuroretinal rim all of which may mimic glaucomatous optic nerve head changes causing an error in diagnosis. To evaluate the retinal fiber layer (RNFL) thickness in low, moderate and high myopia using scanning laser polarimetry with variable corneal compensation (GDxVCC). One hundred eyes of 100 emmetropes, 30 eyes of low myopes (0 to - 4 D spherical equivalent(SE), 45 eyes with moderate myopia (- 4 to - 8D SE), and 30 eyes with high myopia (- 8 to - 15D SE) were subjected to retinal nerve fiber layer assessment using the scanning laser polarimetry (GDxVCC) in all subjects using the standard protocol. Subjects with IOP > 21 mm Hg, optic nerve head or visual field changes suggestive of glaucoma were excluded from the study. The major outcome parameters were temporal-superior-nasal-inferiortemporal (TSNIT) average, the superior and inferior average and the nerve fibre indicator (NFI). The TSNIT average (p = 0.009), superior (p = 0.001) and inferior average (p = 0.008) were significantly lower; the NFI was higher (P less than 0.001) in moderate myopes as compared to that in emmetropes. In high myopia the RNFL showed supranormal values; the TSNIT average, superior and inferior average was significantly higher(p less than 0.001) as compared to that in emmetropes. The RNFL measurements on scanning laser polarimetry are affected by the myopic refractive error. Moderate myopes show a significant thinning of the RNFL. In high myopia due to peripapillary chorioretinal atrophy and contribution of scleral birefringence, the RNFL values are abnormally high. These findings need to be taken into account while assessing and monitoring glaucoma damage in moderate to high myopes on GDxVCC. © NEPjOPH.

  8. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    International Nuclear Information System (INIS)

    Walker, Bennett N.; James, Robert H.; Ilev, Ilko K.; Calogero, Don

    2015-01-01

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter

  9. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); James, Robert H.; Ilev, Ilko K. [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Calogero, Don [Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)

    2015-09-15

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.

  10. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian, E-mail: florian.maier@fau.de [Lehrstuhl für Physikalische Chemie II, FAU Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen (Germany)

    2016-04-15

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  11. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    International Nuclear Information System (INIS)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian

    2016-01-01

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  12. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is

  13. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc,max ~95 K and (Bi1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc,max 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major di erences in the band structure. First, the Fermi surface segments close to ( π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent with

  14. Time-resolved GISAXS and cryo-microscopy characterization of block copolymer membrane formation

    KAUST Repository

    Marques, Debora S.; Dorin, Rachel Mika; Wiesner, Ulrich B.; Smilgies, Detlef Matthias; Behzad, Ali Reza; Vainio, Ulla; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2014-01-01

    Time-resolved grazing-incidence small-angle X-ray scattering (GISAXS) and cryo-microscopy were used for the first time to understand the pore evolution by copolymer assembly, leading to the formation of isoporous membranes with exceptional porosity and regularity. The formation of copolymer micelle strings in solution (in DMF/DOX/THF and DMF/DOX) was confirmed by cryo field emission scanning electron microscopy (cryo-FESEM) with a distance of 72 nm between centers of micelles placed in different strings. SAXS measurement of block copolymer solutions in DMF/DOX indicated hexagonal assembly with micelle-to-micelle distance of 84-87 nm for 14-20 wt% copolymer solutions. GISAXS in-plane peaks were detected, revealing order close to hexagonal. The d-spacing corresponding to the first peak in this case was 100-130 nm (lattice constant 115-150 nm) for 17 wt% copolymer solutions evaporating up to 100 s. Time-resolved cryo-FESEM showed the formation of incipient pores on the film surface after 4 s copolymer solution casting with distances between void centers of 125 nm. © 2014 Elsevier Ltd. All rights reserved.

  15. Time-resolved GISAXS and cryo-microscopy characterization of block copolymer membrane formation

    KAUST Repository

    Marques, Debora S.

    2014-03-01

    Time-resolved grazing-incidence small-angle X-ray scattering (GISAXS) and cryo-microscopy were used for the first time to understand the pore evolution by copolymer assembly, leading to the formation of isoporous membranes with exceptional porosity and regularity. The formation of copolymer micelle strings in solution (in DMF/DOX/THF and DMF/DOX) was confirmed by cryo field emission scanning electron microscopy (cryo-FESEM) with a distance of 72 nm between centers of micelles placed in different strings. SAXS measurement of block copolymer solutions in DMF/DOX indicated hexagonal assembly with micelle-to-micelle distance of 84-87 nm for 14-20 wt% copolymer solutions. GISAXS in-plane peaks were detected, revealing order close to hexagonal. The d-spacing corresponding to the first peak in this case was 100-130 nm (lattice constant 115-150 nm) for 17 wt% copolymer solutions evaporating up to 100 s. Time-resolved cryo-FESEM showed the formation of incipient pores on the film surface after 4 s copolymer solution casting with distances between void centers of 125 nm. © 2014 Elsevier Ltd. All rights reserved.

  16. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology....

  17. Structure and properties of melt-spun high acrylonitrile copolymer fibers via continuous zone-drawing and zone-annealing processes

    International Nuclear Information System (INIS)

    Wu Zongquan; Zhang Anqiu; Percec, Simona; Jin Shi; Jing, Alexander J.; Ge, Jason J.; Cheng, Stephen Z.D.

    2003-01-01

    Continuous zone-drawing and zone-annealing processes have been utilized to probe improvements in mechanical performance of melt-spun high acrylonitrile copolymer fibers (AMLON TM ). The as-spun fibers were zone-drawn at different ratios in a narrow temperature range of 100-105 deg. C and then zone-annealed. As a result of these processes, the fibers show substantial increases in tensile strength and tensile modulus (about three times) and significant improvements in elongation-at-break (about two times) after zone annealing. The thermal transition behavior, dimensional stability and dynamic relaxation properties of the as-spun, zone-drawn and zone-annealed fibers have been studied using differential scanning calorimetry, thermal mechanical and dynamic mechanical experiments. Their mechanical and thermal property changes after the zone-drawing and zone-annealing processes can be associated with the microscopic structural evolution including crystallinity, crystal orientation and apparent crystallite size detected by wide angle X-ray diffraction experiments

  18. Formation of complexes between functionalized chitosan membranes and copper: A study by angle resolved XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jurado-López, Belén [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Vieira, Rodrigo Silveira [Chemical Engineering Department, Universidade Federal do Ceará, UFC, 60455-760 Fortaleza, CE (Brazil); Rabelo, Rodrigo Balloni; Beppu, Marisa Masumi [School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13081-970 Campinas, SP (Brazil); Casado, Juan [Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Rodríguez-Castellón, Enrique, E-mail: castellon@uma.es [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain)

    2017-01-01

    Chitosan is a biopolymer with potential applications in various fields. Recently, it has been used for heavy metals removal like copper, due to the presence of amino and hydroxyl groups in its structure. Chitosan membranes were crosslinked with epichlorohydrin and bisoxirano and functionalized with chelating agents, such as iminodiacetic acid, aspartic acid and tris-(2-amino-ethyl) polyamine. These membranes were used for copper adsorption and the formed complexes were characterized. Thermal and crystalline properties of chitosan membranes were studied by TG-DCS and X-ray diffraction. Raman, XPS and FT-IR data confirmed that copper is linked to the modified chitosan membranes by the amino groups. The oxidation state of copper-chitosan membranes were also studied by angle resolved XPS, and by UV–Vis diffuse reflectance spectroscopy. - Highlights: • Chitosan membranes were crosslinked with epichlorohydrin and bisoxirano and functionalized with chelating agents. • The chelating agent were iminodiacetic acid, aspartic acid and tris-(2-amino-ethyl) polyamine. • The functionalized membranes were used for copper adsorption and studied by ARXPS, Raman, TG-DCS, FT-IR and XRD. • Spectroscopic data confirmed that copper is linked to the modified chitosan membranes by the amino groups.

  19. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  20. Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects.

    Science.gov (United States)

    Xin, Daiyan; Talamini, Christine L; Raza, Ali S; de Moraes, Carlos Gustavo V; Greenstein, Vivienne C; Liebmann, Jeffrey M; Ritch, Robert; Hood, Donald C

    2011-09-09

    To better understand hypodense regions (holes) that appear in the retinal nerve fiber layer (RNFL) of frequency-domain optical coherence tomography (fdOCT) scans of patients with glaucoma and glaucoma suspects. Peripapillary circle (1.7-mm radius) and cube optic disc fdOCT scans were obtained on 208 eyes from 110 patients (57.4 ± 13.2 years) with glaucomatous optic neuropathy (GON) and 45 eyes of 45 controls (48.0 ± 12.6 years) with normal results of fundus examination. Holes in the RNFL were identified independently by two observers on the circle scans. Holes were found in 33 (16%) eyes of 28 (25%) patients; they were not found in any of the control eyes. Twenty-four eyes had more than one hole. Although some holes were relatively large, others were small. In general, the holes were located adjacent to blood vessels; only three eyes had isolated holes that were not adjacent to a vessel. The holes tended to be in the regions that are thickest in healthy controls and were associated with arcuate defects in patients. Holes were not seen in the center of the temporal disc region. They were more common in the superior (25 eyes) than in the inferior (15 eyes) disc. Of the 30 eyes with holes with reliable visual fields, seven were glaucoma suspect eyes with normal visual fields. The holes in the RNFL seen in patients with GON were probably due to a local loss of RNFL fibers and can occur in the eyes of glaucoma suspects with normal visual fields.

  1. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    Science.gov (United States)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.

  2. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop.

    Science.gov (United States)

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-29

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems.

  3. Investigation of the electron dynamics of Si(111) 7 x 7 and development of a time-of-flight spectrometer for time- and angle-resolved two-photon photoemission

    International Nuclear Information System (INIS)

    Damm, Andreas

    2011-01-01

    This thesis consists of two main parts. The first one reports about recent investigations of the electron dynamics on the Si(111) 7 x 7 surface employing time- and angle-resolved two-photon photoemission (2PPE). The second part describes the construction and demonstration of the capabilities of a new electron time-of-flight spectrometer. It is shown that the electron dynamics of this surface are governed by adatom and bulk states. Variation of different experimental parameters leads to the suggestion that electrons scatter from the adatom states into the conduction band of Silicon. The localization in real space can be estimated from the distribution of the photoemission intensity in momentum space to be within one 7 x 7 unit cell. The electron population in the conduction band as well as those in the adatom band show a very long-living component. In addition to recombination through defect states, these electrons can undergo radiative recombination with holes in the valence band. The second part of this thesis reports about the design, construction and demonstration of the capabilities of a new electron time-of-flight spectrometer for applications in time- and angle-resolved 2PPE experiments. The new spectrometer is designed in a flexible manner to maximize either the energy resolution or the acceptance angle, respectively. By employing a position-sensitive electron detector it is possible for the first time to measure the energy as well as all components of the parallel momentum of the photoemitted electrons and thereby to fully characterize electrons from surface states. The time-resolution can be estimated from the width of a peak induced by photons scattered from the sample to be better than 150 ps. At the minimum of about 40 mm of the adjustable drift distance this leads to a energy resolution below 5 meV for electrons with kinetic energies of 1 eV. Thereby, the parallel momentum resolution is below 5 mA -1 for parallel momentum values k parallel ≤1A -1

  4. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    Directory of Open Access Journals (Sweden)

    Liu Jiqiao

    2016-01-01

    Full Text Available An all-fiber airborne pulsed coherent Doppler lidar (CDL prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  5. Development of Novel ECTFE Coated PP Composite Hollow-Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Sergio Santoro

    2016-09-01

    Full Text Available In this work composite hollow-fibers were prepared by dip-coating of commercial polypropylene (PP with a thin layer of ethylene–chlorotrifluoroethylene copolymer (ECTFE. The employment of N-methyl pyrrolidone (NMP as solvent improved the polymer processability favoring dip-coating at lower temperature (135 °C. Scanning electron microscopy (SEM analyses showed that after dip-coating the PP support maintained its microstructure, whereas a thin coated layer of ECTFE on the external surface of the PP hollow-fiber was clearly distinguishable. Membrane characterization evidenced the effects of the concentration of ECTFE in the dope-solution and the time of dip-coating on the thickness of ECTFE layer and membrane properties (i.e., contact angle and pore size. ECTFE coating decreased the surface roughness reducing, as a consequence, the hydrophobicity of the membrane. Moreover, increasing the ECTFE concentration and dip-coating time enabled the preparation of a thicker layer of ECTFE with low and narrow pore size that negatively affected the water transport. On the basis of the superior chemical resistance of ECTFE, ECTFE/PP composite hollow fibers could be considered as very promising candidates to be employed in membrane processes involving harsh conditions.

  6. Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Burgmann, S.; Dannemann, J.; Schroeder, W. [RWTH Aachen University, Department of Mechanical Engineering, Institute of Aerodynamics, Aachen (Germany)

    2008-04-15

    To comprehensively understand the effects of Kelvin-Helmholtz instabilities on a transitional separation bubble on the suction side of an airfoil regarding as to flapping of the bubble and its impact on the airfoil performance, the temporal and spatial structure of the vortices occurring at the downstream end of the separation bubble is investigated. Since the bubble variation leads to a change of the pressure distribution, the investigation of the instantaneous velocity field is essential to understand the details of the overall airfoil performance. This vortex formation in the reattachment region on the upper surface of an SD7003 airfoil is analyzed in detail at different angles of attack. At a Reynolds number Re{sub c} < 100,000 the laminar boundary layer separates at angles of attack >4 . Due to transition processes, turbulent reattachment of the separated shear layer occurs enclosing a locally confined recirculation region. To identify the location of the separation bubble and to describe the dynamics of the reattachment, a time-resolved PIV measurement in a single light-sheet is performed. To elucidate the spatial structure of the flow patterns in the reattachment region in time and space, a stereo scanning PIV set-up is applied. The flow field is recorded in at least ten successive light-sheet planes with two high-speed cameras enclosing a viewing angle of 65 to detect all three velocity components within a light-sheet leading to a time-resolved volumetric measurement due to a high scanning speed. The measurements evidence the development of quasi-periodic vortex structures. The temporal dynamics of the vortex roll-up, initialized by the Kelvin-Helmholtz (KH) instability, is shown as well as the spatial development of the vortex roll-up process. Based on these measurements a model for the evolving vortex structure consisting of the formation of c-shape vortices and their transformation into screwdriver vortices is introduced. (orig.)

  7. A monolithic microsphere-fiber probe for spatially resolved Raman spectroscopy: Application to head and neck squamous cell carcinomas

    Science.gov (United States)

    Holler, S.; Haig, B.; Donovan, M. J.; Sobrero, M.; Miles, B. A.

    2018-03-01

    The ability to identify precise cancer margins in vivo during a surgical excision is critical to the well-being of the patient. Decreased operative time has been linked to shorter patient recovery time, and there are risks associated with removing either too much or too little tissue from the surgical site. The more rapidly and accurately a surgeon can identify and excise diseased tissue, the better the prognosis for the patient. To this end, we investigate both malignant and healthy oral cavity tissue using the Raman spectroscopy, with a monolithic microsphere-fiber probe. Our results indicate that this probe has decreased the size of the analyzed area by more than an order of magnitude, as compared to a conventional fiber reflection probe. Scanning the probe across the tissues reveals variations in the Raman spectra that enable us to differentiate between malignant and healthy tissues. Consequently, we anticipate that the high spatial resolution afforded by the probe will permit us to identify tumor margins in detail, thereby optimizing tissue removal and improving patient outcomes.

  8. Experimental research on continuous basalt fiber and basalt-fibers-reinforced polymers

    Science.gov (United States)

    Zhang, Xueyi; Zou, Guangping; Shen, Zhiqiang

    2008-11-01

    The interest for continuous basalt fibers and reinforced polymers has recently grown because of its low price and rich natural resource. Basalt fiber was one type of high performance inorganic fibers which were made from natural basalt by the method of melt extraction. This paper discusses basic mechanical properties of basalt fiber. The other work in this paper was to conduct tensile testing of continuous basalt fiber-reinforced polymer rod. Tensile strength and stress-strain curve were obtained in this testing. The strength of rod was fairly equal to rod of E-glass fibers and weaker than rod of carbon fibers. Surface of crack of rod was studied. An investigation of fracture mechanism between matrix and fiber was analyzed by SEM (Scanning electron microscopy) method. A poor adhesion between the matrix and fibers was also shown for composites analyzing SEM photos. The promising tensile properties of the presented basalt fibers composites have shown their great potential as alternative classical composites.

  9. Time Resolved Scanning PIV measurements at fine scales in a turbulent jet

    International Nuclear Information System (INIS)

    Cheng, Y.; Torregrosa, M.M.; Villegas, A.; Diez, F.J.

    2011-01-01

    The temporal and spatial complexity of turbulent flows at intermediate and small scales has prevented the acquisition of full three-dimensional experimental data sets for validating classical turbulent theory and Direct Numerical Simulations (DNS). Experimental techniques like Particle Velocimetry, PIV, allow non-intrusive planar measurements of turbulent flows. The present work applied a Time Resolved Scanning PIV system, TRS-PIV, capable of obtaining three-dimensional two-component velocities to measure the small scales of a turbulent jet. When probing the small scales of these flows with PIV, the uncertainty of the measured turbulent properties are determined by the characteristics of the PIV system and specially the thickness of the laser sheet. A measurement of the particle distribution across the thickness of the laser sheet is proposed as a more detailed description of the PIV sheet thickness. The high temporal and spatial resolution of the TRS-PIV system allowed obtaining quasi-instantaneous volumetric vector fields at the far field of a round turbulent jet in water, albeit for a low Reynolds number of 1478 due to the speed limitations of the present camera and scanning system. Six of the nine components of the velocity gradient tensor were calculated from the velocity measurements. This allowed the visualization with near Kolmogorov-scale resolution of the velocity gradient structures in three-dimensional space. In general, these structures had a complex geometry corresponding to elongated shapes in the form of sheets and tubes. An analysis of the probability density function, pdf, of the velocity gradients calculated showed that the on-diagonal (off-diagonal) velocity gradient components were very similar to each other even for events at the tails of the pdfs, as required for homogeneous isotropy. The root mean square of the components of the velocity gradients is also calculated and their ratio of off-diagonal components to on-diagonal components

  10. Homocomposites of chopped fluorinated polyethylene fiber with low-density polyethylene matrix

    International Nuclear Information System (INIS)

    Maity, J.; Jacob, C.; Das, C.K.; Alam, S.; Singh, R.P.

    2008-01-01

    Conventional composites are generally prepared by adding reinforcing agent to a matrix and the matrix wherein the reinforcing agents are different in chemical composition with the later having superior mechanical properties. This work presents the preparation and properties of homocomposites consisting of a low-density polyethylene (LDPE) matrix and an ultra high molecular weight polyethylene (UHMWPE) fiber reinforcing phase. Direct fluorination is an important surface modification process by which only a thin upper layer is modified, the bulk properties of the polymer remaining unchanged. In this work, surface fluorination of UHMWPE fiber was done and then fiber characterization was performed. It was observed that after fluorination the fiber surface became rough. Composites were then prepared using both fluorinated and non-fluorinated polyethylene fiber with a low-density polyethylene (LDPE) matrix to prepare single polymer composites. It was found that the thermal stability and mechanical properties were improved for fluorinated fiber composites. X-ray diffraction (XRD) analysis showed that the crystallinity of the composites increased and it is maximum for fluorinated fiber composites. Tensile strength (TS) and modulus also increased while elongation at break (EB) decreased for fiber composites and was a maximum for fluorinated fiber composites. Scanning electron microscopic analysis indicates that that the distribution of fiber into the matrix is homogeneous. It also indicates the better adhesion between the matrix and the reinforcing agent for modified fiber composites. We also did surface fluorination of the prepared composites and base polymer for knowing its application to different fields such as printability wettability, etc. To determine the various properties such as printability, wettability and adhesion properties, contact angle measurement was done. It was observed that the surface energies of surface modified composites and base polymer increases

  11. A compressed sensing approach for resolution improvement in fiber-bundle based endomicroscopy

    Science.gov (United States)

    Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.

