WorldWideScience

Sample records for scanning calorimeter dsc

  1. LIQUID COAL CHARACTERISTIC ANALYSIS WITH FOURIER TRANSFORM INFRA RED (FTIR AND DIFFERENTIAL SCANNING CALORIMETER (DSC

    Directory of Open Access Journals (Sweden)

    ATUS BUKU

    2017-02-01

    Full Text Available The aim of this study is to identify the value of compounds contained in liquid coal by using Fourier Transform Infra-Red (FTIR and Differential Scanning Calorimeter (DSC. FTIR was used to analyse the components contained in liquid coal, while the DSC is done to observe the heat reaction to the environment. Based on the Fourier Transform Infra-Red (FTIR test results it is shown that the compound contained in the liquid Coal consisting of alkanes, alkenes and alkyne. These compounds are similar compounds. The alkanes, alkenes and alkynes compounds undergo complete combustion reaction with oxygen and would produce CO2 and water vapour [H2O (g]. If incomplete combustion occurs, the reaction proceeds in the form of Carbon Monoxide CO gas or solid carbon andH2O. Combustion reaction that occurs in all these three compounds also produces a number of considerable energy. And if it has higher value of Carbon then the boiling point would be higher. From the Differential Scanning Calorimetric (DSC test results obtained some of the factors that affect the reaction speed, which are the temperature, the reaction mixture composition, and pressure. Temperature has a profound influence in coal liquefaction, because if liquid coal heated with high pressure, the carbon chain would break down into smaller chains consisting of aromatic chain, hydro-aromatic, or aliphatic. This then triggers a reaction between oil formation and polymerization reactions to form solids (char.

  2. Pengaruh pengawetan kulit ikan buntal (Arothon reticularis terhadap suhu kerut ditinjau melalui analisis differential scanning calorimeter (DSC

    Directory of Open Access Journals (Sweden)

    RLM. Satrio Ari Wibowo

    2015-12-01

    Full Text Available The aim of this study was to determine the effect of the skin preservation type against shrinkage temperature of leather. The material used in this study was the skin of pufferfish (Arothon reticularis that have been preserved by salting, formaldehyde and pickling and also raw skin as a reference. The method used to measure the shrinkage temperature was thermal analysis using Differential Scanning Calorimeter (DSC that operated from 4°C up to 440°C with nitrogen stream. DSC measurement results showed that shrinkage temperature of puffer fish preserved with formaldehyde was higher than salting and pickling, which is 63.64°C; 47.95°C; 57.37oC respectively. The advantage of using formaldehyde compared to others preservation technique was not only can protect the skin from damage by microorganisms, but also can create a bond with the collagen .

  3. Application of chemometric methods to differential scanning calorimeter (DSC) to estimate nimodipine polymorphs from cosolvent system.

    Science.gov (United States)

    Siddiqui, Akhtar; Rahman, Ziyaur; Khan, Mansoor A

    2015-06-01

    The focus of this study was to evaluate the applicability of chemometrics to differential scanning calorimetry data (DSC) to evaluate nimodipine polymorphs. Multivariate calibration models were built using DSC data from known mixtures of the nimodipine modification. The linear baseline correction treatment of data was used to reduce dispersion in thermograms. Principal component analysis of the treated and untreated data explained 96% and 89% of the data variability, respectively. Score and loading plots correlated variability between samples with change in proportion of nimodipine modifications. The R(2) for principal component regression (PCR) and partial lease square regression (PLS) were found to be 0.91 and 0.92. The root mean square of standard error of the treated samples for calibration and validation in PCR and PLS was found to be lower than the untreated sample. These models were applied to samples recrystallized from a cosolvent system, which indicated different proportion of modifications in the mixtures than those obtained by placing samples under different storage conditions. The model was able to predict the nimodipine modifications with known margin of error. Therefore, these models can be used as a quality control tool to expediently determine the nimodipine modification in an unknown mixture.

  4. Nano-DTA and nano-DSC with cantilever-type calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nakabeppu, Osamu, E-mail: onakabep@meiji.ac.jp [Meiji University, School of Science and Technology, Department of Mechanical Engineering, Higashimita 1-1-1, Tama-ku, Kawasaki 214-8571 (Japan); Deno, Kohei [Tokyo Institute of Technology, Graduate School of Science and Engineering, Department of Mechanical Sciences and Engineering (Japan)

    2016-08-10

    Highlights: • Nanocalorimetry with original cantilever type calorimeters. • The calorimeters showed the enthalpy resolution of 200 nJ level. • Nano-DTA of a binary alloy captured a probabilistic peak after solidification. • Power compensation DSC of a microgram level sample was demonstrated. • The DSC and DTA behavior were explained with a lumped model. - Abstract: Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) of the minute samples in the range of microgram to nanogram were studied using original cantilever-type calorimeters. The micro-fabricated calorimeter with a heater and thermal sensors was able to perform a fast temperature scan at above 1000 K/s and a high-resolution heat measurement. The DTA of minuscule metal samples demonstrated some advances such as the thermal analysis of a 20 ng level indium and observation of a strange phase transition of a binary alloy. The power compensation type DSC using a thermal feedback system was also performed. Thermal information of a microgram level sample was observed as splitting into the DSC and DTA signals because of a mismatch between the sample and the calorimeter. Although there remains some room for improvement in terms of the heat flow detection, the behavior of the compensation system in the DSC was theoretically understood through a lumped model. Those experiments also produced some findings, such as a fin effect with sample loading, a measurable weight range, a calibration of the calorimeter and a product design concept. The development of the nano-DTA and nano-DSC will enable breakthroughs for the fast calorimetry of the microscopic size samples.

  5. Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field

    DEFF Research Database (Denmark)

    Jeppesen, Stinus; Linderoth, Søren; Pryds, Nini

    2008-01-01

    A simple and high-sensitivity differential scanning calorimeter (DSC) unit operating under magnetic field has been built for indirect determination of the magnetocaloric effect. The principle of the measuring unit in the calorimeter is based on Peltier elements as heat flow sensors. The high...

  6. Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter.

    Science.gov (United States)

    Devireddy, R V; Raha, D; Bischof, J C

    1998-03-01

    A new technique using a differential scanning calorimeter (DSC) was developed to obtain dynamic and quantitative water transport data in cell suspensions during freezing. The model system investigated was a nonattached spherical lymphocyte (Epstein-Barr virus transformed, EBVT) human cell line. Data from the technique show that the initial heat release of a prenucleated sample containing osmotically active cells in media is greater than the final heat release of an identical sample of osmotically inactive or lysed cells in media. The total integrated magnitude of this difference, Deltaqdsc, was found to be proportional to the cytocrit and hence also to the supercooled water volume in the sample. Further, the normalized fractional integrated heat release difference as a function of temperature, Deltaq(T)dsc/Deltaqdsc, was shown to correlate with the amount of supercooled cellular water which had exosmosed from the cell as a function of subzero temperature at constant cooling rates of 5, 10, and 20 degrees C/min. Several important limitations of the technique are (1) that it requires a priori knowledge of geometric parameters such as the surface area, initial volume, and osmotically inactive cell volume and (2) that the technique alone cannot determine whether the heat released from supercooled cellular water is due to dehydration or intracellular ice formation. Cryomicroscopy was used to address these limitations. The initial cell volume and surface area were obtained directly whereas a Boyle-van't Hoff (BVH) plot was constructed to obtain the osmotically inactive cell volume Vb. Curve fitting the BVH data assuming linear osmometric behavior yielded Vb = 0.258V0; however, nonlinearity in the data suggests that the EBVT lymphocyte cells are not "ideal osmometers" at low subzero temperatures and created some uncertainty in the actual value of Vb. Cryomicroscopy further confirmed that dehydration was the predominant biophysical response of the cells over the range of

  7. DSC (Differential Scanning Calorimeter) Stability Test for Liquid Propellants: A Preliminary Report.

    Science.gov (United States)

    1987-09-01

    AL 35898 1 Commander Commander Naval Air Systems Command US Army Missile and Space ATTN: J. Ramnarace, Intelligence Center AIR-54111C ATTN: AMSMI-YDL...Salt Lake City, UT 84112 ATTN: K. Brezinsky I. Glassman 1 Virginia Polytechnic P.O. Box 710 Institute and Princeton, NJ 08540 State University ATTN: J.A

  8. Evaluation of peritoneal tissue by means of differential scanning calorimetry (DSC

    Directory of Open Access Journals (Sweden)

    Łukasz Pietrzyk

    2012-01-01

    Full Text Available Abdominal surgeries alter the integrity of the peritoneal layer and cause imbalances among immunological, inflammatory and angiogenic mechanisms within the tissue. During laparoscopic procedures a protective function of the peritoneal layer can be disturbed by the gas used to create a pneumoperitoneum. The aim of this study was to characterize peritoneal tissue by means of differential scanning calorimetry (DSC as a reference for future investigations on the influence of surgical procedures on the physicochemical state of the peritoneum. Thirty-seven patients participated in the study. Patients were divided into three groups according to the type of surgery: group H — patients who underwent hernia repair; group Ch — patients who underwent laparoscopic cholecystectomy; and group C — patients operated due to rectal cancer. It was observed that onset temperature (To, denaturation temperature (Tm and change of enthalpy (ΔH during thermal denaturation of peritoneal collagen in were significantly different for these three groups of patients. The mean values of onset temperature (To and denaturation temperature (Tm in group H were significantly lower, while DH in this group was significantly higher than in the two other groups (Ch and C. This preliminary study does not answer whether the differences in collagen denaturation found in peritoneal tissue from different groups of patients resulted from a different inherent state of the tissue, or from surgical procedures. However, the results suggest that DSC is an appropriate method to study subtle changes in the physicochemical condition of the peritoneum using small samples obtained during surgical procedures. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 700–705

  9. Melting and thermal history of poly(hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC

    Energy Technology Data Exchange (ETDEWEB)

    Gunaratne, L.M.W.K. [School of Applied Science, RMIT University, GPO Box 2476V, Melbourne, Vic. 3001 (Australia); Shanks, R.A. [School of Applied Science, RMIT University, GPO Box 2476V, Melbourne, Vic. 3001 (Australia)]. E-mail: robert.shanks@rmit.edu.au

    2005-06-15

    Melting behaviour and crystal morphology of poly(3-hydroxybutyrate) (PHB) and its copolymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with various hydroxyvalerate (HV) contents [5 wt.% (PHB5HV), 8 wt.% (PHB8HV) and 12 wt.% (PHB12HV)] have been investigated by conventional DSC, step-scan differential scanning calorimetry (SDSC) and hot-stage polarised optical microscopy (HSPOM). Crystallisation behaviour of PHB and its copolymers were investigated by SDSC. Thermal properties were investigated after different crystallisation treatments, fast, medium and slow cooling. Multiple melting peak behaviour was observed for all polymers. SDSC data revealed that PHB and its copolymers undergo melting-recrystallisation-remelting during heating, as evidenced by exothermic peaks in the IsoK baseline (non-reversing signal). An increase in degree of crystallinity due to significant melt-recrystallisation was observed for slow-cooled copolymers. PHB5HV showed different crystal morphologies for various crystallisation conditions. SDSC proved a convenient and precise method for measurement of the apparent thermodynamic specific heat (reversing signal) HSPOM results showed that the crystallisation rates and sizes of spherulites were significantly reduced as crystallisation rate increased.

  10. Monitoring of butter and animal fat oxidation stability by differential scanning calorimetry (DSC

    Directory of Open Access Journals (Sweden)

    Jasminka Sadadinović

    2005-07-01

    Full Text Available Oxidation of fat is one of the basic reactions which causes the depletion of butter and animal fat quality as well as other products containing them. Since the most of reaction products of fat oxidation are harmful for consumers' health, inadequate and scarce monitoring of edible fats and fat containing products quality, presents increased health risk as well as financial loss for the producers. In fat oxidation stability estimation, standard chemical methods were used (iodine number, acid number, peroxide number, anisidine number etc., which require time and chemical usage. Differential scanning calorimetry (DSC analysis presents the simple and efficient way for butter and animal fats oxidation stability estimation. Laboratory investigations were performed to monitor oxidation stability of butter and animal fat in fresh state, as well as in spent phase, used in frying process. The results obtained were compared to the results of standard chemical analysis, and they confirmed the reproducibility and applicability of differential scanning calorimetry in oxidation stability of butter and animal fats monitoring.

  11. Differential Scanning Calorimetric (DSC) Analysis of Rotary Nickel-Titanium (NiTi) Endodontic File (RNEF)

    Science.gov (United States)

    Wu, Ray Chun Tung; Chung, C. Y.

    2012-12-01

    To determine the variation of A f along the axial length of rotary nickel-titanium endodontic files (RNEF). Three commercial brands of 4% taper RNEF: GTX (#20, 25 mm, Dentsply Tulsa Dental Specialties, Tulsa, OK, USA), K3 (#25, 25 mm) and TF (Twisted File #25, 27 mm) (Sybron Kerr, Orange, CA, USA) were cut into segments at 4 mm increment from the working tip. Regional specimens were measured for differential heat-flow over thermal cycling, generally with continuous heating or cooling (5 °C/min) and 5 min hold at set temperatures (start, finish temperatures): GTX: -55, 90 °C; K3: -55, 45 °C; TF: -55, 60 °C; using differential scanning calorimeter. This experiment demonstrated regional differences in A f along the axial length of GTX and K3 files. Similar variation was not obvious in the TF samples. A contributory effect of regional difference in strain-hardening due to grinding and machining during manufacturing is proposed.

  12. Determination of melting point of vegetable oils and fats by differential scanning calorimetry (DSC) technique.

    OpenAIRE

    Nassu, Renata Tieko; Guaraldo Gonçalves, Lireny Aparecida

    1999-01-01

    Melting point of fats is used to characterize oils and fats and is related to their physical properties, such as hardness and thermal behaviour. The present work shows the utilization of DSC technique on the determination of melting point of fats. In a comparison with softening point (AOCS method Cc 3-25), DSC values were higher than those obtained by AOCS method. It has occurred due to the fact that values obtained by DSC technique were taken when the fat had melted completely. DSC was also ...

  13. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Löbmann, Korbinian; Elder, David P.

    2016-01-01

    of these applications. It is aimed to serve as a broad introduction to newcomers, and also as a valuable reference for those already practising in the field. Complex mDSC was introduced more than two decades ago and has been an important tool for the quantification of amorphous materials and development of freeze......-dried formulations. However, as discussed in the present review, a number of other potential applications could also be relevant for the pharmaceutical scientist......., conventional DSC has shortcomings with respect to weak transitions and overlapping events, which could be solved by the use of the more sophisticated modulated DSC (mDSC). mDSC has multiple potential applications within the pharmaceutical field and the present review provides an up-to-date overview...

  14. Experimental verification of methane-carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter.

    Science.gov (United States)

    Lee, Seungmin; Lee, Yohan; Lee, Jaehyoung; Lee, Huen; Seo, Yongwon

    2013-11-19

    The methane (CH4) - carbon dioxide (CO2) swapping phenomenon in naturally occurring gas hydrates is regarded as an attractive method of CO2 sequestration and CH4 recovery. In this study, a high pressure microdifferential scanning calorimeter (HP μ-DSC) was used to monitor and quantify the CH4 - CO2 replacement in the gas hydrate structure. The HP μ-DSC provided reliable measurements of the hydrate dissociation equilibrium and hydrate heat of dissociation for the pure and mixed gas hydrates. The hydrate dissociation equilibrium data obtained from the endothermic thermograms of the replaced gas hydrates indicate that at least 60% of CH4 is recoverable after reaction with CO2, which is consistent with the result obtained via direct dissociation of the replaced gas hydrates. The heat of dissociation values of the CH4 + CO2 hydrates were between that of the pure CH4 hydrate and that of the pure CO2 hydrate, and the values increased as the CO2 compositions in the hydrate phase increased. By monitoring the heat flows from the HP μ-DSC, it was found that the noticeable dissociation or formation of a gas hydrate was not detected during the CH4 - CO2 replacement process, which indicates that a substantial portion of CH4 hydrate does not dissociate into liquid water or ice and then forms the CH4 + CO2 hydrate. This study provides the first experimental evidence using a DSC to reveal that the conversion of the CH4 hydrate to the CH4 + CO2 hydrate occurs without significant hydrate dissociation.

  15. Determination of melting point of vegetable oils and fats by differential scanning calorimetry (DSC technique.

    Directory of Open Access Journals (Sweden)

    Nassu, Renata Tieko

    1999-02-01

    Full Text Available Melting point of fats is used to characterize oils and fats and is related to their physical properties, such as hardness and thermal behaviour. The present work shows the utilization of DSC technique on the determination of melting point of fats. In a comparison with softening point (AOCS method Cc 3-25, DSC values were higher than those obtained by AOCS method. It has occurred due to the fact that values obtained by DSC technique were taken when the fat had melted completely. DSC was also useful for determining melting point of liquid oils, such as soybean and cottonseed ones.

    El punto de fusión de grasas es usado para caracterizar aceites y grasas, y está relacionado con sus propiedades físicas, tales como dureza y comportamiento térmico. El presente trabajo muestra la utilización de la técnica de Calorimetría Diferencial de Barrido (DSC en la determinación del punto de fusión de grasas. En comparación con el punto de ablandamiento (AOCS método Cc 3-25, los valores de DSC fueron más altos que los obtenidos por los métodos de AOCS. Esto ha ocurrido debido al hecho que los valores obtenidos por la técnica de DSC fueron tomados cuando la grasa había fundido completamente. DSC fue también útil para determinar puntos de fusión de aceites líquidos, tales como los de soya y algodón.

  16. Investigating Freezing Point Depression and Cirrus Cloud Nucleation Mechanisms Using a Differential Scanning Calorimeter

    Science.gov (United States)

    Bodzewski, Kentaro Y.; Caylor, Ryan L.; Comstock, Ashley M.; Hadley, Austin T.; Imholt, Felisha M.; Kirwan, Kory D.; Oyama, Kira S.; Wise, Matthew E.

    2016-01-01

    A differential scanning calorimeter was used to study homogeneous nucleation of ice from micron-sized aqueous ammonium sulfate aerosol particles. It is important to understand the conditions at which these particles nucleate ice because of their connection to cirrus cloud formation. Additionally, the concept of freezing point depression, a topic…

  17. Differential Scanning Calorimetry (DSC and Thermogravimetric Analysis (TGA of Wood polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    Rahman Md. Rezaur

    2017-01-01

    Full Text Available This study evaluates the thermal property of clay dispersed Styrene-co-Glycidal Methacrylate impregnated wood polymer nanocomposite (WPNC. The WPNC was characterized by FTIR, TGA and DSC methods. FT-IR result showed that the absorbance of wave number at 1730 cm−1, increased for clay dispersed Styrene-co-Glycidyl Methacrylate wood polymer nanocomposite (ST-co-GMA-clay-WPNC. From TGA, ST-co-GMA-clay-WPNC showed better thermal stability at the temperature below 450oC. The final weights of ST-co-GMA-clay-WPNC and ST-Clay-WPNC, between 420 and 700oC, were significantly less than the raw wood. When the temperature was below 450oC, nanoclay-incorporated surface modified wood composites showed enhanced higher thermal properties compared with those without nanoclay. From DSC, the degradation enthalpy at around 360oC of ST-co-GMA-Clay-WPNC was the highest.

  18. Estimation of hydrogen bondings in coal utilizing FTir and differential scanning calorimetry (DSC); FTir to DSC wo mochiita sekitannai suiso ketsugo no teiryoteki hyoka no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Mae, K.; Miura, K. [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-28

    With an objective to know coal condensation structure which has influence on coal conversion reaction, an attempt was made on quantitative evaluation of hydrogen bonding in coal. Using as test samples the VDC made from Taiheiyo coal swollen by tetralin and vacuum-dried, and its pyrolyzed char, DSC measurement and Fourier transform infrared spectroscopy (FT) were performed. An FT spectrum comparison revealed that the VDC swollen at 220{degree}C has the hydrogen bonding relaxed partly from the original coal. However, since the change is in a huge coal molecular structure restraining space, it has stopped at relaxation of the bonding energy without causing separation as far as free radicals. On the other hand, the DSC curve shows that the VDC has slower endothermic velocity than the original coal. In other words, the difference in heat absorption amounts in both materials is equivalent to the difference of enthalpy ({Delta} H) of both materials, which corresponds to the relaxation of the hydrogen bonding. Therefore, the {Delta} H was related to wavenumber shift of the FT spectra (which corresponds to change in the hydrogen bonding condition). By using this relationship, a method for evaluating hydrogen bonding distribution was proposed from an O-H contracting vibration change that can be measured by using the FT spectra and a thermal change that can be measured by using the DSC. 3 refs., 7 figs.

  19. Evaluation of Hydrate Inhibition Performance of Water-soluble Polymers using Torque Measurement and Differential Scanning Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kyuchul; Park, Juwoon; Kim, Jakyung; Kim, Hyunho; Seo, Yutaek [KAIST, Daejeon (Korea, Republic of); Lee, Yohan; Seo, Yongwon [UNIST, Ulsan (Korea, Republic of)

    2014-12-15

    In this work, hydrate inhibition performance of water-soluble polymers including pyrrolidone, caprolactam, acrylamide types were evaluated using torque measurement and high pressure differential scanning calorimeter (HP µ-DSC). The obtained experimental results suggest that the studied polymers represent the kinetic hydrate inhibition (KHI) performance. 0.5 wt% polyvinylcaprolactam (PVCap) solution shows the hydrate onset time of 34.4 min and subcooling temperature of 15.9 K, which is better KHI performance than that of pure water - hydrate onset time of 12.3 min and subcooling temperature of 6.0 K. 0.5 wt% polyvinylpyrrolidone (PVP) solution shows the hydrate onset time of 27.6 min and the subcooling temperature of 13.2 K while polyacrylamide-co-acrylic acid partial sodium salt (PAM-co-AA) solution shows less KHI performance than PVP solution at both 0.5 and 5.0 wt%. However, PAM-co-AA solution shows slow growth rate and low hydrate amount than PVCap. In addition to hydrate onset and growth condition, torque change with time was investigated as one of KHI evaluation methods. 0.5 wt% PVCap solution shows the lowest average torque of 6.4 N cm and 0.5 wt% PAM-co-AA solution shows the average torque of 7.2 N cm. For 0.5 wt% PVP solution, it increases 11.5 N cm and 5.0 wt% PAM-co-AA solution shows the maximum average torque of 13.4 N cm, which is similar to the average torque of pure water, 15.2 N cm. Judging from the experimental results obtained by both an autoclave and a HP µ-DSC, the PVCap solution shows the best performance among the KHIs in terms of delaying hydrate nucleation. From these results, it can be concluded that the torque change with time is useful to identify the flow ability of tested solution, and the further research on the inhibition of hydrate formation can be approached in various aspects using a HP µ-DSC.

  20. Specific heat of Zr-2.5Nb pressure tube material measured by differential scanning calorimetry (DSC)

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L.; Neal, P.D. [Canadian Nuclear Laboratories, Chalk River, ON (Canada); Fazeli, F.; Aniolek, M. [CanmetMATERIALS, Hamilton, ON (Canada); Gezgin, S. [NETZSCH-Geratebau GmbH, Wittelsbacherstr, Selb/Bavaria (Germany)

    2015-07-01

    Specific heats of Zr-2.5Nb pressure tube material have been measured by differential scanning calorimetry (DSC) between 100{sup o}C and 1200{sup c}C using a heating and cooling rate of 20{sup o}C/min. A hysteresis was observed in the specific heat curves between heating and cooling. A maximum value occurs at a higher temperature on heating than on cooling, and the magnitude is larger for cooling when compared to heating. The as-manufactured tube material showed a small enthalpy change during first heating, attributed to decomposition of meta-stable β-Zr; and this did not appear on second heating after being first heated to 1200{sup o}C. Further studies are suggested to characterize the hysteresis behaviour. (author)

  1. Estudo termoanalítico de comprimidos revestidos contendo captopril através de termogravimetria (TG e calorimetria exploratória diferencial (DSC Thermal analysis study of captopril coated tablets by thermogravimetry (TG and differential scanning calorimetry (DSC

    Directory of Open Access Journals (Sweden)

    Giovana Carolina Bazzo

    2005-09-01

    Full Text Available No presente trabalho foram desenvolvidos comprimidos de captopril revestidos com hidroxipropilmetilcelulose (HPMC, Opadry®, polivinilpirrolidona (PVP, Eudragit® E e goma laca. Foi realizado estudo termoanalítico do fármaco e das formulações através de termogravimetria (TG e calorimetria exploratória diferencial (DSC. Através da análise das curvas DSC verificou-se que não houve a ocorrência de interação entre o fármaco e os excipientes lactose, celulose microcristalina, croscarmelose sódica, Aerosil® e talco, utilizados na formulação do comprimido. Através desta técnica detectou-se a possibilidade de interação entre captopril e estearato de magnésio. De acordo com os resultados obtidos através de DSC não foram observadas alterações na cristalinidade do fármaco decorrentes dos processos de compressão e revestimento. A termogravimetria foi utilizada para o estudo da cinética de degradação do captopril e dos comprimidos. Os parâmetros cinéticos foram determinados através do método de Ozawa. Os resultados demonstraram que não houve alteração da estabilidade térmica do captopril na forma de comprimido. A formulação revestida com HPMC foi a que apresentou maior estabilidade térmica, quando comparada às demais formulações de revestimento.In the present study, captopril coated tablets with hydroxypropylmethylcellulose (HPMC, Opadry®, polyvinylpirrolidone (PVP, Eudragit® and shellac were produced. Differential scanning calorimetry (DSC and thermogravimetry (TG were used to evaluate the thermal properties of the drug and the formulations. On the basis of DSC results, captopril was found to be compatible with lactose, microcrystalline cellulose, sodium croscarmellose, Aerosil® and talc. Some possibility of interaction between drug-excipient was observed with magnesium stearate. However, additional techniques to confirm the results obtained are needed. There was no influence of mechanical treatment (tableting

  2. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  3. Investigation of Kinetic Hydrate Inhibition Using a High Pressure Micro Differential Scanning Calorimeter

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Malmos, Christine; von Solms, Nicolas

    2013-01-01

    . These investigations were performed using small samples in four different capillary tubes in the calorimeter cell. When the isothermal method was employed, it was found that Luvicap EG significantly delays the hydrate nucleation time as compared to water. The results obtained from the ramping method demonstrated...... of hydrate growth. Additionally, hydrate formed in the presence of inhibitor decomposed at higher temperatures compared to pure water, indicating that while hydrate formation is initially inhibited; once hydrates form, they are more stable in the presence of inhibitor. Overall, this method proved a viable...

  4. Kinetics of Phase Transformation of Indium in the Presence of Polytetrafluoroethylene: Implications for DSC Measurements on Polymers and Their Composites

    Directory of Open Access Journals (Sweden)

    Maria Raimo

    2015-01-01

    Full Text Available The present work focuses on the influence, at nominal constant temperatures, of an inert polymer on the crystallization kinetics of a highly conductive metal as indium (In to show not only that the presence of a polymer allows obtaining information on the In crystallization directly from differential scanning calorimeter (DSC curves, but also that appropriate corrections of thermal measurements on low conductivity samples are needed.

  5. Calorimeter insertion

    CERN Multimedia

    2006-01-01

    Calorimeter insertion between toroids in the ATLAS experiment detector Calorimeters are surrounding the inner detector. Calorimeters will absorb and measure the energies of the most charged and neutral particles after the collisions. The saved energy in the calorimeter is detected and converted to signals that are taken out with data taking electronics.

