WorldWideScience

Sample records for scanning fiber angle-resolved

  1. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  2. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Keywords. Condensed matter physics; high-c superconductivity; electronic properties; photoemission spectroscopy; angle resolved photoemission spectroscopy; cuprates; films; strain; pulsed laser deposition.

  3. Lifetime broadening in angle-resolved photoemission

    Science.gov (United States)

    McLean, A. B.; Mitchell, C. E. J.; Hill, I. G.

    1994-08-01

    The register line formalism of angle-resolved photoemission is applied to the special case where electrons are excited from sp surface states. By considering lifetime broadening alone, it is demonstrated that it is possible to explain why photoemission linewidths increase as the initial states disperse towards the Fermi level. Favourable comparisons are made between the theory and with measurements of the surface state widths on Cu(111) and Al(001).

  4. Angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs.

  5. Tachometer Derived From Brushless Shaft-Angle Resolver

    Science.gov (United States)

    Howard, David E.; Smith, Dennis A.

    1995-01-01

    Tachometer circuit operates in conjunction with brushless shaft-angle resolver. By performing sequence of straightforward mathematical operations on resolver signals and utilizing simple trigonometric identity, generates voltage proportional to rate of rotation of shaft. One advantage is use of brushless shaft-angle resolver as main source of rate signal: no brushes to wear out, no brush noise, and brushless resolvers have proven robustness. No switching of signals to generate noise. Another advantage, shaft-angle resolver used as shaft-angle sensor, tachometer input obtained without adding another sensor. Present circuit reduces overall size, weight, and cost of tachometer.

  6. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt

    2017-01-01

    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  7. Scattering angle resolved optical coherence tomography for in vivo murine retinal imaging

    Science.gov (United States)

    Gardner, Michael R.; Katta, Nitesh; McElroy, Austin; Baruah, Vikram; Rylander, H. G.; Milner, Thomas E.

    2017-02-01

    Optical coherence tomography (OCT) retinal imaging contributes to understanding central nervous system (CNS) diseases because the eye is an anatomical "window to the brain" with direct optical access to nonmylenated retinal ganglion cells. However, many CNS diseases are associated with neuronal changes beyond the resolution of standard OCT retinal imaging systems. Though studies have shown the utility of scattering angle resolved (SAR) OCT for particle sizing and detecting disease states ex vivo, a compact SAR-OCT system for in vivo rodent retinal imaging has not previously been reported. We report a fiber-based SAR-OCT system (swept source at 1310 nm +/- 65 nm, 100 kHz scan rate) for mouse retinal imaging with a partial glass window (center aperture) for angular discrimination of backscattered light. This design incorporates a dual-axis MEMS mirror conjugate to the ocular pupil plane and a high collection efficiency objective. A muring retina is imaged during euthanasia, and the proposed SAR-index is examined versus time. Results show a positive correlation between the SAR-index and the sub-cellular hypoxic response of neurons to isoflurane overdose during euthanasia. The proposed SAR-OCT design and image process technique offer a contrast mechanism able to detect sub-resolution neuronal changes for murine retinal imaging.

  8. New residual stress detector using angle resolved Barkhausen noise

    Science.gov (United States)

    Yamaguchi, Katsuhiko; Imae, Kazuhito; Nittono, Osamu; Takagi, Toshiyuki; Yamada, Koji

    2005-12-01

    A new possibility of residual stress detector is proposed for iron based materials through measurement of angle resolved Barkhausen noise which is known as phenomena of dynamic magnetic process. It is important for keeping safety of our society to early detect metal fatigue, therefore the convenient residual stress detector will be available especially for machines including any robots given heavy loads.

  9. Angle-resolved PED and AED calculations for different structures of the diamond C(111) surface

    Science.gov (United States)

    Niebergall, L.; Rennert, P.; Chassé, A.; Kucherenko, Yu

    1998-05-01

    Angle-resolved (AR) photoelectron diffraction (PED) spectra for electrons excited from the C 1s core state and angle-resolved KVV Auger electron diffraction (AED) spectra are calculated for the Pandey and the Tsai stucture models of diamond C(111) which extend previous investigations of the ideal structure. It is shown how to decide on the structure model by comparing PE spectra for different directions and by comparing PED and AED spectra. Calculations have been performed by evaluating the scattering path operator for a finite cluster in a curved-wave approximation. The different matrix elements for the photoelectron excitation and for the Auger process, respectively, are included. It is shown that the PED intensities are very sensitive to the surface reconstruction for polar angles in the range of 80°. In the AED intensities, polar scans in the plane perpendicular to the chain direction can be considered.

  10. Fiber coupled ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We report on a scanning tunneling microscope with a photoconductive gate in the tunneling current circuit. The tunneling tip is attached to a coplanar transmission line with an integrated photoconductive switch. The switch is illuminated through a fiber which is rigidly attached to the switch...

  11. Angle-resolved effective potentials for disk-shaped molecules

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de [Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Helmholtz Zentrum Berlin (HZB), Institute of Soft Matter and Functional Materials, Hahn-Meitner Platz 1, 14109 Berlin (Germany)

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  12. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary.

    Science.gov (United States)

    Ma, Yujing; Diaz, Horacio Coy; Avila, José; Chen, Chaoyu; Kalappattil, Vijaysankar; Das, Raja; Phan, Manh-Huong; Čadež, Tilen; Carmelo, José M P; Asensio, Maria C; Batzill, Matthias

    2017-02-06

    Material line defects are one-dimensional structures but the search and proof of electron behaviour consistent with the reduced dimension of such defects has been so far unsuccessful. Here we show using angle resolved photoemission spectroscopy that twin-grain boundaries in the layered semiconductor MoSe2 exhibit parabolic metallic bands. The one-dimensional nature is evident from a charge density wave transition, whose periodicity is given by kF/π, consistent with scanning tunnelling microscopy and angle resolved photoemission measurements. Most importantly, we provide evidence for spin- and charge-separation, the hallmark of one-dimensional quantum liquids. Our studies show that the spectral line splits into distinctive spinon and holon excitations whose dispersions exactly follow the energy-momentum dependence calculated by a Hubbard model with suitable finite-range interactions. Our results also imply that quantum wires and junctions can be isolated in line defects of other transition metal dichalcogenides, which may enable quantum transport measurements and devices.

  13. Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy.

    Science.gov (United States)

    Cottrell, W J; Wilson, J D; Foster, T H

    2007-08-15

    We present the design, construction, and initial characterization of a multifunctional imaging/scattering spectroscopy system built around a commercial inverted microscope platform. The system enables co-registered brightfield, Fourier-filtered darkfield, and fluorescence imaging; monochromatic angle-resolved scattering measurements; and white-light wavelength-resolved scattering spectroscopy from the same field of view. A fiber-based illumination system provides illumination-wavelength flexibility and a good approximation to a point source. The performance of the system in its various data acquisition modes is experimentally verified using fluorescent microspheres. This multifunctional instrument provides a platform for studies on adherent cells from which the biophysical implications of subcellular light scattering can be studied in conjunction with sensitive fluorescence-based techniques.

  14. Angle-Resolved Plasmonic Properties of Single Gold Nanorod Dimers

    Institute of Scientific and Technical Information of China (English)

    Jian Wu; Xuxing Lu; Qiannan Zhu; Junwei Zhao; Qishun Shen; Li Zhan; Weihai Ni

    2014-01-01

    Through wet-chemical assembly methods, gold nanorods were placed close to each other and formed a dimer with a gap distance*1 nm, and hence degenerated plasmonic dipole modes of individual nanorods coupled together to produce hybridized bonding and antibonding resonance modes. Previous studies using a condenser for illumination result in averaged signals over all excitation angles. By exciting an individual dimer obliquely at different angles, we demonstrate that these two new resonance modes are highly tunable and sensitive to the angle between the excitation polarization and the dimer orientation, which follows cos2u dependence. Moreover, for dimer structures with various structure angles, the resonance wavelengths as well as the refractive index sensitivities were found independent of the structure angle. Cal-culated angle-resolved plasmonic properties are in good agreement with the measurements. The assembled nanostructures investigated here are important for fundamental researches as well as potential applications when they are used as building blocks in plasmon-based optical and optoelectronic devices.

  15. Angle-resolved photoluminescence spectrum of a uniform phosphor layer

    Science.gov (United States)

    Fujieda, Ichiro; Ohta, Masamichi

    2017-10-01

    A photoluminescence spectrum depends on an emission angle due to self-absorption in a phosphor material. Assuming isotropic initial emission and Lambert-Beer's law, we have derived simple expressions for the angle-resolved spectra emerging from the top and bottom surfaces of a uniform phosphor layer. The transmittance of an excitation light through the phosphor layer can be regarded as a design parameter. For a strongly-absorbing phosphor layer, the forward flux is less intense and more red-shifted than the backward flux. The red-shift is enhanced as the emission direction deviates away from the plane normal. When we increase the transmittance, the backward flux decreases monotonically. The forward flux peaks at a certain transmittance value. The two fluxes become similar to each other for a weakly-absorbing phosphor layer. We have observed these behaviors in experiment. In a practical application, self-absorption decreases the efficiency of conversion and results in angle-dependent variations in chromaticity coordinates. A patterned phosphor layer with a secondary optical element such as a remote reflector alleviates these problems.

  16. Precision angle-resolved autoionization resonances in Ar and Ne

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, N.; Langer, B.; Gorczyca, T.W. [Western Michigan Univ., Kalamazoo, MI (United States)] [and others

    1997-04-01

    Theoretical work has shown that the electron angular distribution and the shape of the autoionization resonances are crucial to the understanding of certain types of electron-electron correlation. Autoionization resonances in Ne (Ar) result from the decay of the excited discrete state Ne{sup *} 2s2p{sup 6} np (Ar{sup *} 3s3p{sup 6} np) into the continuum state Ne{sup +} 2s{sup 2}2p{sup 5} + e{sup {minus}} (ks,kd) (Ar{sup +} 3s{sup 2}3p{sup 5} + e{sup {minus}} (ks,kd)). Since the continuum can also be reached by direct photoionization, both paths add coherently, giving rise to interferences that produce the characteristic Beutler-Fano line shape. In this work, the authors report on quantitative angle-resolved electron spectrometry studies of (a) the Ne 2s{sup 2}2p{sup 6} {r_arrow} 2s2p{sup 6} np (n=3-5) autoionizing resonances and the 2s{sup 2}2p{sup 6} {r_arrow} 2p{sup 4}3s3p doubly excited resonance, (b) the Ar 3s{sup 2}3p{sup 6} {r_arrow} 3s3p{sup 6} np (n=4-9) autoionization resonances and extended R-matrix calculations of the angular-distribution parameters for both Ne and Ar measurements. Their results are compared with previous theoretical work by Taylor.

  17. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc,max ~95 K and (Bi1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc,max 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major di erences in the band structure. First, the Fermi surface segments close to ( π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent with

  18. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is

  19. New Light Source Setup for Angle Resolved Light Absorption measurement of PV sample

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  20. New Light Source Setup for Angle Resolved Light Absorption measurement of PV samples

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    Here, we introduce measurements of angle resolved light absorption by PV cells, using broadband laser driven white light source with a bright, stable, broad spectral range and well collimated light....

  1. Angle-resolved x-ray imaging using a resolution-tunable double-crystal analyser

    CERN Document Server

    Hirano, K

    2003-01-01

    A resolution-tunable double-crystal analyser was successfully applied, for the first time, to angle-resolved x-ray imaging. Tuning the resolution between 0.5'' and 2.3'' was done with small loss of peak intensity using a Si(220) double-crystal analyser. The angle-resolved images of a housefly were recorded on nuclear emulsion plates at various angular resolutions. Several methods to improve the angular resolution of the analyser are also proposed.

  2. Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications.

    Science.gov (United States)

    Winkelmann, A; Nolze, G; Vespucci, S; Naresh-Kumar, G; Trager-Cowan, C; Vilalta-Clemente, A; Wilkinson, A J; Vos, M

    2017-09-01

    We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  3. A high performance angle-resolving electron spectrometer

    CERN Document Server

    Rossnagel, K; Skibowski, M; Harm, S

    2001-01-01

    We report on our new versatile photoelectron spectrometer Angular Spectrometer for Photoelectrons with High Energy REsolution (ASPHERE) which is part of beamline W3.2 (photon energies from 5 to 40 eV) but also compatible with beamline BW3 (40-1500 eV) at the Hamburger Synchrotronstrahlungslabor (HASYLAB). ASPHERE is a 180 deg. spherical analyzer (r sub 0 =100 mm) with a four-element input lens and is mounted on a two-axes goniometer with computer-controlled stepper motors which enables sequential angle-scanned measurements. The input lens is equipped with an iris aperture so that the angular resolution can be continuously adjusted from 0.2 deg. to 5 deg. sign . The fringe field of the condenser has been corrected for by tilting the angle of the input lens against the base plane of the hemispheres resulting in an overall energy resolution of 10 meV. To improve the speed of data acquisition three standard channeltron detectors are installed in the image plane of the analyzer which will be replaced by a multidet...

  4. The ALOISA end station at Elettra: a novel multicoincidence spectrometer for angle resolved APECS

    CERN Document Server

    Gotter, R; Morgante, A; Cvetko, D; Floreano, L; Tommasini, F; Stefani, G

    2001-01-01

    Coincidence measurements have been extensively performed in atomic and molecular physics since early 1970s. To apply this methodology to solids and surfaces has been a major target since early days, but the long average time needed to complete a coincidence experiment has hampered its attainment. In particular the coincidence technique has not been yet applied in an angle resolved way such for studying the momentum correlation in the ejection of electron pairs from solid surfaces. The experimental chamber at the ALOISA beamline at Elettra, by means of a set of seven homemade electron analyzers, is the first apparatus able to perform Angle Resolved - Auger Photoelectron Coincidence Spectroscopy (AR-APECS) from solid surfaces. In the typical setup ten different pairs of coincident electrons can be measured simultaneously, so reducing the acquisition time by one order of magnitude.

  5. Tunable ultrafast extreme ultraviolet source for time- and angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dakovski, G. L.; Rodriguez, G. [MPA-CINT, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Li, Y.; Durakiewicz, T. [MPA-CMMS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2010-07-15

    We present a laser-based apparatus suitable for visible pump/extreme UV (XUV) probe time-, energy-, and angle-resolved photoemission spectroscopy utilizing high-harmonic generation from a noble gas. Tunability in a wide range of energies (currently 20-36 eV) is achieved by using a time-delay compensated monochromator, which also preserves the ultrashort duration of the XUV pulses. Using an amplified laser system at 10 kHz repetition rate, approximately 10{sup 9}-10{sup 10} photons/s per harmonic are made available for photoelectron spectroscopy. Parallel energy and momentum detection is carried out in a hemispherical electron analyzer coupled with an imaging detector. First applications demonstrate the capabilities of the instrument to easily select the probe wavelength of choice, to obtain angle-resolved photoemission maps (GaAs and URu{sub 2}Si{sub 2}), and to trace ultrafast electron dynamics in an optically excited semiconductor (Ge).

  6. Tunable ultrafast extreme ultraviolet source for time- and angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Dakovski, G L; Li, Y; Durakiewicz, T; Rodriguez, G

    2010-07-01

    We present a laser-based apparatus suitable for visible pump/extreme UV (XUV) probe time-, energy-, and angle-resolved photoemission spectroscopy utilizing high-harmonic generation from a noble gas. Tunability in a wide range of energies (currently 20-36 eV) is achieved by using a time-delay compensated monochromator, which also preserves the ultrashort duration of the XUV pulses. Using an amplified laser system at 10 kHz repetition rate, approximately 10(9)-10(10) photons/s per harmonic are made available for photoelectron spectroscopy. Parallel energy and momentum detection is carried out in a hemispherical electron analyzer coupled with an imaging detector. First applications demonstrate the capabilities of the instrument to easily select the probe wavelength of choice, to obtain angle-resolved photoemission maps (GaAs and URu(2)Si(2)), and to trace ultrafast electron dynamics in an optically excited semiconductor (Ge).

  7. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface.

    Science.gov (United States)

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-09

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  8. High frame-rate fluorescence confocal angle-resolved linear dichroism microscopy

    OpenAIRE

    Wang, Xiao; Kress, Alla; Brasselet, Sophie; Ferrand, Patrick

    2013-01-01

    International audience; Angle-resolved linear dichroism is a recent technique that exploits images recorded using an illumination field whose polarization angle is sequentially rotated during acquisition. It allows to retrieve orientation information of the fluorescent molecules, namely the average orientation angle and the amplitude of the fluctuations around this average. In order to boost up the acquisition speed without sacrificing the axial sectioning, we propose to combine a spinning di...

  9. High-harmonic XUV source for time- and angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dakovski, Georgi L [Los Alamos National Laboratory; Li, Yinwan [Los Alamos National Laboratory; Durakiewicz, Tomasz [Los Alamos National Laboratory; Rodriguez, George [Los Alamos National Laboratory

    2009-01-01

    We present a laser-based apparatus for visible pump/XUV probe time- and angle-resolved photoemission spectroscopy (TRARPES) utilizing high-harmonic generation from a noble gas. Femtosecond temporal resolution for each selected harmonic is achieved by using a time-delay-compensated monochromator (TCM). The source has been used to obtain photoemission spectra from insulators (UO{sub 2}) and ultrafast pump/probe processes in semiconductors (GaAs).

  10. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F.; Wieliczec, K.; Becker, U.

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  11. Clinical detection of dysplasia using angle-resolved low coherence interferometry

    Science.gov (United States)

    Terry, Neil Gordon

    2011-12-01

    Cancer is now the leading cause of death in developed countries. Despite advances in strategies aimed at the prevention and treatment of the disease, early detection of precancerous growths remains the most effective method of reducing associated morbidity and mortality. Pathological examination of physical tissues that are collected via systematic biopsy is the current "gold standard" in this pursuit. Despite widespread acceptance of this methodology and high confidence in its performance, it is not without limitations. Recently, much attention has been given to the development of optical biopsy techniques that can be used clinically and are able to overcome these limitations. This dissertation describes one such optical biopsy technique, angle-resolved low coherence interferometry (a/LCI), its adaptation to a clinical technology, and its evaluation in clinical studies. The dissertation presents the theory that underlies the operation of the a/LCI technique, the design and validation of the clinical instrument, and its evaluation by means of two clinical trials. First, an account of the manner in which the depth-resolved angular scattering profiles that are collected by a/LCI can be used to determine nuclear characteristics of the investigated tissues is given. The design of the clinical system that is able to collect these scattering profiles through an optical fiber probe that can be passed through the accessory channel of an endoscope for in vivo use is presented. To demonstrate the ability of this system to accurately determine the size of cell nuclei, a set of validation experiments are described. In order to evaluate the clinical utility of this a/LCI system, two clinical trials intended to assess the ability of a/LCI to detect the presence of early, pre-cancerous dysplasias in human tissues are presented. The first of these, an in vivo study of Barrett's esophagus (BE) patients undergoing routine surveillance for the early signs of esophageal adenocarcinoma

  12. Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated with Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Ohta, Taisuke; Bostwick, Aaron; McChesney, J. L.; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2007-05-01

    The unusual transport properties of graphene are the direct consequence of a peculiar band structure near the Dirac point. We determine the shape of the π bands and their characteristic splitting, and find the transition from two-dimensional to bulk character for 1 to 4 layers of graphene by angle-resolved photoemission. By detailed measurements of the π bands we derive the stacking order, layer-dependent electron potential, screening length, and strength of interlayer interaction by comparison with tight binding calculations, yielding a comprehensive description of multilayer graphene’s electronic structure.

  13. Angle-Resolved Photoemission of Solvated Electrons in Sodium-Doped Clusters.

    Science.gov (United States)

    West, Adam H C; Yoder, Bruce L; Luckhaus, David; Saak, Clara-Magdalena; Doppelbauer, Maximilian; Signorell, Ruth

    2015-04-16

    Angle-resolved photoelectron spectroscopy of the unpaired electron in sodium-doped water, methanol, ammonia, and dimethyl ether clusters is presented. The experimental observations and the complementary calculations are consistent with surface electrons for the cluster size range studied. Evidence against internally solvated electrons is provided by the photoelectron angular distribution. The trends in the ionization energies seem to be mainly determined by the degree of hydrogen bonding in the solvent and the solvation of the ion core. The onset ionization energies of water and methanol clusters do not level off at small cluster sizes but decrease slightly with increasing cluster size.

  14. High resolution spin- and angle-resolved photoelectron spectroscopy for 3D spin vectorial analysis

    Science.gov (United States)

    Okuda, Taichi; Miyamoto, Koji; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki

    2013-03-01

    Spin- and angle-resolved photoelectron spectroscopy (SARPES) is the excellent tool which can directly observe the band structure of crystals with separating spin-up and -down states. Recent findings of new class of materials possessing strong spin orbit interaction such as Rashba spin splitting systems or topological insulators stimulate to develop new SARPES apparatuses and many sophisticated techniques have been reported recently. Here we report our newly developed a SARPES apparatus for spin vectorial analysis with high precision at Hiroshima Synchrotron Radiation Center. Highly efficient spin polarimeter utilizing very low energy electron diffraction (VLEED) makes high resolution (ΔE Japan Society for the Promotion of Science.

  15. Size Effects in Angle-Resolved Photoelectron Spectroscopy of Free Rare-Gas Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Rolles, D.; Zhang, H.; Pesic, Z.D.; Bilodeau, R.C.; Wills, A.; Kukk, E.; Rude, B.S.; Ackerman, G.D.; Bozek, J.D.; Muino, R.D.; de Abajo, F.J.G.; Berrah, N.; /Western

    2007-05-23

    The photoionization of free Xe clusters is investigated by angle-resolved time-of-flight photoelectron spectroscopy. The measurements probe the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. While the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the free atoms, distinct differences in the angular distribution point at cluster-size-dependent effects. Multiple scattering calculations trace their origin to elastic photoelectron scattering.

  16. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S., E-mail: suhaimihas@uthm.edu.my; Yusof, M. S., E-mail: mdsalleh@uthm.edu.my; Maksud, M. I., E-mail: midris1973@gmail.com [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia); Embong, Z., E-mail: zaidi@uthm.edu.my [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia)

    2016-01-22

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La{sub 2}O{sub 3}) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La{sub 2}O{sub 3} deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La{sub 2}O{sub 3} and La(OH){sub 3}. The information of oxygen species, O{sup 2-} component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O{sup 2−}), two chemisorb component (La{sub 2}O{sub 3}) and La(OH){sub 3} and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  17. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Science.gov (United States)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2016-01-01

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La2O3 and La(OH)3. The information of oxygen species, O2- component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O2-), two chemisorb component (La2O3) and La(OH)3 and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  18. Angle-resolved molecular beam scattering of NO at the gas-liquid interface

    Science.gov (United States)

    Zutz, Amelia; Nesbitt, David J.

    2017-08-01

    This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO (2 Π 1/2, J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf2N], squalane, and PFPE) at θinc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θs = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [Einc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θs) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θs), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (Telec liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [Einc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θs. Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θs⟩) exhibits a remarkably strong

  19. Angle-resolved molecular beam scattering of NO at the gas-liquid interface

    Science.gov (United States)

    Zutz, Amelia; Nesbitt, David J.

    2017-08-01

    This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO (2 Π 1/2, J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf2N], squalane, and PFPE) at θinc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θs = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [Einc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θs) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θs), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (Telec < Trot < TS) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [Einc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θs. Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (

  20. Angle resolved XPS of monomolecular layer of 5-chlorobenzotriazole on oxidized metallic surface

    Science.gov (United States)

    Kazansky, L. P.; Selyaninov, I. A.; Kuznetsov, Yu. I.

    2012-10-01

    Angle resolved XPS is used to study adsorption of 5-chlorobenzotriazole (5-chloroBTAH) on surfaces of the oxidized metals: mild steel, copper and zinc from borate buffer solution (pH 7.4). It is shown that for the metals studied the 5-chloroBTA anions, when adsorbed, form a monomolecular layer whose thickness is ∼6 Å comparable with the size of BTA. As XPS evidences adsorption proceeds with deprotonation of 5-chloroBTAH and formation of the coordination bonds between the lone pair of nitrogens and cation of a metal. Measuring XPS at two different angles unequivocally points out almost vertical arrangement of the anions toward the sample surface, when chlorine atoms form outmost virtual layer.

  1. High Resolution Angle Resolved Photoemission Studies on Quasi-Particle Dynamics in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Leem, C.S.

    2010-06-02

    We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.

  2. Angle-resolved photoemission investigation of SmB{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Hlawenka, Peter; Rader, Oliver; Siemensmeyer, Konrad; Weschke, Eugen; Varykhalov, Andrei; Rienks, Emile [Helmholtz-Zentrum Berlin (Germany); Shitsevalova, Natalya [Institute for Problems of Material Science, Kiev (Ukraine); Gabani, Slavomir; Flachbart, Karol [IEP, Slovak Academy of Science, Kosice (Slovakia)

    2015-07-01

    Recently the mixed valence compound SmB{sub 6} has drawn great attention. Theoretically predicted surface states, which should result from a hybridisation of localised f-bands with conduction electrons and a band inversion, would make SmB{sub 6} the first realisation of a so called topological Kondo insulator. Conductivity and transport measurements, as well as spin-resolved photoemission spectroscopy seem to fortify the scenario of a topological nature of the conductive surface. We investigate the surface electronic structure of SmB{sub 6} by means of high resolution angle-resolved photoemission spectroscopy measurements below 1 K. We will present new insights into the surface states that determine the low temperature conductivity of this material.

  3. Dimensional Crossover in a Charge Density Wave Material Probed by Angle-Resolved Photoemission Spectroscopy.

    Science.gov (United States)

    Nicholson, C W; Berthod, C; Puppin, M; Berger, H; Wolf, M; Hoesch, M; Monney, C

    2017-05-19

    High-resolution angle-resolved photoemission spectroscopy data reveal evidence of a crossover from one-dimensional (1D) to three-dimensional (3D) behavior in the prototypical charge density wave (CDW) material NbSe_{3}. In the low-temperature 3D regime, gaps in the electronic structure are observed due to two incommensurate CDWs, in agreement with x-ray diffraction and electronic-structure calculations. At higher temperatures we observe a spectral weight depletion that approaches the power-law behavior expected in one dimension. From the warping of the quasi-1D Fermi surface at low temperatures, we extract the energy scale of the dimensional crossover. This is corroborated by a detailed analysis of the density of states, which reveals a change in dimensional behavior dependent on binding energy. Our results offer an important insight into the dimensionality of excitations in quasi-1D materials.

  4. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; Kaminski, Adam [Division of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); McMillen, Colin D.; Kolis, Joseph [Department of Chemistry, Clemson University, Clemson, South Carolina 29634 (United States); Giesber, Henry G.; Egan, John J. [Advanced Photonic Crystals LLC, Fort Mill, South Carolina 29708 (United States)

    2014-03-15

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10{sup 14} photon/s. We demonstrate that this energy range is sufficient to measure the k{sub z} dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  5. Accessing Phonon Polaritons in Hyperbolic Crystals by Angle-Resolved Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tomadin, Andrea; Principi, Alessandro; Song, Justin C. W.; Levitov, Leonid S.; Polini, Marco

    2015-08-01

    Recently studied hyperbolic materials host unique phonon-polariton (PP) modes. The ultrashort wavelengths of these modes, as well as their low damping, hold promise for extreme subdiffraction nanophotonics schemes. Polar hyperbolic materials such as hexagonal boron nitride can be used to realize long-range coupling between PP modes and extraneous charge degrees of freedom. The latter, in turn, can be used to control and probe PP modes. Here we analyze coupling between PP modes and plasmons in an adjacent graphene sheet, which opens the door to accessing PP modes by angle-resolved photoemission spectroscopy (ARPES). A rich structure in the graphene ARPES spectrum due to PP modes is predicted, providing a new probe of PP modes and their coupling to graphene plasmons.

  6. Detection of structural and functional changes in biological materials using angle-resolved low coherence interferometry

    Science.gov (United States)

    Chalut, Kevin J.; Ostrander, Julie H.; Wax, Adam

    2008-02-01

    A well-established method of assessing structure is inverse light scattering analysis. With inverse light scattering analysis, the measured scattering properties of a scatterer(s) are associated with the most probable scattering distribution predicted by an appropriate light scattering model. One commonly used light scattering model is Mie theory, the electromagnetic theory of spherical scattering. Although Mie theory is a spherical scattering model, it has been used for deducing the geometry of spheroidal scatterers, which are important for studies of biological cell structure. The angle-resolved low coherence interferometry (a/LCI) technique is one method of Mie theory - based inverse light scattering analysis that has been used to evaluate biological structure both ex vivo and in vitro. In the present study, we examine the ability of a/LCI to assess structure, geometry, and cellular organization in ways that will further enable the study of function in biological materials.

  7. Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Directory of Open Access Journals (Sweden)

    Y.-B. Huang

    2012-12-01

    Full Text Available The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of the momentum location in the Brillouin zone. We show that while this observation seems inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that a smaller lifetime of the superconducting Cooper pairs induced by the momentum dependent interband scattering inherent to these materials could affect the residual density of states at low energies, which is critical for a proper evaluation of the superconducting gap.

  8. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  9. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853 (United States); King, Philip D. C.; Shen, Kyle M. [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2012-11-15

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to {approx}7 eV, delivering under typical conditions >10{sup 12} ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  10. T-matrix based inverse light scattering analysis using angle resolved low coherence interferometry

    Science.gov (United States)

    Giacomelli, Michael; Chalut, Kevin; Ostrander, Julie; Wax, Adam

    2009-02-01

    Inverse light scattering methods have been applied by several groups as a means to probe cellular structure in both clinical and scientific applications with sub-wavelength accuracy. These methods determine the geometric properties of tissue scatterers based on far field scattering patterns. Generally, structure is determined by measuring scattering over some range of angles, wavelengths, or polarizations and then fitting the observed data to a database of simulated scattering selected from a range of probable geometries. We have developed new light scattering software based on the T-matrix method that creates databases of scattering from spheroidal objects, representing a substantial improvement over Mie theory, a method limited to simulating scattering from spheres. The computational cost of the T-matrix method is addressed through a simple but massively parallel program that concurrently simulates scattering across hundreds of PCs. We are exploring the use of these T-matrix databases in inverting interferometric measurements of angle-resolved scattering from spheroidal cell nuclei using a technique called angle-resolved low coherence interferometry (a/LCI). With a/LCI, we have previously distinguished between healthy and dysplastic tissue in both cell cultures and in ex vivo rat and hamster tissue using Mie theory to measure nuclear diameter. We now present nuclear volume and spheroidal aspect ratio measurements of unstained, living MCF7 cells using the improved T-matrix database to analyze a/LCI data. We achieve measurement accuracy equivalent to conventional image analysis of stained samples. We will further validate the approach by comparing experimental measurements of scattering from polystyrene microspheroids, and show that the T-matrix is a suitable replacement for Mie theory in ex vivo tissue samples.

  11. Electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yun [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    The discovery of quantum Hall e ect has motivated the use of topology instead of broken symmetry to classify the states of matter. Quantum spin Hall e ect has been proposed to have a separation of spin currents as an analogue of the charge currents separation in quantum Hall e ect, leading us to the era of topological insulators. Three-dimensional analogue of the Dirac state in graphene has brought us the three-dimensional Dirac states. Materials with three-dimensional Dirac states could potentially be the parent compounds for Weyl semimetals and topological insulators when time-reversal or space inversion symmetry is broken. In addition to the single Dirac point linking the two dispersion cones in the Dirac/Weyl semimetals, Dirac points can form a line in the momentum space, resulting in a topological node line semimetal. These fascinating novel topological quantum materials could provide us platforms for studying the relativistic physics in condensed matter systems and potentially lead to design of new electronic devices that run faster and consume less power than traditional, silicon based transistors. In this thesis, we present the electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES).

  12. Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators

    Science.gov (United States)

    Plumb, Nicholas C.; Radović, Milan

    2017-11-01

    Over the last decade, conducting states embedded in insulating transition metal oxides (TMOs) have served as gateways to discovering and probing surprising phenomena that can emerge in complex oxides, while also opening opportunities for engineering advanced devices. These states are commonly realized at thin film interfaces, such as the well-known case of LaAlO3 (LAO) grown on SrTiO3 (STO). In recent years, the use of angle-resolved photoemission spectroscopy (ARPES) to investigate the k-space electronic structure of such materials led to the discovery that metallic states can also be formed on the bare surfaces of certain TMOs. In this topical review, we report on recent studies of low-dimensional metallic states confined at insulating oxide surfaces and interfaces as seen from the perspective of ARPES, which provides a direct view of the occupied band structure. While offering a fairly broad survey of progress in the field, we draw particular attention to STO, whose surface is so far the best-studied, and whose electronic structure is probably of the most immediate interest, given the ubiquitous use of STO substrates as the basis for conducting oxide interfaces. The ARPES studies provide crucial insights into the electronic band structure, orbital character, dimensionality/confinement, spin structure, and collective excitations in STO surfaces and related oxide surface/interface systems. The obtained knowledge increases our understanding of these complex materials and gives new perspectives on how to manipulate their properties.

  13. Structural studies of sputtered MOS(2) films by angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Fleischauer, P. D.; Tolentino, L. U.

    1984-09-01

    Molybdenum disulfide films were deposited by sputtering on both single-crystal molybdenite and steel substrates to assess the effects of varying preparation conditions on film properties. They were then examined by angle-resolved X-ray photoelectron spectroscopy, which provided information on the orientation of the layered crystal substrate, on the film layers immediately adjacent to the substrate (within 1-10 nm), and on thicker, macroscopic films composed of relatively large crystallites (approximately 70-200 nm). For the 4.3-nm-thick films deposited on the crystal's basal-plane surface, the angular dependence of the photoelectron emission is the same as the substrate's, indicating preferred orientation within such films. Angular distribution studies for thicker films on steel substrates are consistent with previous Auger electron spectroscopy results and confirm the presence of oxide films of different thickness of lubricant films with varying orientations. The angle-dependence data were fit to models that describe the structure and composition of the films' surfaces.

  14. Formation of complexes between functionalized chitosan membranes and copper: A study by angle resolved XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jurado-López, Belén [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Vieira, Rodrigo Silveira [Chemical Engineering Department, Universidade Federal do Ceará, UFC, 60455-760 Fortaleza, CE (Brazil); Rabelo, Rodrigo Balloni; Beppu, Marisa Masumi [School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13081-970 Campinas, SP (Brazil); Casado, Juan [Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Rodríguez-Castellón, Enrique, E-mail: castellon@uma.es [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain)

    2017-01-01

    Chitosan is a biopolymer with potential applications in various fields. Recently, it has been used for heavy metals removal like copper, due to the presence of amino and hydroxyl groups in its structure. Chitosan membranes were crosslinked with epichlorohydrin and bisoxirano and functionalized with chelating agents, such as iminodiacetic acid, aspartic acid and tris-(2-amino-ethyl) polyamine. These membranes were used for copper adsorption and the formed complexes were characterized. Thermal and crystalline properties of chitosan membranes were studied by TG-DCS and X-ray diffraction. Raman, XPS and FT-IR data confirmed that copper is linked to the modified chitosan membranes by the amino groups. The oxidation state of copper-chitosan membranes were also studied by angle resolved XPS, and by UV–Vis diffuse reflectance spectroscopy. - Highlights: • Chitosan membranes were crosslinked with epichlorohydrin and bisoxirano and functionalized with chelating agents. • The chelating agent were iminodiacetic acid, aspartic acid and tris-(2-amino-ethyl) polyamine. • The functionalized membranes were used for copper adsorption and studied by ARXPS, Raman, TG-DCS, FT-IR and XRD. • Spectroscopic data confirmed that copper is linked to the modified chitosan membranes by the amino groups.

  15. Multidimensional electron-nuclear wavepacket dynamics via Time-, Energy- and Angle-resolved Photoelectron Spectroscopy

    Science.gov (United States)

    Veyrinas, K.; Makhija, V.; Boguslavskiy, A. E.; Forbes, R.; Wilkinson, I.; Moffatt, D.; Lausten, R.; Stolow, A.

    2017-04-01

    Generating and probing a coherent superposition of coupled vibrational-electronic (vibronic) states - a multidimensional wavepacket - remains a challenging problem in molecular dynamics. Here, we present recent results using time-resolved photoelectron velocity map imaging (VMI) of complex vibronic wavepacket dynamics in the NO molecule following femtosecond single photon excitation in the vacuum ultraviolet (VUV) range (λpump = 160 nm, 80 fs). The induced ultrafast dynamics, involving highly excited valence and Rydberg states, is probed by single photon ionization (λprobe = 400 nm, 40 fs). Varying the pump-probe time delay, the emitted photoelectrons are detected in a VMI spectrometer for time-, energy- and angle-resolved photoelectron spectroscopy. We observe that the different final vibrational states of the NO+ (X 1Σ+) cation, onto which this evolving vibronic wavepacket is projected, reveal different time dependences for the kinetic energy distribution and the laboratory frame photoelectron angular distribution (LFPAD). In particular, we observe unusually strong oscillations in the β4 asymmetry parameter, indicating sensitivity to the higher angular momentum components of the electronic aspect of this complex vibronic wavepacket.

  16. Combined experimental setup for spin- and angle-resolved direct and inverse photoemission.

    Science.gov (United States)

    Budke, M; Allmers, T; Donath, M; Rangelov, G

    2007-11-01

    We present a combined experimental setup for spin- and angle-resolved direct and inverse photoemission in the vacuum ultraviolet energy range for measurements of the electronic structure below and above the Fermi level. Both techniques are installed in one ultrahigh-vacuum chamber and, as a consequence, allow quasisimultaneous measurements on one and the same sample preparation. The photoemission experiment consists of a gas discharge lamp and an electron energy analyzer equipped with a spin polarization detector based on spin-polarized low-energy electron diffraction. Our homemade inverse-photoemission spectrometer comprises a GaAs photocathode as spin-polarized electron source and Geiger-Muller counters for photon detection at a fixed energy of 9.9 eV. The total energy resolution of the experiment is better than 50 meV for photoemission and better than 200 meV for inverse photoemission. The performance of our combined direct and inverse-photoemission experiment with respect to angular and energy resolutions is exemplified by the Fermi-level crossing of the Cu(111) L-gap surface state. Spin-resolved measurements of Co films on Cu(001) are used to characterize the Sherman function of the spin polarization detector as well as the spin polarization of our electron source.

  17. A flexible setup for angle-resolved X-ray fluorescence spectrometry with laboratory sources

    Energy Technology Data Exchange (ETDEWEB)

    Spanier, M., E-mail: mspanier@physik.tu-berlin.de; Herzog, C.; Grötzsch, D.; Kramer, F.; Mantouvalou, I.; Malzer, W.; Kanngießer, B. [Institute for Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Lubeck, J.; Weser, J.; Streeck, C.; Beckhoff, B. [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin (Germany)

    2016-03-15

    X-ray fluorescence (XRF) analysis is one of the standard tools for the analysis of stratified materials and is widely applied for the investigation of electronics and coatings. The composition and thickness of the layers can be determined quantitatively and non-destructively. Recent work showed that these capabilities can be extended towards retrieving stratigraphic information like concentration depth profiles using angle-resolved XRF (ARXRF). This paper introduces an experimental sample chamber which was developed as a multi-purpose tool enabling different measurement geometries suited for transmission measurements, conventional XRF, ARXRF, etc. The chamber was specifically designed for attaching all kinds of laboratory X-ray sources for the soft and hard X-ray ranges as well as various detection systems. In detail, a setup for ARXRF using an X-ray tube with a polycapillary X-ray lens as source is presented. For such a type of setup, both the spectral and lateral characterizations of the radiation field are crucial for quantitative ARXRF measurements. The characterization is validated with the help of a stratified validation sample.

  18. Angle-Resolved HAXPES Investigation on the Chemical Origin of Adhesion between Natural Rubber and Brass.

    Science.gov (United States)

    Ozawa, Kenichi; Kakubo, Takashi; Amino, Naoya; Mase, Kazuhiko; Ikenaga, Eiji; Nakamura, Tetsuya

    2017-09-26

    Bulk sensitivity of hard X-ray photoelectron spectroscopy (HAXPES) makes this technique suitable for chemical state analysis of bulk and deeply buried interfaces of solid materials. HAXPES is employed in the present study to examine the chemical state of adhesive interfaces between natural rubber and copper-zinc alloy, i.e., brass, while maintaining the adhesion structure in order to understand the chemical mechanism of rubber-to-brass adhesion. Angle-resolved measurements allow to distinguish between chemical species in rubber and those at the adhesive interface. We specially focus on sulfur-containing species because metal sulfides at the interface have been suggested to be crucial for adhesion. Line-shape analysis of S 1s spectra reveals that the interface that exhibits a strong adhesive property is mainly composed of copper sulfides with a predominant amount of CuS. This type of the interfacial chemical state is obtained when a rubber-bonded brass sample is subjected to vulcanization at 170 °C for 10 min. However, prolonged vulcanization leads to a partial dissolution of CuS as well as accumulation of Zn species in the form of ZnO/Zn(OH)2 and ZnS, and as a result, adhesion strength is lowered. The present study paves the way for accurate and detailed discussion on the chemical state of deeply buried interfaces through bulk sensitive in-situ measurements.

  19. Temperature-independent band structure of WTe2 as observed from angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Thirupathaiah, S.; Jha, Rajveer; Pal, Banabir; Matias, J. S.; Das, P. Kumar; Vobornik, I.; Ribeiro, R. A.; Sarma, D. D.

    2017-10-01

    Extremely large magnetoresistance (XMR), observed in transition-metal dichalcogenides, WTe2, has attracted recently a great deal of research interest as it shows no sign of saturation up to a magnetic field as high as 60 T, in addition to the presence of type-II Weyl fermions. Currently, there is a great deal of discussion on the role of band structure changes in the temperature-dependent XMR in this compound. In this contribution, we study the band structure of WTe2 using angle-resolved photoemission spectroscopy and first-principles calculations to demonstrate that the temperature-dependent band structure has no substantial effect on the temperature-dependent XMR, as our measurements do not show band structure changes upon increasing the sample temperature between 20 and 130 K. We further observe an electronlike surface state, dispersing in such a way that it connects the top of bulk holelike band to the bottom of bulk electronlike band. Interestingly, similarly to bulk states, the surface state is also mostly intact with the sample temperature. Our results provide valuable information in shaping the mechanism of temperature-dependent XMR in WTe2.

  20. Further observations on cerebellar climbing fibers. A study by means of light microscopy, confocal laser scanning microscopy and scanning and transmission electron microscopy.

    Science.gov (United States)

    Castejón, O J; Castejón, H V; Alvarado, M V

    2000-12-01

    The intracortical pathways of climbing fibers were traced in several vertebrate cerebella using light microscopy, confocal laser scanning microscopy, scanning and transmission electron microscopy. They were identified as fine fibers up to 1(micron thick, with a characteristic crossing-over bifurcation pattern. Climbing fiber collaterals were tridimensionally visualized forming thin climbing fiber glomeruli in the granular layer. Confocal laser scanning microscopy revealed three types of collateral processes at the interface between granular and Purkinje cell layers. Scanning electron microscopy showed climbing fiber retrograde collaterals in the molecular layer. Asymmetric synaptic contacts of climbing fibers with Purkinje dendritic spines and stellate neuron dendrites were characterized by transmission electron microscopy. Correlative microscopy allowed us to obtain the basic three-dimensional morphological features of climbing fibers in several vertebrates and to show with more accuracy a higher degree of lateral collateralization of these fibers within the cerebellar cortex. The correlative microscopy approach provides new views in the cerebellar cortex information processing.

  1. Single-body lensed-fiber scanning probe actuated by magnetic force for optical imaging.

    Science.gov (United States)

    Min, Eun Jung; Na, Jihoon; Ryu, Seon Young; Lee, Byeong Ha

    2009-06-15

    We propose a fiber-based hand-held scanning probe suitable for the sample arm of an optical imaging system including optical coherence tomography. To achieve compactness, a single-body lensed-fiber and a solenoid actuator were utilized. The focusing lens of the probe was directly formed onto the distal end of a fiber, which eliminated the need for additional optical components and optical alignment. A ferromagnetic iron bead was glued onto the middle of the fiber to enable actuation by magnetic force, which allowed easy fabrication and good practicality. The fiber piece having the built-in fiber lens was forced to oscillate in its resonant frequency. With the implemented probe, optical coherence tomography images of a human fingertip and a pearl were obtained at an imaging speed of 30 frames/s over a scanning range of 4 mm.

  2. Visual classification of braided and woven fiber bundles in X-ray computed tomography scanned carbon fiber reinforced polymer specimens

    Directory of Open Access Journals (Sweden)

    Johannes Weissenböck

    2016-11-01

    Full Text Available In recent years, advanced composite materials such as carbon fiber reinforced polymers (CFRP are used in many fields of application (e.g., automotive, aeronautic and leisure industry. These materials are characterized by their high stiffness and strength, while having low weight. Especially, woven carbon fiber reinforced materials have outstanding mechanical properties due to their fabric structure. To analyze and develop the fabrics, it is important to understand the course of the individual fiber bundles. Industrial 3D X-ray computed tomography (XCT as a nondestructive testing method allows resolving these individual fiber bundles. In this paper, we show our findings when applying the method of Bhattacharya et al. [6] for extracting fiber bundles on two new types of CFRP specimens. One specimen contains triaxial braided plies in an RTM6 resin and another specimen woven bi-diagonal layers. Furthermore, we show the required steps to separate the individual bundles and the calculation of the individual fiber bundles characteristics which are essential for the posterior visual analysis and exploration. We further demonstrate the classification of the individual fiber bundles within the fabrics to support the domain experts in perceiving the weaving structure of XCT scanned specimens.