    2018-02-01

    Endomicroscopy techniques such as confocal, multi-photon, and wide-field imaging have all been demonstrated using coherent fiber-optic imaging bundles. While the narrow diameter and flexibility of fiber bundles is clinically advantageous, the number of resolvable points in an image is conventionally limited to the number of individual fibers within the bundle. We are introducing concepts from the compressed sensing (CS) field to fiber bundle based endomicroscopy, to allow images to be recovered with more resolvable points than fibers in the bundle. The distal face of the fiber bundle is treated as a low-resolution sensor with circular pixels (fibers) arranged in a hexagonal lattice. A spatial light modulator is located conjugate to the object and distal face, applying multiple high resolution masks to the intermediate image prior to propagation through the bundle. We acquire images of the proximal end of the bundle for each (known) mask pattern and then apply CS inversion algorithms to recover a single high-resolution image. We first developed a theoretical forward model describing image formation through the mask and fiber bundle. We then imaged objects through a rigid fiber bundle and demonstrate that our CS endomicroscopy architecture can recover intra-fiber details while filling inter-fiber regions with interpolation. Finally, we examine the relationship between reconstruction quality and the ratio of the number of mask elements to the number of fiber cores, finding that images could be generated with approximately 28,900 resolvable points for a 1,000 fiber region in our platform.

  12. Single muscle fiber proteomics reveals unexpected mitochondrial specialization

    DEFF Research Database (Denmark)

    Murgia, Marta; Nagaraj, Nagarjuna; Deshmukh, Atul S

    2015-01-01

    and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype-specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type-resolved proteomes can be applied to a variety of physiological and pathological conditions...

  13. Interlaminar improvement of carbon fiber/epoxy composites via depositing mixture of carbon nanotubes and sizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Cuiqin [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Julin, E-mail: julinwang@126.com [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Tao [Beijing Institute of Ancient Architecture, Beijing 100050 (China)

    2014-12-01

    Graphical abstract: - Highlights: • COOH-CNTs can react with sizing agent, and the optimum reaction ratio was 1:20. • Carbon fibers were dipped into the mixture bath of CNTs and sizing agent. • SEM results indicate that fibers surfaces were coated with CNTs and sizing agent. • ILSS was increased by 67.01% for the composites after the mixture coating process. • Single fibers tensile strength was maintained after the deposited process. - Abstract: The effects of deposition to carbon fibers surfaces with mixture of functionalized multi-walled carbon fibers (MWCNTs) and sizing agent were investigated. Relationships between CNTs and sizing agent were studied with Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS) and Ubbelohde viscometer. The results revealed that CNTs could react with sizing agent at 120 °C, and optimal reaction occurs when mass ratio was about 1:20. Then, carbon fibers were immersed in mixed aqueous suspension of CNTs and sizing agent with the above ratio dispersed by ultrasonication. According to scanning electron microscope (SEM) observations, fibers surfaces were coated with CNTs and sizing agent. The static contact angle tests indicated wetting performance between fibers and epoxy resin were improved after deposited procedures. Interlaminar shear strength was increased by 67.01% for fibers/epoxy resin composites after mixture deposited process. Moreover, the tensile strength of single fibers after depositing showed a slightly increase compared with that of fibers without depositing layer.

  14. Preparation and Characterization of Soluble Eggshell Membrane Protein/PLGA Electro spun Nano fibers for Guided Tissue Regeneration Membrane

    International Nuclear Information System (INIS)

    Jia, J.; Liu, G.; Duan, Y.; Guo, Z.; Yu, J.

    2012-01-01

    Guided tissue regeneration (GTR) is a widely used method in periodontal therapy, which involves the placement of a barrier membrane to exclude migration of epithelium and ensure repopulation of periodontal ligament cells. The objective of this study is to prepare and evaluate a new type of soluble eggshell membrane protein (SEP)/poly (lactic-co-glycolic acid) (PLGA) nano fibers using electro spinning method for GTR membrane application. SEP/PLGA nano fibers were successfully prepared with various blending ratios. The morphology, chemical composition, surface wettability, and mechanical properties of the nano fibers were characterized using scanning electron microscopy (SEM), contact angle measurement, Fourier transform-infrared spectroscopy (FTIR), and a universal testing machine. L-929 fibroblast cells were used to evaluate the biocompatibility of SEP/PLGA nano fibers and investigate the interaction between cells and nano fibers. Results showed that the SEP/PLGA electro spun membrane was composed of uniform, bead-free nano fibers, which formed an interconnected porous network structure. Mechanical property of SEP has been greatly improved by the addition of PLGA. The biological study results showed that SEP/PLGA nano fibers could enhance cell attachment, spreading, and proliferation. The study indicated the potential of SEP/PLGA nano fibers for GTR application and provided a basis for future optimization

  15. Diagnostic performance of digital breast tomosynthesis with a wide scan angle compared to full-field digital mammography for the detection and characterization of microcalcifications

    International Nuclear Information System (INIS)

    Clauser, Paola; Nagl, Georg; Helbich, Thomas H.; Pinker-Domenig, Katja; Weber, Michael; Kapetas, Panagiotis; Bernathova, Maria; Baltzer, Pascal A.T.

    2016-01-01

    Highlights: • Wide scan-angle DBT alone shows a high detection rate for microcalcifications. • DBT and FFDM can characterize microcalcifications at a comparable level. • Characterization is influenced by reader and by lesion type (benign vs malignant). • DBT might be used as a stand-alone technique for the assessment of microcalcifications. - Abstract: Objectives: To assess the diagnostic performance of digital breast tomosynthesis (DBT), with a wide scan-angle, compared to full-field digital mammography (FFDM), for the detection and characterization of microcalcifications. Methods: IRB approval was obtained for this retrospective study. We selected 150 FFDM and DBT (50 benign and 50 malignant histologically verified microcalcifications, 50 cases classified as BI-RADS 1). Four radiologists evaluated, in separate sessions and blinded to patients’ history and histology, the presence of microcalcifications. Cases with microcalcifications were assessed for visibility, characteristics, and grade of suspicion using BI-RADS categories. Detection rate and diagnostic performance were calculated. Visibility, lesions’ characteristics and reading time were analysed. Results: Detection rate and visibility were good for both FFDM and DBT, without intra-reader differences (P = 0.510). Inter-reader differences were detected (P < 0.018). Only two lesions were not detected by any reader on either FFDM or DBT. Diagnostic performance with DBT was as good as that of FFDM, but a significant inter-reader difference was found (P = 0.041). High inter-reader variability in the use of the descriptors was found. Reading time for DBT was almost twice that for FFDM (44 and 25 s, respectively). Conclusion: Wide scan-angle DBT enabled the detection and characterization of microcalcifications with no significant differences from FFDM. Inter-reader variability was seen.

  16. Diagnostic performance of digital breast tomosynthesis with a wide scan angle compared to full-field digital mammography for the detection and characterization of microcalcifications

    Energy Technology Data Exchange (ETDEWEB)

    Clauser, Paola, E-mail: paola.clauser@meduniwien.ac.at [Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Nagl, Georg [Department for Radiology and Interventional Radiology, Landesklinikum Horn, Spitalgasse 10, 3580 Horn (Austria); Helbich, Thomas H., E-mail: thomas.helbich@meduniwien.ac.at [Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Pinker-Domenig, Katja [Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Weber, Michael [Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Kapetas, Panagiotis; Bernathova, Maria; Baltzer, Pascal A.T. [Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2016-12-15

    Highlights: • Wide scan-angle DBT alone shows a high detection rate for microcalcifications. • DBT and FFDM can characterize microcalcifications at a comparable level. • Characterization is influenced by reader and by lesion type (benign vs malignant). • DBT might be used as a stand-alone technique for the assessment of microcalcifications. - Abstract: Objectives: To assess the diagnostic performance of digital breast tomosynthesis (DBT), with a wide scan-angle, compared to full-field digital mammography (FFDM), for the detection and characterization of microcalcifications. Methods: IRB approval was obtained for this retrospective study. We selected 150 FFDM and DBT (50 benign and 50 malignant histologically verified microcalcifications, 50 cases classified as BI-RADS 1). Four radiologists evaluated, in separate sessions and blinded to patients’ history and histology, the presence of microcalcifications. Cases with microcalcifications were assessed for visibility, characteristics, and grade of suspicion using BI-RADS categories. Detection rate and diagnostic performance were calculated. Visibility, lesions’ characteristics and reading time were analysed. Results: Detection rate and visibility were good for both FFDM and DBT, without intra-reader differences (P = 0.510). Inter-reader differences were detected (P < 0.018). Only two lesions were not detected by any reader on either FFDM or DBT. Diagnostic performance with DBT was as good as that of FFDM, but a significant inter-reader difference was found (P = 0.041). High inter-reader variability in the use of the descriptors was found. Reading time for DBT was almost twice that for FFDM (44 and 25 s, respectively). Conclusion: Wide scan-angle DBT enabled the detection and characterization of microcalcifications with no significant differences from FFDM. Inter-reader variability was seen.

  17. Microstructural characterization of a zirconia-toughened alumina fiber reinforced niobium aluminide composite

    International Nuclear Information System (INIS)

    Nourbakhsh, S.; Sahin, O.; Rhee, W.H.; Margolin, H.

    1992-01-01

    This paper reports on an NbAl 3 + Nb 2 Al composite reinforced with continuous zirconia-toughened alumina, PRD-166 fibers, that was produced by pressure casing and was examined by optical and transmission electron microscopy and energy dispersive spectroscopy. Exposure of the fiber to the molten metal resulted in ZrO 2 and Al; 2 O 3 grain growth, formation of a thin layer of an amorphous phase on the grain boundaries of Al 2 O 3 and transformation of ZrO 2 . Preferential Al 2 O 3 grain growth near the surface of the fiber led to the rejection of ZrO 2 from this region into the molten metal. In NbAl 3 slip occurred by the glide of a left-angle 110 right-angle superdislocations and to a lesser extent by the glide of a pair of left-angle 11 bar 1 right-angle + left-angle 3 bar 1 bar 1 right-angle dislocations on the (112) planes and a/2 left-angle 110 right-angle superpartial dislocations on the (001) plane. The operating slip system in Nb 2 Al was identified as {010 left-angle 100 right-angle. A left-angle 100 right-angle dislocations were dissociated into a/x left-angle 100 right-angle partial dislocations joined together by a stacking fault

  18. Fiber optics welder

    Science.gov (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  19. A Property of Crack Propagation at the Specimen of CFRP with Layer Angle

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gue Wan; Cho, Jae Ung [Kongju Univ., Kongju (Korea, Republic of); Cho, Chong Du [Inha Univ., Incheon (Korea, Republic of)

    2016-12-15

    CFRP is the composite material manufactured by the hybrid resin on the basis of carbon fiber. As this material has the high specific strength and the light weight, it has been widely used at various fields. Particularly, the unidirectional carbon fiber can be applied with the layer angle. CFRP made with layer angle has the strength higher than with no layer angle. In this paper, the property of crack growth due to each layer angle was investigated on the crack propagation and fracture behavior of the CFRP compact tension specimen due to the change of layer angle. The value of maximum stress is shown to be decreased and the crack propagation is slowed down as the layer angle is increased. But the limit according to the layer angle is shown as the stress is increased again from the base point of the layer angle of 60°.This study result is thought to be utilized with the data which verify the probability of fatigue fracture when the defect inside the structure at using CFRP of mechanical structure happens.

  20. A Property of Crack Propagation at the Specimen of CFRP with Layer Angle

    International Nuclear Information System (INIS)

    Hwang, Gue Wan; Cho, Jae Ung; Cho, Chong Du

    2016-01-01

    CFRP is the composite material manufactured by the hybrid resin on the basis of carbon fiber. As this material has the high specific strength and the light weight, it has been widely used at various fields. Particularly, the unidirectional carbon fiber can be applied with the layer angle. CFRP made with layer angle has the strength higher than with no layer angle. In this paper, the property of crack growth due to each layer angle was investigated on the crack propagation and fracture behavior of the CFRP compact tension specimen due to the change of layer angle. The value of maximum stress is shown to be decreased and the crack propagation is slowed down as the layer angle is increased. But the limit according to the layer angle is shown as the stress is increased again from the base point of the layer angle of 60°.This study result is thought to be utilized with the data which verify the probability of fatigue fracture when the defect inside the structure at using CFRP of mechanical structure happens

  1. Effect of cataract surgery on retinal nerve fiber layer thickness parameters using scanning laser polarimetry (GDxVCC).

    Science.gov (United States)

    Dada, Tanuj; Behera, Geeta; Agarwal, Anand; Kumar, Sanjeev; Sihota, Ramanjit; Panda, Anita

    2010-01-01

    To study the effect of cataract extraction on the retinal nerve fiber layer (RNFL) thickness, and assessment by scanning laser polarimetry (SLP), with variable corneal compensation (GDx VCC), at the glaucoma service of a tertiary care center in North India. Thirty-two eyes of 32 subjects were enrolled in the study. The subjects underwent RNFL analysis by SLP (GDx VCC) before undergoing phacoemulsification cataract extraction with intraocular lens (IOL) implantation (Acrysof SA 60 AT) four weeks following cataract surgery. The RNFL thickness parameters evaluated both before and after surgery included temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and nerve fiber index (NFI). The mean age of subjects was 57.6 +/- 11.7 years (18 males, 14 females). Mean TSNIT average thickness (microm) pre- and post-cataract surgery was 49.2 +/- 14.1 and 56.5 +/- 7.6 ( P = 0.001). There was a statistically significant increase in RNFL thickness parameters (TSNIT average, superior average, and inferior average) and decrease in NFI post-cataract surgery as compared to the baseline values. Mean NFI pre- and post-cataract surgery was 41.3 +/- 15.3 and 21.6 +/- 11.8 ( P = 0.001). Measurement of RNFL thickness parameters by scanning laser polarimetry is significantly altered following cataract surgery. Post the cataract surgery, a new baseline needs to be established for assessing the longitudinal follow-up of a glaucoma patient. The presence of cataract may lead to an underestimation of the RNFL thickness, and this should be taken into account when analyzing progression in a glaucoma patient.

  2. The impact of insonation angle on four-chamber view image quality: an observational study on 2866 routine scans.

    Science.gov (United States)

    Jaudi, Suha; Fries, Nicolas; Tezenas du Montcel, Sophie; Dommergues, Marc

    2015-04-01

    To determine insonation angles achieved in routine screening practice and their impact on image quality. Prospective cross-sectional observational survey of 2866 four-chamber views produced by 287 senor ultrasonographers, from unselected routine second-trimester screening scans. Images were scored from 0 to 5 according to whether two atria, two ventricles, the heart crux, the apex, and the descending aorta were seen. Images were considered adequate if two atria, two ventricles, and the heart crux were seen. The insonation angle was classified as apical, basal, or lateral according to the orientation of the fetal heart to the ultrasound beam. There were 1612 (56.3%) apical, 869 (30.3%) basal, and 385 (13.4%) lateral views. The mean score and the rate of adequate images were significantly greater in the apical group (4.56 and 81.8%) than in the basal group (4.19 and 71.1 %) and were significantly greater in the basal group than in the lateral one (3.6 and 30.9%), p John Wiley & Sons, Ltd. © 2015 John Wiley & Sons, Ltd.

  3. Effects of strain on the electronic structure, superconductivity, and nematicity in FeSe studied by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Phan, G. N.; Nakayama, K.; Sugawara, K.; Sato, T.; Urata, T.; Tanabe, Y.; Tanigaki, K.; Nabeshima, F.; Imai, Y.; Maeda, A.; Takahashi, T.

    2017-06-01

    One of central issues in iron-based superconductors is the role of structural change to the superconducting transition temperature (Tc). It was found in FeSe that the lattice strain leads to a drastic increase in Tc, accompanied by suppression of nematic order. By angle-resolved photoemission spectroscopy on tensile- or compressive-strained and strain-free FeSe, we experimentally show that the in-plane strain causes a marked change in the energy overlap (Δ Eh -e ) between the hole and electron pockets in the normal state. The change in Δ Eh -e modifies the Fermi-surface volume, leading to a change in Tc. Furthermore, the strength of nematicity is also found to be characterized by Δ Eh -e . These results suggest that the key to understanding the phase diagram is the fermiology and interactions linked to the semimetallic band overlap.

  4. Measurement of position and profile of undulator radiation in Indus-2 using scanning wire monitor

    International Nuclear Information System (INIS)

    Kant, Chander; Lal, Sohan; Raghuwanshi, V.K.; Prasad, Vijendra

    2015-01-01

    Two planar undulators (U1 and U2) for Atomic Molecular Spectroscopy (AMOS) beamline and Angle Resolved Photoelectron Spectroscopy (ARPES) beamline have been installed in Indus-2. The U1 undulator is designed to produce photons in the energy range of 6 eV to 250 eV and U2 undulator is designed to produce photons in the energy range of 30 eV to 600 eV. In order to measure the position and vertical profile of photon beams emitted from these undulators, one scanning wire monitor has been installed in each beamline front end. In these scanning wire monitors, a gold coated tungsten wire of 100 μm thickness, stretched between a fork shaped alumina ceramic holder, is scanned vertically perpendicular to the direction of propagation of photon beam by using a precisely controlled stepper motor. The photo-electron current generated in the wire is measured by an electrometer. A graphical user interface has been developed which facilitates the scanning as per the given range, plots the graphs and stores the scanned data in Excel file. This paper describes our experience and usefulness of these wire monitors during commissioning of planar undulators in Indus-2. (author)

  5. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg

    scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic...... millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising...... for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy....

  6. Determining the thickness of aliphatic alcohol monolayers covalently attached to silicon oxide surfaces using angle-resolved X-ray photoelectron spectroscopy

    Science.gov (United States)

    Lee, Austin W. H.; Kim, Dongho; Gates, Byron D.

    2018-04-01

    The thickness of alcohol based monolayers on silicon oxide surfaces were investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS). Advantages of using alcohols as building blocks for the formation of monolayers include their widespread availability, ease of handling, and stability against side reactions. Recent progress in microwave assisted reactions demonstrated the ease of forming uniform monolayers with alcohol based reagents. The studies shown herein provide a detailed investigation of the thickness of monolayers prepared from a series of aliphatic alcohols of different chain lengths. Monolayers of 1-butanol, 1-hexanol, 1-octanol, 1-decanol, and 1-dodecanol were each successfully formed through microwave assisted reactions and characterized by ARXPS techniques. The thickness of these monolayers consistently increased by ∼1.0 Å for every additional methylene (CH2) within the hydrocarbon chain of the reagents. Tilt angles of the molecules covalently attached to silicon oxide surfaces were estimated to be ∼35° for each type of reagent. These results were consistent with the observations reported for thiol based or silane based monolayers on either gold or silicon oxide surfaces, respectively. The results of this study also suggest that the alcohol based monolayers are uniform at a molecular level.

  7. Recent trends in spin-resolved photoelectron spectroscopy

    Science.gov (United States)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  8. Fiber-optic evanescent-field sensor for attitude measurement

    Science.gov (United States)

    Liu, Yun; Chen, Shimeng; Liu, Zigeng; Guang, Jianye; Peng, Wei

    2017-11-01

    We proposed a new approach to attitude measurement by an evanescent field-based optical fiber sensing device and demonstrated a liquid pendulum. The device consisted of three fiber-optic evanescent-filed sensors which were fabricated by tapered single mode fibers and immersed in liquid. Three fiber Bragg gratings were used to measure the changes in evanescent field. And their reflection peaks were monitored in real time as measurement signals. Because every set of reflection responses corresponded to a unique attitude, the attitude of the device could be measured by the three fiber-optic evanescent-filed sensors. After theoretical analysis, computerized simulation and experimental verification, regular responses were obtained using this device for attitude measurement. The measurement ranges of dihedral angle and direction angle were 0°-50° and 0°-360°. The device is based on cost-effective power-referenced scheme. It can be used in electromagnetic or nuclear radiation environment.