  6. Experiências simultâneas de espalhamento de raios X e calorimetria diferencial de varredura (SAXS/WAXD/DSC com resolução temporal utilizando radiação síncrotron Simultaneous and time resolved X-ray scattering and differential Scanning calorimetry experiments (SAXS/WAXD/DSC using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Tomás S. Plivelic

    2005-07-01

    Full Text Available Neste trabalho apresentamos uma nova instrumentação instalada na linha de SAXS do LNLS. Este equipamento permite a realização de experimentos simultâneos e resolvidos no tempo de espalhamento de raios X a baixos e altos ângulos (SAXS/WAXD e calorimetria diferencial de varredura (DSC. O dispositivo de DSC mostrou-se comparável a equipamentos convencionais, com taxas de variação de temperatura de até 60 °C/min e uma precisão de 0.1 °C. O uso de uma fonte de radiação síncrotron e de detetores de raios X sensíveis à posição permitiu a obtenção de dados com uma resolução temporal de 30 s. A aplicação deste arranjo experimental no estudo da cristalização isotérmica e da fusão em materiais poliméricos é mostrada para o caso da policaprolactona (PCL e suas blendas com polietileno clorado (PCL/PECl. As experiências mostraram a formação simultânea da estrutura cristalina e da morfologia lamelar nos diferentes estágios da cristalização assim como mudanças na cinética do processo com o tratamento isotérmico e a composição da blenda. Finalmente cabe destacar que experimentos simultâneos de SAXS/WAXD/DSC permitem o estudo de distintos processos abrangendo não apenas os de cristalização, mas também a formação de colóides e géis ou as transições de fase estruturais em diversos materiais.New instrumentation designed to perform simultaneous time-resolved X-ray scattering experiments at small and wide angles (SAXS/WAXD as well as differential scanning calorimetry (DSC has recently been installed at the SAXS beamline of the Laboratório Nacional de Luz Síncrotron. The DSC device proved to be comparable with conventional equipment, allowing temperature variation with rates of up to 60 °C/min with precision of 0.1 °C. The use of a synchrotron radiation source and position sensitive X-ray detectors allows data collection in real time with 30 s resolution. The application of this experimental set-up in the

  7. The use of Differential Scanning Calorimetry (DSC) to characterize phase diagrams of ionic mixtures of 1-n-butyl-3-methylimidazolium chloride and niobium chloride or zinc chloride

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Melquizedeque B.; Umpierre, Alexandre P.; Santos Jr, Vianney O.; Soares, Valerio C.D. [Laboratorio de Materiais e Combustiveis - Instituto de Quimica da Universidade de Brasilia, C.P. 04478, CEP 70904-970, Brasilia, DF (Brazil); Dupont, Jairton [Laboratorio de Catalise Molecular - Instituto de Quimica da Universidade Federal do Rio Grande do Sul, C.P. 15003, CEP 91501-970, Porto Alegre, RS (Brazil); Rubim, Joel C. [Laboratorio de Materiais e Combustiveis - Instituto de Quimica da Universidade de Brasilia, C.P. 04478, CEP 70904-970, Brasilia, DF (Brazil); Suarez, Paulo A.Z., E-mail: psuarez@unb.br [Laboratorio de Materiais e Combustiveis - Instituto de Quimica da Universidade de Brasilia, C.P. 04478, CEP 70904-970, Brasilia, DF (Brazil)

    2010-04-20

    The thermal behavior of the BMICl/NbCl{sub 5} and BMICl/ZnCl{sub 2} mixtures was investigated by DSC and correlated with previous studies using Raman spectroscopy. Combining both results, it was possible to built the phase diagram for these mixtures and suggest the formation of different compounds and the equilibria in the euthetic mixtures. The phase diagram of BMICl and NbCl{sub 5} mixture showed that probably only one compound is formed at X{sub NbCl5} = 0.50 (BMINbCl{sub 6}) and euthetic mixtures are present in the 0 {<=} X{sub NbCl5} {<=} 0.50 composition range. For the BMICl and ZnCl{sub 2}, four different compounds were detected: (BMI){sub 2}(ZnCl{sub 4}) for X{sub ZnCl2} = 0.35; (BMI){sub 2}(Zn{sub 2}Cl{sub 6}); (BMI){sub 2}(Zn{sub 3}Cl{sub 8}) and (BMI){sub 2}(Zn{sub 4}Cl{sub 10}) for X{sub ZnCl2} = 0.70, and between these isoplets euthetic mixtures are formed.

  8. Oil Analysis by Fast DSC

    NARCIS (Netherlands)

    Wetten, I.A.; Herwaarden, A.W.; Splinter, R.; Ruth, van S.M.

    2014-01-01

    Thermal analysis of Olive and Sunflower Oil is done by Fast DSC to evaluate its potential to replace DSC for adulteration detection. DSC measurements take hours, Fast DSC minutes. Peak temperatures of the crystallisation peak in cooling for different Olive and Sunflower Oils are both comparable to

  9. DSC analysis of irradiated proteins from Crotalus durissus terrificus

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Karina Corleto de; Silva, Monica Nascimento da; Goncalves, Karina de Oliveira; Spencer, Patrick Jack; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Full text: Snake bites are a serious public health problem, especially in subtropical countries. In Brazil, the serum, the only effective treatment in case of snake bites, is produced in horses which, despite the large size, have a reduced lifespan due to the high toxicity of the antigen. It is known that ionizing radiation effects - direct and indirect - can modify the molecular structure, affecting the biological properties of proteins. Ionizing radiation has been employed to attenuate the toxicity of snake venoms, aiming to generate an improved antigen with low toxicity. Two proteins, purified from Crotalus durissus terrificus (Cdt) venom were tested in this work: crotoxin and crotamine. Crotoxin, the main toxic compound of Cdt venom, is a heterodimeric protein composed of two subunits: crotapotin and phospholipase A2. Crotamine is a highly basic polypeptide (pI - 10.3), with myotoxic activity and molecular weight of 4882 Da. It is composed of 42 amino acids residues and reticulated by three disulfide bonds. This study aimed to investigate the effects of radiation on crotoxin and crotamine using Differential Scanning Calorimetry (DSC). After isolation of the toxins by chromatographic techniques, they were irradiated with 2.0 kGy from {sup 60}Co source. The thermodynamics analysis, carried out in a METTLER TOLEDO, DSC 822e calorimeter, showed that irradiation promoted changes of the calorimetric profile. These changes suggest that, although radiation induced structural modifications of the protein, denaturation was only partial, since transition states could still be detected, suggesting that some structural elements were still present after irradiation. Taken together, our data suggest that following irradiation, the molecules underwent conformational changes, and that the remaining structural elements displayed a lower enthalpy, clearly indicating that the previously described loss of toxicity of irradiated toxins can be mostly ascribed to structural changes

  10. Melting, crystallization and storage stability of virgin coconut oil and its blends by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR).

    Science.gov (United States)

    Srivastava, Yashi; Semwal, Anil Dutt; Sajeevkumar, Vallayil Appukuttan; Sharma, G K

    2017-01-01

    The blends were prepared of virgin coconut oil with refined soyabean oil (VCO-RSOY) and refined safflower oil (VCO-RSAFF). Blending with VCO improved the fatty acid composition which increased the shelf stability of 20:80 VCO-RSOY and VCO-RSAFF up to 12 months in different packaging systems such as low density polyethylene, linear low density polyethylene, metalized polyester pouches, polyethylene teteraphthalate, high density polyethylene (HDPE), Amber HDPE bottle. The specific spectral regions of FTIR proved to be very useful for the determination of adulteration as well as for the study of oxidation process. Band shifts observed at 3008, 1652, 1397, 1097, 912 and 845 cm(-1) have been used to differentiate RSAFF from VCO. VCO spectrums did not have these chemical shifts. Further the spectrum of RSOY showed same band shifts as RSAFF except 1652, 1397, 869.6 and 845 cm(-1). Differential Scanning Calorimetry provided useful information regarding the nature of thermodynamic changes related to physical state of vegetable oil. The physical state changes included melting and crystallization events which require the intake and release of energy.

  11. Methodology for DSC calibration in high heating rates

    Directory of Open Access Journals (Sweden)

    Carlos Isidoro Braga

    2011-05-01

    Full Text Available Despite the large use of differential scanning calorimetry (DSC technique in advanced polymer materials characterization, the new methodology called DSC in high heating rates was developed. The heating rate during conventional DSC experiments varying from 10 to 20ºC.min-¹, sample mass from 10 to 15mg and standard aluminum sample pan weighting, approximately, 27mg. In order to contribute to a better comprehension of DSC behavior in different heating rates, this work correlates as high heating rate influences to the thermal events in DSC experiments. Samples of metallic standard (In, Pb, Sn and Zn with masses varying from 0.570mg to 20.9mg were analyzed in multiples sample heating rate from 4 to 324°C. min-¹. In order to make properly all those experiments, a precise and careful temperature and enthalpy calibrations were performed and deeply discussed. Thus, this work shows a DSC methodology able to generate good and reliable results on experiments under any researcher choice heating rates to characterize the advanced materials used, for example, for aerospace industry. Also it helps the DSC users to find in their available instruments, already installed, a better and more accurate DSC test results, improving in just one shot the analysis sensitivity and resolution. Polypropylene melting and enthalpy thermal events are also studied using both the conventional DSC method and high heating rate method.

  12. Characterization and kinetic modeling of secondary phases in squeeze cast Al alloy A380 by DSC thermal analysis

    Directory of Open Access Journals (Sweden)

    Xin-ping Hu

    2017-03-01

    Full Text Available Thermal analyses on squeeze cast aluminum alloy A380 (SC A380 solidified under 90 MPa were carried out to study the microstructure development of the alloy, in which a differential scanning calorimeter (DSC was employed. During the DSC runs, heating and cooling rates of 1, 3, 10, and 20 °C•min-1 were applied to investigate the heating and cooling effects on dissolution of secondary eutectic phases and microstructure evolution. Various reactions corresponding to troughs and peaks of the DSC curves were identified as corresponding to phase transformations taking place during dissolution or precipitation suggested by the principles of thermodynamics and kinetics. The comparison of the identified characteristic temperatures in the measured heating and cooling curves are generally in good agreement with the computed equilibrium temperatures. The microstructure analyses by scanning electron microscopy (SEM with energy dispersive X-ray spectroscopy (EDS indicate that the distribution and morphology of secondary phases present in the microstructure of the annealed sample are similar to the as-cast A380, i.e., strip β(Si, buck bone like or dot distributed θ(Al2Cu, β(Al5FeSi and Al15(FeMn3Si2. Two kinetic methods are employed to calculate the activation energies of the three common troughs and three common peaks in DSC curves of SC A380. The activation energies of the identified reaction θCuAl2 = α(Al+β(Si is 188.7 and 187.1 kJ∙mol-1 when the activation energies of reaction α(Al+β(Si→θCuAl2 is -122.7 and -121.8 kJ∙mol-1, by the Kissinger and Starink methods, respectively.

  13. Supplement on 'Effects of heat-flux features on the differential scanning calorimetry curve of a thermoelastic martensitic transformation'

    Energy Technology Data Exchange (ETDEWEB)

    Benke, Marton, E-mail: marton_benke@citromail.hu [Department of Physical Metallurgy and Metalforming, University of Miskolc, 3515 Miskolc-Egyetemvaros (Hungary); Mertinger, Valeria; Tranta, Ferenc; Barkoczy, Peter [Department of Physical Metallurgy and Metalforming, University of Miskolc, 3515 Miskolc-Egyetemvaros (Hungary); Daroczi, Lajos [Department of Solid State Physics, University of Debrecen, 4010 Debrecen, PO Box 2 Hungary (Hungary)

    2010-04-15

    The melting process of a high purity indium was examined with a heat-flux differential scanning calorimeter (DSC). The effects of sample mass and the scanning rate on the resulting peaks are presented. The peaks were evaluated by two methods. The first one is a commercial method while the modified method involves a correction for the endpoint of the process. The results are compared to each other.

  14. Development of a certified reference material for calibration of DSC and DTA below room temperature: NMIJ CRM 5401-a, Cyclohexane for Thermal Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshitaka, E-mail: y-shimizu@aist.go.jp; Ohte, Yoko; Kato, Kenji

    2013-09-20

    Highlights: • We developed a new CRM for quality assurance of DSC and DTA below room temperature. • Certified values are temperatures and enthalpies of two phase transitions. • Certified values agree with literature values. • Certified values are determined by adiabatic calorimetry and traceable to the SI. • Purity of this CRM was confirmed more than 0.9999. - Abstract: For the quality assurance of performance of differential scanning calorimeters (DSC) and differential thermal analyzers (DTA) below room temperature, we have developed “NMIJ CRM 5401-a, Cyclohexane for Thermal Analysis” applicable to calibration of DSC and DTA in the low temperature. Adiabatic calorimetry was used to measure the temperatures and enthalpies of solid–solid phase transition and fusion as certified values, and to determine the purity in amount of substance fraction as information. The certified values are consistent with their corresponding literature values within expanded uncertainties and have traceability to the SI. Purity in amount of substance fraction was measured by fractional melting method based on freezing point depression method and was confirmed to be more than 0.9999. NMIJ CRM 5401-a was produced based on a quality system in compliance with ISO Guide 34: 2000. We demonstrate the usefulness of NMIJ CRM 5401-a in the calibration, quality control, and validation aspects of DSC and DTA.

  15. ATLAS-Hadronic Calorimeter

    CERN Multimedia

    2003-01-01

    Hall 180 work on Hadronic Calorimeter The ATLAS hadronic tile calorimeter The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. (IEEE Trans. Nucl. Sci. 53 (2006) 1275-81)

  16. Comportamento de cura de adesivo epoxídico contendo grupo mercaptana avaliado por espectroscopia no infravermelho (MIR/NIR e calorimetria exploratória diferencial (DSC Cure behavior of epoxy adhesive containig mercaptan group evaluated by infrared spectroscopy (MIR/NIR and differential scanning calorimetry (DSC

    Directory of Open Access Journals (Sweden)

    Hilzette P. C. Andrade

    2008-01-01

    Full Text Available No presente trabalho, a flexibilidade de um adesivo epoxídico contendo diglicidiléter de bisfenol A (DGEBA e dietilenotriamina (DETA como agente de cura foi modificada pela adição de um segundo componente contendo grupos mercaptana (CAPCURE. A adição de amianto ao adesivo contendo CAPCURE também foi avaliada. As reações entre os grupos epoxídicos e os grupos amina, assim como entre os grupos epoxídicos e os grupos mercaptana, foram estudadas nas regiões espectrais do infravermelho médio (MIR e próximo (NIR. Observou-se que o amianto não interfere nas reações de cura e que a espectroscopia FT-NIR evidencia melhor as alterações espectrométricas ocorridas durante as reações em relação à análise FT-MIR. O tempo das reações de cura foi monitorado por calorimetria exploratória diferencial (DSC, observando-se que a introdução do CAPCURE acelerou a cura da resina. A energia de ativação (Ea das reações de cura foi obtida pelos métodos de Barrett e Borchardt-Daniels. Os adesivos contendo CAPCURE mostraram Ea em torno de 30 kJ.mol-1, enquanto o adesivo DGEBA/DETA apresentou Ea de 46 kJ.mol-1, ambas calculadas pelo método de Barrett.In the present work, the flexibility of an epoxy adhesive containing diglycidylether of bisphenol-A (DGEBA and diethylenetriamine (DETA as curing agent was changed by the addition of a second component containing mercaptan groups (CAPCURE. The addition of asbestos as a filler in the adhesive containing CAPCURE was also evaluated. Epoxy-amine and epoxy-mercaptan reactions were studied in NIR and MIR spectral regions. The filler addition did not cause influence on the cure reactions and spectrometric changes of cure reactions could be better observed by FT-NIR than FT-MIR analysis. The cure reaction time was monitored by DSC experiments and it was observed that the introduction of CAPCURE accelerated the cure reaction. The activation energies (Ea of curing reactions were obtained using Barrett

  17. DSC Study of Collagen in Disc Disease

    Directory of Open Access Journals (Sweden)

    S. Skrzyński

    2009-01-01

    Full Text Available Differential scanning calorimetry (DSC has been used to estimate the effect of disc disease on the collagen helix-coil transition and morphology for tissue extracted from patients during surgical operation. Forty discs were obtained from patients with degenerative disc disease undergoing surgery for low back pain. The patients were in the age between 20 and 70 years old. The specimens were kept wet during DSC experiment. The data allow the comparison between thermal stability of collagen tissue from healthy patients and from patients suffering from disc disease. In the paper the comparison between thermal helix-coil transition for collagen fibers from patients suffering from disc disease and collagen fibers from healthy organisms has been discussed. The heating rate has an influence on the position on denaturation temperatures of collagen in disc tissues. Higher helix-coil transition temperature of collagen in degenerated disc suggests that additional intermolecular cross linking of collagen fibers occurs. Denaturation temperatures of collagen in degenerated male disc possess smaller values than in female ones. Disc disease induces changes in collagen structure and leads to formation of additional crosslinks between collagen fibers.

  18. Micro Calorimeter for Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  19. Investigação da cinética de cura por calorimetria diferencial exploratória (DSC de resinas epóxi preparadas a partir de óleo de soja epoxidado com diferentes anidridos e aminas terciárias Investigation of the kinetics of cure by differential scanning calorimetry (DSC of epoxy resins prepared from epoxidized soybean oil with different anhydrides and tertiary amines

    Directory of Open Access Journals (Sweden)

    Ana P. O. Costa

    2011-01-01

    Full Text Available No presente trabalho, utilizou-se a calorimetria diferencial exploratória (DSC para investigar a cinética da reação de cura de resinas epóxi produzidas a partir da reação do óleo de soja epoxidado (ESO, com os anidridos dodecenilsuccínico (DDS, maleico (MAL, ftálico (FTA, succínico (SUC e hexahidroftálico (CH, atuando como agentes de cura, e na presença de aminas terciárias como a trietilamina (TEA, a N,N'-dimetilanilina (ARO e a 1,4- diazobiciclo [2,2,2] octano (DABCO, atuando como catalisadores. A taxa de aquecimento, a natureza química e a estrutura do anidrido e das aminas influenciaram a reação de cura. Os métodos dinâmicos de Kissinger, Ozawa e de Barrett foram utilizados para calcular a energia de ativação dos sistemas onde se variou o anidrido. Observou-se que os anidridos mais reativos foram o DDS e maleico que apresentaram os menores valores de energias de ativação. No estudo da influência do catalisador, utilizou-se o método de Barrett para determinar as energias de ativação das reações com as diferentes aminas. A amina cicloaliafática (DABCO foi a mais reativa obtendo-se o menor valor de energia de ativação (Ea = 51 kJ.mol-1 e fator pré-exponencial (ln A0 = 9 s-1.In the present work, differential scanning calorimetry (DSC was used to investigate the curing reaction kinetics of epoxy resins produced from reaction of epoxidized soybean oil (ESO with cyclic anhydrides dodecenylsuccinic (DDS, maleic (MAL, phthalic (PA, succinic (SUC and hexahydrophthalic (CH, in the presence of tertiary amines such as triethylamine (TEA, N,N-dimethylaniline (ARO and 1,4-diazabicyclo [2,2,2] octane (DABCO. The heating rate, the nature and structure of anhydrides and amines were found to affect the curing reaction. The dynamic methods of Kissinger, Ozawa and Barrett were used to calculate the activation energy of the reactions where different anhydrides were used. DDS and maleic anhydrides were more reactive than the others

  20. AIDA: concerted calorimeter development

    CERN Multimedia

    Felix Sefkow

    2013-01-01

    AIDA – the EU-funded project bringing together more than 80 institutes worldwide – aims at developing new detector solutions for future accelerators. Among the highlights reported at AIDA’s recent annual meeting in Frascati was the completion of an impressive calorimeter test beam programme, conducted by the CALICE collaboration over the past two years at CERN’s PS and SPS beam lines.   The CALICE tungsten calorimeter prototype under test at CERN. This cubic-metre hadron calorimeter prototype has almost 500,000 individually read-out electronics channels – more than all the calorimeters of ATLAS and CMS put together. Calorimeter development in AIDA is mainly motivated by experiments at possible future electron-positron colliders, namely ILC or CLIC. The physics requirements of such future machines demand extremely high-performance calorimetry. This is best achieved using a finely segmented system that reconstructs events using the so-called pa...

  1. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    by J. Spalding and A. Skuja

    2010-01-01

    Operations and Maintenance All HCAL sub-detectors participated throughout the recent data taking with 7 TeV collisions. A timing scan of HF was performed to optimize the timing across the detectors and to set the overall time position of the ~10-ns wide signals within the 25-ns integration time slice. This position was chosen to ensure that the trigger primitives in physics events are generated synchronously at the desired bunch crossing, while also providing discrimination between the calorimeter signals and anomalous signals due to interactions within the photomultiplier tubes. This timing discrimination is now used in the standard filter algorithms for anomalous signals. For HB and HE, once the statistics needed to assess the timing of a sufficient number of channels was accumulated, it was verified that the time settings determined with cosmic, splash events and initial collision data were appropriate for the 7 TeV collision data taking. A further fine-tuning of the HB and HE time settings will be perfo...

  2. Software studies of GLD calorimeter

    Indian Academy of Sciences (India)

    Abstract. The baseline design of the GLD calorimeter is scintillator-strip arrays interleaved with absorber plates. We present preliminary performance studies of the hit clustering with this calorimeter using a simulator. Also, simulation results of a `digital' calorimeter, which is an option of the GLD calorimeter, are presented.

  3. BGO* electromagnetic calorimeter

    CERN Multimedia

    CERN

    1988-01-01

    * Short for Bismuth-Germanium-Oxyde, a scintillator of high atomic number Z used in electromagnetic crystal calorimeters. BGO is characterized by fast rise time (a few nanoseconds) and short radiation length (1.11 cm).

  4. GSPEL - Calorimeter Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Testing performance claims on heat transfer componentsThe Calorimeter Lab, located in the Ground Systems Power and Energy Lab (GSPEL), is one of the largest in the...

  5. The KLOE electromagnetic calorimeter

    CERN Document Server

    Adinolfi, M; Antonelli, A; Antonelli, M; Anulli, F; Barbiellini, G; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Cabibbo, G; Caloi, R; Campana, P; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Ciambrone, P; De Lucia, E; De Simone, P; De Zorzi, G; Dell'Agnello, S; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Doria, A; Erriquez, O; Farilla, A; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giannasi, A; Giovannella, S; Graziani, E; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Keeble, L; Kim, W; Kuo, C; Lanfranchi, G; Lee-Franzini, J; Lomtadze, T A; Mao Chen Sheng; Martemyanov, M; Mei, W; Messi, R; Miscetti, S; Moccia, S; Moulson, M; Murtas, F; Müller, S; Pacciani, L; Palomba, M; Palutan, M; Pasqualucci, E; Passalacqua, L; Passeri, A; Picca, D; Pirozzi, G; Pontecorvo, L; Primavera, M; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Sciascia, B; Scuri, F; Sfiligoi, I; Silano, P; Spadaro, T; Spiriti, E; Tortora, L; Valente, P; Valeriani, B; Venanzoni, G; Ventura, A; Wu, Y; Wölfle, S; Xie, Y G; Zema, P F; Zhang, C D; Zhang, J Q; Zhao, P P

    2002-01-01

    The KLOE detector was designed primarily for the study of CP violation in neutral kaon decays at DAPHINE, the Frascati phi-factory. The detector consists of a tracker and an electromagnetic calorimeter. A lead-scintillating-fiber sampling calorimeter satisfies best the requirements of the experiment, providing adequate energy resolution and superior timing accuracy. We describe in the following the construction of the calorimeter, its calibration and how the calorimeter information is used to obtain energy, point of entry and time of the arrival of photons, electrons and charged particles. With e sup + e sup - collision data at DAPHINE for an integrated luminosity of some 2 pb sup - sup 1 we find for electromagnetic showers, an energy resolution of 5.7%/sq root E(GeV) and a time resolution of 54/sq root E(GeV) ps. We also present a measurement of efficiency for low energy photons.

  6. Thermogravimetric and DSC testing of poly(lactic acid) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mróz, Patrycja; Białas, Sylwia [Faculty of Process and Environmental Engineering, Technical University of Łódź, Wólczańska 15 Street, 90-924 Łódź (Poland); Mucha, Maria, E-mail: muchama@wipos.p.lodz.pl [Faculty of Process and Environmental Engineering, Technical University of Łódź, Wólczańska 15 Street, 90-924 Łódź (Poland); Kaczmarek, Halina [Nicolaus Copernicus University, Faculty of Chemistry, Gagarin 7 Street, 87-100 Toruń (Poland)

    2013-12-10

    Highlights: • The presence of nanoadditivities in PLA matrix improves thermal stability of PLA. • Shielding effect main reason for PLA thermal stability by nanofillers. • Thermal degradation suppression in UV-irradiated PLA by the removing of unstable compounds. - Abstract: Polymer nanocomposites based on poly(lactic acid), PLA, and two types of nanofillers: nanosilver and nanoclay were obtained by casting method. The thermal properties of PLA and nanocomposites have been studied by thermogravimetric analysis (TA) and differential scanning calorimetry (DSC). All samples have been UV-irradiated and the effect of photoprocess on their thermal stability has been estimated. It was found that nanoadditives and UV irradiation causes an increase of the activation energy of PLA thermal decomposition. DSC result supplies information on glass transition and crystallization/melting processes in PLA in the presence of nanosilver or nanoclay, also after exposure to UV.

  7. ATLAS - End-Cap calorimeter

    CERN Multimedia

    CERN Audiovisual Unit

    2006-01-01

    The End-cap calorimeter was moved with the help of the rails and this calorimeter will measure the energy of particles close to the beam axis when protons collide. Cooling is important for maximum detector efficiency.

  8. ALICE Zero Degree Calorimeter

    CERN Multimedia

    De Marco, N

    2013-01-01

    Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.

  9. Comparative study of DSC-PWI and 3D-ASL in ischemic stroke patients.

    Science.gov (United States)

    Zhang, Shui-xia; Yao, Yi-hao; Zhang, Shun; Zhu, Wen-jie; Tang, Xiang-yu; Qin, Yuan-yuan; Zhao, Ling-yun; Liu, Cheng-xia; Zhu, Wen-zhen

    2015-12-01

    The purpose of this study was to quantitatively analyze the relationship between three dimensional arterial spin labeling (3D-ASL) and dynamic susceptibility contrast-enhanced perfusion weighted imaging (DSC-PWI) in ischemic stroke patients. Thirty patients with ischemic stroke were included in this study. All subjects underwent routine magnetic resonance imaging scanning, diffusion weighted imaging (DWI), magnetic resonance angiography (MRA), 3D-ASL and DSC-PWI on a 3.0T MR scanner. Regions of interest (ROIs) were drawn on the cerebral blood flow (CBF) maps (derived from ASL) and multi-parametric DSC perfusion maps, and then, the absolute and relative values of ASL-CBF, DSC-derived CBF, and DSC-derived mean transit time (MTT) were calculated. The relationships between ASL and DSC parameters were analyzed using Pearson's correlation analysis. Receiver operative characteristic (ROC) curves were performed to define the thresholds of relative value of ASL-CBF (rASL) that could best predict DSC-CBF reduction and MTT prolongation. Relative ASL better correlated with CBF and MTT in the anterior circulation with the Pearson correlation coefficients (R) values being 0.611 (P1.0 were 75.7%, 89.2% and 87.8% respectively. ASL-CBF map has better linear correlations with DSC-derived parameters (DSC-CBF and MTT) in anterior circulation in ischemic stroke patients. Additionally, when rASL is lower than 0.585, it could predict DSC-CBF decrease with moderate accuracy. If rASL values range from 0.585 to 0.952, we just speculate the prolonged MTT.

  10. Estudo de soluções aquosas de copolímeros em bloco de poli(óxido de etileno-poli(óxido de propileno utilizando calorimetria exploratória diferencial (DSC Study of poly(ethylene oxide-b-propylene oxide block copolymers in aqueous solutions by differential scanning calorimetry

    Directory of Open Access Journals (Sweden)

    Claudia R. E. Mansur

    1999-06-01

    Full Text Available O comportamento de sistemas aquosos contendo copolímeros dibloco monofuncionais de poli(óxido de etileno-poli(óxido de propileno, bloqueados em uma das extremidades da cadeia com segmento hidrocarbônico linear, foi avaliado através de calorimetria exploratória diferencial (DSC. Transições endotérmicas foram observadas no aquecimento das soluções dos copolímeros e as temperaturas iniciais destas transições estão de acordo com os pontos de turvação dos copolímeros estudados. Nas curvas de resfriamento, são observadas duas transições, e quanto mais rápido é resfriada a solução de copolímero, melhor é observada a transição que deve estar relacionada à formação das micelas. A influência da presença de um agente hidrotrópico também foi avaliada em todas as soluções de copolímeros por meio do aumento no ponto de turvação com o aumento da concentração do agente hidrotrópico, visto que os picos endotérmicos foram deslocados para temperaturas mais altas.The behavior of aqueous systems containing block copolymers of poly(ethylene oxide (PEO and poly(propylene oxide (PPO, coupled to hydrocarbon groups, was evaluated by differential scanning calorimetry (DSC. Endothermic transitions in the copolymer solutions were observed under a linear heating rate and the initial temperatures of these transitions are in agreement with the cloud points of the copolymers studied. Two transitions were observed in the cooling curves; these transitions were better defined at faster cooling rates of the copolymer solutions which can be related to the micelles formation. The effect of the increasing concentration of the hydrotropic agent, sodium p-toluenesulfonate (NaPTS, in the copolymer solutions was observed by the increase in the cloud points given by the dislocation of the endothermic peaks to higher temperatures.

  11. The ATLAS tile calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Louis Rose-Dulcina, a technician from the ATLAS collaboration, works on the ATLAS tile calorimeter. Special manufacturing techniques were developed to mass produce the thousands of elements in this detector. Tile detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  12. NA48 prototype calorimeter

    CERN Multimedia

    1990-01-01

    This is a calorimeter, a detector which measures the energy of particles. When in use, it is filled with liquid krypton at -152°C. Electrons and photons passing through interact with the krypton, creating a shower of charged particles which are collected on the copper ribbons. The ribbons are aligned to an accuracy of a tenth of a millimetre. The folding at each end allows them to be kept absolutely flat. Each shower of particles also creates a signal in scintillating material embedded in the support disks. These flashes of light are transmitted to electronics by the optical fibres along the side of the detector. They give the time at which the interaction occurred. The photo shows the calorimeter at NA48, a CERN experiment which is trying to understand the lack of anti-matter in the Universe today.