  3. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  4. Electronic states localized at surface defects on Cu(755) studied by angle-resolved ultraviolet photoelectron spectroscopy using synchrotron radiation

    CERN Document Server

    Ogawa, K; Namba, H

    2003-01-01

    'Regularly stepped' and 'defective' surfaces of Cu(755) were prepared by low- and high-temperature annealing, respectively, of a clean specimen. Electronic states on both surfaces were studied by angle-resolved ultraviolet photoelectron spectroscopy using synchrotron radiation. On the defective Cu(755), we found a new photoelectron peak due to surface defects just below the Fermi level. The dispersion profile of the defect state is derived to be almost flat, which demonstrates the localized nature of the defects. High activity to oxygen adsorption of the defect state was revealed. (author)

  5. Anisotropic electric conductivity of delafossite PdCoO2 studied by angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Noh, Han-Jin; Jeong, Jinwon; Jeong, Jinhwan; Cho, En-Jin; Kim, Sung Baek; Kim, Kyoo; Min, B I; Kim, Hyeong-Do

    2009-06-26

    An explicit connection between the electronic structure and the anisotropic high conductivity of delafossite-type PdCoO2 has been established by angle-resolved photoemission spectroscopy (ARPES) and core-level x-ray photoemission spectroscopy. The ARPES spectra show that a large hexagonal electronlike Fermi surface (FS) consists of very dispersive Pd 4d states. The carrier velocity and lifetime are determined from the ARPES data, and the conductivity is calculated by a solution of the Boltzmann equation, which demonstrates that the high anisotropic conductivity originates from the high carrier velocity, the large two-dimensional FS, and the long lifetime of the carriers.

  6. Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications

    OpenAIRE

    Winkelmann, A.; Nolze, G.; Vespucci, S.; Naresh-Kumar, G; Trager-Cowan, C.; Vilalta-Clementes, A; Wilkinson, A; De Vos, M.

    2017-01-01

    We analyse the signal formation process for scanning electronmicroscopic imaging applications on crystalline specimens. Inaccordance with previous investigations, we find nontrivialeffects of incident beam diffraction on the backscattered elec-tron distribution in energy and momentum. Specifically, inci-dent beam diffraction causes angular changes of the backscat-tered electron distribution which we identify as the dominantmechanism underlying pseudocolour orientation imaging us-ing multiple,...

  7. Electronic structure and polar catastrophe at the surface of LixCoO2 studied by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Okamoto, Y.; Matsumoto, R.; Yagihara, T.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Horiba, K.; Kobayashi, M.; Ono, K.; Kumigashira, H.; Saini, N. L.; Mizokawa, T.

    2017-09-01

    We report an angle-resolved photoemission spectroscopy (ARPES) study of LixCoO2 single crystals which have a hole-doped CoO2 triangular lattice. Similar to NaxCoO2 , the Co 3 d a1 g band crosses the Fermi level with strongly renormalized band dispersion while the Co 3 d eg' bands are fully occupied in LixCoO2 (x =0.46 and 0.71). At x =0.46 , the Fermi surface area is consistent with the bulk hole concentration indicating that the ARPES result represents the bulk electronic structure. On the other hand, at x =0.71 , the Fermi surface area is larger than the expectation which can be associated with the inhomogeneous distribution of Li reported in the previous scanning tunneling microscopy study by Iwaya et al. [Phys. Rev. Lett. 111, 126104 (2013), 10.1103/PhysRevLett.111.126104]. However, the Co 3 d peak is systematically shifted towards the Fermi level with hole doping excluding phase separation between hole rich and hole poor regions in the bulk. Therefore, the deviation of the Fermi surface area at x =0.71 can be attributed to hole redistribution at the surface avoiding polar catastrophe. The bulk Fermi surface of Co 3 d a1 g is very robust around x =0.5 even in the topmost CoO2 layer due to the absence of the polar catastrophe.

  8. Carbon-fiber tips for scanning probe microscopes and molecular electronics experiments

    NARCIS (Netherlands)

    Rubio-Bollinger, G.; Castellanos-Gomez, A.; Bilan, S.; Zotti, L.A.; Arroyo, C.R.; Agraït, N.; Cuevas, J.

    2012-01-01

    We fabricate and characterize carbon-fiber tips for their use in combined scanning tunneling and force microscopy based on piezoelectric quartz tuning fork force sensors. An electrochemical fabrication procedure to etch the tips is used to yield reproducible sub-100-nm apex. We also study electron

  9. Characterization of Thermal Behavior of Epoxy Composites Reinforced with Curaua Fibers by Differential Scanning Calorimetry

    Science.gov (United States)

    Barcelos, Mariana A.; Ribeiro, Carolina Gomes D.; Ferreira, Jordana; Vieira, Janaina da S.; Margem, Frederico M.; Monteiro, Sergio N.

    Epoxy composites reinforced with natural lignocellulosic fibers have, in recent times, been gaining attention in engineering areas as lighter and cheaper alternatives for traditional composites such as the "fiberglass". The curaua fiber is the one strongest today being considered as reinforcement of composites for automobile interior parts. In fact, several studies are currently being dedicated to curaua fiber composites since physical and mechanical properties are required for practical uses. In this work, the thermal behavior of epoxy composites reinforced with up to 30 % in volume of curaua fibers was investigated by differential scanning calorimetry, DSC. The results showed endothermic and exothermic events associated with water release and possible molecular chain amorphous transformation. Comparison with similar composites permitted to propose mechanism that explains this DSC thermal behavior.

  10. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    Science.gov (United States)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  11. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering.

    Science.gov (United States)

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-05-28

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  12. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  13. Versatile Implementation in Angle-Resolved Optical Microscopy: Its Application to Local Spectrometry of Microcavities with PIC-J-Aggregates

    Directory of Open Access Journals (Sweden)

    Yuki Obara

    2011-01-01

    Full Text Available Versatile novel implementations in microspectroscopy are developed, which can provide angle-resolved optical spectroscopy at local sample areas almost in diffraction limit. By selecting focus position of light flux incident within the back focal plane of the objective lens radially from the position of the optical axis of the microscope with employing off-centered pinhole, we can obtain parallel beam with oblique incidence and its angle tuning at the sample surface. In this paper, we describe our specific optical setup and its practical working principle in detail. We report, as a demonstration of its performance, our latest studies on optical properties of cavity polariton states in the so-called quantum microcavity structures, which contain molecular J-aggregates of pseudoisocyanine (PIC dye as active working materials. By using the microscope technique, we obtain a fair amount of improvement in the linewidth observation of cavity polariton spectra.

  14. The electronic structure of clean and adsorbate-covered Bi2Se3: an angle-resolved photoemission study

    DEFF Research Database (Denmark)

    Bianchi, Marco; Hatch, Richard; Guan, Dandan

    2012-01-01

    Angle-resolved photoelectron spectroscopy is used for a detailed study of the electronic structure of the topological insulator Bi2Se3. Nominally stoichiometric and calcium-doped samples were investigated. The pristine surface shows the topological surface state in the bulk band gap. As time passes......, the Dirac point moves to higher binding energies, indicating an increasingly strong downward bending of the bands near the surface. This time-dependent band bending is related to a contamination of the surface and can be accelerated by intentionally exposing the surface to carbon monoxide and other species....... For a sufficiently strong band bending, additional states appear at the Fermi level. These are interpreted as quantized conduction band states. For large band bendings, these states are found to undergo a strong Rashba splitting. The formation of quantum well states is also observed for the valence band states...

  15. Soft X-ray angle-resolved photoemission spectroscopy of heavily boron-doped superconducting diamond films

    Directory of Open Access Journals (Sweden)

    T. Yokoya, T. Nakamura, T. Matushita, T. Muro, H. Okazaki, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada and T. Oguchi

    2006-01-01

    Full Text Available We have performed soft X-ray angle-resolved photoemission spectroscopy (SXARPES of microwave plasma-assisted chemical vapor deposition diamond films with different B concentrations in order to study the origin of the metallic behavior of superconducting diamond. SXARPES results clearly show valence band dispersions with a bandwidth of ~23 eV and with a top of the valence band at gamma point in the Brillouin zone, which are consistent with the calculated valence band dispersions of pure diamond. Boron concentration-dependent band dispersions near the Fermi level (EF exhibit a systematic shift of EF, indicating depopulation of electrons due to hole doping. These SXARPES results indicate that diamond bands retain for heavy boron doping and holes in the diamond band are responsible for the metallic states leading to superconductivity at low temperature. A high-resolution photoemission spectroscopy spectrum near EF of a heavily boron-doped diamond superconductor is also presented.

  16. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N{sub 2}/Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature.

  17. Optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy in retinal nerve fiber layer measurements of glaucoma patients.

    Science.gov (United States)

    Fanihagh, Farsad; Kremmer, Stephan; Anastassiou, Gerasimos; Schallenberg, Maurice

    2015-01-01

    To determine the correlations and strength of association between different imaging systems in analyzing the retinal nerve fiber layer (RNFL) of glaucoma patients: optical coherence tomography (OCT), scanning laser polarimetry (SLP) and confocal scanning laser ophthalmoscopy (CSLO). 114 eyes of patients with moderate open angle glaucoma underwent spectral domain OCT (Topcon SD-OCT 2000 and Zeiss Cirrus HD-OCT), SLP (GDx VCC and GDx Pro) and CSLO (Heidelberg Retina Tomograph, HRT 3). Correlation coefficients were calculated between the structural parameters yielded by these examinations. The quantitative relationship between the measured RNFL thickness globally and for the four regions (superior, inferior, nasal, temporal) were evaluated with different regression models for all used imaging systems. The strongest correlation of RNFL measurements was found between devices using the same technology like GDx VCC and GDx Pro as well as Topcon OCT and Cirrus OCT. In glaucoma patients, the strongest associations (R²) were found between RNFL measurements of the two optical coherence tomography devices Topcon OCT and Cirrus OCT (R² = 0.513) and between GDx VCC and GDx Pro (R² = 0.451). The results of the OCTs and GDX Pro also had a strong quantitative relationship (Topcon OCT R² = 0.339 and Cirrus OCT R² = 0.347). GDx VCC and the OCTs showed a mild to moderate association (Topcon OCT R² = 0.207 and Cirrus OCT R² = 0.258). The confocal scanning laser ophthalmoscopy (HRT 3) had the lowest association to all other devices (Topcon OCT R² = 0.254, Cirrus OCT R² = 0.158, GDx Pro R² = 0.086 and GDx VCC R² = 0.1). The measurements of the RNFL in glaucoma patients reveal a high correlation of OCT and GDx devices because OCTs can measure all major retinal layers and SLP can detect nerve fibers allowing a comparison between the results of this devices. However, CSLO by means of HRT topography can only measure height values of the retinal surface but it cannot distinguish

  18. Three-dimensional imaging of cerebellar mossy fiber rosettes by ion-abrasion scanning electron microscopy.

    Science.gov (United States)

    Kim, Hyun-Wook; Kim, Namkug; Kim, Ki Woo; Rhyu, Im Joo

    2013-08-01

    The detailed knowledge of the three-dimensional (3D) organization of the nervous tissue provides essential information on its functional elucidation. We used serial block-face scanning electron microscopy with focused ion beam (FIB) milling to reveal 3D morphologies of the mossy fiber rosettes in the mice cerebellum. Three-week-old C57 black mice were perfused with a fixative of 1% paraformaldehyde/1% glutaraldehyde in phosphate buffer; the cerebellum was osmicated and embedded in the Araldite. The block containing granule cell layer was sliced with FIB and observed by field-emission scanning electron microscopy. The contrast of backscattered electron image of the block-face was similar to that of transmission electron microscopy and processed using 3D visualization software for further analysis. The mossy fiber rosettes on each image were segmented and rendered to visualize the 3D model. The complete 3D characters of the mossy fiber rosette could be browsed on the A-Works, in-house software, and some preliminary quantitative data on synapse of the rosette could be extracted from these models. Thanks to the development of two-beam imaging and optimized software, we could get 3D information on cerebellar mossy fiber rosettes with ease and speedily, which would be an additive choice to explore 3D structures of the nervous systems and their networks.

  19. Efficient fabrication of fused-fiber biconical taper structures by a scanned CO2 laser beam technique.

    Science.gov (United States)

    Bayle, Fabien; Meunier, Jean-Pierre

    2005-10-20

    The driving mechanism of a scanning mirror can cause significant impairment of expanded beam properties, which we investigated for several scanning waveforms. Engineering on the scanning waveform is then carried out by a scanned CO2 laser beam technique to enlarge the uniform heating region for stretching and sintering of silica fibers. Details of the derivation are given. A simple thermal model is presented to account for the relationship between the scanning beam profile and the taper shape. Fusion profiles are also compared for various scanning waveforms. The corresponding scanned beam power distributions are determined experimentally, which enables us to determine precise power density conditions for CO2 laser fusion.

  20. Electronic structure of γ-FeSi 2: angle resolved valence band photoemission and Si 2p photoemission

    Science.gov (United States)

    O'Brien, W. L.; Tonner, B. P.

    1994-06-01

    We have investigated the electronic properties of γ-FeSi 2 thin films using angle resolved valence band photoemission and Si2p core level photoemission. We find two features in the valence band data which are not present in the calculated density of states (DOS). One of these has a constant final state energy and we identify it as being due to a final state effect. Another feature, found near —1.8 eV binding energy, is located in an energy gap of the bulk DOS and is identified as a surface state. We have measured the energy dispersion of this surface state and of two bulk-like states. The surface state has a total energy shift of 0.4 eV and exhibits band extrema near positions of the (2×2) reconstructed surface Brillouin zone boundaries. High resolution Si 2p photoemission spectra on samples of varying thickness show that the Si 2p binding energy is higher in the suicide than in bulk silicon by 0.49 eV. We find no evidence of silicon adatoms in our Si 2p photoemission results.

  1. Angle-resolved coherent wave mixing using a 4  fs ultra-broad bandwidth laser.

    Science.gov (United States)

    Mercer, I P; Witting, T; Driver, T; Cogdell, R J; Marangos, J P; Tisch, J W G

    2017-02-15

    We demonstrate angle-resolved coherent (ARC) wave mixing using 4 fs light pulses derived from a laser source that spans 550-1000 nm. We believe this to be the shortest pulse duration used to date in coherent multi-dimensional spectroscopy. The marriage of this ultra-broad band, few-cycle coherent source with the ARC technique will permit new investigations of the interplay between energy transfers and quantum superposition states spanning 8200  cm-1. We applied this configuration to measurements on the photosynthetic low light (LL) complex from Rhodopseudomonas palustris in solution at ambient temperature. We observe bi-exponential population dynamics for energy transfer across 5500  cm-1 (0.65 eV), which we attribute to energy transfer from the Qx transition of bacteriochlorophylls to the B850 pigment of the complex. We believe for the first time, to the best of our knowledge, we demonstrate that ARC maps can be recorded using a single laser pulse.

  2. Electronic band structure of ReS2 by high-resolution angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Webb, James L.; Hart, Lewis S.; Wolverson, Daniel; Chen, Chaoyu; Avila, Jose; Asensio, Maria C.

    2017-09-01

    The rhenium-based transition metal dichalcogenides (TMDs) are atypical of the TMD family due to their highly anisotropic crystalline structure and are recognized as promising materials for two-dimensional heterostructure devices. The nature of the band gap (direct or indirect) for bulk, few-, and single-layer forms of ReS2 is of particular interest, due to its comparatively weak interplanar interaction. However, the degree of interlayer interaction and the question of whether a transition from indirect to direct gap is observed on reducing thickness (as in other TMDs) are controversial. We present a direct determination of the valence band structure of bulk ReS2 using high-resolution angle-resolved photoemission spectroscopy. We find a clear in-plane anisotropy due to the presence of chains of Re atoms, with a strongly directional effective mass which is larger in the direction orthogonal to the Re chains (2.2 me ) than along them (1.6 me ). An appreciable interplane interaction results in an experimentally measured difference of ≈100 -200 meV between the valence band maxima at the Z point (0,0,1/2 ) and the Γ point (0,0,0) of the three-dimensional Brillouin zone. This leads to a direct gap at Z and a close-lying but larger gap at Γ , implying that bulk ReS2 is marginally indirect. This may account for recent conflicting transport and photoluminescence measurements and the resulting uncertainty about the nature of the band gap in this material.

  3. Electronic structure of R Sb (R =Y , Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Wu, Yun; Lee, Yongbin; Kong, Tai; Mou, Daixiang; Jiang, Rui; Huang, Lunan; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2017-07-01

    We use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Due to the "lanthanide contraction", the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.

  4. An Angle Resolved Photoemission Study of a Mott Insulator and Its Evolution to a High Temperature Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip

    2002-03-19

    One of the most remarkable facts about the high temperature superconductors is their close proximity to an antiferromagnetically ordered Mott insulating phase. This fact suggests that to understand superconductivity in the cuprates we must first understand the insulating regime. Due to material properties the technique of angle resolved photoemission is ideally suited to study the electronic structure in the cuprates. Thus, a natural starting place to unlocking the secrets of high Tc would appears to be with a photoemission investigation of insulating cuprates. This dissertation presents the results of precisely such a study. In particular, we have focused on the compound Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}. With increasing Na content this system goes from an antiferromagnetic Mott insulator with a Neel transition of 256K to a superconductor with an optimal transition temperature of 28K. At half filling we have found an asymmetry in the integrated spectral weight, which can be related to the occupation probability, n(k). This has led us to identify a d-wave-like dispersion in the insulator, which in turn implies that the high energy pseudogap as seen by photoemission is a remnant property of the insulator. These results are robust features of the insulator which we found in many different compounds and experimental conditions. By adding Na we were able to study the evolution of the electronic structure across the insulator to metal transition. We found that the chemical potential shifts as holes are doped into the system. This picture is in sharp contrast to the case of La{sub 2-x}Sr{sub x}CuO{sub 4} where the chemical potential remains fixed and states are created inside the gap. Furthermore, the low energy excitations (ie the Fermi surface) in metallic Ca{sub 1.9}Na{sub 0.1}CuO{sub 2}Cl{sub 2} is most well described as a Fermi arc, although the high binding energy features reveal the presence of shadow bands. Thus, the results in this dissertation provide a

  5. Focus scanning with feedback control for fiber-optic nonlinear endomicroscopy (Conference Presentation)

    Science.gov (United States)

    Li, Ang; Liang, Wenxuan; Li, Xingde

    2017-02-01

    Fiber-optic nonlinear endomicroscopy represents a strong promise to enable translation of nonlinear microscopy technologies to in vivo applications, particularly imaging of internal organs. Two-dimensional imaging beam scanning has been accomplished by using fiber-optic scanners or MEMS scanners. Yet nonlinear endomicroscopy still cannot perform rapid and reliable depth or focus scanning while maintaining a small form factor. Shape memory alloy (SMA) wire had shown promise in extending 2D endoscopic imaging to the third dimension. By Joule heating, the SMA wire would contract and move the endomicroscope optics to change beam focus. However, this method suffered from hysteresis, and was susceptible to change in ambient temperature, making it difficult to achieve accurate and reliable depth scanning. Here we present a feedback-controlled SMA actuator which addressed these challenges. The core of the feedback loop was a Hall effect sensor. By measuring the magnetic flux density from a tiny magnet attached to the SMA wire, contraction distance of the SMA wire could be tracked in real time. The distance was then fed to the PID algorithm running in a microprocessor, which computed the error between the command position and the current position of the actuator. The current running through the SMA wire was adjusted accordingly. Our feedback-controlled SMA actuator had a tube-like shape with outer diameter of 5.5 mm and length of 25 mm, and was designed to house the endomicroscope inside. Initial test showed that it allowed more than 300 microns of travel distance, with an average positioning error of less than 2 microns. 3D imaging experiments with the endomicroscope is underway, and its imaging performance will be assessed and discussed.

  6. Retinal nerve fiber layer measurements by scanning laser polarimetry with enhanced corneal compensation in healthy subjects.

    Science.gov (United States)

    Rao, Harsha L; Venkatesh, Chirravuri R; Vidyasagar, Kelli; Yadav, Ravi K; Addepalli, Uday K; Jude, Aarthi; Senthil, Sirisha; Garudadri, Chandra S

    2014-12-01

    To evaluate the (i) effects of biological (age and axial length) and instrument-related [typical scan score (TSS) and corneal birefringence] parameters on the retinal nerve fiber layer (RNFL) measurements and (ii) repeatability of RNFL measurements with the enhanced corneal compensation (ECC) protocol of scanning laser polarimetry (SLP) in healthy subjects. In a cross-sectional study, 140 eyes of 73 healthy subjects underwent RNFL imaging with the ECC protocol of SLP. Linear mixed modeling methods were used to evaluate the effects of age, axial length, TSS, and corneal birefringence on RNFL measurements. One randomly selected eye of 48 subjects from the cohort underwent 3 serial scans during the same session to determine the repeatability. Age significantly influenced all RNFL measurements. RNFL measurements decreased by 1 µm for every decade increase in age. TSS affected the overall average RNFL measurement (β=-0.62, P=0.003), whereas residual anterior segment retardance affected the superior quadrant measurement (β=1.14, P=0.01). Axial length and corneal birefringence measurements did not influence RNFL measurements. Repeatability, as assessed by the coefficient of variation, ranged between 1.7% for the overall average RNFL measurement and 11.4% for th nerve fiber indicator. Age significantly affected all RNFL measurements with the ECC protocol of SLP, whereas TSS and residual anterior segment retardance affected the overall average and the superior average RNFL measurements, respectively. Axial length and corneal birefringence measurements did not influence any RNFL measurements. RNFL measurements had good intrasession repeatability. These results are important while evaluating the change in structural measurements over time in glaucoma patients.

  7. Angle-resolved soft X-ray magnetic circular dichroism in a monatomic Fe layer facing an MgO(0 0 1) tunnel barrier

    Energy Technology Data Exchange (ETDEWEB)

    Mamiya, K. [Photon Factory, Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Koide, T. [Photon Factory, Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)]. E-mail: tsuneharu.koide@kek.jp; Ishida, Y. [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Osafune, Y. [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Fujimori, A. [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Suzuki, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Toyonaka, Osaka 560-8531 (Japan); NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Katayama, T. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Yuasa, S. [NanoElectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2006-11-15

    The electronic and magnetic states of a monatomic Fe(0 0 1) layer directly facing an MgO(0 0 1) tunnel barrier were studied by angle-resolved X-ray magnetic circular dichroism (XMCD) at the Fe L {sub 2,3} edges in the longitudinal (L) and transverse (T) arrangements. A strong XMCD reveals no oxidation of the 1-ML Fe, showing its crucial role in giant tunnel magnetoresistance effects in Fe/MgO/Fe magnetic tunnel junctions. Sum-rule analyses of the angle-resolved XMCD give values of a spin moment, in-plane and out-of-plane orbital and magnetic dipole moments. Argument is given on their physical implication.

  8. Sensing and Demodulation of Special Long-Period Fiber Gratings Induced by Scanning CO2 Laser Pulses

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    2012-01-01

    Full Text Available A review of long-period fiber gratings (LPFGs with special structures induced by scanning CO2 laser pulses in single mode fiber (SMF is presented in this paper. In the first part, the special structures and fabrication methods of LPFGs are demonstrated in detail. Next, the special LPFG-based sensors are demonstrated, such as refractive index sensor, strain sensor with temperature compensation, and torsion sensor without temperature crosstalking. Finally, several investigation methods including intensity, wavelength shift, and fiber ring laser demodulation are discussed.

  9. Electronic structure studies of ferro-pnictide superconductors and their parent compounds using angle-resolved photoemission spectroscopy (ARPES)

    Energy Technology Data Exchange (ETDEWEB)

    Setti, Thirupathaiah

    2011-07-14

    The discovery of high temperature superconductivity in the iron pnictide compound LaO{sub 1-x}F{sub x}FeAs with T{sub c} = 26 K as created enormous interest in the high-T{sub c} superconductor community. So far, four prototypes of crystal structures have been found in the Fe-pnictide family. All four show a structural deformation followed or accompanied by a magnetic transition from a high temperature paramagnetic conductor to a low temperature antiferromagnetic metal whose transition temperature T{sub N} varies between the compounds. Charge carrier doping, isovalent substitution of the As atoms or the application of pressure suppresses the antiferromagnetic spin density wave (SDW) order and leads to a superconducting phase. More recently high Tc superconductivity has been also detected in iron chalchogenides with similar normal state properties. Since superconductivity is instability of the normal state, the study of normal state electronic structure in comparison with superconducting state could reveal important information on the pairing mechanism. Therefore, it is most important to study the electronic structure of these new superconductors, i.e., to determine Fermi surfaces and band dispersions near the Fermi level at the high symmetry points in order to obtain a microscopic understanding of the superconducting properties. Using the technique angle-resolved photoemission spectroscopy (ARPES) one measures the electrons ejected from a sample when photons impinge on it. In this way one can map the Fermi surface which provides useful information regarding the physics behind the Fermi surface topology of high T{sub c} superconductors. Furthermore, this technique provides information on the band dispersion, the orbital character of the bands, the effective mass, the coupling to bosonic excitations, and the superconducting gap. This emphasizes the importance of studying the electronic structure of the newly discovered Fe-pnictides using ARPES. In this work we have

  10. Effect of motion artifacts and scan circle displacements on Cirrus HD-OCT retinal nerve fiber layer thickness measurements.

    Science.gov (United States)

    Taibbi, Giovanni; Peterson, Gregory C; Syed, Misha F; Vizzeri, Gianmarco

    2014-04-07

    To evaluate the effect of scan circle displacements on retinal nerve fiber layer thickness (RNFLT) measurements in Cirrus HD-OCT scans with motion artifacts affecting the optic disc. In this cross-sectional study, 70 scans from 18 healthy eyes and 100 scans from 26 glaucomatous eyes were divided into 85 pairs, each composed by a scan with one motion artifact affecting the optic disc, and a scan from the same eye without motion artifacts. En face images underwent automated realignment, and horizontal/vertical scan circle displacements were determined. Multiple regression analysis evaluated the relationship between scan circle displacements and RNFLT change. Scans with motion artifacts showed similar displacements in healthy and glaucomatous eyes (P values ≥ 0.08). Average RNFLT and quadrants were relatively unchanged, while clock-hours showed more changes (e.g., in glaucomatous eyes, clock-hour-7 RNFLT was lower in scans with motion artifacts, P = 0.05). Scan circle displacements produced average RNFLT changes above test-retest variability in 3/85 cases (3.53%). Retinal nerve fiber layer thickness tended to decrease in sectors moved away from the disc and to increase in sectors closer to the disc (R(2) ≤ 0.40 and R(2) ≤ 0.22 in healthy and glaucomatous eyes, respectively). In healthy eyes, horizontal displacements ≥ 423 and 325 μm were associated with average and quadrant RNFLT changes above test-retest variability, respectively. Scan circle displacements occurred in all scans with motions artifacts affecting the optic disc. Average RNFLT and quadrants were more robust than clock-hours. Because motion artifacts may be difficult to detect, clinicians should carefully inspect en face OCT images for their presence and interpret clock-hour results cautiously.

  11. The tensile testing of individual wood fibers using environmental scanning electron microscopy and video image analysis

    Science.gov (United States)

    Laurence Mott; Stephen M. Shaler; Leslie H. Groom; Bei-Hong Liang

    1995-01-01

    Relationships between virgin fiber types, fiber production techniques and mechanical properties are well understood and documented. For recycled fibers, however, these same relationships are confounded by unquantified degrees of further mechanical and chemical damage. To gain a more comprehensive understanding of the impact of recycling on secondary fibers, the...

  12. Angle Resolved Photoemission Spectroscopy Studies of the Mott Insulator to Superconductor Evolution in Ca2-xNaxCuO2Cl2

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Kyle Michael

    2005-09-02

    It is widely believed that many of the exotic physical properties of the high-T{sub c} cuprate superconductors arise from the proximity of these materials to the strongly correlated, antiferromagnetic Mott insulating state. Therefore, one of the fundamental questions in the field of high-temperature superconductivity is to understand the insulator-to-superconductor transition and precisely how the electronic structure of Mott insulator evolves as the first holes are doped into the system. This dissertation presents high-resolution, doping dependent angle-resolved photoemission (ARPES) studies of the cuprate superconductor Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}, spanning from the undoped parent Mott insulator to a high-temperature superconductor with a T{sub c} of 22 K. A phenomenological model is proposed to explain how the spectral lineshape, the quasiparticle band dispersion, and the chemical potential all progress with doping in a logical and self-consistent framework. This model is based on Franck-Condon broadening observed in polaronic systems where strong electron-boson interactions cause the quasiparticle residue, Z, to be vanishingly small. Comparisons of the low-lying states to different electronic states in the valence band strongly suggest that the coupling of the photohole to the lattice (i.e. lattice polaron formation) is the dominant broadening mechanism for the lower Hubbard band states. Combining this polaronic framework with high-resolution ARPES measurements finally provides a resolution to the long-standing controversy over the behavior of the chemical potential in the high-T{sub c} cuprates. This scenario arises from replacing the conventional Fermi liquid quasiparticle interpretation of the features in the Mott insulator by a Franck-Condon model, allowing the reassignment of the position of the quasiparticle pole. As a function of hole doping, the chemical potential shifts smoothly into the valence band while spectral weight is transferred

  13. Scanning laser polarimetry and optical coherence tomography for detection of retinal nerve fiber layer defects.

    Science.gov (United States)

    Oh, Jong-Hyun; Kim, Yong Yeon

    2009-09-01

    To compare the ability of scanning laser polarimetry with variable corneal compensation (GDx-VCC) and Stratus optical coherence tomography (OCT) to detect photographic retinal nerve fiber layer (RNFL) defects. This retrospective cross-sectional study included 45 eyes of 45 consecutive glaucoma patients with RNFL defects in red-free fundus photographs. The superior and inferior temporal quadrants in each eye were included for data analysis separately. The location and presence of RNFL defects seen in red-free fundus photographs were compared with those seen in GDx-VCC deviation maps and OCT RNFL analysis maps for each quadrant. Of the 90 quadrants (45 eyes), 31 (34%) had no apparent RNFL defects, 29 (32%) had focal RNFL defects, and 30 (33%) had diffuse RNFL defects in red-free fundus photographs. The highest agreement between GDx-VCC and red-free photography was 73% when we defined GDx-VCC RNFL defects as a cluster of three or more color-coded squares (p<5%) along the traveling line of the retinal nerve fiber in the GDx-VCC deviation map (kappa value, 0.388; 95% confidence interval (CI), 0.195 to 0.582). The highest agreement between OCT and red-free photography was 85% (kappa value, 0.666; 95% CI, 0.506 to 0.825) when a value of 5% outside the normal limit for the OCT analysis map was used as a cut-off value for OCT RNFL defects. According to the kappa values, the agreement between GDx-VCC deviation maps and red-free photography was poor, whereas the agreement between OCT analysis maps and red-free photography was good.

  14. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...

  15. Possible observation of parametrically amplified coherent phasons in K0.3MoO3 using time-resolved extreme-ultraviolet angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Liu, H. Y.; Gierz, I.; Petersen, J. C.; Kaiser, S.; Simoncig, A.; Cavalieri, A. L.; Cacho, C.; Turcu, I. C. E.; Springate, E.; Frassetto, F.; Poletto, L.; Dhesi, S. S.; Xu, Z.-A.; Cuk, T.; Merlin, R.; Cavalleri, A.

    2013-07-01

    We use time- and angle-resolved photoemission spectroscopy in the extreme ultraviolet to measure the time- and momentum-dependent electronic structures of photoexcited K0.3MoO3. Prompt depletion of the charge-density wave condensate launches coherent oscillations of the amplitude mode, observed as a 1.7-THz-frequency modulation of the bonding band position. In contrast, the antibonding band oscillates at about half this frequency. We attribute these oscillations to coherent excitation of phasons via parametric amplification of phase fluctuations.

  16. Clocking the Melting Transition of Charge and Lattice Order in 1T-TaS2 with Ultrafast Extreme-Ultraviolet Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Petersen, J. C.; Kaiser, S.; Dean, N.; Simoncig, A.; Liu, H. Y.; Cavalieri, A. L.; Cacho, C.; Turcu, I. C. E.; Springate, E.; Frassetto, F.; Poletto, L.; Dhesi, S. S.; Berger, H.; Cavalleri, A.

    2011-10-01

    We use time- and angle-resolved photoemission spectroscopy with sub-30-fs extreme-ultraviolet pulses to map the time- and momentum-dependent electronic structure of photoexcited 1T-TaS2. This compound is a two-dimensional Mott insulator with charge-density wave ordering. Charge order, evidenced by splitting between occupied subbands at the Brillouin zone boundary, melts well before the lattice responds. This challenges the view of a charge-density wave caused by electron-phonon coupling and Fermi-surface nesting alone, and suggests that electronic correlations play a key role in driving charge order.

  17. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    Science.gov (United States)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.

  18. Anisotropic electron-phonon coupling and dynamical nesting on the graphene sheets in superconducting CaC6 using angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Valla, T; Camacho, J; Pan, Z-H; Fedorov, A V; Walters, A C; Howard, C A; Ellerby, M

    2009-03-13

    We present the first angle-resolved photoemission studies of electronic structure in CaC6, a superconducting graphite intercalation compound with T_{c}=11.6 K. We find that, contrary to theoretical models, the electron-phonon coupling on the graphene-derived Fermi sheets with high-frequency graphene-derived phonons is surprisingly strong and anisotropic. The shape of the Fermi surface is found to favor a dynamical intervalley nesting via exchange of high-frequency phonons. Our results suggest that graphene sheets play a crucial role in superconductivity in graphite intercalation compounds.

  19. The hidden order transition in URu{sub 2}Si{sub 2} investigated by high-resolution angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trinckauf, Jan; Haenke, Torben; Geck, Jochen [IFW Dresden (Germany); Shai, Daniel; Harter, John; Shen, Kyle [Cornell University, Ithaca (United States); Luke, Graeme [McMaster Univerity, Hamilton (Canada)

    2012-07-01

    We present a study of the hidden order transition in URu{sub 2}Si{sub 2} by means of high-resolution angle-resolved photoemission spectroscopy (ARPES). In particular, we find a strong excitation energy dependence of a flat quasi particle band that is associated with and strongly affected by the hidden order transition. We compare our ARPES data to density functional theory (DFT) calculations in the local density approximation (LDA)+U to simulate various degrees of 5f localization.

  20. Development and Characterization of Carbon-Fiber Microbiosensors for Fast-Scan Cyclic Voltammetry

    Science.gov (United States)

    Lugo-Morales, Leyda Zoraida

    Electrochemistry has been shown to be a robust tool in neuroscience. The use of carbon-fiber microelectrodes coupled with background-subtracted fast-scan cyclic voltammetry (FSCV) offers high sensitivity, selectivity, as well as the spatial and temporal resolution necessary for monitoring rapid fluctuations of electroactive molecules in live brain tissue. Dopamine (DA) is a neurotransmitter playing a key role in the regulation of reward and motivated behavior. FSCV has been used to understand DA dynamics and how these underlie discrete aspects of brain function. The methodological aspects of real-time DA detection at carbon-fiber microelectrodes using FSCV in anesthetized and awake animals are presented. Furthermore, the combination of FSCV with other neuroanalytical techniques is also explained. The advantages of FSCV and carbon-fiber microelectrodes can be expanded to the detection of non-electroactive analytes. This broadens the scope of FSCV such that it can be used to investigate how changes in non-electroactive chemicals underlie disease, cognition, and behavior. Carbon-fiber microelectrodes can be modified with an enzyme to monitor non-electroactive molecules, generating an electroactive product (usually hydrogen peroxide, H2O2). The first voltammetric detection of H2O 2 at bare carbon-fiber microelectrodes using FSCV has recently been reported. Thus, an avenue exists to utilize FSCV at enzyme-modified microelectrodes to voltammetrically identify and quantify non-electroactive analytes in real-time. Such an approach will overcome many limitations associated with the traditional amperometric detection scheme, which lacks electrochemical selectivity. Electrodeposition of the biopolymer chitosan with glucose oxidase (GOx) at the carbon surface yields a stable, sensitive, and selective glucose microbiosensor that has been utilized to detect glucose fluctuations in vivo with unprecedented speed. This new method has revealed the first rapid glucose fluctuations in

  1. Scanning laser polarimetry quantification of retinal nerve fiber layer thinning following optic neuritis.

    Science.gov (United States)

    Trip, S Anand; Schlottmann, Patricio G; Jones, Stephen J; Kallis, Constantinos; Altmann, Daniel R; Garway-Heath, David F; Thompson, Alan J; Plant, Gordon T; Miller, David H

    2010-09-01

    Several studies with optical coherence tomography (OCT) have demonstrated thinning of the retinal nerve fiber layer (RNFL) in patients with optic neuritis and multiple sclerosis. Similar studies have not been performed with scanning laser polarimetry (SLP), which relies on different physical phenomena. This study was designed to use SLP to measure axonal loss following a single episode of optic neuritis and to determine if there is a relationship between the degree of axonal loss and the degree of residual visual dysfunction. Twenty-five patients with a single episode of optic neuritis and 15 control subjects were studied with SLP using the GDxVCC device to determine RNFL thickness in relation to visual acuity, visual fields, color vision, visual evoked potentials (VEPs), and previously published OCT data. SLP detected significant RNFL thinning in affected eyes compared to clinically unaffected fellow eyes in patients and in control eyes (P color vision. RNFL thinning correlated with reduced whole visual field and central visual field measures and VEP amplitudes. Superior and inferior quadrant RNFL thinning was related to corresponding regional visual field loss. There was a scaling factor between SLP and OCT RNFL measurements but only modest agreement. SLP detected functionally relevant axonal loss in eyes affected by optic neuritis. There was a scaling factor between RNFL measurements obtained with SLP and OCT but only modest agreement. Care should therefore be taken when comparing RNFL data from studies using these different devices.

  2. Rates of progressive retinal nerve fiber layer loss in glaucoma measured by scanning laser polarimetry.

    Science.gov (United States)

    Medeiros, Felipe A; Zangwill, Linda M; Alencar, Luciana M; Sample, Pamela A; Weinreb, Robert N

    2010-06-01

    To evaluate rates of change measured with scanning laser polarimetry with enhanced corneal compensation (GDx ECC) and compare them to those measured using the variable corneal compensation (GDx VCC) method in a cohort of glaucoma patients and individuals suspected of having the disease followed over time. Observational cohort study. The study included 213 eyes of 213 patients with an average follow-up time of 4.5 years. Images were obtained annually with the GDx ECC and VCC, along with optic disc stereophotographs and standard automated perimetry (SAP) visual fields. Progression was determined by the Guided Progression Analysis software for SAP and by masked assessment of stereophotographs by expert graders. Joint linear mixed-effects models were used to evaluate rates of change in GDx measurements and their relationship with disease progression. Thirty-three patients (15%) showed progression over time on visual fields and/or stereophotographs. Mean rates of average retinal nerve fiber layer (RNFL) thickness change measured by the GDx ECC were significantly different in progressors versus nonprogressors (-1.24 microm/year vs -0.34 microm/year; P polarimetry. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Feasibility of fiber optic displacement sensor scanning system for imaging of dental cavity

    Science.gov (United States)

    Rahman, Husna Abdul; Che Ani, Adi Izhar; Harun, Sulaiman Wadi; Yasin, Moh.; Apsari, Retna; Ahmad, Harith

    2012-07-01

    The purpose of this study is to investigate the potential of intensity modulated fiber optic displacement sensor scanning system for the imaging of dental cavity. Here, we discuss our preliminary results in the imaging of cavities on various teeth surfaces, as well as measurement of the diameter of the cavities which are represented by drilled holes on the teeth surfaces. Based on the analysis of displacement measurement, the sensitivities and linear range for the molar, canine, hybrid composite resin, and acrylic surfaces are obtained at 0.09667 mV/mm and 0.45 mm 0.775 mV/mm and 0.4 mm 0.5109 mV/mm and 0.5 mm and 0.25 mV/mm and 0.5 mm, respectively, with a good linearity of more than 99%. The results also show a clear distinction between the cavity and surrounding tooth region. The stability, simplicity of design, and low cost of fabrication make it suitable for restorative dentistry.

  4. Development of beam monitoring system for proton pencil beam scanning using fiber-optic radiation sensor

    Science.gov (United States)

    Son, Jaeman; Koo, Jihye; Moon, Sunyoung; Yoon, Myonggeun; Jeong, Jonghwi; Kim, Sun-Young; Lim, Youngkyung; Lee, Se Byeong; Shin, Dongho; Kim, Meyoung; Kim, Dongwook

    2017-10-01

    We aimed to develop a beam monitoring system based on a fiber-optic radiation sensor (FORS), which can be used in real time in a beam control room, to monitor a beam in proton therapy, where patients are treated using a pencil beam scanning (PBS) mode, by measuring the beam spot width (BSW) and beam spot position (BSP) of the PBS. We developed two-dimensional detector arrays to monitor the PBS beam in the beam control room. We measured the BSW for five energies of the PBS beam and compared the measurements with those of Lynx and EBT3 film. In order to confirm the BSP, we compared the BSP values of the PBS calculated from radiation treatment planning (RTP), to five BSP values measured using FORS at 224.2 MeV. When comparing BSW values obtained using developed monitoring system to the measurements obtained using commercial EBT3 film, the average difference in BSW value of the PBS beam was 0.1 ± 0.1 mm. In the comparison of BSW values with the measurements obtained using Lynx, the average difference was 0.2 ± 0.1 mm. When comparing BSP measurements to the values calculated from RTP, the average difference was 0.4 ± 0.2 mm. The study results confirmed that the developed FORS-based beam monitoring system can monitor a PBS beam in real time in a beam control room, where proton beam is controlled for the patient.

  5. Visual classification of braided and woven fiber bundles in X-ray computed tomography scanned carbon fiber reinforced polymer specimens

    OpenAIRE

    Weissenböck, Johannes; Bhattacharya, Arindam; Plank, Bernhard; Heinzl, Christoph; Kastner, Johann

    2016-01-01

    In recent years, advanced composite materials such as carbon fiber reinforced polymers (CFRP) are used in many fields of application (e.g., automotive, aeronautic and leisure industry). These materials are characterized by their high stiffness and strength, while having low weight. Especially, woven carbon fiber reinforced materials have outstanding mechanical properties due to their fabric structure. To analyze and develop the fabrics, it is important to understand the course of the individu...

  6. Atomic-scale scanning tunneling microscopy study of plasma-oxidized ultrahigh-modulus carbon fiber surfaces.

    Science.gov (United States)

    Paredes, J I; Martínez-Alonso, A; Tascón, J M D

    2003-02-15

    In the present work, scanning tunneling microscopy (STM) was employed to study the surface modification of ultrahigh modulus carbon fibers at the atomic level by oxygen plasma. As detected by STM, the distinctive feature of the fresh, untreated surface was the general presence of atomic-scale arrangements in different degrees of order (from atomic-sized spots without a clearly ordered disposition to triangular patterns identical to those typical of perfect graphite). Following fiber exposure to the plasma, the STM images showed evidence of the abstraction of carbon atoms from random locations on the fiber surface, giving rise to the development of defects (i.e., structural disorder), which in turn were the places where oxygen could be introduced during and after the plasma etching. It was observed that the most effective treatments in terms of extent of surface structural modification (disordering) and uniform introduction of oxygen were those carried out for just a few ( approximately 3) minutes. Considerably shorter exposures failed to provide a homogeneous modification and many locations on the fiber surface remained unaltered, retaining their original atomic-scale order, whereas longer treatments did not bring about further structural changes to the surface and only led to fiber consumption. These results are consistent with previous X-ray photoelectron spectroscopy measurements on these fibers and provide an atomic-level understanding of the saturation effect observed in the surface oxygen concentration of this and other types of carbon fibers with plasma oxidation. Such understanding may also prove helpful for the accurate control and optimization of fiber-matrix interaction in composite materials.

  7. Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique.

    Science.gov (United States)

    Williams, Robert J; Krämer, Ria G; Nolte, Stefan; Withford, Michael J

    2013-06-01

    We report the inscription of low-loss fiber Bragg gratings using focused femtosecond (fs) pulses and a continuous core-scanning technique. This direct-write technique produces high-fidelity Type I-IR gratings that share the inherent advantages of other direct-write methods, such as the point-by-point (PbP) method, for which the grating period is a free parameter. However, here we demonstrate an order of magnitude improvement in scattering loss compared to PbP gratings, to a level comparable with that of phase-mask-based fs inscription. A first-order grating was inscribed in standard telecommunications fiber with -49 dB transmission at the Bragg wavelength and 0.1 dB broadband scattering loss. Potential application of these gratings to large-mode-area fibers and chirped grating fabrication are highlighted.

  8. Different scanning electron microscopic evaluation methods of cement interface homogeneity of adhesively luted glass fiber posts.