  9. Comparison of models and measurements of angle-resolved scatter from irregular aerosols

    International Nuclear Information System (INIS)

    Milstein, Adam B.; Richardson, Jonathan M.

    2015-01-01

    We have developed and validated a method for modeling the elastic scattering properties of biological and inert aerosols of irregular shape at near- and mid-wave infrared wavelengths. The method, based on Gaussian random particles, calculates the ensemble-average optical cross section and Mueller scattering matrix, using the measured aerodynamic size distribution and previously-reported refractive index as inputs. The utility of the Gaussian particle model is that it is controlled by only two parameters (σ and Γ) which we have optimized such that the model best reproduces the full angle-resolved Mueller scattering matrices measured at λ=1.55 µm in the Standoff Aerosol Active Signature Testbed (SAAST). The method has been applied to wet-generated singlet biological spore samples, dry-generated biological spore clusters, and kaolin. The scattering computation is performed using the Discrete Dipole Approximation (DDA), which requires significant computational resources, and is thus implemented on LLGrid, a large parallel grid computer. For the cases presented, the best fit Gaussian particle model is in good qualitative correspondence with microscopy images of the corresponding class of particles. The measured and computed cross sections agree well within a factor of two overall, with certain cases bearing closer correspondence. In particular, the DDA reproduces the shape of the measured scatter function more accurately than Mie predictions. The DDA-computed depolarization factors are also in good agreement with measurement. - Highlights: • We model elastic scattering of biological and inert aerosols of irregular shape. • We calculate cross sections and Mueller matrix using random particle shape model. • Scatter models employ refractive index and measured size distribution as inputs. • Discrete dipole approximation (DDA) with parallelization enables model calculations. • DDA-modeled cross section and Mueller matrix agree well with measurements at 1.55 μm

  10. Photoelectron spectra of N2+: Rotational line profiles studied with HeI-excited angle-resolved spectroscopy and with synchrotron radiation

    International Nuclear Information System (INIS)

    Ohrwall, G.; Baltzer, P.; Bozek, J.

    2004-01-01

    We have recorded angle-resolved He I photoelectron spectra of the three outer most valence states in N+2, with high enough resolution to observe rotational line profiles. For the two Sigma states, the X 2 Sigma +g and the B 2 Sigma +u, we found that the rotational branches corresponding to different changes in rotational quantum number can differ dramatically in beta value. The well-known difference in beta value for the nu=0 and nu =1 vibrations of the X 2 Sigma +g state was found to be due to different rotational branching ratios and also different beta values of the rotational branches. For the nu=0-2 vibrations of the A 2 Pi u state, the beta value difference between rotational branches is much less pronounced than in the X and B states. We have also recorded synchrotron-radiation-excited photoelectron spectra of the nu=0 vibrational peaks of the X 2 Sigma +g and B 2 Sigma +u states where rotational line profiles are resolved. The intensities of the rotational branches were studied as function of photon energy, the X state between 23 and 65 eV, and We have recorded angle-resolved He I photoelectron spectra of the three outermost valence states in N+2, with high enough resolution to observe rotational line profiles. For the two Sigma states, the X 2 Sigma +g and the B 2 Sigma +u, we found that the rotational branches corresponding to different changes in rotational quantum number can differ dramatically in beta value. The well-known difference in beta value for the nu=0 and nu=1 vibrations of the X 2 Sigma +g state was found to be due to different rotational branching ratios and also different beta values of the rotational branches. For the nu=0-2 vibrations of the A 2 Pi u state, the beta value difference between rotational branches is much less pronounced than in the X and B states. We have also recorded synchrotron-radiation-excited photoelectron spectra of the nu=0 vibrational peaks of the X 2 Sigma +g and B 2 Sigma +u states where rotational line profiles a

  11. Microstructural parameters in 8 MeV Electron irradiated Bombyx mori silk fibers by wide-angle X-ray scattering studies (WAXS)

    International Nuclear Information System (INIS)

    Halabhavi, Sangappa

    2009-01-01

    The present work looks into the microstructural modification in Bombyx mori silk fibers, induced by electron irradiation. The irradiation process was performed in air at room temperature by use of 8 MeV electron accelerators at different doses: 0, 25, 50, 75 and 100 kGy respectively. Irradiation of polymer can be used to crosslink or degrade the desired component or to fixate the polymer morphology. The changes in microstructural parameters in these natural polymer fibers have been studied using wide angle X-ray scattering (WAXS) method. The crystal imperfection parameters such as crystallite size , lattice strain (g in %) and enthalpy (a * ) have been determined by line profile analysis (LPA) using Fourier method of Warren. Exponential, Lognormal and Reinhold functions for the column length distributions have been used for the determination of these parameters. The goodness of the fit and the consistency of these results suggest that the exponential distribution gives much better results, even though lognormal distribution has been widely used to estimate the similar stacking faults in metal oxide compounds. (author)

  12. Transforming Pristine Carbon Fiber Tows into High Performance Solid-State Fiber Supercapacitors.

    Science.gov (United States)

    Yu, Dingshan; Zhai, Shengli; Jiang, Wenchao; Goh, Kunli; Wei, Li; Chen, Xudong; Jiang, Rongrong; Chen, Yuan

    2015-09-02

    A facile activation strategy can transform pristine carbon fiber tows into high-performance fiber electrodes with a specific capacitance of 14.2 F cm(-3) . The knottable fiber supercapacitor shows an energy density of 0.35 mW h cm(-3) , an ultrahigh power density of 3000 mW cm(-3) , and a remarkable capacitance retention of 68%, when the scan rate increases from 10 to 1000 mV s(-1) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. XPS and angle resolved XPS, in the semiconductor industry: Characterization and metrology control of ultra-thin films

    International Nuclear Information System (INIS)

    Brundle, C.R.; Conti, Giuseppina; Mack, Paul

    2010-01-01

    This review discusses the development of X-ray photoelectron spectroscopy, XPS, used as a characterization and metrology method for ultra-thin films in the semiconductor wafer processing industry. After a brief explanation of how the relative roles of XPS and Auger electron spectroscopy, AES, have changed over the last 15 years or so in the semiconductor industry, we go into some detail as to what is implied by metrology, as opposed to characterization, for thin films in the industry, and then describe how XPS, and particularly angle resolved XPS, ARXPS, have been implemented as a metrology 'tool' for thickness, chemical composition, and non-destructive depth profiling, of transistor gate oxide material, a key requirement in front-end processing. We take a historical approach, dealing first with the early use for SiO 2 films on Si(1 0 0), then moving to silicon oxynitride, SiO x N y in detail, and finally and briefly HfO 2 -based material, which is used today in the most advanced devices (32 nm node).

  14. First results from the INTEGRAL galactic plane scans

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Schonfelder, V.

    2003-01-01

    Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved mapp...... mapping of the Galactic plane in continuum and diffuse line emission. This paper describes first results obtained from the Galactic plane scans executed so far during the early phase (Dec. 2002-May 2003) of the nominal mission.......Scans of the Galactic plane performed at regular intervals constitute a key element of the guaranteed time observations of the INTEGRAL observing programme. These scans are done for two reasons: frequent monitoring of the Galactic plane in order to detect transient sources, and time resolved...

  15. Contrast in atomically resolved EF-SCEM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); D’Alfonso, Adrian J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Morgan, Andrew J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Takeguchi, Masaki [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Surface Physics and Structure Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047 (Japan); Electron Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo, 135-8548 (Japan); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2013-11-15

    Energy-filtered scanning confocal electron microscopy (EF-SCEM) is a technique that uses the reduced depth of field of an aberration-corrected transmission electron microscope to provide three-dimensional (3D) compositional information. Using a silicon sample in the <110> orientation, we show that EF-SCEM image data can be recorded that shows lattice resolution in the plane perpendicular to the incident beam direction. The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane, unlike optical sectioning in high-angle annular dark-field scanning transmission electron microscopy (STEM). Simulations of the EF-SCEM data show agreement with the experimental data, and allow the interpretability of the data to be explored. The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data, highlighting the need for matching to simulations. Finally the effects of the finite detector pin-hole aperture size are explored, and we show that the EF-SCEM contrast in the plane perpendicular to the beam direction starts to resemble that of a STEM spectrum imaging experiment as the aperture size increases. - Highlights: • Atomically resolved energy-filtered scanning confocal electron microscopy (EF-SCEM) is demonstrated. • The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane. • Simulations show agreement with the experimental data. • The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data. • The effects of the finite detector pin-hole aperture size are explored.

  16. Contrast in atomically resolved EF-SCEM imaging

    International Nuclear Information System (INIS)

    Wang, Peng; D’Alfonso, Adrian J.; Hashimoto, Ayako; Morgan, Andrew J.; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki; Kirkland, Angus I.; Allen, Leslie J.; Nellist, Peter D.

    2013-01-01

    Energy-filtered scanning confocal electron microscopy (EF-SCEM) is a technique that uses the reduced depth of field of an aberration-corrected transmission electron microscope to provide three-dimensional (3D) compositional information. Using a silicon sample in the orientation, we show that EF-SCEM image data can be recorded that shows lattice resolution in the plane perpendicular to the incident beam direction. The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane, unlike optical sectioning in high-angle annular dark-field scanning transmission electron microscopy (STEM). Simulations of the EF-SCEM data show agreement with the experimental data, and allow the interpretability of the data to be explored. The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data, highlighting the need for matching to simulations. Finally the effects of the finite detector pin-hole aperture size are explored, and we show that the EF-SCEM contrast in the plane perpendicular to the beam direction starts to resemble that of a STEM spectrum imaging experiment as the aperture size increases. - Highlights: • Atomically resolved energy-filtered scanning confocal electron microscopy (EF-SCEM) is demonstrated. • The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane. • Simulations show agreement with the experimental data. • The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data. • The effects of the finite detector pin-hole aperture size are explored

  17. Ametropia, retinal anatomy, and OCT abnormality patterns in glaucoma. 1. Impacts of refractive error and interartery angle

    Science.gov (United States)

    Elze, Tobias; Baniasadi, Neda; Jin, Qingying; Wang, Hui; Wang, Mengyu

    2017-12-01

    Retinal nerve fiber layer thickness (RNFLT) measured by optical coherence tomography (OCT) is widely used in clinical practice to support glaucoma diagnosis. Clinicians frequently interpret peripapillary RNFLT areas marked as abnormal by OCT machines. However, presently, clinical OCT machines do not take individual retinal anatomy variation into account, and according diagnostic biases have been shown particularly for patients with ametropia. The angle between the two major temporal retinal arteries (interartery angle, IAA) is considered a fundamental retinal ametropia marker. Here, we analyze peripapillary spectral domain OCT RNFLT scans of 691 glaucoma patients and apply multivariate logistic regression to quantitatively compare the diagnostic bias of spherical equivalent (SE) of refractive error and IAA and to identify the precise retinal locations of false-positive/negative abnormality marks. Independent of glaucoma severity (visual field mean deviation), IAA/SE variations biased abnormality marks on OCT RNFLT printouts at 36.7%/22.9% of the peripapillary area, respectively. 17.2% of the biases due to SE are not explained by IAA variation, particularly in inferonasal areas. To conclude, the inclusion of SE and IAA in OCT RNFLT norms would help to increase diagnostic accuracy. Our detailed location maps may help clinicians to reduce diagnostic bias while interpreting retinal OCT scans.

  18. A new flexible monochromator setup for quick scanning x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stoetzel, J.; Luetzenkirchen-Hecht, D.; Frahm, R. [Fachbereich C, Physik, Bergische Universitaet Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)

    2010-07-15

    A new monochromator setup for quick scanning x-ray absorption spectroscopy in the subsecond time regime is presented. Novel driving mechanics allow changing the energy range of the acquired spectra by remote control during data acquisition for the first time, thus dramatically increasing the flexibility and convenience of this method. Completely new experiments are feasible due to the fact that time resolution, edge energy, and energy range of the acquired spectra can be changed continuously within seconds without breaking the vacuum of the monochromator vessel and even without interrupting the measurements. The advanced mechanics are explained in detail and the performance is characterized with x-ray absorption spectra of pure metal foils. The energy scale was determined by a fast and accurate angular encoder system measuring the Bragg angle of the monochromator crystal with subarcsecond resolution. The Bragg angle range covered by the oscillating crystal can currently be changed from 0 deg. to 3.0 deg. within 20 s, while the mechanics are capable to move with frequencies of up to ca. 35 Hz, leading to ca. 14 ms/spectrum time resolution. A new software package allows performing programmed scan sequences, which enable the user to measure stepwise with alternating parameters in predefined time segments. Thus, e.g., switching between edges scanned with the same energy range is possible within one in situ experiment, while also the time resolution can be varied simultaneously. This progress makes the new system extremely user friendly and efficient to use for time resolved x-ray absorption spectroscopy at synchrotron radiation beamlines.

  19. Analysis of electronic structure of amorphous InGaZnO/SiO2 interface by angle-resolved X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ueoka, Y.; Ishikawa, Y.; Maejima, N.; Matsui, F.; Matsui, H.; Yamazaki, H.; Urakawa, S.; Horita, M.; Daimon, H.; Uraoka, Y.

    2013-01-01

    The electronic structures of amorphous indium gallium zinc oxide (a-IGZO) on a SiO 2 layers before and after annealing were observed by constant final state X-ray photoelectron spectroscopy (CFS-XPS) and X-ray adsorption near-edge structure spectroscopy (XANES). From the results of angle-resolved CFS-XPS, the change in the electronic state was clearly observed in the a-IGZO bulk rather than in the a-IGZO/SiO 2 interface. This suggests that the electronic structures of the a-IGZO bulk strongly affected the thin-film transistor characteristics. The results of XANES indicated an increase in the number of tail states upon atmospheric annealing (AT). We consider that the increase in the number of tail states decreased the channel mobility of AT samples

  20. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy

    Science.gov (United States)

    Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

    2007-05-01

    Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ˜55-60°C as output powers reach ˜50nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of ˜450nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4±1.7 and 20.7±6.9mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes (˜15° for etched and ˜6° for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of ˜6μm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.

  1. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

    Science.gov (United States)

    Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.

    2018-06-01

    We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.

  2. Monochromated scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Rechberger, W.; Kothleitner, G.; Hofer, F.

    2006-01-01

    Full text: Electron energy-loss spectroscopy (EELS) has developed into an established technique for chemical and structural analysis of thin specimens in the (scanning) transmission electron microscope (S)TEM. The energy resolution in EELS is largely limited by the stability of the high voltage supply, by the resolution of the spectrometer and by the energy spread of the source. To overcome this limitation a Wien filter monochromator was recently introduced with commercially available STEMs, offering the advantage to better resolve EELS fine structures, which contain valuable bonding information. The method of atomic resolution Z-contrast imaging within an STEM, utilizing a high-angle annular dark-field (HAADF) detector can perfectly complement the excellent energy resolution, since EELS spectra can be collected simultaneously. In combination with a monochromator microscope not only high spatial resolution images can be recorded but also high energy resolution EELS spectra are attainable. In this work we investigated the STEM performance of a 200 kV monochromated Tecnai F20 with a high resolution Gatan Imaging Filter (HR-GIF). (author)

  3. Spectrally resolved measurements of the terahertz beam profile generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Zalkovskij, Maksim; Strikwerda, Andrew

    2014-01-01

    Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma .......Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma ....

  4. Angle-resolved photoemission extended fine structure: Multiple layers of emitters and multiple initial states

    International Nuclear Information System (INIS)

    Huff, W.R.A.; Kellar, S.A.; Moler, E.J.; California Univ., Berkeley, CA; Chen, Y.; Wu, H.; Shirley, D.A.; Hussain, Z.

    1995-01-01

    Recently, angle-resolved photoemission extended fine structure (ARPEFS) has been applied to experimental systems involving multiple layers of emitters and non-s core-level photoemission in an effort to broaden the utility of the technique. Most of the previous systems have been comprised of atomic or molecular overlayers adsorbed onto a single-crystal, metal surface and the photoemission data were taken from an s atomic core-level in the overlayer. For such a system, the acquired ARPEFS data is dominated by the p o final state wave backscattering from the substrate atoms and is well understood. In this study, we investigate ARPEFS as a surface-region structure determination technique when applied to experimental systems comprised of multiple layers of photoemitters and arbitrary initial state core-level photoemission. Understanding the data acquired from multiple layers of photoemitters is useful for studying multilayer interfaces, ''buried'' surfaces, and clean crystals in ultra- high vacuum. The ability to apply ARPEFS to arbitrary initial state core-level photoemission obviously opens up many systems to analysis. Efforts have been ongoing to understand such data in depth. We present clean Cu(111) 3s, 3p, and 3d core-level, normal photoemission data taken on a high resolution soft x-ray beamline 9.3.2 at the Advanced Light Source in Berkeley, California and clean Ni(111) 3p normal photoemission data taken at the National Synchrotron Light Source in Upton, New York, USA

  5. Preparation and characterization of regenerated cellulose membranes from natural cotton fiber

    Directory of Open Access Journals (Sweden)

    Yanjuan CAO

    2015-06-01

    Full Text Available A series of organic solutions with different cellulose concentrations are prepared by dissolving natural cotton fibers in lithium chloride/dimethyl acetamide (LiCl/DMAC solvent system after the activation of cotton fibers. Under different coagulating bath, the regenerated cellulose membranes are formed in two kinds of coagulation baths, and two coating methods including high-speed spin technique (KW-4A spin coating machine and low-speed scraping (AFA-Ⅱ Film Applicator are selected in this paper. The macromolecular structure, mechanical properties, crystallinity, thermal stability and wetting property of the regenerated cellulose membrane are characterized by Scanning Electron Microscope(SEM, Fourier Transform Infrared Spectroscopy (FT-IR,X-ray diffraction (XRD, Thermogravimetric analysis (TG and contacting angle tester. The effects of mass fraction, coagulation bath type, membrane forming process on the regenerated membrane properties are investigated. Experimental results show that the performance of regenerated cellulose membrane is relatively excellent under the condition of using the KW-4A high-speed spin method, water coagulation bath, and when mass fraction of cellulose is 3.5%. The crystallinity of the regenerated cellulose membrane changes a lot compared with natural cotton fibers. The variation trend of thermal stability is similar with that of cotton fiber. But thermal stability is reduced to some degree, while the wetting ability is improved obviously.

  6. Detection system using scintillating optical fibers and image tube readout

    International Nuclear Information System (INIS)

    Alspector, J.; Borenstein, S.

    1979-01-01

    The hodoscope subgroup has studied a detection system consisting of bundles of optical fibers with readout via image tubes. The basic building block is an optical fiber with a scintillator inner core. The inner core has refractive index n/sub o/ (1.58 for plastic scintillator), and the outer sheath has a low index (approx. 1.4). Light is created in the core by passage of a particle track; if the light strikes the sheath at an angle greater than the critical angle phi/sub c/, it is trapped in the fiber until it finds its way to the photon detector

  7. Early intraocular pressure change after peripheral iridotomy with ultralow fluence pattern scanning laser and Nd:YAG laser in primary angle-closure suspect: Kowloon East Pattern Scanning Laser Study Report No. 3.