  13. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    Roger Rusack

    Occupancy of the trigger primitives during a global run: the observed pattern is consistent with the polar angle dependence of the transverse energy equivalent of the electronic noise in the endcaps.   Progress on ECAL since the last CMS week has been mostly on three major fronts: we have continued with the installation and commissioning of the preshower detectors; the endcap calorimeter trigger has been installed and tested; and there have been many changes to the calorimeter detector control and safety systems. Both Preshower (ES) endcaps were installed in CMS on schedule, just before Easter. There followed a campaign of "first commissioning" to ensure that all services were correctly connected (electrical, optical, cooling, etc.). Apart from some optical ribbons that had to be replaced the process went rather smoothly, finishing on 23rd April. All power supplies are installed and operational. The cooling system (two branches of the joint Tracker-Preshower system) is fully fun...

  14. Secondary Emission Calorimeter (SEC)

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northrop, Richard [Univ. of Chicago, IL (United States); Frisch, Henry [Univ. of Chicago, IL (United States); Elagin, Andrey [Univ. of Chicago, IL (United States); Ronzhin, Anatoly [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ramberg, Erik [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Spiropulu, Maria [California Inst. of Technology (CalTech), Pasadena, CA (United States); Apresyan, Artur [California Inst. of Technology (CalTech), Pasadena, CA (United States); Xie, Si [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2014-06-25

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) the experimenters of University of Chicago and California Institute of Technology, who have committed to participate in beam tests to be carried out during the 2014-2015 Fermilab Test Beam Facility program. The TSW is intended primarily for the purpose of recording expectations for budget estimates and work allocations. The experimenters propose using large-area micro-channel plates assembled without the usual bialkali photocathodes as the active element in sampling calorimeters, Modules without photocathodes can be economically assembled in a glove box and then pumped and sealed using the process to construct photomultipliers, This electromagnetic calorimeter is based on W and Pb absorber plates sandwiched with detectors. Measurements can be made with bare plates and absorber inside the vacuum vessel.

  15. Physics with calorimeters

    Science.gov (United States)

    Pretzl, Klaus

    2009-04-01

    Calorimeters played an essential role in the discoveries of new physics, for example neutral currents (Gargamelle), quark and gluon jets (SPEAR, UA2, UA1 and PETRA), W and Z bosons (UA1, UA2), top quark (CDF, D0) and neutrino oscillations (SUPER-KAMIOKANDE, SNO). A large variety of different calorimeters have been developed covering an energy range between several and 1020 eV. This article tries to demonstrate on a few selected examples, such as the early jet searches in hadron-hadron collisions, direct dark matter searches, neutrino-less double beta decay and direct neutrino mass measurements, how the development of these devices has allowed to explore new frontiers in physics.

  16. UA2 central calorimeter

    CERN Multimedia

    The UA2 central calorimeter measured the energy of individual particles created in proton-antiproton collisions. Accurate calibration allowed the W and Z masses to be measured with a precision of about 1%. The calorimeter had 24 slices like this one, each weighing 4 tons. The slices were arranged like orange segments around the collision point. Incoming particles produced showers of secondary particles in the layers of heavy material. These showers passed through the layers of plastic scintillator, generating light which was taken by light guides (green) to the data collection electronics. The amount of light was proportional to the energy of the original particle. The inner 23 cm of lead and plastic sandwiches measured electrons and photons; the outer 80 cm of iron and plastic sandwiches measured strongly interacting hadrons. The detector was calibrated by injecting light through optical fibres or by placing a radioactive source in the tube on the bottom edge.

  17. The CMS Outer Hadron Calorimeter

    CERN Document Server

    Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush

    2006-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.

  18. The Use of Differential Scanning Calorimetry in Studies of Wax Deposition: Measuring the Solid Formation and Binary Solid-Liquid Equilibrium Phase Diagrams La DSC (Differential Scanning Calorimetry appliquée à l'étude des dépôts de paraffines : mesure des quantités de dépôts et des diagrammes de phases (liquide-solide de mélange binaire

    Directory of Open Access Journals (Sweden)

    Coutinho J. A. P.

    2006-12-01

    Full Text Available The studies of wax formation in hydrocarbon mixtures, both crudes and refined products such as diesels and fuels, require measuring techniques able to deal with the solid phase behaviour. Experimental data on phase equilibria is important to understand the crystallisation of paraffins and for the development of thermodynamical models, that can describe it. It is here shown how the information obtained from Differential Scanning Calorimetry (DSC measurements can be used to assess the amount of solid forming when a fluid is cooled and also to make faster measurements of phase diagrams for binary systems where no solid solutions exist. The measurements performed with the proposed methods present a good agreement with literature data. L'étude de la cristallisation des paraffines dans les mélanges hydrocarbonés, qu'il s'agisse de pétroles bruts ou de produits raffinés tels que le Diesel ou le fioul, nécessite l'utilisation de techniques expérimentales permettant de déterminer le diagramme de phases. L'acquisition de ces données est primordiale, à la fois pour comprendre les mécanismes de la cristallisation et pour le développement des modèles thermodynamiques. Dans cet article, nous montrons comment l'analyse calorimétrique différentielle peut permettre d'estimer la quantité de solide déposée en fonction de la température et de mesurer les diagrammes de phases de mélanges binaires ne formant pas de solutions solides. Les résultats obtenus avec la méthode proposée s'accordent avec les données de la littérature.

  19. Comparison of the Degree of Conversion of Resin Based Endodontic Sealers Using the DSC Technique

    Science.gov (United States)

    Cotti, Elisabetta; Scungio, Paola; Dettori, Claudia; Ennas, Guido

    2011-01-01

    Objectives: The aim of this study was to determine the degree of conversion (DC) of three resin based endodontic sealers using the DSC technique. Methods: The sealers tested were: EndoREZ (ER) (Ultradent, South Jordan, UT); EndoREZ with Accelerator (ER+A) (Ultradent, South Jordan, UT); RealSeal (RS) (SybronEndo, Orange, CA). Two LED units were used to activate the sealers: UltraLume LED 5 (Ultradent, South Jordan, UT, USA); Mini LED Satelec (Satelec Acteon Group, Mérignac Cedex, France). Samples of 4.0 mg were analyzed with a DSC 7 calorimeter (Perkin Elmer Inc., Wellesley, MA, US). Each specimen was irradiated by each lamp four times for 20 seconds at an interval of 2 mins, while the DSC 7 recorded the heat flow developed during the treatment. The degree of conversion and the kinetic curves were calculated from the values of heat developed during each polymerization. The data were statistically analysed with a Kruskal-Wallis one-way ANOVA multiple range and Student-Newman-Keuls (SNK) tests at a P value of .05. Results: Statistically significant differences were found in the degree of conversion among the sealers: ER+A showed the highest values with both lamps. Conclusions: The higher polymerization rate in resin sealers is obtained with the addition of a catalyst. PMID:21494378

  20. Evaluation of integrated Raman-DSC technology in early pharmaceutical development: characterization of polymorphic systems.

    Science.gov (United States)

    Huang, Jun; Dali, Manisha

    2013-12-01

    Differential Scanning Calorimetry and Raman spectroscopy are both powerful tools used heavily in pharmaceutical development. For many studies such as polymorph characterization these two techniques are complimentary and provide data on different yet important aspects of material properties when combined together. In this work we describe an integrated Raman-DSC technology that simultaneously generates both DSC thermogram and Raman spectra of the pharmaceutical material being studied. The integrated system consists of a DSC with a Raman fiber optic probe inserted right on top of the sample furnace. The technology integrates synchronized Raman acquisition into DSC scan, enabling collection of molecular and structural information coupled with observation of thermal events. We first establish the technology by optimizing the instrumental set-up that offers relatively high-quality results for simultaneous DSC and Raman data collection. We then demonstrate the application of the technology by studying the polymorphs of d-mannitol, a common pharmaceutical excipient and BMS-A, an investigational drug candidate that exhibits multiple coexisting polymorphs. In both cases, the Raman-DSC technology was able to provide valuable information on the process of phase change and polymorph identification. Although similar information may be obtained by using various characterization techniques together, the integrated Raman-DSC indicated special advantages for industrial development such as high efficiency, material sparing and comprehensive data analysis. Moreover the technology provides an alternative to better correlate real-time phase behavior to molecular understanding. The technology thus has the potential to be used for Process Analytical Technology (PAT) purpose. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Study of Glass-Transition Kinetics of Pb-Modified SeIn System by Using Non-isothermal Differential Scanning Calorimetry

    Science.gov (United States)

    Ram, Indra Sen; Singh, Kedar

    2014-01-01

    Glass-transition kinetics of ( 0, 5, 10, and 15) chalcogenide glasses have been carried out at different heating rates by using differential scanning calorimeter (DSC) under the non-isothermal condition. The glass-transition temperature and peak glass-transition temperature have been determined from DSC thermograms. The reduced glass temperature , total relaxation time thermal-stability parameters and , the activation energy of glass transition , the fragility index , and the average coordination number have been calculated on the basis of the experimental results. The temperature differences , and are found to be maxima for glass. This indicates that glass has the highest thermal stability and glass-forming ability in the investigated compositional range. These results could be explained on the basis of modification of the chemical bond formation due to incorporation of Pb in the Se-In glassy matrix.

  2. ELECTROMAGNET CALORIMETER (ECAL)

    CERN Multimedia

    R. Rusack

    Installation is under way of the last piece of the electromagnetic calorimeter. This is the preshower (ES) that sits in front of the two endcap calorimeters. The construction of the ES was completed in December and went through a detailed set of tests in December and January. The two preshower detectors have a total of 4300 silicon sensors with 137,000 strips. After final assembly and system testing in January, only two of the strips were found to be defective. Once CMS was fully opened a new support structure (‘Gazprom’) was put into place underneath the beam pipe, to support the Surkov platform, on which the preshower installation takes place. In the early hours of 26th February the first two Dees, which form the ‘ES+’ endcap,  were transported to P5 , a journey that took two and a half hours. The Dees, still inside environmental protection boxes, were then lowered  underground and moved to the ‘+’ end of CMS. Installation start...

  3. The PANDA backward calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Heybat; Deiseroth, Malte; Khaneft, Dmitry; Noll, Oliver; Valente, Roserio; Zambrana, Manuel [Johannes Gutenberg-Universitaet Mainz (Germany); Helmholtz-Institut Mainz (Germany); Ahmed, Samer [Helmholtz-Institut Mainz (Germany); Capozza, Luigi; Dbeyssi, Alaa; Froehlich, Bertold; Lin, Dexu; Maas, Frank; Mora Espi, Maria Carmen; Morales Morales, Cristina; Rodriguez Pineiro, David; Zimmermann, Iris [Helmholtz-Institut Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2015-07-01

    The PANDA experiment at FAIR is being devised for a broad physics programme in hadron structure and spectroscopy. Full and accurate reconstruction of scattering events, reliable particle identification and an almost complete solid angle coverage are required. An important tool for meeting this requirements will be the electromagnetic calorimeter (EMC). It is required to measure particle energies ranging from some MeVs to several GeVs with a relative resolution of 1% + 2%/√(E/GeV), assuring a compact geometry and radiation hardness at the same time. For these reasons PbWO{sub 4} was chosen as scintillation material. The whole calorimeter has been designed in three sections: a forward end-cap, a central barrel and a backward end-cap (BWEC). The BWEC, under development at Mainz, will cover scattering polar angles between 140 and 170 and will be made of 524 PbWO{sub 4} crystals. The scintillation light will be detected by large area avalanche photodiodes which will be read out by customised front-end ASIC chips. A status report on the development of the BWEC will be given in this contribution.

  4. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Central Calorimeter (HB/HE/HO) Photodetectors The main activity of the HCAL group during the present shutdown is the replacement of a small fraction of the Central Calorimeter (HB/HE/HO) photodetectors -- the Hybrid Photo-Detectors (HPDs). During the MTCC of 2006 it was established that all HPDs exhibit a low rate of discharge generating large random pulses. This behaviour persists at the full CMS field. However, at relatively low fields (0.5 Tesla) this discharge rate increases dramatically and becomes very large for a fraction of the HPDs. The HO HPDs which sit in the gap of the return yoke are thus adversly affected. These discharge pulses have been labelled "HPD noise" (which must be distinguished from low level electronic noise which manifests itself as pedestal noise for all HPD readout channels). Additional intermediate level noise can be generated by ion-feedback arising from thermal and field emission electrons. Ion feedback noise never exceeds the equivalent of few 10s of GeV, the...

  5. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL crystal calorimeter (EB + EE) The Barrel and Endcaps ECAL calorimeters have been used routinely in global runs. The CRAFT data have confirmed that ECAL performance is the same with or without magnetic field. The CRUZET and CRAFT runs have allowed experience to be gained with ECAL operation in many areas, in particular for the trigger and the calibration sequence using gap events (laser events and LED pulsing). More details can be found in the Commissioning/DPG report in this bulletin.   The last components remaining to be installed and commissioned are the specific Endcap Trigger modules (TCC-48). Most of the modules have been delivered to LLR and half of them are already at CERN. In parallel, large progress has been made on the validation of the TCC-48 firmware. Preshower (ES) The Preshower project has also made impressive progress during Autumn. All the elements required to complete the detector assembly are at hand. Ladder assembly, test and calibration with cosmic rays at the operating ...

  6. One-step Real-time Food Quality Analysis by Simultaneous DSC-FTIR Microspectroscopy.

    Science.gov (United States)

    Lin, Shan-Yang; Lin, Chih-Cheng

    2016-01-01

    This review discusses an analytical technique that combines differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy, which simulates the accelerated stability test and detects decomposition products simultaneously in real time. We show that the DSC-FTIR technique is a fast, simple and powerful analytical tool with applications in food sciences. This technique has been applied successfully to the simultaneous investigation of: encapsulated squid oil stability; the dehydration and intramolecular condensation of sweetener (aspartame); the dehydration, rehydration and solidification of trehalose; and online monitoring of the Maillard reaction for glucose (Glc)/asparagine (Asn) in the solid state. This technique delivers rapid and appropriate interpretations with food science applications.

  7. Study of Silicon Photomultipliers for the GRIPS Calorimeter Module

    Directory of Open Access Journals (Sweden)

    Alexei Ulyanov

    2013-01-01

    Full Text Available GRIPS is a proposed gamma-ray (200 keV to 80 MeV astronomy mission, which incorporates a pair-creation and Compton scattering telescope, along with X-ray and infrared telescopes. It will carry out a sensitive all-sky scanning survey, investigating phenomena such as gamma-ray bursts, blazars and core collapse supernovae. The main telescope is composed of a Si strip detector surroundedby a calorimeter with a fast scintillator material. We present the initial results of a study which considers the potential use of silicon photomultipliers in conjunction with the scintillator in the GRIPS calorimeter module.

  8. The CDF miniplug calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Lami, Stefano

    2002-06-28

    Two MiniPlug calorimeters, designed to measure the energy and lateral position of particles in the (forward) pseudorapidity region of 3.6 < |{nu}| < 5.2 of the CDF detector, have been recently installed as part of the Run II CDF upgrade at the Tevatron {bar p}p collider. They consist of lead/liquid scintillator read out by wavelength shifting fibers arranged in a pixel-type towerless geometry suitable for ''calorimetric tracking''. The design concept, the prototype performance and the final design of the MiniPlugs are here described. A recent cosmic ray test resulted in a light yield of approximately 100 pe/MIP, which exceeds our design requirements.

  9. A Luminosity Calorimeter for CLIC

    CERN Document Server

    Abramowicz, H; Kananov, S; Levy, A; Sadeh, I

    2009-01-01

    For the relative precision of the luminosity measurement at CLIC, a preliminary target value of 1% is being assumed. This may be accomplished by constructing a finely granulated calorimeter, which will measure Bhabha scattering at small angles. In order to achieve the design goal, the geometrical parameters of the calorimeter need to be defined. Several factors influence the design of the calorimeter; chief among these is the need to minimize the error on the luminosity measurement while avoiding the intense beam background at small angles. In this study the geometrical parameters are optimized for the best performance of the calorimeter. In addition, the suppression of physics background to Bhabha scattering is investigated and a set of selection cuts is introduced.

  10. Muon g-2 Calorimeter Prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Polly, Chris; /Fermilab

    2010-05-03

    The proposed design is a tungsten-scintillating fiber calorimeter with 35 segments, each read out by a separate PMT. Tungsten, which is significantly denser than lead, produces compact showers. This is necessary, in order to improve shower separation in analysis and to fully contain the showers within a calorimeter that satisfies the strict space constraints of the experiment. A single calorimeter segment (4 x 6 x 15 cm{sup 3}) has been constructed in order establish the feasibility of the new design and study its properties. Initial tests of the detector segment at the Paul Scherrer Institute were conducted with a low energy < 400 MeV/c electron beam. A higher-energy test with electrons up to a few GeV/c was performed at the Test Beam Facility under the experimental number T-967. All data from that test have been analyzed and published, and the tungsten-scintillating fiber calorimeter still appears to be a viable candidate. For this test beam run, a larger calorimeter (15 x 15 x 11 cm{sup 3}) has been constructed and an emphasis will be placed on understanding shower leakage and the ability to separate pileup events with a more granular readout. The experimenters will measure the energy resolution, linearity, and shower size of the calorimeter segment. This will provide important information for finalizing decisions on the angle of the fibers relative to the incoming electrons and the optimal granularity of the readout.

  11. Simultaneous differential scanning calorimetry and thermal desorption spectroscopy measurements for the study of the decomposition of metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.F.; Cuevas, F.; Sanchez, C. [Univ. Autonoma, Madrid (Spain). Dept de Fisica de Materiales C-IV

    2000-02-28

    An innovative experimental method to investigate the thermal decomposition of metal hydrides is presented. The method is based on an experimental setup composed of a differential scanning calorimeter connected through a capillary tube to a mass spectrometer. The experimental system allows the simultaneous determination of the heat absorbed and the hydrogen evolved from a metal hydride during thermal decomposition. This arrangement constitutes a coupled differential scanning calorimetry (DSC) and thermal desorption spectroscopy (TDS) technique. It has been applied to metal hydride materials to demonstrate the capability of the experimental system. A method to obtain the heat of decomposition of metal hydrides is described. It involves the measurement of an apparent decomposition heat as a function of the carrier gas flow. (orig.)

  12. Comparative study by TG and DSC Of membranes polyamide66/bentonite clay nanocomposite; Estudo comparativo por TG e DSC de membranas de nanocompositos poliamida66/argila bentonitica

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, K.M. de; Kojuch, L.R.; Araujo, E.M.; Lira, H.L., E-mail: keilamm@ig.com.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Lima, F. [Universidade Estadual da Paraiba (UEPB), Campina Grande, PB (Brazil). Dept. de Quimica

    2010-07-01

    In this study, it was obtained membranes of nanocomposites polyamide66 with 3 and 5% bentonite clay consists of silicates in layers from the interior of Paraiba. The clay was treated with a quaternary ammonium salt in order to make it organophilic. The membranes were prepared by phase inversion technique from the nanocomposites in solution. The clays were characterized by X-ray diffraction (XRD) and thermogravimetry (TG). Also the membranes were characterized by differential scanning calorimetry (DSC) and TG. The XRD and TG confirmed the presence of salt in the clay and thermal stability of the treated clay. For DSC, it was observed that there was no change in melting temperature of the membranes of nanocomposites compared to membrane pure polyamide66. By TG, it was found that the decomposition of the membranes of polyamide66 with treated clay were higher compared with the untreated clay. (author)

  13. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding

    2011-01-01

    Throughout the entire proton-proton run of 2011, all HCAL calorimeters operated very efficiently. Over 99% of HCAL readout and trigger channels were alive. However, during the year we did face two hardware problems. One major operation problem was the occasional loss of data from a single RBX caused by single event upsets (SEUs). The rate of RBX data loss was on average one incident per 10 pb–1 of integrated luminosity. This led to approximately 1% of CMS data loss. In order to mitigate this problem, HCAL has introduced an automatic reset of the RBX. With this reset, full operation was restored within about one minute. The final hardware correction of the problem will be possible only during a long shutdown (LS1) in 2013-’14. Another hardware problem that developed in 2011 was the failure of QPLL (quartz phase lock loops) chips. This led to the loss of phase of the readout clock with respect to the LHC clock. As a consequence, in two sections in HCAL (10 degree in φ on HB and 1...

  14. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Since the beginning of 2007, HCAL has made significant progress in the installation and commissioning of both hardware and software. A large fraction of the physical Hadron Calorimeter modules have been installed in UX5. In fact, the only missing pieces are HE- and part of HO. The HB+/- were installed in the cryostat in March. HB scintillator layer-17 was installed above ground before the HB were lowered. The HB- scintillator layer-0 was installed immediately after completion of EB- installation. HF/HCAL Commissioning The commissioning and checkout of the HCAL readout electronics is also proceeding at a rapid pace in Bldg. 904 and USC55. All sixteen crates of HCAL VME readout electronics have been commissioned and certified for service. Fifteen are currently operating in the S2 level of USC55. The last crate is being used for firmware development in the Electronics Integration Facility in 904. All installed crates are interfaced to their VME computers and receive synchronous control from the fully-equipp...

  15. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding

    2011-01-01

    All the HCAL calorimeters are ready for data-taking in 2011 and participated fully in the cosmic running and initial beam operations in the last few weeks. Several improvements were made during the winter technical stop, including replacement of the light-guide sleeves in HF, improvements to the low voltage power connections, and separation of HF from HB and HE in the DAQ partitions. During the 2010 running a form of anomalous noise in the HF was identified as being caused by scintillation when charged particles pass through a portion of the air light-guide sleeve. This portion was constructed from a non-conductive mirror-like material called “HEM”. To suppress these anomalous signals, during the recent winter technical stop all sleeves in the detector were replaced with sleeves made of Tyvek. The detector has been recommissioned with all channels fully operational. Recalibration of the detector will be required due to the differing reflectivity of the new sleeves compared with the HEM sl...

  16. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    During the last 3 months commissioning of HCAL has continued for HO and HE+. We have also started the commissioning of the first wedge of HB+. Progress continues to be made by our Trigger/DAQ, DCS and DPG colleagues. HF will be used to obtain a Luminosity measurement for CMS. A first test of the modifications to the HF electronics was made in the August CMS global run. In addition to installation and commissioning of various parts of HCAL, we also completed a very successful summer Test Beam period which saw measurements of the combined HE/EE/ES calorimeter system in the H2 test beam. Installation and Commissioning a. HB commissioning This week, part of the final water-cooling system for HB was commissioned. Eighteen HB- wedges and two pilot wedges on HB+ have been connected to the water circuit on YB0. On Sept 6, 2007 cabling and commissioning was started for the first HB readout box (RBX) using temporary set of cables. We have connected RBX-17 to the Low Voltage PS and the HCAL Detector Control Sy...

  17. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    HCAL installation and commissioning is approaching completion. Work continues on commissioning of HE-, HF- and the minus wheels of HO. We expect that all commissioning will be completed by mid-March. HCAL commissioning is interleaved with integration of HCAL and the Global Calorimeter Trigger (GCT). HCAL is attempting to take data using the HPD self-trigger as part of the GCT trigger path. Initial attempts in mid-February have not succeeded. Work continues on HCAL and the GCT. HPD lifetimes at 4 Tesla are being measured in Princeton. After more than a month of testing in a 4 Tesla field there are no sur¬prises. As the lifetime measurements proceed, the HPD response at intermediate fields of 1 Tesla will be verified and analyzed. Work also continues on HCAL calibration and DCS/DSS at Point 5. More details for some of the subsystems are presented in what follows. HE HE plus The cooling system of HE+ is functional now. The HE+ final connections to the LV system are complete. LV and HV tests to ev...

  18. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding and A. Skuja

    2010-01-01

    Splash and Collision Data HCAL recorded the beam-on-collimator (splash) and the first collision data in November and December 2009, and provided triggers to CMS with the forward calorimeter, HF. Splash events were used to improve the energy inter-calibration of the HB and HE channels, with the basic assumption that the energy deposited in the detector by the large flux of muons that passed through in splash events was a smooth function in eta and phi. The new HB and HE calibration coefficients were applied prior to the collision data taking. For HO, a similar analysis is being finalized. Splash events were also used to determine the relative timing between channels in HB and HE, and new delay settings were calculated based on splashes from one beam, applied and verified with the splash events from the other beam. During Fall 2009, the HF technical trigger was improved in order to be effectively used as one of the main CMS triggers during the collision data taking. Collisions were successfully recorded by all...

  19. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    D. Green

    The organization of CMS HCAL contains four “geographic” efforts, HB, HO, HE and HF. In addition there are presently five “common” HCAL activities. These ef¬forts are concentrated on electronics, on controls (DCS), on physics objects (JetMet), on Installation and Commissioning (I&C), and on Test Beam (TB) and Cosmic Challenge (MTCC) data taking. HCAL has begun planning to re-organize to be synchronized with the overall CMS management structure. HF The full production of the wedges is completed for some time. The 2004 test beam work has established the radioactive source calibration system for HF works at the 5 % level or better and a note is completed. The calibration of the complete HF is complete. HF is now in the UX cavern and will be hooked up and read out as soon as the services are available. HE The two HE calorimeters are installed and an initial calibration has been established. In the MTCC the HE was read out and muon data was observed. Event b...

  20. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL Barrel (EB) The cabling of the ECAL Barrel services on YB0 was completed early December 2007. The team has now commissioned the complete Barrel. To run all the supermodules in parallel, it is necessary to remove the heat from the service cables on YB0. The corresponding thermal screens are being installed and, for the time being, a max¬imum of 25 supermodules has been run concurrently. EB is read out regularly with a local DAQ as well as with the central DAQ and trigger. The calorimeter trigger has also been commissioned, allowing us to trigger on cosmic muons. ECAL Endcaps (EE) The Endcaps crystal production will be completed before the end of March 2008, as planned. The gluing of the VPTs (Vacuum Photo Triodes) on the crystals and the assembly of Supercrystals (sets of 25 crystals) are proceeding at the pace of 16 Supercrystals (400 channels) per week. Two thirds of the Supercrystals needed for the complete EE have been produced. Their mounting on the Dee backplates (including the connectio...

  1. DSC and universal bit-level combining for HARQ systems

    Directory of Open Access Journals (Sweden)

    Lv Tiejun

    2011-01-01

    Full Text Available Abstract This paper proposes a Dempster -Shafer theory based combining scheme for single-input single-output (SISO systems with hybrid automatic retransmission request (HARQ, referred to as DSC, in which two methods for soft information calculations are developed for equiprobable (EP and non-equiprobable (NEP sources, respectively. One is based on the distance from the received signal to the decision candidate set consisting of adjacent constellation points when the source bits are equiprobable, and the corresponding DSC is regarded as DSC-D. The other is based on the posterior probability of the transmitted signals when the priori probability for the NEP source bits is available, and the corresponding DSC is regarded as DSC-APP. For the diverse EP and NEP source cases, both DSCD and DSC-APP are superior to maximal ratio combining, the so-called optimal combining scheme for SISO systems. Moreover, the robustness of the proposed DSC is illustrated by the simulations performed in Rayleigh channel and AWGN channel, respectively. The results show that the proposed DSC is insensitive to and especially applicable to the fading channels. In addition, a DS detection-aided bit-level DS combining scheme is proposed for multiple-input multiple-output--HARQ systems. The bit-level DS combining is deduced to be a universal scheme, and the traditional log-likelihood-ratio combining is a special case when the likelihood probability is used as bit-level soft information.

  2. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  3. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  4. The CLAS forward electromagnetic calorimeter

    CERN Document Server

    Amarian, M; Beard, K; Brooks, W; Burkert, V; Carstens, T; Coleman, A; Demirchyan, R; Efremenko, Yu V; Egiyan, H; Egiyan, K; Funsten, H; Gavrilov, V; Giovanetti, K; Marshall, R M; Mecking, B; Minehart, R C; Mkrtchan, H; Ohandjanyan, M; Sharabyan, Yu G; Smith, L C; Stepanyan, S; Stephens, W A; Tung, T Y; Zorn, C

    2001-01-01

    The CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab utilizes six iron-free superconducting coils to provide an approximately toroidal magnetic field. The six sectors are instrumented individually to form six independent spectrometers. The forward region (8 deg. < 45 deg.) of each sector is equipped with a lead-scintillator electromagnetic sampling calorimeter (EC), 16 radiation lengths thick, using a novel triangular geometry with stereo readout. With its good energy and position resolution, the EC is used to provide the primary electron trigger for CLAS. It is also used to reject pions, reconstruct pi deg. and eta decays and detect neutrons. This paper treats the design, construction and performance of the calorimeter.

  5. Laser-high-speed-DSC: Process-oriented Thermal Analysis of PA 12 in Selective Laser Sintering

    Science.gov (United States)

    Lanzl, Lydia; Wudy, Katrin; Drexler, Maximilian; Drummer, Dietmar

    In the Selective Laser Sintering process very high heating rates occur due to the melting of the material by a laser. Extreme scanning rates could not be measured by conventional thermal analysis methods, since typical heating rates for DSC (differential scanning calorimetry) are between 5-20K min-1. By using a Laser-High-Speed-DSC, a self-developed combination of a Flash-DSC and a fitted laser head, the sample is directly heated by a CO2 laser like in the SLS process. These experiments allow a process-oriented thermal analyzation of the material. In this paper, the set-up and function of this new measuring method is introduced. Furthermore, the reliability of the measurements is evaluated by statistical design of experiment methods. By using this new measuring method, the time-dependent melting behavior of the polymer can be analyzed. Moreover, sample temperatures and heating rates dependent on laser exposure times can be quantified.