    Science.gov (United States)

    Watzke, Ronny; Frankenberger, Roland; Naumann, Michael

    2011-03-01

    To compare two methods used to examine the cement interface homogeneity of adhesively luted glass fiber posts (GFPs). GFPs were divided into four groups (n = 5 in each) and inserted into artificial root canals under standardized conditions: Group I = RelyX Unicem, application with application aid; Group II = RelyX Unicem; Group III = Panavia F 2.0; and Group IV = Variolink II. Posts in Groups II-IV were cemented without using an appliance. All specimens were sectioned at three levels (cervical, middle and apical) perpendicularly to the post's long axis and examined and photographed (n = 60) using scanning electron microscopy (SEM). Cement interface inhomogeneities were (A) measured by means of SEM software and (B) estimated using a graphics program with SEM images being divided into 72 equal circle segments to calculate a percentage value of inhomogeneities of the 360° circumference. Median values of inhomogeneities (A/B; %) within the cement interface for the cervical, middle and apical levels of analysis, respectively were 1.4/2.1, 2.2/4.2 and 1.9/2.1 for Group I; 21.0/20.1, 24.8/23.6 and 27.0/24.3 for Group II; 1.5/1.7, 5.5/6.3 and 19.4/20.8 for Group III; and 18.1/16.7, 16.1/15.3 and 27.2/25.7 for Group IV. The two methods correlated very well (0.994), with a value of one indicating a 100% correlation. Both evaluation methods were found to be equally appropriate for quantifying the cement interface homogeneity of SEM cross-sections of adhesively luted GFPs.

  9. Fiber grating sensor array interrogation with direct-wavelength readout of a wavelength-scanned fiber laser

    Science.gov (United States)

    Song, Minho

    2003-10-01

    We present a novel interrogation method to measure wavelength shifts in fiber Bragg grating sensor array. A fiber laser tuned by an intracavity FP (Fabry-Perot) filter was used to interrogate Bragg wavelength variations. To solve the linearity, stability, and accuracy problems caused by the nonlinear response of FP filter, we calculated the wavelength variation of the fiber laser using quadrature signal processing with an unbalanced M/Z (Mach-Zehnder) interferometer and time-delayed sampling technique. The phase modulated interferometric signal is sampled with time delay, generating quadrature phase-delayed signals. By applying arctangent demodulation and phase unwrapping algorithm to the signals, accurate wavelength readout is performed. The calculated wavelengths are mapped to corresponding temporal reflection peaks from the sensor array, which enables more accurate fiber grating interrogation without the problems from the FP filter"s nonlinear response. The wavelength resolution of ~ 20 pm was obtained in our experimental setup, which could have been greatly enhanced with faster phase modulation.

  10. Anomalous asymmetry in the Fermi surface of the high-temperature superconductor YBa2Cu4O8 revealed by angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Takeshi; Khasanov, R.; Sassa, Y.; Bendounan, A.; Paihes, S.; Chang, J.; Mesot, J.; Keller, H.; Zhigadlo, N.D.; Shi, M.; Bukowski, Z.; Karpinski, J.; Kaminski, A.

    2009-09-15

    We use microprobe angle-resolved photoemission spectroscopy to study the Fermi surface and band dispersion of the CuO{sub 2} planes in the high-temperature superconductor, YBa{sub 2}Cu{sub 4}O{sub 8}. We find a strong in-plane asymmetry of the electronic structure between directions along a and b axes. The saddle point of the antibonding band lies at a significantly higher energy in the a direction ({pi},0) than the b direction (0,{pi}), whereas the bonding band displays the opposite behavior. We demonstrate that the abnormal band shape is due to a strong asymmetry of the bilayer band splitting, likely caused by a nontrivial hybridization between the planes and chains. This asymmetry has an important implication for interpreting key properties of the Y-Ba-Cu-O family, especially the superconducting gap, transport, and results of inelastic neutron scattering.

  11. Tuning across the BCS-BEC crossover in the multiband superconductor Fe1+ySe x Te1-x: An angle-resolved photoemission study.

    Science.gov (United States)

    Rinott, Shahar; Chashka, K B; Ribak, Amit; Rienks, Emile D L; Taleb-Ibrahimi, Amina; Le Fevre, Patrick; Bertran, François; Randeria, Mohit; Kanigel, Amit

    2017-04-01

    The crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation (BEC) is difficult to realize in quantum materials because, unlike in ultracold atoms, one cannot tune the pairing interaction. We realize the BCS-BEC crossover in a nearly compensated semimetal, Fe 1+ y Se x Te 1- x , by tuning the Fermi energy ε F via chemical doping, which permits us to systematically change Δ/ε F from 0.16 to 0.50, where Δ is the superconducting (SC) gap. We use angle-resolved photoemission spectroscopy to measure the Fermi energy, the SC gap, and characteristic changes in the SC state electronic dispersion as the system evolves from a BCS to a BEC regime. Our results raise important questions about the crossover in multiband superconductors, which go beyond those addressed in the context of cold atoms.

  12. Bulk and surface electronic structure of GaN measured using angle resolved photoemission, soft x-ray emission and soft x-ray absorption

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.E.; Dhesi, S.S.; Duda, L.C.; Stagarescu, C.B.; Singh, R.; Moustakas, T.D. [Boston Univ., MA (United States); Guo, J.H.; Nordgren, J. [Uppsala Univ. (Sweden). Dept. of Physics

    1997-12-31

    The electronic structure of thin film wurtzite GaN has been studied using a combination of angle resolved photoemission, soft x-ray absorption and soft x-ray emission spectroscopies. The authors have measured the bulk valence and conduction band partial density of states by recording Ga L and N K- x-ray emission and absorption spectra. They compare the x-ray spectra to a recent ab initio calculation and find good overall agreement. The x-ray emission spectra reveal that the top of the valence band is dominated by N 2p states, while the x-ray absorption spectra show the bottom of the conduction band as a mixture of Ga 4s and N 2p states, again in good agreement with theory. However, due to strong dipole selection rules the authors can also identify weak hybridization between Ga 4s- and N 2p-states in the valence band. Furthermore, a component to the N K-emission appears at approximately 19.5 eV below the valence band maximum and can be identified as due to hybridization between N 2p and Ga 3d states. They report preliminary results of a study of the full dispersion of the bulk valence band states along high symmetry directions of the bulk Brillouin zone as measured using angle resolved photoemission. Finally, they tentatively identify a non-dispersive state at the top of the valence band in parts of the Brillouin zone as a surface state.

  13. Fiber

    Science.gov (United States)

    ... fiber you get from the food. Fiber-rich foods offer health benefits when eaten raw or cooked. Alternative Names Diet - fiber; Roughage; Bulk; Constipation - fiber Patient Instructions Constipation - ...

  14. Scanning Transmission Electron Microscope observations of defects in as-grown and pre-strained Mo-alloy fibers

    Energy Technology Data Exchange (ETDEWEB)

    Phani, P. Sudharshan [University of Tennessee, Knoxville (UTK); Johanns, K. [University of Tennessee, Knoxville (UTK); Duscher, G. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Gali, A. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); George, Easo P [ORNL; Pharr, George M [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2011-01-01

    Compression testing of micro-pillars has recently been of great interest to the small-scale mechanics community. Previous compression tests on single crystal Mo alloy micro-pillars produced by directional solidification of eutectic alloys showed that as-grown pillars yield at strengths close to the theoretical strength while pre-strained pillars yield at considerably lower stresses. In addition, the flow behavior changes from stochastic to deterministic with increasing pre-strain. In order to gain a microstructural insight into this behavior, an aberration corrected scanning transmission electron microscope was used to study the defect structures in as-grown and pre-strained single crystal Mo alloy fibers. The as-grown fibers were found to be defect free over large lengths while the highly pre-strained (16%) fibers had high defect densities that were uniform throughout. Interestingly, the fibers with intermediate pre-strain (4%) exhibited an inhomogeneous defect distribution. The observed defect structures and their distributions are correlated with the previously reported stress-strain behavior. Some of the mechanistic interpretations of Bei et al. are examined in the light of new microstructural observations.

  15. Scanning transmission electron microscope observations of defects in as-grown and pre-strained Mo alloy fibers

    Energy Technology Data Exchange (ETDEWEB)

    Phani, P. Sudharshan; Johanns, K.E. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Duscher, G.; Gali, A.; George, E.P. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pharr, G.M., E-mail: pharr@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2011-03-15

    Compression testing of micro-pillars has recently been of great interest to the small-scale mechanics community. Previous compression tests on single crystal Mo alloy micro-pillars produced by directional solidification of eutectic alloys showed that as-grown pillars yield at strengths close to the theoretical strength while pre-strained pillars yield at considerably lower stresses. In addition, the flow behavior changes from stochastic to deterministic with increasing pre-strain. In order to gain a microstructural insight into this behavior, an aberration corrected scanning transmission electron microscope was used to study the defect structures in as-grown and pre-strained single crystal Mo alloy fibers. The as-grown fibers were found to be defect free over large lengths while the highly pre-strained (16%) fibers had high defect densities that were uniform throughout. Interestingly, the fibers with intermediate pre-strain (4%) exhibited an inhomogeneous defect distribution. The observed defect structures and their distributions are correlated with the previously reported stress-strain behavior. Some of the mechanistic interpretations of Bei et al. are examined in the light of new microstructural observations.

  16. An inverse problem of estimating the heat source in tapered optical fibers for scanning near-field optical microscopy.

    Science.gov (United States)

    Lee, Haw-Long; Chang, Win-Jin; Chen, Wen-Lih; Yang, Yu-Ching

    2007-08-01

    A conjugate gradient method based on inverse algorithm is applied in this study to estimate the unknown space- and time-dependent heat source in aluminum-coated tapered optical fibers for scanning near-field optical microscopy, by reading the transient temperature data at the measurement positions. No prior information is available on the functional form of the unknown heat source in the present study; thus, it is classified as the function estimation in inverse calculation. The accuracy of the inverse analysis is examined by using the simulated exact and inexact temperature measurements. Results show that an excellent estimation on the heat source and temperature distributions in the tapered optical fiber can be obtained for all the test cases considered in this study.

  17. Real-time polarization mode dispersion monitoring system for a multiple-erbium-doped fiber amplifier, dense wavelength division multiplexing optical fiber transmission by amplified spontaneous emission modulation and acousto-optic tunable fiber scanning techniques.

    Science.gov (United States)

    Tseng, Bao-Jang; Tarn, Chen-Wen

    2009-03-01

    Without interruption or affecting the transmission of ordinary payload channels, we propose a real time polarization mode dispersion (PMD) monitoring system for long-haul, multiple erbium-doped fiber amplifier (EDFA), dense wavelength division multiplexing (DWDM) optical fiber transmission using modulated amplified spontaneous emission (ASE) of one of the EDFAs as the supervisory (SV) signal source. An acousto-optic tunable filter (AOTF) at the receiver side is adopted to scan the spectrum of the transmitted ASE SV signal. Using the fixed-analyzer method, PMDs of different wavelength bands that range from 1545 to 1580 nm of a DWDM fiber-optic communication system can be found by adaptively changing the radio frequency of the AOTF. The resolution and the measuring range of the proposed monitoring system can be significantly improved by cascading the AOTFs at the receiver side.

  18. Identification of Ni2C electronic states in graphene-Ni(111) growth through resonant and dichroic angle-resolved photoemission at the C K -edge

    Science.gov (United States)

    Drera, G.; Cepek, C.; Patera, L. L.; Bondino, F.; Magnano, E.; Nappini, S.; Africh, C.; Lodi-Rizzini, A.; Joshi, N.; Ghosh, P.; Barla, A.; Mahatha, S. K.; Pagliara, S.; Giampietri, A.; Pintossi, C.; Sangaletti, L.

    2017-10-01

    The graphene-Ni(111) (GrNi) growth via chemical vapor deposition has been explored by resonant, angle-resolved, and dichroic photoemission spectroscopy (soft x-ray Res-ARPES) in order to identify the possible contributions to the electronic structure deriving from different phases that can coexist in this complex system. We provide evidences of electronic states so far unexplored at the Γ ¯ point of GrNi, appearing at the C K -edge resonance. These states show both circular dichroism (CD) and k dependence, suggesting a long-range orbital ordering, as well as a coherent matching with the underlying lattice. Through a comparison of core-level photoemission, valence band resonances, and constant initial-state spectroscopy, we demonstrate that these states are actually induced by a low residual component of nickel carbide (Ni2C ). These results also show that caution must be exercised while interpreting x-ray magnetic circular dichroism collected on C K -edge with Auger partial yield method, due to the presence of CD in photoelectron spectra unrelated to magnetic effects.

  19. Band alignment between PEALD-AlNO and AlGaN/GaN determined by angle-resolved X-ray photoelectron spectroscopy

    Science.gov (United States)

    Wang, Qian; Cheng, Xinhong; Zheng, Li; Ye, Peiyi; Li, Menglu; Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue; Yu, Yuehui

    2017-11-01

    The energy band alignment of AlNO grown by plasma enhanced atomic layer deposited (PEALD) on the AlGaN/GaN heterojunction was analyzed by high resolution angle-resolved X-ray photoelectron spectroscopy (AR-XPS). AlNO was fabricated by alternate growth of AlN and Al2O3 nano-laminations using trimethylaluminum (TMA) and NH3/O2 plasma as precursors in a PEALD chamber. The binding energy (BE) of Ga 3d in AlGaN decreased and the corresponding extracted valence band offset (VBO) increased with increasing take-off angle θ, which indicated upward band bending towards the AlNO/AlGaN interface. The band bending and the potential variation across the AlNO/AlGaN interface were investigated and taken into the calculation for the band alignment. The extracted VBO and conduction band offset (CBO) across the AlNO/AlGaN interface were 1.29 eV and 1.51 eV, respectively, which offered competitive barrier heights (>1 eV) for both electrons and holes. These results indicated AlNO could act as an excellent gate dielectric for AlGaN/GaN high electron mobility transistors (HEMTs).

  20. Strong anisotropy of Dirac cones in SrMnBi2 and CaMnBi2 revealed by angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Feng, Ya; Wang, Zhijun; Chen, Chaoyu; Shi, Youguo; Xie, Zhuojin; Yi, Hemian; Liang, Aiji; He, Shaolong; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Dai, Xi; Fang, Zhong; Zhou, X J

    2014-06-20

    The Dirac materials, such as graphene and three-dimensional topological insulators, have attracted much attention because they exhibit novel quantum phenomena with their low energy electrons governed by the relativistic Dirac equations. One particular interest is to generate Dirac cone anisotropy so that the electrons can propagate differently from one direction to the other, creating an additional tunability for new properties and applications. While various theoretical approaches have been proposed to make the isotropic Dirac cones of graphene into anisotropic ones, it has not yet been met with success. There are also some theoretical predictions and/or experimental indications of anisotropic Dirac cone in novel topological insulators and AMnBi2 (A = Sr and Ca) but more experimental investigations are needed. Here we report systematic high resolution angle-resolved photoemission measurements that have provided direct evidence on the existence of strongly anisotropic Dirac cones in SrMnBi2 and CaMnBi2. Distinct behaviors of the Dirac cones between SrMnBi2 and CaMnBi2 are also observed. These results have provided important information on the strong anisotropy of the Dirac cones in AMnBi2 system that can be governed by the spin-orbital coupling and the local environment surrounding the Bi square net.

  1. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy

    Science.gov (United States)

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-01

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al2O3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al2O3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al2O3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  2. Wing structure in the phase diagram of the Ising ferromagnet URhGe close to its tricritical point investigated by angle-resolved magnetization measurements

    Science.gov (United States)

    Nakamura, Shota; Sakakibara, Toshiro; Shimizu, Yusei; Kittaka, Shunichiro; Kono, Yohei; Haga, Yoshinori; Pospíšil, Jiří; Yamamoto, Etsuji

    2017-09-01

    High-precision angle-resolved dc magnetization and magnetic torque studies were performed on a single-crystalline sample of URhGe, an orthorhombic Ising ferromagnet with the c axis being the magnetization easy axis, in order to investigate the phase diagram around the ferromagnetic (FM) reorientation transition in a magnetic field near the b axis. We have clearly detected a first-order transition in both the magnetization and the magnetic torque at low temperatures, and determined detailed profiles of the wing structure of the three-dimensional T -Hb-Hc phase diagram, where Hc and Hb denote the field components along the c and the b axes, respectively. The quantum wing critical points are located at μ0Hc˜±1.1 T and μ0Hb˜13.5 T. Two second-order transition lines at the boundaries of the wing planes rapidly tend to approach each other with increasing temperature up to ˜3 K. Just at the zero conjugate field (Hc=0 ), however, a signature of the first-order transition can still be seen in the field derivative of the magnetization at ˜4 K, indicating that the tricritical point exists in a rather high temperature region above 4 K. This feature of the wing plane structure is consistent with the theoretical expectation that three second-order transition lines merge tangentially at the tricritical point.

  3. Cation profiling of passive films on stainless steel formed in sulphuric and acetic acid by deconvolution of angle-resolved X-ray photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Högström, Jonas, E-mail: jhogstrom@gmail.com; Fredriksson, Wendy, E-mail: wendy.fredriksson@kemi.uu.se; Edstrom, Kristina, E-mail: kristina.edstrom@kemi.uu.se; Björefors, Fredrik, E-mail: fredrik.bjorefors@kemi.uu.se; Nyholm, Leif, E-mail: leif.nyholm@kemi.uu.se; Olsson, Claes-Olof A., E-mail: drclabbe@kth.se

    2013-11-01

    An approach for determining depth gradients of metal-ion concentrations in passive films on stainless steel using angle-resolved X-ray photoelectron spectroscopy (ARXPS) is described. The iterative method, which is based on analyses of the oxidised metal peaks, provides increased precision and hence allows faster ARXPS measurements to be carried out. The method was used to determine the concentration depth profiles for molybdenum, iron and chromium in passive films on 316L/EN 1.4432 stainless steel samples oxidised in 0.5 M H{sub 2}SO{sub 4} and acetic acid diluted with 0.02 M Na{sub 2}B{sub 4}O{sub 7} · 10H{sub 2}O and 1 M H{sub 2}O, respectively. The molybdenum concentration in the film is pin-pointed to the oxide/metal interface and the films also contained an iron-ion-enriched surface layer and a chromium-ion-dominated middle layer. Although films of similar composition and thickness (i.e., about 2 nm) were formed in the two electrolytes, the corrosion currents were found to be three orders of magnitude larger in the acetic acid solution. The differences in the layer composition, found for the two electrolytes as well as different oxidation conditions, can be explained based on the oxidation potentials of the metals and the dissolution rates of the different metal ions.

  4. Adsorption site and structure determination of c(2x2) N{sub 2}/Ni(100) using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have determined the atomic spatial structure of c(2x2) N2Ni(100) with Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the nitrogen 1s core level using monochromatized x-rays from beamline 6.1 at SSRL and beamline 9.3.2 at the ALS. The chemically shifted N 1s peak intensities were summed together to obtain ARPEFS curves for both nitrogen atoms in the molecule. They used a new, highly-optimized program based on the Rehr-Albers scattering matrix formalism to find the adsorption site and to quantitatively determine the bond-lengths. The nitrogen molecule stands upright at an atop site, with a N-Ni bond length of 2.25(1) {angstrom}, a N-N bond length of 1.10(7) {angstrom}, and a first layer Ni-Ni spacing of 1.76(4) {angstrom}. The shake-up peak shows an identical ARPEFS diffraction pattern, confirming its intrinsic nature and supporting a previous use of this feature to decompose the peak into contributions from the chemically inequivalent nitrogen atoms. Comparison to a previously published theoretical treatment of N-N-Ni and experimental structures of analogous adsorbate systems demonstrates the importance of adsorbate-adsorbate interactions in weakly chemisorbed systems.

  5. Quantitative imaging of electrospun fibers by PeakForce Quantitative NanoMechanics atomic force microscopy using etched scanning probes.

    Science.gov (United States)

    Chlanda, Adrian; Rebis, Janusz; Kijeńska, Ewa; Wozniak, Michal J; Rozniatowski, Krzysztof; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof J

    2015-05-01

    Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale. Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement. In the presented work the nanomechanical properties of four different polymer based electrospun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Kuszak Jer R

    2003-01-01

    Full Text Available Abstract Background Compaction of human ocular lens fiber cells as a function of both aging and cataractogenesis has been demonstrated previously using scanning electron microscopy. The purpose of this investigation is to quantify morphological differences in the inner nuclear regions of cataractous and non-cataractous human lenses from individuals with diabetes. The hypothesis is that, even in the presence of the osmotic stress caused by diabetes, compaction rather than swelling occurs in the nucleus of diabetic lenses. Methods Transparent and nuclear cataractous lenses from diabetic patients were examined by scanning electron microscopy (SEM. Measurements of the fetal nuclear (FN elliptical angles (anterior and posterior, embryonic nuclear (EN anterior-posterior (A-P axial thickness, and the number of EN fiber cell membrane folds over 20 μm were compared. Results Diabetic lenses with nuclear cataract exhibited smaller FN elliptical angles, smaller EN axial thicknesses, and larger numbers of EN compaction folds than their non-cataractous diabetic counterparts. Conclusion As in non-diabetic lenses, the inner nuclei of cataractous lenses from diabetics were significantly more compacted than those of non-cataractous diabetics. Little difference between diabetic and non-diabetic compaction levels was found, suggesting that diabetes does not affect the degree of compaction. However, consistent with previous proposals, diabetes does appear to accelerate the formation of cataracts that are similar to age-related nuclear cataracts in non-diabetics. We conclude that as scattering increases in the diabetic lens with cataract formation, fiber cell compaction is significant.

  7. Scanning electron microscopic study of teeth restored with fiber posts and composite resin: An in vitro study

    Directory of Open Access Journals (Sweden)

    K S Sridhara

    2014-01-01

    Full Text Available Aims and Objectives: The aim of this study is to compare and evaluate the thickness of resin dentin interface zones (RDIZ obtained by luting carbon fiber post to intra-radicular dentin, either with All-Bond 2 bonding agent and C and B composite cement or Panavia F dentin-bonding system and Panavia F resin cement. Materials and Methods: Twenty single rooted mandibular premolars of similar sizes were prepared for the carbon fiber post after biomechanical preparation and obturation. They were divided into two groups, Group 1 and 2 of 10 samples each. Carbon fiber posts used for Group 1 samples were luted using All-Bond 2 and C and B cement. For Group 2 carbon fiber posts were luted using Panavia F dentin-bonding system and Panavia F resin cement. All the 20 samples were sectioned longitudinally and marked at three points on the length of the tooth from the dentin-core interface to the apex at 2 mm, 5 mm, and 8 mm to get coronal, middle, and apical areas, respectively. The formation and thickness (width of the RDIZ at the marked areas was evaluated by scanning electron microscope using ×1000 magnification. The results were statistical analyzed. Results: Irrespective of the adhesive systems used all specimens showed a RDIZ formation. Microscopic examination of Group 1 showed significantly higher percentage of RDIZ (P < 0.05 than Group 2. RDIZ morphology was easily detectable at coronal and middle areas of all specimens. Conclusion: All-Bond 2 showed denser and wider RDIZ compared with the Panavia F.

  8. Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC).

    Science.gov (United States)

    Dada, Tanuj; Aggarwal, A; Bali, S J; Sharma, A; Shah, B M; Angmo, D; Panda, A

    2013-01-01

    Myopia presents a significant challenge to the ophthalmologist as myopic discs are often large, tilted, with deep cups and have a thinner neuroretinal rim all of which may mimic glaucomatous optic nerve head changes causing an error in diagnosis. To evaluate the retinal fiber layer (RNFL) thickness in low, moderate and high myopia using scanning laser polarimetry with variable corneal compensation (GDxVCC). One hundred eyes of 100 emmetropes, 30 eyes of low myopes (0 to - 4 D spherical equivalent(SE), 45 eyes with moderate myopia (- 4 to - 8D SE), and 30 eyes with high myopia (- 8 to - 15D SE) were subjected to retinal nerve fiber layer assessment using the scanning laser polarimetry (GDxVCC) in all subjects using the standard protocol. Subjects with IOP > 21 mm Hg, optic nerve head or visual field changes suggestive of glaucoma were excluded from the study. The major outcome parameters were temporal-superior-nasal-inferiortemporal (TSNIT) average, the superior and inferior average and the nerve fibre indicator (NFI). The TSNIT average (p = 0.009), superior (p = 0.001) and inferior average (p = 0.008) were significantly lower; the NFI was higher (P less than 0.001) in moderate myopes as compared to that in emmetropes. In high myopia the RNFL showed supranormal values; the TSNIT average, superior and inferior average was significantly higher(p less than 0.001) as compared to that in emmetropes. The RNFL measurements on scanning laser polarimetry are affected by the myopic refractive error. Moderate myopes show a significant thinning of the RNFL. In high myopia due to peripapillary chorioretinal atrophy and contribution of scleral birefringence, the RNFL values are abnormally high. These findings need to be taken into account while assessing and monitoring glaucoma damage in moderate to high myopes on GDxVCC. © NEPjOPH.

  9. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    Science.gov (United States)

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  10. Effect of cataract surgery on retinal nerve fiber layer thickness parameters using scanning laser polarimetry (GDxVCC).

    Science.gov (United States)

    Dada, Tanuj; Behera, Geeta; Agarwal, Anand; Kumar, Sanjeev; Sihota, Ramanjit; Panda, Anita

    2010-01-01

    To study the effect of cataract extraction on the retinal nerve fiber layer (RNFL) thickness, and assessment by scanning laser polarimetry (SLP), with variable corneal compensation (GDx VCC), at the glaucoma service of a tertiary care center in North India. Thirty-two eyes of 32 subjects were enrolled in the study. The subjects underwent RNFL analysis by SLP (GDx VCC) before undergoing phacoemulsification cataract extraction with intraocular lens (IOL) implantation (Acrysof SA 60 AT) four weeks following cataract surgery. The RNFL thickness parameters evaluated both before and after surgery included temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and nerve fiber index (NFI). The mean age of subjects was 57.6 +/- 11.7 years (18 males, 14 females). Mean TSNIT average thickness (microm) pre- and post-cataract surgery was 49.2 +/- 14.1 and 56.5 +/- 7.6 ( P = 0.001). There was a statistically significant increase in RNFL thickness parameters (TSNIT average, superior average, and inferior average) and decrease in NFI post-cataract surgery as compared to the baseline values. Mean NFI pre- and post-cataract surgery was 41.3 +/- 15.3 and 21.6 +/- 11.8 ( P = 0.001). Measurement of RNFL thickness parameters by scanning laser polarimetry is significantly altered following cataract surgery. Post the cataract surgery, a new baseline needs to be established for assessing the longitudinal follow-up of a glaucoma patient. The presence of cataract may lead to an underestimation of the RNFL thickness, and this should be taken into account when analyzing progression in a glaucoma patient.

  11. High-resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy.

    Directory of Open Access Journals (Sweden)

    Kohei Takayama

    Full Text Available PURPOSE: To conduct high-resolution imaging of the retinal nerve fiber layer (RNFL in normal eyes using adaptive optics scanning laser ophthalmoscopy (AO-SLO. METHODS: AO-SLO images were obtained in 20 normal eyes at multiple locations in the posterior polar area and a circular path with a 3-4-mm diameter around the optic disc. For each eye, images focused on the RNFL were recorded and a montage of AO-SLO images was created. RESULTS: AO-SLO images for all eyes showed many hyperreflective bundles in the RNFL. Hyperreflective bundles above or below the fovea were seen in an arch from the temporal periphery on either side of a horizontal dividing line to the optic disc. The dark lines among the hyperreflective bundles were narrower around the optic disc compared with those in the temporal raphe. The hyperreflective bundles corresponded with the direction of the striations on SLO red-free images. The resolution and contrast of the bundles were much higher in AO-SLO images than in red-free fundus photography or SLO red-free images. The mean hyperreflective bundle width around the optic disc had a double-humped shape; the bundles at the temporal and nasal sides of the optic disc were narrower than those above and below the optic disc (P<0.001. RNFL thickness obtained by optical coherence tomography correlated with the hyperreflective bundle widths on AO-SLO (P<0.001 CONCLUSIONS: AO-SLO revealed hyperreflective bundles and dark lines in the RNFL, believed to be retinal nerve fiber bundles and Müller cell septa. The widths of the nerve fiber bundles appear to be proportional to the RNFL thickness at equivalent distances from the optic disc.

  12. Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation

    Science.gov (United States)

    Medeiros, Felipe A.; Alencar, Luciana M.; Zangwill, Linda M.; Bowd, Christopher; Vizzeri, Gianmarco; Sample, Pamela A.; Weinreb, Robert N.

    2010-01-01

    Purpose To evaluate the ability of scanning laser polarimetry with variable corneal compensation to detect progressive retinal nerve fiber layer (RNFL) loss in glaucoma patients and patients suspected of having the disease. Methods This was an observational cohort study that included 335 eyes of 195 patients. Images were obtained annually with the GDx VCC scanning laser polarimeter, along with optic disc stereophotographs and standard automated perimetry (SAP) visual fields. The median follow-up time was 3.94 years. Progression was determined using commercial software for SAP and by masked assessment of optic disc stereophotographs performed by expert graders. Random coefficient models were used to evaluate the relationship between RNFL thickness measurements over time and progression as determined by SAP and/or stereophotographs. Results From the 335 eyes, 34 (10%) showed progression over time by stereophotographs and/or SAP. Average GDx VCC measurements decreased significantly over time for both progressors as well as non-progressors. However, the rate of decline was significantly higher in the progressing group (−0.70 μm/year) compared to the non-progressing group (−0.14 μm/year; P = 0.001). Black race and male sex were significantly associated with higher rates of RNFL loss during follow-up. Conclusions The GDx VCC scanning laser polarimeter was able to identify longitudinal RNFL loss in eyes that showed progression in optic disc stereophotographs and/or visual fields. These findings suggest that this technology could be useful to detect and monitor progressive disease in patients with established diagnosis of glaucoma or suspected of having the disease. PMID:19029038

  13. Microfabricated optical fiber with microlens that produces large field-of-view video-rate optical beam scanning for microendoscopy applications

    Science.gov (United States)

    Seibel, Eric J.; Fauver, Mark; Crossman-Bosworth, Janet L.; Smithwick, Quinn Y. J.; Brown, Chris M.

    2003-07-01

    Our goal is to produce a micro-optical scanner at the tip of an ultrathin flexible endoscope with an overall diameter of 1 mm. Using a small diameter piezoelectric tube actuator, a cantilevered optical fiber can be driven in mechanical resonance to scan a beam of light in a space-filling, spiral scan pattern. By knowing and/or controlling the fiber position and acquiring backscattered intensity with a photodetector, an image is acquired. A microfabrication process of computer-controlled acid etching is used to reduce the mass along the fiber scanner shaft to allow for high scan amplitude and frequency. A microlens (50 degrees full angle), up to video scan rates (>10 KHz), while maintaining a scanner diameter of 1 mm. A comparison can be made to bi-axial mirror scanners being fabricated as a MEMS device (micro-electro-mechanical system). Based on the opto-mechanical performance of these microlensed fiber scanners, flexible catheter scopes are possible for new microendoscopies that combine imaging with laser diagnoses.

  14. Effect of different adhesion strategies on fiber post cementation: Push-out test and scanning electron microscopy analysis

    Directory of Open Access Journals (Sweden)

    Letícia Oliveria Saraiva

    2013-01-01

    Full Text Available Aim: The aim of this study was to investigate the effect of phosphoric acid etching and the dentin pre-treatment with sodium hypochlorite (NaOCl on the push-out bond strength between fiber post and root canal dentin. Materials and Methods: Root canals of 48 human incisors were selected, post spaces were prepared and assigned to four groups: G1-37% phosphoric acid (15 s; G2-5.25% NaOCl (2 min +37% phosphoric acid (15 s; G3-37% phosphoric acid (60 s; and G4-5.25% NaOCl (2 min +37% phosphoric acid (60 s. Fiber post cementation was performed with two-step etch-and-rinse adhesive system/dual-cured resin cement according to the manufacturer′s recommendation. After 24 h, each root was sectioned transversally into three slices (cervical, middle and apical and the bond strength of each section was determined using a push-out bond strength test. Morphology analysis of the bonded interface was evaluated using a scanning electron microscopy. Push-out strength data (MPa were analyzed by Analysis of Variance and Tukey-Kramer (α = 0.05. Results: Considering the NaOCl pre-treatment, no statistically significant differences were observed among groups; however, when the phosphoric acid was applied during 60 s in the apical portion without NaOCl pre-treatment, the bond strength was statistically significant increased. Conclusion: The NaOCl pre-treatment did not improve the bond strength of adhesive luting cement to root canal dentin. The findings suggest that the use of 37% phosphoric acid for 60 s may have a beneficial effect on bond strength in the apical root third.

  15. Fiber

    Science.gov (United States)

    ... white toast. Lunch and Dinner: Make sandwiches with whole-grain breads (rye, oat, or wheat) instead of white. Make a fiber-rich sandwich with whole-grain bread, peanut butter, and bananas. Use whole-grain spaghetti ...

  16. Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements

    Science.gov (United States)

    Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.

    2010-01-01

    Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a

  17. Retinal nerve fiber layer analysis with scanning laser polarimetry and RTVue-OCT in patients of retinitis pigmentosa.

    Science.gov (United States)

    Xue, Kang; Wang, Min; Chen, Junyi; Huang, Xin; Xu, Gezhi

    2013-01-01

    To measure the thickness of the retinal nerve fiber layer (RNFL) of patients with retinitis pigmentosa (RP) and that of normal controls by scanning laser polarimetry with enhanced corneal compensation (GDxECC) and RTVue-optical coherence tomography (OCT). Fifty-two eyes of 26 patients were included. All patients underwent complete ophthalmological examinations and testing with GDxECC. Twenty-eight of 52 eyes of RP patients underwent RTVue-OCT measurements. A group of 50 eyes of 25 normal subjects (controls) was also included. GDxECC measured RNFL thickness in the peripapillary area in all subjects as well as temporal-superior-nasal-inferior-temporal (TSNIT) parameters, including TSNIT means, superior and inferior region means, TSNIT standard deviation (SD), inter-eye symmetry and nerve fiber indicator (NFI). RTVue-OCT measured the mean, superior, inferior, temporal and nasal quadrant RNFL thickness. In RP patients and controls, TSNIT means by GDxECC were, respectively, 65.00 ± 7.35 and 55.32 ± 5.20. Mean superior quadrant thicknesses were 80.56 ± 10.93 and 69.54 ± 7.45. Mean inferior thicknesses were 80.58 ± 9.34 and 69.12 ± 7.78. SDs were 27.92 ± 5.21 and 28.23 ± 4.01. Inter-eye symmetries were 0.82 ± 0.17 and 0.87 ± 0.09. NFIs were 9.74 ± 8.73 and 16.81 ± 8.13. The differences between mean TSNIT, mean superior and mean inferior quadrant thicknesses and NFIs were statistically significant (p < 0.001). In RTVue-OCT measurements, the differences between mean, superior, inferior and temporal quadrant RNFL thicknesses were statistically significant (p = 0.0322, 0.0213, 0.0387, 0.0005). The RNFL measured by GDxECC was significantly thicker in RP patients than in controls. RNFL thickness measured by RTVue-OCT was significantly greater in RP patients than in controls in the superior, inferior and temporal regions. This contribution provides information on RNFL thickness and discusses the mechanism underlying this phenomenon. Copyright © 2012 S. Karger AG

  18. Electronic structure of single crystal UPd{sub 3}, UGe{sub 2}, and USb{sub 2} from hard X-ray and angle-resolved photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beaux, M.F., E-mail: mbeaux@lanl.gov [MPA Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Durakiewicz, T. [MPA Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Moreschini, L.; Grioni, M. [IPN, Ecole Polytechnique Federale (EPFL), CH-1015 Lausanne (Switzerland); Offi, F. [CNISM and Dipartimento de Fisica, Universita Roma Tre, Via della Vasca Navale 84, 1-00146 Rome (Italy); Monaco, G. [European Synchrotron Radiation Facility, B.P. 220, F-38042 Grenoble (France); Panaccione, G. [Istituto Officina dei Materiali CNR, Laboratorio TASC, Area Science Park, Basovizza S.S. 14 Km 163.5, I-34012 Trieste, 9 (Italy); Joyce, J.J.; Bauer, E.D.; Sarrao, J.L. [MPA Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Butterfield, M.T. [KLA-Tencor, 1 Technology Drive, Milpitas, CA (United States); Guziewicz, E. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland)

    2011-11-15

    Highlights: {yields} Electronic structure of single crystal UPd{sub 3}, UGe{sub 2}, and USb{sub 2} was measured by hard X-ray and angle-resolved photoemission spectroscopy. {yields} Angle resolved photoemission results demonstrate hybridization between U 5f and Pd 4d electrons within UPd{sub 3}. {yields} HAXPES probing of bulk features within of UPd{sub 3}, UGe{sub 2}, and USb{sub 2} samples with native oxide contamination demonstrated. {yields} Two distinct spectral features identified for Sb I and Sb II sites within USb{sub 2} HAXPES spectrum. {yields} Line shape analysis reveals correlations between Doniach-Sunjic asymmetry coefficients and 5f localization. - Abstract: Electronic structure of single crystal UPd{sub 3}, UGe{sub 2}, and USb{sub 2} has been measured from hard X-ray photoelectron spectroscopy (HAXPES) with 7.6 keV photons at the European Synchrotron Radiation Facility (ESRF). Lower photon energy angle-resolved photoelectron spectroscopy (ARPES) was also performed at the Synchrotron Radiation Center (SRC). Herein the following results are presented: (i) ARPES results demonstrate hybridization between the U 5f and Pd 4d electrons within UPd{sub 3}. (ii) The greatly reduced surface sensitivity of HAXPES enabled observation of the bulk core levels in spite of surface oxidation. Photoelectron mean-free-path versus oxide layer thickness considerations were used to model the effectiveness of HAXPES for probing bulk features of in-air cleaved samples. (iii) Two distinct features separated by 800 meV were observed for the Sb 3d core level. These two features are attributed to manifestations of two distinct Sb sites within the USb{sub 2} single crystal as supported by consideration of interatomic distances and enthalpy-of-formation. (iv) Doniach-Sunjic line shape analysis of core level spectral features revealed correlations between asymmetry coefficients and 5f localization.

  19. Peripapillary retinal nerve fiber layer assessment of spectral domain optical coherence tomography and scanning laser polarimetry to diagnose preperimetric glaucoma.

    Science.gov (United States)

    Rao, Harsha L; Yadav, Ravi K; Addepalli, Uday K; Chaudhary, Shashikant; Senthil, Sirisha; Choudhari, Nikhil S; Garudadri, Chandra S

    2014-01-01

    To compare the abilities of peripapillary retinal nerve fiber layer (RNFL) parameters of spectral domain optical coherence tomograph (SDOCT) and scanning laser polarimeter (GDx enhanced corneal compensation; ECC) in detecting preperimetric glaucoma. In a cross-sectional study, 35 preperimetric glaucoma eyes (32 subjects) and 94 control eyes (74 subjects) underwent digital optic disc photography and RNFL imaging with SDOCT and GDx ECC. Ability of RNFL parameters of SDOCT and GDx ECC to discriminate preperimetric glaucoma eyes from control eyes was compared using area under receiver operating characteristic curves (AUC), sensitivities at fixed specificities and likelihood ratios (LR). AUC of the global average RNFL thickness of SDOCT (0.786) was significantly greater (p<0.001) than that of GDx ECC (0.627). Sensitivities at 95% specificity of the corresponding parameters were 20% and 8.6% respectively. AUCs of the inferior, superior and temporal quadrant RNFL thickness parameters of SDOCT were also significantly (p<0.05) greater than the respective RNFL parameters of GDx ECC. LRs of outside normal limits category of SDOCT parameters ranged between 3.3 and 4.0 while the same of GDx ECC parameters ranged between 1.2 and 2.1. LRs of within normal limits category of SDOCT parameters ranged between 0.4 and 0.7 while the same of GDx ECC parameters ranged between 0.7 and 1.0. Abilities of the RNFL parameters of SDOCT and GDx ECC to diagnose preperimetric glaucoma were only moderate. Diagnostic abilities of the RNFL parameters of SDOCT were significantly better than that of GDx ECC in preperimetric glaucoma.

  20. Glaucoma progression detection by retinal nerve fiber layer measurement using scanning laser polarimetry: event and trend analysis.

    Science.gov (United States)

    Moon, Byung Gil; Sung, Kyung Rim; Cho, Jung Woo; Kang, Sung Yong; Yun, Sung-Cheol; Na, Jung Hwa; Lee, Youngrok; Kook, Michael S

    2012-06-01

    To evaluate the use of scanning laser polarimetry (SLP, GDx VCC) to measure the retinal nerve fiber layer (RNFL) thickness in order to evaluate the progression of glaucoma. Test-retest measurement variability was determined in 47 glaucomatous eyes. One eye each from 152 glaucomatous patients with at least 4 years of follow-up was enrolled. Visual field (VF) loss progression was determined by both event analysis (EA, Humphrey guided progression analysis) and trend analysis (TA, linear regression analysis of the visual field index). SLP progression was defined as a reduction of RNFL exceeding the predetermined repeatability coefficient in three consecutive exams, as compared to the baseline measure (EA). The slope of RNFL thickness change over time was determined by linear regression analysis (TA). Twenty-two eyes (14.5%) progressed according to the VF EA, 16 (10.5%) by VF TA, 37 (24.3%) by SLP EA and 19 (12.5%) by SLP TA. Agreement between VF and SLP progression was poor in both EA and TA (VF EA vs. SLP EA, k = 0.110; VF TA vs. SLP TA, k = 0.129). The mean (±standard deviation) progression rate of RNFL thickness as measured by SLP TA did not significantly differ between VF EA progressors and non-progressors (-0.224 ± 0.148 µm/yr vs. -0.218 ± 0.151 µm/yr, p = 0.874). SLP TA and EA showed similar levels of sensitivity when VF progression was considered as the reference standard. RNFL thickness as measurement by SLP was shown to be capable of detecting glaucoma progression. Both EA and TA of SLP showed poor agreement with VF outcomes in detecting glaucoma progression.

  1. Vibronic couplings in the C 1s-Rydberg and valence excitations of C{sub 2}H{sub 2}, revealed by angle-resolved photoion yield spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Suomi [Graduate School for Advanced Studies, Institute for Molecular Science, Okazaki 444-8585 (Japan); Gejo, Tatsuo [University of Hyogo, Kamigori-cho 678-1297 (Japan); Hiyama, Miyabi [Graduate School for Advanced Studies, Institute for Molecular Science, Okazaki 444-8585 (Japan); Kosugi, Nobuhiro [Graduate School for Advanced Studies, Institute for Molecular Science, Okazaki 444-8585 (Japan)]. E-mail: kosugi@ims.ac.jp

    2005-06-15

    High resolution angle-resolved ion-yield spectra are reported for the C1s->Rydberg excitations of acetylene. Vibronic coupling features are found in the energy regions of 3s{sigma}{sub g}/3{sigma}{sub u}*, 3p{sigma}{sub u}, and near threshold. By increasing retarding potentials for ion detectors to select more energetic fragmentation channels, the feature observed in the 90{sup o} direction is assigned to the C1s->3{sigma}{sub u}* valence state coupled with the C1s->1{pi}{sub g}* excited state via cis bending ({pi}{sub u}) vibrational mode.

  2. Suppression of the antinodal coherence of superconducting (Bi,Pb)2(Sr,La)2CuO6+δ as revealed by muon spin rotation and angle-resolved photoemission

    Science.gov (United States)

    Khasanov, R.; Kondo, Takeshi; Bendele, M.; Hamaya, Yoichiro; Kaminski, A.; Lee, S. L.; Ray, S. J.; Takeuchi, Tsunehiro

    2010-07-01

    The superfluid density ρs in underdoped (Tc≃23K) , optimally doped (Tc≃35K) , and overdoped (Tc≃29K) single-crystalline (Bi,Pb)2(Sr,La)2CuO6+δ samples was studied by means of muon spin rotation (μSR) . By combining the μSR data with the results of angle-resolved photoemission spectroscopy measurements on similar samples [T. Kondo , Nature (London) 457, 296 (2009)10.1038/nature07644] good self-consistent agreement is obtained between two techniques concerning the temperature and the doping evolution of ρs .

  3. Carbon coatings on silica glass optical fibers studied by reflectance Fourier-transform infrared spectroscopy and focused ion beam scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stolov, Andrei A., E-mail: stolov@ofsoptics.com [OFS, Specialty Photonics Division, 55 Darling Drive, Avon, CT 06001 (United States); Lombardo, Jeffrey J. [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States); Slyman, Brian E.; Li, Jie [OFS, Specialty Photonics Division, 55 Darling Drive, Avon, CT 06001 (United States); Chiu, Wilson K.S. [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2012-04-30

    Carbon coatings applied on optical fibers via chemical vapor deposition were characterized by a resistance technique, focused ion beam/scanning electron microscopy (FIB/SEM), and reflectance Fourier-transform infrared spectroscopy (FTIR). The resistance technique measures the thickness of carbon film by measuring the resistance over a section of optical fiber, and backing out the film thickness. The FIB/SEM system was used to remove a cross section of the optical fiber and carbon coating and using a scanning transmission electron detector the thickness was measured. The FTIR approach is based on the fact that the wavelength of the light in the mid-infrared region ({approx} 10 {mu}m) is significantly larger than the typical thickness of the carbon coatings (< 0.1 {mu}m) which makes the coating 'semi-transparent' to the infrared light. Carbon coating deposition results in significant transformations of the band profiles of silica in the reflectance spectra that were found to correlate with the carbon coating thickness for films ranging from 0.7 nm to 54.6 nm. The observed transformations of the reflectance spectra were explained within the framework of Fresnel reflection of light from a dual-layer sample. The advantage of this approach is a much higher spatial resolution in comparison with many other known methods and can be performed more quickly than many direct measurement techniques. - Highlights: Black-Right-Pointing-Pointer Hermetic carbon films were grown on optical fibers using chemical vapor deposition. Black-Right-Pointing-Pointer Focused ion beam/scanning electron microscopy provided direct thickness values. Black-Right-Pointing-Pointer Transformations in reflectance infrared spectra correlate with carbon thickness. Black-Right-Pointing-Pointer Spectral transformations were modeled within the framework of Fresnel equations.