    Science.gov (United States)

    Chan, Jeffrey Chi Wang; Choy, Bonnie Nga Kwan; Chan, Orlando Chia Chieh; Li, Kenneth Kai Wang

    2018-02-01

    Our purpose was to assess the early intraocular pressure (IOP) changes of ultralow fluence laser iridotomy using pattern scanning laser followed by neodymium:yttrium-aluminum-gamet (Nd:YAG) laser. This is a prospective interventional study. Thirty-three eyes of 33 adult Chinese primary angle-closure suspect subjects were recruited for prophylactic laser peripheral iridotomy. Sequential laser peripheral iridotomy was performed using pattern scanning laser followed by Nd:YAG laser. Visual acuity (VA) and IOP were measured before treatment, at 1 h, 1 day, 1 week, 1 month, 3 months and 6 months after laser. Laser energy used and complications were documented. Corneal endothelial cell count was examined at baseline and 6 months. Patency of the iridotomy was assessed at each follow-up visit. All subjects achieved patent iridotomy in a single session. The mean energy used was 0.335+/-0.088 J for the pattern scanning laser, and 4.767+/-5.780 mJ for the Nd:YAG laser. The total mean energy was 0.339+/-0.089 J. None of the eyes developed a clinically significant IOP spike (≥ 8 mmHg) at 1 h and 1 day after laser use. Only four eyes developed higher IOP at 1 h and all were ≤3 mmHg compared to baseline. The mean IOP was 13.8+/-2.5 mmHg at 1 h and 11.5+/-2.2 mmHg at 1 day, both were significantly lower than baseline (15.8+/-2.1 mmHg) (P laser compared to baseline (0.23 vs 0.26). There was also no statistically significant difference in mean VA at other follow-up visits compared to baseline. Peripheral iridotomy closure was encountered in two (6.1%) eyes, one at 1 month and another at 6 months follow-up. There were no complications including hyphema, peripheral anterior synechia formation nor prolonged inflammation throughout the follow-up period. There was no significant loss in corneal endothelial cell counts at 6 months (2255+/-490) compared to baseline (2303+/-386) (P = 0.347). Sequential LPI using an ultralow fluence pattern scanning laser

  8. Periodical rocking long period gratings in PANDA fibers for high temperature and refractive index sensing

    Science.gov (United States)

    Jin, Wa; Bi, Wei-hong; Fu, Xing-hu; Fu, Guang-wei

    2017-09-01

    We report periodical rocking long period gratings (PR-LPGs) in PANDA fibers fabricated with CO2 laser. The PR-LPGs achieve very high coupling efficiency of 19 dB with 12 periods and a 3.5° twist angle in just one scanning cycle, which is much more effective than the conventional CO2 laser fabrication technique. This type of LPGs exhibits polarization-selective resonance dips which demonstrate different sensitivities to environmental parameters. The high temperature and external refractive index sensitivities are measured simultaneously, so it can be used as a wavelength-selective polarization filter and sensor.

  9. Frequency resolved transverse mode instability in rod fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Laurila, Marko; Maack, Martin D.

    2013-01-01

    Frequency dynamics of transverse mode instabilities (TMIs) are investigated by testing three 285/100 rod fibers in a single-pass amplifier setup reaching up to ~200W of extracted output power without beam instabilities. The pump power is increased well above the TMI threshold to uncover output dy...

  10. Repeatability and Reproducibility of Retinal Nerve Fiber Layer Parameters Measured by Scanning Laser Polarimetry with Enhanced Corneal Compensation in Normal and Glaucomatous Eyes.

    Science.gov (United States)

    Ara, Mirian; Ferreras, Antonio; Pajarin, Ana B; Calvo, Pilar; Figus, Michele; Frezzotti, Paolo

    2015-01-01

    To assess the intrasession repeatability and intersession reproducibility of peripapillary retinal nerve fiber layer (RNFL) thickness parameters measured by scanning laser polarimetry (SLP) with enhanced corneal compensation (ECC) in healthy and glaucomatous eyes. One randomly selected eye of 82 healthy individuals and 60 glaucoma subjects was evaluated. Three scans were acquired during the first visit to evaluate intravisit repeatability. A different operator obtained two additional scans within 2 months after the first session to determine intervisit reproducibility. The intraclass correlation coefficient (ICC), coefficient of variation (COV), and test-retest variability (TRT) were calculated for all SLP parameters in both groups. ICCs ranged from 0.920 to 0.982 for intravisit measurements and from 0.910 to 0.978 for intervisit measurements. The temporal-superior-nasal-inferior-temporal (TSNIT) average was the highest (0.967 and 0.946) in normal eyes, while nerve fiber indicator (NFI; 0.982) and inferior average (0.978) yielded the best ICC in glaucomatous eyes for intravisit and intervisit measurements, respectively. All COVs were under 10% in both groups, except NFI. TSNIT average had the lowest COV (2.43%) in either type of measurement. Intervisit TRT ranged from 6.48 to 12.84. The reproducibility of peripapillary RNFL measurements obtained with SLP-ECC was excellent, indicating that SLP-ECC is sufficiently accurate for monitoring glaucoma progression.

  11. Local atomic structure of Fe/Cr multilayers: Depth-resolved method

    Science.gov (United States)

    Babanov, Yu. A.; Ponomarev, D. A.; Devyaterikov, D. I.; Salamatov, Yu. A.; Romashev, L. N.; Ustinov, V. V.; Vasin, V. V.; Ageev, A. L.

    2017-10-01

    A depth-resolved method for the investigation of the local atomic structure by combining data of X-ray reflectivity and angle-resolved EXAFS is proposed. The solution of the problem can be divided into three stages: 1) determination of the element concentration profile with the depth z from X-ray reflectivity data, 2) determination of the X-ray fluorescence emission spectrum of the element i absorption coefficient μia (z,E) as a function of depth and photon energy E using the angle-resolved EXAFS data Iif (E , ϑl) , 3) determination of partial correlation functions gij (z , r) as a function of depth from μi (z , E) . All stages of the proposed method are demonstrated on a model example of a multilayer nanoheterostructure Cr/Fe/Cr/Al2O3. Three partial pair correlation functions are obtained. A modified Levenberg-Marquardt algorithm and a regularization method are applied.

  12. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences...... the decay of the plasmon-field coherence. Generation of the measured signal at the tunneling junction offers the possibility to observe ultrafast effects with a spatial resolution determined by the tunneling junction...

  13. Current diagnosis of tumors developed in the internal auditory canal and cerebellopontine angle

    International Nuclear Information System (INIS)

    Vignaud, J.; Doyon, D.

    1988-01-01

    The introduction of CT scan and, more recently, magnetic resonance imaging, has radically changed the diagnostic approach to tumors developed in the internal auditory canal and cerebellopontine angle. CT scan with intravenous injection visualizes tumors lying in the cerebellopontine angle. Magnetic resonance imaging, especially using gadolinium, is a very accurate means for diagnosing tumors of both the auditory canal and cerebellopontine angle [fr

  14. Diamagneto-Dielectric Anisotropic Wide Angle Impedance Matching Layers for Active Phased Arrays

    NARCIS (Netherlands)

    Silvestri, F.; Cifola, L.; Gerini, G.

    2016-01-01

    In this paper, we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in

  15. Diamagneto-dielectric anisotropic wide angle impedance matching layers for active phased arrays

    NARCIS (Netherlands)

    Silvestri, F.; Cifola, L.; Gerini, G.

    2016-01-01

    In this paper we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in

  16. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [College of Material and Textile Engineering, Jiaxing University, Jiaxing 314033 (China); Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Manolache, Sorin [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); US Forest Products Laboratory, Madison, WI 53726 (United States); Qiu, Yiping, E-mail: ypqiu@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Sarmadi, Majid, E-mail: majidsar@wisc.edu [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-02-28

    Graphical abstract: - Highlights: • The continuous ethanol flow technique can successfully modify ramie fiber surface with an increase in IFSS value up to 50%. • Response surface methodology was applied to design the plasma treatment parameters for ramie fiber modification. • The ethanol flow rate was the most influential treatment parameter in plasma modification process. - Abstract: In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  17. Multi-angle lensless digital holography for depth resolved imaging on a chip

    Science.gov (United States)

    Su, Ting-Wei; Isikman, Serhan O.; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-01-01

    A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over ~60 mm2 field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems. PMID:20588819

  18. Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan.

    Science.gov (United States)

    Radrich, Karin; Ale, Angelique; Ermolayev, Vladimir; Ntziachristos, Vasilis

    2012-12-01

    We examine the improvement in imaging performance, such as axial resolution and signal localization, when employing limited-projection-angle fluorescence molecular tomography (FMT) together with x-ray computed tomography (XCT) measurements versus stand-alone FMT. For this purpose, we employed living mice, bearing a spontaneous lung tumor model, and imaged them with FMT and XCT under identical geometrical conditions using fluorescent probes for cancer targeting. The XCT data was employed, herein, as structural prior information to guide the FMT reconstruction. Gold standard images were provided by fluorescence images of mouse cryoslices, providing the ground truth in fluorescence bio-distribution. Upon comparison of FMT images versus images reconstructed using hybrid FMT and XCT data, we demonstrate marked improvements in image accuracy. This work relates to currently disseminated FMT systems, using limited projection scans, and can be employed to enhance their performance.

  19. Carbon Nanotube Sheet Scrolled Fiber Composite for Enhanced Interfacial Mechanical Properties

    Science.gov (United States)

    Kokkada Ravindranath, Pruthul

    The high tensile strength of Polymer Matrix Composites (PMC) is derived from the high tensile strength of the embedded carbon fibers. However, their compressive strength is significantly lower than their tensile strength, as they tend to fail through micro-buckling, under compressive loading. Fiber misalignment and the presence of voids created during the manufacturing processes, add to the further reduction in the compressive strength of the composites. Hence, there is more scope for improvement. Since, the matrix is primarily responsible for the shear load transfer and dictating the critical buckling load of the fibers by constraining the fibers from buckling, to improve the interfacial mechanical properties of the composite, it is important to modify the polymer matrix, fibers and/or the interface. In this dissertation, a novel approach to enhance the polymer matrix-fiber interface region has been discussed. This approach involves spiral wrapping carbon nanotube (CNT) sheet around individual carbon fiber or fiber tow, at room temperature at a prescribed wrapping angle (bias angle), and then embed the scrolled fiber in a resin matrix. The polymer infiltrates into the nanopores of the multilayer CNT sheet to form CNT/polymer nanocomposite surrounding fiber, and due to the mechanical interlocking, provides reinforcement to the interface region between fiber and polymer matrix. This method of nano-fabrication has the potential to improve the mechanical properties of the fiber-matrix interphase, without degrading the fiber properties. The effect of introducing Multi-Walled Carbon Nanotubes (MWNT) in the polymer matrix was studied by analyzing the atomistic model of the epoxy (EPON-862) and the embedded MWNTs. A multi-scale method was utilized by using molecular dynamics (MD) simulations on the nanoscale model of the epoxy with and without the MWNTs to calculate compressive strength of the composite and predict the enhancement in the composite material. The influence

  20. Probing long-range structural order in SnPc/Ag(111) by umklapp process assisted low-energy angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Jauernik, Stephan; Hein, Petra; Gurgel, Max; Falke, Julian; Bauer, Michael

    2018-03-01

    Laser-based angle-resolved photoelectron spectroscopy is performed on tin-phthalocyanine (SnPc) adsorbed on silver Ag(111). Upon adsorption of SnPc, strongly dispersing bands are observed which are identified as secondary Mahan cones formed by surface umklapp processes acting on photoelectrons from the silver substrate as they transit through the ordered adsorbate layer. We show that the photoemission data carry quantitative structural information on the adsorbate layer similar to what can be obtained from a conventional low-energy electron diffraction (LEED) study. More specifically, we compare photoemission data and LEED data probing an incommensurate-to-commensurate structural phase transition of the adsorbate layer. Based on our results we propose that Mahan-cone spectroscopy operated in a pump-probe configuration can be used in the future to probe structural dynamics at surfaces with a temporal resolution in the sub-100-fs regime.

  1. Scanning of Adsorption Hysteresis In Situ with Small Angle X-Ray Scattering.

    Directory of Open Access Journals (Sweden)

    Athanasios Ch Mitropoulos

    Full Text Available Everett's theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties. Furthermore it was examined the memory string of the system. We concluded that opposite to theorem-6: a at a common point the system can reach in a finite (not an infinite number of ways, b a correction for the thickness of the adsorbed film prior to capillary condensation is necessary, and c the scattering curves although at high-Q values coincide, at low-Q values are different indicating different microscopic states. That is, at a common point the system holds different metastable states sustained by hysteresis effects. These metastable states are the ones which highlight the way of a system back to a return point memory (RPM. Entering the hysteresis loop from different RPMs different histories are implanted to the paths toward the common point. Although in general the memory points refer to relaxation phenomena, they also constitute a characteristic feature of capillary condensation. Analogies of the no-passing rule and the adiabaticity assumption in the frame of adsorption hysteresis are discussed.

  2. Scanning of Adsorption Hysteresis In Situ with Small Angle X-Ray Scattering

    Science.gov (United States)

    Mitropoulos, Athanasios Ch.; Favvas, Evangelos P.; Stefanopoulos, Konstantinos L.; Vansant, Etienne F.

    2016-01-01

    Everett’s theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS) supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties. Furthermore it was examined the memory string of the system. We concluded that opposite to theorem-6: a) at a common point the system can reach in a finite (not an infinite) number of ways, b) a correction for the thickness of the adsorbed film prior to capillary condensation is necessary, and c) the scattering curves although at high-Q values coincide, at low-Q values are different indicating different microscopic states. That is, at a common point the system holds different metastable states sustained by hysteresis effects. These metastable states are the ones which highlight the way of a system back to a return point memory (RPM). Entering the hysteresis loop from different RPMs different histories are implanted to the paths toward the common point. Although in general the memory points refer to relaxation phenomena, they also constitute a characteristic feature of capillary condensation. Analogies of the no-passing rule and the adiabaticity assumption in the frame of adsorption hysteresis are discussed. PMID:27741263

  3. A study of liquid scintillator and fiber materials for use in a fiber calorimeter

    International Nuclear Information System (INIS)

    Altice, P.P. Jr.

    1990-04-01

    This reports an investigation into the performance of selected scintillation oils and fiber materials to test their applicability in high energy, liquid scintillator calorimetry. Two scintillating oils, Bicron BC-517 and an oil mixed for the MACRO experiment, and two fiber materials, Teflon and GlassClad PS-252, were tested for the following properties: light yield, attenuation length and internal reflection angle. The results of these tests indicated that the scintillation oils and the fiber materials had an overall good performance with lower energies and would meet the requirements of liquid scintillator detection at SSC energies. 6 refs

  4. Textile composites based on natural fibers

    CSIR Research Space (South Africa)

    Li, Yan

    2009-04-01

    Full Text Available . The two kinds of fiber surface treatment methods were permanganate treatment and silane treatment. Vinyl ester was used as the matrix. The permeability values of sisal textile before and after fiber surface treatments are listed in Table 3. Comparisons... and more liquid resin flow through inter-bundles. Figure 4. Intra-bundle and inter-bundle flows As reported, permanganate, as an oxidant, can etch sisal fiber surface [20]. Scanning electronic micrograph of a permanganate treated sisal fiber...

  5. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Ordu

    2017-09-01

    Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  6. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  7. Preparation and characterization of corn reinforced polymer sheet of fibers

    International Nuclear Information System (INIS)

    Moreira, Tatiana Martinez; Seo, Emilia Satoshi Miyamaru

    2016-01-01

    There is a global trend in seeking plant fibers to replace the synthetic fibers to obtain reinforced composites aimed at the use of renewable resources. In this context, this paper aims to develop the process of preparing maize leaf fibers, characterizing them and adapting them for applications in the construction industry and develop a reinforced polymer composite with these fibers. Corn leaves were dried in environmental temperature, treated by mercerizing, then neutralized with acid solution and washed in running water. The characterization of the corn leaf fibers was carried out by X-ray diffraction, X-ray fluorescence, scanning electron microscopy, specific surface area, thermogravimetry and specific mass. The mercerizing treatment was effective, because the maize fibers have characteristics similar to synthetic fibers, leading to a possibility of new technological uses. The polymeric composite material was developed by extrusion processes and injection and tested for tensile testing, differential scanning calorimetry and scanning electron microscopy, thus reused an organic waste that would be disposed of by inserting it in a technological process, contributing to the research and development of new polymeric materials as well as to reduce waste discarded as scrap. (author)

  8. Time-resolved tomographic images of a relativistic electron beam

    International Nuclear Information System (INIS)

    Koehler, H.A.; Jacoby, B.A.; Nelson, M.

    1984-07-01

    We obtained a sequential series of time-resolved tomographic two-dimensional images of a 4.5-MeV, 6-kA, 30-ns electron beam. Three linear fiber-optic arrays of 30 or 60 fibers each were positioned around the beam axis at 0 0 , 61 0 , and 117 0 . The beam interacting with nitrogen at 20 Torr emitted light that was focused onto the fiber arrays and transmitted to a streak camera where the data were recorded on film. The film was digitized, and two-dimensional images were reconstructed using the maximum-entropy tomographic technique. These images were then combined to produce an ultra-high-speed movie of the electron-beam pulse

  9. Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers

    International Nuclear Information System (INIS)

    Esthappan, Saisy Kudilil; Kuttappan, Suma Kumbamala; Joseph, Rani

    2012-01-01

    Highlights: ► Wet synthesis method was used for the synthesis of TiO 2 nano particles. ► Mechanical properties of polypropylene fibers were increased by the addition of TiO 2 nanoparticles. ► Thermal stability of polypropylene fiber was improved significantly by the addition of TiO 2 nano particles. ► TiO 2 nanoparticles dispersed well in polypropylene fibers. -- Abstract: Titanium dioxide nanoparticles were prepared by wet synthesis method and characterized by transmission electron microscopy and X-ray diffraction studies. The nanotitanium dioxide then used to prepare polypropylene/titanium dioxide composites by melt mixing method. It was then made into fibers by melt spinning and subsequent drawing. Mechanical properties of the fibers were studied using Favimat tensile testing machine with a load cell of 1200 cN capacity. Thermal behavior of the fibers was studied using differential scanning calorimetry and thermogravimetric analysis. Scanning electron microscope studies were used to investigate the titanium dioxide surface morphology and crosssection of the fiber. Mechanical properties of the polypropylene fiber was improved by the addition of titanium dioxide nanoparticles. Incorporation of nanoparticles improves the thermal stability of polypropylene. Differential scanning calorimetric studies revealed an improvement in crystallinity was observed by the addition of titanium dioxide nanoparticles.

  10. Electron-plasmon and electron-phonon satellites in the angle-resolved photoelectron spectra of n -doped anatase TiO2

    Science.gov (United States)

    Caruso, Fabio; Verdi, Carla; Poncé, Samuel; Giustino, Feliciano

    2018-04-01

    We develop a first-principles approach based on many-body perturbation theory to investigate the effects of the interaction between electrons and carrier plasmons on the electronic properties of highly doped semiconductors and oxides. Through the evaluation of the electron self-energy, we account simultaneously for electron-plasmon and electron-phonon coupling in theoretical calculations of angle-resolved photoemission spectra, electron linewidths, and relaxation times. We apply this methodology to electron-doped anatase TiO2 as an illustrative example. The simulated spectra indicate that electron-plasmon coupling in TiO2 underpins the formation of satellites at energies comparable to those of polaronic spectral features. At variance with phonons, however, the energy of plasmons and their spectral fingerprints depends strongly on the carrier concentration, revealing a complex interplay between plasmon and phonon satellites. The electron-plasmon interaction accounts for approximately 40% of the total electron-boson interaction strength, and it is key to improve the agreement with measured quasiparticle spectra.

  11. Observation of a rainbow of visible colors in a near infrared cascaded Raman fiber laser and its novel application as a diagnostic tool for length resolved spectral analysis

    Science.gov (United States)

    Aparanji, Santosh; Balaswamy, V.; Arun, S.; Supradeepa, V. R.

    2018-02-01

    In this work, we report and analyse the surprising observation of a rainbow of visible colors, spanning 390nm to 620nm, in silica-based, Near Infrared, continuous-wave, cascaded Raman fiber lasers. The cascaded Raman laser is pumped at 1117nm at around 200W and at full power we obtain 100 W at 1480nm. With increasing pump power at 1117nm, the fiber constituting the Raman laser glows in various hues along its length. From spectroscopic analysis of the emitted visible light, it was identified to be harmonic and sum-frequency components of various locally propagating wavelength components. In addition to third harmonic components, surprisingly, even 2nd harmonic components were observed. Despite being a continuous-wave laser, we expect the phase-matching occurring between the core-propagating NIR light with the cladding-propagating visible wavelengths and the intensity fluctuations characteristic of Raman lasers to have played a major role in generation of visible light. In addition, this surprising generation of visible light provides us a powerful non-contact method to deduce the spectrum of light propagating in the fiber. Using static images of the fiber captured by a standard visible camera such as a DSLR, we demonstrate novel, image-processing based techniques to deduce the wavelength component propagating in the fiber at any given spatial location. This provides a powerful diagnostic tool for both length and power resolved spectral analysis in Raman fiber lasers. This helps accurate prediction of the optimal length of fiber required for complete and efficient conversion to a given Stokes wavelength.