  6. The new ATLAS Fast Calorimeter Simulation

    Science.gov (United States)

    Schaarschmidt, J.; ATLAS Collaboration

    2017-10-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  7. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223142; The ATLAS collaboration

    2017-01-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  8. Software studies of GLD calorimeter

    Indian Academy of Sciences (India)

    ECAL ... lent performance with the particle flow algorithm (PFA). We attempt to implement a reconstruction code in ... this simulation, the calorimeter has a tower structure, and the lateral segmentation size of the scintillator is 4 × 4 cm2 for ECAL, ...

  9. The ALICE Zero Degree Calorimeters

    CERN Document Server

    Arnaldi, R; Cicalò, C; Cortese, P; De Falco, A; Dellacasa, G; De Marco, N; Ferretti, A; Gallio, M; Macciotta, P; Masoni, A; Mauro, S; Mereu, P; Musso, A; Oppedisano, C; Piccotti, A; Puddu, G; Randaccio, P; Scalas, E; Scomparin, E; Serci, S; Siddi, E; Soave, C; Usai, G L; Vercellin, Ermanno

    1999-01-01

    In the ALICE experiment at Cern LHC, a set of hadron calorimeters will be used to determine the centrality of the Pb-Pb collision. The spectator protons and neutrons, will be separated from the ion beams, using the separator magnet (D1) of the LHC beam optics and respectively detected by a proton (ZP) and a neutron (ZN) "Zero-degree Calorimeter" (ZDC). The detectors will be placed in front of the separator D2 magnet, 115 meters away from the beam intersection point. The ZDCs are quartz-fiber spaghetti calorimeters that exploit the Cherenkov light produced by the shower particles in silica optical fibers.This technique offers the advantages of high radiation hardness (up to several Grad), fast response and reduced lateral dimension of the detectable shower. In addition, quartz-fiber calorimeters are intrinsically insensitive to radio-activation background, which produces particles below the Cherenkov threshold.The ALICE ZDC should have an energy resolution comparable with the intrinsic energy fluctuations, whi...

  10. Fast Calorimeter Simulation in ATLAS

    CERN Document Server

    Schaarschmidt, Jana; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. It is 500 times faster than full simulation in the calorimeter system. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of mach...

  11. COE1 Calorimeter Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-15

    The purpose of this manual is to describe the operations of the COE1 calorimeter which is used to measure the thermal power generated by the radioactive decay of plutonium-bearing materials for the purposes of assaying the amount of plutonium within the material.

  12. Barrel calorimeter of the CMD-3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Shebalin, V. E., E-mail: V.E.Shebalin@inp.nsk.su; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Epifanov, D. A. [University of Tokyo, Department of Physics (Japan); Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-12-15

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  13. Systematic investigation of lard polymorphism using combined DSC and time-resolved synchrotron X-ray diffraction

    NARCIS (Netherlands)

    Kalnin, D.J.E.; Lesieur, P.; Artzner, F.; Keller, G.; Ollivon, M.

    2005-01-01

    The polymorphic behavior of lard was systematically investigated by differential scanning calorimetry (DSC) while simultaneously monitoring the formation of the different crystal forms with X-ray diffraction (XRDT). To interpret the complex polymorphic evolution of the sample analyzed by regular

  14. CFD analysis of a TG–DSC apparatus : Application to the indium heating and phase change process

    NARCIS (Netherlands)

    De la Cuesta de Cal, Daniel; Gómez, Miguel Ángel; Porteiro, Jacobo; Febrero, Lara; Granada, Enrique; Arce, Elena

    2014-01-01

    A ThermoGravimetric analyser with differential scanning calorimetry (TG–DSC) has been studied during the fusion of an indium sample using both an experimental procedure and a CFD simulation. To do so, a CAD model of the real device was built and meshed in detail, in order to take into account the

  15. Comparing Single-Point and Multi-point Calibration Methods in Modulated DSC

    Energy Technology Data Exchange (ETDEWEB)

    Van Buskirk, Caleb Griffith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-14

    Heat capacity measurements for High Density Polyethylene (HDPE) and Ultra-high Molecular Weight Polyethylene (UHMWPE) were performed using Modulated Differential Scanning Calorimetry (mDSC) over a wide temperature range, -70 to 115 °C, with a TA Instruments Q2000 mDSC. The default calibration method for this instrument involves measuring the heat capacity of a sapphire standard at a single temperature near the middle of the temperature range of interest. However, this method often fails for temperature ranges that exceed a 50 °C interval, likely because of drift or non-linearity in the instrument's heat capacity readings over time or over the temperature range. Therefore, in this study a method was developed to calibrate the instrument using multiple temperatures and the same sapphire standard.

  16. A Research Agenda on Data Supply Chains (DSC)

    OpenAIRE

    Spanaki, K; Adams, R.; Mulligan, C; Lupu, E

    2016-01-01

    Competition among organizations supports initiatives and collaborative use of data while creating value based on the strategy and best performance of each data supply chain. Supporting this direction, and building on the theoretical background of the supply chain, we propose the Data Supply Chain (DSC) as a novel concept to aid investigations for data-driven collaboration impacting organizational performance. In this study we initially propose a definition for the DSC paying particular attent...

  17. The iMPACT project tracker and calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Mattiazzo, S., E-mail: serena.mattiazzo@pd.infn.it [Dipartimento di Ingegneria dell' Informazione, Università di Padova, Padova (Italy); Bisello, D. [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); INFN Sezione di Padova, Padova (Italy); Giubilato, P. [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); INFN Sezione di Padova, Padova (Italy); CERN, Geneve (Switzerland); Pantano, D.; Pozzobon, N. [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); INFN Sezione di Padova, Padova (Italy); Snoeys, W. [CERN, Geneve (Switzerland)

    2017-02-11

    In recent years the use of hadrons for cancer radiation treatment has grown in importance, and many facilities are currently operational or under construction worldwide. To fully exploit the therapeutic advantages offered by hadron therapy, precise body imaging for accurate beam delivery is decisive. While traditional X-ray Computed Tomography (xCT) fails in providing 3D images with the precision required for hadrons treatment guidance, Proton Computer Tomography (pCT) scanners, currently in their R&D phase, can. A pCT scanner consists of a tracker system, to track protons, and of a calorimeter, to measure their residual energy. In this paper we will present the iMPACT project, which foresees a novel proton tracking detector with higher scanning speed, better spatial resolution and lower material budget with respect to present state-of-the-art detectors, leading to enhanced performances. The tracker will be matched to a fast, highly segmented proton range calorimeter.

  18. Tile Calorimeter Muon Trigger Signal

    CERN Document Server

    Cerqueira, A S; Usai, G L

    2002-01-01

    The Tile Calorimeter contributes to the first level trigger with the fast analog signal coming from the trigger summing boards, so-called analog adder. The adders provide two kinds of output: the total energy sum in a trigger tower and the signal from the respective cell of the last radial calorimeter layer, which can be used for identifying muons, thus making the muon first level trigger more robust. This note reviews the adder specifications and laboratory tests, whereas the main focus is put on the data analysis from the testbeam periods in~2001. Several improvements achieved by tuning the read-out are described. Using the testbeam results, the ability to identify muons in the last radial Tilecal layer is discussed. The experimental results obtained at the testbeams are completed with the Monte Carlo simulations.

  19. The CLAS Forward Electromagnetic Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    M. Amarian; Geram Asryan; Kevin Beard; Will Brooks; Volker Burkert; Tom Carstens; Alan Coleman; Raphael Demirchyan; Yuri Efremenko; Hovanes Egiyan; Kim Egiyan; Herb Funsten; Vladimir Gavrilov; Kevin L. Giovanetti; R.M. Marshall; Berhard Mecking; R.C. Minehart; H. Mkrtchan; Mavrik Ohandjanyan; Youri Sharabian; L.C. Smith; Stepan Stepanyan; W.A. Stephens; T.Y. Tung; Carl Zorn

    2001-05-01

    The CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab utilizes six iron-free superconducting coils to provide an approximately toroidal magnetic field. The six sectors are instrumented individually to form six independent spectrometers. The forward region (8deg < (theta) < 45deg) of each sector is equipped with a lead-scintillator electromagnetic sampling calorimeter (EC), 16 radiation lengths thick, using a novel triangular geometry with stereo readout. With its good energy and position resolution, the EC is used to provide the primary electron trigger for CLAS. It is also used to reject pions, reconstruct pi-0 and eta decays and detect neutrons, This paper treats the design, construction and performance of the calorimeter.

  20. Electromagnetic Calorimeter for HADES Experiment

    Directory of Open Access Journals (Sweden)

    Rodríguez-Ramos P.

    2014-01-01

    Full Text Available Electromagnetic calorimeter (ECAL is being developed to complement dilepton spectrometer HADES. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 AGeV on the beam of future accelerator SIS100@FAIR. We will report results of the last beam test with quasi-monoenergetic photons carried out in MAMI facility at Johannes Gutenberg Universität Mainz.

  1. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2015-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  2. Upgrading ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of s...

  3. Análisis DSC para la caracterización térmica de mezclas de polímeros para inyección

    OpenAIRE

    Juárez Varón, David; Ferrándiz Bou, Santiago; Peydró Rasero, Miguel Ángel; MENGUAL RECUERDA, ANA

    2014-01-01

    [EN] DSC analysis (differential scanning calorimetry) allows obtaining thermal information from polymers’ blends that have been studied in this work. SEBS blends were made using two commercial grades of transparent SEBS with extreme hardness. The thermal property determined with the SEBS blends was the evaluation of thermal degradation at high temperature (DSC). It is important to highlight the good resistance to degradation by both commercial grades of virgin SEBS with extreme hardness, and ...

  4. Family reunion for the UA2 calorimeter

    CERN Multimedia

    Abha Eli Phoboo

    2015-01-01

    After many years in CERN’s Microcosm exhibition, the last surviving UA2 central calorimeter module has been moved to Hall 175, the technical development laboratory of the ATLAS Tile Hadronic Calorimeter (Tilecal). The UA2 and ATLAS calorimeters are cousins, as both were designed by Otto Gildemeister. Now side by side, the calorimeters illustrate the progress made in sampling organic scintillator calorimeters over the past 35 years.   The ATLAS Tile Calorimeter prototypes (left) and the UA2 central calorimeter (right) in Hall 175. (Image: Mario Campanelli/ATLAS.) From 1981 to 1990, the UA2 experiment was one of the two detectors on CERN’s flagship accelerator, the SPS. At the heart of the UA2 detector was the central calorimeter. It was made up of 24 slices – each weighing four tonnes – arranged like orange segments around the collision point. These calorimeter slices played a central role in the research carried out by UA2 for the discovery of W bosons...

  5. DSC studies of new energy storage materials; Part 2: New materials and bulk studies

    Energy Technology Data Exchange (ETDEWEB)

    Babich, M.W.; Hwang, S.; Mounts, R.D. (Chemistry Department, Florida Institute of Technology, Melbourne, FL (United States))

    1993-10-26

    Energy storage materials (ESMs) have shown some utility in passive supplemental heating applications. This investigation was undertaken to ascertain the value in passive cooling applications of some known and some new ESMs using differential scanning calorimetry. The method works extremely well in all cases tested, both for single heating and cooling runs and for continuous heating and cooling cycles. The scale-up full-room tests give the same results as DSC further validating this method. Though the materials studied all have some desirable properties, none was deemed of general use. From this investigation, the necessary parameters for the discovery of new ESMs have become clear, and study of this is underway

  6. STRUCTURAL AND MECHANICAL CHARACTERIZATION OF DEFORMED POLYMER USING CONFOCAL RAMAN MICROSCOPY AND DSC

    Directory of Open Access Journals (Sweden)

    Birgit Neitzel

    2016-02-01

    Full Text Available Polymers have various interesting properties, which depend largely on their inner structure. One way to influence the macroscopic behaviour is the deformation of the polymer chains, which effects the change in microstructure. For analyzing the microstructure of non-deformed and deformed polymer materials, Raman spectroscopy as well as differential scanning calorimetry (DSC were used. In the present study we compare the results for crystallinity measurements of deformed polymers using both methods in order to characterize the differences in micro-structure due to deformation. The study is ongoing, and we present the results of the first tests.

  7. In Situ Stability of Substrate-Associated Cellulases Studied by DSC

    DEFF Research Database (Denmark)

    Borch, Kim; Cruys-Bagger, Nicolaj; Badino, Silke Flindt

    2014-01-01

    This work shows that differential scanning calorimetry (DSC) can be used to monitor the stability of substrate-adsorbed cellulases during long-term hydrolysis of insoluble cellulose. Thermal transitions of adsorbed enzyme were measured regularly in subsets of a progressing hydrolysis, and the size...... of the transition peak was used as a gauge of the population of native enzyme. Analogous measurements were made for enzymes in pure buffer. Investigations of two cellobiohydrolases, Cel6A and Cel7A, from Trichoderma reesei, which is an anamorph of the fungus Hypocrea jerorina, showed that these enzymes were...

  8. Analyzing Protein Denaturation using Fast Differential Scanning Calorimetry

    NARCIS (Netherlands)

    Splinter, R.; Van Herwaarden, A.W.; Iervolino, E.; Vanden Poel, G.; Istrate, D.; Sarro, P.M.

    2012-01-01

    This paper investigates the possibility to measure protein denaturation with Fast Differential Scanning Calorimetry (FDSC). Cancer can be diagnosed by measuring protein denaturation in blood plasma using Differential Scanning Calorimetry (DSC). FDSC can reduce diagnosis time from hours to minutes,

  9. Understanding the performance of CMS calorimeter

    Indian Academy of Sciences (India)

    The performance of the CMS hadron calorimeter is studied using test beam facilities at CERN. Two wedges of brass-scintillator calorimeter are exposed to negative and positive beams with momenta between 3 and 300 GeV/c. Light produced in the scintillators are collected using wavelength shifting fibres and read out ...

  10. Cone calorimeter tests of wood composites

    Science.gov (United States)

    Robert H. White; Kuma Sumathipala

    2013-01-01

    The cone calorimeter is widely used for the determination of the heat release rate (HRR) of building products and other materials. As part of an effort to increase the availability of cone calorimeter data on wood products, the U.S. Forest Products Laboratory and the American Wood Council conducted this study on composite wood products in cooperation with the Composite...

  11. LHCb: Physics with the LHCb calorimeter

    CERN Multimedia

    Barsuk, S

    2007-01-01

    The LHCb calorimeter comprises the scintillator pad detector (SPD), preshower (PS), electromagnetic Shashlyk type (ECAL) and hadronichadronic Tile (HCAL) calorimeters, arranged in pseudo-projective geometry. All the four detectors follow the general principle of reading the light from scintillator tiles with wave length shifting fibers, and transporting the light towards photomultipliers (25 ns R/O).

  12. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two photomultiplier in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalise the calorimeter r...

  13. Upgrading the Fast Calorimeter Simulation in ATLAS

    CERN Document Server

    Schaarschmidt, Jana; The ATLAS collaboration

    2017-01-01

    The tremendous need for simulated samples now and even more so in the future, encourage the development of fast simulation techniques. The Fast Calorimeter Simulation is a faster though less accurate alternative to the full calorimeter simulation with Geant4. It is based on parametrizing the longitudunal and lateral energy deposits of single particles in the ATLAS calorimeter. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. The parametrizations are expanded to cover very high energies and very forward detector regions, to increase the applicability of the tool. A prototype of this upgraded Fast Calorimeter Simulation has been developed and first validations with single particles show substantial improvements over the previous version.

  14. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Chomont, Arthur Rene; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  15. DSC and conductivity studies on PVA based proton conducting gel ...

    Indian Academy of Sciences (India)

    An attempt has been made in the present work to prepare polyvinyl alcohol (PVA) based proton conducting gel electrolytes in ammonium thiocyanate (NH4SCN) solution and characterize them. DSC studies affirm the formation of gels along with the presence of partial complexes. The cole–cole plots exhibit maximum ionic ...

  16. DSC1-MCB regulation of meiotic transcription in Schizosaccharomyces pombe.

    Science.gov (United States)

    Cunliffe, L; White, S; McInerny, C J

    2004-02-01

    Meiosis is initiated from the G1 phase of the mitotic cell cycle, and consists of pre-meiotic S-phase followed by two successive nuclear divisions. Here we show that control of gene expression during pre-meiotic S-phase in the fission yeast Schizosaccharomyces pombe is mediated by a DNA synthesis control-like transcription factor complex (DSC1), which acts upon M lu1 cell cycle box (MCB) promoter motifs. Several genes, including rec8+, rec11+, cdc18+, and cdc22+, which contain MCB motifs in their promoter regions, are found to be co-ordinately regulated during pre-meiotic S-phase. Both synthetic and native MCB motifs are shown to confer meiotic-specific transcription on a heterologous reporter gene. A DSC1-like transcription factor complex that binds to MCB motifs was also identified in meiotic cells. The effect of mutating and over-expressing individual components of DSC1 (cdc10+, res1+, res2+, rep1+ and rep2+) on the transcription of cdc22+, rec8+ and rec11+ during meiosis was examined. We found that cdc10+, res2+, rep1+ and rep2+ are required for correct meiotic transcription, while res1+ is not required for this process. This work demonstrates a role for MCB motifs and a DSC1-like transcription factor complex in controlling transcription during meiosis in fission yeast, and suggests a mechanism for how this specific expression occurs.

  17. Infrared spectra, Raman laser, XRD, DSC/TGA and SEM ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 34; Issue 4. Infrared spectra, Raman laser, XRD, DSC/TGA and SEM investigations on the preparations of selenium metal, (Sb2O3, Ga2O3, SnO and HgO) oxides and lead carbonate with pure grade using acetamide precursors. Moamen S Refat Khaled M Elsabawy.

  18. Vapor pressure data for fatty acids obtained using an adaptation of the DSC technique

    Energy Technology Data Exchange (ETDEWEB)

    Matricarde Falleiro, Rafael M. [LPT, Departamento de Processos Quimicos (DPQ), Faculdade de Engenharia Quimica, Universidade de Campinas (UNICAMP), 13083-852 Campinas - SP (Brazil); Akisawa Silva, Luciana Y. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo (UNIFESP), 09972-270 Diadema - SP (Brazil); Meirelles, Antonio J.A. [EXTRAE, Departamento de Engenharia de Alimentos (DEA), Faculdade de Engenharia de Alimentos, Universidade de Campinas (UNICAMP), 13083-862 Campinas - SP (Brazil); Kraehenbuehl, Maria A., E-mail: mak@feq.unicamp.br [LPT, Departamento de Processos Quimicos (DPQ), Faculdade de Engenharia Quimica, Universidade de Campinas (UNICAMP), 13083-852 Campinas - SP (Brazil)

    2012-11-10

    Highlights: Black-Right-Pointing-Pointer Vapor pressure data of fatty acids were measured by Differential Scanning Calorimetry. Black-Right-Pointing-Pointer The DSC technique is especially advantageous for expensive chemicals. Black-Right-Pointing-Pointer High heating rate was used for measuring the vapor pressure data. Black-Right-Pointing-Pointer Antoine constants were obtained for the selected fatty acids. - Abstract: The vapor pressure data for lauric (C{sub 12:0}), myristic (C{sub 14:0}), palmitic (C{sub 16:0}), stearic (C{sub 18:0}) and oleic (C{sub 18:1}) acids were obtained using Differential Scanning Calorimetry (DSC). The adjustments made in the experimental procedure included the use of a small sphere (tungsten carbide) placed over the pinhole of the crucible (diameter of 0.8 mm), making it possible to use a faster heating rate than that of the standard method and reducing the experimental time. The measurements were made in the pressure range from 1333 to 9333 Pa, using small sample quantities of fatty acids (3-5 mg) at a heating rate of 25 K min{sup -1}. The results showed the effectiveness of the technique under study, as evidenced by the low temperature deviations in relation to the data reported in the literature. The Antoine constants were fitted to the experimental data whose values are shown in Table 5.

  19. Thermal properties of poly(ethylene oxide)/lauric acid blends. A SSA-DSC study

    Energy Technology Data Exchange (ETDEWEB)

    Pielichowski, Krzysztof; Flejtuch, Kinga [Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow (Poland)

    2006-03-15

    A series of poly(ethylene oxide) (PEO)/lauric acid blends with different compositions has been prepared and characterised by differential scanning calorimetry (DSC) in dynamic mode. It has been found that the enthalpy of melting and crystallisation reaches its highest value for PEO/lauric acid blend (1:1, w/w) which makes this system a promising candidate for thermal energy storage applications. Further studies by step-scan alternating (SSA)-DSC revealed that an increase of the temperature step causes that the average total heating rate is also increasing and the heat flow is characterised by higher values. Reversing component of the heat flow during melting reaches lowest values at highest step (step=1{sup o}) when the re-crystallisation of PEO is hindered. An increase of step generally leads to an increase of the number of non-equilibrium effects and facilitates the activation of kinetic non-reversing processes, hindering the overall crystallisation of PEO. For lauric acid, due to facile crystallisation and self-association, formation of ordered regular structures takes place faster and is influenced by non-reversing processes in higher proportion. (author)

  20. ALICE electromagnetic calorimeter prototype test

    Energy Technology Data Exchange (ETDEWEB)

    Awes, Terry; /Oak Ridge

    2005-09-01

    This Memorandum of Understanding between the Test Beam collaborators and Fermilab is for the use of beam time at Fermilab during the Fall, 2005 Meson Test Beam Run. The experimenters plan to measure the energy, position, and time resolution of prototype modules of a large electromagnetic calorimeter proposed to be installed in the ALICE experiment at the LHC. The ALICE experiment is one of the three large approved LHC experiments, with ALICE placing special emphasis on the LHC heavy-ion program. The large electromagnetic calorimeter (EMCal) is a US initiative that is endorsed by the ALICE collaboration and is currently in the early stages of review by the Nuclear Physics Division of the DOE. The installation in the test beam at FNAL and test beam measurements will be carried out by the US members of the ALICE collaboration (ALICE-USA). The overall design of the ALICE EMCal is heavily influenced by its location within the ALICE L3 magnet. The EMCal is to be located inside the large room temperature magnet within a cylindrical integration volume approximately l12cm deep, by 5.6m in length, sandwiched between the ALICE TPC space frame and the L3 magnet coils. The chosen technology is a layered Pb-scintillator sampling calorimeter with a longitudinal pitch of 1.6mm Pb and 1.6mm scintillator. The full detector spans {eta} = -0.7 to {eta} = 0.7 with an azimuthal acceptance of {Delta}{phi} = 120{sup o}. The EMCal readout is of a ''Shish-Kabob'' type similar to the PHENIX Pb-scintillator sampling calorimeter in which the scintillation light is collected via wavelength shifting fibers running through the Pb-scintillator tiles perpendicular to the front surface. The detector is segmented into {approx}14000 towers. The basic structural units of the calorimeter are supermodules, each subtending approximately {approx}20{sup o} in {Delta}{phi} and 0.7 units in {Delta}{eta}. Supermodules are assembled from individual modules. The modules are further segmented

  1. ALICE Zero Degree Calorimeter (ZDC), General Pictures.

    CERN Multimedia

    2003-01-01

    The ZDC Calorimeter for spectator neutrons is made by 44 slabs of W-alloy; each slab has 44 grooves where quartz fibres are placed. The charged particles of the hadronic shower generated by the neutrons make Cerenkov light in the fibres and the light is collected by photomultipliers. Photos from 1 to 9 show the front-face of the calorimeter. Photo n. 10 shows the rear of the calorimeter where the fibres are divided in several groups to go to the different PMs.

  2. Tritium calorimeter setup and operation

    CERN Document Server

    Rodgers, D E

    2002-01-01

    The LBNL tritium calorimeter is a stable instrument capable of measuring tritium with a sensitivity of 25 Ci. Measurement times range from 8-hr to 7-days depending on the thermal conductivity and mass of the material being measured. The instrument allows accurate tritium measurements without requiring that the sample be opened and subsampled, thus reducing personnel exposure and radioactive waste generation. The sensitivity limit is primarily due to response shifts caused by temperature fluctuation in the water bath. The fluctuations are most likely a combination of insufficient insulation from ambient air and precision limitations in the temperature controller. The sensitivity could probably be reduced to below 5 Ci if the following improvements were made: (1) Extend the external insulation to cover the entire bath and increase the top insulation. (2) Improve the seal between the air space above the bath and the outside air to reduce evaporation. This will limit the response drift as the water level drops. (...

  3. The CASTOR calorimeter at the CMS experiment

    CERN Document Server

    Gunnellini, Paolo

    2013-01-01

    The CASTOR Calorimeter at the CMS experiment is an electromagnetic/hadronic calorimeter which covers the very forward region of the detector (-6.6 < eta < -5.2). CASTOR is a Cherenkov sampling calorimeter, consisting of quartz and tungsten plates, with an overall depth of 10 interaction lengths, able to detect penetrating cascade particles. It is segmented in 16 transversal and 14 longitudinal sections. Surrounding the beam pipe, its design is determined by space constraints and restricted to materials which tolerate a high radiation level. In this presentation we report on the operational experience and measurements with the CASTOR calorimeter during the 2010 data taking at the LHC, with proton-proton and heavy ion collisions. An overview of the broad physics program which can be accessed with CASTOR, as well as the status of published and ongoing physics analyses and detector studies are presented.

  4. The CASTOR calorimeter at the CMS experiment

    CERN Document Server

    Gunnellini, Paolo

    2013-01-01

    The CASTOR Calorimeter at the CMS experiment is an electromagnetic/hadronic calorimeter which covers the very forward region of the detector (-6.6 lt eta lt -5.2). CASTOR is a Cherenkov sampling calorimeter, consisting of quartz and tungsten plates, with an overall depth of 10 interaction lengths, able to detect penetrating cascade particles. It is segmented in 16 transversal and 14 longitudinal sections. Surrounding the beam pipe, its design is determined by space constraints and restricted to materials which tolerate a high radiation level. In this presentation we report on the operational experience and measurements with the CASTOR calorimeter during the 2010 data taking at the LHC, with proton-proton and heavy ion collisions. An overview of the broad physics program which can be accessed with CASTOR, as well as the status of published and ongoing physics analyses and detector studies are presented.

  5. Upgrading the ATLAS fast calorimeter simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00032940; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. An improved parametrization is being developed, to eventually address shortcomings of the original version. It makes use of statistical techniques such as principal component analysis, and a neural network parametrization to optimise the amount of information to store in the ATL...

  6. Central electromagnetic calorimeter of UA1

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, C.; DeBeer, M.; Fournier, J.P.; Givernaud, A.; Laugier, J.P.; Leveque, A.; Locci, E.; Loret, M.; Malosse, J.J.; Micolon, P.

    1986-02-01

    We describe the construction, calibration and performance of the central electromagnetic calorimeter of the UA1 experiment at the CERN proton-antiproton collider. The calorimeter is of the lead-scintillator sandwich type. It is 26.4 radiation lengths thick and covers a surface of about 50 m/sup 2/. We estimate the resolution of the calorimeter for electrons of energy greater than 1 GeV to be the sum in quadrature of 15%/..sqrt..E (E in GeV) and a constant 3%. The first term comes from the inherent resolution of the calorimeter due to sampling fluctuations and photostatistics. The second term comes from uncertainties in the calibration procedure and dominates the resolution for electrons from W and Z/sup 0/ decay. The uncertainty in the overall energy scale also reflects the uncertainties in the calibration procedure and is estimated to be 3%. (orig.).

  7. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00304670; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted to photomultiplier tubes (PMTs). Signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  8. Performance of the ATLAS Zero Degree Calorimeter

    CERN Document Server

    Leite, M; The ATLAS collaboration

    2013-01-01

    The ATLAS Zero Degree Calorimeter (ZDC) at the Large Hadron Collider (LHC) is a set of two sampling calorimeters modules symmetrically located at 140m from the ATLAS interaction point. The ZDC covers a pseudorapidity range of |eta| > 8.3 and it is both longitudinally and transversely segmented, thus providing energy and position information of the incident particles. The ZDC is installed between the two LHC beam pipes, in a configuration such that only the neutral particles produced at the interaction region can reach this calorimeter. The ZDC uses Tungsten plates as absorber material and rods made of quartz interspersed in the absorber as active media. The energetic charged particles crossing the quartz rods produces Cherenkov light which is then detected by photomultipliers and sent to the front end electronics for processing, in a total of 120 individual electronic channels. The Tungsten plates and quartz rods are arranged in a way to segment the calorimeters in 4 longitudinal sections. The first section (...

  9. The ATLAS Tile Calorimeter performance at LHC

    CERN Document Server

    Cuciuc, M; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the readout system exploiting different signal sources: laser light, charge injection and a radioactive source. The calorimeter performance and its stability has been evaluated with the rich sample of collision data in 2011 but also with calibration data, random triggered data, cosmic muons and splash events. Results on the absolute energy scale calibration precision, on the energy and timing uniformity, on the time resolution and on the synchronization precision are presented...