  4. Repeatability and Reproducibility of Retinal Nerve Fiber Layer Parameters Measured by Scanning Laser Polarimetry with Enhanced Corneal Compensation in Normal and Glaucomatous Eyes.

    Science.gov (United States)

    Ara, Mirian; Ferreras, Antonio; Pajarin, Ana B; Calvo, Pilar; Figus, Michele; Frezzotti, Paolo

    2015-01-01

    To assess the intrasession repeatability and intersession reproducibility of peripapillary retinal nerve fiber layer (RNFL) thickness parameters measured by scanning laser polarimetry (SLP) with enhanced corneal compensation (ECC) in healthy and glaucomatous eyes. One randomly selected eye of 82 healthy individuals and 60 glaucoma subjects was evaluated. Three scans were acquired during the first visit to evaluate intravisit repeatability. A different operator obtained two additional scans within 2 months after the first session to determine intervisit reproducibility. The intraclass correlation coefficient (ICC), coefficient of variation (COV), and test-retest variability (TRT) were calculated for all SLP parameters in both groups. ICCs ranged from 0.920 to 0.982 for intravisit measurements and from 0.910 to 0.978 for intervisit measurements. The temporal-superior-nasal-inferior-temporal (TSNIT) average was the highest (0.967 and 0.946) in normal eyes, while nerve fiber indicator (NFI; 0.982) and inferior average (0.978) yielded the best ICC in glaucomatous eyes for intravisit and intervisit measurements, respectively. All COVs were under 10% in both groups, except NFI. TSNIT average had the lowest COV (2.43%) in either type of measurement. Intervisit TRT ranged from 6.48 to 12.84. The reproducibility of peripapillary RNFL measurements obtained with SLP-ECC was excellent, indicating that SLP-ECC is sufficiently accurate for monitoring glaucoma progression.

  5. The influence of glass fibers on the morphology of β-nucleated isotactic polypropylene evaluated by differential scanning calorimetry

    Directory of Open Access Journals (Sweden)

    Janevski Aco

    2015-01-01

    Full Text Available The presence of fillers/fibers can significantly affect the polymorphic behavior of semi-crystalline polymers. The influence of glass fibers on morphology of β-nucleated iPP during isothermal and nonisothermal crystallization was analyzed in detail by DSC, and the kinetics and thermodynamic parameters were determined for the systems containing 10-60 % glass fibers. The presence of glass fibers in model composites with β-iPP has insignificant effect on the morphology of the polymer. Thermodynamic and kinetics parameters of crystallization of iPP in model composites are close to those obtained for the nucleated polymer. The relative content of β-crystalline phase is slightly affected by increasing glass fiber’s content from 10 % mas to 60 % mas, due to appearance of α-crystallites. However, the stability of β-crystalline phase is decreased by the increasing glass fibers content and there appeared certain amount of β1 and β2 phases which are known as disposed to recrystallization.

  6. Substrate interactions with suspended and supported monolayer MoS2 : Angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Wencan; Yeh, Po-Chun; Zaki, Nader; Zhang, Datong; Liou, Jonathan T.; Sadowski, Jerzy T.; Barinov, Alexey; Yablonskikh, Mikhail; Dadap, Jerry I.; Sutter, Peter; Herman, Irving P.; Osgood, Richard M.

    2015-03-17

    We report the directly measured electronic structure of exfoliated monolayer molybdenum disulfide ( Mo S 2 ) using micrometer-scale angle-resolved photoemission spectroscopy. Measurements of both suspended and supported monolayer Mo S 2 elucidate the effects of interaction with a substrate. A suggested relaxation of the in-plane lattice constant is found for both suspended and supported monolayer Mo S 2 crystals. For suspended Mo S 2 , a careful investigation of the measured uppermost valence band gives an effective mass at $\\bar{Γ}$ and $\\bar{K}$ of 2.00 m 0 and 0.43 m 0 , respectively. We also measure an increase in the band linewidth from the midpoint of $\\bar{Γ}$ K to the vicinity of $\\bar{K}$ and briefly discuss its possible origin.

  7. Angle-resolved photoemission spectroscopy of (Ca, Na) sub 2 CuO sub 2 Cl sub 2 crystals: Fingerprints of a magnetic insulator in a heavily underdoped superconductor

    CERN Document Server

    Kohsaka, Y; Ronning, F

    2003-01-01

    Electric evolution from an antiferromagnet to a high-T sub c superconductor is revealed by angle-resolved photoemission experiments on tetragonal Ca sub 1 sub . sub 9 Na sub 0 sub . sub 1 CuO sub 2 Cl sub 2 single crystals, which were successfully grown for the first time under high pressures. In this underdoped superconductor, we found clear fingerprints of the parent insulator: a shadow band and a large pseudogap. These observations are most likely described by a 'chemical potential shift', which contrasts clearly with the prevailing wisdom of the pinned chemical potential' learned from the prototype La sub 2 sub - sub x Sr sub x CuO sub 4 , demonstrating that the route to a high-T sub c superconductor is not unique. (author)

  8. High-power, narrow-band, high-repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based angle-resolved photoelectron spectroscopy.

    Science.gov (United States)

    Omachi, J; Yoshioka, K; Kuwata-Gonokami, M

    2012-10-08

    We demonstrate a scheme for efficient generation of a 5.9 eV coherent light source with an average power of 23 mW, 0.34 meV linewidth, and 73 MHz repetition rate from a Ti: sapphire picosecond mode-locked laser with an output power of 1 W. Second-harmonic light is generated in a passive optical cavity by a BiB(3)O(6) crystal with a conversion efficiency as high as 67%. By focusing the second-harmonic light transmitted from the cavity into a β-BaB(2)O(4) crystal, we obtain fourth-harmonic light at 5.9 eV. This light source offers stable operation for at least a week. We discuss the suitability of the laser light source for high-resolution angle-resolved photoelectron spectroscopy by comparing it with other sources (synchrotron radiation facilities and gas discharge lamp).

  9. Identification of Nodal Kink in Electron-Doped (Nd1.85Ce0.15CuO4 Superconductor from Laser-Based Angle-Resolved Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhou X. J.

    2012-03-01

    Full Text Available High-resolution laser-based angle-resolved photoemission measurements have been carried out on the electron-doped (Nd1.85Ce0.15CuO4 high temperature superconductor. We have revealed a clear kink at ~60 meV in the dispersion along the (0,0–(π,π nodal direction, accompanied by a peak-dip-hump feature in the photoemission spectra. This indicates that the nodal electrons are coupled to collective excitations (bosons in electron-doped superconductors, with the phonons as the most likely candidate of the boson. This finding has established a universality of nodal electron coupling in both hole- and electron-doped high temperature cuprate superconductors.

  10. Differences between GaAs/GaInP and GaAs/AlInP interfaces grown by movpe revealed by depth profiling and angle-resolved X-ray photoelectron spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    López-Escalante, M.C., E-mail: mclopez@uma.es [Nanotech Unit, Laboratorio de Materiales y Superficies, Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Gabás, M. [The Nanotech Unit, Depto. de Física Aplicada I, Andalucía Tech, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga Spain (Spain); García, I.; Barrigón, E.; Rey-Stolle, I.; Algora, C. [Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid Spain (Spain); Palanco, S.; Ramos-Barrado, J.R. [The Nanotech Unit, Depto. de Física Aplicada I, Andalucía Tech, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga Spain (Spain)

    2016-01-01

    Graphical abstract: - Highlights: • GaAs, AlInP and GaInP epi-layers grown in a MOVPE facility. • GaAs/GaInP and GaAs/AlInP interfaces studied through the combination of angle resolved and depth profile X-ray photoelectros spectroscopies. • GaAs/GaInP interface shows no features appart from GaAs, GaInP and mixed GaInAs or GaInAsP phases. • GaAs/AlInP interface shows traces of an anomalous P environment, probably due to P-P clusters. - Abstract: GaAs/GaInP and GaAs/AlInP interfaces have been studied using photoelectron spectroscopy tools. The combination of depth profile through Ar{sup +} sputtering and angle resolved X-ray photoelectron spectroscopy provides reliable information on the evolution of the interface chemistry. Measurement artifacts related to each particular technique can be ruled out on the basis of the results obtained with the other technique. GaAs/GaInP interface spreads out over a shorter length than GaAs/AlInP interface. The former could include the presence of the quaternary GaInAsP in addition to the nominal GaAs and GaInP layers. On the contrary, the GaAs/AlInP interface exhibits a higher degree of compound mixture. Namely, traces of P atoms in a chemical environment different to the usual AlInP coordination were found at the top of the GaAs/AlInP interface, as well as mixed phases like AlInP, GaInAsP or AlGaInAsP, located at the interface.

  11. Equivalente esférico e valores da espessura da camada de fibras nervosas obtidas com o GDX TM Scanning Laser System® Spherical equivalent and nerve fiber layer thickness assessed with GDX TM Scanning Laser System®

    Directory of Open Access Journals (Sweden)

    Lênio Souza Alvarenga

    1999-12-01

    Full Text Available Objetivo: Estudar a influência do equivalente esférico nos valores obtidos pelo GDX TM Scanning Laser System®. Métodos: Foram avaliados 41 olhos de 41 voluntários sem doenças oculares e com campo visual sem alterações. Foi realizada a polarimetria de varredura a laser com o GDX TM Scanning Laser System® de acordo com as instruções contidas no manual do aparelho. Foram comparados os valores obtidos nesse exame em um grupo de pacientes com equivalente esférico positivo e em um outro com este valor nulo ou negativo, pelo teste de Mann-Whitney. Resultados: Não se verificou diferença estatística entre os valores obtidos nos olhos de pacientes do grupo I e os do grupo II. Não foi encontrada correlação entre o equivalente esférico e os valores obtidos com o GDX TM Scanning Laser System®. Conclusões: Na amostra estudada não houve diferença estatística entre os valores obtidos em um grupo de olhos com equivalente esférico positivo e outro com este valor negativo ou nulo, usando-se o GDX TM Scanning Laser System®.Purpose: To evaluate the effect of spherical equivalent on the acquisition of nerve fiber layer (NFL thickness with GDX TM Scanning Laser System®. Methods: Forty-one eyes of 41 volunteers were enrolled in this study. All of them presented with no ocular disease and no visual field defect. The NFL thickness was measured with GDX TM Scanning Laser System® as described in its manual. The values obtained in a group of volunteers with negative spherical equivalent (group I were compared to those from a group with a positive spherical equivalent (group II by the Mann-Whitney test. Results: There was no statistical difference between mea-surements in eyes of group I and those in group II. The NFL thickness measurements were not correlated with the sphe-rical equivalent. Conclusions: In the studied group there was no statistical difference in the GDX TM Scanning Laser System® parameters related to spherical equivalent.

  12. Angle-resolved cathodoluminescence imaging polarimetry

    CERN Document Server

    Osorio, Clara I; Brenny, Benjamin; Polman, Albert; Koenderink, A Femius

    2015-01-01

    Cathodoluminescence spectroscopy (CL) allows characterizing light emission in bulk and nanostructured materials and is a key tool in fields ranging from materials science to nanophotonics. Previously, CL measurements focused on the spectral content and angular distribution of emission, while the polarization was not fully determined. Here we demonstrate a technique to access the full polarization state of the cathodoluminescence emission, that is the Stokes parameters as a function of the emission angle. Using this technique, we measure the emission of metallic bullseye nanostructures and show that the handedness of the structure as well as nanoscale changes in excitation position induce large changes in polarization ellipticity and helicity. Furthermore, by exploiting the ability of polarimetry to distinguish polarized from unpolarized light, we quantify the contributions of different types of coherent and incoherent radiation to the emission of a gold surface, silicon and gallium arsenide bulk semiconductor...

  13. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    It is generally recognized that even after 20 years of research and more than 70,000 publications, the mechanism of high-Tc superconductivity in cuprates remains a highly controversial topic [1–4], partly due to the fact that most groups do not fabricate and/or fully control and analyse their (non-trivial) perovskite samples.

  14. Angle-resolved catholdoluminescence imaging polarimetry

    NARCIS (Netherlands)

    Osorio, C.I.; Coenen, T.; Brenny, B.J.M.; Polman, A.; Koenderink, A.F.

    2015-01-01

    Cathodoluminescence spectroscopy (CL) allows characterizing light emission in bulk and nanostructured materials and is a key tool in fields ranging from materials science to nanophotonics. Previously, CL measurements focused on the spectral content and angular distribution of emission, while the

  15. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Dakovski, Georgi L; Durakiewicz, Tomasz; Zhu, Jian-Xin; Riseborough, Peter S; Gu, Genda; Gilbertson, Steve M; Taylor, Antoinette; Rodriguez, George

    2015-09-01

    A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy, which significantly limits the accessible momentum space. Using 20.15 eV, 12 fs pulses, we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate that non-monotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in stark contrast to the monotonic relaxation in the nodal and off-nodal regions.

  16. Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    Directory of Open Access Journals (Sweden)

    Georgi L. Dakovski

    2015-09-01

    Full Text Available A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy, which significantly limits the accessible momentum space. Using 20.15 eV, 12 fs pulses, we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+δ and demonstrate that non-monotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in stark contrast to the monotonic relaxation in the nodal and off-nodal regions.

  17. Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO{sub 3} embedded in GdTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nemšák, S. [Department of Physics, University of California, 1 Shields Ave, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720 (United States); Peter-Grünberg-Institut PGI-6, Forschungszentrum Jülich, 52425 Jülich (Germany); Conti, G.; Palsson, G. K.; Conlon, C.; Fadley, C. S. [Department of Physics, University of California, 1 Shields Ave, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720 (United States); Cho, S.; Rault, J. E.; Avila, J.; Asensio, M.-C. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette Cedex (France); Jackson, C. A.; Moetakef, P.; Janotti, A.; Bjaalie, L.; Himmetoglu, B.; Van de Walle, C. G.; Stemmer, S. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States); Balents, L. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Schneider, C. M. [Peter-Grünberg-Institut PGI-6, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2015-12-07

    For certain conditions of layer thickness, the interface between GdTiO{sub 3} (GTO) and SrTiO{sub 3} (STO) in multilayer samples has been found to form a two-dimensional electron gas (2DEG) with very interesting properties including high mobilities and ferromagnetism. We have here studied two trilayer samples of the form [2 nm GTO/1.0 or 1.5 unit cells STO/10 nm GTO] as grown on (001) (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7}, with the STO layer thicknesses being at what has been suggested is the critical thickness for 2DEG formation. We have studied these with Ti-resonant angle-resolved and angle-integrated photoemission and find that the spectral feature in the spectra associated with the 2DEG is present in the 1.5 unit cell sample, but not in the 1.0 unit cell sample. We also observe through core-level spectra additional states in Ti and Sr, with the strength of a low-binding-energy state for Sr being associated with the appearance of the 2DEG, and we suggest it to have an origin in final-state core-hole screening.

  18. Spatial structure determination of ({radical}3 x {radical}3)R30{degrees} and (1.5 x 1.5)R18{degrees}CO on Cu(111) using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors report a study of the spatial structure of ({radical}3 x {radical}3)R30{degrees} (low coverage) and (1.5 x 1.5)R18{degrees} (intermediate coverage) CO adsorbed on Cu(111), using the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) technique at beamline 9.3.2 at the Advanced Light Source. The CO molecule adsorbs on an atop site for both adsorption phases. Full multiple-scattering spherical-wave (MSSW) calculations were used to extract the C-Cu. bond length and the first Cu-Cu layer spacing for each adsorption phase. The authors find that the C-Cu bond length remains unchanged with increasing coverage, but the 1st Cu-Cu layer spacing contracts at the intermediate coverage. They calculate the bending mode force constant in the (1.5 x 1.5)R18{degrees} phase to be K{sub {delta}} = 2.2 (1) x 10{sup {minus}12} dyne-cm/rad from their experimentally determined bond lengths combined with previously published infra-red absorption frequencies.

  19. Ex-vivo endoscopic laryngeal cancer imaging using two forward-looking fiber optic scanning endoscope probes

    Science.gov (United States)

    Cernat, R.; Tatla, T.; Pang, J.-Y.; Tadrous, P. J.; Gelikonov, G.; Gelikonov, V.; Zhang, Y. Y.; Bradu, A.; Li, X. D.; Podoleanu, A. G.

    2012-12-01

    Larynx cancer is one of the most common primary head and neck cancers. For early-stage laryngeal cancer, both surgery and radiotherapy are effective treatment modalities, offering a high rate of local control and cure. Optical coherence tomography (OCT) is an established non-invasive optical biopsy method, capable of imaging ranges of 2- 3 mm into tissue. By using the principles of low coherence light interferometry, OCT can be used to distinguish normal from unhealthy laryngeal mucosa in patients. Two forward-looking endoscope OCT probes of different sizes in a sweeping frequency OCT (SS-OCT) configuration were compared in terms of their performances for ex-vivo laryngeal cancer imaging. The setup configuration of the first OCT probe unit was designed and constructed at the Institute of Applied Physics RAS, Russia (diameter of 1.9 mm and the rigid part at the distal end is 13 mm long). The second OCT endoscope probe was constructed at the Department of Biomedical Engineering at Johns Hopkins University, USA, using a tubular piezoelectric actuator with quartered electrodes in combination with a resonant fiber cantilever (diameter of 2.4 mm, and rigid part of 45 mm). Cross-sectional images of laryngeal lesions using the two OCT configurations were aquired and compared with OCT images obtained in a 1310 nm SS-OCT classical non-endoscopic system. The work presented here is an intermediate step in our research towards in-vivo endoscopic laryngeal cancer imaging.

  20. [Effects of radicular dentin treatments and luting materials on the bond of quartz fiber posts: scanning electron microscope study].

    Science.gov (United States)

    Mao, Hai-yan; Yan, Bin; Feng, Li-jun; Chen, Ya-ming

    2010-02-01

    To investigate the effects of radicular dentin treatments of sodium hypochlorite (NaOCl) and ethylenediaminetetraacetic acid (EDTA) on the regional root canal bonding interface of quartz fiber posts using 2 luting materials with SEM analysis. Nine intact maxillary central incisors were sectioned and endodontically treated. Standardized post space preparations and acid etch were performed. All specimens were randomly divided into 3 groups (n = 3). D.T.LIGHT posts were placed into the root canal using one of three radicular dentin treatments (0.9% NaCl for 60 s, 10% NaOCl for 60 s, 17% EDTA for 60 s followed by 5.25% NaOCl for 60 s) in combination of one of two luting materials (DuoLink, LuxaCore) respectively (factorial design). Cervical, middle, apical sections of each teeth are used for SEM study and spectroscopy of dispersion energy (EDS) microanalysis. With the radicular dentin treatment with 10% NaOCl alone or with 17% EDTA followed by 5.25% NaOCl, longer and increased number of penetration of resin tags into the dentinal tubules were observed at the resin-dentin interfaces, and adhesive lateral branches could be found easily. EDS microanalysis showed increase in the infiltration behavior of the luting cement. Radicular dentin treatments provide good resin infiltration, which can produce a three-dimensional interlocking micronetwork of resin tags in the dentin tubules with multiple lateral branches that penetrate the intertubular dentin, thus positively influence the adhesion between dentin and the luting materials.

  1. A study of angle-resolved photoemission extended fine structure as applied to the Ni 3p, Cu 3s, and Cu 3p core levels of the respective clean (111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huff, W.R.A.; Moler, E.J.; Kellar, S.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The first non-s initial state angle-resolved photoemission extended fine structure (ARPEFS) study of clean surfaces for the purpose of further understanding the technique is reported. The surface structure sensitivity of ARPEFS applied to clean surfaces and to arbitrary initial states is studied using normal photoemission data taken from the Ni 3p core levels of a Ni(111) single crystal and the Cu 3s and the Cu 3p core-levels of a Cu(111) single crystal. The Fourier transforms of these clean surface data are dominated by backscattering. Unlike the s initial state data, the p initial state data show a peak in the Fourier transform corresponding to in-plane scattering from the six nearest-neighbors to the emitter. Evidence was seen for single-scattering events from in the same plane as the emitters and double-scattering events. Using a newly developed, multiple-scattering calculation program, ARPEFS data from clean surfaces and from p initial states can be modeled to high precision. Although there are many layers of emitters when measuring photoemission from a clean surface, test calculations show that the ARPEFS signal is dominated by photoemission from atoms in the first two crystal layers. Thus, ARPEFS applied to clean surfaces is sensitive to surface reconstruction. The known contraction of the first two Cu(111) layers is confirmed. The best-fit calculation for clean Ni(111) indicates an expansion of the first two layers. To better understand the ARPEFS technique, the authors studied s and non-s initial state photoemission from clean metal surfaces.

  2. Failure of fiber posts after cementation with different adhesives with or without silanization investigated by pullout tests and scanning electron microscopy.

    Science.gov (United States)

    Tian, Yu; Mu, Yunjing; Setzer, Frank C; Lu, Hong; Qu, Tiejun; Yu, Qing

    2012-09-01

    The aim of the study was to test retentive forces of different adhesive systems after cementation of glass-fiber posts with or without prior silanization of the post by using a pullout test and scanning electron microscope (SEM) observation to detect the mode of failure. Fifty-six roots were randomly divided into 6 experimental and 2 control groups: ParaCore (PAR), Paracore + silane (PAR-SIL), RelyX Unicem (RXU), RelyX Unicem + silane (RXU-SIL), RelyX ARC (RXA), RelyX ARC + silane (RXA-SIL), negative control (NEG-CON), and positive control (POS-CON). ParaCore posts were placed in the experimental groups (each n = 8) by using an adhesive resin with or without prior silanization. NEG-CON received uncemented posts (n = 4); POS-CON received an active screw post with an adhesive (n = 4). All samples were subjected to a pullout test in a universal mechanical testing machine for pullout tests and SEM to assess the fiber posts and the roots after the tests. Mean failure load values for each ground were PAR 247.4 ± 59.3 N, PAR-SIL 240.5 ± 68.8 N, RXU 102.3 ± 22.8 N, RXU-SIL 106.4 ± 19.8 N, RXA 119.8 ± 27.3 N, RXA-SIL 125.8 ± 28.3 N, NEG-CON 0 ± 0 N, and POS-CON 412.9 ± 27.4 N. There was a statistically significant difference between the 3 experimental adhesive systems (P posts does not make a difference to prevent dislocation of a post. Full-etching systems demonstrated significantly higher retentive forces than self-etching systems. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Retinal nerve fiber layer in primary open-angle glaucoma with high myopia determined by optical coherence tomography and scanning laser polarimetry.

    Science.gov (United States)

    Wang, Xiao-en; Wang, Xiao-yu; Gu, Yang-shun; Huang, Zhu

    2013-01-01

    Fundus changes associated with high myopia (HM) may mask those associated with primary open-angle glaucoma (POAG). This study aim to determine the characteristics of RNFL thickness changes in patients with both POAG and HM and compare these to changes in patients with only HM. The diagnostic capabilities of both OCT and GDxVCC in this subset of patients are also evaluated. Twenty-two eyes with POAG and HM (spherical equivalent (SE) between -6.0 and -12.0 D) were evaluated, and 22 eyes with HM were used for comparison. Characteristic retinal nerve fiber layer (RNFL) thickness profiles in patients with POAG and HM were examined using optical coherence tomography (OCT) and scanning laser polarimetry with variable corneal compensation (GDxVCC), and the diagnostic capabilities of these imaging modalities were compared. RNFL parameters evaluated included superior average (Savg-GDx), inferior average (Iavg-GDx), temporal-superior-nasal- inferior-temporal (TSNIT) average, and nerve fiber indicator (NFI) on GDxVCC and superior average (Savg-OCT), inferior average (Iavg-OCT), nasal average (Navg-OCT), temporal average (Tavg-OCT), and average thickness (AvgThick-OCT) on OCT (fast RNFL scan). Visual field testing was performed and defects were evaluated using mean defect (MD) and pattern standard deviation (PSD). The RNFL parameters (P < 0.05) significantly different between groups included Savg-GDx, Iavg-GDx, TSNIT average, NFI, Savg-OCT, Iavg-OCT, Tavg-OCT, and AvgThick-OCT. Significant correlations existed between TSNIT average and AvgThick-OCT (r = 0.778), TSNIT average and MD (r = 0.749), AvgThick-OCT and MD (r = 0.647), TSNIT average and PSD (r = -0.756), and AvgThick-OCT and PSD (r = -0.784). The area under the receiver operating characteristic curve (AUROC) values of TSNIT average, Savg-GDx, Iavg-GDx, NFI, Savg-OCT, Iavg-OCT, Navg-OCT, Tavg-OCT, and AvgThick-OCT were 0.947, 0.962, 0.973, 0.994, 0.909, 0.917, 0.511, 0.906, and 0.913, respectively. The NFI AUROC was the

  4. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Baida, Fadi I.; Grosjean, Thierry, E-mail: thierry.grosjean@univ-fcomte.fr [Institut FEMTO-ST, UMR CNRS 6174, Université de Franche-Comté, Département d' Optique P.M. Duffieux, 15B avenue des Montboucons, 25030 Besançon cedex (France); Nedeljkovic, Dusan [Lovalite s.a.s., 7 rue Xavier Marmier, 25000 Besançon (France); Tannous, Tony [Department of Physics, University of Balamand, P.O. Box 100 Tripoli (Lebanon)

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  5. The effect of pattern scan laser photocoagulation on peripapillary retinal nerve fiber layer thickness and optic nerve morphology in diabetic retinopathy.

    Science.gov (United States)

    Lee, Dong Eik; Lee, Ju Hyang; Lim, Han Woong; Kang, Min Ho; Cho, Hee Yoon; Seong, Mincheol

    2014-10-01

    To evaluate the effect of pattern scan laser (PASCAL) photocoagulation on peripapillary retinal nerve fiber layer (RNFL) thickness, central macular thickness (CMT), and optic nerve morphology in patients with diabetic retinopathy. Subjects included 35 eyes for the PASCAL group and 49 eyes for a control group. Peripapillary RNFL thickness, cup-disc area ratio and CMT were measured before PASCAL photocoagulation and at 2 and 6 months after PASCAL photocoagulation in the PASCAL or control groups. The average RNFL thickness had increased by 0.84 µm two months after and decreased by 0.4 µm six months after PASCAL photocoagulation compared to baseline, but these changes were not significant (p = 0.83, 0.39). The cup-disc area ratio was unchanged after PASCAL photocoagulation. CMT increased by 18.11 µm (p = 0.048) at two months compared to baseline thickness, and partially recovered to 11.82 µm (p = 0.11) at six months in the PASCAL group. PASCAL photocoagulation may not cause significant change in the peripapillary RNFL thickness, CMT, and optic nerve morphology in patients with diabetic retinopathy.

  6. Measurement of retinal nerve fiber layer thickness in eyes with optic disc swelling by using scanning laser polarimetry and optical coherence tomography.

    Science.gov (United States)

    Hata, Masayuki; Miyamoto, Kazuaki; Oishi, Akio; Kimura, Yugo; Nakagawa, Satoko; Horii, Takahiro; Yoshimura, Nagahisa

    2014-01-01

    The retinal nerve fiber layer thickness (RNFLT) in patients with optic disc swelling of different etiologies was compared using scanning laser polarimetry (SLP) and spectral-domain optical coherence tomography (OCT). Forty-seven patients with optic disc swelling participated in the cross-sectional study. Both GDx SLP (enhanced corneal compensation) and Spectralis spectral-domain OCT measurements of RNFLT were made in 19 eyes with papilledema (PE), ten eyes with optic neuritis (ON), and 18 eyes with nonarteritic anterior ischemic optic neuropathy (NAION) at the neuro-ophthalmology clinic at Kyoto University Hospital. Differences in SLP (SLP-RNFLT) and OCT (OCT-RNFLT) measurements among different etiologies were investigated. No statistical differences in average OCT-RNFLT among PE, ON, and NAION patients were noted. Average SLP-RNFLT in NAION patients was smaller than in PE (P<0.01) or ON (P=0.02) patients. When RNFLT in each retinal quadrant was compared, no difference among etiologies was noted on OCT, but on SLP, the superior quadrant was thinner in NAION than in PE (P<0.001) or ON (P=0.001) patients. Compared with age-adjusted normative data of SLP-RNFLT, average SLP-RNFLT in PE (P<0.01) and ON (P<0.01) patients was greater. Superior SLP-RNFLT in NAION patients was smaller (P=0.026). The ratio of average SLP-RNFLT to average OCT-RNFLT was smaller in NAION than in PE (P=0.001) patients. In the setting of RNFL thickening, despite increased light retardance in PE and ON eyes, SLP revealed that NAION eyes have less retardance, possibly associated with ischemic axonal loss.

  7. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  8. Fiber structural analysis by synchrotron radiation

    CERN Document Server

    Kojima, J I; Kikutani, T

    2003-01-01

    Topics of fiber structural analysis by synchrotron radiation are explained. There are only three synchrotron radiation facilities in the world, SPring-8 (Super Photon ring-8) in Japan, APS (Advanced Photon Source) in U.S.A. and ESRF (European Synchrotron Radiation Facility) in France. Online measurement of melt spinning process of PET and Nylon6 is explained in detail. Polypropylene and PBO (poly-p-phenylenebenzobisoxazole) was measured by WAXD (Wide Angle X-ray Diffraction)/SAXS (Small Angle X-ray Scattering) at the same time. Some examples of measure of drawing process of fiber are described. The structure formation process of spider's thread was measured. Micro beam of X-ray of synchrotron facility was improved and it attained to 65nm small angle resolving power by 10 mu m beamsize. (S.Y.)

  9. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  10. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution.

    Science.gov (United States)

    Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

    2013-12-01

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  11. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  12. Angle-resolved polarimetry of antenna-mediated fluorescence

    NARCIS (Netherlands)

    Mohtashami, A.; Osorio, C.I.; Koenderink, A.F.

    2015-01-01

    Optical phase-array antennas can be used to control not only the angular distribution but also the polarization of fluorescence from quantum emitters. The emission pattern of the resulting system is determined by the properties of the antenna, the properties of the emitters, and the strength of the

  13. Angle Resolved Performance Measurements on PV Glass and Modules

    DEFF Research Database (Denmark)

    Juutilainen, Line Tollund; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    The angular response of PV-modules has significant impact on the energy production. This is especially pronounced in BIPV where installation angles often are far from optimal. Nevertheless, a gain in energy yield may be obtained by choosing a proper glass as superstrate. In this work we present...

  14. Angle-resolved time delay in photoemission of neon

    CERN Document Server

    Wätzel, J; Pavlyukh, Y; Berakdar, J

    2013-01-01

    We investigate theoretically the relative time delay of photoelectrons originating from the different subshells (2s and 2p) of neon. This quantity was measured via attosecond streaking and studied theoretically by Schultze et al. [Science 328, 1658 (2010)]. A substantial discrepancy was found between the measured and the calculated values of the relative time delay. Several theoretical studies has been put forward to resolve this issue, e.g. by including correlation effects. In the present paper we explore the directional dependence of the photoelectron emission and the consequences for the inferred time delay. Our quantum mechanical calculations for an electron subject to laser fields and an effective single particle potential show that the time delay is indeed strongly angular dependent. Compared to strict forward emission we find that accounting for emission within a cone of 45 deg aperture, leads to a substantially increase of the relative time delay.

  15. Cooperative scans

    NARCIS (Netherlands)

    M. Zukowski (Marcin); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2004-01-01

    textabstractData mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most

  16. Structure-function relationship between the octopus perimeter cluster mean sensitivity and sector retinal nerve fiber layer thickness measured with the RTVue optical coherence tomography and scanning laser polarimetry.

    Science.gov (United States)

    Naghizadeh, Farzaneh; Garas, Anita; Vargha, Péter; Holló, Gábor

    2014-01-01

    To determine structure-function relationship between each of 16 Octopus perimeter G2 program clusters and the corresponding 16 peripapillary sector retinal nerve fiber layer thickness (RNFLT) values measured with the RTVue-100 Fourier-domain optical coherence tomography (RTVue OCT) and scanning laser polarimetry with variable corneal compensation (GDx-VCC) and enhanced corneal compensation (GDx-ECC) corneal compensation. One eye of 110 white patients (15 healthy, 20 ocular hypertensive, and 75 glaucoma eyes) were investigated. The Akaike information criterion and the F test were used to identify the best fitting model. Parabolic relationship with logarithmic cluster mean sensitivity and linear sector RNFLT values provided the best fit. For RTVue OCT, significant (P0.05) was found for the control eyes. Mean sensitivity of the Octopus visual field clusters showed significant parabolic relationship with the corresponding peripapillary RNFLT sectors. The relationship was more general with the RTVue OCT than GDx-VCC or GDx-ECC. The results show that visual field clusters of the Octopus G program can be applied for detailed structure-function research.

  17. Time-Resolved Study of Nanomorphology and Nanomechanic Change of Early-Stage Mineralized Electrospun Poly(lactic acid) Fiber by Scanning Electron Microscopy, Raman Spectroscopy and Atomic Force Microscopy.

    Science.gov (United States)

    Wang, Mengmeng; Cai, Yin; Zhao, Bo; Zhu, Peizhi

    2017-08-17

    In this study, scanning electron microscopy (SEM), Raman spectroscopy and high-resolution atomic force microscopy (AFM) were used to reveal the early-stage change of nanomorphology and nanomechanical properties of poly(lactic acid) (PLA) fibers in a time-resolved manner during the mineralization process. Electrospun PLA nanofibers were soaked in simulated body fluid (SBF) for different periods of time (0, 1, 3, 5, 7 and 21 days) at 10 °C, much lower than the conventional 37 °C, to simulate the slow biomineralization process. Time-resolved Raman spectroscopy analysis can confirm that apatites were deposited on PLA nanofibers after 21 days of mineralization. However, there is no significant signal change among several Raman spectra before 21 days. SEM images can reveal the mineral deposit on PLA nanofibers during the process of mineralization. In this work, for the first time, time-resolved AFM was used to monitor early-stage nanomorphology and nanomechanical changes of PLA nanofibers. The Surface Roughness and Young's Modulus of the PLA nanofiber quantitatively increased with the time of mineralization. The electrospun PLA nanofibers with delicate porous structure could mimic the extracellular matrix (ECM) and serve as a model to study the early-stage mineralization. Tested by the mode of PLA nanofibers, we demonstrated that AFM technique could be developed as a potential diagnostic tool to monitor the early onset of pathologic mineralization of soft tissues.

  18. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  19. MRI Scans

    Science.gov (United States)

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from ...

  20. Bone Scan

    Science.gov (United States)

    ... posts Join Mayo Clinic Connect Bone scan About Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  1. Natural fibers

    Science.gov (United States)

    Craig M. Clemons; Daniel F. Caulfield

    2005-01-01

    The term “natural fibers” covers a broad range of vegetable, animal, and mineral fibers. However, in the composites industry, it usually refers to wood fiber and agrobased bast, leaf, seed, and stem fibers. These fibers often contribute greatly to the structural performance of the plant and, when used in plastic composites, can provide significant reinforcement. Below...

  2. Scanning table

    CERN Multimedia

    1960-01-01

    Before the invention of wire chambers, particles tracks were analysed on scanning tables like this one. Today, the process is electronic and much faster. Bubble chamber film - currently available - (links can be found below) was used for this analysis of the particle tracks.

  3. Scan Statistics

    CERN Document Server

    Glaz, Joseph

    2009-01-01

    Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.

  4. Fiber biology

    Science.gov (United States)

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  5. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ... the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is a ...

  7. Thyroid Scan and Uptake

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ... the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is a ...

  8. Adaptive phase compensation for ultracompact laser scanning endomicroscopy.

    Science.gov (United States)

    Thompson, Alex J; Paterson, Carl; Neil, Mark A A; Dunsby, Chris; French, Paul M W

    2011-05-01

    We present an approach to laser scanning endomicroscopy that requires no moving parts and can be implemented with no distal scanners or optics, permitting extremely compact endoscopic probes to be developed. Our approach utilizes a spatial light modulator to correct for phase variations across a fiber imaging bundle and to encode for arbitrary wavefronts at the distal end of the fiber bundle. Thus, it is possible to realize both focusing and beam scanning at the output of the fiber bundle with no distal components. We present proof of principle results to illustrate three-dimensional scanning of the focal spot and exemplar images of a United States Air Force resolution test chart.

  9. Dietary Fiber

    Science.gov (United States)

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble ... types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and ...

  10. Man-made mineral fiber size fractions and their interrelation.

    Science.gov (United States)

    Schneider, T; Skotte, J; Nissen, P

    1985-04-01

    The fiber fractions RFOM (respirable fibers, determined by optical microscopy), SF (Stanton fibers), PF (Pott fibers), and FLOM (total length of optically visible, respirable fibers) and their ratios have been (i) determined experimentally in fiber sizes obtained by scanning electron microscopy of air samples of man-made mineral fibers and (ii) calculated theoretically for a range of fiber size distributions, assumed to be bivariate log-normal. For realistic values of fiber size parameters, RFOM and even FLOM are good predictors of Stanton and Pott fibers, the better the more-detailed the size information available is. The results point towards a possibility of estimating past exposure to Stanton or Pott fiber fractions of airborne man-made mineral fibers, even though only RFOM were determined.

  11. Reusing recycled fibers in high-value fiber-reinforced polymer composites: Improving bending strength by surface cleaning

    OpenAIRE

    Shi, Jian; Bao, Limin; Kobayashi, Ryouhei; Kato, Jun; Kemmochi, Kiyoshi

    2012-01-01

    Glass fiber-reinforced polymer (GFRP) composites and carbon fiber-reinforced polymer (CFRP) composites were recycled using superheated steam. Recycled glass fibers (R-GFs) and recycled carbon fibers (R-CFs) were surface treated for reuse as fiber-reinforced polymer (FRP) composites. Treated R-GFs (TR-GFs) and treated R-CFs (TR-CFs) were characterized by scanning electron microscopy (SEM) and remanufactured by vacuum-assisted resin transfer molding (VARTM). Most residual resin impurities were ...

  12. Water Fibers

    CERN Document Server

    Douvidzon, Mark L; Martin, Leopoldo L; Carmon, Tal

    2016-01-01

    Fibers constitute the backbone of modern communication and are used in laser surgeries; fibers also genarate coherent X-ray, guided-sound and supercontinuum. In contrast, fibers for capillary oscillations, which are unique to liquids, were rarely considered in optofluidics. Here we fabricate fibers by water bridging an optical tapered-coupler to a microlensed coupler. Our water fibers are held in air and their length can be longer than a millimeter. These hybrid fibers co-confine two important oscillations in nature: capillary- and electromagnetic-. We optically record vibrations in the water fiber, including an audio-rate fundamental and its 3 overtones in a harmonic series, that one can hear in soundtracks attached. Transforming Micro-Electro-Mechanical-Systems [MEMS] to Micro-Electro-Capillary-Systems [MECS], boosts the device softness by a million to accordingly improve its response to minute forces. Furthermore, MECS are compatible with water, which is a most important liquid in our world.

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... limitations of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... top of page What are some common uses of the procedure? The thyroid scan is used to ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... of page What are some common uses of the procedure? The thyroid scan is used to determine ...

  15. Lumbar spine CT scan

    Science.gov (United States)

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower ... The lumbar CT scan is good for evaluating large herniated disks, ... smaller ones. This test can be combined with a myelogram to get ...

  16. Arm CT scan

    Science.gov (United States)

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... stopping.) A computer creates separate images of the arm area, called slices. These images can be stored, ...

  17. Thoracic spine CT scan

    Science.gov (United States)

    CAT scan - thoracic spine; Computed axial tomography scan - thoracic spine; Computed tomography scan - thoracic spine; CT scan - ... Philadelphia, PA: Elsevier Mosby; 2013:chap 44. US Food and Drug Administration. Computed tomography (CT). Updated August ...

  18. Comparison of F-12 aramid fiber with domestic armid fiber III on surface feature

    Science.gov (United States)

    Zhang, Shu-hui; He, Guo-qiang; Liang, Guo-zheng; Cui, Hong; Zhang, Wei; Wang, Bin

    2010-01-01

    A comparison of F-12 aramid fiber with domestic armid fiber III (DAF III) on surface feature was carried out by scanning electron microscope (SEM), atomic force microscopy (AFM), elements analysis and X-ray Photoelectron Spectroscopy (XPS) analysis. It is found that the two aramid fibers are of "skin-core" structure and fibrillar structure. The microfibrils orient along the fiber axis and rather poorly bond in transverse direction. Many defects exist on the surface of two fibers. Carbon, hydrogen, nitrogen and oxygen are the major elements of two aramid fiber. The element content of the same aramid fiber from surface to interior is different. The surface carbon contents of F-12 aramid fiber and DAF III are increased by 10.75% and 9.95% than those in fiber interior respectively, the surface nitrogen content decreased by 9.72% and 27.02% respectively, and the surface oxygen content increased by 13.99% and 37.95% respectively.

  19. Electron microscopy study of refractory ceramic fibers.

    Science.gov (United States)

    MacKinnon, P A; Lentz, T J; Rice, C H; Lockey, J E; Lemasters, G K; Gartside, P S

    2001-10-01

    In epidemiological studies designed to identify potential health risks of exposures to synthetic vitreous fibers, the characterization of airborne fiber dimensions may be essential for assessing mechanisms of fiber toxicity. Toward this end, air sampling was conducted as part of an industry-wide study of workers potentially exposed to airborne fibrous dusts during the manufacture of refractory ceramic fibers (RCF) and RCF products. Analyses of a subset of samples obtained on the sample filter as well as on the conductive sampling cowl were performed using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to characterize dimensions of airborne fibers. Comparison was made of bivariate fiber size distributions (length and diameter) from air samples analyzed by SEM and by TEM techniques. Results of the analyses indicate that RCF size distributions include fibers small enough in diameter (fibers (> 60 microm) may go undetected by TEM, as evidenced by the proportion of fibers in this category for TEM and SEM analyses (1% and 5%, respectively). Limitations of the microscopic techniques and differences in fiber-sizing rules for each method are believed to have contributed to the variation among fiber-sizing results. It was concluded from these data that further attempts to characterize RCF exposure in manufacturing and related operations should include analysis by TEM and SEM, since the smallest diameter fibers are not resolved with SEM and the fibers of longer length are not sized by TEM.

  20. Line-scanning confocal microendoscope for nuclear morphometry imaging

    Science.gov (United States)

    Tang, Yubo; Carns, Jennifer; Richards-Kortum, Rebecca R.

    2017-11-01

    Fiber-optic endomicroscopy is a minimally invasive method to image cellular morphology in vivo. Using a coherent fiber bundle as an image relay, it allows additional imaging optics to be placed at the distal end of the fiber outside the body. In this research, we use this approach to demonstrate a compact, low-cost line-scanning confocal fluorescence microendoscope that can be constructed for pathological conditions.

  1. Brain PET scan

    Science.gov (United States)

    ... have false results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  2. Coronary Calcium Scan

    Science.gov (United States)

    ... Back To Health Topics / Coronary Calcium Scan Coronary Calcium Scan Also known as Calcium Scan Test A coronary calcium scan is a CT scan of your heart that detects and measures the amount of calcium in the walls of your coronary arteries. Overview ...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... code: Phone no: Thank you! Do you have a personal story about radiology? Share your patient story ...

  4. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... taking our brief survey: Survey Do you have a personal story about radiology? Share your patient story ...

  6. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...... source into the proximal ends of the first optical fibers, wherein the first optical coupler comprises a plurality of lens elements including a first lens element and a second lens element, each of the plurality of lens elements comprising a primary surface facing a distal end of the first optical...... coupler, and a secondary surface facing a proximal end of the first optical coupler....

  7. Optical Fibers

    Science.gov (United States)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  8. Vacuum fiber-fiber coupler

    Science.gov (United States)

    Heinrici, Axel; Bjelajac, Goran; Jonkers, Jeroen; Jakobs, Stefan; Olschok, Simon; Reisgen, Uwe

    2017-02-01

    Research and development carried out by the ISF Welding and Joining Institute of RWTH Aachen University has proven that combining high power laser and low vacuum atmosphere provides a welding performance and quality, which is comparable to electron beam welding. The developed welding machines are still using a beam forming which takes place outside the vacuum and the focusing laser beam has to be introduced to the vacuum via a suitable window. This inflexible design spoils much of the flexibility of modern laser welding. With the target to bring a compact, lightweight flying optics with flexible laser transport fibers into vacuum chambers, a high power fiber-fiber coupler has been adapted by II-VI HIGHYAG that includes a reliable vacuum interface. The vacuum-fiber-fiber coupler (V-FFC) is tested with up to 16 kW sustained laser power and the design is flexible in terms of a wide variety of laser fiber plug systems and vacuum flanges. All that is needed to implement the V-FFC towards an existing or planned vacuum chamber is an aperture of at least 100 mm (4 inch) diameter with any type of vacuum or pressure flange. The V-FFC has a state-of-the-art safety interface which allows for fast fiber breakage detection for both fibers (as supported by fibers) by electric wire breakage and short circuit detection. Moreover, the System also provides connectors for cooling and electric signals for the laser beam optics inside the vacuum. The V-FFC has all necessary adjustment options for coupling the laser radiation to the receiving fiber.