  12. Modeling of MOEMS electromagnetic scanning grating mirror for NIR micro-spectrometer

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2016-02-01

    Full Text Available In this paper, the mathematical model is developed for researching the detailed electromagnetic mechanism of MOEMS scanning mirror. We present the relationship between spectral range and optical scanning angle. Furthermore, the variation tendencies of resonant frequency and maximal torsional angle are studied in detail under different aspect ratios of MOEMS scanning mirror and varied dimensions of torsional bar. The numerical results and Finite Element Analysis simulations both indicate that the thickness of torsional bar is the most important factor. The maximal torsional angle appears when the aspect ratio equals to 1. This mathematical model is an effective way for designing the MOEMS electromagnetic scanning grating mirror in actual fabrication.

  13. Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber

    Science.gov (United States)

    Enduring misconceptions about the physical effects of fiber in the gut have led to misunderstandings about the health benefits attributable to insoluble and soluble fiber. This review will focus on isolated functional fibers (eg, fiber supplements) whose effects on clinical outcomes have been readil...

  14. Mechanical property and biological performance of electrospun silk fibroin-polycaprolactone scaffolds with aligned fibers.

    Science.gov (United States)

    Yuan, Han; Shi, Hongfei; Qiu, Xushen; Chen, Yixin

    2016-01-01

    The mechanical strength, biocompatibility, and sterilizability of silk fibroin allow it to be a possible candidate as a natural bone regenerate material. To improve mechanical character and reinforce the cell movement induction, silk fibroin (SF)-polycaprolactone (PCL) alloy was fabricated by electrospinning techniques with a rotating collector to form aligned fibrous scaffolds and random-oriented scaffolds. The scanning electron microscope image of the scaffold and the mechanical properties of the scaffold were investigated by tensile mechanical tests, which were compared to random-oriented scaffolds. Furthermore, mesenchymal stem cells were planted on these scaffolds to investigate the biocompatibility, elongation, and cell movement in situ. Scanning electron microscopy shows that 91% fibers on the aligned fibroin scaffold were distributed between the dominant direction ±10°. With an ideal support for stem cell proliferation in vitro, the aligned fibrous scaffold induces cell elongation at a length of 236.46 ± 82 μm and distribution along the dominant fiber direction with a cell alignment angle at 6.57° ± 4.45°. Compared with random-oriented scaffolds made by artificial materials, aligned SF-PCL scaffolds could provide a moderate mesenchymal stem cell engraftment interface and speed up early stage cell movement toward the bone defect.

  15. Run-to-Run Optimization Control Within Exact Inverse Framework for Scan Tracking.

    Science.gov (United States)

    Yeoh, Ivan L; Reinhall, Per G; Berg, Martin C; Chizeck, Howard J; Seibel, Eric J

    2017-09-01

    A run-to-run optimization controller uses a reduced set of measurement parameters, in comparison to more general feedback controllers, to converge to the best control point for a repetitive process. A new run-to-run optimization controller is presented for the scanning fiber device used for image acquisition and display. This controller utilizes very sparse measurements to estimate a system energy measure and updates the input parameterizations iteratively within a feedforward with exact-inversion framework. Analysis, simulation, and experimental investigations on the scanning fiber device demonstrate improved scan accuracy over previous methods and automatic controller adaptation to changing operating temperature. A specific application example and quantitative error analyses are provided of a scanning fiber endoscope that maintains high image quality continuously across a 20 °C temperature rise without interruption of the 56 Hz video.

  16. Evaluation of the Effect of Spar Cap Fiber Angle of Bending-Torsion Coupled Blades on the Aero-Structural Performance of Wind Turbines

    DEFF Research Database (Denmark)

    Sener, Ozgun; Farsadi, Touraj; Gozc, M. Ozan

    2018-01-01

    with the fatigue load mitigation in the whole wind turbine system, tower clearances, peak stresses in the blades, and power generation of wind turbines. For this purpose, a full E-glass/epoxy reference blade has been designed, following the inverse design methodology for a 5-MW wind turbine. An E-glass/epoxy blade...... with IBTC, and besides the fiber orientation angle, sectional properties of hybrid blades must be adjusted accordingly using proper number of carbon/epoxy layers in the sections of the blade with IBTC, in order to simultaneously reduce generator power losses and the FEL....

  17. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  18. ELECTROMAGNETIC SCATTERING AND ANTENNA TECHNOLOGY (EMSAT) Task Order 0003: Design of a Circularly Polarized, 20 60 GHZ Active Phased Array for Wide Angle Scanning

    Science.gov (United States)

    2017-08-08

    previously published linear -to-circular polarizers. This is because the first sheet has a low inductance in the -direction, which acts as a wire-grid...GHZ Active Phased Array for Wide Angle Scanning Carl R. Pfeiffer Defense Engineering Corporation Boris Tomasic Multispectral Sensing and...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62204F/61102F 6. AUTHOR(S) Carl R. Pfeiffer (Defense Engineering Corporation) Boris Tomasic (AFRL

  19. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    International Nuclear Information System (INIS)

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.; Lin, Chun C.

    2015-01-01

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsed light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas

  20. Preparation of fluorescein-functionalized electrospun fibers coated with TiO{sub 2} and gold nanoparticles for visible-light-induced photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Suk [Department of Chemistry, Hannam University, Daejeon 306-791 (Korea, Republic of); Choi, Insung S. [Department of Chemistry, KAIST, Daejeon 305-701 (Korea, Republic of); Lee, Jungkyu K., E-mail: jkl@knu.ac.kr [Molecular-Level Interface Research Center, Department of Chemistry and Green-Nano Research Center, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Yoon, Kuk Ro, E-mail: kryoon@hannam.ac.kr [Department of Chemistry, Hannam University, Daejeon 306-791 (Korea, Republic of)

    2015-08-01

    We demonstrated a new type of visible light-induced photocatalyst, comprising fluorescein molecules, TiO{sub 2}, and gold nanoparticles anchored onto polymer fibers. The synthesized fiber composite was fully characterized by thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, contact angle measurement, and fluorescence microscopy. Under sunlight and visible light irradiation, the photocatalytic activity of the tricomponent system showed 2–3 times greater photodegradation efficiency for methylene blue than a representative photocatalyst, Degussa P25. - Graphical abstract: PSS/PAH-FITC/TiO{sub 2}/AuNP composite demonstrated 2–3 times greater visible light photodegradation efficiency for methylene blue than a representative photocatalyst, Degussa P25. Display Omitted - Highlights: • Synthesis of a novel composite, polymer fiber/organic dye/TiO{sub 2}/gold nanoparticles. • The composite was characterized by TGA, SEM, TEM, and fluorescence microscopy. • Improved visible light photocatalytic activity of the sythesized novel composite.

  1. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  2. Non-contact measurement of rotation angle with solo camera

    Science.gov (United States)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  3. Proteins on surfaces investigated by microbeam grazing incidence small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, Ronald; Riekel, Christian; Burghammer, Manfred [European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble Cedex (France); Vendrely, Charlotte [Universite de Cergy-Pontoise, ERRMECE, F-95000, Cergy-Pontoise (France); Mueller-Buschbaum, Peter [TU Muenchen, Physik Department E13, Muenchen (Germany)

    2009-07-01

    Grazing incidence small angle scattering with a 1 micron x-ray beam ({mu}GISAXS) is applied to study structural ordering of casein micelles and fibroin in solution cast films. {mu}GISAXS scans provide the possibility to locate highly ordered areas and to investigate variation in the molecular packing. In the case of the casein micelles, ordered film structures have been generated by decreasing their natural size dispersion. While dynamic light scattering was used to characterize the different size fractions in solution, {mu}GISAXS and roughness are measured on the resulting casein films. GISAXS-Patterns are analyzed by simulations providing the dimension and nearest neighbor distances of casein micelles. In the case of fibroin, ordering of nano-fibers formed during the drying process is investigated. The experimental data are analyzed by simulations and compared to SEM, AFM and Raman scattering experiments.

  4. Effect of anodic surface treatment on PAN-based carbon fiber and its relationship to the fracture toughness of the carbon fiber-reinforced polymer composites

    DEFF Research Database (Denmark)

    Sarraf, Hamid; Skarpova, Ludmila

    2008-01-01

    The effect of anodic surface treatment on the polyacrylonitrile (PAN)-based carbon fibers surface properties and the mechanical behavior of the resulting carbon fiber-polymer composites has been studied in terms of the contact angle measurements of fibers and the fracture toughness of composites...... in the fiber surface nature and the mechanical interfacial properties between the carbon fiber and epoxy resin matrix of the resulting composites, i.e., the fracture toughness. We suggest that good wetting plays an important role in improving the degree of adhesion at interfaces between fibers and matrices...

  5. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    International Nuclear Information System (INIS)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-01-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool. (paper)

  6. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    Science.gov (United States)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-10-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.

  7. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    Energy Technology Data Exchange (ETDEWEB)

    Di Sieno, Laura, E-mail: laura.disieno@polimi.it; Dalla Mora, Alberto; Contini, Davide [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Wabnitz, Heidrun; Macdonald, Rainer [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Pifferi, Antonio [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Mazurenka, Mikhail [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Hannoversches Zentrum für Optische Technologien, Nienburger Str. 17, 30167 Hannover (Germany); Hoshi, Yoko [Department of Biomedical Optics, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Boso, Gianluca; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Becker, Wolfgang [Becker and Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Martelli, Fabrizio [Dipartimento di Fisica e Astronomia dell’Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze 50019 (Italy)

    2016-03-15

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  8. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection

    International Nuclear Information System (INIS)

    Di Sieno, Laura; Dalla Mora, Alberto; Contini, Davide; Wabnitz, Heidrun; Macdonald, Rainer; Pifferi, Antonio; Mazurenka, Mikhail; Hoshi, Yoko; Boso, Gianluca; Tosi, Alberto; Becker, Wolfgang; Martelli, Fabrizio

    2016-01-01

    We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.

  9. Synthetic holography based on scanning microcavity

    Directory of Open Access Journals (Sweden)

    A. Di Donato

    2015-11-01

    Full Text Available Synthetic optical holography (SOH is an imaging technique, introduced in scanning microscopy to record amplitude and phase of a scattered field from a sample. In this paper, it is described a novel implementation of SOH through a lens-free low-coherence system, based on a scanning optical microcavity. This technique combines the low-coherence properties of the source with the mutual interference of scattered waves and the resonant behavior of a micro-cavity, in order to realize a high sensitive imaging system. Micro-cavity is compact and realized by approaching a cleaved optical fiber to the sample. The scanning system works in an open-loop configuration without the need for a reference wave, usually required in interferometric systems. Measurements were performed over calibration samples and a lateral resolution of about 1 μm is achieved by means of an optical fiber with a Numerical Aperture (NA equal to 0.1 and a Mode Field Diameter (MDF of 5.6 μm.

  10. Confocal Adaptive Optics Imaging of Peripapillary Nerve Fiber Bundles: Implications for Glaucomatous Damage Seen on Circumpapillary OCT Scans.

    Science.gov (United States)

    Hood, Donald C; Chen, Monica F; Lee, Dongwon; Epstein, Benjamin; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Chui, Toco Y P

    2015-04-01

    To improve our understanding of glaucomatous damage as seen on circumpapillary disc scans obtained with frequency-domain optical coherence tomography (fdOCT), fdOCT scans were compared to images of the peripapillary retinal nerve fiber (RNF) bundles obtained with an adaptive optics-scanning light ophthalmoscope (AO-SLO). The AO-SLO images and fdOCT scans were obtained on 6 eyes of 6 patients with deep arcuate defects (5 points ≤-15 db) on 10-2 visual fields. The AO-SLO images were montaged and aligned with the fdOCT images to compare the RNF bundles seen with AO-SLO to the RNF layer thickness measured with fdOCT. All 6 eyes had an abnormally thin (1% confidence limit) RNF layer (RNFL) on fdOCT and abnormal (hyporeflective) regions of RNF bundles on AO-SLO in corresponding regions. However, regions of abnormal, but equal, RNFL thickness on fdOCT scans varied in appearance on AO-SLO images. These regions could be largely devoid of RNF bundles (5 eyes), have abnormal-appearing bundles of lower contrast (6 eyes), or have isolated areas with a few relatively normal-appearing bundles (2 eyes). There also were local variations in reflectivity of the fdOCT RNFL that corresponded to the variations in AO-SLO RNF bundle appearance. Relatively similar 10-2 defects with similar fdOCT RNFL thickness profiles can have very different degrees of RNF bundle damage as seen on fdOCT and AO-SLO. While the results point to limitations of fdOCT RNFL thickness as typically analyzed, they also illustrate the potential for improving fdOCT by attending to variations in local intensity.

  11. Influence of cellulose fibers on structure and properties of fiber reinforced foam concrete

    Directory of Open Access Journals (Sweden)

    Fedorov Valeriy

    2018-01-01

    Full Text Available One of the promising means of foamed concrete quality improvement is micro-reinforcement by adding synthetic and mineral fibers to the base mix. This research is the first to investigate peculiarities of using recycled cellulose fiber extracted from waste paper for obtaining fiber reinforced foam concrete. The paper presents results of experimental research on the influence of cellulose fibers on structure and properties of fiber reinforced foam concrete by using methods of chemical analysis and scanning electron microscopy. The research determines peculiarities of new formations appearance and densification of binder hydration products in the contact zone between fiber and cement matrix, which boost mechanical strength of fiber reinforced foam concrete. Physico-mechanical properties of fiber reinforced foam concrete were defined depending on the amount of recycled cellulose fiber added to the base mix. It was found that the use of recycled cellulose fibers allows obtaining structural thermal insulating fiber reinforced foam concretes of non-autoclaved hardening of brand D600 with regard to mean density with the following improved properties: compressive strength increased by 35% compared to basic samples, higher stability of foamed concrete mix and decreased shrinkage deformation.

  12. Enhancing the Dyeability of Polypropylene Fibers by Melt Blending with Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Fereshteh Mirjalili

    2013-01-01

    Full Text Available Attempts were made to modify polypropylene fibers by melt blending with polyethylene terephthalate in order to enhance the dyeability of the resultant fiber. Five blends of polypropylene/polyethylene terephthalate/compatibilizer were prepared and subsequently spun into fibers. Three disperse dyes were used to dye such modified fibers at boiling and 130°C. The dyeing performance of the blend fibers, as well as the morphological, chemical, thermal, and mechanical properties, of the corresponding blends was characterized by means of spectrophotometry, polarized optical microscopy, scanning electron microscopy (SEM, FT-IR spectroscopy, differential scanning calorimetry (DSC, and tensile testing.

  13. Scanning electron microscopy of the trabecular meshwork: Understanding the pathogenesis of primary angle closure glaucoma

    Directory of Open Access Journals (Sweden)

    Ramanjit Sihota

    2012-01-01

    Full Text Available Purpose: To study ultrastructural changes of the trabecular meshwork in acute and chronic primary angle closure glaucoma (PACG and primary open angle glaucoma (POAG eyes by scanning electron microscopy. Materials and Methods: Twenty-one trabecular meshwork surgical specimens from consecutive glaucomatous eyes after a trabeculectomy and five postmortem corneoscleral specimens were fixed immediately in Karnovsky solution. The tissues were washed in 0.1 M phosphate buffer saline, post-fixed in 1% osmium tetraoxide, dehydrated in acetone series (30-100%, dried and mounted. Results: Normal trabecular tissue showed well-defined, thin, cylindrical uveal trabecular beams with many large spaces, overlying flatter corneoscleral beams and numerous smaller spaces. In acute PACG eyes, the trabecular meshwork showed grossly swollen, irregular trabecular endothelial cells with intercellular and occasional basal separation with few spaces. Numerous activated macrophages, leucocytes and amorphous debris were present. Chronic PACG eyes had a few, thickened posterior uveal trabecular beams visible. A homogenous deposit covered the anterior uveal trabeculae and spaces. Converging, fan-shaped trabecular beam configuration corresponded to gonioscopic areas of peripheral anterior synechiae. In POAG eyes, anterior uveal trabecular beams were thin and strap-like, while those posteriorly were wide, with a homogenous deposit covering and bridging intertrabecular spaces, especially posteriorly. Underlying corneoscleral trabecular layers and spaces were visualized in some areas. Conclusions: In acute PACG a marked edema of the endothelium probably contributes for the acute and marked intraocular pressure (IOP elevation. Chronically raised IOP in chronic PACG and POAG probably results, at least in part, from decreased aqueous outflow secondary to widening and fusion of adjacent trabecular beams, together with the homogenous deposit enmeshing trabecular beams and spaces.

  14. Green composites of thermoplastic corn starch and recycled paper cellulose fibers

    Directory of Open Access Journals (Sweden)

    Amnuay Wattanakornsiri

    2011-08-01

    Full Text Available Ecological concerns have resulted in a renewed interest in environmental-friendly composites issues for sustainabledevelopment as a biodegradable renewable resource. In this work we used cellulose fibers from recycled newspaper as reinforcementfor thermoplastic starch in order to improve its mechanical, thermal and water resistance properties. The compositeswere prepared from corn starch plasticized by glycerol (30% wt/wt of glycerol to starch as matrix that was reinforcedwith micro-cellulose fibers, obtained from used newspaper, with fiber content ranging from 0 to 8% (wt/wt of fibers to matrix.Physical properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetricanalysis, water absorption measurement and scanning electron microscopy. The results showed that higherfibers content raised the tensile strength and elastic modulus up to 175% and 292%, respectively, when compared to thenon-reinforced thermoplastic starch. The addition of the fibers improved the thermal resistance and decreased the waterabsorption up to 63%. Besides, scanning electron microscopy illustrated a good adhesion between matrix and fibers. Theseresults indicated that thermoplastic starch reinforced with recycled newspaper cellulose fibers could be fruitfully used ascommodity plastics being strong, cheap, abundant and recyclable.

  15. Surface decoration of short-cut polyimide fibers with multi-walled carbon nanotubes and their application for reinforcement of lightweight PC/ABS composites

    Science.gov (United States)

    Zhang, Le; Han, Enlin; Wu, Yulun; Wang, Xiaodong; Wu, Dezhen

    2018-06-01

    The surface decoration of short-cut polyimide (PI) fibers with multi-walled carbon nanotubes (MWCNTs) was performed by fabricating a polydopamine (PDA) coating layer on the fiber surface and then immobilizing MWCNTs onto the coating layer via covalent bonding. This successful surface decoration was confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared microscopy and static water contact angle. The application of the surface-decorated PI fibers as reinforcing fibers for reinforcement of polycarbonate (PC)/acrylonitrile-butadiene-styrene copolymer (ABS) alloy was investigated, which indicated that the MWCNTs-decorated PI fibers not only could effectively reinforce the PC/ABS alloy but also generated a significant lightweighting effect on the resulting composites. The maximum mechanical properties were achieved for the composites at a fiber content of 20 wt.% and a fiber length of 3 mm. This significant reinforcement effect is attributed to the enhancement of interaction bonding strength between the fibers and matrix as a result of the surface decoration of PI fibers with MWCNTs. The morphological investigation suggested that fiber rupture was the major energy dissipation mechanism in the tensile and impact failures, whereas fiber debonding and pullout were partly involved in the fracture energy dissipation. In addition, the presence of surface-decorated PI fibers slightly enhanced the thermal stability and load bearing capability of composites. This work can provide a type of high-performance lightweight composite material for automobile and aviation industries.