  10. The CMS central hadron calorimeter: Update

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.

    1998-06-01

    The CMS central hadron calorimeter is a brass absorber/ scintillator sampling structure. We describe details of the mechanical and optical structure. We also discuss calibration techniques, and finally the anticipated construction schedule.

  11. The CMS forward calorimeter with quartz fibres

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    Part of the forward hadron calorimeter for the CMS experiment at the LHC is seen here. The calorimeter will be placed at the ends of the experiment barrel to measure the energy of particles produced in the 14 TeV proton-proton collisions. In consists of an iron absorber and specially designed radiation-hard quartz so that it survives the high radiation levels produced by collisions.

  12. Last Few Metres for the Barrel Calorimeter

    CERN Multimedia

    Nyman, T.

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows ...

  13. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  14. Interactions of tamoxifen with distearoyl phosphatidylcholine multilamellar vesicles: FTIR and DSC studies

    Science.gov (United States)

    Bilge, Duygu; Sahin, Ipek; Kazanci, Nadide; Severcan, Feride

    2014-09-01

    Interactions of a non-steroidal antiestrogen drug, tamoxifen (TAM), with distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) multilamellar liposomes (MLVs) were investigated as a function of drug concentration (1-15 mol%) by using two noninvasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR spectroscopy results show that increasing TAM concentrations (except 1 mol%) increased the wavenumbers of the CH2 stretching modes, implying an disordering effect for DSPC MLVs both in the gel and liquid crystalline phases. The bandwidth values of the CH2 stretchings except for 1 mol% increased when TAM concentrations increased for DSPC liposomes, indicating an increase in the dynamics of liposomes. The Cdbnd O stretching and PO2- antisymmetric double bond stretching bands were analyzed to study interactions of TAM with head groups of lipids. As the concentrations of TAM increased, dehydration occurred around these functional groups in the polar part of the lipids. The DSC studies on thermal properties of DSPC lipids indicate that TAM eliminated the pre transition, shifted the main phase transition to lower temperatures and broadened the phase transition curve of the liposomes.

  15. Effect of collagen crosslinking on collagen-water interactions (a DSC investigation).

    Science.gov (United States)

    Kopp, J; Bonnet, M; Renou, J P

    1989-01-01

    The effect of collagen cross-linking state on the collagen-water interaction was studied, using Differential Scanning Calorimetry (DSC) which allows the determination of unfreezable water, the variation of enthalpy (delta H) and temperatures of denaturation of collagen to gelatin transition. DSC was performed on intramuscular connective tissue purified with trypsin (control C), depolymerized with penicillamin (P), and reduced with borohydride (B); samples were adjusted with different water contents. For the three tissues, unfreezable water (Wu) and denaturation enthalpy change (delta H) increased with increasing moisture level (Wt); whereas, maximum denaturation temperature (phi M) decreased. The ability of this calorimetric method of investigation to characterize the collagen crosslink state is discussed: maximum limit values of delta H and of Wu decreased significantly with increasing collagen cross-linking degree. Minimum Wt necessary to reach the maximum delta H decreased with crosslinking degree. Likewise significantly different limit values of unfreezable water Wu were reached for smaller Wt the greater the crosslinking of collagen. These results show that the less connective tissues were cross-linked, the more they could bind water. They also demonstrated that the water of collagen hydration can be classified into four states, whose limits vary according to the degree of crosslinking.

  16. Performances of the ATLAS Hadronic Tile Calorimeter Modules for Electrons and Pions

    CERN Document Server

    Kulchitskii, Yu A

    2004-01-01

    With the aim of establishing of an electromagnetic energy scale of the ATLAS Tile calorimeter and understanding of performance of the calorimeter to electrons 12 \\% of modules have been exposed in electron beams with various energies by three possible ways: cell-scan at $\\theta =20^o$ at the centers of the front face cells, $\\eta$-scan and tilerow scan at $\\theta = 90^o$ for the module side cells. We have extracted the electron calibration constants and electron energy resolutions some of these barrel and extended barrel modules at energies E = 10, 20, 50, 100 and 180 GeV for the cell-scan at $\\theta = 20^o$, the $\\eta$ scan and the tile scan at $90^o$. The average values of these constants are equal to $\\langle R_e \\rangle =1.157\\pm0.002$ pC/GeV for the cell-scan at $\\theta = 20^o$, $\\langle R_e \\rangle =1.143\\pm0.005$ pC/GeV for the $\\eta$-scan and $\\langle R_e\\rangle =1.196\\pm0.005$ pC/GeV for the tile-scan at $\\theta = 90^o$. The RMS values are the following: for the cell-scan is $RMS=2.6\\pm0.1$ \\%, for t...

  17. Formation study of Bisphenol A resole by HPLC, GPC and curing kinetics by DSC

    Directory of Open Access Journals (Sweden)

    Kamal Khoudary

    2016-11-01

    Full Text Available The formation study of Bisphenol A (BPA resole resins catalyzed by sodium hydroxide has been studied by HPLC, GPC. Resoles have been synthesized under controlled conditions: 90 °C, F/BPA = 1.5 (R1, 2.0 (R2, and 2.5 (R3. The resole with the high molar ratio has shown lower BPA content remained in the final product. The changes in molecular weights of Bisphenol A (BPA–formaldehyde reaction have been identified by GPC as a result of measurements, an increase in molecular weight has been observed with an increase of reaction time and molar ratio. Curing reaction kinetics of resins as a function of molar ratio have been studied by differential scanning calorimetric DSC technique. The activation energies increased with an increase in molar ratio and molecular weights.

  18. 7 CFR 1710.114 - TIER, DSC, OTIER and ODSC requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false TIER, DSC, OTIER and ODSC requirements. 1710.114... AND GUARANTEES Loan Purposes and Basic Policies § 1710.114 TIER, DSC, OTIER and ODSC requirements. (a... of distribution borrowers whether applied on an annual or average basis, are a TIER of 1.25, DSC of 1...

  19. Reticulation of Aqueous Polyurethane Systems Controlled by DSC Method

    Directory of Open Access Journals (Sweden)

    Jakov Stamenkovic

    2006-06-01

    Full Text Available The DSC method has been employed to monitor the kinetics of reticulation ofaqueous polyurethane systems without catalysts, and with the commercial catalyst of zirconium(CAT®XC-6212 and the highly selective manganese catalyst, the complex Mn(III-diacetylacetonemaleinate (MAM. Among the polyol components, the acrylic emulsions wereused for reticulation in this research, and as suitable reticulation agents the water emulsiblealiphatic polyisocyanates based on hexamethylendoisocyanate with the different contents ofNCO-groups were employed. On the basis of DSC analysis, applying the methods of Kissinger,Freeman-Carroll and Crane-Ellerstein the pseudo kinetic parameters of the reticulation reactionof aqueous systems were determined. The temperature of the examination ranged from 50oC to450oC with the heat rate of 0.5oC/min. The reduction of the activation energy and the increaseof the standard deviation indicate the catalytic action of the selective catalysts of zirconium andmanganese. The impact of the catalysts on the reduction of the activation energy is thestrongest when using the catalysts of manganese and applying all the three afore-said methods.The least aberrations among the stated methods in defining the kinetic parameters wereobtained by using the manganese catalyst.

  20. Profiles in Leadership: Clifton J. Latiolais, MSc, DSc.

    Science.gov (United States)

    White, Sara; Godwin, Harold N; Weber, Robert J

    2013-09-01

    The Director's Forum series is designed to guide pharmacy leaders in establishing patient-centered services in hospitals and health systems. August 2013 marks the 50th anniversary of the publication of the Mirror to Hospital Pharmacy, which was a comprehensive study of pharmacy services in the United States. The late Clifton J. Latiolais, MS, DSc, served as the assistant program director for the study and was a co-author of the Mirror. The late Don E. Francke, MS, DSc, was the lead author of the Mirror and the principal investigator of the federally funded study that reviewed hospital pharmacy services across the United States. The next 2 articles in Director's Forum profile the leadership of Drs. Latiolais and Francke. This article highlights Dr. Latiolais ("Clif") by briefly reviewing his biography and key career accomplishments, describing his leadership philosophy, and translating that philosophy to today's health care challenges. Clif's influence on health system pharmacy serves as an example of effective leadership. This historical perspective on Clif's leadership, as seen through the eyes of those who knew him, provides directors of pharmacy a valuable leadership viewpoint as they develop strategies to enhance patient-centered pharmacy services.

  1. Commissioning of the ATLAS Liquid Argon Calorimeter

    CERN Document Server

    Gibson, A; The ATLAS collaboration

    2009-01-01

    The Liquid Argon calorimeter (LAr) is one of the main sub-detectors in the ATLAS experiment at the LHC. It provides precision measurements of electrons, photons, jets and missing transverse energy produced in the LHC pp collisions. The LAr calorimeter has been installed in the ATLAS cavern and filled with liquid argon since 2006. The electronic calibration of the readout system, a critical system for precision measurements, has been continuously exercised in the commissioning phase, resulting in a fully commissioned calorimeter with its readout and a small number of problematic channels. A total of only 0.02% of the read out channels are dead beyond repair and 0.4% need special treatment for calibration. Throughout the last two years a large amount of calibration data has been collected. Cosmic muon data, first triggered via specially developed trigger boards on the LVL1 output of the Tile calorimeter and later with the standard ATLAS LVL1 calorimeter trigger, have been recorded at various stages of commissio...

  2. LHCb Calorimeter modules arrive at CERN

    CERN Multimedia

    2002-01-01

    Two of the three components of the LHCb Calorimeter system have started to arrive from Russia. Members of the LHCb Calorimeter group with the ECAL and HCAL modules that have just arrived at CERN. The first two of the 56 Hadron Calorimeter (HCAL) modules and 1200 of the 3300 modules of the Electromagnetic Calorimeter (ECAL) have reached CERN from Russia. The third part of the system, the Preshower detector, is still being prepared in Russia. The calorimeter system identifies and triggers on high-energy particles, namely electrons, hadrons and photons by measuring their positions and energies. The HCAL is going to be a pure trigger device. The ECAL will also be used in the triggering, but in addition it will reconstruct neutral pions and photons from B meson decays. One of the major aims of the LHCb experiment is to study CP violation through B meson decays including Bs mesons with high statistics in different decay modes. CP violation (violation of charge and parity) is necessary to explain why the Universe...

  3. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter have been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations o...

  4. ATLAS - End-Cap calorimeter lowered in to the cavern

    CERN Multimedia

    2006-01-01

    The End-cap calorimeter was lowered into the ATLAS cavern at POINT1. This calorimeter will measure the energy of particles close to the beam axis when protons collide. Cooling is important for maximum detector efficiency.

  5. Performance of the CMS Regional Calorimeter Trigger

    CERN Document Server

    Klabbers, P; Dasu, S; Efron, J; Fobes, R; Gorski, T; Grogg, K; Grothe, M; Lazaridis, C; Leonard, J; Savin, A; Smith, W H; Weinberg, M

    2009-01-01

    The CMS Regional Calorimeter Trigger (RCT) receives eight-bit energies and a data quality bit from the HCAL and ECAL Trigger Primitive Generators (TPGs). The RCT uses these trigger primitives to find e/γ candidates and calculate regional calorimeter sums that are sent to the Global Calorimeter Trigger (GCT) for sorting and further processing. The RCT hardware consists of one clock distribution crate and 18 double-sided crates containing custom boards, ASICs, and backplanes. The RCT electronics have been completely installed since 2007. The RCT has been integrated into the CMS Level-1 Trigger chain. Regular runs, triggering on cosmic rays, prepare the CMS detector for the restart of the LHC. During this running, the RCT control is handled centrally by CMS Run Control and Monitor System communicating with the Trigger Supervisor. Online Data Quality Monitoring (DQM) evaluates the performance of the RCT during these runs. Offline DQM allows more detailed studies, including trigger efficiencies. These and other r...

  6. Temperature Effects in the ATIC BGO Calorimeter

    Science.gov (United States)

    Isbert, J.; Wefel, J. P.; Atic Team

    The Advanced Thin Ionization Calorimeter ATIC Balloon Experiment contains a segmented calorimeter composed of 320 individual BGO crystals 18 radiation lengths deep to determine the particle energy Like all inorganic scintillation crystals the light output of BGO depends not only on the energy deposited by particles but also on the temperature of the crystal ATIC had successful flights in 2000 2001 and 2002 2003 from McMurdo Antarctica The temperature of balloon instruments varies during their flights at altitude due to sun angle variations and differences in albedo from the ground and is monitored and recorded In order to determine the temperature sensitivity of the ATIC calorimeter the instrument was temperature cycled in the thermal vacuum chamber at the CSBF in Palestine TX The temperature dependence derived from the pulse height response to cosmic ray muons at various temperatures is discussed and compared to values in the literature

  7. Laser calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile calorimeter is achieved with a set of calibration procedures. One step of the calibrtion procedure is based on measurements of the response stability to laser excitation of the photomultipliers (PMTs) that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the test in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the resonse drifts seen with the PMT mounted on the Tile calorimeter in its normal operation during LHC run I and run II. A new statistical approach was developed to measure the drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to the data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  8. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  9. Laser Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile Calorimeter is achieved with a set of calibration procedures. One step of the calibration procedure is based on measurements of the response stability to laser excitation of the PMTs that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the tests in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the response drifts seen with the PMT mounted on the Tile calorimeter in its normal operating during LHC run I and run II. A new statistical approach was developed to measure drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  10. Results from ATLAS Calorimeter Combined Test Beam

    CERN Document Server

    Tarrade, F

    2007-01-01

    Beam tests of combinations of ATLAS calorimeters have been performed both for the barrel and end cap parts. During a combined test beam in summer 2004 a slice of the ATLAS barrel detector - including all detector sub systems from the inner tracker, the calorimetry to the muon system - was exposed to particle beams (electrons, pions, photons, muons) with different energies (1GeV to 350GeV). The aim was to study the combined performance of the different detector sub systems in ATLAS-like conditions. We will present the electronics calibration scheme of the electromagnetic calorimeter and its implementation. The following studies on the combined testbeam data have been performed and will be presented: performance of the electromagnetic calorimetry down to very low energies (> GeV), photon reconstruction including converted photons and position measurements using the very precise ATLAS tracker and the electromagnetic calorimeter. These measurements have been compared to Monte Carlo simulations showing the good de...

  11. Performances of the AMS-02 electromagnetic calorimeter

    CERN Document Server

    Cervelli, F; Lomtadze, T A; Venanzoni, G; Falchini, E; Maestro, P; Marrocchesi, P S; Paoletti, R; Pilo, F; Turini, N; Valle, G D; Coignet, G; Girard, L; Goy, C; Kossakowski, R; Lees-Rosier, S; Vialle, J P; Chen, G; Chen, H; Liu, Z; Lu, Y; Yu, Z; Zhuang, H L

    2002-01-01

    A full-scale prototype of the e.m. calorimeter for the AMS-02 experiment was tested at CERN in October 2001 using 100 GeV pion and electron beams with energy ranging from 3 to 100 GeV. The detector, a lead-scintillating fiber sampling calorimeter about 17 radiation lengths deep, is read out by an array of multianode photomultipliers. The calorimeter's high granularity allows to image the longitudinal and lateral showers development, a key issue to provide high electron /hadron discrimination. From the test beam data, linearity and energy resolution were measured as well as the effective sampling thickness. The latter was extracted from the data by fitting the longitudinal e.m. shower profiles at different energies. (9 refs).

  12. Hollow micro string based calorimeter device

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a micron-scale calorimeter and a calorimetry method utilizing the micron-scale calorimeter. In accordance with the invention, there is provided a micron-scale calorimeter comprising a micro-channel string, being restrained at at least two longitudinally distanced...... positions so as to form a free released double clamped string in-between said two longitudinally distanced positions said micro-channel string comprising a microfluidic channel having a closed cross section and extending in the longitudinal direction of the hollow string, acoustical means adapted...... to oscillate the string at different frequencies by emitting sound waves towards the string, optical means adapted to detect oscillating frequencies of the string, and controlling means controlling the strength and frequency of the sound wave emitted by the acoustical means and receiving a signal from...

  13. Calibration Systems of the ATLAS Tile Calorimeter

    CERN Document Server

    Lundberg, O

    2013-01-01

    TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. This sampling calorimeter uses iron plates as absorber and plastic scintillating tiles as the active material. A multi-faceted calibration system allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitization. This calibration system is based on signal generation from different sources: a Cs radioactive source, laser light, charge injection and minimum bias events produced in proton-proton collisions. A brief description of the different TileCal calibration systems is given and the latest results on their performance in terms of calibration factors, linearity and stability are presented.

  14. Calibration systems of the ATLAS Tile Calorimeter

    CERN Document Server

    Lundberg, O; The ATLAS collaboration

    2012-01-01

    TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. This sampling calorimeter uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from the over 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. A multi-faceted calibration system allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitization. This calibration system is based on signal generation from different sources: a Cs radioactive source, laser light, charge injection and minimum bias events produced in proton-proton collisions. This talk presents a brief description of the different TileCal calibration systems and presents the latest results on their performance in terms of calibration factors...

  15. Potential physics measurement with ALICE electromagnetic calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.C., E-mail: dczhou@mail.ccnu.edu.c [Institute of Particle Physics, Huazhong Normal University, Key Laboratory of Quark and Lepton Physics, Ministry of Education, Wuhan (China); Mao, Y.X.; Wan, R.Z. [Institute of Particle Physics, Huazhong Normal University, Key Laboratory of Quark and Lepton Physics, Ministry of Education, Wuhan (China); Schutz, Y. [CERN, Geneva CH-1211, Switzerland and SUBATECH, IN2P3, Nantes (France); Yin, Z.-B.; Wang, Y.P.; Ma, K. [Institute of Particle Physics, Huazhong Normal University, Key Laboratory of Quark and Lepton Physics, Ministry of Education, Wuhan (China); Conesa, G. [Laboratori Nazionale Di Frascati, INFN, Via Enrico Fermi, 40, P.O box 13, I-00044 Frascati (Italy); Kharlov, Y. [Institute for High Energy Physics, Protvino, 142281 (Russian Federation); Wang, M.L.; Zhu, X.R.; Yin, X.; Cai, X. [Institute of Particle Physics, Huazhong Normal University, Key Laboratory of Quark and Lepton Physics, Ministry of Education, Wuhan (China)

    2010-03-01

    We present the two electromagnetic calorimeters of the ALICE (A Large Ion Collider Experiment) experiment at LHC (Large Hadron Collider). One is the high-resolution PHOton Spectrometer (PHOS) made of lead tungsten crystals and the other is the ElectroMagnetic Calorimeter (EMCal), a Lead-Scintillator sampling calorimeter. They are dedicated to the measurement and identification of direct photons, light neutral mesons such as pi{sup 0}, eta and omega(782), and jets emitted in proton-proton and heavy-ion collisions at the LHC energies. The PHOS is capable of precisely detecting photons with momentum range between 0.1 GeV/c and 100 GeV/c and the EMCal can extend the prompt photon and light neutral meson momentum measurement beyond 200 GeV/c. The objective of the study is to explore the physics of strongly interacting QCD matter under extreme conditions of energy density.

  16. Readiness of the ATLAS liquid argon calorimeter for LHC collisions

    NARCIS (Netherlands)

    Aad, G.; et al., [Unknown; Bentvelsen, S.; Colijn, A.P.; de Jong, P.; Doxiadis, A.; Garitaonandia, H.; Gosselink, M.; Kayl, M.S.; Koffeman, E.; Lee, H.; Mechnich, J.; Mussche, I.; Ottersbach, J.P.; Rijpstra, M.; Ruckstuhl, N.; Tsiakiris, M.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Vermeulen, J.C.; Vreeswijk, M.

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an

  17. Physics with the CMS forward CASTOR calorimeter

    CERN Document Server

    Katkov, Igor

    2011-01-01

    The design of the calorimeter is determined by space constraints inside a shield for radiation and for magnetic field and restricted to materials which tolerate a high radiation level. The calorimeter surrounds the beam pipe as a very compact sampling structure of tungsten and quartz plates with a depth of 10 hadronic interaction lengths. The granularity of 16 transversal segments and 14 longitudinal sections allows to reconstruct shower profiles, to separate electron sand photons from hadrons and to search for phenomena with anomalous hadronic energy depositions as expected from exotica. Performance as measured in test beams, first operation experience and first measurements in the very forward region of CMS will be presented.

  18. Rad Hard Active Media For Calorimeters

    CERN Document Server

    Norbeck, E; Möller, A; Onel, Y

    2006-01-01

    Zero-degree calorimeters have limited space and extreme levels of radiation. A simple, low cost, radiation hard design uses tungstenmetal as the absorber and a suitable liquid as the ˇCerenkov radiator. In other applications a PPAC (Parallel Plate Avalanche Counter) operatingwith a suitable atmosphericpressure gas is an attractive active material for a calorimeter. It can be made radiation hard and has sufficient gain in the gas that no electronic components are needed near the detector. It works well even with the highest concentration of shower particles. For this pressure range, R134A (used in auto air conditioners) has many desirable features.

  19. Sensors for the CMS High Granularity Calorimeter

    CERN Document Server

    Maier, Andreas Alexander

    2017-01-01

    The CMS experiment is currently developing high granularity calorimeter endcapsfor its HL-LHC upgrade. The design foresees silicon sensors as the active material for the high radiation region close to the beampipe. Regions of lower radiation are additionally equipped with plastic scintillator tiles. This technology is similar to the calorimeter prototypes developed in the framework of the Linear Collider by the CALICE collaboration. The current status of the silicon sensor development is presented. Results of single diode measurements are shown as well as tests of full 6-inch hexagonal sensor wafers. A short summary of test beam results concludes the article.

  20. Comparison of the Heat Release Rate from the Mass Loss Calorimeter to the Cone Calorimeter for Wood-based Materials

    Science.gov (United States)

    Laura E. Hasburgh; Robert H. White; Mark A. Dietenberger; Charles R. Boardman

    2015-01-01

    There is a growing demand for material properties to be used as inputs in fi re behavior models designed to address building fire safety. This comparative study evaluates using the mass loss calorimeter as an alternative to the cone calorimeter for obtaining heat release rates of wood-based materials. For this study, a modified mass loss calorimeter utilized an...

  1. Fast differential scanning calorimetry of liquid samples with chips

    DEFF Research Database (Denmark)

    Splinter, R.; van Herwaarden, A. W.; van Wetten, I. A.

    2015-01-01

    Based on a modified version of standard chips for fast differential scanning calorimetry, DSC of liquid samples has been performed at temperature scan rates of up to 1000 °C/s. This paper describes experimental results with the protein lysozyme, bovine serum, and olive oil. The heating and cooling....... The bovine serum measurements show two main peaks, in good agreement with standard DSC measurements. Olive oil has been measured, with good agreement for the cooling curve and qualitative agreement for the heater curve, compared to DSC measurements....

  2. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223142; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. The new ATLAS Fast Calorimeter Simulation (FastCaloSim) is an improved parametrisation compared to the one used in the LHC Run-1. It provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The new FastCaloSim incorporates developments in geometry and physics lists of the last five years and benefit...

  3. CALICE silicon–tungsten electromagnetic calorimeter

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Abstract. A highly granular electromagnetic calorimeter prototype based on tungsten absorber and sampling units equipped with silicon pads as sensitive devices for signal collection is under construction. The full prototype will have in total 30 layers and be read out by about 10000 Si cells of 1 × 1 cm2.

  4. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Dias, Flavia; The ATLAS collaboration

    2016-01-01

    A very large number of simulated events is required for physics and performance studies with the ATLAS detector at the Large Hadron Collider. Producing these with the full GEANT4 detector simulation is highly CPU intensive. As a very detailed detector simulation is not always required, fast simulation tools have been developed to reduce the calorimeter simulation time by a few orders of magnitude. The fast simulation of ATLAS for the calorimeter systems used in Run 1, called Fast Calorimeter Simulation (FastCaloSim), provides a parameterized simulation of the particle energy response at the calorimeter read-out cell level. It is then interfaced to the ATLAS digitization and reconstruction software. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: It incorporates developments in geometry and physics lists of the last five years and benefits from knowledge acquire...

  5. The ATLAS Tile Calorimeter gets into shape!

    CERN Multimedia

    2002-01-01

    The last of the 64 modules for one of the ATLAS Hadron tile calorimeter barrels has just arrived at CERN. This arrival puts an end to two and a half years work assembling and testing all the modules in the Institut de Física d'Altes Energies (IFAE), in Barcelona.

  6. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00176100; The ATLAS collaboration

    2016-01-01

    The physics and performance studies of the ATLAS detector at the Large Hadron Collider re- quire a large number of simulated events. A GEANT4 based detailed simulation of the ATLAS calorimeter systems is highly CPU intensive and such resolution is often unnecessary. To reduce the calorimeter simulation time by a few orders of magnitude, fast simulation tools have been developed. The Fast Calorimeter Simulation (FastCaloSim) provides a parameterised simulation of the particle energy response at the calorimeter read-out cell level. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: it incorporates developments in geometry and physics lists during the last five years and benefits from the knowledge acquired from the Run 1 data. The algorithm uses machine learning techniques to improve the parameterisations and to optimise the amount of information to be stored in the...

  7. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum fro...

  8. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum from elec...

  9. Upgrading the ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hubacek, Zdenek; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The original version of FastCaloSim has been very important in the LHC Run-1, with several billion events simulated. An improved parametrisation is being developed, to eventually address shortcomings of the original version. It incorporates developme...

  10. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00383643; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadr...

  11. CALICE silicon–tungsten electromagnetic calorimeter

    Indian Academy of Sciences (India)

    paradigm', to be successful optimal interplay between hardware, i.e. granularity, and software, i.e. reconstruction algorithms is required. CALICE plans include studies of both electromagnetic and hadronic calorime- ter prototypes. The electromagnetic prototype is a sampling calorimeter with W absorber and Si pads as ...

  12. ATLAS: First rehearsal for the tile calorimeter

    CERN Multimedia

    2003-01-01

    The dry run assembly of the first barrel of the ATLAS tile hadron calorimeter has been successfully completed. It is now being dismantled again so that it can be lowered into the ATLAS cavern where it will be reassembled in October 2004.

  13. Preparation and Microstructural Characterization of Griseofulvin Microemulsions Using Different Experimental Methods: SAXS and DSC.

    Science.gov (United States)

    Moghimipour, Eskandar; Salimi, Anayatollah; Changizi, Sahar

    2017-06-01

    Purpose: The objective of the present study is to formulate and evaluate a new microemulsion (ME) for topical delivery of griseofulvin. Methods: The solubilities of griseofulvin in different combinations of surfactant to co-surfactant (S/Co ratio) were determined. Accordingly, based on their phase diagrams, eight microemulsions were formulated and then evaluated with respect to their particle size, surface tension, viscosity, conductivity, zeta potential and stability. Their release behavior, Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), refractory index (RI), pH and Small-angle-X-ray scattering (SAXS) were also assessed. Results: The results indicated that the mean droplet size of the MEs ranged from 30.9 to 84.3 nm. Their zeta potential varied from -4.5 to -20.8. Other determined characteristics were viscosity: 254-381 cps, pH: 5.34-6.57, surface tension: 41.16- 42.83 dyne.cm-1, conductivity: 0.0442 - 0.111 ms.cm-1. The drug release was in the range of 22.4 to 43.69 percent. Also, hexagonal, cubic and lamellar liquid crystals were observed in SAXS experiments. Conclusion: It can be concluded that any alteration in MEs constituents directly affects their microstructure, shape, droplet size and their other physicochemical properties.

  14. STUDY OF SODIUM, POTASSIUM, AND CALCIUM SALTS INFLUENCE ON PROTEIN STABILITY BY DIFFERENTIAL SCANNING CALORIMETRY

    Directory of Open Access Journals (Sweden)

    E. K. Tunieva

    2016-01-01

    Full Text Available Abstract Study of protein stability depending on the various technological factors allows to directionally adjust the physicochemical properties of raw meat and the quality of finished meat products. The paper investigates the possibility of using the DSC to study the influence of monovalent and divalent salts on protein thermal stability. In order to determine the effect of sodium chloride and its substitutes, potassium and calcium salts, on the thermal stability of proteins, the studies were carried out with grinded pork longissimus muscle samples salted with sodium chloride at level of 2.0% and with salt compositions containing reduced by 50% level of sodium chloride (a mixture of sodium and potassium chlorides; a mixture of sodium, potassium, and calcium chlorides using the differential scanning calorimeter DSC Q 2000 in the temperature range of 5 °C to 100 °C and the temperature change rate of 1 K/min. It was found that the addition of potassium chloride instead of 50% of sodium chloride had no significant effect on actin and myosin resistance to thermal denaturation. Meat salting using the mixture of sodium, potassium, and calcium chlorides resulted in decrease of myofibrillar proteins stability indicating the destabilizing effect of calcium on actin and myosin. A negative correlation between the magnitude of the ionic strength and the temperature of myosin and actin denaturation has been found. The correlation coefficients were minus 0.99 and minus 0.95 for myosin and actin respectively. Reduction of denaturation temperature for myofibrillar proteins in the presence of calcium chloride opens perspectives to study the possibility of heat treatment at lower temperatures for meat products with reduced sodium content.