  9. Carbon Fiber Damage in Accelerator Beam

    CERN Document Server

    Sapinski, M; Guerrero, A; Koopman, J; Métral, E

    2009-01-01

    Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

  10. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Uicab, O. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Yazdani-Pedram, M. [Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, S. Livingstone 1007, Independencia, Santiago (Chile); Toro, P. [Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Beauchef 850, Santiago (Chile); Gamboa, F. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso, 97310 Mérida, Yucatán (Mexico); Mazo, M.A.; Nistal, A.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain)

    2016-11-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO{sub 3}/H{sub 2}SO{sub 4} reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  11. Fiber-reinforced syntactic foams

    Science.gov (United States)

    Huang, Yi-Jen

    Long fibers are generally preferred for reinforcing foams for performance reasons. However, uniform dispersion is difficult to achieve because they must be mixed with liquid resin prior to foam expansion. New approaches aiming to overcome such problem have been developed at USC's Composites Center. Fiber-reinforced syntactic foams with long fibers (over 6 mm in length) manufactured at USC's Composites Center have achieved promising mechanical properties and demonstrated lower density relative to conventional composite foams. Fiber-reinforced syntactic foams were synthesized from thermosetting polymeric microspheres (amino and phenolic microspheres), as well as thermoplastic PVC heat expandable microspheres (HEMs). Carbon and/or aramid fibers were used to reinforce the syntactic foams. Basic mechanical properties, including shear, tensile, and compression, were measured in syntactic foams and fiber-reinforced syntactic foams. Microstructure and crack propagation behavior were investigated by scanning electron microscope and light microscopy. Failure mechanisms and reinforcing mechanisms of fiber-reinforced syntactic foams were also analyzed. As expected, additions of fiber reinforcements to foams enhanced both tensile and shear properties. However, only limited enhancement in compression properties was observed, and fiber reinforcement was of limited benefit in this regard. Therefore, a hybrid foam design was explored and evaluated in an attempt to enhance compression properties. HEMs were blended with glass microspheres to produce hybrid foams, and hybrid foams were subsequently reinforced with continuous aramid fibers to produce fiber-reinforced hybrid foams. Mechanical properties of these foams were evaluated. Findings indicated that the production of hybrid foams was an effective way to enhance the compressive properties of syntactic foams, while the addition of fiber reinforcements enhanced the shear and tensile performance of syntactic foams. Another approach

  12. Effect of Sisal Fiber Surface Treatment on Properties of Sisal Fiber Reinforced Polylactide Composites

    Directory of Open Access Journals (Sweden)

    Zhaoqian Li

    2011-01-01

    Full Text Available Mechanical properties of composites are strongly influenced by the quality of the fiber/matrix interface. The objective of this study was to evaluate the mechanical properties of polylactide (PLA composites as a function of modification of sisal fiber with two different macromolecular coupling agents. Sisal fiber reinforced polylactide composites were prepared by injection molding, and the properties of composites were studied by static/dynamic mechanical analysis (DMA. The results from mechanical testing revealed that surface-treated sisal fiber reinforced composite offered superior mechanical properties compared to untreated fiber reinforced polylactide composite, which indicated that better adhesion between sisal fiber and PLA matrix was achieved. Scanning electron microscopy (SEM investigations also showed that surface modifications improved the adhesion of the sisal fiber/polylactide matrix.

  13. Low-fiber diet

    Science.gov (United States)

    ... residue; Low-fiber diet; Fiber restricted diet; Crohn disease - low fiber diet; Ulcerative colitis - low fiber diet; ... pulp: Yellow squash (without seeds) Spinach Pumpkin Eggplant Potatoes, without skin Green beans Wax beans Asparagus Beets ...

  14. Soluble vs. insoluble fiber

    Science.gov (United States)

    Insoluble vs. soluble fiber; Fiber - soluble vs. insoluble ... There are 2 different types of fiber -- soluble and insoluble. Both are important for health, digestion, and preventing diseases. Soluble fiber attracts water and turns to gel during digestion. This slows ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... concern for you. If you had an intravenous line inserted for the procedure, it will usually be ... procedure that same day that requires an intravenous line. Actual scanning time for a thyroid scan is ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... the limitations of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid ... body converts food to energy. top of page What are some common uses of the procedure? The ...

  17. RBC nuclear scan

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  18. 1940 nm all-fiber Q-switched fiber laser

    Science.gov (United States)

    Ahmadi, P.; Estrada, A.; Katta, N.; Lim, E.; McElroy, A.; Milner, T. E.; Mokan, V.; Underwood, M.

    2017-02-01

    We present development of a nanosecond Q-switched Tm3+-doped fiber laser with 16 W average power and 4.4 kW peak power operating at 1940 nm. The laser has a master oscillator power amplifier design, and uses large mode area Tm3+-doped fibers as the gain medium. Special techniques are used to splice Tm3+-doped fibers to minimize splice loss. The laser design is optimized to reduce non-linear effects, including modulation instability. Pulse width broadening due to high gain is observed and studied in detail. Medical surgery is a field of application where this laser may be able to improve clinical practice. The laser together with scanning galvanometer mirrors is used to cut precisely around small footprint vessels in tissue phantoms without leaving any visible residual thermal damage. These experiments provide proof-of-principle that this laser has promising potential in the laser surgery application space.

  19. Scanning laser polarimetry in glaucoma.

    Science.gov (United States)

    Dada, Tanuj; Sharma, Reetika; Angmo, Dewang; Sinha, Gautam; Bhartiya, Shibal; Mishra, Sanjay K; Panda, Anita; Sihota, Ramanjit

    2014-11-01

    Glaucoma is an acquired progressive optic neuropathy which is characterized by changes in the optic nerve head and retinal nerve fiber layer (RNFL). White-on-white perimetry is the gold standard for the diagnosis of glaucoma. However, it can detect defects in the visual field only after the loss of as many as 40% of the ganglion cells. Hence, the measurement of RNFL thickness has come up. Optical coherence tomography and scanning laser polarimetry (SLP) are the techniques that utilize the evaluation of RNFL for the evaluation of glaucoma. SLP provides RNFL thickness measurements based upon the birefringence of the retinal ganglion cell axons. We have reviewed the published literature on the use of SLP in glaucoma. This review elucidates the technological principles, recent developments and the role of SLP in the diagnosis and monitoring of glaucomatous optic neuropathy, in the light of scientific evidence so far.

  20. Scanning laser polarimetry in glaucoma

    Directory of Open Access Journals (Sweden)

    Tanuj Dada

    2014-01-01

    Full Text Available Glaucoma is an acquired progressive optic neuropathy which is characterized by changes in the optic nerve head and retinal nerve fiber layer (RNFL. White-on-white perimetry is the gold standard for the diagnosis of glaucoma. However, it can detect defects in the visual field only after the loss of as many as 40% of the ganglion cells. Hence, the measurement of RNFL thickness has come up. Optical coherence tomography and scanning laser polarimetry (SLP are the techniques that utilize the evaluation of RNFL for the evaluation of glaucoma. SLP provides RNFL thickness measurements based upon the birefringence of the retinal ganglion cell axons. We have reviewed the published literature on the use of SLP in glaucoma. This review elucidates the technological principles, recent developments and the role of SLP in the diagnosis and monitoring of glaucomatous optic neuropathy, in the light of scientific evidence so far.

  1. Effect of fiber volume fraction and length on the wear characteristics of glass fiber-reinforced dental composites.

    Science.gov (United States)

    Callaghan, David J; Vaziri, Ashkan; Nayeb-Hashemi, Hamid

    2006-01-01

    The main objective of this study was to evaluate the wear characteristics of fiber-reinforced dental composites. Variables under investigation include the fiber weight percent added to the matrix as well as fiber length. Dental specimens with glass fiber content of 2, 5.1, 5.7, and 7.6 wt% with fiber length of either 1.5 or 3 mm, were prepared by mixing an activated dental resin with commercial glass fibers. The specimens were then tested on a pin on disc setup, where the antagonist disc was manufactured of a similar fiber-reinforced composite with 5.1 wt% fiber and fiber length of 3 mm. The volume loss and coefficient of friction of the specimens was monitored periodically throughout testing. In addition, the wear surfaces of all specimens were evaluated using a scanning electron microscope. The specimens with 5.7 wt% fibers and fiber length of 3 mm performed better in this study compared to all other fiber-reinforced specimens under all load conditions. In fact, this specimen had a comparable wear rate to a particle-filled dental composite. For the fiber lengths considered, increasing the length of the fibers increased the wear resistance of the specimen. The coefficient of friction showed a good correlation with the wear resistance of specimens. Fiber-reinforced composites demonstrated a high resistance to wear and may therefore be advantageous for dental applications, where high wear resistance is essential to functionality.

  2. Fiber resources

    Science.gov (United States)

    P. J. Ince

    2004-01-01

    In economics, primary inputs or factors of production define the term ‘resources.’ Resources include land resources (plants, animals, and minerals), labor, capital, and entrepreneurship. Almost all pulp and paper fiber resources are plant materials obtained from trees or agricultural crops. These resources encompass plant materials harvested directly from the land (...

  3. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  4. Polypropylene/hemp woody core fiber composites: Morphology, mechanical, thermal properties, and water absorption behaviors

    OpenAIRE

    Chakaphan Ngaowthong; Vilai Rungsardthong; Suchart Siengchin

    2016-01-01

    Natural fiber composites composed of polypropylene, maleic anhydride-graft-polypropylene, and hemp woody core fiber were produced by two-roll mill mixing. The hemp woody core fiber was treated by alkaline. The morphology of the polypropylene/hemp woody core fiber composites was studied by scanning electron microscopy technique. The mechanical and thermo-mechanical properties of the polypropylene/hemp woody core fiber composites were determined in tensile, flexural tests, and thermogravimetric...

  5. Sequential multi-channel OCT in the retina using high-speed fiber optic switches

    Science.gov (United States)

    Wartak, Andreas; Augustin, Marco; Beer, Florian; Haindl, Richard; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.

    2017-07-01

    A sequential multi-channel OCT prototype featuring high-speed fiber optical switches to enable inter A-scan (A-scan rate: 100 kHz) sample arm switching was developed and human retinal image data is presented.

  6. Characterization and Oxidation Behavior of Rayon-Derived Carbon Fibers

    Science.gov (United States)

    Jacobson, Nathan; Hull, David

    2010-01-01

    Rayon-derived fibers are the central constituent of reinforced carbon/ carbon (RCC) composites. Optical, scanning electron, and transmission electron microscopy were used to characterize the as-fabricated fibers and the fibers after oxidation. Oxidation rates were measured with weight loss techniques in air and oxygen. The as-received fibers are approximately 10 micron in diameter and characterized by grooves or crenulations around the edges. Below 800 C, in the reaction-controlled region, preferential attack began in the crenulations and appeared to occur down fissures in the fibers.

  7. Industrial fiber lidar: some applications

    Science.gov (United States)

    Belanger, Brigitte; Fougeres, Andre; Talbot, Mario; Roy, Gilles

    2000-12-01

    In recent years, INO has developed an eye-safe, transportable industrial fiber lidar (IFL) for industrial applications of pollution control during handling of loose materials'2. However, it can also be used for other applications like urban particulates monitoring, cloud mapping, and unattended surveillance. The IPL is a compact and direct scanning lidar. It is based on 1140's diode pumped Erbium doped fiber laser, which delivers an energy of 1 .5microJoules in l2ns pulses with a high repetition rate of 10kHz at an eye-safe wavelength of 1.5microns. 1140's lidar system is composed of a lidar head containing the transmitter-receiver optics in a biaxial configuration mounted on a scanning platform. The lidar head is connected to the laser source and detector via optical fibers. A computer controls the scanning platform via an optical RS- 232 communication link. This allows remote operation since sensitive equipment like the laser and the computer can be located away from the surveillance site in an environmentally controlled room. The TEL characteristics and results obtained from monitoring in an urban area and field trials on surveillance of hard targets and transmission through obscurants will be detailed.

  8. Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers.

    Science.gov (United States)

    Xiang, Changsheng; Lu, Wei; Zhu, Yu; Sun, Zhengzong; Yan, Zheng; Hwang, Chi-Chau; Tour, James M

    2012-01-01

    Conductive carbon material-coated Kevlar fibers were fabricated through layer-by-layer spray coating. Polyurethane was used as the interlayer between the Kevlar fiber and carbon materials to bind the carbon materials to the Kevlar fiber. Strongly adhering single-walled carbon nanotube coatings yielded a durable conductivity of 65 S/cm without significant mechanical degradation. In addition, the properties remained stable after bending or water washing cycles. The coated fibers were analyzed using scanning electron microcopy and a knot test. The as-produced fiber had a knot efficiency of 23%, which is more than four times higher than that of carbon fibers. The spray-coating of graphene nanoribbons onto Kevlar fibers was also investigated. These flexible coated-Kevlar fibers have the potential to be used for conductive wires in wearable electronics and battery-heated armors. © 2011 American Chemical Society

  9. Tensile Strength of Epoxy Composites Reinforced with Fique Fibers

    Science.gov (United States)

    Altoé, Giulio Rodrigues; Netto, Pedro Amoy; Teles, Maria Carolina Andrade; Borges, Luiz Gustavo Xavier; Margem, Frederico Muylaert; Monteiro, Sergio Neves

    Environmentally friendly composites, made from natural fibers, are among the most investigated and applied today. Natural fibers have showed advantages, such as, flexibility and toughness, if compared with synthetic fibers. This work investigates the tensile strength of epoxy composites reinforced with Fique fibers. The Fique fiber was extracted from Fique leaf presents some significant characteristic, but until now only few studies on Fique fiber were performed. Composites reinforced with up to 30% in volume of long, continuous and aligned Fique fibers were tested in an Instron machine at room temperature. The incorporation of Fique fibers increases the tensile strength of the composite. After fracture the specimens were analyzed by a SEM (scanning electron microscope).

  10. MEMS-BASED 3D CONFOCAL SCANNING MICROENDOSCOPE USING MEMS SCANNERS FOR BOTH LATERAL AND AXIAL SCAN.

    Science.gov (United States)

    Liu, Lin; Wang, Erkang; Zhang, Xiaoyang; Liang, Wenxuan; Li, Xingde; Xie, Huikai

    2014-08-15

    A fiber-optic 3D confocal scanning microendoscope employing MEMS scanners for both lateral and axial scan was designed and constructed. The MEMS 3D scan engine achieved a lateral scan range of over ± 26° with a 2D MEMS scanning micromirror and a depth scan of over 400 μm with a 1D MEMS tunable microlens. The lateral resolution and axial resolution of this system were experimentally measured as 1.0 μm and 7.0 μm, respectively. 2D and 3D confocal reflectance images of micro-patterns, micro-particles, onion skins and acute rat brain tissue were obtained by this MEMS-based 3D confocal scanning microendoscope.

  11. Polymer matrix and graphite fiber interface study

    Science.gov (United States)

    Adams, D. F.; Zimmerman, R. S.; Odom, E. M.

    1985-01-01

    Hercules AS4 graphite fiber, unsized, or with EPON 828, PVA, or polysulfone sizing, was combined with three different polymer matrices. These included Hercules 3501-6 epoxy, Hercules 4001 bismaleimide, and Hexcel F155 rubber toughened epoxy. Unidirectional composites in all twelve combinations were fabricated and tested in transverse tension and axial compression. Quasi-isotropic laminates were tested in axial tension and compression, flexure, interlaminar shear, and tensile impact. All tests were conducted at both room temperature, dry and elevated temperature, and wet conditions. Single fiber pullout testing was also performed. Extensive scanning electron microphotographs of fracture surfaces are included, along with photographs of single fiber pullout failures. Analytical/experimental correlations are presented, based on the results of a finite element micromechanics analysis. Correlations between matrix type, fiber sizing, hygrothermal environment, and loading mode are presented. Results indicate that the various composite properties were only moderately influenced by the fiber sizings utilized.

  12. Comparative investigations of the biodurability of mineral fibers in the rat lung.

    Science.gov (United States)

    Muhle, H; Bellmann, B; Pott, F

    1994-10-01

    The biodurability of various glass fibers, rockwool, and ceramic fibers was examined in rat lungs and compared with natural mineral fibers. Experiments were based on studies that have shown that the biodurability of fibers is one of the essential factors of the carcinogenic potency of these materials. Sized fractions of fibers were instilled intratracheally into Wistar rats. The evenness of distribution of fibers in the lung was checked by scanning electron microscopy (SEM) or careful examination of the fiber suspension before treatment. After serial sacrifices up to 24 months after treatment, the fibers were analyzed by SEM following low temperature ashing of the lungs. Parameters measured included number of fibers, diameter, and length distribution at the various sacrifice dates, so that analyses could be made of the elimination kinetics of fibers from the lung in relation to fiber length (FL). Size selective plots of the fiber elimination correlated with fiber diameters enables the mechanism of the fiber elimination (dissolution, fiber breakage, physical clearance) to be interpreted. The half-time of fiber elimination from the lung ranges from about 10 days for wollastonite to more than 300 days for crocidolite. The biodurability of man-made vitreous fibers (MMVF) is between these values and is dependent on the chemical composition of the fibers and the diameter and length distribution. Results indicate that the in vivo durability of glass fibers is considerably longer than expected from extrapolation of published data on their in vitro dissolution rates.

  13. Comparative investigations of the biodurability of mineral fibers in the rat lung.

    Science.gov (United States)

    Muhle, H; Bellmann, B; Pott, F

    1994-01-01

    The biodurability of various glass fibers, rockwool, and ceramic fibers was examined in rat lungs and compared with natural mineral fibers. Experiments were based on studies that have shown that the biodurability of fibers is one of the essential factors of the carcinogenic potency of these materials. Sized fractions of fibers were instilled intratracheally into Wistar rats. The evenness of distribution of fibers in the lung was checked by scanning electron microscopy (SEM) or careful examination of the fiber suspension before treatment. After serial sacrifices up to 24 months after treatment, the fibers were analyzed by SEM following low temperature ashing of the lungs. Parameters measured included number of fibers, diameter, and length distribution at the various sacrifice dates, so that analyses could be made of the elimination kinetics of fibers from the lung in relation to fiber length (FL). Size selective plots of the fiber elimination correlated with fiber diameters enables the mechanism of the fiber elimination (dissolution, fiber breakage, physical clearance) to be interpreted. The half-time of fiber elimination from the lung ranges from about 10 days for wollastonite to more than 300 days for crocidolite. The biodurability of man-made vitreous fibers (MMVF) is between these values and is dependent on the chemical composition of the fibers and the diameter and length distribution. Results indicate that the in vivo durability of glass fibers is considerably longer than expected from extrapolation of published data on their in vitro dissolution rates. PMID:7882923

  14. Tensile Properties and Deflection Temperature of Polypropylene/Sumberejo Kenaf Fiber Composites with Fiber Content Variation

    Science.gov (United States)

    Ollivia, S. L.; Juwono, A. L.; Roseno, Seto

    2017-05-01

    The use of synthetic fibers as reinforcement in composites has disadvantage which are unsustainable and an adverse impact on the environment. An alternative reinforcement for composites is natural fiber. Polypropylene and Sumberejo kenaf fibers were used respectively as the matrix and reinforcement. The aim of this research was to obtain the optimum tensile properties and deflection temperature with the variation of kenaf fiber fractions. Polypropylene/kenaf fiber composites were fabricated by hot press method. The kenaf fiber was soaked in NaOH solution before being used as the reinforcement and polypropylene was extruded before being used as the matrix. The weight fractions were varied to produce composites and pristine polypropylene samples were also prepared for comparison. The optimum tensile strength, modulus and deflection temperature were found in the composites with the 40 wt% kenaf fiber fraction with an increase up to 80% and 170% compared to the pristine polypropylene with the values of (60.3 ± 4,3) MPa and (159.1 ± 1,8) °C respectively. The Scanning Electron Microscope observation results in the fracture surface of the composites with the 40 wt% fiber fraction showed a relatively good bonding interface between fibers and the matrix and the failure modes were fiber breakage and matrix failures.

  15. A study of ultra-strength polymer fibers via calorimetry

    Science.gov (United States)

    Egorov, V. M.; Boiko, Yu. M.; Marikhin, V. A.; Myasnikova, L. P.; Radovanova, E. I.

    2016-08-01

    Xerogel reactor powders and supramolecular polyethylene fibers with various degrees of hood have been studied via differential scanning calorimetry. A higher strength of laboratory fibers in comparison with industrial ones is found to be achieved due to a multistage band high-temperature hood that causes the thermodynamic parameters of supramolecular polymer structure.

  16. Interferometer-controlled soft X-ray scanning photoemission microscope at SOLEIL

    Science.gov (United States)

    Avila, José; Razado-Colambo, Ivy; Lorcy, Stephane; Giorgetta, Jean-Luc; Polack, François; Asensio, Maria C.

    2013-03-01

    ANTARES beamline (BL), a new soft X-ray scanning photoemission microscope located at the SOLEIL synchrotron storage ring has been recently designed, built and commissioned. The implemented interferometer control allows the accurate measurement of the transverse position of the Fresnel zone plate (FZP) relative to the sample. An effective sample position feedback has been achieved during experiments in static mode, with a fixed FZP position required to perform nano Angle-Resolved Photoelectron Spectroscopy (Nano-ARPES) measurements. Likewise, long-term stability has been attained for the FZP position relative to the sample during the translation of the FZP when performing typical X-ray absorption experiments around the absorption edges of light elements. Moreover, a fully automatic feedback digital control of the interferometric system provides extremely low orthogonal distortion of the recorded two-dimensional images. The microscope is diffraction limited with the resolution set to several tens of nanometers by the quality of the zone plates. Details on the design of the interferometric system and a brief description of the first commissioning results are presented here.

  17. Characterization of ecofriendly polyethylene fiber from plastic bag waste

    Science.gov (United States)

    Soekoco, Asril S.; Noerati, Komalasari, Maya; Kurniawan, Hananto, Agus

    2017-08-01

    This paper presents the characterization of fiber morphology, fiber count and tenacity of polyethylene fiber which is made from plastic bag waste. Recycling plastic bag waste into textile fiber has not developed yet. Plastic bag waste was recycled into fiber by melt spinning using laboratory scale melt spinning equipment with single orifice nozzle and plunger system. The basic principle of melt spinning is by melting materials and then extruding it through small orifice of a spinning nozzle to form fibers. Diameter and cross section shape of Recycled polyethylene fiber were obtained by using scanning electron microscope (SEM) instrumentation. Linear density of the recycled fiber were analyzed by calculation using denier and dTex formulation and The mechanical strength of the fibers was measured in accordance with the ASTM D 3379-75 standard. The cross section of recycled fiber is circular taking the shape of orifice. Fiber count of 303.75 denier has 1.84 g/denier tenacity and fiber count of 32.52 has 3.44 g/denier tenacity. This conditions is affected by the growth of polymer chain alignment when take-up axial velocity become faster. Recycled polyethylene fiber has a great potential application in non-apparel textile.

  18. The effect of neutron irradiation on silicon carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Newsome, G.A. [Lockheed Martin Corp., Schenectady, NY (United States)

    1997-01-01

    Nine types of SiC fiber have been exposed to neutron radiation in the Advanced Test Reactor at 250 C for various lengths of time ranging from 83 to 128 days. The effects of these exposures have been initially determined using scanning electron microscopy. The fibers tested were Nicalon{trademark} CG, Tyranno, Hi-Nicalon{trademark}, Dow Corning SiC, Carborundum SiC, Textron SCS-6, polymethysilane (PMS) derived SiC from the University of Michigan, and two types of MER SiC fiber. This covers a range of fibers from widely used commercial fibers to developmental fibers. Consistent with previous radiation experiments, Nicalon fiber was severely degraded by the neutron irradiation. Similarly, Tyranno suffered severe degradation. The more advanced fibers which approach the composition and properties of SiC performed well under irradiation. Of these, the Carborundum SiC fiber appeared to perform the best. The Hi-Nicalon and Dow Corning Fibers exhibited good general stability, but also appear to have some surface roughening. The MER fibers and the Textron SCS-6 fibers both had carbon cores which adversely influenced the overall stability of the fibers.

  19. Measuring voltage transients with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We use an ultrafast scanning tunneling microscope to resolve propagating voltage transients in space and time. We demonstrate that the previously observed dependence of the transient signal amplitude on the tunneling resistance was only caused by the electrical sampling circuit. With a modified......-gating photoconductive switch with a rigidly attached fiber, the probe is scanned without changing the probe characteristics. (C) 1997 American Institute of Physics....

  20. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  1. Frequency scanning microstrip antennas

    DEFF Research Database (Denmark)

    Danielsen, Magnus; Jørgensen, Rolf

    1979-01-01

    The principles of using radiating microstrip resonators as elements in a frequency scanning antenna array are described. The resonators are cascade-coupled. This gives a scan of the main lobe due to the phase-shift in the resonator in addition to that created by the transmission line phase...

  2. Characterization of an alkali-treated grass fiber by thermogravimetric and X-ray crystallographic analysis

    NARCIS (Netherlands)

    De, D.; De, Debapriya

    2008-01-01

    The thermal behavior of grass fiber was characterized by means of thermogravimetric analysis and differential scanning calorimetry analysis. The results proved that the removal of water-soluble matter improved the thermal behavior of grass fiber over that of unleached fiber, and this was further

  3. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    During this ph.d. work, attention has been focused on understanding and analyzing the modal behavior of micro-structured fibers. Micro-structured fibers are fibers with a complex dielectric toplogy, and offer a number of novel possibilities, compared to standard silica based optical fibers....... The thesis focuses on understanding the basic mechanisms controlling the modal properties of micro-structured fibers. One important sub-class of micro-structured fibers are fibers that guide light by index effects similar to those index effects that ensure guidance of light in standard optical fibers....... Such micro-structured fibers are the ones most often trated in literature concerning micro-structured fibers. These micro-structured fibers offer a whole range of novel wave guiding characteristics, including the possibility of fibers that guide only one mode irrespective of the frequency of light...

  4. Enhancing the Dyeability of Polypropylene Fibers by Melt Blending with Polyethylene Terephthalate

    Science.gov (United States)

    Moradian, Siamak; Ameri, Farhad

    2013-01-01

    Attempts were made to modify polypropylene fibers by melt blending with polyethylene terephthalate in order to enhance the dyeability of the resultant fiber. Five blends of polypropylene/polyethylene terephthalate/compatibilizer were prepared and subsequently spun into fibers. Three disperse dyes were used to dye such modified fibers at boiling and 130°C. The dyeing performance of the blend fibers, as well as the morphological, chemical, thermal, and mechanical properties, of the corresponding blends was characterized by means of spectrophotometry, polarized optical microscopy, scanning electron microscopy (SEM), FT-IR spectroscopy, differential scanning calorimetry (DSC), and tensile testing. PMID:24288485

  5. Enhancing the Dyeability of Polypropylene Fibers by Melt Blending with Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Fereshteh Mirjalili

    2013-01-01

    Full Text Available Attempts were made to modify polypropylene fibers by melt blending with polyethylene terephthalate in order to enhance the dyeability of the resultant fiber. Five blends of polypropylene/polyethylene terephthalate/compatibilizer were prepared and subsequently spun into fibers. Three disperse dyes were used to dye such modified fibers at boiling and 130°C. The dyeing performance of the blend fibers, as well as the morphological, chemical, thermal, and mechanical properties, of the corresponding blends was characterized by means of spectrophotometry, polarized optical microscopy, scanning electron microscopy (SEM, FT-IR spectroscopy, differential scanning calorimetry (DSC, and tensile testing.

  6. Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility.......Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility....

  7. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  8. Microstructural Characterization and Mechanical Properties of PA11 Nanocomposite Fibers

    Science.gov (United States)

    Latko, Paulina; Kolbuk, Dorota; Kozera, Rafal; Boczkowska, Anna

    2016-01-01

    Polyamide 11/multi-walled carbon nanotubes nanocomposite fibers with weight fraction 2, 4, and 6 wt.% and diameter 80 μm were prepared with a twin screw mini-extruder. The morphology and degree of dispersion of the multi-walled carbon nanotubes in the fibers was investigated by using scanning and transmission electron microscopy. In turn, the molecular structure was indicated by using wide-angle x-ray scattering and correlated with thermal analysis. It was found that carbon nanotubes lead to the formation of α phase in the fibers and they show medial level of alignment within the length of the fiber. Mechanical analysis of the fibers shows that apart from the crystallinity content, the tensile strength is strongly dependent on the macroscopic defects of the surface of the fibers. Nanocomposite fibers based on polyamide 11 with carbon nanotubes can be used as a precursor for non-woven or woven fabrics manufacturing process.

  9. Tensile Strength of Polyester Composites Reinforced with Fique Fibers

    Science.gov (United States)

    Altoé, Giulio Rodrigues; Netto, Pedro Amoy; Teles, Maria Carolina Andrade; Daniel, Glenio; Margem, Frederico Muylaert; Monteiro, Sergio Neves

    The environmental concern is creating pressure for the substitution of high energy consumption materials for natural and sustainable ones. Compared to synthetic fibers, natural fibers have shown advantages in technical aspects such as flexibility and toughness. So there is a growing worldwide interest in the use of these fibers. Fique fiber extracted from fique plant, presents some significant characteristic, but until now only few studies on fique fiber were performed. This work aims to make the analysis of the tensile strength of polyester composites reinforced with fique fibers. The fibers were incorporated into the polyester matrix with volume fraction from 0 to 30%. After fracture the specimens were analyzed by a SEM (scanning electron microscope).

  10. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Science.gov (United States)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P. I.; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M. A.; Nistal, A.; Rubio, J.

    2016-11-01

    Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (;sizing;), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  11. Comparison of F-12 aramid fiber with domestic armid fiber III on surface feature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shuhui, E-mail: zsh20012002@126.com [National Key Laboratory of Combustion, Flow and Thermo-Structure, Northwestern Polytechnical University, Shannxi Xi' an 710072 (China); He Guoqiang [National Key Laboratory of Combustion, Flow and Thermo-Structure, Northwestern Polytechnical University, Shannxi Xi' an 710072 (China); Liang Guozheng [Department of Applied Chemistry, School of Sciences, Northwestern Polytechnical University, Shannxi Xi' an 710072 (China); Cui Hong; Zhang Wei; Wang Bin [Xi' an Aerospace Composites Research Institute, Shannxi Xi' an 710025 (China)

    2010-01-15

    A comparison of F-12 aramid fiber with domestic armid fiber III (DAF III) on surface feature was carried out by scanning electron microscope (SEM), atomic force microscopy (AFM), elements analysis and X-ray Photoelectron Spectroscopy (XPS) analysis. It is found that the two aramid fibers are of 'skin-core' structure and fibrillar structure. The microfibrils orient along the fiber axis and rather poorly bond in transverse direction. Many defects exist on the surface of two fibers. Carbon, hydrogen, nitrogen and oxygen are the major elements of two aramid fiber. The element content of the same aramid fiber from surface to interior is different. The surface carbon contents of F-12 aramid fiber and DAF III are increased by 10.75% and 9.95% than those in fiber interior respectively, the surface nitrogen content decreased by 9.72% and 27.02% respectively, and the surface oxygen content increased by 13.99% and 37.95% respectively.

  12. Transforming Pristine Carbon Fiber Tows into High Performance Solid-State Fiber Supercapacitors.

    Science.gov (United States)

    Yu, Dingshan; Zhai, Shengli; Jiang, Wenchao; Goh, Kunli; Wei, Li; Chen, Xudong; Jiang, Rongrong; Chen, Yuan

    2015-09-02

    A facile activation strategy can transform pristine carbon fiber tows into high-performance fiber electrodes with a specific capacitance of 14.2 F cm(-3) . The knottable fiber supercapacitor shows an energy density of 0.35 mW h cm(-3) , an ultrahigh power density of 3000 mW cm(-3) , and a remarkable capacitance retention of 68%, when the scan rate increases from 10 to 1000 mV s(-1) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... energy. top of page What are some common uses of the procedure? The thyroid scan is used ... gland evaluate changes in the gland following medication use, surgery, radiotherapy or chemotherapy top of page How ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential to ... tells you otherwise, you may resume your normal activities after your nuclear medicine scan. If any special ...

  15. Body CT (CAT Scan)

    Science.gov (United States)

    ... Professions Site Index A-Z Computed Tomography (CT) - Body Computed tomography (CT) of the body uses special ... the Body? What is CT Scanning of the Body? Computed tomography, more commonly known as a CT ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and uptake uses small amounts of radioactive materials called radiotracers, a special camera and a computer ... last two months that used iodine-based contrast material. Your doctor will instruct you on how to ...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... evaluate changes in the gland following medication use, surgery, radiotherapy or chemotherapy top of page How should ... such as an x-ray or CT scan, surgeries or treatments using iodinated contrast material within the ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... imaging procedures. For many diseases, nuclear medicine scans yield the most useful information needed to make a ... any. Nuclear medicine is less expensive and may yield more precise information than exploratory surgery. Risks Because ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Actual scanning time for each thyroid uptake is five minutes or less. top of page What will ... diagnostic procedures have been used for more than five decades, and there are no known long-term ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is ... thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that uses ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... several hours before your exam because eating can affect the accuracy of the uptake measurement. Jewelry and ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... iodine, medications and anesthetics. are breastfeeding. In the days prior to your examination, blood tests may be ... are scheduled for an additional procedure that same day that requires an intravenous line. Actual scanning time ...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... gland in the neck that controls metabolism , a chemical process that regulates the rate at which the body converts food to energy. top of page What are some common uses of the procedure? The thyroid scan is ...

  4. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... liquid or capsule form, it is typically swallowed up to 24 hours before the scan. The radiotracer given by intravenous injection is usually given up to 30 minutes prior to the test. When ...

  5. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... regulates the rate at which the body converts food to energy. top of page What are some ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Because nuclear medicine procedures are able to pinpoint molecular activity within the body, they offer the potential ... or imaging device that produces pictures and provides molecular information. The thyroid scan and thyroid uptake provide ...

  7. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... body. top of page How does the procedure work? With ordinary x-ray examinations, an image is ... with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more sensitive than ...

  8. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... a special camera or imaging device that produces pictures and provides molecular information. The thyroid scan and ... and with the help of a computer, create pictures offering details on both the structure and function ...

  9. Pediatric CT Scans

    Science.gov (United States)

    The Radiation Epidemiology Branch and collaborators have initiated a retrospective cohort study to evaluate the relationship between radiation exposure from CT scans conducted during childhood and adolescence and the subsequent development of cancer.

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... abnormal was found, and should not be a cause of concern for you. If you had an ... abnormal was found, and should not be a cause of concern for you. Actual scanning time for ...

  11. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan and thyroid uptake provide information about the structure and function of the thyroid. The thyroid is ... computer, create pictures offering details on both the structure and function of organs and tissues in your ...

  13. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... scan you are undergoing. top of page What does the equipment look like? The special camera and ... area of your body. top of page How does the procedure work? With ordinary x-ray examinations, ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... eat for several hours before your exam because eating can affect the accuracy of the uptake measurement. ... often unattainable using other imaging procedures. For many diseases, nuclear medicine scans yield the most useful information ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... found, and should not be a cause of concern for you. If you had an intravenous line ... found, and should not be a cause of concern for you. Actual scanning time for each thyroid ...

  17. Slow Scan Telemedicine

    Science.gov (United States)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? The thyroid scan is used to determine ... you are undergoing. top of page What does the equipment look like? The special camera and imaging ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... to identify disease in its earliest stages as well as a patient’s immediate response to therapeutic interventions. ... but is often performed on hospitalized patients as well. Thyroid Scan You will be positioned on an ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  1. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... medical tests that help physicians diagnose and evaluate medical conditions. These imaging scans use radioactive materials called radiopharmaceuticals or radiotracers . Depending on the type of nuclear medicine exam, the radiotracer is either injected into the body, ...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... many types of cancers, heart disease, gastrointestinal, endocrine, neurological disorders and other abnormalities within the body. Because ... with other imaging techniques, such as CT or MRI. However, nuclear medicine scans are more sensitive than ...

  3. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... are noninvasive and, with the exception of intravenous injections, are usually painless medical tests that help physicians ... before the scan. The radiotracer given by intravenous injection is usually given up to 30 minutes prior ...

  4. Scanning ultrafast electron microscopy

    OpenAIRE

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for whic...

  5. Digital confocal microscopy through a multimode fiber.

    Science.gov (United States)

    Loterie, Damien; Farahi, Salma; Papadopoulos, Ioannis; Goy, Alexandre; Psaltis, Demetri; Moser, Christophe

    2015-09-07

    Acquiring high-contrast optical images deep inside biological tissues is still a challenging problem. Confocal microscopy is an important tool for biomedical imaging since it improves image quality by rejecting background signals. However, it suffers from low sensitivity in deep tissues due to light scattering. Recently, multimode fibers have provided a new paradigm for minimally invasive endoscopic imaging by controlling light propagation through them. Here we introduce a combined imaging technique where confocal images are acquired through a multimode fiber. We achieve this by digitally engineering the excitation wavefront and then applying a virtual digital pinhole on the collected signal. In this way, we are able to acquire images through the fiber with significantly increased contrast. With a fiber of numerical aperture 0.22, we achieve a lateral resolution of 1.5µm, and an axial resolution of 12.7µm. The point-scanning rate is currently limited by our spatial light modulator (20Hz).

  6. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  7. Angle-resolved energy distributions of laser ablated silver ions in vacuum

    DEFF Research Database (Denmark)

    Hansen, T.N.; Schou, Jørgen; Lunney, J.G.

    1998-01-01

    The energy distributions of ions ablated from silver in vacuum have been measured in situ for pulsed laser irradiation at 355 nm. We have determined the energy spectra for directions ranging from 5 degrees to 75 degrees with respect to the normal in the intensity range from 100 to 400 MW/cm(2...

  8. Crank angle resolved flow field characterization of a heavy-duty one-cylinder optical engine

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meyden, T.J.

    2009-03-15

    Soot and nitric oxide (NOx) production are the main negative aspects of Diesel combustion. This is why new combustion strategies are being investigated, such as Premixed Charge Compression Ignition (PCCI). PCCI is one of the most promising combustion strategies for internal combustion engines in the future, since PCCI combustion is able to realize very low soot and nitric oxide emissions. PCCI combines the efficiency of a diesel and the low particulate emission of an Otto engine. To achieve PCCI combustion with limited heat release rates, the influence of charge stratification on combustion should be investigated. In this work, the first steps to achieve that goal are made. The first step is to determine in-cylinder velocities by measuring flow fields using Particle Image Velocimetry (PIV). The test setup consists of a one-cylinder optically accessible heavy duty engine driven by an electrical motor. The upper part of the liner and piston bottom are both made of sapphire. For PIV measurements a 10 Hz Nd:YAG Continuum Surelite laser is used with pulse energies of 140 mJ. The used camera is a Kodak Megaplus ES 1.0 CCD with 1008 x 1018 pixels. The seeding particles are produced from silicon oil using Laskin nozzles and have a diameter of about 0.7 im. Pre- and post- processing and the evaluation of the recorded PIV images is done using the commercially available software program PIVview (Pivtec). The velocity analysis is done using the commercial software program Tecplot. More knowledge is gathered on the in-cylinder velocities, aimed at a future detailed study on the effect of charge stratification in PCCI combustion. Ensemble averaged velocities, vorticities and strain rates, turbulence intensities and turbulent kinetic energies as a function of the crank angle, engine speed, measurement height and compression ratio have been investigated. Velocity and turbulence appear to be proportional to the engine speed. The position of the ensemble averaged swirl center as a function of crank angle shows a shift towards the middle of the combustion chamber near the end of compression, probably due to squish. Turbulence intensities show a more or less homogenous distribution throughout the field, except for the region around the swirl center. The turbulent kinetic energy is less homogeneously distributed. At higher compression ratios, the turbulent kinetic energy distribution becomes even less homogeneous. These measurements are performed to achieve an extensive set of baseline measurements which can be used to interpret the results of time resolved measurements. Moreover, the results will be used for computational fluid dynamics (CFD) model validation. To perform time resolved PIV a high-speed system is installed. The chosen highspeed laser is an Edge Wave IS8IIDE with a maximum frequency of 10 kHz and pulse energies of 7 mJ up to 3 kHz. The Phantom V7.1 high-speed camera with a frequency of 4.8 kHz at 800 x 600 pixels, was already available. A high-speed controller from LaVision is purchased and installed for the synchronization of the system. With this highspeed system, a first time-resolved PIV measurement has been performed.

  9. Angle-resolved photon-coincidence measurements in a multiple-scattering medium

    DEFF Research Database (Denmark)

    Smolka, Stephan; Muskens, Otto L.; Lagendijk, Ad

    2011-01-01

    agreement with the continuous mode quantum theory of multiple scattering of light. The presented experimental technique is essential in order to study quantum phenomena in multiple-scattering random media, such as quantum interference and quantum entanglement of photons....

  10. Adsorption geometry from angle-resolved photoemission: The case of Cl on Ag(001)

    Science.gov (United States)

    Bartels, E.; Goldmann, A.

    1982-12-01

    A recent LEED analysis of Ag(001) c(2×2)-Cl favors a simple overlayer model (SOM) for the Cl atoms and leads us to reject a mixed-layer model (MLM) with both Cl and Ag atoms alternating. Recent electronic structure calculations give agreement with published photoemission data only for the MLM. To study this discrepancy we performed a high resolution photoemission study of Ag(001) c(2×2)-Cl. Our results differ from previous measurements and are consistent only with the SOM.

  11. Electronic structure of ion arsenic high temperature superconductors studied by angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The main purpose of the present thesis is to present our ARPES results on the iron arsenic superconductors. As revealed by a series of ARPES measurements on both the AEFe2As2 and the RFeAs(O,F) families (parent compound and carrier-doped systems), the electronic structures of the pnictides are complicated, three dimensional, and closely linked to their superconducting behavior (13; 14; 15; 16; 17; 18; 19). Parent compounds of these materials exhibit the basic hole-electron pocket dual plus an apparent Fermi surface reconstruction caused by long range antiferromagnetism (13; 15). When carriers are introduced, the chemical potential shifts in accordance with the Luttinger theorem and the rigid band shifting picture (13). Importantly, both the appearance and disappearance of the superconducting dome at low and high doping levels have intimate relation with topological changes at the Fermi surfaces, resulting in a specific Fermi topology being favored by superconductivity (15; 16). On the low doping side, superconductivity emerges in the phase diagram once the antiferromagnetic reconstruction disappears below the Fermi level, returning the Fermi surface to its paramagnetic-like appearance. On the high doping side, superconductivity disappears around a doping level at which the central hole pocket vanishes due to increasing electron concentration. Such phenomena are evidence for the governing role the electronic structure plays in their superconducting behavior.

  12. Fully angle-resolved strong-field ionization and dissociation of ethylene from rotational wavepacket dynamics

    Science.gov (United States)

    Kumarappan, Vinod; Ren, Xiaoming; Le, Anh-Thu; Makhija, Varun

    2015-05-01

    We obtain the full orientation dependence of strong field ionization and dissociation of ethylene, an asymmetric top molecule, by a linearly polarized laser pulse. The molecules are set into complex rotational motion by the non-resonant laser pulse and subsequently ionized or fragmented by a more intense probe pulse. By decomposing the delay dependent yields of ionization dissociation products in a suitable basis set, we obtain the orientation dependences of both processes and show that HOMO and HOMO-1 orbitals contribute to the ionization signal and that ionization from HOMO-1 and HOMO-2 lead to emission of a hydrogen atom. The time-dependent angular distribution and the initial rotational temperature of the molecules are also obtained from the same analysis. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  13. Indoor measurement of angle resolved light absorption by antireflective glass in solar panels

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Benatto, Gisele Alves dos Reis; Riedel, Nicholas

    2017-01-01

    measurements with trackers. The experimental results showed optical responses that are stable and suitable for indoor characterization of solar cells. We find the characteristic optical response of six different antireflective glasses, and based on such measurements, we perform PVsyst simulations and present...

  14. Characterization of inclined GaSb nanopillars by angle resolved Mueller polarimetry

    Directory of Open Access Journals (Sweden)

    Søndergård E.

    2010-06-01

    Full Text Available Color in living organisms is primarily generated by two mechanisms: selective absorption by pigments and structural coloration, or a combination of both. In this study, we investigated the coloration of cuticle from the wings (elytra of the two ground beetle species Carabus auronitens and Carabus auratus. The greenish iridescent color of both species is created by a multilayer structure consisting of periodically alternating layers with different thicknesses and composition which is located in the 1-2 µm thick outermost layer of the cuticle (epicuticle. Illuminated with white light, reflectance spectra in both linear polarisation show an angle-dependent characteristic peak in the blue/green region of the spectrum. Furthermore, the reflected light is polarised linearly. Scattering experiments with laser illumination at 532 nm show diffuse scattering over a larger angular range. The polarisation dependence of the scattered light is consistent with the interpretation of small inhomogeneities as scattering centres in the elytra.

  15. Angle-resolved 2D imaging of electron emission processes in atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kukk, E.; Wills, A.A.; Langer, B.; Bozek, J.D.; Berrah, N.

    2004-09-02

    A variety of electron emission processes have been studied in detail for both atomic and molecular systems, using a highly efficient experimental system comprising two time-of-flight (TOF) rotatable electron energy analyzers and a 3rd generation synchrotron light source. Two examples are used here to illustrate the obtained results. Firstly, electron emissions in the HCL molecule have been mapped over a 14 eV wide photon energy range over the Cl 2p ionization threshold. Particular attention is paid to the dissociative core-excited states, for which the Auger electron emission shows photon energy dependent features. Also, the evolution of resonant Auger to the normal Auger decay distorted by post-collision interaction has been observed and the resonating behavior of the valence photoelectron lines studied. Secondly, an atomic system, neon, in which excitation of doubly excited states and their subsequent decay to various accessible ionic states has been studied. Since these processes only occurs via inter-electron correlations, the many body dynamics of an atom can be probed, revealing relativistic effects, surprising in such a light atom. Angular distribution of the decay of the resonances to the parity unfavored continuum exhibits significant deviation from the LS coupling predictions.