  16. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yifei; Manjubala, Inderchand; Fratzl, Peter [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam (Germany); Roschger, Paul [4th Medical Department, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1140 Vienna (Austria); Schell, Hanna; Duda, Georg N, E-mail: fratzl@mpikg.mpg.d [Julius Wolff Institut and Center for Musculoskeletal Surgery, Charite- University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin (Germany)

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  17. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Liu Yifei; Manjubala, Inderchand; Fratzl, Peter; Roschger, Paul; Schell, Hanna; Duda, Georg N

    2010-01-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  18. Time-of-flight small-angle scattering spectrometers on pulsed neutron sources

    International Nuclear Information System (INIS)

    Ostanevich, Yu.M.

    1987-01-01

    The operation principles, constructions, advantages and shortcomings of known time-of-flight small angle neutron scattering (TOF SANS) spectrometers built up with pulsed neutron sources are reviewed. The most important characteristics of TOF SANS apparatuses are rather a high luminosity and the possibility for the measurement in an extremely wide range of scattering vector at a single exposure. This is achieved by simultaneous employment of white beam, TOF technique for wave length-scan and the commonly known angle-scan. However, the electronic equipment, data-matching programs, and the measurement procedure, necessary for accurate normalization of experimental data and their transformation into absolute cross-section scale, they all become more complex, as compared with those for SANS apparatuses operating on steady-state neutron sources, where only angle-scan is used

  19. Sorption of diesel oil from polyurethane composite reinforced with palm fiber; Sorcao de oleo diesel a partir de composito de poluretano reforcado com fibras da palmeira

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, I.R.; Cipriano, J.P.; Costa, I.L.M.; Mulinari, D.R., E-mail: dmulinari@hotmail.com [Universidade do Estado do Rio de janeiro (FAT/UERJ), Resende, RJ (Brazil). Faculdade de Tecnologia

    2016-07-01

    One of the methods to contain the diesel oil spill is the application of materials polymeric sorbents and the polyurethane is an option of porous sorbents. In this way, the objective of this study was to evaluate the use of polyurethane composites derivative of castor oil reinforced with palm fibers to sorption of diesel oil and compare with pure polyurethane. The composites were reinforced with 5 to 20% w/w of fibers. Subsequently, the sorption capacity of the composite in function of inserted fiber content in the matrix was analyzed. The physical and morphological characteristics were evaluated by scanning electron microscopy techniques (SEM) and diffraction X-ray (XRD) and the contact angle. The results showed that the composite with 20% w /w showed higher sorption capacity oil diesel compared to pure PU and other composites this fact was due to the heterogeneity of the pores and dispersion of fiber in the matrix. (author)

  20. The accuracy of three-dimensional fused deposition modeling (FDM) compared with three-dimensional CT-Scans on the measurement of the mandibular ramus vertical length, gonion-menton length, and gonial angle

    Science.gov (United States)

    Savitri, I. T.; Badri, C.; Sulistyani, L. D.

    2017-08-01

    Presurgical treatment planning plays an important role in the reconstruction and correction of defects in the craniomaxillofacial region. The advance of solid freeform fabrication techniques has significantly improved the process of preparing a biomodel using computer-aided design and data from medical imaging. Many factors are implicated in the accuracy of the 3D model. To determine the accuracy of three-dimensional fused deposition modeling (FDM) models compared with three-dimensional CT scans in the measurement of the mandibular ramus vertical length, gonion-menton length, and gonial angle. Eight 3D models were produced from the CT scan data (DICOM file) of eight patients at the Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Indonesia, Cipto Mangunkusumo Hospital. Three measurements were done three times by two examiners. The measurements of the 3D CT scans were made using OsiriX software, while the measurements of the 3D models were made using a digital caliper and goniometry. The measurement results were then compared. There is no significant difference between the measurements of the mandibular ramus vertical length, gonion-menton length, and gonial angle using 3D CT scans and FDM 3D models. FDM 3D models are considered accurate and are acceptable for clinical applications in dental and craniomaxillofacial surgery.

  1. Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking

    International Nuclear Information System (INIS)

    Mary, R.; Thomson, R. R.; Kar, A. K.; Brown, G.; Beecher, S. J.; Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Milana, S.; Bonaccorso, F.; Ferrari, A. C.

    2013-01-01

    We present an evanescent-field device based on a right-angled waveguide. This consists of orthogonal waveguides, with their points of intersection lying along an angled facet of the chip. Light guided along one waveguide is incident at the angled dielectric-air facet at an angle exceeding the critical angle, so that the totally internally reflected light is coupled into the second waveguide. By depositing a nanotube film on the angled surface, the chip is then used to mode-lock an Erbium doped fiber ring laser with a repetition rate of 26 MHz, and pulse duration of 800 fs

  2. Non-destructive determination of ultra-thin GaN cap layer thickness in AlGaN/GaN HEMT structure by angle resolved x-ray photoelectron spectroscopy (ARXPS)

    Science.gov (United States)

    Goyal, Anshu; Yadav, Brajesh S.; Raman, R.; Kapoor, Ashok K.

    2018-02-01

    Angle resolved X-ray photoelectron spectroscopy (ARXPS) and secondary ion mass spectrometry (SIMS) investigations have been carried out to characterize the GaN cap layer in AlGaN/GaN HEMT structure. The paper discusses the qualitative (presence or absence of a cap layer) and quantitative (cap layer thickness) characterization of cap layer in HEMT structure non-destructively using ARXPS measurements in conjunction with the theoretical modeling. Further the relative sensitive factor (RSF=σ/Ga σAl ) for Ga to Al ratio was estimated to be 0.963 and was used in the quantification of GaN cap layer thickness. Our results show that Al/Ga intensity ratio varies with the emission angle in the presence of GaN cap layer and otherwise remains constant. Also, the modeling of this intensity ratio gives its thickness. The finding of ARXPS was also substantiated by SIMS depth profiling studies.

  3. Non-destructive determination of ultra-thin GaN cap layer thickness in AlGaN/GaN HEMT structure by angle resolved x-ray photoelectron spectroscopy (ARXPS

    Directory of Open Access Journals (Sweden)

    Anshu Goyal

    2018-02-01

    Full Text Available Angle resolved X-ray photoelectron spectroscopy (ARXPS and secondary ion mass spectrometry (SIMS investigations have been carried out to characterize the GaN cap layer in AlGaN/GaN HEMT structure. The paper discusses the qualitative (presence or absence of a cap layer and quantitative (cap layer thickness characterization of cap layer in HEMT structure non-destructively using ARXPS measurements in conjunction with the theoretical modeling. Further the relative sensitive factor (RSF=σGaσAl for Ga to Al ratio was estimated to be 0.963 and was used in the quantification of GaN cap layer thickness. Our results show that Al/Ga intensity ratio varies with the emission angle in the presence of GaN cap layer and otherwise remains constant. Also, the modeling of this intensity ratio gives its thickness. The finding of ARXPS was also substantiated by SIMS depth profiling studies.

  4. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  5. Field Emission Scanning Electron Microscope (FESEM) Facility in BTI

    International Nuclear Information System (INIS)

    Cik Rohaida Che Hak; Foo, C.T.; Nor Azillah Fatimah Othman

    2015-01-01

    Field Emission Scanning Electron Microscope (FE-SEM) provides ultra-high resolution imaging at low accelerating voltages and small working distances. The GeminisSEM 500, a new FESEM imaging facility will be installed soon in MTEC, BTI. It provides resolution of the images is as low as 0.6 nm at 15 kV and 1.2 nm at 1 kV, allowing examination of the top surface of nano powders, nano film and nano fiber in the wide range of applications such as mineralogy, ceramics, polymer, metallurgy, electronic devices, chemistry, physics and life sciences. This system is equipped with several detectors to detect various signals such as secondary electrons (SE) detector for topographic information and back-scattered electrons (BSE) detector for materials composition contrast. Energy dispersive x-ray spectroscopy (EDS) with detector energy resolution of < 129 eV and detection limit in the range of 1000-3000 ppm coupled with FE-SEM is used to determine the chemical composition of micro-features including boron (B) to uranium (U). Wavelength dispersive x-ray spectroscopy (WDS) which has detector resolution of 2-20 eV and detection limit of 30-300 ppm coupled with FE-SEM is used to detect elements that cannot be resolved with EDS. The ultra-high resolution imaging combined with the high sensitivity WDS helps to resolve the thorium and rare earth elemental analysis. (author)

  6. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  7. Characterization of palm fibers modified with alkaline solution

    International Nuclear Information System (INIS)

    Sipiao, Bryan L.S.; Goulart, Shane A.G.; Mulinari, Daniella R.; Souza Junior, Fernando G. de

    2011-01-01

    This work had the objective of to study one inexpensive and effective technique that enables the application of natural fibers from the Australian Royal Palm as reinforcement in polymer composites. The fibers treated with alkaline solution were characterized by infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) and had their data compared with the fiber in nature. Data showed that the treatment made on fibers surface was effective. (author)

  8. Thread angle dependency on flame spread shape over kenaf/polyester combined fabric

    Science.gov (United States)

    Azahari Razali, Mohd; Sapit, Azwan; Nizam Mohammed, Akmal; Nor Anuar Mohamad, Md; Nordin, Normayati; Sadikin, Azmahani; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir

    2017-09-01

    Understanding flame spread behavior is crucial to Fire Safety Engineering. It is noted that the natural fiber exhibits different flame spread behavior than the one of the synthetic fiber. This different may influences the flame spread behavior over combined fabric. There is a research has been done to examined the flame spread behavior over kenaf/polyester fabric. It is seen that the flame spread shape is dependent on the thread angle dependency. However, the explanation of this phenomenon is not described in detail in that research. In this study, explanation about this phenomenon is given in detail. Results show that the flame spread shape is dependent on the position of synthetic thread. For thread angle, θ = 0°, the polyester thread is breaking when the flame approach to the thread and the kenaf thread tends to move to the breaking direction. This behavior produces flame to be ‘V’ shape. However, for thread angle, θ = 90°, the polyester thread melts while the kenaf thread decomposed and burned. At this angle, the distance between kenaf threads remains constant as flame approaches.

  9. Tensile Mechanical Properties and Failure Modes of a Basalt Fiber/Epoxy Resin Composite Material

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2018-01-01

    Full Text Available Uniaxial tensile tests of basalt fiber/epoxy (BF/EP composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the fiber orientation angle is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all increase with increasing fiber volume fraction. A certain degree of fiber clustering appears in the epoxy resin when the basalt fiber volume fraction is >1.2%. The fiber equidistribution coefficient and clustering fiber content were used to characterize the basalt fiber clustering effect. With the increase of fiber volume fraction, the clustering fiber content gradually increased, but the fiber equidistribution coefficient decreased. Meanwhile, based on Tsai theory, a geometric model and a tensile mechanical model of the clustering fiber are established. By considering the fiber clustering effect, the BF/EP composite material tensile strength is calculated, and the calculated values are close to the experimental results.

  10. Simulation of propagation in a bundle of skeletal muscle fibers: Modulation effects of passive fibers

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; F.A., Roberge

    1997-01-01

    source current (I-ma) enters the passive tissue as a radial load current (I-ep) while the rest flows longitudinally in the cleft between the active and adjacent passive fibers. The conduction velocity of 1.32 m/s was about 30% lower than on an isolated fiber in a Ringer bath, in close agreement...... rate of rise of the action potential upstroke (V-max) from 512 to 503 V/s. Increasing the phase angle of the passive fiber membrane impedence (Z(m)) increases the phase delay between I-ma and I-ep, thereby increasing phi(epp) which in turn slows down propagation and increases V-max....

  11. The resection angle in apical surgery

    DEFF Research Database (Denmark)

    von Arx, Thomas; Janner, Simone F M; Jensen, Simon S

    2016-01-01

    OBJECTIVES: The primary objective of the present radiographic study was to analyse the resection angle in apical surgery and its correlation with treatment outcome, type of treated tooth, surgical depth and level of root-end filling. MATERIALS AND METHODS: In the context of a prospective clinical...... study, cone beam computed tomography (CBCT) scans were taken before and 1 year after apical surgery to measure the angle of the resection plane relative to the longitudinal axis of the root. Further, the surgical depth (distance from the buccal cortex to the most lingual/palatal point of the resection...... or with the retrofilling length. CONCLUSIONS: Statistically significant differences were observed comparing resection angles of different tooth groups. However, the angle had no significant effect on treatment outcome. CLINICAL RELEVANCE: Contrary to common belief, the resection angle in maxillary anterior teeth...

  12. A real time analysis of the self-assembly process using thermal analysis inside the differential scanning calorimeter instrument.

    Science.gov (United States)

    Roy, Debmalya; Shastri, Babita; Mukhopadhyay, K

    2012-07-12

    The supramolecular assembly of the regioregular poly-3-hexylthiophene (rr-P3HT) in solution has been investigated thoroughly in the past. In the current study, our focus is on the enthalpy of nanofiber formation using thermal analysis techniques by performing the self-assembly process inside the differential scanning calorimetry (DSC) instrument. Thermogravimetric analysis (TGA) was carried out to check the concentration of the solvent during the self-assembly process of P3HT in p-xylene. Ultraviolet visible (UV-vis) spectophotometric technique, small-angle X-ray scattering (SAXS) experiment, atomic force microscopic (AFM), and scanning electron microscopic (SEM) images were used to characterize the different experimental yields generated by cooling the reaction mixture at desired temperatures. Comparison of the morphologies of self-assembled products at different fiber formation temperatures gives us an idea about the possible crystallization parameters which could affect the P3HT nanofiber morphology.

  13. Wettability of nano-epoxies to UHMWPE fibers.

    Science.gov (United States)

    Neema, S; Salehi-Khojin, A; Zhamu, A; Zhong, W H; Jana, S; Gan, Y X

    2006-07-01

    Ultra high molecular weight polyethylene (UHMWPE) fibers have a unique combination of outstanding mechanical, physical, and chemical properties. However, as reinforcements for manufacturing high performance composite materials, UHMWPE fibers have poor wettability with most polymers. As a result, the interfacial bonding strength between the fibers and polymer matrices is very low. Recently, developing so-called nano-matrices containing reactive graphitic nanofibers (r-GNFs) has been proposed to promote the wetting of such matrices to certain types of fiber reinforcements. In this work, the wettability of UHMWPE fibers with different epoxy matrices including a nano-epoxy, and a pure epoxy was investigated. Systematic experimental work was conducted to determine the viscosity of the epoxies, the contact angle between the epoxies and the fibers. Also obtained are the surface energy of the fibers and the epoxies. The experimental results show that the wettability of the UHMWPE fibers with the nano-epoxy is much better than that of the UHMWPE fibers with the pure epoxy.

  14. Improved compression molding technology for continuous fiber reinforced composite laminates. Part 2: AS-4/Polyimidesulfone prepreg system

    Science.gov (United States)

    Baucom, Robert M.; Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    AS-4/polyimidesulfone (PISO2) composite prepreg was utilized for the improved compression molding technology investigation. This improved technique employed molding stops which advantageously facilitate the escape of volatile by-products during the B-stage curing step, and effectively minimize the neutralization of the consolidating pressure by intimate interply fiber-fiber contact within the laminate in the subsequent molding cycle. Without the modifying the resin matrix properties, composite panels with both unidirectional and angled plies with outstanding C-scans and mechanical properties were successfully molded using moderate molding conditions, i.e., 660 F and 500 psi, using this technique. The size of the panels molded were up to 6.00 x 6.00 x 0.07 in. A consolidation theory was proposed for the understanding and advancement of the processing science. Processing parameters such as vacuum, pressure cycle design, prepreg quality, etc. were explored.

  15. Influence of fiber length on flexural and impact properties of Zalacca Midrib fiber/HDPE by compression molding

    Science.gov (United States)

    Pamungkas, Agil Fitri; Ariawan, Dody; Surojo, Eko; Triyono, Joko

    2018-02-01

    The aim of the research is to investigate the effect of fiber length on the flexural and impact properties of the composite of Zalacca Midrib Fiber (ZMF)/HDPE. The process of making composite was using compression molding method. The variation of fiber length were 1 mm, 3 mm, 5 mm, 7 mm and 9 mm, at 30% fiber volume fraction. The flexural and impact test according to ASTM D790 and ASTM D5941, respectively. Observing fracture surface was examained by using Scanning Electron Microscopy (SEM). The results showed that the flexural and impact strengths would be increase with the increase of fiber length.

  16. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    Directory of Open Access Journals (Sweden)

    Georgi L. Dakovski

    2015-09-01

    Full Text Available A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy, which significantly limits the accessible momentum space. Using 20.15 eV, 12 fs pulses, we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate that non-monotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in stark contrast to the monotonic relaxation in the nodal and off-nodal regions.

  17. Shear force distance control in a scanning near-field optical microscope: in resonance excitation of the fiber probe versus out of resonance excitation

    International Nuclear Information System (INIS)

    Lapshin, D.A.; Letokhov, V.S.; Shubeita, G.T.; Sekatskii, S.K.; Dietler, G.

    2004-01-01

    The experimental results of the direct measurement of the absolute value of interaction force between the fiber probe of a scanning near-field optical microscope (SNOM) operated in shear force mode and a sample, which were performed using combined SNOM-atomic force microscope setup, are discussed for the out-of-resonance fiber probe excitation mode. We demonstrate that the value of the tapping component of the total force for this mode at typical dither amplitudes is of the order of 10 nN and thus is quite comparable with the value of this force for in resonance fiber probe excitation mode. It is also shown that for all modes this force component is essentially smaller than the usually neglected static attraction force, which is of the order of 200 nN. The true contact nature of the tip-sample interaction during the out of resonance mode is proven. From this, we conclude that such a detection mode is very promising for operation in liquids, where other modes encounter great difficulties

  18. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    International Nuclear Information System (INIS)

    Marczynski-Buehlow, Martin

    2012-01-01

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of FEL pulse

  19. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  20. High resolving power spectrometer for beam analysis

    International Nuclear Information System (INIS)

    Moshammer, H.W.; Spencer, J.E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretationof the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability. 2 refs

  1. X-ray beam transfer between hollow fibers for long-distance transport

    International Nuclear Information System (INIS)

    Tanaka, Yoshihito; Matsushita, Ryuki; Shiraishi, Ryutaro; Hasegawa, Takayuki; Ishikawa, Kiyoshi; Sawada, Kei; Kohmura, Yoshiki; Takahashi, Isao

    2016-01-01

    Fiber optics for controlling the x-ray beam trajectory has been examined at the synchrotron facility of SPring-8. Up to now, we have achieved beam deflection by several tens of milli-radian and axis shift of around 75 mm with a 1.5 m-long flexible hollow glass capillary. The achievable beam deflecting angle, axis shift, and timing delay are, in principle, proportional to the length, the square of length and the cube of length, respectively. Thus, for further applications, requiring larger beam shift and pulse delay, longer fibers are indispensable. In order to achieve long-distance transport using the fiber, we thus examined the connection transferring x-rays between fibers in an experimental hutch. The acceptance angle at the input end and the throughput efficiency of the second fiber is consistent with the consideration of the output beam divergence of the first fiber. The enhancement of the transfer efficiency is also discussed for the cases of a closer joint and the use of a refractive lens as a coupler.

  2. X-ray beam transfer between hollow fibers for long-distance transport

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoshihito, E-mail: tanaka@sci.u-hyogo.ac.jp; Matsushita, Ryuki; Shiraishi, Ryutaro; Hasegawa, Takayuki; Ishikawa, Kiyoshi [Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Sayo-gun, Hyogo 678-1297 (Japan); Sawada, Kei; Kohmura, Yoshiki [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Takahashi, Isao [Department of Physics, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 Japan (Japan)

    2016-07-27

    Fiber optics for controlling the x-ray beam trajectory has been examined at the synchrotron facility of SPring-8. Up to now, we have achieved beam deflection by several tens of milli-radian and axis shift of around 75 mm with a 1.5 m-long flexible hollow glass capillary. The achievable beam deflecting angle, axis shift, and timing delay are, in principle, proportional to the length, the square of length and the cube of length, respectively. Thus, for further applications, requiring larger beam shift and pulse delay, longer fibers are indispensable. In order to achieve long-distance transport using the fiber, we thus examined the connection transferring x-rays between fibers in an experimental hutch. The acceptance angle at the input end and the throughput efficiency of the second fiber is consistent with the consideration of the output beam divergence of the first fiber. The enhancement of the transfer efficiency is also discussed for the cases of a closer joint and the use of a refractive lens as a coupler.