  15. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  16. Incorporación de materiales de cambio de fase en placas de yeso para almacenamiento de energía térmica mediante calor latente: caracterización térmica del material mediante la técnica DSC

    National Research Council Canada - National Science Library

    Oliver, A; Neila, F. J; García, A

    2011-01-01

    Differential Scanning Calorimetry (DSC) is a thermal analysis technique which has been used for more than three decades to measure the temperatures and heat flows associated with transitions in materials as a function of time...

  17. Fiber and Crystals Dual Readout calorimeters

    CERN Document Server

    Cascella, Michele; Lee, Sehwook

    2016-01-01

    The RD52 (DREAM) collaboration is performing R\\&D on dual readout calorimetry techniques with the aim of improving hadronic energy resolution for future high energy physics experiments. The simultaneous detection of Cherenkov and scintillation light enables us to measure the electromagnetic fraction of hadron shower event-by-event. As a result, we could eliminate the main fluctuation which prevented from achieving precision energy measurement for hadrons. We have tested the performance of the lead and copper fiber prototypes calorimeters with various energies of electromagnetic particles and hadrons. During the beam test, we investigated the energy resolutions for electrons and pions as well as the identification of those particles in a longitudinally unsegmented calorimeter. Measurements were also performed on pure and doped PbWO$_{4}$ crystals, as well as BGO and BSO, with the aim of realising a crystal based dual readout detector. We will describe our results, focusing on the more promising properties ...

  18. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, T; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner , P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. The information from TileCal's last segmentation layer can assist in muon tagging and it is being considered for a near future upgrade of the level-one trigger, mainly for rejecting triggers due to cavern background at the barrel region. A muon receiver for the TileCal muon signals is being designed in order to interface with the ATLAS level-one trigger. This paper addresses the preliminary studies concerning the muon discrimination capability for the muon receiver. Monte Carlo simulations for single muons from the interaction point were used to study the effectiveness of hadronic calorimeter information on muon detection.

  19. Improving calorimeter resolution using temperature compensation calculations

    Science.gov (United States)

    Smiga, Joseph; Purschke, Martin

    2017-01-01

    The sPHENIX experiment is an upgrade of the existing PHENIX apparatus at the Relativistic Heavy-Ion Collider (RHIC). The new detector improves upon measurements of various physical processes, such as jets of particles created during heavy-ion collisions. Prototypes of various calorimeter components were tested at the Fermilab Test Beam Facility (FTBF). This analysis tries to compensate the effects of temperature drifts in the silicon photomultipliers (SiPMs). Temperature data were used to calculate an appropriate compensation factor. This analysis will improve the achievable resolution and will also determine how accurately the temperature must be controlled in the final experiment. This will improve the performance of the calorimeters in the sPHENIX experiment. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  20. The ATLAS Electromagnetic Calorimeter Calibration Workshop

    CERN Multimedia

    Hong Ma; Isabelle Wingerter

    The ATLAS Electromagnetic Calorimeter Calibration Workshop took place at LAPP-Annecy from the 1st to the 3rd of October; 45 people attended the workshop. A detailed program was setup before the workshop. The agenda was organised around very focused presentations where questions were raised to allow arguments to be exchanged and answers to be proposed. The main topics were: Electronics calibration Handling of problematic channels Cluster level corrections for electrons and photons Absolute energy scale Streams for calibration samples Calibration constants processing Learning from commissioning Forty-five people attended the workshop. The workshop was on the whole lively and fruitful. Based on years of experience with test beam analysis and Monte Carlo simulation, and the recent operation of the detector in the commissioning, the methods to calibrate the electromagnetic calorimeter are well known. Some of the procedures are being exercised in the commisssioning, which have demonstrated the c...

  1. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2014-01-01

    This presentation summarizes the status of the on-detector and off-detector electronics developments for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2024. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in middle 2014 during the Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The MainBoard will provide communication and control to the FEBs and the DaughterBoard will transmit the digitized data to the off-detector electronics in the counting room, where the sROD will perform processing tasks on them.

  2. Upgrading the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F

    2013-01-01

    This work summarizes the status of the on-detector and off-detector electronics developments for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in middle 2014 during the Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The MainBoard will provide communication and control to the FEBs and the DaughterBoard will transmit the digitized data to the off-detector electronics in the counting room, where the sROD will perform processing tasks on them.

  3. LHCb: Upgrade of the LHCb calorimeter electronics

    CERN Multimedia

    Mauricio Ferre, J

    2013-01-01

    The LHCb collaboration foresees a major upgrade of the detector for the high luminosity run that should take place after 2018. Apart from the increase of the instantaneous luminosity at the interaction point of the experiment, one of the major ingredients of this upgrade is a full readout at 40MHz of the sub-detectors and the acquisition of the data by a large farm of PC. The trigger will be done by this farm and should increase the overall trigger efficiency with respect to the current detector, especially in hadronic B meson decays. A general overview of the modifications foreseen to the calorimeter system and the integration of the electromagnetic and hadronic calorimeters in this new scheme will be described.

  4. ATLAS liquid argon calorimeter back end electronics

    CERN Document Server

    Bán, J; Bellachia, F; Blondel, A; Böttcher, S; Clark, A; Colas, Jacques; Díaz-Gómez, M; Dinkespiler, B; Efthymiopoulos, I; Escalier, M; Fayard, Lo; Gara, A; He, Y; Henry-Coüannier, F; Hubaut, F; Ionescu, G; Karev, A; Kurchaninov, L; Lafaye, R; Laforge, B; La Marra, D; Laplace, S; Le Dortz, O; Léger, A; Liu, T; Martin, D; Matricon, P; Moneta, L; Monnier, E; Oberlack, H; Parsons, J A; Pernecker, S; Perrot, G; Poggioli, L; Prast, J; Przysiezniak, H; Repetti, B; Rosselet, L; Riu, I; Schwemling, P; Simion, S; Sippach, W; Strässner, A; Stroynowski, R; Tisserant, S; Unal, G; Wilkens, H; Wingerter-Seez, I; Xiang, A; Yang, J; Ye, J

    2007-01-01

    The Liquid Argon calorimeters play a central role in the ATLAS (A Toroidal LHC Apparatus) experiment. The environment at the Large Hadron Collider (LHC) imposes strong constraints on the detectors readout systems. In order to achieve very high precision measurements, the detector signals are processed at various stages before reaching the Data Acquisition system (DAQ). Signals from the calorimeter cells are received by on-detector Front End Boards (FEB), which sample the incoming pulse every 25ns and digitize it at a trigger rate of up to 75~kHz. Off-detector Read Out Driver (ROD) boards further process the data and send reconstructed quantities to the DAQ while also monitoring the data quality. In this paper, the ATLAS Liquid Argon electronics chain is described first, followed by a detailed description of the off-detector readout system. Finally, the tests performed on the system are summarized.

  5. Upgrading the ATLAS Tile Calorimeter Electronics

    Directory of Open Access Journals (Sweden)

    Carrió Fernando

    2013-11-01

    Full Text Available This work summarizes the status of the on-detector and off-detector electronics developments for the Phase 2 Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in the middle of 2014 during the first Long Shutdown. For the on-detector readout, three different front-end boards (FEB alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The Main Board will provide communication and control to the FEBs and the Daughter Board will transmit the digitized data to the off-detector electronics in the counting room, where the super Read-Out Driver (sROD will perform processing tasks on them and will be the interface to the trigger levels 0, 1 and 2.

  6. Instrumented module of the ATLAS tile calorimeter

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    The ATLAS tile calorimeter consists of steel absorber plates interspersed with plastic scintillator tiles. Interactions of high-energy hadrons in the plates transform the incident energy into a 'hadronic shower'. When shower particles traverse the scintillating tiles, the latter emit an amount of light proportional to the incident energy. This light is transmitted along readout fibres to a photomultiplier, where a detectable electrical signal is produced. These pictures show one of 64 modules or 'wedges' of the barrel part of the tile calorimeter, which are arranged to form a cylinder around the beam axis. The wedge has been instrumented with scintillators and readout fibres. Photos 03, 06: Checking the routing of the readout fibres into the girder that houses the photomultipliers. Photo 04: A view of the fibre bundles inside the girder.

  7. Prototype calorimeters for the NA3 experiment

    CERN Multimedia

    1975-01-01

    The NA3 Experiment was set-up on the North Area of the SPS by the CERN/ Ecole Polytechnique/College de France/ Orsay/Saclay Collaboration, to study high transverse momentum leptons and hadrons from hadron collisions. The calorimeters measured the energy of hadrons (prototype on the right) and leptons (prototype on the left). They used a new type of plastic scintillator (plexipop). (see CERN Courier of November 1975) energy (prototype on the right)

  8. Design, Construction and Commissioning of the Digital Hadron Calorimeter - DHCAL

    CERN Document Server

    Adams, C; Bilki, B.; Butler, J.; Corriveau, F.; Cundiff, T.; Drake, G.; Francis, K.; Furst, B.; Guarino, V.; Haberichter, B.; Hazen, E.; Hoff, J.; Holm, S.; Kreps, A.; DeLurgio, P.; Matijas, Z.; Monte, L.Dal; Mucia, N.; Norbeck, E.; Northacker, D.; Onel, Y.; Pollack, B.; Repond, J.; Schlereth, J.; Skrzecz, F.; Smith, J.R.; Trojand, D.; Underwood, D.; Velasco, M.; Walendziak, J.; Wood, K.; Wu, S.; Xia, L.; Zhang, Q.; Zhao, A.

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of this prototype calorimeter.

  9. Run 1 Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2014-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  10. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hasib, Ahmed; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of statistical techniques such as principal component analysis, and a neural n...

  11. Precision timing calorimeter for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin; Apresyan, Artur [California Institute of Technology, Pasadena, CA 91125 (United States); Bornheim, Adolf, E-mail: bornheim@hep.caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States); Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si [California Institute of Technology, Pasadena, CA 91125 (United States); Ronzhin, Anatoly [Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510-5011 (United States)

    2016-07-11

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm{sup 3} sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  12. Precision timing calorimeter for high energy physics

    Science.gov (United States)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  13. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Reed, Robert; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the main hadronic calorimeter covering the central region of the ATLAS experiment at LHC. TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC operation (Phase 2 around 2023) where the peak luminosity will increase 5x compared to the design luminosity (10^{34} cm^{-2}s^{-1}) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims to replace the majority of the on- and off-detector electronics so that all calorimeter signals can be digitized and directly sent to the off-detector electronics in the counting room. This will reduce pile-up problems and allow more complex trigger algorithms. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to t...

  14. The Zeus calorimeter first level trigger

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.J. [Univ. of Wisconsin, Madison, WI (United States)

    1989-04-01

    The design of the Zeus Detector Calorimeter Level Trigger is presented. The Zeus detector is being built for operation at HERA, a new storage ring that will provide collisions between 820 GeV protons and 30 GeV electrons in 1990. The calorimeter is made of depleted uranium plates and plastic scintillator read out by wavelength shifter bars into 12,864 photomultiplier tubes. These signals are combined into 974 trigger towers with separate electromagnetic and hadronic sums. The calorimeter first level trigger is pipelined with a decision provided 5 {mu}sec after each beam crossing, occurring every 96 nsec. The trigger determines the total energy, the total transverse energy, the missing energy, and the energy and number of isolated electrons and muons. It also provides information on the number and energy of clusters. The trigger rate needs to be held to 1 kHz against a rate of proton-beam gas interactions of approximately 500 kHz. The summed trigger tower pulseheights are digitized by flash ADC`s. The digital values are linearized, stored and used for sums and pattern tests.

  15. The New ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing the CPU requirements when detailed detector simulations are not needed. During Run-1 of the LHC, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitisation and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of...

  16. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Souza, J; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5-fold compared to the design luminosity (10exp34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2023. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. The smallest independent on-detector electronics module has been reduced from 45 channels to 6, greatly reducing the consequences of a failure in the on-detector electronics. The size of t...

  17. First Half Of CMS Hadron Calorimeter Completed

    CERN Multimedia

    2001-01-01

    CMS HCAL electronics coordinator John Elias from Fermilab inspecting the assembled first half of the calorimeter. The first half barrel of the CMS hadron calorimeter was completed last month and assembly work on the elements of the second half commenced just last week. This is not a simple task considering the fact that the constructed half-barrel consists of eighteen 30 tonne segments each made with 0.15 mm tolerance. But through the work of everyone on the CMS hadron calorimeter team it is all moving forward. In the LHC, detection of particles produced in collisions of two proton beams requires measurement of their energy. To do this, the particle energy has to be changed into a form that can be easily measured. This is achieved by stopping the initial particles in a dense medium, where they create a shower of secondary particles. While particles that interact through electromagnetic forces (electrons and positrons) create relatively small showers, the size of showers created by hadrons, particles that i...

  18. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the luminosity will have increased 5-fold compared to the design luminosity (1034 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional luminosity increase by a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to u...

  19. Fast Shower Simulation in the ATLAS Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Barberio, E.; /Melbourne U.; Boudreau, J.; /Pittsburgh U.; Butler, B.; /SLAC; Cheung, S.L.; /Toronto U.; Dell' Acqua, A.; /CERN; Di Simone, A.; /CERN; Ehrenfeld, W.; /Hamburg U. /DESY; Gallas, M.V.; /CERN; Glazov, A.; /DESY; Marshall, Z.; /Caltech /Nevis Labs, Columbia U.; Mueller, J.; /Pittsburgh U.; Placakyte, R.; /DESY; Rimoldi, A.; /Pavia U. /INFN, Pavia; Savard, P.; /Toronto U.; Tsulaia, V.; /Pittsburgh U.; Waugh, A.; /Sydney U.; Young, C.C.; /SLAC

    2011-11-08

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterization is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to {approx} 1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper.

  20. Study of polymer film formation and their characterization using NMR, XRD and DSC

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, Sushanta

    2012-07-01

    Film formation and their characterization of three eco-friendly polymers, namely gelatin, starch and poly(vinyl alcohol) (PVOH) were studied using nuclear magnetic resonance (NMR), wide-angle X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) techniques. Polymer solutions were prepared using water as a solvent followed by casting. The drying process of the cast sample was monitored at room temperature with a single-sided NMR scanner until complete solidification occurred. Depth-dependent NMR profiles with microscopic resolution were acquired at different stages of sample drying. Each profile point was accumulated from the echo decay. Spin-spin relaxation times (T{sub 2}) were measured from the echo decays at different layers and were correlated with the drying process during film formation. Additionally, spin-lattice relaxation times (T{sub 1}) were determined. Depending on the polymer studied and the initial concentration of each polymer, different types of molecular dynamics were observed at different heights during evaporation of the solvent. The study indicates that each polymer shows a spatial heterogeneity in the molecular dynamics during drying. In the advanced stage of drying process, the microscopic arrangement of the polymer chains during their solidification is influenced by this dynamic heterogeneity and determines the final structure of the film. XRD of the film in its final state confirmed the structural heterogeneity identified by the NMR.

  1. Charged Pion Energy Reconstruction in the ATLAS Barrel Calorimeter

    CERN Document Server

    Bosman, Martine; Nessi, Marzio

    1999-01-01

    Intrinsic performance of the ATLAS calorimeters in the barrel region with respect to charged pions was studied. For this the following simulated data were used: pion energy scans ($E = 20, 50, 200, 400$ and $1000$ GeV) at two pseudo-rapidity points ($eta = 0.3$ and $1.3$) and pseudo-rapidity scans ($-0.2 < eta < 1.8$) with pions of constant transverse energy ($E_T = 20$ and $50$ GeV). For pion energy reconstruction the benchmark approach was used. Performance was estimated for cases, when energy and rapidity dependent and independent calibration parameters were applied. The best results were obtained with energy and rapidity dependent parameters. Studies done for pions enabled optimization of the cone size and of the cut to obtain the best energy resolution. Energy dependence of the resolution can be parameterized as: $(50pm4)%/sqrt{E} oplus (3.4pm0.3)% oplus 1.0/E$ at $eta = 0.3$ and $(68pm8)%/sqrt{E} oplus (3.0pm0.7)% oplus 1.5/E$ at $eta = 1.3$. Larger constant term at $eta=0.3$ can be explained by l...

  2. sPHENIX Calorimeter Design and Jet Performance

    Science.gov (United States)

    Haggerty, John S.

    2016-12-01

    The PHENIX collaboration is planning a detector upgrade, sPHENIX, which consists of large acceptance calorimetry and tracking detectors built around the superconducting solenoid recently shipped to Brookhaven from the decommissioned BaBar experiment at SLAC. The sPHENIX calorimeter system includes three radial layers of sampling calorimeters, a tungsten-scintillating fiber electromagnetic calorimeter, and two longitudinally segmented sampling hadron calorimeters that are made of scintillator tiles and steel plates. Together, they provide hermetic coverage in | η | < 1 for calorimetry based jet measurements as well as minimal bias jet trigger capability, which coupled with high resolution tracking, enable an extremely rich jet physics program at RHIC.

  3. Performance of a forward hadron calorimeter for the ALICE experiment

    CERN Document Server

    Arnaldi, R; Cicalò, C; Cortese, P; De Falco, A; Dellacasa, G; De Marco, N; Gallio, M; Macciotta, P; Masoni, A; Musso, A; Oppedisano, C; Piccotti, A; Puddu, G; Scomparin, E; Serci, S; Siddi, E; Soave, C; Usai, G L; Vercellin, Ermanno

    1998-01-01

    The ALICE Zero-degree Calorimeters (ZDC) are quartz-fiber spaghetti calorimeters that exploit the Cherenkov light produced by the shower particles in silica optical fibers. This technique offers the advantages of high radiation $9 hardness, fast response and reduced lateral dimension of the detectable shower. In addition, quartz-fiber calorimeters are intrinsically insensitive to a radio-activation background, which produces particles below the Cherenkov $9 threshold. Two prototypes of the proton calorimeter, named ZP2 and ZP7, have been constructed with different geometrical and mechanical characteristics. They are both equipped with polymethylmethacrylate (PMMA) fibers read by 4 or 2 $9 Philips XP2020 photomultipliers. (6 refs).

  4. A calorimeter for neutron flux measurement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chupp, T.E. [Harvard Univ., Cambridge, MA (US). Physics Labs.

    1993-04-01

    A calorimeter for absolute neutron flux measurement has been built and tested. The calorimeter measures the heat produced in a 10{degrees}K thick LiPb target when neutrons are captured via the {sup 6}Li(n,{sup 3}H){sup 4}He reaction. The sensitivity achieved was 1.3x10{sup 6} n/s for a 1 hour measurement. Separate flux measurements with the calorimeter and a {sup 238}U fission chamber are in agreement and show that systematic errors are less than 3%. An improved calorimeter has been built which is sensitive to 10{sup 5} n/s for a 1 hour measurement.

  5. Crystallization of Polymers Investigated by Temperature-Modulated DSC

    Science.gov (United States)

    Righetti, Maria Cristina

    2017-01-01

    The aim of this review is to summarize studies conducted by temperature-modulated differential scanning calorimetry (TMDSC) on polymer crystallization. This technique can provide several advantages for the analysis of polymers with respect to conventional differential scanning calorimetry. Crystallizations conducted by TMDSC in different experimental conditions are analysed and discussed, in order to illustrate the type of information that can be deduced. Isothermal and non-isothermal crystallizations upon heating and cooling are examined separately, together with the relevant mathematical treatments that allow the evolution of the crystalline, mobile amorphous and rigid amorphous fractions to be determined. The phenomena of ‘reversing’ and ‘reversible‘ melting are explicated through the analysis of the thermal response of various semi-crystalline polymers to temperature modulation. PMID:28772807

  6. On the Potential Use of Zero Degree Calorimeters for LHC Luminosity Monitoring

    CERN Document Server

    Schmickler, Hermann; CERN. Geneva. AB Department

    2005-01-01

    We discuss the ZDC role in commissioning proton running at LHC. The ATLAS Zero Degree Calorimeters were designed to meet the needs of the Heavy Ion Program and follow closely experience at RHIC. In ATLAS, as at RHIC, they will be used primarily to measure absolute luminosity, determine reaction plane and centrality. They also provide a trigger sensitive to peripheral events- particularly those from diffractive photoproduction which is a promising area of research at LHC. Experience at RHIC showed that the ZDC's provide a unique background-free measure of instantaneous luminosity during pp running also. When operated with a calorimeter threshold of 10% of pbeam the coincidence rate between calorimeters forward in both beam directions corresponds to ~ 0.4% x sigma_pp inelastic. This robust signal is commonly used for accelerator tuning and for vernier scans (where it reliably measures luminosity variations over at least 3 decades) at RHIC. In this note we argue that the ATLAS ZDC (and similar devices - already ...

  7. Moving one of the ATLAS end-cap calorimeters

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    One of the end-cap calorimeters for the ATLAS experiment is moved using a set of rails. This calorimeter will measure the energy of particles that are produced close to the axis of the beam when two protons collide. It is kept cool inside a cryostat to allow the detector to work at maximum efficiency.

  8. Performance of the electromagnetic calorimeter of the HERMES experiment.

    NARCIS (Netherlands)

    Avakian, H.; van den Brand, J.F.J.; Kolstein, M.

    1998-01-01

    The performance of the electromagnetic calorimeter of the HERMES experiment is described. The calorimeter consists of 840 radiation resistant F101 lead-glass counters. The response to positrons up to 27.5GeV, the comparison between the measured energy and the momentum reconstructed from tracking,

  9. ATLAS Tile Calorimeter central barrel assembly and installation.

    CERN Multimedia

    nikolai topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  10. Precision lead tungstate Crystal calorimeter for CMS at LHC

    CERN Document Server

    Ren Yuan Zhu

    2004-01-01

    A precision lead tungstate crystal calorimeter is being constructed by the CMS collaboration as a powerful tool to probe electroweak symmetry breaking and new physics in the LHC era. The status of calorimeter construction is reported. A crucial issue of maintaining crystal calorimetry precision in the expected radiation environment is elaborated. (11 refs).

  11. A Customizable GeantV Calorimeter Application

    CERN Document Server

    Schmitz, Ryan; Vallecorsa, Sofia; Novak, Mihaly; CERN. Geneva. EP Department

    2017-01-01

    A customizable calorimeter application was written in GeantV. This application includes a GeantV-native detector construction file as well as GeantV-native physics models and new data collection structures. Including these features makes this one of the first examples of a completely standalone GeantV application. A comparison to Geant4 was made which showed the consistency of the GeantV-native physics models included in this example. Finally, the workflow improvements made by the creation of this application are described.

  12. Vesicle-cholesterol interactions : Effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC

    NARCIS (Netherlands)

    Blandamer, Michael J.; Briggs, B; Cullis, PM; Rawlings, BJ; Engberts, Jan B. F. N.; Cullis, Paul M.; Rawlings, Bernard J.

    2003-01-01

    Differential scanning calorimetry (DSC) results are reported characterising the effects of added cholesterol (CHOL) on vesicle bilayer systems formed in aqueous systems by three sodium dialkylphosphates, (RO)(2)PO2--Na+ where R = dodecyl (DDP), tetradecyl (DTP) and octadecyl (DOP), (ii) two

  13. Evaluation of the modified nanoclay effect on the vulcanization of SBR through rheometric curve and DSC;Avaliacao do efeito de nanoargila modificada na vulcanizacao de SBR atraves da curva reometrica e DSC

    Energy Technology Data Exchange (ETDEWEB)

    Forte, Maria Madalena C.; Brito, Karin J.S., E-mail: mmcforte@ufrgs.b [Universidade Federal do Rio Grande do Sul (PPGEM/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Gheller Junior, Jordao [SENAI, Sao Leopoldo, RS (Brazil). Centro Tecnologico de Polimeros

    2009-07-01

    Rubber nanocomposites with nanoclays organically modified by quaternary ammonium salts may have the curing features modified significantly, since the salts may act on the rubber cure system. The aim of this work is to evaluate the influences of an organically modified montmorillonite (OMMT) on the curing reaction of an SBR (styrene butadiene rubber) with sulfur. The SBR/OMMT nanocomposites were prepared by co-coagulating SBR latex and Cloisite{sup R} 20A aqueous suspension at different nanoclay concentrations. The OMMT effect on the sulfur curing reaction was evaluated by the rheometric curve using a rheometer type RPA (Rubber Process Analyzer) and the heat of vulcanization (DELTAH{sub v}) using Differential Scanning Calorimetry (DSC). The evaluation of the clay nanolayers dispersion in the SBR matrix was accomplished by x-ray diffraction (XRD) analysis. (author)

  14. Charge Detector for the Imaging Calorimeter for ACCESS (ICA)

    Science.gov (United States)

    Lee, Jeongin; Adams, J. H., Jr.

    2000-01-01

    NASA's Advanced Cosmic Ray Experiment for the Space Station (ACCESS) Mission is planned to consist of a transition radiation detector (TRD) and a thin ionization calorimeter. In order to measure the charge of the primary cosmic ray, it is necessary for the calorimeter to have its own charge detector. Silicon detectors are chosen for the charge detector because of their excellent resolution, small size and nearly square shape. Monte Carlo simulations are performed to find the probability of misidentifying protons as alpha particles due to backscattered radiation from the calorimeter. Simulations were also used to investigate identifying primary cosmic rays that fragmented in the TRD before reaching the calorimeter. For this study algorithms have been developed for determining a direction of the core shower in the calorimeter. These algorithms are used to find the approximate location of the primary particle in the silicon detectors. Results show the probability to misidentify the charge depends upon the energy and direction of the primary particles.

  15. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baltasar Dos Santos Pedrosa, F; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Bathe, S.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednár, P.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P A; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal-Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans-Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G D; Carron Montero, S; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A M; Castaneda-Miranda, E.; Castillo Gimenez, V; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P V M; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M; della Volpe, D; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M A B; Do Valle Wemans, A; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen ,.M.; Duflot, L.; Dufour, M-A; Dunford, M.; Duperrin, A.; Duran-Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores-Castillo, L.R.; Flowerdew, M.J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcí­a, C.; Garcí­a Navarro, J E; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Gomez Fajardo, L S; Gonçalo, R.; Gonella, L.; Gong, C.; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Goryachev, S.V.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.B.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques-Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillier, S.J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y; Hou, S.; Houlden, M.A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S-C; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles-Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, J.N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E-E; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A.C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotamäki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M; La Rotonda, L; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R; Lester, C.G.; Leung Fook Cheong, A; Levêque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Linnemann, J.T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.; Lowe, A.J.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P J; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marcisovsky, M.; Marino, C.P.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i.Garcia,.S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B; Martinez, M.; Martinez Outschoorn, V; Martini, A.; Martynenko, V.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J; Mc Kee, S P; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B R; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J-P; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Minaenko, A.A.; Miñano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjörnmark, J.U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora-Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T.A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D; Oliver, J.; Oliver Garcia, E; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C; Orr, R.S.; Ortega, E.O.; Osculati, B.; Osuna, C.; Otec, R.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A; Padhi, S.; Padilla Aranda, C; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th D; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr; Pásztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M I; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M-A; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.R.; Roa-Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J G; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero-Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua-Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M A; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H-C; Schumacher, J.; Schumacher, M.; Schumm, B.A.; Schune, Ph; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solfaroli-Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra-Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St Denis, R D; Stahl, T.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D.A.; Su, D.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu M; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H; Teng, P.K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique-Aires-Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torró Pastor, E; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J-W; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E; Vallecorsa, S.; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M; Villate, J.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives Vaques, F; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M; Vrba, V.; Vreeswijk, M.; Vu Anh, T; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W-M; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M; Zutshi, V.

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  16. Tile/hadronic Calorimeter design viewed from ATLAS

    CERN Document Server

    Santoni, C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. In the barrel part of ATLAS, together with the electromagnetic barrel calorimeter, TileCal provides precise measurements of hadrons, jets, taus and the missing transverse energy. To understand the detail of the response of the detector, 11% of the 192 calorimeter modules were exposed to test beams of electrons, muons, and hadrons. Results were also obtained in the experimental hall using random triggers, calibration data and data from muons, isolated pions, and inclusive p-p events. This talk gives an overview of the TileCal performance.

  17. Reactor Gamma Heat Measurements with Calorimeters and Thermoluminescence Dosimeters

    DEFF Research Database (Denmark)

    Haack, Karsten; Majborn, Benny

    1973-01-01

    Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than calorimet......Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than...... calorimeters, but possess advantages such as a small probe size and the possibility of making simultaneous measurements at many different positions. Hence, thermoluminescence dosimeters may constitute a valuable supplement to calorimeters for reactor γ-ray heating measurements....