  16. Studies of Dirac and Weyl fermions by angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lunan [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    This dissertation consists of three parts. First, we study magnetic domains in Nd2Fe14B single crystals using high resolution magnetic force microscopy (MFM). In addition to the elongated, wavy nano-domains reported by a previous MFM study, we found that the micrometer size, star-shaped fractal pattern is constructed of an elongated network of nano-domains about 20 nm in width, with resolution-limited domain walls thinner than 2 nm. Second, we studied extra Dirac cones of multilayer graphene on SiC surface by ARPES and SPA-LEED. We discovered extra Dirac cones on Fermi surface due to SiC 6 x 6 and graphene 6√ 3 6√ 3 coincidence lattice on both single-layer and three-layer graphene sheets. We interpreted the position and intensity of the Dirac cone replicas, based on the scattering vectors from LEED patterns. We found the positions of replica Dirac cones are determined mostly by the 6 6 SiC superlattice even graphene layers grown thicker. Finally, we studied the electronic structure of MoTe2 by ARPES and experimentally con rmed the prediction of type II Weyl state in this material. By combining the result of Density Functional Theory calculations and Berry curvature calculations with out experimental data, we identi ed Fermi arcs, track states and Weyl points, all features predicted to exist in a type II Weyl semimetal. This material is an excellent playground for studies of exotic Fermions.

  17. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  18. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop.

    Science.gov (United States)

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-29

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems.

  19. Fiber optic temperature sensor

    Science.gov (United States)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  20. Laser Scanning Fluorescence Microscope

    Science.gov (United States)

    Hansen, Eric W.; Zelten, J. Peter; Wiseman, Benjamin A.

    1988-06-01

    We report on the development of a laser scanning fluorescence microscope possessing several features which facilitate its application to biological and biophysical analyses in living cells. It is built around a standard inverted microscope stand, enabling the use of standard optics, micromanipulation apparatus, and conventional (including video) microscopy in conjunction with laser scanning. The beam is scanned across the specimen by a pair of galvanometer-mounted mirrors, driven by a programmable controller which can operate in three modes: full raster scan, region of interest, and random-access. A full 512x512 pixel image can be acquired in one second. In region of interest mode, several subareas of the field can be selected for more rapid or detailed analysis. For those cases where the time scale of the observed phenomenon precludes full-field imaging, or where a full-field image is unnecessary, the random access mode enables an arbitrary pattern of isolated points to be selected and rapidly sequenced through. Via a graphical user interface implemented on the system's host computer, a user will be able to take a scout image either with video or a full-field laser scan, select regions or points on the scout image with a mouse, and set up experimental parameters such as detector integration times with a window-style menu. The instrument is designed to be a flexible testbed for investigating new techniques, without compromising its utility as a tool for biological research.

  1. Scanning laser video camera/ microscope

    Science.gov (United States)

    Wang, C. P.; Bow, R. T.

    1984-10-01

    A laser scanning system capable of scanning at standard video rate has been developed. The scanning mirrors, circuit design and system performance, as well as its applications to video cameras and ultra-violet microscopes, are discussed.

  2. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  3. Tomographic scanning imager.

    Science.gov (United States)

    Hovland, Harald

    2009-07-06

    In tomographic scanning (TOSCA) imaging, light from a scene is focused onto a reticle mask using conical scan optics, and collected on a single element detector. Alternatively, one or several detectors replace the reticle. Tomographic processing techniques are then applied to the one-dimensional signal to reproduce a two-dimensional image. The TOSCA technique is presented in detail, including its mathematical foundations and some of its limitations. It is shown how TOSCA imaging can be used in a multispectral configuration, and compares well with more conventional alternatives both in simplicity and performance. Examples of image reconstruction using TOSCA techniques are shown.

  4. Scanning the phenomenological MSSM

    CERN Document Server

    Wuerzinger, Jonas

    2017-01-01

    A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\

  5. Effects of short glass fibers on the mechanical properties of glass fiber fabric/PVC composites

    Science.gov (United States)

    Park, Su Bin; Lee, Joon Seok; Kim, Jong Won

    2017-03-01

    Fiber-reinforced composites using glass fiber and polyvinylchloride (PVC) have been used widely as architectural materials, electrical applications, automotive sector, and packing materials because of their reasonable price, chemical resistance, and dimensional stability. On the other hand, most of the composites are short fiber-reinforced PVC composites. In particular, in the case of fabric reinforced composites, undulated regions exist where there is only resin due to the characteristics of the weave construction, which causes a decrease in strength. In this paper, PVC was reinforced with chopped glass fibers with different lengths and contents to produce glass fiber fabric/PVC composites. The physical properties of the composites, such as thickness, density, volume fraction (V f), and void content (V c) were identified. The mechanical properties, including tensile strength, flexural strength, and interlaminar shear strength (ILSS) were also identified. A cross section of the composites was observed by scanning electron microscopy. Compared to the fabric reinforced composite without chopped glass fiber, the tensile strength was increased by 3.90% (from 316.15 MPa to 328.48 MPa at 5 wt.% chopped fibers with 3 mm length), flexural strength was increased by 7.15% (from 87.07 MPa to 93.30 MPa at 10 wt.% chopped fibers with 2 mm length), and ILSS was increased by 8.71% (from 7.34 MPa to 7.98 MPa at 10 wt.% chopped fibers with 1 mm length). Therefore, the critical fiber aspect ratio of chopped fiber works differently on each of the three mechanical properties.

  6. Preparation of acrylonitrile butadiene styrene fibers by pulse electrospinning

    Directory of Open Access Journals (Sweden)

    Dilyara Igimbayeva

    2014-12-01

    Full Text Available The paper represents the results on the preparation of polymer fibers of acrylonitrile butadiene styrene (ABS with the addition of iron as a modifying additives by pulse electrospinning. The virtue of the method of pulse electrospinning in comparison with classical electrospinning is to obtain fibers with a controlled length. To study the morphology of the fibers obtained samples were used the optical and scanning electron microscopy. To prove the presence of iron inside the fibers methods of elemental analysis and electron paramagnetic resonance were used. The technique and optimal conditions for obtaining fibers have been determined. The effect of technological parameters, concentrations of polymer solutions and modifying additives on the structure and morphology of the fibers were shown.

  7. An image method to evaluate bagasse fiber dimensions.

    Science.gov (United States)

    Chiparus, Ovidiu I; Chen, Yan

    2003-12-01

    In the last 25 years the amount of textile nonwovens used for industrial and commercial applications increased more than 10 times. Bagasse fiber, a by-product from sugar cane industry, provides a natural resource for nonwoven industries. Even though underrated as a potential fiber, bagasse comes more and more into attention because of the increasing concern for disposal of agricultural residuals and the need for enhancing the sugar cane industry's profitability. However, there is a lack of an instrumental method to evaluate bagasse fiber length and fineness. This paper presents a study on measuring the bagasse fineness using image analysis method. Cross-sections images of bagasse fibers were visualized using Scanning Electronic Microscopy (SEM). The computing software Scion Image was used to measure bagasse fiber length and cross-sectional area. Relationship between fiber fineness and cross-sectional area was analyzed using the statistical method of regression.

  8. Scanning transmission electron microscope

    NARCIS (Netherlands)

    Kruit, P.

    2006-01-01

    The invention relates to a scanning transmission electron microscope comprising an electron source, an electron accelerator and deflection means for directing electrons emitted by the electron source at an object to be examined, and in addition a detector for detecting electrons coming from the

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... you: have had any tests, such as an x-ray or CT scan, surgeries or treatments using iodinated ... page How does the procedure work? With ordinary x-ray examinations, an image is made by passing x- ...

  10. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... may be performed to measure the level of thyroid hormones in your blood. You may be told not to eat for several hours before your exam because eating can affect the ... as well. Thyroid Scan You will be positioned on an examination ...

  11. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... or less. top of page What will I experience during and after the procedure? Most thyroid scan ... areas. Outside links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo. ...

  12. Scanning bubble chamber pictures

    CERN Multimedia

    1974-01-01

    These were taken at the 2 m hydrogen bubble chamber. The photo shows an early Shiva system where the pre-measurements needed to qualify the event were done manually (cf photo 7408136X). The scanning tables were located in bld. 12. Gilberte Saulmier sits on foreground, Inge Arents at centre.

  13. Cervical MRI scan

    Science.gov (United States)

    ... cancer in the spine Arthritis in the spine MRI works better than CT scan in diagnosing these problems ... test. The strong magnetic fields created during an MRI can cause heart pacemakers and other implants to not work as well. It can also cause a piece ...

  14. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of page Additional Information and Resources RTAnswers.org Radiation Therapy for Head and Neck Cancer top of page ... and Neck Cancer Treatment Radioactive Iodine (I-131) Therapy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear ... to Thyroid Scan and Uptake ...

  15. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a thyroid uptake. ... a patient’s immediate response to therapeutic interventions. Nuclear ... medical tests that help physicians diagnose and evaluate medical conditions. ...

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake ...

  17. Terahertz scanning probe microscope

    NARCIS (Netherlands)

    Klapwijk, T.M.

    2014-01-01

    The invention provides aterahertz scanning probe microscope setup comprising (i) a terahertz radiation source configured to generate terahertz radiation; (ii) a terahertz lens configured to receive at least part of the terahertz radiation from the terahertz radiation source; (iii) a cantilever unit

  18. SPM: Scanning positron microscope

    Directory of Open Access Journals (Sweden)

    Marcel Dickmann

    2015-08-01

    Full Text Available The Munich scanning positron microscope, operated by the Universität der Bundeswehr München and the Technische Universität München, located at NEPOMUC, permits positron lifetime measurements with a lateral resolution in the µm range and within an energy range of 1 – 20 keV.

  19. Laser Beam Scanning Device.

    Science.gov (United States)

    metal mirror. Multiple thermocouple wires attached to the rear of the mirror provide temperature (and hence beam power) information at various points...on the mirror. Scanning is achieved by means of a selector switch which sequentially samples the thermocouple outputs. The thermocouple output voltages are measured and recorded as a function of laser beam power.

  20. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  1. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  2. Novel surface treatment for natural fiber composites

    Science.gov (United States)

    Zhang, Wendy; Yuan, Xiaowen

    2017-07-01

    Poly(lactide) (PLA) — flax fibers stereocomplex composites were prepared by casting commercial poly(L-lactide) (PLA) and flax-g-poly(D-lactide) (flax-g-PDLA), where flax-g-PDLA was synthesized via ring-opening polymerization. Successful surface grafting was revealed by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy, wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) studies. DSC results showed that stereocomplex crystallites formed between the PLA matrix and flax-g-PDLA, resulting in good fiber/PLA interfacial adhesion.

  3. A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage.

    Science.gov (United States)

    Zhang, Xiaoyang; Duan, Can; Liu, Lin; Li, Xingde; Xie, Huikai

    2015-09-01

    Scanning fiber tips provides the most convenient way for forward-viewing fiber-optic microendoscopy. In this paper, a distal fiber scanning method based on a large-displacement MEMS actuator is presented. A single-mode fiber is glued on the micro-platform of an electrothermal MEMS stage to realize large range non-resonantscanning. The micro-platform has a large piston scan range of up to 800 µm at only 6V. The tip deflection of the fiber can be further amplified by placing the MEMS stage at a proper location along the fiber. A quasi-static model of the fiber-MEMS assembly has been developed and validated experimentally. The frequency response has also been studied and measured. A fiber tip deflection of up to 1650 µm for the 45 mm-long movable fiber portion has been achieved when the MEMS electrothermal stage was placed 25 mm away from the free end. The electrothermally-actuated MEMS stage shows a great potential for forward viewing fiber scanning and optical applications.

  4. Mechanical Properties of Coir Rope-Glass Fibers Reinforced Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Bakri Bakri

    2017-03-01

    Full Text Available Natural fiber composites have been developed and taken more attention in the last decades. Coir fiber is the natural fiber which has been used as reinforcement of composites. This fiber is hybridized with glass fiber for reinforcement composite. In this paper, coir rope and glass fibers were combined as reinforcement into hybrid composites with unsaturated polyester resin as matrix. The composition of fibers and matrix into hybrid composites are used 30:70 (volume fraction with unsaturated polyester. Volume fractions of coir rope mat and glass fiber mat in hybrid composites are 10:20, 15:15 and 20:10 respectively. The mechanical properties of the coir rope-glass fiber composite hybrid were described in this paper. Their properties include tensile strength, tensile modulus, flexural strength, flexural modulus, impact energy and impact strength. Fractography of tensile composite hybrid is also analyzed using Scanning Electron Microscope

  5. Mechanical Properties of Coir Rope-Glass Fibers Reinforced Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    B.Bakri

    2015-10-01

    Full Text Available Natural fiber composites have been developed and taken more attention in the last decades. Coir fiber is the natural fiber which has been used as reinforcement of composites. This fiber is hybridized with glass fiber for reinforcement composite. In this paper, coir rope and glass fibers were combined as reinforcement into hybrid composites with unsaturated polyester resin as matrix. The composition of fibers and matrix into hybrid composites are used 30:70 (volume fraction with unsaturated polyester. Volume fractions of coir rope mat and glass fiber mat in hybrid composites are 10:20, 15:15 and 20:10 respectively. The mechanical properties of the coir rope-glass fiber composite hybrid were described in this paper. Their properties include tensile strength, tensile modulus, flexural strength, flexural modulus, impact energy and impact strength. Fractography of tensile composite hybrid is also analyzed using Scanning Electron Microscope.

  6. Biaxial shear/tension failure criteria of spectra single fibers

    Science.gov (United States)

    Sun, Jianzhuo

    An experimental study was conducted to develop the biaxial failure surface criteria of single Spectra 130d and 100d filaments in a torsion-tension environment. The cross-sectional profiles of single Spectra fibers were investigated using scanning electron microscopy and X-ray computed tomography. A pin-gripping method to fix the ends of a polyethylene single fiber was developed. Effects of pin diameter on failure stress for both Spectra 130d and 100d were characterized. It was found that the perturbed stress field effect can be neglected when the pin diameter is larger than 0.8 mm. Additionally, the effect of the sample's gage length on fiber tensile strength was investigated. The gage length of 5.5 mm was determined as an appropriate length for single fiber samples under stress-wave loading. A twisting apparatus was built for a single fiber to achieve specific degrees of shear strains. Quasi-static experiments were conducted using an MTS servo-hydraulic system to apply tensile loads on pre-twisted Spectra fibers. A tension Kolsky bar was employed to study the biaxial shear/tensile behavior of Spectra fibers at high strain rates. A decreasing trend of tensile strength, with increasing torsional strain, for Spectra fibers was observed. Furthermore, a torsional pendulum apparatus was developed to determine the torsional shear stresses in fibers at various levels of axial loading. The relationship between apparent shear stress and axial stress was discovered. Finally, a biaxial shear/tension failure criterion envelope of each of the Spectra fibers was established. Scanning electron microscopy images revealed the specific feature on the surface of twisted fibers and fracture surface of failure fibers.

  7. Transfer functions in collection scanning near-field optical microscopy

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Vohnsen, Brian; Bozhevolnaya, Elena A.

    1999-01-01

    are considered with respect to the relation between near-field optical images and the corresponding intensity distributions. Our conclusions are supported with numerical simulations and experimental results obtained by using a photon scanning tunneling microscope with an uncoated fiber tip.......It is generally accepted that, if in collection near-field optical microscopy the probe-sample coupling can be disregarded, a fiber probe can be considered as a detector of the near-field intensity whose size can be accounted for via an intensity transfer function. We show that, in general...

  8. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  9. Reducing fiber cross-talk in mineral fiber arrays

    OpenAIRE

    Daniel Lee Stark

    2017-01-01

    Monocentric optics replace current systems with diffraction limited performance. The fiber arrays have been the issue. Commercial expensive fiber arrays are available, but enhanced mineral fiber arrays offer very inexpensive fiber arrays.

  10. Automated angle-scanning photoemission end-station with molecular beam epitaxy at KEK-PF BL-1C

    CERN Document Server

    Ono, K; Horiba, K; Oh, J H; Nakazono, S; Kihara, T; Nakamura, K; Mano, T; Mizuguchi, M; Oshima, M; Aiura, Y; Kakizaki, A

    2001-01-01

    In order to satisfy demands to study the electronic structure of quantum nanostructures, a VUV beamline and a high-resolution and high-throughput photoemission end-station combined with a molecular beam epitaxy (MBE) system have been constructed at the BL-1C of the Photon Factory. An angle-resolved photoemission spectrometer, having high energy- and angular-resolutions; VG Microtech ARUPS10, was installed. The total energy resolution of 31 meV at the 60 eV of photon energy is achieved. For the automated angle-scanning photoemission, the electron spectrometer mounted on a two-axis goniometer can be rotated in vacuum by the computer-controlled stepping motors. Another distinctive feature of this end-station is a connection to a MBE chamber in ultahigh vacuum (UHV). In this system, MBE-grown samples can be transferred into the photoemission chamber without breaking UHV. Photoemission spectra of MBE-grown GaAs(0 0 1) surfaces were measured with high-resolution and bulk and surface components are clearly resolved.

  11. Advanced consumable-free morphological analysis of intact red blood cells by a compact scanning flow cytometer.

    Science.gov (United States)

    Gilev, K V; Yastrebova, E S; Strokotov, D I; Yurkin, M A; Karmadonova, N A; Chernyshev, A V; Lomivorotov, V V; Maltsev, V P

    2017-09-01

    Whereas modern automated blood cell analyzers measure the volume of individual red blood cells (RBCs), leading to four RBC indices (mean corpuscular volume, MCV; mean corpuscular hemoglobin, MCH; mean corpuscular hemoglobin concentration, MCHC; red cell distribution width, and RDW), the RBC shape has not been assessed by clinical screening tools. We applied the scanning flow cytometer (SFC) for complete characterization of intact RBC morphology in terms of diameter, maximal and minimal thicknesses, volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration, and content. The above-mentioned individual RBC characteristics were measured without fluorescent markers and other chemicals by a SFC equipped only with 660 nm laser for RBC illumination and single detector for measurement of angle-resolved light scattering. The distributions over all RBC characteristics were constructed and processed statistically to form the novel 31 RBC indices for 22 donor samples. Our results confirm the possibility of precise, label-free, enhanced morphological analysis of individual intact RBCs with compact single-detector flow cytometer. Detailed characterization of RBCs with high statistics and precision can be used to increase the value of screening examinations and to reveal pathologies accompanied by abnormality of RBC shape. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  12. Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages.

    Science.gov (United States)

    Tokurakawa, M; Daniel, J M O; Chenug, C S; Liang, H; Clarkson, W A

    2015-01-12

    A wavelength-swept thulium-doped fiber laser system employing two parallel cavities with two different fiber gain stages is reported. The fiber gain stages were tailored to provide emission in complementary bands with external wavelength-dependent feedback cavities sharing a common rotating polygon mirror for wavelength scanning. The wavelength-swept laser outputs from the fiber gain elements were spectrally combined by means of a dichroic mirror and yielded over 500 mW of output with a scanning range from ~1740 nm to ~2070 nm for a scanning frequency of ~340 Hz.

  13. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  14. Characterization of electrospun lignin based carbon fibers

    Science.gov (United States)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-01

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 - 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  15. Mammographic scanning equalization radiography.

    Science.gov (United States)

    Sabol, J M; Soutar, I C; Plewes, D B

    1993-01-01

    It is well recognized that variations in breast thickness and parenchymal composition can produce a range of exposure which exceeds the latitude of high contrast mammographic film/screen combinations. Optimal imaging of the dense breast is desired since 30%-60% of women present with dense breasts, and they are believed to be at the highest relative risk of developing breast cancer. The application of scanning equalization radiography to mammography has been investigated through the construction and characterization of a prototype mammographic scanning equalization radiography (MSER) system, designed to image mammographic phantoms. The MSER system exposes a Min-R/MRH cassette by raster scanning a 2.0 x 1.6 cm beam of pulsed x-rays across the cassette. A scanning detector behind the cassette measures the local x-ray transmission of the breast. Feedback of the transmission information is used to modulate the duration of each x-ray pulse, to equalize the film exposure. The effective dynamic range of the MSER system is 25 times greater than that of conventional mammography. Artifact-free images of mammographic phantoms show that MSER effectively overcomes the latitude limitations of film/screen mammography, enabling high contrast imaging over a wide range of object x-ray transmission. Anthropomorphic phantom images show that MSER offers up to a sixfold increase in film contrast in the normally underexposed regions of conventional mammograms. Characterization of the entrance exposure shows that there is not a significant difference in exposure between MSER and conventional mammographic techniques, suggesting that both would pose comparable risk to the patient. Calculations show that the construction of a clinical multiple beam MSER system is feasible with minor changes to existing technology.

  16. Scanning transmission electron microscope

    OpenAIRE

    Kruit, P.

    2006-01-01

    The invention relates to a scanning transmission electron microscope comprising an electron source, an electron accelerator and deflection means for directing electrons emitted by the electron source at an object to be examined, and in addition a detector for detecting electrons coming from the object and, connected to the detector, a device for processing the detected electrons so as to form an object image, wherein a beam splitter is provided for dividing the electron beam from the electron...

  17. Scanning micro-sclerometer

    Science.gov (United States)

    Oliver, Warren C.; Blau, Peter J.

    1994-01-01

    A scanning micro-sclerometer measures changes in contact stiffness and correlates these changes to characteristics of a scratch. A known force is applied to a contact junction between two bodies and a technique employing an oscillating force is used to generate the contact stiffness between the two bodies. As the two bodies slide relative to each other, the contact stiffness changes. The change is measured to characterize the scratch.

  18. Scanning drop sensor

    Science.gov (United States)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  19. Scanning ultrafast electron microscopy.

    Science.gov (United States)

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  20. Shaped fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Kinnan, Mark K.; Roach, Dennis P.

    2017-12-05

    A composite article is disclosed that has non-circular fibers embedded in a polymer matrix. The composite article has improved damage tolerance, toughness, bending, and impact resistance compared to composites having traditional round fibers.

  1. High-fiber foods

    Science.gov (United States)

    ... that have higher amounts of fiber, such as whole-wheat bread versus white bread. ... cereals, such as oatmeal and farina (Cream of Wheat) Whole-grain breads Brown rice Popcorn High-fiber cereals, such as ...

  2. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  3. Superlattice Microstructured Optical Fiber

    Directory of Open Access Journals (Sweden)

    Ming-Leung Vincent Tse

    2014-06-01

    Full Text Available A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure.

  4. Fundamentals of fiber lasers and fiber amplifiers

    CERN Document Server

    Ter-Mikirtychev, Valerii (Vartan)

    2014-01-01

    This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, main operational laser regimes, and practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. The book will be useful for students, researchers, and professionals who work with lasers, in the optical communications, chemical and biological industries, etc.

  5. Blackening of metals using femtosecond fiber laser.

    Science.gov (United States)

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-01-10

    This study presents an unprecedented high throughput processing for super-blackening and superhydrophobic/hydrophilic surface on both planar and nonplanar metals surfaces. By using a high pulse repetition rate femtosecond (fs) fiber laser, a light trapping microstructure and nanostructure is generated to absorb light from UV, visible to long-wave infrared spectral region. Different types of surface structures are produced with varying laser scanning conditions (scanning speed and pitch). The modified surface morphologies are characterized using scanning electron microscope and the blackening effect is investigated through spectral measurements. Spectral measurements show that the reflectance of the processed materials decreases sharply in a wide wavelength range and the decrease occurs at different rates for different scanning pitches and speeds. Above 98% absorption over the entire visible wavelength region and above 95% absorption over the near-infrared, middle-wave infrared and long-wave infrared regions range has been demonstrated for the surface structures, and the absorption for specific wavelengths can go above 99%. Furthermore, the processing efficiency of this fs fiber laser blackening technique is 1 order of magnitude higher than that of solid-state fs laser and 4 times higher than that of picosecond (ps) laser. Further increasing of the throughput is expected by using higher repetition and higher scanning speed. This technology offers the great potential in applications such as constructing sensitive detectors and sensors, solar energy absorber, and biomedicine.

  6. Fiber optic coupled optical sensor

    Science.gov (United States)

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  7. Mineral Fiber Toxicology

    Science.gov (United States)

    The chemical and physical properties of different forms of mineral fibers impact biopersistence and pathology in the lung. Fiber chemistry, length, aspect ratio, surface area and dose are critical factors determining mineral fiber-associated health effects including cancer and as...

  8. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser ...

  9. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  10. Fibers as carriers of microbial particles

    Directory of Open Access Journals (Sweden)

    Rafał L. Górny

    2015-08-01

    Full Text Available Background: The aim of the study was to assess the ability of natural, synthetic and semi-synthetic fibers to transport microbial particles. Material and Methods: The simultaneously settled dust and aerosol sampling was carried out in 3 industrial facilities processing natural (cotton, silk, flax, hemp, synthetic (polyamide, polyester, polyacrylonitrile, polypropylene and semi-synthetic (viscose fibrous materials; 2 stables where horses and sheep were bred; 4 homes where dogs or cats were kept and 1 zoo lion pavilion. All samples were laboratory analyzed for their microbiological purity. The isolated strains were qualitatively identified. To identify the structure and arrangement of fibers that may support transport of microbial particles, a scanning electron microscopy analysis was performed. Results: Both settled and airborne fibers transported analogous microorganisms. All synthetic, semi-synthetic and silk fibers, present as separated threads with smooth surface, were free from microbial contamination. Natural fibers with loose packing and rough surface (e.g., wool, horse hair, sheaf packing and septated surface (e.g., flax, hemp or present as twisted ribbons with corrugated surface (cotton were able to carry up to 9×105 cfu/g aerobic bacteria, 3.4×104 cfu/g anaerobic bacteria and 6.3×104 cfu/g of fungi, including pathogenic strains classified by Directive 2000/54/EC in hazard group 2. Conclusions: As plant and animal fibers are contaminated with a significant number of microorganisms, including pathogens, all of them should be mechanically eliminated from the environment. In factories, if the manufacturing process allows, they should be replaced by synthetic or semi-synthetic fibers. To avoid unwanted exposure to harmful microbial agents on fibers, the containment measures that efficiently limit their presence and dissemination in both occupational and non-occupational environments should be introduced. Med Pr 2015;66(4:511–523

  11. [Fibers as carriers of microbial particles].

    Science.gov (United States)

    Górny, Rafał L; Ławniczek-Wałczyk, Anna; Stobnicka, Agata; Gołofit-Szymczak, Małgorzata; Cyprowski, Marcin

    2015-01-01

    The aim of the study was to assess the ability of natural, synthetic and semi-synthetic fibers to transport microbial particles. The simultaneously settled dust and aerosol sampling was carried out in 3 industrial facilities processing natural (cotton, silk, flax, hemp), synthetic (polyamide, polyester, polyacrylonitrile, polypropylene) and semi-synthetic (viscose) fibrous materials; 2 stables where horses and sheep were bred; 4 homes where dogs or cats were kept and 1 zoo lion pavilion. All samples were laboratory analyzed for their microbiological purity. The isolated strains were qualitatively identified. To identify the structure and arrangement of fibers that may support transport of microbial particles, a scanning electron microscopy analysis was performed. Both settled and airborne fibers transported analogous microorganisms. All synthetic, semi-synthetic and silk fibers, present as separated threads with smooth surface, were free from microbial contamination. Natural fibers with loose packing and rough surface (e.g., wool, horse hair), sheaf packing and septated surface (e.g., flax, hemp) or present as twisted ribbons with corrugated surface (cotton) were able to carry up to 9×10(5) cfu/g aerobic bacteria, 3.4×10(4) cfu/g anaerobic bacteria and 6.3×10(4) cfu/g of fungi, including pathogenic strains classified by Directive 2000/54/EC in hazard group 2. As plant and animal fibers are contaminated with a significant number of microorganisms, including pathogens, all of them should be mechanically eliminated from the environment. In factories, if the manufacturing process allows, they should be replaced by synthetic or semi-synthetic fibers. To avoid unwanted exposure to harmful microbial agents on fibers, the containment measures that efficiently limit their presence and dissemination in both occupational and non-occupational environments should be introduced. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. Innovations in high power fiber laser applications

    Science.gov (United States)

    Beyer, Eckhard; Mahrle, Achim; Lütke, Matthias; Standfuss, Jens; Brückner, Frank

    2012-02-01

    Diffraction-limited high power lasers represent a new generation of lasers for materials processing, characteristic traits of which are: smaller, cost-effective and processing "on the fly". Of utmost importance is the high beam quality of fiber lasers which enables us to reduce the size of the focusing head incl. scanning mirrors. The excellent beam quality of the fiber laser offers a lot of new applications. In the field of remote cutting and welding the beam quality is the key parameter. By reducing the size of the focusing head including the scanning mirrors we can reach scanning frequencies up to 1.5 kHz and in special configurations up to 4 kHz. By using these frequencies very thin and deep welding seams can be generated experienced so far with electron beam welding only. The excellent beam quality of the fiber laser offers a high potential for developing new applications from deep penetration welding to high speed cutting. Highly dynamic cutting systems with maximum speeds up to 300 m/min and accelerations up to 4 g reduce the cutting time for cutting complex 2D parts. However, due to the inertia of such systems the effective cutting speed is reduced in real applications. This is especially true if complex shapes or contours are cut. With the introduction of scanner-based remote cutting systems in the kilowatt range, the effective cutting speed on the contour can be dramatically increased. The presentation explains remote cutting of metal foils and sheets using high brightness single mode fiber lasers. The presentation will also show the effect of optical feedback during cutting and welding with the fiber laser, how those feedbacks could be reduced and how they have to be used to optimize the cutting or welding process.

  13. X-RAY ABSORPTION SPECTROSCOPY OF YB3+-DOPED OPTICAL FIBERS

    Energy Technology Data Exchange (ETDEWEB)

    Citron, Robert; Kropf, A.J.

    2008-01-01

    Optical fibers doped with Ytterbium-3+ have become increasingly common in fiber lasers and amplifiers. Yb-doped fibers provide the capability to produce high power and short pulses at specific wavelengths, resulting in highly effective gain media. However, little is known about the local structure, distribution, and chemical coordination of Yb3+ in the fibers. This information is necessary to improve the manufacturing process and optical qualities of the fibers. Five fibers doped with Yb3+ were studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES), in addition to Yb3+ mapping. The Yb3+ distribution in each fiber core was mapped with 2D and 1D intensity scans, which measured X-ray fluorescence over the scan areas. Two of the five fibers examined showed highly irregular Yb3+ distributions in the core center. In four of the five fibers Yb3+ was detected outside of the given fiber core dimensions, suggesting possible Yb3+ diffusion from the core, manufacturing error, or both. X-ray absorption spectroscopy (XAS) analysis has so far proven inconclusive, but did show that the fibers had differing EXAFS spectra. The Yb3+ distribution mapping proved highly useful, but additional modeling and examination of fiber preforms must be conducted to improve XAS analysis, which has been shown to have great potential for the study of similar optical fi bers.

  14. Scanning radiographic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Albert, R.D.

    1980-04-01

    Visual display of dental, medical or other radiographic images is realized with an x-ray tube in which an electron beam is scanned through an x-y raster pattern on a broad anode plate, the scanning being synchronized with the x-y sweep signals of a cathode ray tube display and the intensity signal for the display being derived from a small x-ray detector which receives x-rays that have passed through the subject to be imaged. Positioning and support of the detector are provided for by disposing the detector in a probe which may be attached to the x-ray tube at any of a plurality of different locations and by providing a plurality of such probes of different configuration in order to change focal length, to accommodate to different detector placements relative to the subject, to enhance patient comfort and to enable production of both periapical images and wider angle pantomographic images. High image definition with reduced radiation dosage is provided for by a lead glass collimator situated between the x-ray tube and subject and having a large number of spaced-apart minute radiation transmissive passages convergent on the position of the detector. Releasable mounting means enable changes of collimator in conjunction with changes of the probe to change focal length. A control circuit modifies the x-y sweep signals applied to the x-ray tube and modulates electron beam energy and current in order to correct for image distortions and other undesirable effects which can otherwise be present in a scanning x-ray system.

  15. Horizon Scanning for Pharmaceuticals

    DEFF Research Database (Denmark)

    Lepage-Nefkens, Isabelle; Douw, Karla; Mantjes, GertJan

    In 2016, the Belgian, Dutch, Luxembourg and Austrian governments declared their intention to collaborate on pharmaceutical policy (BeNeLuxA Collaboration). KCE was asked to lead a task force responsible for developing a Horizon Scanning methodology for pharmaceuticals and a possible model...... and filtration of new and emerging pharmaceutical products. It will maintain and update the HS database, organise company pipeline meetings, and disseminate the HSS’s outputs.  The HS unit works closely together with the designated national HS experts in each collaborating country. The national HS experts...

  16. Surface micromachined scanning mirrors

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1992-01-01

    Both aluminum cantilever and torsional scanning mirrors have been fabricated and their static and dynamic properties are studied experimentally and theoretically. The experiments showed resonance frequencies in the range of 163 k-Hz - 632 kHz for cantilever beams with Q values between 5 and 11....... Torsional mirrors showed resonance frequencies in the range of 410 kHz - 667 kHz with Q values of 10 - 17. All measurements performed at atmospheric pressure. Both types of mechanical structures were deflected electrostatically at large angles (± 5°) more than 1011 times without breaking and without any...

  17. Detecção de alterações na camada de fibras nervosas da retina por meio do laser confocal polarizado em hipertensão ocular antes do surgimento de defeitos perimétricos Detection of retinal nerve fiber layer changes in ocular hypertension with scanning laser polarimetry before the appearance of perimetric defects

    Directory of Open Access Journals (Sweden)

    Roberto Lauande-Pimentel

    2004-10-01

    Full Text Available OBJETIVO: Avaliar a capacidade do laser confocal polarizado (LCP em detectar alterações na camada de fibras nervosas (CFN de hipertensos oculares antes do aparecimento de alteração campimétrica. Desenho- Retrospectivo, caso-controle. MÉTODOS: Pacientes hipertensos oculares divididos em dois grupos: a estáveis e b conversores (que progrediram com dano perimétrico glaucomatoso. Parâmetros de retardo obtidos por meio do programa NFA/GDx. RESULTADOS: Um total de 108 pacientes estáveis e 13 conversores foram estudados por período médio de seguimento acima de 35 meses nos dois grupos. Diversos parâmetros do LCP mostraram diferenças significativas na espessura da CFN entre os dois grupos no inicio do seguimento (média de 27,4 meses antes do aparecimento de lesão perimétrica. Os parâmetros The Number, Maximum Modulation e Superior Average permaneceram diferentes entre os grupos no início e no final do seguimento. O odds ratio para desenvolvimento de conversão perimétrica, dado um resultado de The Number alterado (>32, foi estimado em 7,9 para esta série. CONCLUSÕES: O LCP foi capaz de detectar alterações significativas na CFN no grupo de hipertensos oculares que desenvolveram posteriormente lesão perimétrica glaucomatosa. Neste estudo, o resultado inicial anormal de The Number foi o principal fator de risco para desenvolvimento de alteração perimétrica futura em pacientes hipertensos oculares.OBJECTIVE: To evaluate the ability of the Confocal Scanning Laser Polarimeter (SLP to detect glaucoma alterations before the appearance of perimetric defects. Design- retrospective, case-control. METHODS: Ocular hipertensive patients divided in to two groups: a stable and b conversors (that have conversed to perimetric defined glaucoma. Nerve Fiber Analyser/GDx parameters of retardation. RESULTS: A total of 108 stable and 13 conversors were evaluated for a mean period over 35 months in each group. At the initial examination, several

  18. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  19. Fiber sensor identification based on incoherent Rayleigh backscatter measurements in the frequency domain

    Science.gov (United States)

    Koeppel, Max; Engelbrecht, Rainer; Werzinger, Stefan; Schmauss, Bernhard

    2017-04-01

    In this work, a fiber identification method based on incoherent optical frequency domain reflectometry (IOFDR) measurements is introduced. The proposed method uses the characteristic interference pattern of IOFDR Rayleigh backscatter measurements with a broadband light source to unambiguously recognize different initially scanned fiber segments. The recognition is achieved by cross-correlating the spatially resolved Rayleigh backscatter profile of the fiber segment under test with a initially measured and stored backscatter profile. This profile was found to be relatively insensitive to temperature changes. It is shown that identification is possible even if the fiber segment in question is installed subsequent to 300m of lead fiber.

  20. Video rate near-field scanning optical microscopy

    Science.gov (United States)

    Bukofsky, S. J.; Grober, R. D.

    1997-11-01

    The enhanced transmission efficiency of chemically etched near-field optical fiber probes makes it possible to greatly increase the scanning speed of near-field optical microscopes. This increase in system bandwidth allows sub-diffraction limit imaging of samples at video rates. We demonstrate image acquisition at 10 frames/s, rate-limited by mechanical resonances in our scanner. It is demonstrated that the optical signal to noise ratio is large enough for megahertz single pixel acquisition rates.

  1. Stress transfer in microdroplet tensile test: PVC-coated and uncoated Kevlar-29 single fiber

    Science.gov (United States)

    Zhenkun, Lei; Quan, Wang; Yilan, Kang; Wei, Qiu; Xuemin, Pan

    2010-11-01

    The single fiber/microdroplet tensile test is applied for evaluating the interfacial mechanics between a fiber and a resin substrate. It is used to investigate the influence of a polymer coating on a Kevlar-29 fiber surface, specifically the stress transfer between the fiber and epoxy resin in a microdroplet. Unlike usual tests, this new test ensures a symmetrical axial stress on the embedded fiber and reduces the stress singularity that appears at the embedded fiber entry. Using a homemade loading device, symmetrical tensile tests are performed on a Kevlar-29 fiber with or without polyvinylchloride (PVC) coating, the surface of which is in contact with two epoxy resin microdroplets during curing. Raman spectra on the embedded fiber are recorded by micro-Raman Spectroscopy under different strain levels. Then they are transformed to the distributions of fiber axis stress based on the relationship between stress and Raman shift. The Raman results reveal that the fiber axial stresses increase with the applied loads, and the antisymmetric interfacial shear stresses, obtained by a straightforward balance of shear-to-axial forces argument, lead to the appearance of shear stress concentrations at a distance to the embedded fiber entry. The load is transferred from the outer fiber to the embedded fiber in the epoxy microdroplet. As is observed by scanning electronic microscopy (SEM), the existence of a flexible polymer coating on the fiber surface reduces the stress transfer efficiency.

  2. Visualization of nerve fiber orientation in gross histological sections of the human brain.

    Science.gov (United States)

    Axer, H; Berks, G; Keyserlingk, D G

    2000-12-01

    Diffusion weighted magnetic resonance imaging (DWMRI) allows visualization of the orientation of the nervous fibers in the living brain. For comparison, a method was developed to examine the orientation of fibers in histological sections of the human brain. Serial sections through the entire human brain were analyzed regarding fiber orientation using polarized light. Direction of fibers in the cutting plane was obtained by measuring the azimuth with the lowest intensity value at each point, and inclination of fibers in the section was evaluated using fuzzy logic approximations. Direction and inclination of fibers revealing their three-dimensional orientation were visualized by colored arrows mapped into the images. Using this procedure, various fiber tracts were identified (pyramidal tract, radiatio optica, radiatio acustica, arcuate fascicle, and 11 more). Intermingled fibers could be separated from each other. The orientation of the fiber tracts derived from polarized light microscopy was validated by confocal laser scanning microscopy in a defined volume of the internal capsule, where the fiber orientation was studied in four human brains. The polarization method visualizes the high degree of intermingled fiber bundles in the brain, so that distinct fiber pathways cannot be understood as solid, compact tracts: Neighbouring bundles of fibers can belong to different systems of fibers distinguishable by their orientation. Copyright 2000 Wiley-Liss, Inc.

  3. Effects of wood fiber surface chemistry on strength of wood-plastic composites

    Science.gov (United States)

    Migneault, Sébastien; Koubaa, Ahmed; Perré, Patrick; Riedl, Bernard

    2015-07-01

    Because wood-plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same conclusions were found with FTIR where WPC strength decreases as lignin peaks intensity increases. Esterification reaction of fibers with MAPE occurs on polar sites of carbohydrates, such as hydroxyls (Osbnd H). Thus, fibers with carbohydrates-rich surface, such as cellulose pulp, produced stronger WPC samples. Other factors such as mechanical interlocking and fiber morphology interfered with the effects of fiber surface chemistry.

  4. Confocal scanning Mueller polarimeter

    Science.gov (United States)

    Lompado, Arthur

    2009-08-01

    We describe the design, construction, calibration and testing of a confocal scanning Mueller polarimeter. A polarization state generator and polarization state analyzer have been inserted into the optical path of a conventional confocal scanning imager to collect the reflectance Muller matrix of samples measuring up to 6.26 mm on a side. Four sources are available for sample interrogation using diode lasers centered at 532 nm, 635 nm, 670 nm, and 785 nm. The device captures all required imagery to calculate the Mueller matrix of each image pixel in approximately 90 s. These matrices are then reduced into polarization imagery such as the diattenuation, retardance and depolarization index. Oftentimes this polarization imagery is quite different and potentially more informative than a conventional intensity image. There are a number of fields that can benefit from alternative/enhanced imagery, most notably in the biomedical, discrimination, and target recognition communities. The sensor has been designed for biomedical applications aimed at improving the technique of noninvasive detection of melanoma lesions.

  5. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  6. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  7. Research of morphology structure and properties of bamboo charcoal acrylic fiber

    Science.gov (United States)

    Zhang, Yongjiu; Feng, Aifen

    2015-07-01

    In order to understand the properties of bamboo charcoal acrylic fiber, the tensile properties, friction properties and hygroscopicity of it, the bamboo charcoal acrylic fiber and the ordinary acrylic fiber were tested, compared and analyzed. The burning behaviors of the two kinds of fibers were observed by burning test, and their cross-sectional and longitudinal morphology was observed with scanning electron microscope (SEM). The SEM pictures showed that there are the uneven sizes of microspores on the surface of bamboo charcoal acrylic fiber and in it. It was found that the friction coefficients of the bamboo charcoal acrylic fiber are smaller and its tensile and moisture absorption are better than those of the ordinary acrylic fiber. However, there are no obvious differences of the burning behaviors between the two fibers.

  8. Mechanical properties of recycled PET fibers in concrete

    Directory of Open Access Journals (Sweden)

    Fernando Pelisser

    2012-08-01

    Full Text Available Fiber-reinforced concrete represents the current tendency to apply more efficient crack-resistant concrete. For instance, polyethylene terephthalate (PET is a polyester polymer obtained from recyclable bottles; it has been widely used to produce fibers to obtain cement-based products with improved properties. Therefore, this paper reports on an experimental study of recycled-bottle-PET fiber-reinforced concrete. Fibers with lengths of 10, 15 and 20 mm and volume fractions of 0.05, 0.18 and 0.30% related to the volume of the concrete were used. Physical and mechanical characterization of the concrete was performed, including the determination of compressive strength, flexural strength, Young's modulus and fracture toughness as well as analysis using mercury intrusion porosimetry (MIP and scanning electron microscopy (SEM. Flexure and impact tests were performed after 28 and 150 days. No significant effect of the fiber addition on the compressive strength and modulus of elasticity was observed. However, the Young's modulus was observed to decrease as the fiber volume increased. At 28 days, the concrete flexural toughness and impact resistance increased with the presence of PET fibers, except for the 0.05 vol.% sample. However, at 150 days, this improvement was no longer present due to recycled-bottle-PET fiber degradation in the alkaline concrete environment, as visualized by SEM observations. An increase in porosity also has occurred at 365 days for the fiber-reinforced concrete, as determined by MIP.

  9. Mechanical properties and micro-morphology of fiber posts.

    Science.gov (United States)

    Zicari, F; Coutinho, E; Scotti, R; Van Meerbeek, B; Naert, I

    2013-04-01

    To evaluate flexural properties of different fiber posts systems and to morphologically characterize their micro-structure. Six types of translucent fiber posts were selected: RelyX Post (3M ESPE), ParaPost Taper Lux (Colthéne-Whaledent), GC Fiber Post (GC), LuxaPost (DMG), FRC Postec Plus (Ivoclar-Vivadent), D.T. Light-Post (RTD). For each post system and size, ten specimens were subjected to a three-points bending test. Maximum fracture load, flexural strength and flexural modulus were determined using a universal loading device (5848 MicroTester(®), Instron). Besides, for each system, three intact posts of similar dimensions were processed for scanning electron microscopy to morphologically characterize the micro-structure. The following structural characteristics were analyzed: fibers/matrix ratio, density of fibers, diameter of fibers and distribution of fibers. Data were statistically analyzed with ANOVA. Type and diameter of posts were found to significantly affect the fracture load, flexural strength and flexural modulus (ppost diameter, in each post system (pposts with the smallest diameter (ppost systems tested. However, any correlation has been found between flexural strength and structural characteristics. Flexural strength appeared not to be correlated to structural characteristics of fiber posts, but it may rather be affected by mechanical properties of the resin matrix and the interfacial adhesion between fibers and resin matrix. Copyright © 2013. Published by Elsevier Ltd.