  3. Scanning tunneling microscopy study of a newly proposed topological insulator ZrTe{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Timo; Gragnaniello, Luca; Fonin, Mikhail [Universitaet Konstanz (Germany); Autes, Gabriel; Berger, Helmuth; Yazyev, Oleg [Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Manzoni, Giulia [Universita degli Studi di Trieste (Italy); Crepaldi, Alberto; Parmigiani, Fulvio [Elettra-Sincrotrone Trieste, Trieste (Italy)

    2016-07-01

    Topological insulators belong to a new kind of material class that posses robust gapless states inside the insulating bulk gap, which makes them promising candidates for achieving dissipationless transport devices. We present a Scanning tunneling microscopy (STM) and spectroscopy (STS) study on a layered material ZrTe{sub 5}, a promising candidate for a new topological insulator. The crystal structure could clearly be identified in topography images. STM measurements enabled direct imaging of standing waves at steps and defects. The standing waves show a clearly dispersive character. Furthermore STS measurements are in good agreement with density functional theory calculations and reveal Landau quantization with applied magnetic field. Comparison with data obtained by angle resolved photoemission spectroscopy allows for detailed insights into the electronic properties of this material.

  4. Fiber-optic couplers as displacement sensors

    Science.gov (United States)

    Baruch, Martin C.; Gerdt, David W.; Adkins, Charles M.

    2003-04-01

    We introduce the novel concept of using a fiber-optic coupler as a versatile displacement sensor. Comparatively long fiber-optic couplers, with a coupling region of approximately 10 mm, are manufactured using standard communication SM fiber and placed in a looped-back configuration. The result is a displacement sensor, which is robust and highly sensitive over a wide dynamic range. This displacement sensor resolves 1-2 μm over distances of 1-1.5 mm and is characterized by the essential absence of a 'spring constant' plaguing other strain gauge-type sensors. Consequently, it is possible to couple to extremely weak vibrations, such as the skin displacement affected by arterial heart beat pulsations. Used as a wrist-worn heartbeat monitor, the fidelity of the arterial pulse signal has been shown to be so high that it is possible to not only determine heartbeat and breathing rates, but to implement a new single-point blood pressure measurement scheme which does not squeeze the arm. In an application as a floor vibration sensor for the non-intrusive monitoring of independently living elderly, the sensor has been shown to resolve the distinct vibration spectra of different persons and different events.

  5. Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers

    International Nuclear Information System (INIS)

    Eich, S.; Stange, A.; Carr, A.V.; Urbancic, J.; Popmintchev, T.; Wiesenmayer, M.; Jansen, K.; Ruffing, A.; Jakobs, S.; Rohwer, T.; Hellmann, S.; Chen, C.; Matyba, P.; Kipp, L.; Rossnagel, K.; Bauer, M.; Murnane, M.M.; Kapteyn, H.C.; Mathias, S.; Aeschlimann, M.

    2014-01-01

    Highlights: • We present a scheme to generate high intensity XUV pulses from HHG with variable time-bandwidth product. • Shorter-wavelength driven high-harmonic XUV trARPES provides higher photon flux and increased energy resolution. • High-quality high-harmonic XUV trARPES data with sub 150 meV energy and sub 30 fs time resolution is presented. - Abstract: Time- and angle-resolved photoemission spectroscopy (trARPES) using femtosecond extreme ultraviolet high harmonics has recently emerged as a powerful tool for investigating ultrafast quasiparticle dynamics in correlated-electron materials. However, the full potential of this approach has not yet been achieved because, to date, high harmonics generated by 800 nm wavelength Ti:Sapphire lasers required a trade-off between photon flux, energy and time resolution. Photoemission spectroscopy requires a quasi-monochromatic output, but dispersive optical elements that select a single harmonic can significantly reduce the photon flux and time resolution. Here we show that 400 nm driven high harmonic extreme-ultraviolet trARPES is superior to using 800 nm laser drivers since it eliminates the need for any spectral selection, thereby increasing photon flux and energy resolution to <150 meV while preserving excellent time resolution of about 30 fs

  6. Development and Characterization of Carbon-Fiber Microbiosensors for Fast-Scan Cyclic Voltammetry

    Science.gov (United States)

    Lugo-Morales, Leyda Zoraida

    Electrochemistry has been shown to be a robust tool in neuroscience. The use of carbon-fiber microelectrodes coupled with background-subtracted fast-scan cyclic voltammetry (FSCV) offers high sensitivity, selectivity, as well as the spatial and temporal resolution necessary for monitoring rapid fluctuations of electroactive molecules in live brain tissue. Dopamine (DA) is a neurotransmitter playing a key role in the regulation of reward and motivated behavior. FSCV has been used to understand DA dynamics and how these underlie discrete aspects of brain function. The methodological aspects of real-time DA detection at carbon-fiber microelectrodes using FSCV in anesthetized and awake animals are presented. Furthermore, the combination of FSCV with other neuroanalytical techniques is also explained. The advantages of FSCV and carbon-fiber microelectrodes can be expanded to the detection of non-electroactive analytes. This broadens the scope of FSCV such that it can be used to investigate how changes in non-electroactive chemicals underlie disease, cognition, and behavior. Carbon-fiber microelectrodes can be modified with an enzyme to monitor non-electroactive molecules, generating an electroactive product (usually hydrogen peroxide, H2O2). The first voltammetric detection of H2O 2 at bare carbon-fiber microelectrodes using FSCV has recently been reported. Thus, an avenue exists to utilize FSCV at enzyme-modified microelectrodes to voltammetrically identify and quantify non-electroactive analytes in real-time. Such an approach will overcome many limitations associated with the traditional amperometric detection scheme, which lacks electrochemical selectivity. Electrodeposition of the biopolymer chitosan with glucose oxidase (GOx) at the carbon surface yields a stable, sensitive, and selective glucose microbiosensor that has been utilized to detect glucose fluctuations in vivo with unprecedented speed. This new method has revealed the first rapid glucose fluctuations in

  7. Physicochemical properties of surimi gels fortified with dietary fiber.

    Science.gov (United States)

    Debusca, Alicia; Tahergorabi, Reza; Beamer, Sarah K; Matak, Kristen E; Jaczynski, Jacek

    2014-04-01

    Although dietary fiber provides health benefits, most Western populations have insufficient intake. Surimi seafood is not currently fortified with dietary fiber, nor have the effects of fiber fortification on physicochemical properties of surimi been thoroughly studied. In the present study, Alaska pollock surimi was fortified with 0-8 g/100 g of long-chain powdered cellulose as a source of dietary fiber. The protein/water concentrations in surimi were kept constant by adding an inert filler, silicon dioxide in inverse concentrations to the fiber fortification. Fiber-fortified surimi gels were set at 90 °C. The objectives were to determine (1) textural and colour properties; (2) heat-induced gelation (dynamic rheology); and (3) protein endothermic transitions (differential scanning calorimetry) of surimi formulated with constant protein/water, but variable fiber content. Fiber fortification up to 6 g/100 g improved (Pfiber. Dynamic rheology correlated with texture and showed large increase in gel elasticity, indicating enhanced thermal gelation of surimi. Differential scanning calorimetry showed that fiber fortification did not interfere with thermal transitions of surimi myosin and actin. Long-chain fiber probably traps water physically, which is stabilized by chemical bonding with protein within surimi gel matrix. Based on the present study, it is suggested that the fiber-protein interaction is mediated by water and is physicochemical in nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Three-dimensional ideal theta(1)/theta(2) angular transformer and its uses in fiber optics.

    Science.gov (United States)

    Ning, X

    1988-10-01

    A 3-D ideal theta(1)/theta(2) angular transformer in nonimaging optics is introduced. The axially symmetric transformer, combining a portion of a hyperbolic concentrator with two lenses, transforms an input limited Lambertian over an angle theta(1) to an output limited Lambertian over an angle theta(2) without losing throughput. This is the first known transformer with such ideal properties. Results of computer simulations of a transformer with planospherical lenses are presented. Because of its ideal angular transforming property, the transformer offers an excellent solution for power launching and fiber-fiber coupling in optical fiber systems. In principle, the theoretical maximum coupling efficiency based on radiance conservation can be achieved with this transformer. Several conceptual designs of source-fiber and fiber-fiber couplers using the transformer are given.

  9. Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template

    International Nuclear Information System (INIS)

    Lu Haiqiang; Zhang Lixiong; Xing Weihong; Wang Huanting; Xu Nanping

    2005-01-01

    TiO 2 hollow fibers were successfully prepared by using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. The preparation procedure includes repeated impregnation of the TiO 2 precursor in the pores of the polymeric membrane, and calcination to burn off the template, producing the TiO 2 hollow fibers. The TiO 2 hollow fibers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). TiO 2 hollow fibers with other structures, such as honeycomb monolith and spring, were also prepared by preshaping the polymeric membranes into the honeycomb structure and spring, respectively. The phase structure of the TiO 2 hollow fibers could be readily adjusted by changing the calcination temperature

  10. Scintillators for fiber optics: system sensitivity and bandwidth as a function of fiber length

    International Nuclear Information System (INIS)

    Lutz, S.S.; Franks, L.A.; Fluornoy, J.M.; Lyons, P.B.

    1981-01-01

    Scintillators have been employed for several years as ionizing radiation-to-light converters in plasma diagnostic experiments that utilize fiber optics. Until recently, nanosecond and subnanosecond scintillators were available only in the near ultraviolet. However, the bandwidth and transmission properties of fiber optics both strongly favor operation at longer wavelengths. More recently, nanosecond and subnanosecond scintillators with emission peaks around 480 nm have been reported. A time-resolved plasma-imaging experiment using one of these scintillators and 100 channels of graded-index fiber, each 500 m long, has been successfully tested on a nuclear event at the Nevada Test Site. During the past year we have developed several new scintillator systems with emission wavelengths more compatible with fiber optics and with response times in the nanosecond and subnanosecond time region. One scintillator, based on Kodak dye 14567 (DCM), has an emission maximum at 650 nm and a response time (FWHM) of 1.2 ns. Experimental data on system sensitivity and bandwidth versus fiber length are presented for three fluor-fiber systems. Data on fluor formulation, response time, and linearity-of-response are given, and a model for scintillator nonlinearity, based on solvent, radiation-induced, transient absorption, is presented

  11. Carbon Fiber Damage in Accelerator Beam

    CERN Document Server

    Sapinski, M; Guerrero, A; Koopman, J; Métral, E

    2009-01-01

    Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

  12. A Fiber Interferometer for the Magnetized Shock Experiment

    International Nuclear Information System (INIS)

    Yoo, Christian

    2012-01-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  13. Towards vortex imaging with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Fuchs, Dan T.

    1994-02-01

    A low temperature, Besocke beetle type scanning tunneling microscope, with a scan range of 10 by 10 microns was built. The scanning tunneling microscope was calibrates for various temperatures and tested on several samples. Gold monolayers evaporated at 400 deg C were resolved and their dynamic behavior observed. Atomic resolution images of graphite were obtained. The scanning tunneling microscope was designed for future applications of vortex imaging in superconductors. The special design considerations for this application are discussed and the physics underlying it reviewed. (author)

  14. Cotton fibers encapsulated with homo- and block copolymers: synthesis by the atom transfer radical polymerization grafting-from technique and solid-state NMR dynamic investigations.

    Science.gov (United States)

    Castelvetro, Valter; Geppi, Marco; Giaiacopi, Simone; Mollica, Giulia

    2007-02-01

    Cotton fibers were modified by surface-initiated atom transfer radical polymerization of ethyl acrylate (EA) followed by copolymerization with styrene. Either ethyl 2-bromopropionate as a sacrificial free initiator or Cu(II) as a deactivator was used to optimize the EA grafting yield and to preserve the livingness of the chain ends for the subsequent growth of a poly(styrene) (PSty) block from the poly(ethyl acrylate) (PEA) grafts. The polymer-encapsulated cotton fibers were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, and solid-state NMR (high-resolution 13C cross-polarization magic angle spinning, 1H spin-lattice relaxation times, and 1H free induction decay analysis NMR). The latter allowed the detection of the dynamic modifications associated with the presence of homo- and block copolymer grafts. In particular, the results of the DSC and NMR investigations suggest a heterogeneous morphology of the g-PEA-b-PSty grafted skin, which could be described as an inner layer of g-PEA sandwiched between the semicrystalline cellulose of the core fiber and the high glass transition temperature PSty of the covalently linked outer layer. Such morphology results in a reduced molecular mobility of the PEA chains.

  15. Design and construction of a fine drive system for scanning optical elements

    Science.gov (United States)

    Golnabi, H.; Jafari, R.

    2008-09-01

    The design and operation of a simple mechanical drive system, which is able to perform a fine course of angular motion, are reported. The system consists of a lead screw, a drive nut, sine bar legs, and an output shaft that can scan the optical holder mount. With a stepper motor coupled to the lead screw and interfaced to a PC, it is possible to control the scanning operation. When a 800 step/turn motor is used, it is possible to have an angular resolution of about 0.5 mdegree for a dynamic range of about 23°. The reproducibility of the results is about 0.22% for the scan angle and the hysteresis effect of the system is in the range of 1.71%. For a total scan of 51,200 steps, a scan angle of about 23.3° is acheived. The fitted line to the experimental results shows that scan angle changes linearly with the scan length. With good precision in system construction and careful alignment, the overall nonlinearity can be less than 1%.

  16. Weak antilocalization effect in exfoliated black phosphorus revealed by temperature- and angle-dependent magnetoconductivity

    KAUST Repository

    Hou, Zhipeng; Gong, Chen; Wang, Yue; Zhang, Qiang; Yang, Bingchao; Zhang, Hongwei; Liu, Enke; Liu, Zhongyuan; Zeng, Zhongming; Wu, Guangheng; Wang, Wenhong; Zhang, Xixiang

    2018-01-01

    Recently, there have been increasingly debates on whether there exists a surface resonance state (SRS) in black phosphorus (BP), as suggested by recent angle-resolved photoemission spectroscopy (ARPES) results. To resolve this issue, we have performed temperature- and angle-dependent magnetoconductivity measurements on exfoliated, high-quality BP single crystals. A pronounced weak-antilocalization (WAL) effect was observed within a narrow temperature range of 8 - 16 K, with the electrical current flowing parallel to the cleaved ac-plane (along the a- or c-axis) and the magnetic field along the b-axis. The angle-dependent magnetoconductivity and the Hikami-Larkin-Nagaoka (HLN) model-fitted results have revealed that the observed WAL effect shows surface-bulk coherent features, which supports the existence of SRS in black phosphorus.

  17. Weak antilocalization effect in exfoliated black phosphorus revealed by temperature- and angle-dependent magnetoconductivity

    KAUST Repository

    Hou, Zhipeng

    2018-01-10

    Recently, there have been increasingly debates on whether there exists a surface resonance state (SRS) in black phosphorus (BP), as suggested by recent angle-resolved photoemission spectroscopy (ARPES) results. To resolve this issue, we have performed temperature- and angle-dependent magnetoconductivity measurements on exfoliated, high-quality BP single crystals. A pronounced weak-antilocalization (WAL) effect was observed within a narrow temperature range of 8 - 16 K, with the electrical current flowing parallel to the cleaved ac-plane (along the a- or c-axis) and the magnetic field along the b-axis. The angle-dependent magnetoconductivity and the Hikami-Larkin-Nagaoka (HLN) model-fitted results have revealed that the observed WAL effect shows surface-bulk coherent features, which supports the existence of SRS in black phosphorus.

  18. Correlation between peripapillary retinal nerve fiber layer thickness and fundus autofluorescence in primary open-angle glaucoma

    Directory of Open Access Journals (Sweden)

    Reznicek L

    2013-09-01

    Full Text Available Lukas Reznicek,* Florian Seidensticker,* Thomas Mann, Irene Hübert, Alexandra Buerger, Christos Haritoglou, Aljoscha S Neubauer, Anselm Kampik, Christoph Hirneiss, Marcus Kernt Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany *These authors contributed equally to this work Purpose: To investigate the relationship between retinal nerve fiber layer (RNFL thickness and retinal pigment epithelium alterations in patients with advanced glaucomatous visual field defects. Methods: A consecutive, prospective series of 82 study eyes with primary open-angle glaucoma and advanced glaucomatous visual field defects were included in this study. All study participants underwent a full ophthalmic examination followed by visual field testing with standard automated perimetry as well as spectral-domain optical coherence tomography (SD-OCT for peripapillary RNFL thickness and Optos wide-field fundus autofluorescence (FAF images. A pattern grid with corresponding locations between functional visual field sectors and structural peripapillary RNFL thickness was aligned to the FAF images at corresponding location. Mean FAF intensity (range: 0 = black and 255 = white of each evaluated sector (superotemporal, temporal, inferotemporal, inferonasal, nasal, superonasal was correlated with the corresponding peripapillary RNFL thickness obtained with SD-OCT. Results: Correlation analyses between sectoral RNFL thickness and standardized FAF intensity in the corresponding topographic retina segments revealed partly significant correlations with correlation coefficients ranging between 0.004 and 0.376 and were statistically significant in the temporal inferior central field (r = 0.324, P = 0.036 and the nasal field (r = 0.376, P = 0.014. Conclusion: Retinal pigment epithelium abnormalities correlate with corresponding peripapillary RNFL damage, especially in the temporal inferior sector of patients with advanced glaucomatous visual field defects. A

  19. Spatially resolved analyses of uranium species using a coupled system made up of confocal laser-scanning microscopy (CLSM) and laser induced fluorescence spectroscopy (LIFS)

    International Nuclear Information System (INIS)

    Brockmann, S.; Grossmann, K.; Arnold, T.

    2014-01-01

    The fluorescent properties of uranium when excited by UV light are used increasingly for spectroscope analyses of uranium species within watery samples. Here, alongside the fluorescent properties of the hexavalent oxidation phases, the tetra and pentavalent oxidation phases also play an increasingly important role. The detection of fluorescent emission spectrums on solid and biological samples using (time-resolved) laser induced fluorescence spectroscopy (TRLFS or LIFS respectively) has, however, the disadvantage that no statements regarding the spatial localisation of the uranium can be made. However, particularly in complex, biological samples, such statements on the localisation of the uranium enrichment in the sample are desired, in order to e.g. be able to distinguish between intra and extra-cellular uranium bonds. The fluorescent properties of uranium (VI) compounds and minerals can also be used to detect their localisation within complex samples. So the application of fluorescent microscopic methods represents one possibility to localise and visualise uranium precipitates and enrichments in biological samples, such as biofilms or cells. The confocal laser-scanning microscopy (CLSM) is especially well suited to this purpose. Coupling confocal laser-scanning microscopy (CLSM) with laser induced fluorescence spectroscopy (LIFS) makes it possible to localise and visualise fluorescent signals spatially and three-dimensionally, while at the same time being able to detect spatially resolved, fluorescent-spectroscopic data. This technology is characterised by relatively low detection limits from up to 1.10 -6 M for uranium (VI) compounds within the confocal volume. (orig.)

  20. Full-Circle Resolver-to-Linear-Analog Converter

    Science.gov (United States)

    Alhorn, Dean C.; Smith, Dennis A.; Howard, David E.