  18. The glass transition process in humid biopolymers. DSC study

    Energy Technology Data Exchange (ETDEWEB)

    Grunina, N A; Belopolskaya, T V; Tsereteli, G I [V.A. Fock Research Institute for Physics of Saint-Petersburg State University, 198504, Petrodvorets (Russian Federation)

    2006-05-15

    Thermal properties of native and denatured biopolymers with quite different chemical and steric structure (globular and fibrillar proteins, DNA, starches) were studied by means of differential scanning calorimetry in a wide range of temperatures and concentrations of water. It was shown that both native and denatured humid biopolymers are glassy systems. The glass transition temperature of these systems strongly depends on percentage of water, with water being simultaneously an intrinsic element of systems' ordered structure and a plasticizer of its amorphous state. On the base of the absolute values of heat capacities for biopolymer-water systems as a whole, heat capacities for biopolymers themselves were calculated as functions on water concentration at fixed temperatures. The S-shaped change of heat capacity observed on diagrams of state both for native and denatured biopolymers is the manifestation of biopolymers' passing through the vitrification region, as it occurs for denatured samples at heating.

  19. Thermodynamic Property Study of Nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H Systems by High Pressure DSC Method

    Directory of Open Access Journals (Sweden)

    Huaiyu Shao

    2013-01-01

    Full Text Available Mg, Ni, and Cu nanoparticles were synthesized by hydrogen plasma metal reaction method. Preparation of Mg2Ni and Mg2Cu alloys from these Mg, Ni, and Cu nanoparticles has been successfully achieved in convenient conditions. High pressure differential scanning calorimetry (DSC technique in hydrogen atmosphere was applied to study the synthesis and thermodynamic properties of the hydrogen absorption/desorption processes of nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H systems. Van’t Hoff equation of Mg-Ni-H system as well as formation enthalpy and entropy of Mg2NiH4 was obtained by high pressure DSC method. The results agree with the ones by pressure-composition isotherm (PCT methods in our previous work and the ones in literature.

  20. Progress on the Level-1 Calorimeter Trigger

    CERN Multimedia

    Eric Eisenhandler

    The Level-1 Calorimeter Trigger (L1Calo) has recently passed a number of major hurdles. The various electronic modules that make up the trigger are either in full production or are about to be, and preparations in the ATLAS pit are well advanced. L1Calo has three main subsystems. The PreProcessor converts analogue calorimeter signals to digital, associates the rather broad trigger pulses with the correct proton-proton bunch crossing, and does a final calibration in transverse energy before sending digital data streams to the two algorithmic trigger processors. The Cluster Processor identifies and counts electrons, photons and taus, and the Jet/Energy-sum Processor looks for jets and also sums missing and total transverse energy. Readout drivers allow the performance of the trigger to be monitored online and offline, and also send region-of-interest information to the Level-2 Trigger. The PreProcessor (Heidelberg) is the L1Calo subsystem with the largest number of electronic modules (124), and most of its fu...

  1. ATLAS LEVEL-1 CALORIMETER AND TOPOLOGICAL TRIGGER

    CERN Document Server

    Weber, Sebastian Mario; The ATLAS collaboration

    2017-01-01

    In Run 2 at CERN's Large Hadron Collider, the ATLAS detector uses a two-level trigger system to reduce the event rate from the nominal collision rate of 40 MHz to the event storage rate of 1 kHz, while preserving interesting physics events. The first step of the trigger system, Level-1, reduces the event rate to 100 kHz with a latency of less than 2.5 μs. One component of this system is the Level-1 Calorimeter Trigger (L1Calo), which uses coarse-granularity information from the electromagnetic and hadronic calorimeters to identify regions of interest corresponding to electrons, photons, taus, jets, and large amounts of transverse energy and missing transverse energy. In this talk, we will discuss the improved performance of the L1Calo system in the challenging, high-luminosity conditions provided by the LHC in Run 2. As the LHC exceeds its design luminosity, it is becoming even more critical to reduce event rates while preserving physics. A new feature of the ATLAS Run 2 trigger system is the Level-1 Topolog...

  2. The NA48 LKr calorimeter readout electronics

    CERN Document Server

    Gianoli, A; Barr, C; Brodier-Yourstone, P; Buchholz, P; Ceccucci, Augusto; Cerri, C; Chlopik, A; Constantini, F; Fantechi, R; Formenti, F; Funk, W; Giudici, Sergio; Gorini, B; Guzik, J A; Hallgren, Björn I; Kozhevnikov, Yu; Iwansky, W; de La Taille, C; Lacourt, A; Laverrière, G C; Ljuslin, C; Mannelli, I; Martin-Chassard, G; Martini, M; Papi, A; Seguin-Moreau, N; Sozzi, M; Tarlé, J C; Velasco, M; Vossnack, O; Wahl, H; Ziolkowski, M

    2000-01-01

    The NA48 experiment at the CERN SPS accelerator is making a measurement of the direct CP violation parameter epsilon '/ epsilon by comparing the four rates of decay of K/sub S/ and K/sub L/ into 2 pi /sup 0/ and pi /sup +/ pi /sup -/. To reconstruct the decays into 2 pi /sup 0/ the information from the almost 13500 channels of a quasi-homogeneous liquid krypton electromagnetic calorimeter is used. The readout electronics of the calorimeter has been designed to provide a dynamic range from a few MeV to about 50 GeV energy deposition per cell, and to sustain a high rate of incident particles. The system is made by cold charge preamplifiers (working at 120 degrees K), low-noise fast shapers followed by digitizer electronics at 40 MHz sampling rate that employs a gain switching technique to expand the dynamic range, where the gain can be selected for each sample individually (i.e. every 25 ns). To reduce the amount of data collected the system contains a zero suppression circuit based on halo expansion. (12 refs)...

  3. Level-1 Calorimeter Trigger starts firing

    CERN Multimedia

    Stephen Hillier

    2007-01-01

    L1Calo is one of the major components of ATLAS First Level trigger, along with the Muon Trigger and Central Trigger Processor. It forms all of the first-level calorimeter-based triggers, including electron, jet, tau and missing ET. The final system consists of over 250 custom designed 9U VME boards, most containing a dense array of FPGAs or ASICs. It is subdivided into a PreProcessor, which digitises the incoming trigger signals from the Liquid Argon and Tile calorimeters, and two separate processor systems, which perform the physics algorithms. All of these are highly flexible, allowing the possibility to adapt to beam conditions and luminosity. All parts of the system are read out through Read-Out Drivers, which provide monitoring data and Region of Interest (RoI) information for the Level-2 trigger. Production of the modules is now essentially complete, and enough modules exist to populate the full scale system in USA15. Installation is proceeding rapidly - approximately 90% of the final modules are insta...

  4. COTS Analog Prototype for LHCb's Calorimeter Upgrade

    CERN Document Server

    Abellan Beteta, Carlos; Herms i Berenguer, Atilà

    The objective of this thesis is to present a proposal for the analogue signal processing chain needed for the LHCb calorimeter upgrade improving the design used originally. The design contains several novelties: the system was designed with low noise in mind from the beginning, it is made to have good immunity to interferences stressing the fact that the board will be shared with large digital circuits, differential operational amplifiers are used in a non-standard way as a mean to obtain opposite polarity signals for the signal treatment and a way to increase the available signal in the front end electronics is proposed. The thesis starts with a brief introduction to the detector and its environment. This is followed by an explanation of the use of shapers in high energy physics detectors and the constraints that the shaper must address in the LHCb calorimeter. This leads to a chapter where the circuit design is explained starting from the analysis of the original circuit and its flaws. Once the original cir...

  5. Data Supply Chain (DSC): development and validation of a measurement instrument

    OpenAIRE

    Spanaki, K; Adams, R.; Mulligan, C; Lupu, E.

    2016-01-01

    The volume and availability of data produced and affordably stored has become an important new resource for building organizational competitive advantage. Reflecting this, and expanding the concept of the supply chain, we propose the Data Supply Chain (DSC) as a novel concept to aid investigations into how the interconnected data characteristics relate to and impact organizational performance. Initially, we define the concept and develop a research agenda on DSC coupling theoretical backgroun...

  6. Crystallization kinetics of orthorhombic paracetamol from supercooled melts studied by non-isothermal DSC.

    Science.gov (United States)

    Nikolakakis, Ioannis; Kachrimanis, Kyriakos

    2017-02-01

    A simple and highly reproducible procedure was established for the study of orthorhombic paracetamol crystallization kinetics, comprising melting, quench-cooling of the melt and scanning the formed glass by DSC at different heating rates. Results were analyzed on the basis of the mean as well as local values of the Avrami exponent, n, the energy of activation, as well as the Šesták-Berggren two-parameter autocatalytic kinetic model. The mean value of the Avrami kinetic exponent, n, ranged between 3 and 5, indicating deviation from the nucleation and growth mechanism underlying the Johnson-Mehl, Avrami-Kolmogorov (JMAK) model. To verify the extent of the deviation, local values of the Avrami exponent as a function of the volume fraction transformed were calculated. Inspection of the local exponent values indicates that the crystallization mechanism changes over time, possibly reflecting the uncertainty of crystallization onset, instability of nucleation due to an autocatalytic effect of the crystalline phase, and growth anisotropy due to impingement of spherulites in the last stages of crystallization. The apparent energy of activation, E a , has a rather low mean value, close to 81 kJ/mol, which is in agreement with the observed instability of glassy-state paracetamol. Isoconversional methods revealed that E a tends to decrease with the volume fraction transformed, possibly because of the different energy demands of nucleation and growth. The exponents of the Šesták-Berggren two-parameter model showed that the crystallized fraction influences the process, confirming the complexity of the crystallization mechanism.

  7. Raman, DSC, ESR and optical properties of lithium cadmium zinc tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasulu, V.; Upender, G.; Swapna,; Priya, V. Vamsi; Mouli, V. Chandra; Prasad, M., E-mail: prasad5336@yahoo.co.in

    2014-12-01

    The glasses with composition 64TeO{sub 2}–15ZnO–(20−x)CdO–xLi{sub 2}O–1V{sub 2}O{sub 5} (0≤x≤20 mol%) were prepared by conventional melt quenching technique. X-ray diffraction was used to confirm the amorphous nature. The optical absorption studies revealed that the cut-off wavelength decreases while optical energy gap (E{sub opt}) and Urbach energy (ΔE) values increase with an increase of Li{sub 2}O. Refractive index (n) evaluated from E{sub opt} was found to decrease with increase of Li{sub 2}O content. The physical parameters such as density (ρ), molar volume (V{sub m}) and oxygen packing density (OPD) have been analyzed and discussed. The electron paramagnetic resonance (EPR) spectra of VO{sup 2+} glasses have been recorded on X-band (v=9.14GHz) at room temperature. The spin Hamiltonian parameters of VO{sup 2+} ions have been calculated. It has been found that V{sup 4+} ions in these glasses exist as VO{sup 2+} in octahedral coordination with a tetragonal distortion. Raman spectroscopic studies showed that the glass network consists of TeO{sub 4}, TeO{sub 3+1}/TeO{sub 3} and ZnO{sub 4} units as basic structural units. The glass transition temperature (T{sub g}), onset crystallization (T{sub o}) and thermal stability (ΔT) were determined from Differential Scanning Calorimetry (DSC)

  8. Bicellar mixture phase behavior examined by variable-pressure deuterium NMR and ambient pressure DSC.

    Science.gov (United States)

    Uddin, Md Nasir; Morrow, Michael R

    2010-07-20

    Variable-pressure deuterium nuclear magnetic resonance ((2)H NMR) has been used to study the pressure-temperature phase diagram of bicellar mixtures containing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC). Spectra were obtained for DMPC-d(54)/DHPC (3:1), DMPC-d(54)/DHPC (4.4:1), DMPC/DHPC-d(22) (3:1), and DMPC/DHPC-d(22) (4.4:1) in the range 10-68 degrees C at ambient pressure, 66 MPa, 102 MPa, and 135 MPa. Isotropic-to-nematic and nematic-to-lamellar transition temperatures were found to rise with pressure at approximately 0.15 and approximately 0.14 degrees C/MPa, respectively, for DMPC-d(54)/DHPC (3:1) and at at approximately 0.19 and approximately 0.18 degrees C/MPa, respectively, for DMPC-d(54)/DHPC (4.4:1). Pressure had little effect on the range of DMPC-d(54) chain orientational order through the nematic phase temperature range, but the behavior of chain orientational order at the nematic-to-lamellar transition was found to vary slightly with pressure. Comparison of differential scanning calorimetry (DSC) observations with ambient-pressure (2)H NMR observations of DMPC-d(54) in the bicellar mixtures suggests that absorption of heat persists for a few degrees above the onset of axially symmetric DMPC-d(54) reorientation.

  9. Identification of the thermal transitions in potato starch at a low water content as studied by preparative DSC

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.

    2009-01-01

    The aim of this work was to identify the transitions in the complex DSC profiles of potato starch at a low water content. Preparative DSC involves the thermal processing of samples in stainless steel DSC pans in a way that allows their subsequent structural characterization. The low temperature

  10. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    Science.gov (United States)

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  11. Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    CERN Document Server

    Abdullin, Salavat; Acharya, Bannaje Sripathi; Adam, Nadia; Adams, Mark Raymond; Akchurin, Nural; Akgun, Ugur; Albayrak, Elif Asli; Anderson, E Walter; Antchev, Georgy; Arcidy, M; Ayan, S; Aydin, Sezgin; Aziz, Tariq; Baarmand, Marc M; Babich, Kanstantsin; Baden, Drew; Bakirci, Mustafa Numan; Banerjee, Sunanda; Banerjee, Sudeshna; Bard, Robert; Barnes, Virgil E; Bawa, Harinder Singh; Baiatian, G; Bencze, Gyorgy; Beri, Suman Bala; Berntzon, Lisa; Bhatnagar, Vipin; Bhatti, Anwar; Bodek, Arie; Bose, Suvadeep; Bose, Tulika; Budd, Howard; Burchesky, Kyle; Camporesi, Tiziano; Cankocak, Kerem; Carrell, Kenneth Wayne; Cerci, Salim; Chendvankar, Sanjay; Chung, Yeon Sei; Clarida, Warren; Cremaldi, Lucien Marcus; Cushman, Priscilla; Damgov, Jordan; De Barbaro, Pawel; Debbins, Paul; Deliomeroglu, Mehmet; Demianov, A; de Visser, Theo; Deshpande, Pandurang Vishnu; Díaz, Jonathan; Dimitrov, Lubomir; Dugad, Shashikant; Dumanoglu, Isa; Duru, Firdevs; Efthymiopoulos, I; Elias, John E; Elvira, D; Emeliantchik, Igor; Eno, Sarah Catherine; Ershov, Alexander; Erturk, Sefa; Esen, Selda; Eskut, Eda; Fenyvesi, Andras; Fisher, Wade Cameron; Freeman, Jim; Ganguli, Som N; Gaultney, Vanessa; Gamsizkan, Halil; Gavrilov, Vladimir; Genchev, Vladimir; Gleyzer, Sergei V; Golutvin, Igor; Goncharov, Petr; Grassi, Tullio; Green, Dan; Gribushin, Andrey; Grinev, B; Gurtu, Atul; Murat Güler, A; Gülmez, Erhan; Gümüs, K; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Halyo, Valerie; Hashemi, Majid; Hauptman, John M; Hazen, Eric; Heering, Arjan Hendrix; Heister, Arno; Hunt, Adam; Ilyina, N; Ingram, D; Isiksal, Engin; Jarvis, Chad; Jeong, Chiyoung; Johnson, Kurtis F; Jones, John; Kaftanov, Vitali; Kalagin, Vladimir; Kalinin, Alexey; Kalmani, Suresh Devendrappa; Karmgard, Daniel John; Kaur, Manjit; Kaya, Mithat; Kaya, Ozlem; Kayis-Topaksu, A; Kellogg, Richard G; Khmelnikov, Alexander; Kim, Heejong; Kisselevich, I; Kodolova, Olga; Kohli, Jatinder Mohan; Kolossov, V; Korablev, Andrey; Korneev, Yury; Kosarev, Ivan; Kramer, Laird; Krinitsyn, Alexander; Krishnaswamy, Marthi Ramaswamy; Krokhotin, Andrey; Kryshkin, V; Kuleshov, Sergey; Kumar, Arun; Kunori, Shuichi; Laasanen, Alvin T; Ladygin, Vladimir; Laird, Edward; Landsberg, Greg; Laszlo, Andras; Lawlor, C; Lazic, Dragoslav; Lee, Sang Joon; Levchuk, Leonid; Linn, Stephan; Litvintsev, Dmitri; Lobolo, L; Los, Serguei; Lubinsky, V; Lukanin, Vladimir; Ma, Yousi; Machado, Emanuel; Maity, Manas; Majumder, Gobinda; Mans, Jeremy; Marlow, Daniel; Markowitz, Pete; Martínez, German; Mazumdar, Kajari; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mescheryakov, G; Mestvirishvili, Alexi; Miller, Michael; Möller, A; Mohammadi-Najafabadi, M; Moissenz, P; Mondal, Naba Kumar; Mossolov, Vladimir; Nagaraj, P; Narasimham, Vemuri Syamala; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Onengüt, G; Ozkan, Cigdem; Ozkurt, Halil; Ozkorucuklu, Suat; Ozok, Ferhat; Paktinat, S; Pal, Andras; Patil, Mandakini Ravindra; Penzo, Aldo; Petrushanko, Sergey; Petrosian, A; Pikalov, Vladimir; Piperov, Stefan; Podrasky, V; Polatoz, A; Pompos, Arnold; Popescu, Sorina; Posch, C; Pozdnyakov, Andrey; Qian, Weiming; Ralich, Robert; Reddy, L; Reidy, Jim; Rogalev, Evgueni; Roh, Youn; Rohlf, James; Ronzhin, Anatoly; Ruchti, Randy; Ryazanov, Anton; Safronov, Grigory; Sanders, David A; Sanzeni, Christopher; Sarycheva, Ludmila; Satyanarayana, B; Schmidt, Ianos; Sekmen, Sezen; Semenov, Sergey; Senchishin, V; Sergeyev, S; Serin, Meltem; Sever, Ramazan; Singh, B; Singh, Jas Bir; Sirunyan, Albert M; Skuja, Andris; Sharma, Seema; Sherwood, Brian; Shumeiko, Nikolai; Smirnov, Vitaly; Sogut, Kenan; Sonmez, Nasuf; Sorokin, Pavel; Spezziga, Mario; Stefanovich, R; Stolin, Viatcheslav; Sudhakar, Katta; Sulak, Lawrence; Suzuki, Ichiro; Talov, Vladimir; Teplov, Konstantin; Thomas, Ray; Tonwar, Suresh C; Topakli, Huseyin; Tully, Christopher; Turchanovich, L; Ulyanov, A; Vanini, A; Vankov, Ivan; Vardanyan, Irina; Varela, F; Vergili, Mehmet; Verma, Piyush; Vesztergombi, Gyorgy; Vidal, Richard; Vishnevskiy, Alexander; Vlassov, E; Vodopiyanov, Igor; Volobouev, Igor; Volkov, Alexey; Volodko, Anton; Wang, Lei; Werner, Jeremy Scott; Wetstein, Matthew; Winn, Dave; Wigmans, Richard; Whitmore, Juliana; Wu, Shouxiang; Yazgan, Efe; Yetkin, Taylan; Zálán, Peter; Zarubin, Anatoli; Zeyrek, Mehmet

    2008-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS.

  12. METROLOGICAL PERFORMANCES OF BOMB CALORIMETERS AT REAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Yu. V. Maksimuk

    2016-01-01

    Full Text Available The high-usage measurement equipment for heat of combustion of organic fuels are bomb isoperibol calorimeters with a water thermostat. The stability of work of calorimeters at real conditions is important for maintenance of reliability of measurement results. The article purpose – the analysis of stability for parameters of calorimeters to environment changes. In this work influence room temperature (Тк and heat exchange conditions on metrological characteristics of two models of calorimeters is considered with different degree of thermal protection: V-08МА and BIC 100. For calorimeters V-08МА the increase in a effective heat capacity (W on 0,1 % by growth of Tк on everyone 5 °С is established. To use value W in all interval laboratory temperatures Tк = 14–28 °С it is necessary to correct W on 2,8 J/°C on everyone 1 °С changes of Tк. Updating W is required, if the correction exceeds error in determination W. For calorimeter BIC 100 it is not revealed dependences W from Tк. BIC 100 have constant-temperature cap, high stability a temperature in thermostat and stabilized heat exchange. It is established that an standard deviation of cooling constant for all calorimeters in direct proportional to standard deviation W. 

  13. Status of the ATLAS Liquid Argon Calorimeter and its Performance

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |eta|<3.2, as well as for hadronic calorimetry from |eta|=1.4 to |eta|=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes ...

  14. Nuclear Scans

    Science.gov (United States)

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  15. Utilización de técnicas acopladas de análisis térmico TG-DSC-QMSFTIR en la caracterización de arcillas y composiciones cerámicas utilizadas en la fabricación de baldosas cerámicas. Cuantificación de compuestos de carbono

    OpenAIRE

    Gómez, M. P.; Gazulla, M. F.; Zumaquero, E.; Orduña, M.

    2007-01-01

    In this study, a work methodology has been developed for t evolved gas analysis (EGA) in clay raw materials and ceramic compositions used in ceramic tile manufacture using coupled thermal analysis techniques (TG-DSC-QMS-FTIR). The different types of gases (CO2, CO, NOx, F, SOx) evolving from these raw materials during a thermal cycle up to a peak temperature of 1200ºC were characterised. The possibility of using this calorimeter for the quantification of the CO2 gases evolving from the organi...

  16. The Small Angle Tile Calorimeter project in DELPHI

    Science.gov (United States)

    Alvsvaag, S. J.; Maeland, O. A.; Klovning, A.; Benvenuti, A. C.; Giordano, V.; Guerzoni, M.; Navarria, F. L.; Verardi, M. G.; Camporesi, T.; Vallazza, E.; Bozzo, M.; Cereseto, R.; Barreira, G.; Espirito Santo, M. C.; Maio, A.; Onofre, A.; Peralta, L.; Pimenta, M.; Tome, B.; Carling, H.; Falk, E.; Hedberg, V.; Jarlskog, G.; Kronkvist, I.; Bonesini, M.; Chignoli, F.; Ferrari, P.; Gumenyuk, S.; Leoni, R.; Mazza, R.; Negri, P.; Paganoni, M.; Petrovykh, L.; Terranova, F.; Dharmasiri, D. R.; Nossum, B.; Read, A. L.; Skaali, B.; Castellani, L.; Pegoraro, M.; Fenyuk, A.; Gouz, Yu.; Ivaniouchenkov, Yu.; Karyukhin, A.; Obraztsov, V.; Vlassov, E.; Zaitsev, A.; Bigi, M.; Cassio, V.; Gamba, D.; Migliore, E.; Romero, A.; Simonetti, L.; Torassa, E.; Trapani, P. P.; Bari, M.; Della Ricca, G.; Lanceri, L.; Poropat, P.; Prest, M.

    1995-11-01

    The new Small Angle TIIe Calorimeter (STIC) covers the forward regions in DELPHI. The main motivation for its construction was to achieve a systematic error of 0.1% on the luminosity determination. This detector consists of a "shashlik" type calorimeter, equipped with two planes of silicon pad detectors placed respectively after 4 and 7.4 radiation lengths. A veto counter, composed of two scintillator planes, covers the front of the calorimeter to allow ϱ - γ separation and to provide a neutral energy trigger. The physics motivations for this project, results from extensive testbeam measurements and the performance during the 1994 LEP run are reported here.

  17. On the electromagnetic energy resolution of Cherenkov-fiber calorimeters

    CERN Document Server

    Lundin, M; Dellacasa, G; DeSalvo, R; Gallio, M; Gorodetzky, P; Helleboid, J M; Johnson, K F; Juillot, P; Lazic, D; Musso, A; Vercellin, Ermanno; White, S

    1996-01-01

    Electromagnetic calorimeters which sample the Cherenkov radiation of shower particles in optical fibers operate in a markedly different manner from calorimeters which rely on the dE/dx of shower particles. The well-understood physics of electromagnetic shower development is applied to the case of Cherenkov-fiber calorimetry (also known as quartz fiber calorimetry) and the results of systematically performed studies are considered in detail to derive an understanding of the critical parameters involved in energy measurement using such calorimeters. A quantitative parameterization of Cherenkov-fiber calorimetry electromagnetic energy resolution is proposed and compared with existing experimental results.

  18. Precision calibration of the NuTeV calorimeter

    Science.gov (United States)

    Harris, D. A.; Yu, J.; Adams, T.; Alton, A.; Avvakumov, S.; de Barbaro, L.; de Barbaro, P.; Bernstein, R. H.; Bodek, A.; Bolton, T.; Brau, J.; Buchholz, D.; Budd, H.; Bugel, L.; Conrad, J.; Drucker, R. B.; Fleming, B. T.; Frey, R.; Formaggio, J.; Goldman, J.; Goncharov, M.; Johnson, R. A.; Kim, J. H.; Koutsoliotas, S.; Krishnaswami, G.; Lamm, M. J.; Marsh, W.; Mason, D.; McNulty, C.; McFarland, K. S.; Naples, D.; Nienaber, P.; Romosan, A.; Sakumoto, W. K.; Schellman, H.; Shaevitz, M. H.; Spentzouris, P.; Stern, E. G.; Vaitaitis, A.; Vakili, M.; Van Ark, E.; Wu, V.; Yang, U. K.; Zeller, G. P.; NuTeV Collaboration

    2000-06-01

    NuTeV is a neutrino-nucleon deep-inelastic scattering experiment at Fermilab. The detector consists of an iron-scintillator sampling calorimeter interspersed with drift chambers, followed by a muon toroidal spectrometer. We present determinations of response and resolution functions of the NuTeV calorimeter for electrons, hadrons, and muons over an energy range from 4.8 to 190 GeV. The absolute hadronic energy scale is determined to an accuracy of 0.43%. We compare our measurements to predictions from calorimeter theory and GEANT3 simulations.

  19. Precision calibration of the NuTeV calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D.A. E-mail: dharris@fnal.gov; Yu, J.; Adams, T.; Alton, A.; Avvakumov, S.; Barbaro, L. de; Barbaro, P. de; Bernstein, R.H.; Bodek, A.; Bolton, T.; Brau, J.; Buchholz, D.; Budd, H.; Bugel, L.; Conrad, J.; Drucker, R.B.; Fleming, B.T.; Frey, R.; Formaggio, J.; Goldman, J.; Goncharov, M.; Johnson, R.A.; Kim, J.H.; Koutsoliotas, S.; Krishnaswami, G.; Lamm, M.J.; Marsh, W.; Mason, D.; McNulty, C.; McFarland, K.S.; Naples, D.; Nienaber, P.; Romosan, A.; Sakumoto, W.K.; Schellman, H.; Shaevitz, M.H.; Spentzouris, P.; Stern, E.G.; Vaitaitis, A.; Vakili, M.; Ark, E. Van; Wu, V.; Yang, U.K.; Zeller, G.P

    2000-06-11

    NuTeV is a neutrino-nucleon deep-inelastic scattering experiment at Fermilab. The detector consists of an iron-scintillator sampling calorimeter interspersed with drift chambers, followed by a muon toroidal spectrometer. We present determinations of response and resolution functions of the NuTeV calorimeter for electrons, hadrons, and muons over an energy range from 4.8 to 190 GeV. The absolute hadronic energy scale is determined to an accuracy of 0.43%. We compare our measurements to predictions from calorimeter theory and GEANT3 simulations.

  20. Laser calorimeter for UV absorption measurement of dielectric thin films.

    Science.gov (United States)

    Sahoo, N K; Apparao, K V

    1992-10-01

    We describe a dual-technique laser calorimeter for measuring the absorption of dielectric thin films in the UV region below 400 nm. The instrument measures the temperature rise and absorption of a sample simultaneously by two independent techniques, namely, a resistance thermometer and a temperature transducer. The absorption constant beta and extinction coefficient kappa of Sb(2)O(3) and ZrO(2) films at 308 and 337 nm are measured by using the calorimeter. The principle, construction, and application of the calorimeter are described.

  1. sPHENIX Calorimeter Design and Jet Performance

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty J. S.

    2016-09-27

    The PHENIX collaboration is planning a detector upgrade, sPHENIX, which consists of large acceptance calorimetry and tracking detectors built around the superconducting solenoid recently shipped to Brookhaven from the decommissioned BaBar experiment at SLAC. The sPHENIX calorimeter system includes three radial layers of samplingcalorimeters, a tungsten-scintillating fiber electromagnetic calorimeter, and two longitudinally segmented samplinghadron calorimeters that are made of scintillator tiles and steel plates. Together, they provide hermetic coverage in n < 1 for calorimetry based jet measurements as well as minimal bias jet trigger capability, which coupled with high resolution tracking, enable an extremely rich jet physics program at RHIC.