  10. In vitro bioactivity and cytotoxicity of chemically treated glass fibers

    Directory of Open Access Journals (Sweden)

    Ângela Leão Andrade

    2004-12-01

    Full Text Available Samples of a commercial glass fiber FM® (Fiber Max were used to test the efficacy of a chemical sol-gel surface treatment to enhance their bioactivity. After treatment with tetraethoxysilane (TEOS, individual fiber samples were soaked into a simulated body fluid (SBF solution, from which they were removed at intervals of 5 and 10 days. Micrographs obtained by scanning electron microscopy (SEM analysis of samples chemically treated with TEOS revealed the formation of a hydroxyapatite (HA coating layer after 5 days into SBF solution. Fourier transform infrared spectroscopic (FTIR analyses confirmed that the coating layer has P-O vibration bands characteristic of HA. The in vitro cytotoxicity was evaluated using a direct contact test, minimum essential medium elution test (ISO 10993-5 and MTT assay. Fibers immersed in SBF and their extracts exhibited lower cytotoxicity than the controls not subjected to immersion, suggesting that SBF treatment improves the biocompatibility of the fiber.

  11. Active stabilization of a fiber-optic two-photon interferometer using continuous optical length control

    National Research Council Canada - National Science Library

    Cho, Seok-Beom; Kim, Heonoh

    2016-01-01

    ... 6-km-long fiber-optic Hong-Ou-Mandel interferometer. The two-step active control techniques are applied for measuring highly stable two-photon interference fringes by scanning the optical path-length difference...

  12. Scanning quantum decoherence microscopy.

    Science.gov (United States)

    Cole, Jared H; Hollenberg, Lloyd C L

    2009-12-09

    The use of qubits as sensitive nanoscale magnetometers has been studied theoretically and recently demonstrated experimentally. In this paper we propose a new concept, in which a scanning two-state quantum system is used to probe a sample through the subtle effects of decoherence. Mapping both the Hamiltonian and decoherence properties of a qubit simultaneously provides a unique image of the magnetic (or electric) field properties at the nanoscale. The resulting images are sensitive to the temporal as well as spatial variation in the fields created by the sample. As examples we theoretically study two applications; one from condensed matter physics, the other biophysics. The individual components required to realize the simplest version of this device (characterization and measurement of qubits, nanoscale positioning) have already been demonstrated experimentally.

  13. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    Medical ultrasound has been a widely used imaging modality in healthcare platforms for examination, diagnostic purposes, and for real-time guidance during surgery. However, despite the recent advances, medical ultrasound remains the most operator-dependent imaging modality, as it heavily relies...... on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  14. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  15. Preparation and Characterization of Nylon 6/Silver Nanocomposite Fibers for Permanent Antibacterial Effect

    OpenAIRE

    Laleh Maleknia; A. Saeed Rashidi

    2015-01-01

    The nylon 6/silver nano composite fibers were prepared for the attainment of permanent antibacterial activity to common synthetic textile. The fibers prepared by melt spinning and nylon 6/ Silver nanocomposite were prepared by a modular twin screw extruder.. The antibacterial activities of nano silver in fibers were calculated by percent reduction of two kinds of bacteria staphylococcus aurous and klebsiela peneumoniae. Scanning electron microscopy (SEM) was carried out to observe particle di...

  16. Splitting of Islands-in-the-Sea Fibers (PA6/COPET) During Hydroentangling of Nonwovens

    OpenAIRE

    Xiang-yu Jin, Ph.D; Mbwana Suleiman Ndaro; Ting Chen, Ph.D.; Chong-wen Yu, Ph.D

    2007-01-01

    This paper summarizes the investigations of hydroentangled islands-in-the-sea (PA6/COPET) fiber webs. An increase in water jet pressure improved the tensile strength and fiber splitting while elongation at break decreased. Scanning Electron Microscope (SEM) micrographs and ANOVA (MS Excel TM) were used for characterizing fiber splitting and data analyses respectively. It can be concluded that with a new innovation in spinnerette design and modification of co-polyester structure, PA6/COPET, fi...

  17. The in-situ fracture and Auger analysis of Nicalon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Braski, D.N. [Oak Ridge National Lab., TN (United States); Osborne, M.C. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-09-01

    A technique has been developed to fracture irradiated Nicalon SiC fibers in a Scanning Auger Microprobe (SAM) and analyze the fracture surfaces without contaminating the specimen chamber. The technique, which was evaluated using as-received fibers, requires only minor modification of two standard specimen holders and should be applicable to other fibers or materials that can be broken under low loads in bending. The technique is simple, rapid, reduces beam charging, and eliminates the need for ion sputtering.

  18. Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopy

    Science.gov (United States)

    Rebecca Snell; Leslie H. Groom; Timothy G. Rials

    2001-01-01

    Loblolly pine, separated into mature and juvenile portions, was refined at various pressures (4, 8 and 12 bar). Fiber surfaces were investigated using a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). Refiner pressure had a significant effect on the fiber surefaces. SEM images showed an apparent increase in surface roughness with increased...

  19. Multicolor, Fluorescent Supercapacitor Fiber.

    Science.gov (United States)

    Liao, Meng; Sun, Hao; Zhang, Jing; Wu, Jingxia; Xie, Songlin; Fu, Xuemei; Sun, Xuemei; Wang, Bingjie; Peng, Huisheng

    2017-10-05

    Fiber-shaped supercapacitors have attracted broad attentions from both academic and industrial communities due to the demonstrated potentials as next-generation power modules. However, it is important while remains challenging to develop dark-environment identifiable supercapacitor fibers for enhancement on operation convenience and security in nighttime applications. Herein, a novel family of colorful fluorescent supercapacitor fibers has been produced from aligned multi-walled carbon nanotube sheets. Fluorescent dye particles are introduced and stably anchored on the surfaces of aligned multi-walled carbon nanotubes to prepare hybrid fiber electrodes with a broad range of colors from red to purple. The fluorescent component in the dye introduces fluorescent indication capability to the fiber, which is particularly promising for flexible and wearable devices applied in dark environment. In addition, the colorful fluorescent supercapacitor fibers also maintain high electrochemical performance under cyclic bending and charge-discharge processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  1. Oriented Fiber Filter Media

    OpenAIRE

    R. Bharadwaj; A. Patel, S. Chokdeepanich, Ph.D.; G.G. Chase, Ph.D.

    2008-01-01

    Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a t...

  2. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  3. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  4. GPR scan assessment

    Directory of Open Access Journals (Sweden)

    Abbas M. Abbas

    2015-06-01

    Full Text Available Mekaad Radwan monument is situated in the neighborhood of Bab Zuweila in the historical Cairo, Egypt. It was constructed at the middle XVII century (1635 AD. The building has a rectangle shape plan (13 × 6 m with the longitudinal sides approximately WNW-ESE. It comprises three storages namely; the ground floor; the opened floor (RADWAN Bench and the living floor with a total elevation of 15 m above the street level. The building suffers from severe deterioration phenomena with patterns of damage which have occurred over time. These deterioration and damages could be attributed to foundation problems, subsoil water and also to the earthquake that affected the entire Greater Cairo area in October 1992. Ground Penetrating Radar (GPR scan was accomplished against the walls of the opened floor (RADWAN Bench to evaluate the hazard impact on the walls textures and integrity. The results showed an anomalous feature through the southern wall of RADWAN Bench. A mathematical model has been simulated to confirm the obtained anomaly and the model response exhibited a good matching with the outlined anomaly.

  5. Cellulosic fibers and nonwovens from solutions: Processing and properties

    Science.gov (United States)

    Dahiya, Atul

    Cellulose is a renewable and bio-based material source extracted from wood that has the potential to generate value added products such as composites, fibers, and nonwoven textiles. This research was focused on the potential of cellulose as the raw material for fiber spinning and melt blowing of nonwovens. The cellulose was dissolved in two different benign solvents: the amine oxide 4-N-methyl morpholine oxide monohydrate (NMMO•H2O) (lyocell process); and the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([C 4MIM]Cl). The solvents have essentially no vapor pressure and are biologically degradable, making them environmentally advantageous for manufacturing processes. The objectives of this research were to: (1) characterize solutions of NMMO and [C4MIM]Cl; (2) develop processing techniques to melt blow nonwoven webs from cellulose using NMMO as a solvent; (3) electrospin cellulosic fibers from the [C4MIM]Cl solvent; (4) spin cellulosic single fibers from the [C4MIM]Cl solvent. Different concentration solutions of cellulose in NMMO and [C4MIM]Cl were initially characterized rheologically and thermally to understand their behavior under different conditions of stress, strain, and temperature. Results were used to determine processing conditions and concentrations for the melt blowing, fiber spinning, and electrospinning experiments. The cellulosic nonwoven webs and fibers were characterized for their physical and optical properties such as tensile strength, water absorbency, fiber diameter, and fiber surface. Thermal properties were also measured by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Lyocell webs were successfully melt blown from the 14% cellulose solution. Basis weights of the webs were 27, 79, and 141 g/m2 and thicknesses ranged from 0.3-0.9 mm, depending on die temperatures and die to collector distance. The average fiber diameter achieved was 2.3 microns. The 6% lyocell solutions exhibited

  6. Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer.

    Science.gov (United States)

    Gu, Bobo; Yin, Mingjie; Zhang, A Ping; Qian, Jinwen; He, Sailing

    2011-02-28

    A new fiber-optic relative humidity (RH) sensor based on a thin-core fiber modal interferometer (TCFMI) with a fiber Bragg grating (FBG) in between is presented. Poly (N-ethyl-4-vinylpyridinium chloride) (P4VP·HCl) and poly (vinylsulfonic acid, sodium salt) (PVS) are layer-by-layer deposited on the side surface of the sensor for RH sensing. The fabrication of the sensing nanocoating is characterized by using UV-vis absorption spectroscopy, quartz crystal microbalance (QCM) and scanning electron microscopy (SEM). The incorporation of FBG in the middle of TCFMI can compensate the cross sensitivity of the sensor to temperature. The proposed sensor can detect the RH with resolution of 0.78% in a large RH range at different temperatures. A linear, fast and reversible response has been experimentally demonstrated.

  7. Dehydrating of flax fiber with microwave heating for biocomposite production.

    Science.gov (United States)

    Panigrahi, Satyanarayan; Ghazanfari, Ahmad; Meda, Venkatesh

    2006-01-01

    The feasibility of microwave dehydrating flax fiber was evaluated using a commercial domestic microwave oven at four power settings representing 200, 300, 400 and 500 Watt (W) power level. Due to the possibility of local heating and consequent fiber degradation, the changes in color of the flax fiber at different levels of temperature were also investigated. The dehydration processes at various power levels were simulated by Page model. Based on visual inspection, color analysis and scanning electron microscopy (SEM) of the fiber, it was revealed that discoloration of the fiber occurred at about 170 degrees C. At 200 and 300 W power level, after 10 minutes of dehydrating, the moisture content of the fiber reached from initial 7.9% close to 2.0 and 1.0%, respectively. For 400 W power level, the moisture content of the fiber dropped to 0. 10% in about 9.5 minutes. Major discoloration of the fiber was noticed when dehydration was proceed beyond 4.5 minutes for 500 W treatment. The Page model very well fitted the experimental data. The coefficients of determination calculated from the model and the experimental data increased with increase in applied microwave power

  8. Characterization and antibacterial properties of porous fibers containing silver ions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao [National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123 (China); Xu, Lan, E-mail: lanxu@suda.edu.cn [National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123 (China); Nantong Textile Institute of Soochow University, 58 Chong-chuan Road, Nantong 226018 (China)

    2016-11-30

    Highlights: • Antibacterial electrospun PLA porous fibers containing silver ions were prepared. • Porous structure and porosity of PLA/Ag{sup +} porous fibers were investigated. • The antibacterial effects of PLA/Ag{sup +} porous fibers were studied. • The released mechanism of silver ions in the porous fibers was illustrated. • The porous structure could improve the antibacterial properties. - Abstract: Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  9. Smart Cellulose Fibers Coated with Carbon Nanotube Networks

    Directory of Open Access Journals (Sweden)

    Haisong Qi

    2014-11-01

    Full Text Available Smart multi-walled carbon nanotube (MWCNT-coated cellulose fibers with a unique sensing ability were manufactured by a simple dip coating process. The formation of electrically-conducting MWCNT networks on cellulose mono- and multi-filament fiber surfaces was confirmed by electrical resistance measurements and visualized by scanning electron microscopy. The interaction between MWCNT networks and cellulose fiber was investigated by Raman spectroscopy. The piezoresistivity of these fibers for strain sensing was investigated. The MWCNT-coated cellulose fibers exhibited a unique linear strain-dependent electrical resistance change up to 18% strain, with good reversibility and repeatability. In addition, the sensing behavior of these fibers to volatile molecules (including vapors of methanol, ethanol, acetone, chloroform and tetrahydrofuran was investigated. The results revealed a rapid response, high sensitivity and good reproducibility for these chemical vapors. Besides, they showed good selectivity to different vapors. It is suggested that the intrinsic physical and chemical features of cellulose fiber, well-formed MWCNT networks and favorable MWCNT-cellulose interaction caused the unique and excellent sensing ability of the MWCNT-coated cellulose fibers, which have the potential to be used as smart materials.

  10. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation; Extracao de nanofibras a partir do mesocarpo do dende para incorporacao em polimeros biodegradsveis

    Energy Technology Data Exchange (ETDEWEB)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C., E-mail: ayu.kuana@gmail.com [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil); Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M. [Embrapa Instrumentacao (EMBRAPA/CNPDIA), Sao Carlos, SP (Brazil)

    2015-07-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  11. Add Fiber without Extra Calories

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_166315.html Add Fiber Without Extra Calories How to fill up, not ... 6, 2017 (HealthDay News) -- Are you getting enough fiber in your diet? According to the National Fiber ...

  12. Soluble and insoluble fiber (image)

    Science.gov (United States)

    ... stool. There are two types of dietary fiber, soluble and insoluble. Soluble fiber retains water and turns to gel during ... and nutrient absorption from the stomach and intestine. Soluble fiber is found in foods such as oat ...

  13. Hyperchromatic laser scanning cytometry

    Science.gov (United States)

    Tárnok, Attila; Mittag, Anja

    2007-02-01

    In the emerging fields of high-content and high-throughput single cell analysis for Systems Biology and Cytomics multi- and polychromatic analysis of biological specimens has become increasingly important. Combining different technologies and staining methods polychromatic analysis (i.e. using 8 or more fluorescent colors at a time) can be pushed forward to measure anything stainable in a cell, an approach termed hyperchromatic cytometry. For cytometric cell analysis microscope based Slide Based Cytometry (SBC) technologies are ideal as, unlike flow cytometry, they are non-consumptive, i.e. the analyzed sample is fixed on the slide. Based on the feature of relocation identical cells can be subsequently reanalyzed. In this manner data on the single cell level after manipulation steps can be collected. In this overview various components for hyperchromatic cytometry are demonstrated for a SBC instrument, the Laser Scanning Cytometer (Compucyte Corp., Cambridge, MA): 1) polychromatic cytometry, 2) iterative restaining (using the same fluorochrome for restaining and subsequent reanalysis), 3) differential photobleaching (differentiating fluorochromes by their different photostability), 4) photoactivation (activating fluorescent nanoparticles or photocaged dyes), and 5) photodestruction (destruction of FRET dyes). With the intelligent combination of several of these techniques hyperchromatic cytometry allows to quantify and analyze virtually all components of relevance on the identical cell. The combination of high-throughput and high-content SBC analysis with high-resolution confocal imaging allows clear verification of phenotypically distinct subpopulations of cells with structural information. The information gained per specimen is only limited by the number of available antibodies and by sterical hindrance.

  14. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chao; Jiang, Jianjun, E-mail: jianjun@nwpu.edu.cn; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-12-01

    Graphical abstract: Carbon nanotube/carbon fiber hybrid fiber was proposed by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition process. - Highlights: • Carbon nanotube coated carbon fiber was prepared by two methods. • Uniform and dense CNTs network formed by oxidative treatments combined with EPD. • Pretreatment of the CF is beneficial to EPD of CNTs on carbon fiber surface. • CNTs enhanced the surface activity and wettability of carbon fibers. • CNTs have contributed to the interfacial properties of composite. - Abstract: To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed

  15. Effect of Weight Fractions of Jute Fiber on Tensile Strength and Deflection Temperature of Jute Fiber/Polypropylene Composites

    Science.gov (United States)

    Nabila, S.; Juwono, A. L.; Roseno, S.

    2017-05-01

    Jute is one of eco-friendly natural fiber with relatively low cost and high volume production. This study aimed to determine the effect of weight fractions of jute fiber as a reinforcement in polypropylene (PP) to obtain an optimum properties of PP/jute fiber composites. Jute fiber was pre-treated through alkalization. The PP was initially produced by extrusion process, followed by fabricated the composites by compiling the PP matrix and jute fibers into lamina using a hot-press method. The results of tensile test and heat deflection temperature test showed that the addition of 40wt% jute fiber to the PP increased the tensile strength about 19.7 % up to (38.2±4.9)MPa, the Young modulus about 79.8 % up to (3.20±0.26)GPa, and the heat deflection temperature about 143% up to (143.3±1.14)°C compared to pristine PP. Based on Scanning Electron Microscopy observation on the fracture surfaces, it was shown that the mode of failure on the composites failure surfaces was “fiber pull-out”, which due to the poor interface bond between the fiber and the matrix.

  16. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  17. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiangling; Su Shi; Kundrat, Vojtech; Abbot, Andrew M.; Ye, Haitao [School of Engineering and Applied Science, Aston University, Birmingham B4 7ET (United Kingdom); Zhou Lei [Department of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); Mushtaq, Fajer [Department of Mechanical Engineering, ETH Zurich, Zurich 8092 (Switzerland); Ouyang Defang [School of Life and Health Science, Aston University, Birmingham B4 7ET (United Kingdom); James, David; Roberts, Darren [Thermo Fisher Scientific, Stafford House, Hemel Hempstead HP2 7GE (United Kingdom)

    2013-01-14

    We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs.

  18. Multiscale characterization of chemical–mechanical interactions between polymer fibers and cementitious matrix

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Cruz, Daniel; Hargis, Craig W.; Bae, Sungchul; Itty, Pierre A.; Meral, Cagla; Dominowski, Jolee; Radler, Michael J.; Kilcoyne, David A.; Monteiro, Paulo J. M.

    2014-04-01

    Together with a series of mechanical tests, the interactions and potential bonding between polymeric fibers and cementitious materials were studied using scanning transmission X-ray microscopy (STXM) and microtomography (lCT). Experimental results showed that these techniques have great potential to characterize the polymer fiber-hydrated cement-paste matrix interface, as well as differentiating the chemistry of the two components of a bi-polymer (hybrid) fiber the polypropylene core and the ethylene acrylic acid copolymer sheath. Similarly, chemical interactions between the hybrid fiber and the cement hydration products were observed, indicating the chemical bonding between the sheath and the hardened cement paste matrix. Microtomography allowed visualization of the performance of the samples, and the distribution and orientation of the two types of fiber in mortar. Beam flexure tests confirmed improved tensile strength of mixes containing hybrid fibers, and expansion bar tests showed similar reductions in expansion for the polypropylene and hybrid fiber mortar bars.

  19. Heat-and-pull rig for fiber taper fabrication

    NARCIS (Netherlands)

    Ward, Jonathan M.; O'Shea, Danny G.; Shortt, Brian J.; Morrissey, Michael J.; Deasy, Kieran; Chormaic, Sile G. Nic

    We describe a reproducible method of fabricating adiabatic tapers with 3-4 mu m diameter. The method is based on a heat-and-pull rig, whereby a CO(2) laser is continuously scanned across a length of fiber that is being pulled synchronously. Our system relies on a CO(2) mirror mounted on a geared

  20. Influência da redução medicamentosa da pressão intra-ocular na medida da espessura da camada de fibras nervosas da retina de olhos hipertensos e glaucomatosos pela polarimetria de varredura a laser The influence of intraocular pressure reduction with medication on retinal nerve fiber layer thickness measurements obtained with scanning laser polarimetry in glaucomatous and hypertensive eyes

    Directory of Open Access Journals (Sweden)

    Rodrigo Rezende Gomes Avelino

    2006-10-01

    Full Text Available OBJETIVO: Avaliar o efeito da redução da pressão intra-ocular (PIO obtido com o uso de terapia medicamentosa na espessura da camada de fibras nervosas da retina medida pela polarimetria de varredura a laser (PVL em pacientes glaucomatosos ou hipertensos oculares. MÉTODOS: Trinta e sete olhos de 37 pacientes foram prospectivamente incluídos no estudo e avaliados com a PVL sem uso de medicação ocular hipotensora e num período entre 15 e 30 dias após a instituição de medicação ocular hipotensora, que resultou em redução da PIO de pelo menos 25%. Os parâmetros medidos pela PVL antes e após a redução da PIO foram comparados com o teste t de Student pareado. RESULTADOS: A PIO média dos 37 pacientes diminuiu significativamente de 26,57±4,23 mmHg para 16,54±2,92 mmHg (p0,05. CONCLUSÃO: A redução da PIO com o uso de medicação ocular hipotensora não altera a medida da espessura da camada de fibras nervosas da retina pela PVL em pacientes com glaucoma ou hipertensão ocular.PURPOSE: To evaluate changes in retinal nerve fiber layer thickness as measured by scanning laser polarimetry (SLP after the use of medication to reduce intraocular pressure (IOP in glaucomatous or ocular hypertensive patients. METHODS: The authors prospectively enrolled 37 eyes of 37 patients in whom IOP was reduced by more than 25% after the use of medication. The images were obtained before and 15 to 30 days after the introduction of medication. The SLP parameters measured before and after the use of medication were compared using paired Student's t Test. RESULTS: The mean IOP was significantly reduced from 26.57±4.23 mmHg to 16.54 ±2.92 mmHg after the use of medication (p0.05. CONCLUSION: The retinal nerve fiber layer thickness, as measured by SLP, is not affected by the reduction of IOP with medication in patients with glaucoma or ocular hypertension.

  1. Super capacitor with fibers

    Science.gov (United States)

    Farmer, Joseph Collin; Kaschmitter, James

    2015-02-17

    An electrical cell apparatus includes a first current collector made of a multiplicity of fibers, a second current collector spaced from the first current collector; and a separator disposed between the first current collector and the second current collector. The fibers are contained in a foam.

  2. Fiber Sensor Technology Today

    Science.gov (United States)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  3. Fiber reinforced engineering plastics

    Science.gov (United States)

    Daniel F. Caulfield; Rodney E. Jacobson; Karl D. Sears; John H. Underwood

    2001-01-01

    Although natural fiber reinforced commodity thermoplastics have a wide range of nonstructural applications in the automotive and decking industries, there have been few reports of cellulosic fiber-reinforced engineering thermoplastics. The commonly held belief has been that the only thermoplastics amenable to natural-fibre reinforcement are limited to low-melting (...

  4. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1995-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM. They provide essential reading and reference material for all students and researchers involved in this field. In this second edition the text has been updated and new methods are discussed.

  5. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1992-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.

  6. Characterization of carbon-fiber reinforced polyetherimide thermoplastic composites using mechanical and ultrasonic methods

    Science.gov (United States)

    ALHaidri, Mohannad

    Continuous fiber-reinforced thermoplastics (CFRT) have the potential for being a mass-produced material for high-performance applications. The primary challenge of using CFRT is achieving fiber wet-out due to the high viscosity of thermoplastics. This results in higher temperatures and pressures required for processing the composites. Co-mingling thermoplastic fibers with a reinforcing fiber, potentially, can enable better wetting by reducing the distance the matrix needs to flow. This could result in shorter cycle times and better consolidation at lower temperatures and pressures. In this study, a polyetherimide (PEI) fiber was comingled with carbon fibers (CF). The resultant fibers were woven into fabrics and processed through a compression-molding technique to form laminates. Control specimens were also fabricated using films of PEI layered between plies of woven carbon-fiber materials. The manufactured CFRT panels were evaluated using ultrasonic C-scans (scans in two spatial dimensions) and then characterized for mechanical properties. The specimens produced using the co-mingled fibers had the cycle time reduced significantly compared to the film CFRT, although the results from the mechanical property evaluations were mixed. The behaviors in the co-mingled laminates can be attributed to the resin- and void-content distribution and the fiber-bundle orientations in the cured composite.

  7. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  8. Snapshot spectrally encoded fluorescence imaging through a fiber bundle

    Science.gov (United States)

    Bedard, Noah; Tkaczyk, Tomasz S.

    2012-08-01

    Fiber optic endomicroscopy is a valuable tool for clinical diagnostics and animal studies because it can capture images of tissue in vivo with subcellular resolution. Current configurations for endomicroscopes have either limited spatial resolution or require a scanning mechanism at the distal end of the fiber, which can slow imaging speed and increase the probe size. We present a novel configuration that provides high contrast 350×350 pixel images at 7.2 frames per second, without the need for mechanical scanning at the proximal or distal end of the fiber. The proof-of-concept benchtop system is tested in fluorescence mode and can resolve 1.5 μm features of a high resolution 1951 USAF target.

  9. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    Science.gov (United States)

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  10. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  11. Python fiber optic seal

    Energy Technology Data Exchange (ETDEWEB)

    Ystesund, K.; Bartberger, J.; Brusseau, C.; Fleming, P.; Insch, K.; Tolk, K.

    1993-08-01

    Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.

  12. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  13. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  14. Compound Droplets on Fibers.

    Science.gov (United States)

    Weyer, Floriane; Ben Said, Marouen; Hötzer, Johannes; Berghoff, Marco; Dreesen, Laurent; Nestler, Britta; Vandewalle, Nicolas

    2015-07-21

    Droplets on fibers have been extensively studied in the recent years. Although the equilibrium shapes of simple droplets on fibers are well established, the situation becomes more complex for compound fluidic systems. Through experimental and numerical investigations, we show herein that compound droplets can be formed on fibers and that they adopt specific geometries. We focus on the various contact lines formed at the meeting of the different phases and we study their equilibrium state. It appears that, depending on the surface tensions, the triple contact lines can remain separate or merge together and form quadruple lines. The nature of the contact lines influences the behavior of the compound droplets on fibers. Indeed, both experimental and numerical results show that, during the detachment process, depending on whether the contact lines are triple or quadruple, the characteristic length is the inner droplet radius or the fiber radius.

  15. Characterization of electrospun lignin based carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri [School of Engineering, Thornbrough Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada); Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada)

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  16. Core-Shell Fibers Electrospun from Phase-Separated Blend Solutions: Fiber Formation Mechanism and Unique Energy Dissipation for Synergistic Fiber Toughness.

    Science.gov (United States)

    Wang, Chi; Hsiue, Ting-Ting

    2017-09-11

    Through single-tube electrospinning, the biodegradable core-shell fibers of poly(3-hydroxybutyrate) (PHB) and poly(d,l-lactic acid) (PDLLA) were obtained from blend solutions with different compositions at a total polymer concentration of 7 wt %. Regardless whether PHB is the major or minor component (PHB/PDLLA = 90/10, 75/25, 50/50, and 25/75 wt. ratio), these phase-separated solutions all yielded core-shell fibers with PHB as core and PDLLA as shell. A new scenario of core-shell fiber formation was proposed on the basis of the relative magnitude of the intrinsic relaxation rate of fluids and external extension rate during electrospinning. The effects of blend compositions on the morphologies of the Taylor cone, whipping jet, and as-spun fibers were investigated. The diameters of core-shell fibers can be tailored by simply varying the PHB/PDLLA ratios. Two scaling laws describing the apparent viscosity (ηo) dependence of the outer fiber diameter (dfo) and core fiber diameter (dfc) were derived. That is, dfo ∼ ηo(0.38) and dfc ∼ ηo(0.86). The microstructures of the as-spun fibers were determined by differential scanning calorimetry, Fourier transform infrared spectroscopy, and synchrotron wide-angle and small-angle X-ray scatterings. Results showed that the PDLLA component was in the amorphous state, and the crystallizability of PHB component remained unchanged, except the amorphous 10/90 fibers electrospun from a miscible solution state. The synergistic mechanical properties of the core-shell fibers were obtained, along with the ductile PDLLA shell enclosing the brittle PHB core. The enhanced toughness was attributed to the fragmentation of the brittle PHB core and necking fracture of the ductile PDLLA shell, which served as an effective route for energy dissipation. Compared with the neat PHB fiber, the 90/10 and 75/25 core-shell fibers possessed larger elastic moduli, which was attributed to the high PHB crystal orientation in their core sections despite

  17. Study of Polydiacetylene-Poly (Ethylene Oxide Electrospun Fibers Used as Biosensors

    Directory of Open Access Journals (Sweden)

    A K M Mashud Alam

    2016-03-01

    Full Text Available Polydiacetylene (PDA is an attractive conjugated material for use in biosensors due to its unique characteristic of undergoing a blue-to-red color change in response to external stimuli. 10,12-Pentacosadiynoic acid (PCDA and poly (ethylene oxide (PEO were used in this study to develop fiber composites via an electrospinning method at various mass ratios of PEO to PCDA, solution concentrations, and injection speeds. The PEO-PDA fibers in blue phase were obtained via photo-polymerization upon UV-light irritation. High mass ratios of PEO to PCDA, low polymer concentrations of spinning solution, and low injection speeds promoted fine fibers with small diameters and smooth surfaces. The colorimetric transition of the fibers was investigated when the fibers were heated at temperatures ranging from 25 °C to 120 °C. A color switch from blue to red in the fibers was observed when the fibers were heated at temperatures greater than 60 °C. The color transition was more sensitive in the fibers made with a low mass ratio of PEO to PCDA due to high fraction of PDA in the fibers. The large diameter fibers also promoted the color switch due to high reflectance area in the fibers. All of the fibers were analyzed using Fourier transform infrared spectroscopy (FT-IR and differential scanning calorimetry (DSC and compared before and after the color change occurred. The colorimetric transitional mechanism is proposed to occur due to conformational changes in the PDA macromolecules.

  18. Determination of foveal location using scanning laser polarimetry.

    Science.gov (United States)

    VanNasdale, Dean A; Elsner, Ann E; Weber, Anke; Miura, Masahiro; Haggerty, Bryan P

    2009-03-25

    The fovea is the retinal location responsible for our most acute vision. There are several methods used to localize the fovea, but the fovea is not always easily identifiable. Landmarks used to determine the foveal location are variable in normal subjects and localization becomes even more difficult in instances of retinal disease. In normal subjects, the photoreceptor axons that make up the Henle fiber layer are cylindrical and the radial orientation of these fibers is centered on the fovea. The Henle fiber layer exhibits form birefringence, which predictably changes polarized light in scanning laser polarimetry imaging. In this study 3 graders were able to repeatably identify the fovea in 35 normal subjects using near infrared image types with differing polarization content. There was little intra-grader, inter-grader, and inter-image variability in the graded foveal position for 5 of the 6 image types examined, with accuracy sufficient for clinical purposes. This study demonstrates that scanning laser polarimetry imaging can localize the fovea by using structural properties inherent in the central macula.

  19. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  20. Scanning Productivity in Interlibrary Loan

    Science.gov (United States)

    Pedersen, Wayne A.; Runestad, Anders

    2009-01-01

    The authors report findings of a research study conducted at the Iowa State University Library. Data was gathered on the scanning of library materials by students working in the Interlibrary Loan (ILL) unit. The goals of the study were fourfold: (1) Develop measures of scanning productivity in ILL, (2) Determine if it is more productive to scan…

  1. Scan converting video tape recorder

    Science.gov (United States)

    Holt, N. I. (Inventor)

    1971-01-01

    A video tape recorder is disclosed of sufficient bandwidth to record monochrome television signals or standard NTSC field sequential color at current European and American standards. The system includes scan conversion means for instantaneous playback at scanning standards different from those at which the recording is being made.

  2. Detectors for scanning video imagers

    Science.gov (United States)

    Webb, Robert H.; Hughes, George W.

    1993-11-01

    In scanning video imagers, a single detector sees each pixel for only 100 ns, so the bandwidth of the detector needs to be about 10 MHz. How this fact influences the choice of detectors for scanning systems is described here. Some important parametric quantities obtained from manufacturer specifications are related and it is shown how to compare detectors when specified quantities differ.

  3. Comparison of Fiber Counting by Monitor Screen and Eyepieces of Phase Contrast Microscopy

    Directory of Open Access Journals (Sweden)

    Davoud Panahi

    2014-06-01

    Full Text Available Background: These minerals have been extensively used in industrial products such as cement-asbestos sheet and pipe, brake shoe, clutch, insulation materials, etc. Occupational and non - occupational exposures to this carcinogenic material have caused to develop several methods to evaluate airborne asbestos fibers. Materials and Methods: In this study, multiple microscopic method of determining the type and concentration of asbestos fibers has been used in an industry. 3TThe forty five personal3T4T 3T4Tsamples3T4T 3T4Ton3T4T 3T4Tmembrane3T4T 3T4Tfilters (MCE3T4T 3T4Twere collected3T4T 3T4Tof3T4T 3T4Tdifferent3T4T 3T4Tprocesses3T4T 3T4Tof a3T4T 3T4Tmanufacturing factory3T4T 3T4Tof 3Tcement-asbestos sheet4T. 4TThe half of each filter was prepared and then fibers counting were accomplished by ocular PCM and LCD images methods. Another part of filters was used for identification of asbestos fibers elements and types by scanning electron microscope method. Results: Fibers concentration range were determined 0.009-0.243 fibers/cc by direct counting method (Ocular PCM, while by indirect method (LCD Images, results were 0.00-0.117 fibers/cc and statistical tests showed significant difference (p<0.02. Study of elemental composition of fibers by scanning electron microscope confirmed that, the majority of fibers were chrysotile. Study of elemental composition of fibers by scanning electron microscope confirmed that majority of fibers are chrysotile. Conclusion: Due to limitation of study, use of 1.3 megapixels in indirect method, PCM direct method remains one the best methods of Asbestos fibers counting in Iran.

  4. Coloration of cotton fibers using nano chitosan.

    Science.gov (United States)

    Wijesena, Ruchira N; Tissera, Nadeeka D; de Silva, K M Nalin

    2015-12-10

    A method of coloration of cotton fabrics with nano chitosan is proposed. Nano chitosan were prepared using crab shell chitin nanofibers through alkaline deacetylation process. Average nano fiber diameters of nano chitosan were 18 nm to 35 nm and the lengths were in the range of 0.2-1.3 μm according to the atomic force microscope study. The degree of deacetylation of the material was found to be 97.3%. The prepared nano chitosan dyed using acid blue 25 (2-anthraquinonesulfonic acid) and used as the coloration agent for cotton fibers. Simple wet immersion method was used to color the cotton fabrics by nano chitosan dispersion followed by acid vapor treatment. Scanning electron microscope and atomic force microscope study of the treated cotton fiber revealed that the nano chitosan were consistently deposited on the cotton fiber surface and transformed in to a thin polymer layer upon the acid vapor treatment. The color strength of the dyed fabrics could be changed by changing the concentration of dyed nano chitosan dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Bacterial polyhydroxybutyrate for electrospun fiber production.

    Science.gov (United States)

    Acevedo, Francisca; Villegas, Pamela; Urtuvia, Viviana; Hermosilla, Jeyson; Navia, Rodrigo; Seeger, Michael

    2017-08-16

    Nano- and microfibers obtained by electrospinning have attracted great attention due to its versatility and potential for applications in diverse technological fields. Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by microorganisms such as the bacterium Burkholderia xenovorans LB400. In particular, LB400 cells are capable to synthesize poly(3-hydroxybutyrate) (PHB) from glucose. The aim of this study was to produce and characterize electrospun fibers obtained from bacterial PHBs. Bacterial strain LB400 was grown in M9 minimal medium using xylose and mannitol (10gL(-1)) as the sole carbon sources and NH4Cl (1gL(-1)) as the sole nitrogen source. Biopolymer-based films obtained were used to produce fibers by electrospinning. Diameter and morphology of the microfibers were analyzed by scanning electron microscopy (SEM) and their thermogravimetric properties were investigated. Bead-free fibers using both PHBs were obtained with diameters of less than 3μm. The surface morphology of the microfibers based on PHBs obtained from both carbon sources was different, even though their thermogravimetric properties are similar. The results indicate that the carbon source may determine the fiber structure and properties. Further studies should be performed to analyze the physicochemical and mechanical properties of these PHB-based microfibers, which may open up novel applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Surface Modification of Carbon Fiber Polymer Composites after Laser Structuring

    Science.gov (United States)

    Sabau, Adrian S.; Chen, Jian; Jones, Jonaaron F.; Hackett, Alexandra; Jellison, Gerald D.; Daniel, Claus; Warren, David; Rehkopf, Jackie D.

    The increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin on the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg — T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90° plaques. The effect of laser fluence, scanning speed, and wavelength was investigated on the removal rate of the resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on surface morphology.

  7. Characterization and antibacterial properties of porous fibers containing silver ions

    Science.gov (United States)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao; Xu, Lan

    2016-11-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  8. Electromagnetic configurable architectures for assessment of Carbon Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Steigmann Rozina

    2017-01-01

    Full Text Available Carbon Fiber Reinforced Plastics are used in most wide domains due their low density, lack of mechanical fatigue phenomena and high strength–to weight ratio. From electromagnetic point of view, Carbon Fiber Reinforced Plastics structure represents an inhomogeneous structure of electric conductive fibers embedded into a dielectric material, thus an electromagnetic configurable architecture can be used to evaluate above mentioned defects. The paper proposes a special sensor, send receiver type and the obtaining of electromagnetic image by post-processing each coil signals in each point of scanning, using a sub-encoding image reconstruction algorithm and super-resolution procedures. The layout of fibers can be detected interrogating only diagonal reception coils.

  9. Fiber optic spanner

    Science.gov (United States)

    Black, Bryan; Mohanty, Samarendra

    2011-10-01

    Rotation is a fundamental function in nano/biotechnology and is being useful in a host of applications such as pumping of fluid flow in microfluidic channels for transport of micro/nano samples. Further, controlled rotation of single cell or microscopic object is useful for tomographic imaging. Though conventional microscope objective based laser spanners (based on transfer of spin or orbital angular momentum) have been used in the past, they are limited by the short working distance of the microscope objective. Here, we demonstrate development of a fiber optic spanner for rotation of microscopic objects using single-mode fiber optics. Fiber-optic trapping and simultaneous rotation of pin-wheel structure around axis perpendicular to fiber-optic axis was achieved using the fiber optic spanner. By adjusting the laser beam power, rotation speed of the trapped object and thus the microfluidic flow could be controlled. Since this method does not require special optical or structural properties of the sample to be rotated, three-dimensional rotation of a spherical cell could also be controlled. Further, using the fiber optic spanner, array of red blood cells could be assembled and actuated to generate vortex motion. Fiber optical trapping and spinning will enable physical and spectroscopic analysis of microscopic objects in solution and also find potential applications in lab- on-a-chip devices.

  10. Fiber optic hydrogen sensor

    Science.gov (United States)

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  11. Fiber Bragg grating inscription in optical multicore fibers

    Science.gov (United States)

    Becker, Martin; Elsmann, Tino; Lorenz, Adrian; Spittel, Ron; Kobelke, Jens; Schuster, Kay; Rothhardt, Manfred; Latka, Ines; Dochow, Sebastian; Bartelt, Hartmut

    2015-09-01

    Fiber Bragg gratings as key components in telecommunication, fiber lasers, and sensing systems usually rely on the Bragg condition for single mode fibers. In special applications, such as in biophotonics and astrophysics, high light coupling efficiency is of great importance and therefore, multimode fibers are often preferred. The wavelength filtering effect of Bragg gratings in multimode fibers, however is spectrally blurred over a wide modal spectrum of the fiber. With a well-designed all solid multicore microstructured fiber a good light guiding efficiency in combination with narrow spectral filtering effect by Bragg gratings becomes possible.

  12. Kinetics of stress fibers

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Matthew R; O' Shaughnessy, Ben [Department of Chemical Engineering, Columbia University, New York, NY 10027 (United States)], E-mail: bo8@columbia.edu

    2008-02-15

    Stress fibers are contractile cytoskeletal structures, tensile actomyosin bundles which allow sensing and production of force, provide cells with adjustable rigidity and participate in various processes such as wound healing. The stress fiber is possibly the best characterized and most accessible multiprotein cellular contractile machine. Here we develop a quantitative model of the structure and relaxation kinetics of stress fibers. The principal experimentally known features are incorporated. The fiber has a periodic sarcomeric structure similar to muscle fibers with myosin motor proteins exerting contractile force by pulling on actin filaments. In addition the fiber contains the giant spring-like protein titin. Actin is continuously renewed by exchange with the cytosol leading to a turnover time of several minutes. In order that steady state be possible, turnover must be regulated. Our model invokes simple turnover and regulation mechanisms: actin association and dissociation occur at filament ends, while actin filament overlap above a certain threshold in the myosin-containing regions augments depolymerization rates. We use the model to study stress fiber relaxation kinetics after stimulation, as observed in a recent experimental study where some fiber regions were contractile and others expansive. We find that two distinct episodes ensue after stimulation: the turnover-overlap system relaxes rapidly in seconds, followed by the slow relaxation of sarcomere lengths in minutes. For parameter values as they have been characterized experimentally, we find the long time relaxation of sarcomere length is set by the rate at which actin filaments can grow or shrink in response to the forces exerted by the elastic and contractile elements. Consequently, the stress fiber relaxation time scales inversely with both titin spring constant and the intrinsic actin turnover rate. The model's predicted sarcomere velocities and contraction-expansion kinetics are in good

  13. Effect of surface treatments on tensile properties of hemp fiber reinforced polypropylene composites

    Science.gov (United States)

    Ma, Li; He, Lujv; Zhang, Libin

    2017-04-01

    Three forms of hemp fiber (untreated, treated with sodium hydroxide solution and treated with sodium hydroxide solution followed by three-aminopropyltriethoxysilane) reinforced polypropylene composites were prepared. The effects of chemical treatments on tensile properties of the composites were studied. The results show that alkali treatment followed by three-aminopropyltriethoxysilane treatment significantly improves the tensile properties. In particular, the specific tensile strengths of alkali-silane treated composites with 30% fiber content are only 4% lower than those of composites reinforced with glass fiber. Scanning electron microscopy examination shows that the improvements in tensile properties can be attributed to better bonding between the fiber and matrix.

  14. Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone

    Energy Technology Data Exchange (ETDEWEB)

    Parvinzadeh, Mazeyar, E-mail: mparvinzadeh@gmail.com [Department of Textile, Islamic Azad University, Shahre Rey Branch, Tehran (Iran, Islamic Republic of); Ebrahimi, Izadyar [Young Researchers Club, Islamic Azad University, Shahre Rey Branch, Tehran (Iran, Islamic Republic of)

    2011-02-15

    Influence of atmospheric air plasma treatment on performance of nanoemulsion silicone softener on polyethylene terephthalate fibers was investigated by the use of fourier transform infrared spectroscopy (FTIR), bending lengths (BL), wrinkle recovery angles (WRA), fiber friction coefficient analysis (FFCA), moisture absorbency (MA), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). Results indicated that the plasma pretreatment modifies the surface of fibers and increases the reactivity of substrate toward nanoemulsion silicone. Moisture regain and microscopic tests showed that the combination of plasma and silicone treatments on polyethylene terephthalate can decrease moisture absorption due to uniform coating of silicone emulsion on surface of fibers.

  15. Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone

    Science.gov (United States)

    Parvinzadeh, Mazeyar; Ebrahimi, Izadyar

    2011-02-01

    Influence of atmospheric air plasma treatment on performance of nanoemulsion silicone softener on polyethylene terephthalate fibers was investigated by the use of fourier transform infrared spectroscopy (FTIR), bending lengths (BL), wrinkle recovery angles (WRA), fiber friction coefficient analysis (FFCA), moisture absorbency (MA), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). Results indicated that the plasma pretreatment modifies the surface of fibers and increases the reactivity of substrate toward nanoemulsion silicone. Moisture regain and microscopic tests showed that the combination of plasma and silicone treatments on polyethylene terephthalate can decrease moisture absorption due to uniform coating of silicone emulsion on surface of fibers.

  16. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind P

    2001-01-01

    The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical

  17. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  18. QUARTZ FIBER ELECTROSCOPES

    Science.gov (United States)

    Henderson, R.P.

    1957-09-17

    An instrument carried unobtrusively about the person such as in a finger ring to indicate when that person has been exposed to an unusual radiation hazard is described. A metallized quartz fiber is electrically charged to indicate a full scale reading on an etched glass background. The quartz fiber and the scale may be viewed through a magnifying lens for ease of reading. Incident radiation will ionize gaseous particles in the sealed structure thereby allowing the charge to leak off the quartz fiber with its resulting movement across the scale proportionally indicating the radiation exposure.

  19. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...

  20. Carbon Fiber Risk Analysis. [conference

    Science.gov (United States)

    1979-01-01

    The scope and status of the effort to assess the risks associated with the accidental release of carbon/graphite fibers from civil aircraft is presented. Vulnerability of electrical and electronic equipment to carbon fibers, dispersal of carbon fibers, effectiveness of filtering systems, impact of fiber induced failures, and risk methodology are among the topics covered.