    2005-01-01

    A circuit generates sinusoidal excitation signals for a shaft-angle resolver and, like the arctangent circuit described in the preceding article, generates an analog voltage proportional to the shaft angle. The disadvantages of the circuit described in the preceding article arise from the fact that it must be made from precise analog subcircuits, including a functional block capable of implementing some trigonometric identities; this circuitry tends to be expensive, sensitive to noise, and susceptible to errors caused by temperature-induced drifts and imprecise matching of gains and phases. These disadvantages are overcome by the design of the present circuit. The present circuit (see figure) includes an excitation circuit, which generates signals Ksin(Omega(t)) and Kcos(Omega(t)) [where K is an amplitude, Omega denotes 2(pi)x a carrier frequency (the design value of which is 10 kHz), and t denotes time]. These signals are applied to the excitation terminals of a shaft-angle resolver, causing the resolver to put out signals C sin(Omega(t)-Theta) and C cos(Omega(t)-Theta). The cosine excitation signal and the cosine resolver output signal are processed through inverting comparator circuits, which are configured to function as inverting squarers, to obtain logic-level or square-wave signals .-LL[cos(Omega(t)] and -LL[cos(Omega(t)-Theta)], respectively. These signals are fed as inputs to a block containing digital logic circuits that effectively measure the phase difference (which equals Theta between the two logic-level signals). The output of this block is a pulse-width-modulated signal, PWM(Theta), the time-averaged value of which ranges from 0 to 5 VDC as Theta ranges from .180 to +180deg. PWM(Theta) is fed to a block of amplifying and level-shifting circuitry, which converts the input PWM waveform to an output waveform that switches between precise reference voltage levels of +10 and -10 V. This waveform is processed by a two-pole, low-pass filter, which removes

  1. Time-Resolved WAXD and SAXS Investigations on Butyl Branched Alkane at Elevated Pressures

    NARCIS (Netherlands)

    Rastogi, A.; Hobbs, J.K.; Rastogi, S.

    2002-01-01

    The crystallization behavior and the morphological aspect of the butyl branched alkane C96H193CH(C4H9)C94H189 have been investigated using time-resolved wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) at atmospheric and elevated pressures. The solution crystallized sample

  2. Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies.

    Science.gov (United States)

    Mahatha, S K; Patel, K D; Menon, Krishnakumar S R

    2012-11-28

    Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).

  3. Properties of ligno-cellulose ficus religiosa leaf fibers

    CSIR Research Space (South Africa)

    Reddy, KO

    2010-04-01

    Full Text Available by scanning electron microscopic method. The FTIR and chemical analyses indicated lowering of hemi-cellulose content by alkali treatment of the fibers. The X-ray diffraction revealed an increase in crystallinity of the fibers on alkali treatment. The thermal...

  4. Angle Resolved Performance Measurements on PV Glass and Modules

    DEFF Research Database (Denmark)

    Juutilainen, Line Tollund; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    The angular response of PV-modules has significant impact on the energy production. This is especially pronounced in BIPV where installation angles often are far from optimal. Nevertheless, a gain in energy yield may be obtained by choosing a proper glass as superstrate. In this work we present...... the concept of PV balconies as cost efficient and easy way of integrating PV into buildings. The experimental work consists of the fabrication of single cell mini modules with different glass covering, and characterizing their angular response in a custom made setup, where only the direct sunlight is used...... as a light source. As a special case we estimate the annual yield for each glass in the case of PV balconies for a specific geographical location and orientation of the module....

  5. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution.

    Science.gov (United States)

    Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T

    2018-02-08

    Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text

  6. Neutron spin echo scattering angle measurement (SESAME)

    International Nuclear Information System (INIS)

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-01-01

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-μm-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for

  7. Branch Point Withdrawal in Elongational Startup Flow by Time-Resolved Small Angle Neutron Scattering

    KAUST Repository

    Ruocco, N.

    2016-05-27

    We present a small angle neutron scattering (SANS) investigation of a blend composed of a dendritic polymer and a linear matrix with comparable viscosity in start-up of an elongational flow at Tg + 50. The two-generation dendritic polymer is diluted to 10% by weight in a matrix of a long well-entangled linear chains. Both components consist of mainly 1,4-cis-polyisoprene but differ in isotopic composition. The resulting scattering contrast is sufficiently high to permit time-resolved measurements of the system structure factor during the start-up phase and to follow the retraction processes involving the inner sections of the branched polymer in the nonlinear deformation response. The outer branches and the linear matrix, on the contrary, are in the linear deformation regime. The linear matrix dominates the rheological signature of the blend and the influence of the branched component can barely be detected. However, the neutron scattering intensity is predominantly that of the (branched) minority component so that its dynamics is clearly evident. In the present paper, we use the neutron scattering data to validate the branch point withdrawal process, which could not be unambiguously discerned from rheological measurements in this blend. The maximal tube stretch that the inner branches experience, before the relaxed outer arm material is incorporated into the tube is determined. The in situ scattering experiments demonstrate for the first time the leveling-off of the strain as the result of branch point withdrawal and chain retraction directly on the molecular level. We conclude that branch point motion in the mixture of architecturally complex polymers occurs earlier than would be expected in a purely branched system, presumably due to the different topological environment that the linear matrix presents to the hierarchically deep-buried tube sections. © 2016 American Chemical Society.

  8. Branch Point Withdrawal in Elongational Startup Flow by Time-Resolved Small Angle Neutron Scattering

    KAUST Repository

    Ruocco, N.; Auhl, D.; Bailly, C.; Lindner, P.; Pyckhout-Hintzen, W.; Wischnewski, A.; Leal, L. G.; Hadjichristidis, Nikolaos; Richter, D.

    2016-01-01

    We present a small angle neutron scattering (SANS) investigation of a blend composed of a dendritic polymer and a linear matrix with comparable viscosity in start-up of an elongational flow at Tg + 50. The two-generation dendritic polymer is diluted to 10% by weight in a matrix of a long well-entangled linear chains. Both components consist of mainly 1,4-cis-polyisoprene but differ in isotopic composition. The resulting scattering contrast is sufficiently high to permit time-resolved measurements of the system structure factor during the start-up phase and to follow the retraction processes involving the inner sections of the branched polymer in the nonlinear deformation response. The outer branches and the linear matrix, on the contrary, are in the linear deformation regime. The linear matrix dominates the rheological signature of the blend and the influence of the branched component can barely be detected. However, the neutron scattering intensity is predominantly that of the (branched) minority component so that its dynamics is clearly evident. In the present paper, we use the neutron scattering data to validate the branch point withdrawal process, which could not be unambiguously discerned from rheological measurements in this blend. The maximal tube stretch that the inner branches experience, before the relaxed outer arm material is incorporated into the tube is determined. The in situ scattering experiments demonstrate for the first time the leveling-off of the strain as the result of branch point withdrawal and chain retraction directly on the molecular level. We conclude that branch point motion in the mixture of architecturally complex polymers occurs earlier than would be expected in a purely branched system, presumably due to the different topological environment that the linear matrix presents to the hierarchically deep-buried tube sections. © 2016 American Chemical Society.

  9. Factors Associated with the Retinal Nerve Fiber Layer Loss after Acute Primary Angle Closure: A Prospective EDI-OCT Study.

    Directory of Open Access Journals (Sweden)

    Eun Ji Lee

    Full Text Available To determine the factors associated with retinal nerve fiber layer (RNFL loss in eyes with acute primary angle-closure (APAC, particularly focusing on the influence of the change in the anterior lamina cribrosa surface depth (LCD.After the initial presentation, 30 eyes with unilateral APAC were followed up at the following specific time points over a 12-month period: 1 week, 1~2 months, 2~3 months, 5~6 months, and 11~12 months. These follow-ups involved intraocular pressure measurements, enhanced depth-imaging spectral-domain optical coherence tomography (SD-OCT scanning of the optic disc, and measurements of the circumpapillary RNFL thickness. The prelaminar tissue thickness (PLT and LCD were determined in the SD-OCT images obtained at each follow-up visit.Repeated measures analysis of variance revealed a significant pattern of decrease in the global RNFL thickness, PLT, and LCD (all p<0.001. The global RNFL thickness decreased continuously throughout the follow-up period, while the PLT decreased until 5~6 months and did not change thereafter. The LCD reduced until 2~3 months and then also remained steady. Multivariable regression analysis revealed that symptoms with a longer duration before receiving laser peripheral iridotomy (LI (p = 0.049 and a larger LCD reduction (p = 0.034 were significant factors associated with the conversion to an abnormal RNFL thickness defined using OCT normative data.Early short-term decreases in the PLT and LCD and overall long-term decrease in the peripapillary RNFL were observed during a 12-month follow-up after an APAC episode. A longer duration of symptoms before receiving LI treatment and larger LCD reduction during follow-up were associated with the progressive RNFL loss. The LCD reduction may indicate a prior presence of significant pressure-induced stress that had been imposed on the optic nerve head at the time of APAC episode. Glaucomatous progression should be suspected in eyes showing LCD reduction

  10. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    International Nuclear Information System (INIS)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M.A.; Nistal, A.; Rubio, J.

    2016-01-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO_3/H_2SO_4 reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  11. Mechanisms of biliary stent clogging: confocal laser scanning and scanning electron microscopy.

    Science.gov (United States)

    van Berkel, A M; van Marle, J; Groen, A K; Bruno, M J

    2005-08-01

    Endoscopic insertion of plastic biliary endoprostheses is a well-established treatment for obstructive jaundice. The major limitation of this technique is late stent occlusion. In order to compare events involved in biliary stent clogging and identify the distribution of bacteria in unblocked stents, confocal laser scanning (CLS) and scanning electron microscopy (SEM) were carried out on two different stent materials - polyethylene (PE) and hydrophilic polymer-coated polyurethane (HCPC). Ten consecutive patients with postoperative benign biliary strictures were included in the study. Two 10-Fr stents 9 cm in length, one made of PE and the other of HCPC, were inserted. The stents were electively exchanged after 3 months and examined using CLS and SEM. No differences were seen between the two types of stent. The inner stent surface was covered with a uniform amorphous layer. On top of this layer, a biofilm of living and dead bacteria was found, which in most cases was unstructured. The lumen was filled with free-floating colonies of bacteria and crystals, surrounded by mobile laminar structures of mucus. An open network of large dietary fibers was seen in all of the stents. The same clogging events occurred in both PE and HCPC stents. The most remarkable observation was the identification of networks of large dietary fibers, resulting from duodenal reflux, acting as a filter. The build-up of this intraluminal framework of dietary fibers appears to be a major factor contributing to the multifactorial process of stent clogging.

  12. Magnetoresistance of oblique angle deposited multilayered Co/Cu nanocolumns measured by a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Morrow, P; Tang, X-T; Parker, T C; Shima, M; Wang, G-C

    2008-01-01

    In this work we present the first magnetoresistance measurements on multilayered vertical Co(∼6 nm)/Cu(∼6 nm) and slanted Co(x nm)/Cu(x nm) (with x∼6, 11, and 16 nm) nanocolumns grown by oblique angle vapour deposition. The measurements are performed at room temperature on the as-deposited nanocolumn samples using a scanning tunnelling microscope to establish electronic contact with a small number of nanocolumns while an electromagnet generates a time varying (0.1 Hz) magnetic field in the plane of the substrate. The samples show a giant magnetoresistance (GMR) response ranging from 0.2 to 2%, with the higher GMR values observed for the thinner layers. For the slanted nanocolumns, we observed anisotropy in the GMR with respect to the relative orientation (parallel or perpendicular) between the incident vapour flux and the magnetic field applied in the substrate plane. We explain the anisotropy by noting that the column axis is the magnetic easy axis, so the magnetization reversal occurs more easily when the magnetic field is applied along the incident flux direction (i.e., nearly along the column axis) than when the field is applied perpendicular to the incident flux direction

  13. Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yu, E-mail: ren.y@ntu.edu.cn [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); College of Textile and Clothing Engineering, Soochow University, Jiangsu 215021 (China); Kuangda Fibre Technology Co., Ltd., Jiangsu 213161 (China); Ding, Zhirong [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Wang, Chunxia [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Zang, Chuanfeng; Zhang, Yin; Xu, Lin [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China)

    2017-02-28

    Highlights: • The DBD plasma and chitosan combined treatment were performed on UHMWPE fibers. • The SEM and XPS analysis confirmed that chitosan was adsorbed on the UHMWPE fiber surfaces after the combined treatment. • The IFSS between the UHMWPE fiber and the epoxy resin reached 2.25 MPa with 100 s plasma pretreatment. • The dyeability of the UHMWPE fibers after the combined treatment was significantly improved. - Abstract: The combination treatment of dielectric barrier discharge (DBD) plasma and chitosan coatings was performed on ultrahigh molecular weight polyethylene (UHMWPE) fibers in order to improve the wettability, dyeability and adhesion properties. The properties of UHMWPE fibers coated with chitosan, after being pretreated by DBD plasma, were evaluated through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The interfacial shear strength (IFSS) between the fiber and the epoxy resin was determined using the single fiber pull-out test technique. The modified UHMWPE fibers were dyed with reactive dyes after the combined treatment. Surface wettability and dyeability were investigated by water contact angle and K/S measurement, respectively. SEM images confirmed that the chitosan was induced onto the surfaces of the UHMWPE fibers after the combined treatment. The XPS analysis showed that the oxygen and nitrogen contents of the UHMWPE fiber surfaces after the combined treatment were higher than that of the fiber modified by chitosan without DBD plasma pretreatment. Meanwhile, the UHMWPE fibers treated with combination of DBD plasma and chitosan treatment had better wettability, dyeability and adhesion property than those of the non-plasma pretreated surfaces, indicating that DBD plasma pretreatment facilitated the deposition of chitosan onto the UHMWPE surfaces.

  14. An Optical-Fiber-Based Smart Textile (Smart Socks) to Manage Biomechanical Risk Factors Associated With Diabetic Foot Amputation.

    Science.gov (United States)

    Najafi, Bijan; Mohseni, Hooman; Grewal, Gurtej S; Talal, Talal K; Menzies, Robert A; Armstrong, David G

    2017-07-01

    This study aimed to validate a smart-textile based on fiber-optics for simultaneous measurement of plantar temperature, pressure, and joint angles in patients with diabetic peripheral neuropathy (DPN). After in-vitro validation in the laboratory, 33 eligible subjects with DPN were recruited (age: 58 ± 8 years, BMI: 31.5 ± 8 kg/m 2 ) for assessing plantar pressure and temperature during habitual gait-speed in a clinical-setting. All participants were asked to walk at their habitual speed while wearing a pair of sensorized socks made from highly flexible fiber optics (SmartSox). An algorithm was designed to estimate temperature, pressure, and toe range of motion from optical wavelength generated from SmartSox. To validate the device, results from thermal stress response (TSR) using thermography and peak pressure measured by computerized pressure insoles (F-Scan) were used as gold standards. In laboratory and under controlled conditions, the agreements for parameters of interest were excellent ( r > .98, P = .000), and no noticeable cross-talks between measurements of temperature, angle, and pressure were observed. During clinical data acquisition, a significant correlation was found for pressure profile under different anatomical regions of interest between SmartSox and F-Scan ( r = .67, P < .050) as well as between thermography and SmartSox ( r = .55, P < .050). This study demonstrates the validity of an innovative smart textile for assessing simultaneously the key parameters associated with risk of foot ulcers in patients with DPN. It may empower clinicians to objectively stratify foot risk and provide timely care. Another study is warranted to validate its clinical application in preventing limb threating problems in patients with DPN.

  15. Intensity and resolution of a general scan in reciprocal space

    International Nuclear Information System (INIS)

    Lebech, B.; Nielsen, M.

    1975-01-01

    Elastic neutron scattering on single crystals is traditionally carried out either by rotating the sample and keeping the detector fixed, or by coupling the detector rotation to the sample rotation in the the ratio 2:1. In recent years, a number of papers have discussed the feasibility of other types of scans. General scans at oblique angles to reciprocal lattice vectors are commonly used in inelastic neutron scattering. Such scans are also useful in elastic neutron scattering and may easily be made by means of computer or tape controlled diffractometers. Formulas are derived for the intensity and width of Bragg reflections measured by scanning at oblique angles to reciprocal lattice vectors. The results of the calculations are compared to experimental results on simple structures. The limitations of general scans in reciprocal space are also discussed

  16. Spinnability and Characteristics of Polyvinylidene Fluoride (PVDF)-based Bicomponent Fibers with a Carbon Nanotube (CNT) Modified Polypropylene Core for Piezoelectric Applications.

    Science.gov (United States)

    Glauß, Benjamin; Steinmann, Wilhelm; Walter, Stephan; Beckers, Markus; Seide, Gunnar; Gries, Thomas; Roth, Georg

    2013-07-03

    This research explains the melt spinning of bicomponent fibers, consisting of a conductive polypropylene (PP) core and a piezoelectric sheath (polyvinylidene fluoride). Previously analyzed piezoelectric capabilities of polyvinylidene fluoride (PVDF) are to be exploited in sensor filaments. The PP compound contains a 10 wt % carbon nanotubes (CNTs) and 2 wt % sodium stearate (NaSt). The sodium stearate is added to lower the viscosity of the melt. The compound constitutes the fiber core that is conductive due to a percolation CNT network. The PVDF sheath's piezoelectric effect is based on the formation of an all-trans conformation β phase, caused by draw-winding of the fibers. The core and sheath materials, as well as the bicomponent fibers, are characterized through different analytical methods. These include wide-angle X-ray diffraction (WAXD) to analyze crucial parameters for the development of a crystalline β phase. The distribution of CNTs in the polymer matrix, which affects the conductivity of the core, was investigated by transmission electron microscopy (TEM). Thermal characterization is carried out by conventional differential scanning calorimetry (DSC). Optical microscopy is used to determine the fibers' diameter regularity (core and sheath). The materials' viscosity is determined by rheometry. Eventually, an LCR tester is used to determine the core's specific resistance.

  17. Generation of spirally polarized propagation-invariant beam using fiber microaxicon.

    Science.gov (United States)

    Philip, Geo M; Viswanathan, Nirmal K

    2011-10-01

    We present here a fiber microaxicon (MA)based method to generate spirally polarized propagation-invariant optical beam. MA chemically etched in the tip of a two-mode fiber efficiently converts the generic cylindrically polarized vortex fiber mode into a spirally polarized propagation-invariant (Bessel-type) beam via radial dependence of polarization rotation angle. The combined roles of helico-conical phase and nonparaxial propagation in the generation and characteristics of the output beam from the fiber MA are discussed. © 2011 Optical Society of America

  18. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  19. Colloid-templated multisectional porous polymeric fibers.

    Science.gov (United States)

    Song, Jung Hun; Kretzschmar, Ilona

    2008-10-07

    A fabrication method for porous polymeric fibers (PPFs) is reported. We show that a multisectional colloidal crystal can be assembled within a microcapillary by alternating dipping into colloidal solutions of varying size. Subsequent infiltration with curable polymer and washing with suitable solvents results in porous fibers with a cylindrical cross section. Along the length of the fiber, alternating sections of controlled length, pore size, and pore size distribution exist. These fibers present interesting materials for neural scaffolding, catalysis, and possibly photonics if produced with a high degree of crystallinity. The surface pores and bulk porosity of the fibers are characterized by variable-pressure scanning electron microscopy (vp-SEM). Careful analysis shows that the surface pores vary with the colloidal template diameter and polymer infiltration time.

  20. X-ray optics for scanning fluorescence microscopy and other applications

    International Nuclear Information System (INIS)

    Ryon, R.W.; Warburton, W.K.

    1992-05-01

    Scanning x-ray fluorescence microscopy is analogous to scanning electron microscopy. Maps of chemical element distribution are produced by scanning with a very small x-ray beam. Goal is to perform such scanning microscopy with resolution in the range of <1 to 10 μm, using standard laboratory x-ray tubes. We are investigating mirror optics in the Kirkpatrick-Baez (K-B) configuration. K-B optics uses two curved mirrors mounted orthogonally along the optical axis. The first mirror provides vertical focus, the second mirror provides horizontal focus. We have used two types of mirrors: synthetic multilayers and crystals. Multilayer mirrors are used with lower energy radiation such as Cu Kα. At higher energies such as Ag Kα, silicon wafers are used in order to increase the incidence angles and thereby the photon collection efficiency. In order to increase the surface area of multilayers which reflects x-rays at the Bragg angle, we have designed mirrors with the spacing between layers graded along the optic axis in order to compensate for the changing angle of incidence. Likewise, to achieve a large reflecting surface with silicon, the wafers are placed on a specially designed lever arm which is bent into a log spiral by applying force at one end. In this way, the same diffracting angle is maintained over the entire surface of the wafer, providing a large solid angle for photon collection