  1. Micro- and macrostructural characterization of polyvinylpirrolidone rotary-spun fibers.

    Science.gov (United States)

    Sebe, István; Kállai-Szabó, Barnabás; Kovács, Krisztián Norbert; Szabadi, Enikő; Zelkó, Romána

    2015-01-01

    The application of high-speed rotary spinning can offer a useful mean for either preparation of fibrous intermediate for conventional dosage forms or drug delivery systems. Polyvinylpyrrolidone (PVP) and poly(vinylpyrrolidone-vinylacetate) (PVP VA) micro- and nanofibers of different polymer concentrations and solvent ratios were prepared with a high-speed rotary spinning technique. In order to study the influence of parameters that enable successful fiber production from polymeric viscous solutions, a complex micro- and macrostructural screening method was implemented. The obtained fiber mats were subjected to detailed morphological analysis using scanning electron microscope (SEM), and rheological measurements while the microstructural changes of fiber samples, based on the free volume changes, was analyzed by positron annihilation lifetime spectroscopy (PALS) and compared with their mechanical characteristics. The plasticizing effect of water tracked by ortho-positronium lifetime changes in relation to the mechanical properties of fibers. A concentration range of polyvinylpyrrolidone solutions was defined for the preparation of fibers of optimum fiber morphology and mechanical properties. The method enabled fiber formulation of advantageous functionality-related properties for further formulation of solid dosage forms.

  2. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, Tien-Wei, E-mail: twshyr@fcu.edu.tw [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Huang, Shih-Ju [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Wur, Ching-Shuei [Department of Physics, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China)

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α′-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α′-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy. - Highlights: • The martensitic transformation of the 316L SS fiber occurred during the cold drawn. • The grain sizes of γ-austenite and α′-martensite were reduced to the nanoscale. • The newly formed martensitic grains were closely arrayed in the drawing direction. • The drawing process caused the magnetic easy axis to be aligned with the fiber axis. • The microstructure anisotropy strongly contributed to the magnetic anisotropy.

  3. Effect of Gamma and electron beam irradiation on PAN-carbon fiber composite

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R.; Kasaei, H.; Hajihashemi, M.; Daneshvari, V.; Emamalizadeh, M.; Kasaei, M.H., E-mail: rvzreza@gmail.com [Materials Research School, Nuclear Science and Technology Research Institute, Isfahan, I. R. (Iran, Islamic Republic of)

    2016-11-01

    The aim of this study was to evaluate the effects of irradiation on structural, mechanical and thermal properties of PAN- carbon fiber composite. The overall applied doses were 250, 500, 750, and 1000 kGy. Irradiated and non-irradiated samples were characterized by Scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. Tensile strength test was conducted in order to measure mechanical properties. Scanning electron microscopy was used to evaluate microstructural behavior. Thermal behavior of the samples was studied by thermogravimetric analysis and differential scanning calorimetry. The results showed that by increasing gamma and electron doses the thermal behavior of the composite indicated higher decomposition degree as a function of the temperature. Electron irradiated carbon fiber surfaces are relatively smoothed than that virgin fibers. Bulges after gamma treatment were decreased and surface was unrough. (author)

  4. Fiber bundle phase conjugate mirror

    Science.gov (United States)

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  5. Wet spinning of PVA composite fibers with a large fraction of multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Dengpan Lai

    2015-10-01

    Full Text Available PVA composites fibers with a large fraction of multi-walled carbon nanotubes modified by both covalent and non-covalent functionalization were produced by a wet-spinning process. Model XQ-1 tensile tester, thermogravimetric analysis, scanning electron microscopy, differential scanning calorimetry, and wide-angle X-ray diffraction were used to characterize the properties of PVA/MWNT composite fibers. The TGA results suggested that MWNTs content in composite fibers were ranged from 5.3 wt% to 27.6 wt%. The mechanical properties of PVA/MWNT composite fibers were obviously superior to pure PVA fiber. The Young׳s modulus of composite fibers enhanced with increasing the content of MWNTs, and it rised gradually from 6.7 GPa for the pure PVA fiber to 12.8 GPa for the composite fibers with 27.6 wt% MWNTs. Meanwhile, the tensile strength increased gradually from 0.39 GPa for the pure PVA fiber to 0.74 GPa for the composite fibers with 14.4 wt% MWNTs. Nevertheless, the tensile strength of the composite fibers decreased as the MWNTs content up to 27.6 wt%. SEM results indicated that the MWNTs homogeneously dispersed in the composite fibers, however some agglomerates also existed when the content of MWNTs reached 27.6 wt%. DSC results proved strong interfacial interaction between MWNTs and PVA chain, which benefited composite fibers in the efficient stress-transfer. WXAD characterization showed that the orientation of PVA molecules declined from 94.1% to 90.9% with the increasing of MWNTs content. The good dispersibility of MWNTs throughout PVA matrix and efficient stress-transfer between MWNTs and PVA matrix may contributed to significant enhancement in the mechanical properties.

  6. Fiber Optics: No Illusion.

    Science.gov (United States)

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  7. Ways to Boost Fiber

    Science.gov (United States)

    ... Workout Nutrition Timing Your Pre- and Post-Workout Nutrition weights and fruits Building Muscle on a Vegetarian Diet For Kids For Parents For Men For Women For Seniors Easy Ways to Boost Fiber in Your Daily ...

  8. Fiber optic data transmission

    Science.gov (United States)

    Shreve, Steven T.

    1987-01-01

    The Ohio University Avionics Engineering Center is currently developing a fiber optic data bus transmission and reception system that could eventually replace copper cable connections in airplanes. The original form of the system will transmit information from an encoder to a transponder via a fiber optic cable. An altimeter and an altitude display are connected to a fiber optic transmitter by copper cable. The transmitter converts the altimetry data from nine bit parallel to serial form and send these data through a fiber optic cable to a receiver. The receiver converts the data using a cable similar to that used between the altimeter and display. The transmitting and receiving ends also include a display readout. After completion and ground testing of the data bus, the system will be tested in an airborne environment.

  9. Fiber optics standard dictionary

    CERN Document Server

    Weik, Martin H

    1997-01-01

    Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle­ tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin­ istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook w...

  10. Hybrid photonic crystal fiber

    National Research Council Canada - National Science Library

    Arismar Cerqueira S. Jr; F. Luan; C. M. B. Cordeiro; A. K. George; J. C. Knight

    2006-01-01

    We present a hybrid photonic crystal fiber in which a guided mode is confined simultaneously by modified total internal reflection from an array of air holes and antiresonant reflection from a line...

  11. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  12. IMPACT STUDY OF ANISOTROPIC OPTICAL FIBERS WINDING WITH DIFFERENT TENSION VALUE ON THE H-PARAMETER INVARIANCE DEGREE

    Directory of Open Access Journals (Sweden)

    A. B. Mukhtubayev

    2015-09-01

    Full Text Available Subject of Research. We have investigated the effect of anisotropic optical fibers winding with an elliptical sheath subjecting to stress on the H-parameter invariance degree. This type of optical fiber is used in the manufacture of fiber loop in fiber-optic gyroscopes. Method of Research. The method of research is based on the application of Michelson polarization scanning interferometer as a measuring device. Superluminescent diode with a central wavelength of 1575 nm and a half-width of the spectrum equal to 45 nm is used as a radiation source. The studies were carried out with anisotropic optical fiber with 50 m long elliptical sheath subjecting to stress. The fiber was wound with one layer turn to turn on the coil with a diameter of 18 cm, which is used in the design of fiber-optic gyroscope. The tension force of the optical fiber was controlled during winding on a special machine. Main Results. It was found that at the increase of tension force from 0.05 N to 0.8 H the value of H-parameter increases from 7×10-6 1/m up to 178×10-6 1/m, respectively; i.e. the coupling coefficient of orthogonal modes in the test fiber is being increased. Thus, it is necessary to consider the longitudinal tension force of fiber in the design and manufacture of the fiber-optic sensors of high accuracy class: the less the fiber winding power, the higher invariance degree of distributed H-parameter. The longitudinal tension force of anisotropic optical fiber with elliptical sheath subjecting to stress equal to 0.2 N is recommended in the process of designing fiber-optic gyroscopes. Practical Relevance. The proposed method of Michelson scanning interferometer is usable in the production process for quality determination of the optical fiber winding: no local defects, value controlling of fiber H-parameter.

  13. [Carbohydrates and fiber].

    Science.gov (United States)

    Lajolo, F M; de Menezes, E W; Filisetti-Cozzi, T M

    1988-09-01

    Dietary carbohydrates comprise two fractions that may be classified as digestible, and which are useful as energy sources (simple and complex carbohydrates) and fiber, which is presumed to be of no use to the human body. There are insufficient epidemiologic data on the metabolic effects of simple carbohydrates and it is not advisable to make quantitative recommendations of intake. It is questionable to recommend in developing countries that a fixed proportion of dietary energy be derived from simple sugars, due to the high prevalence of deficient energy intake, cultural habits, and regional differences in food intake and physical activity. In relation to recommendations of complex carbohydrates, it should be considered that their absorption is influenced by many factors inherent to the individual and to the foods. Fiber is defined as a series of different substances derived from tissue structures, cellular residues and undigested chemical substances that may be partially utilized after intestinal bacteria have acted on them. There is not a clear definition of the chemical composition of fiber, but it consists mainly of polysaccharides (such as cellulose, hemicellulose and pectins), lignin and end products of the interactions of various food components. The effects of fiber, such as control of food intake, regulation of gastrointestinal transit, post-prandial blood concentrations of cholesterol, glucose and insulin, flatulence and alterations in nutrient bioavailability are due to various physical properties inherent to its chemical components. Impairment of nutrient absorption may be harmful, mainly among populations whose food intake is lower than their energy needs, and with a high fiber content. This may be particularly important in pregnant women, growing children and the elderly, and should be considered when making nutrient recommendations. A precise knowledge of fiber is also important to calculate the real energy value of foods, mainly for two reasons: 1

  14. Fabrication, Polarization of Electrospun Polyvinylidene Fluoride Electret Fibers and Effect on Capturing Nanoscale Solid Aerosols

    Directory of Open Access Journals (Sweden)

    Dinesh Lolla

    2016-08-01

    Full Text Available Electrospun polyvinylidene fluoride (PVDF fiber mats with average fiber diameters (≈200 nm, ≈2000 nm were fabricated by controlled electrospinning conditions. These fiber mats were polarized using a custom-made device to enhance the formation of the electret β-phase ferroelectric property of the fibers by simultaneous uniaxial stretching of the fiber mat and heating the mat to the Curie temperature of the PVDF polymer in a strong electric field of 2.5 kV/cm. Scanning electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry and Brunauer-Emmett-Teller (BET surface area analyses were performed to characterize both the internal and external morphologies of the fiber mat samples to study polarization-associated changes. MATLAB simulations revealed the changes in the paths of the electric fields and the magnetic flux inside the polarization field with inclusion of the ferroelectric fiber mats. Both polarized and unpolarized fiber mats were challenged as filters against NaCl particles with average particle diameters of about 150 nm using a TSI 8130 to study capture efficiencies and relative pressure drops. Twelve filter experiments were conducted on each sample at one month time intervals between experiments to evaluate the reduction of the polarization enhancement over time. The results showed negligible polarization loss for the 200-nm fiber sample. The polarized mats had the highest filter efficiencies and lowest pressure drops.

  15. Raman Scattering of Inorganic Fibers

    OpenAIRE

    SASAKI, Yoshiro; Sato, Mitsuhiko; OKAMURA, Kiyohito; NISHINA, Yuichiro

    1985-01-01

    We have examined evolution of Raman spectra of carbon fibers and SiC fibers through structural transformations caused by heat treatment. Raman spectra of the SiC fibers indicate that the fibers consist of amorphous or microcrystalline SiC and graphitic microcrystals. We discuss the correlation between the tensile strength of the fibers and their microscopic structure deduced from the Raman data.

  16. Health benefits of dietary fiber

    OpenAIRE

    Anderson, JW; Baird, P.; Davis, RH; Ferreri, S.; Knudtson, M.; Koraym, A; Waters, V; Williams, CL

    2009-01-01

    Dietary fiber intake provides many health benefits. However, average fiber intakes for US children and adults are less than half of the recommended levels. Individuals with high intakes of dietary fiber appear to be at significantly lower risk for developing coronary heart disease, stroke, hypertension, diabetes, obesity, and certain gastrointestinal diseases. Increasing fiber intake lowers blood pressure and serum cholesterol levels. Increased intake of soluble fiber improves glycemia and in...

  17. Radiation Damage of Quartz Fibers

    OpenAIRE

    Hagopian, V

    1999-01-01

    Quartz fibers are used in high energy physics experiments as the active medium in high radiation area calorimetry. Quartz fibers are also used in the transmission of optical signals. Even though quartz does not damage by moderate amounts of irradiation, the clad of the fibers and the protective coating ( buffer) do damage reducing light transmission. Various types of quartz fibers have been irradiated and measured for light transmission. The most radiation hard quartz fibers are those with qu...

  18. Fiber optics welder

    Science.gov (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  19. Brominated graphitized carbon fibers

    Science.gov (United States)

    Hung, Ching-Cheh (Inventor)

    1991-01-01

    Low cost, high break elongation graphitized carbon fibers having low degree of graphitization are inert to bromine at room or higher temperatures, but are brominated at -7 to 20 C, and then debrominated at ambient. Repetition of this bromination-debromination process can bring the bromine content to 18 percent. Electrical conductivity of the brominated fibers is three times of the before-bromination value.

  20. Infrared fiber optic materials

    Science.gov (United States)

    Feigelson, Robert S.

    1987-01-01

    The development of IR fiber optics for use in astronomical and other space applications is summarized. Candidate materials were sought for use in the 1 to 200 micron and the 200 to 1000 micron wavelength range. Synthesis and optical characterization were carried out on several of these materials in bulk form. And the fabrication of a few materials in single crystal fiber optic form were studied.

  1. Electrospun Amplified Fiber Optics

    OpenAIRE

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-01-01

    A lot of research is focused on all-optical signal processing, aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for an efficient signal transmission. However, the complex fabrication methods, involving high-temperature processes performed in highly pure environment, slow down the fabrication and make amplified components expensive with respect to an ideal, ...

  2. Thermodynamics of fiber bundles

    OpenAIRE

    Pride, Steven R.; Toussaint, Renaud

    2002-01-01

    A recent theory that determines the properties of disordered solids as the solid accumulates damage is applied to the special case of fiber bundles with global load sharing and is shown to be exact in this case. The theory postulates that the probability of observing a given emergent damage state is obtained by maximizing the emergent entropy as defined by Shannon subject to energetic constraints. This theory yields the known exact results for the fiber-bundle model with global load sharing a...

  3. Graphite Fibers from Pitch

    Science.gov (United States)

    1976-09-01

    filtering it through the screen. The first filter cake usually shrinks away from the ring upon drying; the crack is filled up by a second filtration ...structures. 9 Magnetoresistance perpendicular to the axis of Type P fibers with different structures and thermal history . 10 Magnetoresistance...parallel to the axis of Type P fibers with different structures and thermal history . 11 Plot of the transverse magnetoresistance versus the resistivity

  4. Fiber optic detector

    Energy Technology Data Exchange (ETDEWEB)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  5. Dynamic Mechanical and Thermal Properties of Bagasse/Glass Fiber/Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2016-06-01

    Full Text Available This work aims to evaluate the thermal and dynamic mechanical properties of bagasse/glass fiber/polypropylene hybrid composites. Composites were prepared by the melt compounding method and their properties were characterized by differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of bagasse and glass fiber the melting temperature (Tm and the crystallisation temperature (Tc shift to higher temperatures and the degree of crystallinity (Xc increase. These findings suggest that the fibers played the role of a nucleating agent in composites. Dynamic mechanical analysis indicated that by the incorporation of bagasse and glass fiber into polypropylene, the storage modulus ( and the loss modulus ( increase whereas the mechanical loss factor (tanδ decrease. To assess the effect of reinforcement with increasing temperature, the effectiveness coefficient C was calculated at different temperature ranges and revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of fibers was more noticeable. The fiber-matrix adhesion efficiency determined by calculating of adhesion factor A in terms of the relative damping of the composite (tan δc and the polymer (tan δpand volume fraction of the fibers (Фf. Calculated adhesion factor A values indicated that by adding glass fiber to bagasse/polypropylene system, the fiber-matrix adhesion improve. Hybrid composite containing 25% bagasse and 15% glass fiber showed better fiber-matrix adhesion.

  6. Flame-Retardant Paper from Wood Fibers Functionalized via Layer-by-Layer Assembly.

    Science.gov (United States)

    Köklükaya, Oruç; Carosio, Federico; Grunlan, Jaime C; Wågberg, Lars

    2015-10-28

    The highly flammable character of cellulose-rich fibers from wood limits their use in some advanced materials. To suppress the flammability and introduce flame-retardant properties to individual pulp fibers, we deposited nanometer thin films consisting of cationic chitosan (CH) and anionic poly(vinylphosphonic acid) (PVPA) on fibers using the layer-by-layer (LbL) technique. The buildup of the multilayer film was investigated in the presence and absence of salt (NaCl) using model cellulose surfaces and a quartz crystal microbalance technique. Fibers were then treated with the same strategy, and the treated fibers were used to prepare paper sheets. A horizontal flame test (HFT) and cone calorimetry were conducted to evaluate the combustion behavior of paper sheets as a function of the number of bilayers deposited on fibers. In HFT, paper made of fibers coated with 20 CH/PVPA bilayers (BL), self-extinguished the flame, while uncoated fibers were completely consumed. Scanning electron microscopy of charred paper after HFT revealed that a thin shell of the charred polymeric multilayer remained after the cellulose fibers had been completely oxidized. Cone calorimetry demonstrated that the phosphorus-containing thin films (20 BL is ∼25 nm) reduced the peak heat release rate by 49%. This study identifies a unique and highly effective way to impart flame-retardant characteristic to pulp fibers and the papers made from these fibers.

  7. Extending fiber resources : fiber loading recycled fiber and mechanical pulps for lightweight, high opacity paper

    Science.gov (United States)

    Marguerite Sykes; John Klungness; Freya Tan; Mathew Stroika; Said Abubakr

    1999-01-01

    Production of a lightweight, high opacity printing paper is a common goal of papermakers using virgin or recycled fibers. Fiber loading is an innovative, commercially viable process that can substantially upgrade and extend most types of wood fibers. Fiber loading, a process carried out at high consistency and high alkalinity, precipitates calcium carbonate (PCC) in...

  8. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... back pain. if a DEXA scan gives borderline readings. top of page How should I prepare? On the day ... radiology protection organizations continually review and update the technique ... that those parts of a patient's body not being imaged receive minimal ...

  9. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  10. Influence of Lignin modification on PAN-Lignin copolymers as potential carbon fiber precursors

    Science.gov (United States)

    Ramasubramanian, Gauri

    Carbon fiber based polymer composites have been recognized as advanced materials for structural applications. The unique reinforcing abilities of carbon fibers with their combination of high strength-to-weight ratio and excellent fatigue resistance have made carbon fiber based composites exceptional compared to other fiber reinforced composites. However, the high cost involved in current precursor materials for carbon fibers has limited the widespread applicability of carbon fibers. Hence, intensification of research efforts towards cheaper and easily available raw material for fabrication of carbon fibers is justified. The growing demand for low cost carbon fibers for mainstream composite applications has driven recent interests in using lignin as alternative choice of material for carbon fiber precursor. Lignin is a highly aromatic, plant-derived amorphous polymer and has been considered as potential low-cost, bio-based carbon fiber precursor. Copolymers of polyacrylonitrile/lignin were developed as alternative precursors for fabrication of raw fibers using conventional solution spinning techniques. Lignin/polyacrylonitrile copolymers were successfully synthesized and characterized using FT-IR and NMR techniques. The thermal properties of the copolymers were studied by DSC and TGA analysis. The effect of chemical modification on the morphology and stability of the carbon fibers from PAN-Lignin copolymers has been studied using Raman Spectroscopy, X-ray Diffraction and Scanning Electron Microscopy. Modification of lignin prior to copolymerization provided a significant advantage in the improvement of precursor processability using solution spinning. Additionally, carbon fibers obtained from copolymers containing different varieties of lignins were examined. Carbon fibers produced from organosolv lignin/polyacrylonitrile copolymers exhibit promising carbon fiber structure when compared to softwood/lignin polyacrylonitrile copolymers.

  11. Lidar arc scan uncertainty reduction through scanning geometry optimization

    Science.gov (United States)

    Wang, Hui; Barthelmie, Rebecca J.; Pryor, Sara C.; Brown, Gareth.

    2016-04-01

    Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.

  12. Improved adhesion performances of aramid fibers with vinyl epoxy via supercritical carbon dioxide modification

    Science.gov (United States)

    Qin, M. L.; Kong, H. J.; Yu, M. H.; Teng, C. Q.

    2017-06-01

    In this paper, aramid fibers were treated under supercritical carbon dioxide (SCCO2) with isocyanate terminated liquid nitrile rubber to improve the adhesion performances of vinyl epoxy composites. The interfacial shear strength (IFSS) of vinyl epoxy composites was investigated by micro-bond test. The results indicate that the surface modification of aramid fibers in SCCO2 was an efficient method to increase the adhesion performances between fibers and vinyl epoxy. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were adopted to investigate the surface structure and composition of aramid fibers. The flexural strength and interlaminar shear strength (ILSS) of treated aramid fibers/vinyl epoxy composites was improved by 18.1% and 28.9% compared with untreated aramid fibers, respectively. Furthermore, the fractured surfaces of the composites were observed by SEM, which showed that the interfacial adhesion of composites has been remarkably changed.

  13. A method to obtain a well-defined fraction of respirable para-aramid fibers.

    Science.gov (United States)

    Schins, R P; Gaudichet, A; Jaurand, M C

    1993-10-01

    We developed a preparation method to obtain respirable-sized fractions of para-aramid fibers. The procedure, based on floatability, consists of stirring and subsequent settling of p-aramid pulp in distilled water. Two distinct phases are obtained, with small fibers in the upper part of the suspension, which represents about 33% of the total volume. Optimal results were obtained when 2.0 g pulp was stirred for 15 hr in 800 ml distilled water containing 0.125% ethanol and settled for 5 hr. The mass yield ranged between 0.4 and 0.6%, more than 90% of the particles had an aspect ratio > or = 3:1. The mean fiber length was about 6 microns, and the mean fiber diameter was about 0.4 microns as determined by transmission and scanning electron microscopy. The number of fibers obtained was 4 x 10(6) fibers/micrograms under our standard conditions.

  14. Influence of Chemical Treatment on Thermal Decomposition and Crystallite Size of Coir Fiber

    Science.gov (United States)

    Manjula, R.; Raju, N. V.; Chakradhar, R. P. S.; Kalkornsurapranee, Ekwipoo; Johns, Jobish

    2018-01-01

    Coir fibers were treated with sodium hydroxide (NaOH) and glutaraldehyde (GA). The influence of alkali and aldehyde treatment on thermal degradation and crystallinity of coir fiber was studied in detail. Thermogravimetric analysis and X-ray diffraction techniques were mainly used to characterize the coir samples. Activation energy of degradation was calculated from Broido and Horowitz-Metzger equations. NaOH-treated samples showed an increase in thermal stability. Removal of impurities such as waxy and fatty acid residues from the coir fiber by reacting with strong base solution improved the stability of fiber. Crosslinking of cellulose with GA in the fiber enhanced the stability of the material. Scanning electron microscopy was employed to analyze the change in surface morphology upon chemical treatment. Improvement in the properties suggests that NaOH and GA can be effectively used to modify coir fiber with excellent stability.

  15. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter

    Science.gov (United States)

    Kreger, Stephen T.; Sang, Alex K.; Gifford, Dawn K.; Froggatt, Mark E.

    2009-05-01

    In recent years we have demonstrated the ability to analyze Rayleigh scatter in single- and multi-mode fused silica fibers to deduce strain and temperature shifts, yielding sensitivity and resolution similar to that obtained using Fiber Bragg Gratings. This technique employs scanning laser interferometry to obtain high spatial resolution Rayleigh scatter spectral information. One of the promising aspects of using Rayleigh scatter for distributed sensing is that the technique should work for any fiber that exhibits discernable Rayleigh scatter. We now demonstrate that distributed sensing with mm-range spatial resolution in off-the-shelf plastic multi-mode optical fiber is feasible. We report temperature and strain sensitivity, and comment on measurement range and hysteresis level. Distributed Rayleigh scatter sensing in plastic optical fiber may offer a valuable alternative to sensing in fused silica fibers because of plastic's low cost and differing mechanical and chemical properties.

  16. Preparation and characterization of aligned carbon nanotubes/polylactic acid composite fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kong Yuxia; Yuan Jie [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Qiu Jun, E-mail: qiujun@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials of Education of Ministry, Shanghai 201804 (China)

    2012-07-01

    Aligned functionalized multiwalled carbon nanotubes/polylactic acid (MWNTs-PCL/PLA) composite fibers were successfully prepared by electrospinning processing. The MWNTs bonded with the polycaprolactone chains exhibited excellent uniform dispersion in PLA solution by comparing with the acid-functionalized MWNTs and amino-functionalized MWNTs. Optical microscopy was used to study the aligned degree of the fibers and to investigate the influences of the electrodes distance on the alignment and structure of the fibers, and results showed that the best quality of aligned fibers with dense structure and high aligned degree were obtained at an electrodes distance of 3 cm. Moreover, the MWNTs embedded inside the MWNTs-PCL/PLA fibers displayed well orientation along the axes of the fibers, which was demonstrated by field emission scanning electron microscopy, transmission electron microscopy and Raman spectroscopy.

  17. Fiber-Based Polarization Diversity Detection for Polarization-Sensitive Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hamid Pahlevaninezhad

    2014-09-01

    Full Text Available We present a new fiber-based polarization diversity detection (PDD scheme for polarization sensitive optical coherence tomography (PSOCT. This implementation uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM fiber inputs and polarization maintaining (PM fiber outputs. The SM fiber inputs obviate matching the optical lengths of the two orthogonal OCT polarization channels prior to interference while the PM fiber outputs ensure defined orthogonal axes after interference. Advantages of this detection scheme over those with bulk optics PDD include lower cost, easier miniaturization, and more relaxed alignment and handling issues. We incorporate this PDD scheme into a galvanometer-scanned OCT system to demonstrate system calibration and PSOCT imaging of an achromatic quarter-wave plate, fingernail in vivo, and chicken breast, salmon, cow leg, and basa fish muscle samples ex vivo.

  18. Composite materials of glycerol polyesters and piassava fibers as conducting membranes for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Alves, J.L.; Jose, N.M.; Boaventura, J.S. [Federal Univ. of Bahia, Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    This paper described a method of using piassava fibers to produce polymers for proton exchange membrane fuel cells (PEMFCs). The composite membranes were produced using polyesters obtained from adipic and phthalic acid reactions with glycerol and piassava fibers treated with phosphoric acid. The piassava and polyesters were prepared as a mixture in liquid nitrogen. The mixture was then hot-pressed in order to produce composites with a fiber mass of 3, 5, 10 and 15 per cent. The fibers were then analyzed using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The analyses demonstrated that the piassava fibers gave mechanical strength to the composite and improved proton conductor properties. A high fiber dispersion was observed in the matrix. Electric conductivity tests revealed that the membrane had a conductivity of approximately 0.5 Siemens per cm of acidic media.

  19. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  20. Hollow glass fibers in reinforcing glass ionomer cements.

    Science.gov (United States)

    Garoushi, Sufyan; Vallittu, Pekka; Lassila, Lippo

    2017-02-01

    This study investigated the reinforcing effect of hollow and solid discontinuous glass fiber fillers with two different loading fractions on select mechanical properties of conventional and resin modified glass ionomer cements (GICs). Experimental fiber reinforced GIC was prepared by adding discontinuous glass fiber (hollow/solid) of 0.5mm in length to the powder of commercial GICs (GC Fuji IX and II LC) with two different weight ratios (5 and 10wt%) using a high speed mixing machine. Fracture toughness, work of fracture, flexural strength, flexural modulus, compressive strength and diametral tensile strength were determined for each experimental and control material. The specimens (n=7) were wet stored (37°C for one day) before testing. Scanning electron microscopy was used to evaluate the microstructure of the experimental fiber reinforced GICs. Fiber length analysis was carried out to investigate the fiber length distribution of experimental GICs. The results were analyzed statistically using ANOVA followed by Tukey's post hoc test. Level of significance was set at 0.05. An increase in fracture toughness (280 and 200%) and flexural strength (170 and 140%) of hollow discontinuous glass fiber reinforced (10wt%) conventional and resin modified GICs respectively, were achieved compared to unreinforced materials (p0.05) between the fiber reinforced and unreinforced GICs. The use of hollow discontinuous glass fiber fillers with conventional and resin modified GIC matrix is a novel reinforcement. It yielded superior toughening and flexural performance compared to the particulate GICs used. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Obstacles to Industrial Implementation of Scanning Systems

    Science.gov (United States)

    Anders Astrom; Olog Broman; John Graffman; Anders Gronlund; Armas Jappinene; Jari Luostarinen; Jan Nystrom; Daniel L. Schmoldt

    1998-01-01

    Initially the group discussed what is meant by scanning systems. An operational definition was adopted to consider scanning system in the current context to be nontraditional scanning. Where, traditional scanning is defined as scanning that has been industrially operational and relatively common for several years-a mature technology. For example,...

  2. Effect of particle size and distribution of the sizing agent on the carbon fibers surface and interfacial shear strength (IFSS) of its composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.L. [Open Project of State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology (China); School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao (China); Liu, Y. [School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao (China); Huang, Y.D., E-mail: rlzhit@126.com [School of Chemical Engineering and Technology, State Key laboratory of Urban Water Resource and Environment Department of Applied Chemistry, Harbin Institute of Technology, 150001 Harbin (China); Liu, L. [School of Chemical Engineering and Technology, State Key laboratory of Urban Water Resource and Environment Department of Applied Chemistry, Harbin Institute of Technology, 150001 Harbin (China)

    2013-12-15

    Effect of particle size and distribution of the sizing agent on the performance of carbon fiber and carbon fiber composites has been investigated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize carbon fiber surface topographies. At the same time, the single fiber strength and Weibull distribution were also studied in order to investigate the effect of coatings on the fibers. The interfacial shear strength and hygrothermal aging of the carbon fiber/epoxy resin composites were also measured. The results indicated that the particle size and distribution is important for improving the surface of carbon fibers and its composites performance. Different particle size and distribution of sizing agent has different contribution to the wetting performance of carbon fibers. The fibers sized with P-2 had higher value of IFSS and better hygrothermal aging resistant properties.

  3. Electrospinning of oriented and nonoriented ultrafine fibers of biopolymers

    Science.gov (United States)

    Vu, David

    2005-07-01

    Chitosan has long been known as a biocompatible and biodegradable material suitable for tissue engineering applications. Unfortunately, conventional chitosan solutions cannot be used for electrospinning due to their high conductivity, viscosity and surface tension. We have developed a method to produce clear chitosan solutions with conductivities, surface tension and viscosities that facilitate their processing into micron and submicron fibers via electrospinning. Acetic acid, carbon dioxide and organic solvents are key ingredients in preparing the chitosan solutions. Oriented and non oriented chitosan fibers were produced with the ultimate goal of designing a suitable tissue engineering scaffold. Circularly oriented, continuous, and aligned nanofibers were produced via this technique in the form of a thin membrane or fibrous "mat". Chitosan fiber diameters ranged from 5 micrometers down to 100 nanometers. The structure and mechanical properties of oriented and randomly aligned chitosan fiber deposits could potentially be exploited for cartilage tissue engineering. Ultrafine fibers of starch acetate (SA) also were prepared by the electrospinning process. In this study, solvent mixtures based on DMF, DMSO, pyrindine, acetic acid, acetone, THF, DMC, chloroform were used. A two-solvent formulation was used to study the effect of viscosity, surface tension, and conductivity to the fiber diameter. Also, water and ethanol were used to decrease the boiling point of the solvent, and to make bundled fibers. Several techniques such as scanning electron microscopy, conductmetry, viscometry, and tensiometry were used in this study. The results showed that the combined effects of viscosity, surface tension, and conductivity are of great importance in controlling the diameter of the fibers. We were able to produce SA fibers that was less than 40 nm in diameter. The dependence of fiber diameter on flow-rate, electric field and solvents also was investigated. A rotating disk and a

  4. Remotely scanned multiphoton temporal focusing by axial grism scanning.

    Science.gov (United States)

    Dana, Hod; Shoham, Shy

    2012-07-15

    A simple technique for remote scanning of the focal plane in temporal focusing multiphoton microscopy is demonstrated both theoretically and experimentally. A new on-axis light propagation optical setup design enables this scanning, which was considered not feasible in previous studies. The focal plane is axially displaced by the movement of a remote optical device, consisting of a double prism grating, and optionally a cylindrical lens. The displacement is linear, and its slope is inversely proportional to the square of the optical system's magnification.

  5. Green composites of thermoplastic corn starch and recycled paper cellulose fibers

    Directory of Open Access Journals (Sweden)

    Amnuay Wattanakornsiri

    2011-08-01

    Full Text Available Ecological concerns have resulted in a renewed interest in environmental-friendly composites issues for sustainabledevelopment as a biodegradable renewable resource. In this work we used cellulose fibers from recycled newspaper as reinforcementfor thermoplastic starch in order to improve its mechanical, thermal and water resistance properties. The compositeswere prepared from corn starch plasticized by glycerol (30% wt/wt of glycerol to starch as matrix that was reinforcedwith micro-cellulose fibers, obtained from used newspaper, with fiber content ranging from 0 to 8% (wt/wt of fibers to matrix.Physical properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetricanalysis, water absorption measurement and scanning electron microscopy. The results showed that higherfibers content raised the tensile strength and elastic modulus up to 175% and 292%, respectively, when compared to thenon-reinforced thermoplastic starch. The addition of the fibers improved the thermal resistance and decreased the waterabsorption up to 63%. Besides, scanning electron microscopy illustrated a good adhesion between matrix and fibers. Theseresults indicated that thermoplastic starch reinforced with recycled newspaper cellulose fibers could be fruitfully used ascommodity plastics being strong, cheap, abundant and recyclable.

  6. The boundary-scan handbook

    CERN Document Server

    Parker, Kenneth P

    2016-01-01

    Aimed at electronics industry professionals, this 4th edition of the Boundary Scan Handbook describes recent changes to the IEEE1149.1 Standard Test Access Port and Boundary-Scan Architecture. This updated edition features new chapters on the possible effects of the changes on the work of the practicing test engineers and the new 1149.8.1 standard. Anyone needing to understand the basics of boundary scan and its practical industrial implementation will need this book. Provides an overview of the recent changes to the 1149.1 standard and the effect of the changes on the work of test engineers;   Explains the new IEEE 1149.8.1 subsidiary standard and applications;   Describes the latest updates on the supplementary IEEE testing standards. In particular, addresses: IEEE Std 1149.1                      Digital Boundary-Scan IEEE Std 1149.4                      Analog Boundary-Scan IEEE Std 1149.6                      Advanced I/O Testing IEEE Std 1149.8.1           �...

  7. Fiber-optic technology review

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, P.B.

    1980-01-01

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 ..mu..m and development of wavelengths multiplexers for simultaneous system operation at several wavelengths.

  8. Nanobits: customizable scanning probe tips

    DEFF Research Database (Denmark)

    Kumar, Rajendra; Shaik, Hassan Uddin; Sardan Sukas, Özlem

    2009-01-01

    We present here a proof-of-principle study of scanning probe tips defined by planar nanolithography and integrated with AFM probes using nanomanipulation. The so-called 'nanobits' are 2-4 mu m long and 120-150 nm thin flakes of Si3N4 or SiO2, fabricated by electron beam lithography and standard...... silicon processing. Using a microgripper they were detached from an array and fixed to a standard pyramidal AFM probe or alternatively inserted into a tipless cantilever equipped with a narrow slit. The nanobit-enhanced probes were used for imaging of deep trenches, without visible deformation, wear...... or dislocation of the tips of the nanobit after several scans. This approach allows an unprecedented freedom in adapting the shape and size of scanning probe tips to the surface topology or to the specific application....

  9. Footwear scanning systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Justin L.; McMakin, Douglas L.; Sheen, David M.; Tedeschi, Jonathan R.

    2017-07-25

    Methods and apparatus for scanning articles, such as footwear, to provide information regarding the contents of the articles are described. According to one aspect, a footwear scanning system includes a platform configured to contact footwear to be scanned, an antenna array configured to transmit electromagnetic waves through the platform into the footwear and to receive electromagnetic waves from the footwear and the platform, a transceiver coupled with antennas of the antenna array and configured to apply electrical signals to at least one of the antennas to generate the transmitted electromagnetic waves and to receive electrical signals from at least another of the antennas corresponding to the electromagnetic waves received by the others of the antennas, and processing circuitry configured to process the received electrical signals from the transceiver to provide information regarding contents within the footwear.

  10. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method.

    Science.gov (United States)

    Kim, Kwan-Woo; Lee, Hye-Min; An, Jeong-Hun; Chung, Dong-Chul; An, Kay-Hyeok; Kim, Byung-Joo

    2017-12-01

    In order to manufacture high quality recycled carbon fibers (R-CFs), carbon fiber-reinforced composite wastes were pyrolysed with super-heated steam at 550 °C in a fixed bed reactor for varying reaction times. The mechanical and surface properties of the R-CFs were characterized with a single fiber tensile test, interface shear strength (IFSS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The surface analysis showed that there was no matrix char residue on the fiber surfaces. The tensile strength and IFSS values of the R-CFs were 90% and 115% compared to those of virgin carbon fibers (V-CFs), respectively. The recycling efficiency of the R-CFs from the composites were strongly dependent on the pyrolysis temperature, reaction time, and super-heated steam feeding rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Carbon Fiber Composites

    Science.gov (United States)

    1997-01-01

    HyComp(R), Inc. development a line of high temperature carbon fiber composite products to solve wear problems in the harsh environment of steel and aluminum mills. WearComp(R), self-lubricating composite wear liners and bushings, combines carbon graphite fibers with a polyimide binder. The binder, in conjunction with the fibers, provides the slippery surface, one that demands no lubrication, yet wears at a very slow rate. WearComp(R) typically lasts six to ten times longer than aluminum bronze. Unlike bronze, WearComp polishes the same surface and imparts a self-lube film for years of service. It is designed for continuous operation at temperatures of 550 degrees Fahrenheit and can operate under high compressive loads.

  12. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber......-laser cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  13. RPC High Voltage Scan 2015

    CERN Document Server

    CMS Collaboration

    2016-01-01

    During the LS1 the CMS RPC system has been upgraded with 144 new chambers installed on the forth endcap stations. An annual HV (RPC efficiency vs HV) scan for the entire RPC system has been performed during the Run2 data taking period in 2015. The obtained results have been compared to the HV scans performed in 2011 and 2012. No significant differences are observed in the compared results. The optimal HV working points for the newly installed chambers have been evaluated for the first time with collision data.

  14. Pyrophosphate heart scan in cardiomyopathies

    Energy Technology Data Exchange (ETDEWEB)

    Duska, F.; Novak, J.; Kubicek, J.; Vizda, J.; Kafka, P.; Blaha, V.; Nesvadba, Z.; Zdansky, P. (Karlova Univ., Hradec Kralove (Czechoslovakia). Lekarska Fakulta)

    1982-01-01

    Scintigraphic examination of the heart with pyrophosphate labelled sup(99m)Tc was made in 26 patients with cardiomyopathies of different etiology. From a total of 11 children with secondary affections of the myocardium in myodystrophia musculorum progressiva a positive scintigraphic finding was only obtained in two cases. 12 patients with primary non-obstructive cardiomyopathies the scan was positive in nine cases. One positive scintigraphic finding was shown in examinating three patients with obstructive cardiomyopathies (subvalvular aortic stenosis). The positive scan suggests acute progress of the pathological process in the heart.

  15. Integrated micromachined scanning display systems

    Science.gov (United States)

    Hagelin, Paul M.; Krishnamoorthy, Uma; Conant, Robert A.; Muller, Richard S.; Lau, Kam Y.; Solgaard, Olav

    1999-07-01

    We describe a raster-scanning display system comprised of two tilt-up micromachined polysilicon mirrors that rotate about orthogonal axes. We have demonstrated a resolution of 102 X 119 pixels. The optical efficiency of our two- mirror micro-optical raster-scanning system is comparable to that of micromachined display systems developed by Texas Instruments and Silicon Light Machines. Ease of integration with on-chip light sources and lenses has the potential to reduce packaging size, complexity and cost of the display system and makes it well suited for head-mounted display applications.

  16. Microstructure analysis in the coupling region of fiber coupler with a novel electrical micro-heater

    Science.gov (United States)

    Shuai, Cijun; Gao, Chengde; Nie, Yi; Hu, Huanlong; Peng, Shuping

    2011-12-01

    Fused-tapered fiber coupler is widely used in optical-fiber communication, optical-fiber sensor and optical signal processing. Its optical performance is mainly determined by the glass properties in the coupling region. In this study, the effect of fused biconical taper (FBT) process on glass microstructure of fiber coupler was investigated by testing the microstructure of the cross-section of coupling region. The fiber coupler is fabricated with a novel home-designed electrical heater. Our experimental results show that the boundary between fiber core and fiber cladding become vague or indistinct after FBT under transmission electron microscopy (TEM) and Ge 2+ in fiber core diffuses into fiber cladding. Crystallizations are observed in coupling region under scanning electron microscope (SEM) and microscopic infrared (IR), and the micro crystallizations become smaller with the drawing speed increasing. The wave number of fiberglass increases after FBT and it is in proportion to the drawing speed. The analysis of the microstructure in the coupling region explored the mechanism of the improvement in the performance of fiber couplers which can be used for the guidance of fabrication process.

  17. Impacts of Cellulose Fiber Particle Size and Starch Type on Expansion During Extrusion Processing.

    Science.gov (United States)

    Kallu, Sravya; Kowalski, Ryan J; Ganjyal, Girish M

    2017-07-01

    Objective of this study was to understand the impacts of cellulose fiber with different particle size distributions, and starches with different molecular weights, on the expansion of direct expanded products. Fiber with 3 different particle size distributions (starches representing different amylose contents (0%, 23%, 50%, and 70%) were investigated. Feed moisture content (18 ± 0.5 % w.b) and extruder temperature (140 °C) were kept constant and only the extruder screw speed was varied (100, 175, and 250 rpm) to achieve different specific mechanical energy inputs. Fiber particle size and starch type significantly influenced the various product parameters. In general, the smaller fiber particle size resulted in extrudate with higher expansion ratio. Starch with an amylose: amylopectin ratio of 23:77 resulted in highest expansion compared to the other starches, when no fiber was added. Interestingly, starch with 50:50, amylose: amylopectin ratio in combination with smaller fiber particles resulted in product with significantly greater expansion than the control starch extrudates. Aggregation of fiber and shrinkage of surface was observed in the Scanning Electron Microscope images at 10% fiber level. The results suggest the presence of active interactions between the cellulose fiber particles and corn starch molecules during the expansion process. A better understanding of these interactions can help in the development of high fiber extruded products with better expansion. © 2017 Institute of Food Technologists®.

  18. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Migneault, Sébastien, E-mail: sebastien.migneault@uqat.ca [University of Quebec in Abitibi-Temiscamingue (UQAT), 445 boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4 (Canada); Koubaa, Ahmed, E-mail: ahmed.koubaa@uqat.ca [UQAT (Canada); Perré, Patrick, E-mail: patrick.perre@ecp.fr [École centrale de Paris, Grande Voie des Vignes, F-92 295 Chatenay-Malabry Cedex (France); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Université Laval, 2425 rue de la Terrasse, Québec City, Québec G1V 0A6 (Canada)

    2015-07-15

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  19. Interactive Exploration and Visualization Using MetaTracts extracted from Carbon Fiber Reinforced Composites.

    Science.gov (United States)

    Bhattacharya, Arindam; Weissenbock, Johannes; Wenger, Rephael; Amirkhanov, Artem; Kastner, Johann; Heinzl, Christoph

    2017-08-01

    This work introduces a tool for interactive exploration and visualization using MetaTracts. MetaTracts is a novel method for extraction and visualization of individual fiber bundles and weaving patterns from X-ray computed tomography (XCT) scans of endless carbon fiber reinforced polymers (CFRPs). It is designed specifically to handle XCT scans of low resolutions where the individual fibers are barely visible, which makes extraction of fiber bundles a challenging problem. The proposed workflow is used to analyze unit cells of CFRP materials integrating a recurring weaving pattern. First, a coarse version of integral curves is used to trace sections of the individual fiber bundles in the woven CFRP materials. We call these sections MetaTracts. In the second step, these extracted fiber bundle sections are clustered using a two-step approach: first by orientation, then by proximity. The tool can generate volumetric representations as well as surface models of the extracted fiber bundles to be exported for further analysis. In addition a custom interactive tool for exploration and visual analysis of MetaTracts is designed. We evaluate the proposed workflow on a number of real world datasets and demonstrate that MetaTracts effectively and robustly identifies and extracts fiber bundles.

  20. Wavelength-division-multiplexing fiber coupler based on bending-insensitive holey optical fiber.

    Science.gov (United States)

    Eom, Joo Beom; Lim, Hae-Ryong; Park, Kwan Seob; Lee, Byeong Ha

    2010-08-15

    A wavelength-division-multiplexing (WDM) coupler has been made with a bending-insensitive holey optical fiber (HOF) by using the fused biconical tapered (FBT) method. The transmission band of the proposed HOF WDM coupler could be easily tuned by adjusting the pulling length during the FBT process. Interestingly, it was observed that the air-hole structure of the HOF should be maintained to have the property of a WDM coupler. As the air holes collapse, the HOF WDM exhibits high-pass-filter-like properties. The cross-sectional scanning electron microscope images of the implemented HOF WDM coupler are presented along with the light intensity distribution measured at the coupling region of the coupler. The proposed HOF couplers may also find applications in optical coarse WDM systems and optical fiber sensors.