  2. Calorimeter/absorber optimization for a RHIC dimuon experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cornell, E.W. (Vanderbilt University, Nashville, TN 37235 (United States)); Aronson, S.H. (Brookhaven National Laboratory, Upton, NY 11973 (United States)); Awes, T.C. (Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States)); Chang, J. (University of California, Riverside, CA 92521 (United States)); Costales, J.B. (Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)); Ewell, L.A. (Iowa State University, Ames, IA 50011 (United States)); Fung, Y. (University of California, Riverside, CA 92521 (United States)); Gavron, A. (Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)); He, X. (Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States)); Hill, J.C. (Iowa State University, Ames, IA 50011 (United States)); Kang, S.J.H. (University of California, Riverside, CA 92521 (United States)); Kehoe, W.L. (Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)); Kim, H. (Oak Ridge National Labo

    1994-10-15

    The RD-10/45 research and development effort on calorimeter/absorber optimization for a Relativistic Heavy Ion Collider dimuon experiment had an extended run in 1991 and 1992 at the BNL Alternating Gradient Synchrotron. Measurements were made of the leakage of 1-8 GeV/c particles behind various model hadron calorimeters. Behavior of the calorimeter/absorber as a muon-identifier was studied. Comparisons of data from the RD-10/45 experiment to results calculated with the GEANT 3.15 simulation package using the GHEISHA and FLUKA hadron shower codes were made. ((orig.))

  3. Performance of CREAM Calorimeter Results of Beam Tests

    CERN Document Server

    Ahn, H S; Beatty, J J; Bigongiari, G; Castellina, A; Childers, J T; Conklin, N B; Coutu, S; Duvernois, M A; Ganel, O; Han, J H; Hyun, H J; Kang, T G; Kim, H J; Kim, K C; Kim, M Y; Kim, T; Kim, Y J; Lee, J K; Lee, M H; Lutz, L; Maestro, P; Malinine, A; Marrocchesi, P S; Mognet, S I; Nam, S W; Nutter, S; Park, N H; Park, H; Seo, E S; Sina, R; Syed, S; Song, C; Swordy, S; Wu, J; Yang, J; Zhang, H Q; Zei, R; Zinn, S Y

    2005-01-01

    The Cosmic Ray Energetics And Mass (CREAM), a balloon-borne experiment, is under preparation for a flight in Antarctica at the end of 2004. CREAM is planned to measure the energy spectrum and composition of cosmic rays directly at energies between 1 TeV and 1000 TeV. Incident particle energies will be measured by a transition radiation detector and a sampling calorimeter. The calorimeter was constructed at the University of Maryland and tested at CERN in 2003. Performance of the calorimeter during the beam tests is reported.

  4. Simulation and validation of the ATLAS Tile Calorimeter response

    CERN Document Server

    Karpov, S N; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data acquisition systems. This contribution describes the detailed simulation of this large scale calorimeter from the implementation of the geometrical elements down to the realistic description of the electronics readout pulses, the special noise treatment and the signal reconstruction. The improved description of the optical and electronic signal propagation is highlighted and the validation with the real particle data is presented.

  5. Incorporación de materiales de cambio de fase en placas de yeso para almacenamiento de energía térmica mediante calor latente: caracterización térmica del material mediante la técnica DSC

    OpenAIRE

    Oliver, A.; Neila, F. J.; García, A

    2011-01-01

    Differential Scanning Calorimetry (DSC) is a thermal analysis technique which has been used for more than three decades to measure the temperatures and heat flows associated with transitions in materials as a function of time. Other techniques, are Differential Thermal Analysis DTA and Conventional Calorimetry. There is great uncertainty in the values supplied by the manufacturers (because they are referred to pure substances) and the DSC should be used to get more accurate values. ...

  6. ATLAS Liquid Argon Calorimeter Module Zero

    CERN Multimedia

    1993-01-01

    This module was built and tested with beam to validate the ATLAS electromagnetic calorimeter design. One original design feature is the folding. 10 000 lead plates and electrodes are folded into an accordion shape and immersed in liquid argon. As they cross the folds, particles are slowed down by the lead. As they collide with the lead atoms, electrons and photons are ejected. There is a knock-on effect and as they continue on into the argon, a whole shower is produced. The electrodes collect up all the electrons and this signal gives a measurement of the energy of the initial particle. The M0 was fabricated by French institutes (LAL, LAPP, Saclay, Jussieu) in the years 1993-1994. It was tested in the H6/H8 beam lines in 1994, leading to the Technical Design Report in 1996.

  7. Electromagnetic Calorimeter Calibration with $\\pi^{0}$

    CERN Multimedia

    Puig Navarro, A

    2009-01-01

    Several methods can be used in order to achieve precise calibration of the LHCb Electromagnetic Calorimeter (ECAL) once reasonable cell equalization has been reached. At low transverse energy, the standard calibration procedure is an iterative method based on the fit of the $\\gamma\\gamma$ invariant mass distribution for each cell of the decay $\\pi^{0}\\to\\gamma\\gamma$ with resolved photons. A new technique for generating the combinatorial background of such decays directly from data has been developed. Knowledge of the background could allow an alternative calibration method based on a event by event fit of the same $\\gamma\\gamma$ invariant mass distribution where contributions from groups of cells are considered in a single fit. The background generation procedure and this possible new calibration method are presented in this poster, in addition to an overview of the LHCb Calorimetry system and ECAL calibration techniques.

  8. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, Thiago; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner, P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The TileCal hadronic calorimeter provides a muon signal which can be used to assist in muon tagging at the ATLAS level-one trigger. Originally, the muon signal was conceived to be combined with the RPC trigger in order to reduce unforeseen high trigger rates due to cavern background. Nevertheless, the combined trigger cannot significantly deteriorate the muon detection performance at the barrel region. This paper presents preliminary studies concerning the impact in muon identification at the ATLAS level-one trigger, through the use of Monte Carlo simulations with single muons with 40 GeV/c momentum. Further, different trigger scenarios were proposed, together with an approach for matching both TileCal and RPC geometries.

  9. Calorimeter Simulation with Hadrons in CMS

    Energy Technology Data Exchange (ETDEWEB)

    Piperov, Stefan; /Sofiya, Inst. Nucl. Res. /Fermilab

    2008-11-01

    CMS is using Geant4 to simulate the detector setup for the forthcoming data from the LHC. Validation of physics processes inside Geant4 is a major concern in view of getting a proper description of jets and missing energy for signal and background events. This is done by carrying out an extensive studies with test beam using the prototypes or real detector modules of the CMS calorimeter. These data are matched with Geant4 predictions using the same framework that is used for the entire CMS detector. Tuning of the Geant4 models is carried out and steps to be used in reproducing detector signals are defined in view of measurements of energy response, energy resolution, transverse and longitudinal shower profiles for a variety of hadron beams over a broad energy spectrum between 2 to 300 GeV/c. The tuned Monte Carlo predictions match many of these measurements within systematic uncertainties.

  10. Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment

    Science.gov (United States)

    Wefel, John P.; Guzik, T. Gregory

    2001-01-01

    During grant NAG5-5064, Louisiana State University (LSU) led the ATIC team in the development, construction, testing, accelerator validation, pre-deployment integration and flight operations of the Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment. This involved interfacing among the ATIC collaborators (UMD, NRL/MSFC, SU, MSU, WI, SNU) to develop a new balloon payload based upon a fully active calorimeter, a carbon target, a scintillator strip hodoscope and a pixilated silicon solid state detector for a detailed investigation of the very high energy cosmic rays to energies beyond 10(exp 14) eV/nucleus. It is in this very high energy region that theory predicts changes in composition and energy spectra related to the Supernova Remnant Acceleration model for cosmic rays below the "knee" in the all-particle spectrum. This report provides a documentation list, details the anticipated ATIC science return, describes the particle detection principles on which the experiment is based, summarizes the simulation results for the system, describes the validation work at the CERN SPS accelerator and details the balloon flight configuration. The ATIC experiment had a very successful LDB flight from McMurdo, Antarctica in 12/00 - 1/01. The instrument performed well for the entire 15 days. Preliminary data analysis shows acceptable charge resolution and an all-particle power law energy deposition distribution not inconsistent with previous measurements. Detailed analysis is underway and will result in new data on the cosmic ray charge and energy spectra in the GeV - TeV energy range. ATIC is currently being refurbished in anticipation of another LDB flight in the 2002-03 period.

  11. Utilisation de la DSC pour la caractérisation de la stabilité des émulsions eau dans pétrole Use of the Dsc Technique to Characterize Water-In-Crude Oil Emulsions Stability

    Directory of Open Access Journals (Sweden)

    Dalmazzone C.

    2006-12-01

    Full Text Available La technique DSC (Differential Scanning Calorimetry a été appliquée à l'étude des émulsions eau dans pétrole, qui se forment naturellement après un déversement de pétrole en mer. Ces émulsions, également appelées mousses au chocolat , peuvent contenir de 50 à 80% d'eau et se présentent souvent sous la forme d'un produit visqueux, difficile à récupérer mécaniquement, à traiter ou à brûler. Il est par conséquent important de pouvoir estimer leur stabilité pour optimiser le choix du traitement. Un grand nombre de techniques, généralement fondées sur l'analyse de la distribution de tailles de gouttes, peuvent être utilisées pour estimer la stabilité d'une émulsion. Malheureusement, la plupart ne sont pas adaptées à l'étude des émulsions eau dans huile opaques. La méthode la plus utilisée pour caractériser la stabilité de ce type d'émulsions est le bottle test. Elle consiste à mesurer la séparation de phases en fonction du temps. Ce test est la source d'une quantité d'informations appréciables quant à la stabilité de l'émulsion et à la qualité de la phase aqueuse séparée, mais il reste très empirique. La technique DSC est généralement utilisée pour déterminer la composition des émulsions eau dans huile, car elle permet de distinguer l'eau libre de l'eau émulsifiée. Cette étude a montré qu'il s'agit d'une technique très utile qui permet à la fois l'étude de l'évolution de la taille des gouttes dans l'émulsion, et une détermination précise de la quantité d'eau. The DSC technique (Differential Scanning Calorimetry was applied to the study of water-in-crude oil emulsions, which naturally form after an oil spill. The resulting emulsions contain between 50 and 80% seawater and they are often heavy materials, hard to recover mechanically, treat or burn. It is therefore important to assess their stability in order to optimize their treatments. A great variety of techniques are available for

  12. Electromagnetic response of a highly granular hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adloff, C.; Blaha, J.; Blaising, J.J. [Savoie Univ., CNRS/IN2P3, Annecy-le-Vieux (FR). Lab. d' Annecy-le-Vieux de Physique des Particules] (and others)

    2010-12-15

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  13. Test beam results from the CMS electromagnetic calorimeter

    CERN Document Server

    Brunelière, R

    2004-01-01

    A precision lead tungstate crystal calorimeter is being constructed by the CMS collaboration. As a key part of the future CMS detector at the LHC, the electromagnetic calorimeter will play a major role in probing electroweak symmetry-breaking and searches for new physics. In order to check that the required performance of the electromagnetic calorimeter is attainable, every prototype is tested in real conditions within a beam of particles. In 2003 two modules of the electromagnetic calorimeter featuring the final mechanical design and electronic architecture have been tested with two different versions of the front-end electronics. In this paper a review of the main results of test beam campaigns in 2002 and 2003 are given. (7 refs).

  14. Electromagnetic response of a highly granular hadronic calorimeter

    CERN Document Server

    Adloff, C; Blaising, J-J; Drancourt, C; Espargilière, A; Gaglione, R; Geffroy, N; Karyotakis, Y; Prast, J; Vouters, G; Francis, K; Repond, J; Smith, J; Xia, L; Baldolemar, E; Li, J; Park, S T; Sosebee, M; White, A P; Yu, J; Mikami, Y; Goto, N K Watson T; Mavromanolakis, G; Thomson, M A; Yan, D R Ward W; Benyamna, M; Cârloganu, C; Fehr, F; Gay, P; Manen, S; Royer, L; Blazey, G C; Dyshkant, A; Lima, J G R; Zutshi, V; Hostachy, J-Y; Morin, L; Cornett, U; David, D; Fabbri, R; Falley, G; Gadow, K; Garutti, E; Göttlicher, P; Günter, C; Karstensen, S; Krivan, F; Lucaci-Timoce, A-I; Lu, S; Lutz, B; Marchesini, I; Meyer, N; Morozov, S; Morgunov, V; Reinecke, M; Sefkow, F; Smirnov, P; Terwort, M; Vargas-Trevino, A; Wattimena, N; Wendt, O; Feege, N; Haller, J; Richter, S; Eckert, J Samson P; Kaplan, A; Schultz-Coulon, H-Ch; Shen, W; Stamen, R; Tadday, A; Bilki, B; Norbeck, E; Onel, Y; Wilson, G W; Kawagoe, K; Uozumi, S; Ballin, J A; Dauncey, P D; Magnan, A -M; Yilmaz, H S; Zorba, O; Bartsch, V; Postranecky, M; Warren, M; Wing, M; Salvatore, F; Alamillo, E Calvo; Fouz, M -C; Puerta-Pelayo, J; Balagura, V; Bobchenko, B; Chadeeva, M; Danilov, M; Epifantsev, A; Markin, O; Mizuk, R; Novikov, E; Rusinov, V; Tarkovsky, E; Soloviev, Y; Kozlov, V; Buzhan, P; Dolgoshein, B; Ilyin, A; Kantserov, V; Kaplin, V; Karakash, A; Popova, E; Smirnov, S; Frey, A; Kiesling, C; Seidel, K; Simon, F; Soldner, C; Weuste, L; Bonis, J; Bouquet, B; Callier, S; Cornebise, P; Doublet, Ph; Dulucq, F; Faucci Giannelli, M; Fleury, J; Guilhem, G; Li, H; Martin-Chassard, G; Richard, F; de la Taille, Ch; Pöschl, R; Raux, L; Seguin-Moreau, N; Wicek, F; Anduze, M; Boudry, V; Brient, J-C; Jeans, D; Mora de Freitas, P; Musat, G; Reinhard, M; Ruan, M; Videau, H; Bulanek, B; Zacek, J; Cvach, J; Gallus, P; Havranek, M; Janata, M; Kvasnicka, J; Lednicky, D; Marcisovsky, M; Polak, I; Popule, J; Tomasek, L; Tomasek, M; Ruzicka, P; Sicho, P; Smolik, J; Vrba, V; Zalesak, J; Belhorma, B; Ghazlane, H; Kotera, K; Nishiyama, M; Takeshita, T; Tozuka, S

    2010-01-01

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described.

  15. Electron identification in and performance of the ND280 Calorimeter

    CERN Document Server

    Carver, Antony

    T2K is an o axis neutrino beam experiment with a baseline of 295 km to the far detector, Super-Kamiokande. The near detector, ND280, measures the ux and energy spectra of electron and muon neutrinos in the direction of Super-Kamiokande. An electromagnetic calorimeter constructed from lead and scintillator surrounds the inner detector. Three time projection chambers and two ne grained scintillator detectors sit inside the calorimeter. This thesis describes the development of a particle identification algorithm for the calorimeter and studies how it can enhance a simple electron neutrino analysis. A particle identification algorithm was written for the electromagnetic calorimeter to separate minimally ionising particles, electromagnetic and hadronic showers. A Monte Carlo study suggested that the algorithm produced an electron sample with a relative muon contamination of 10+-2 whilst maintaining an electron efficiency of 80%. Data collected at CERN was then used to make comparisons between the Monte Carlo simul...

  16. Quantum Calorimeters Based on HgCdTe Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's next generation of x-ray observation missions require x-ray calorimeters with superior energy resolution. Semimetallic HgTe has already proven itself as an...

  17. Design, Performance and Calibration of the CMS Forward Calorimeter Wedges

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Laszlo, Andras; Pal, Andras; Vesztergombi, Gyorgy; Zálán, Peter; Fenyvesi, Andras; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnager, V; Kaur, Manjit; Kumar, Arun; Kohli, Jatinder Mohan; Singh, Jas Bir; Acharya, Bannaje Sripathi; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Verma, Piyush; Hashemi, Majid; Mohammadi-Najafabadi, M; Paktinat, S; Babich, Kanstantsin; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Ladygin, Vladimir; Meshcheryakov, Gleb; Moissenz, P; Petrosian, A; Rogalev, Evgueni; Sergeyev, S; Smirnov, Vitaly; Vishnevski, A V; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Ilyina, N P; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Oulyanov, A; Safronov, S; Semenov, Sergey; Stolin, Viatcheslav; Gribushin, Andrey; Demianov, A; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Teplov, Konstantin; Vardanyan, Irina; Yershov, A A; Abramov, Victor; Goncharov, Petr; Kalinin, Alexey; Korablev, Andrey; Khmelnikov, V A; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L K; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Bakirci, Mustafa Numan; Cerci, Salim; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Koylu, S; Kurt, Pelin; Kuzucu, A; Onengüt, G; Ozdes-Koca, N; Ozkurt, Halil; Sogut, Kenan; Topakli, Huseyin; Vergili, Mehmet; Yetkin, Taylan; Cankocak, Kerem; Gamsizkan, Halil; Ozkan, Cigdem; Sekmen, Sezen; Serin-Zeyrek, M; Sever, Ramazan; Yazgan, Efe; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Dindar, Kamile; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grinev, B; Lubinsky, V; Senchyshyn, Vitaliy; Anderson, E Walter; Hauptman, John M; Elias, John E; Freeman, Jim; Green, Dan; Heering, Arjan Hendrix; Lazic, Dragoslav; Los, Serguei; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Antchev, Georgy; Arcidy, M; Hazen, Eric; Lawlor, C; Machado, Emanuel; Posch, C; Rohlf, James; Sulak, Lawrence; Varela, F; Wu, Shouxiang; Adams, Mark Raymond; Burchesky, Kyle; Qiang, W; Abdullin, Salavat; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Mans, Jeremy; Skuja, Andris; Wang, Lei; Wetstein, Matthew; Ayan, S; Akgun, Ugur; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumus, Kazim; Kim, Heejong; Spezziga, Mario; Thomas, Ray; Wigmans, Richard; Baarmand, Marc M; Mermerkaya, Hamit; Vodopyanov, I; Kramer, Laird; Linn, Stephan; Markowitz, Pete; Martínez, German; Cushman, Priscilla; Ma, Yousi; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Fisher, Wade Cameron; Tully, Christopher; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T; Pompos, Arnold

    2008-01-01

    We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\\l |\\eta| \\le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \\approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed...

  18. Calibration of the CMS Hadron Calorimeter in Run 2

    CERN Document Server

    Chadeeva, Marina

    2017-01-01

    Various calibration techniques for the CMS Hadron calorimeter in Run2 and the results of calibration using 2016 collision data are presented. The radiation damage corrections, intercalibration of different channels using the phi-symmetry technique for barrel, endcap and forward calorimeter regions are described, as well as the intercalibration with muons of the outer hadron calorimeter. The achieved intercalibration precision is within 3\\%. The {\\it in situ} energy scale calibration is performed in the barrel and endcap regions using isolated charged hadrons and in the forward calorimeter using the Z$\\rightarrow ee$ process. The impact of pileup and the developed technique of correction for pileup is also discussed. The achieved uncertainty of the response to hadrons is 3.4\\% in the barrel and 2.6\\% in the endcap region (at $\\vert \\eta \\vert < 2$) and is dominated by the systematic uncertainty due to pileup contributions.

  19. The ATLAS Tile Calorimeter performance at the LHC

    CERN Document Server

    Calkins, R; The ATLAS collaboration

    2011-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photo-multipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the readout system exploiting different signal sources: laser light, charge injection and a radioactive source. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons, splash events and more importantly LHC collision events. The results presented here assess the absolute energy scale calibration precision, the energy and timing uniformity and the synchronization precision. The ensemble of the results demo...

  20. High luminosity liquid-argon calorimeter test beam

    Energy Technology Data Exchange (ETDEWEB)

    Novgorodova, Olga; Straessner, Arno [TU Dresden, IKTP (Germany)

    2016-07-01

    In the future HL-LHC the luminosity will increase by factor of 5-7 with respect to the original LHC design. The HiLum collaboration studied the impact on small-sized modules of the ATLAS electromagnetic, hadronic, and forward calorimeters also instrumented by various intensity and position detectors. The intensity of beam varied over a wide range (10{sup 6} to 10{sup 12} p/s) and beyond the maximum expected at HL-LHC for these calorimeters. Results from the last test beam campaign in 2013 on the signal shape analysis from the calorimeter modules are compared with MC simulations. The correlation between high-voltage return currents of the electromagnetic calorimeter and beam intensity is used to estimate critical parameters and compared with predictions.

  1. Simulation and validation of the ATLAS Tile Calorimeter at LHC

    CERN Document Server

    Artamonov, A; The ATLAS collaboration

    2013-01-01

    --Simulation and validation of the ATLAS Tile Calorimeter at LHC TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. This sampling calorimeter uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitized every 25 ns before being transferred to off-detector data-acquisition systems. This contribution describes the detailed simulation of this large scale calorimeter from the implementation of the geometrical elements down to the realistic description of the electronics readout pulses, the special noise treatment and the signal reconstruction. Detector non-uniformities and imperfections are also represented. Detailed validation has shown that the simulated detector response characteristics have been successfully integrated and...

  2. Geant4 simulations of the lead fluoride calorimeter

    CERN Document Server

    Savchenko, A A; Dabagov, S B; Anastasi, A; Venanzoni, G; Strikhanov, M N

    2016-01-01

    In this paper we simulate the emission by charged particles in complex structures with help of Geant4. We take into account Cherenkov radiation, transition radiation, bremsstrahlung, pair production and other accompanying processes. As an application we investigate the full size electromagnetic calorimeter for the muon g-2 experiment at Fermilab. A calorimeter module (24 are expected in the experiment) consists of a Delrin front panel for installation of the laser calibration system, 54 PbF2 Cherenkov crystals wrapped by the black Millipore paper, and silicon photo-multiplier sensors. We report here on a simulation of radiation from positrons passing through the calorimeter system. We carry out the simulation using Geant4 toolkit, which provides a complete set of tools for all areas of detector simulation: geometry, tracking, detector response, run, event and track management, and visualization. We consider Cherenkov photons expansion when a positron moves down through the calorimeter at the arbitrary angle o...

  3. LHCb: First year of running for the LHCb calorimeter system

    CERN Multimedia

    Guz, Y

    2011-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva) [1, 2]. LHCb is a single-arm spectrometer with a forward angular coverage from approximately 10 mrad to 300 mrad. It comprises a calorimeter system composed of four subdetectors [3]. It selects transverse energy hadron, electron and photon candidates for the first trigger level (L0), which makes a decision 4µs after the interaction. It provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The set of constraints resulting from these functionalities defines the general structure and the main characteristics of the calorimeter system and its associated electronics. A classical structure of an electromagnetic calorimeter (ECAL) followed by a hadron calorimeter (HCAL) has been adopted. In addition the system includes in front of them the Scintillating Pad Detector (SPD) and Pre-Showe...

  4. Closing LHCb's calorimeter around the beam-pipe

    CERN Multimedia

    Kristic, R

    2008-01-01

    Photos 1 and 2 show the pre-shower, lead absorber and the scintillating pad detector layers moving in towards the beam-pipe. Photos 3,4 and 5 show the hadron calorimeter with both halves closed around the beam-pipe, to the left of the picture and, in the centre, half of the electromagnetic calorimeter closed in towards the beam-pipe.

  5. A 3000 element lead-glass electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Crittenden, R.R.; Dzierba, A.R.; Gunter, J.; Lindenbusch, R.; Rust, D.R.; Scott, E.; Smith, P.T.; Sulanke, T.; Teige, S.; Brabson, B.B.; Adams, T.; Bishop, J.M.; Cason, N.M.; LoSecco, J.M.; Manak, J.J.; Sanjari, A.H.; Shephard, W.D.; Steinike, D.L.; Taegar, S.A.; Thompson, D.R.; Chung, S.U.; Hackenburg, R.W.; Olchanski, C.; Weygand, D.P.; Willutzki, H.J.; Denisov, S.; Dushkin, A.; Kochetkov, V.; Lipaev, V.; Popov, A.; Shein, I.; Soldatov, A.; Bar-Yam, Z.; Cummings, J.P.; Dowd, J.P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Anoshina, E.V.; Bodyagin, V.A.; Demianov, A.I.; Gribushin, A.M.; Kodolova, O.L.; Korotkikh, V.L.; Kostin, M.A.; Ostrovidov, A.I.; Sarycheva, L.I.; Sinev, N.B.; Vardanyan, I.N.; Yershov, A.A.; Brown, D.S.; Pedlar, T.K.; Seth, K.K.; Wise, J.; Zhao, D.; Adams, G.S.; Napolitano, J.; Nozar, M.; Smith, J.A.; Witkowski, M. [Indiana Univ., Bloomington, IN (United States). Dept. of Phys.]|[Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)]|[Department of Physics, Brookhaven National Laboratory, Upton, NY 11973 (United States)]|[Institute for High Energy Physics, Protvino (Russian Federation)]|[Department of Physics, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States)]|[Institute for Nuclear Physics, Moscow State University, Moscow (Russian Federation)]|[Department of Physics, Northwestern University, Evanston, IL 60208 (United States)]|[Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    1997-03-11

    A 3045 element lead glass calorimeter and an associated fast trigger processor have been constructed, tested and implemented in BNL experiment E852 in conjunction with the multi-particle spectrometer (MPS). Approximately, 10{sup 9} all-neutral and neutral plus charged triggers were recorded with this apparatus during data runs in 1994 and 1995. This paper reports on the construction, testing and performance of this lead glass calorimeter and the associated trigger processor. (orig.).

  6. Imaging Calorimeter: What Have We Learned So Far

    Science.gov (United States)

    Xia, Lei

    Particle Flow Algorithms (PFAs) have been applied to existing detectors to improve the measurement of hadronic jets in colliding beam experiments. For future experiments, such as a TeV lepton collider, detector concepts optimized for the application of PFAs are being developed. These concepts require so-called imaging calorimeters, with unprecedented granularity. We will review the various recent developments of such highly granular calorimeters.

  7. The PHENIX PbSc calorimeter and its performance

    Energy Technology Data Exchange (ETDEWEB)

    David, G.; Goto, Y.; Kistenev, E. [and others

    1997-11-01

    The authors have recently completed the production of the 15552 channel PbSc Electromagnetic calorimeter for the PHENIX experiment at RHIC. The design features a single 4 tower module which is repeated throughout and which was produced with a number of QC steps designed to achieve consistent, large light yield in all channels. They present results on uniformity of the calorimeter, accuracy of a cosmic muon based precalibration scheme and test beam performance.

  8. Calorimeter Cell Energy Thresholds for Jet Reconstruction in CMS

    CERN Document Server

    Demina, Regina; Justus, Christopher; Tipton, Paul; Zielinski, Marek; Bhatti, Anwar; Harris, Robert M

    2006-01-01

    We have investigated the characteristics of calorimeter noise and its impact on reconstruction of low-\\PT\\ jets. We have proposed new thresholds for calorimeter cell energies, which can be applied when creating towers for reconstruction of jets and missing \\ET\\ (MET). The values of proposed thresholds are effective in reducing noise contributions to jets, while removing less real jet energy than the often-used cuts on whole towers.

  9. Simulation of hadronic showers in the ATLAS liquid argon calorimeters

    CERN Document Server

    Kiryunin, A E; Strízenec, P; Kish, J; Loch, P; Mazini, R

    2002-01-01

    Results of Geant4 based simulations of the response of the ATLAS hadronic end-cap calorimeter to charged pions are presented. The first results of hadronic simulations with Geant4 for the ATLAS forward calorimeter are shown as well. Predictions of Geant4 and Geant3 on energy response and resolution for charged pions are compared. Where it is possible, the comparison with experimental results of beam tests is done. (6 refs).

  10. Data volume reduction strategies in the CMS electromagnetic calorimeter

    CERN Document Server

    Paganini, P

    2002-01-01

    The electromagnetic calorimeter of CMS consists of a barrel and two endcap calorimeters containing a sum of over 80000 lead tungstate crystals. If all the crystals were to be read-out in a triggered event, the total amount of ECAL data would excess by a factor 20 the CMS data acquisition system limits allowed for ECAL. This paper presents the strategies developed by CMS in order to reduce the ECAL data volume to the required level. (5 refs).

  11. Performance and Operation of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G.; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented.

  12. The CMS PbWO4 Electromagnetic Calorimeter

    OpenAIRE

    Lethuillier, M

    2003-01-01

    CMS; The electromagnetic calorimeter under construction for the CMS experiment at LHC will be the largest crystal calorimeter ever built. The very fast and precise energy measurement of electrons and photons is based upon 76000 lead tungstate crystals read by avalanche photodiodes (APD) in the central barrel region and vacuum phototriodes (VPT) in the endcap regions. The major challenges to be faced are the ability to operate in a strong magnetic field of 4T and under unprecedented radiation ...

  13. Thermodynamic Property Study of Nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H Systems by High Pressure DSC Method

    OpenAIRE

    Huaiyu Shao; Gongbiao Xin; Xingguo Li; Etsuo Akiba

    2013-01-01

    Mg, Ni, and Cu nanoparticles were synthesized by hydrogen plasma metal reaction method. Preparation of Mg2Ni and Mg2Cu alloys from these Mg, Ni, and Cu nanoparticles has been successfully achieved in convenient conditions. High pressure differential scanning calorimetry (DSC) technique in hydrogen atmosphere was applied to study the synthesis and thermodynamic properties of the hydrogen absorption/desorption processes of nanostructured Mg-H, Mg-Ni-H, and Mg-Cu-H systems. Van’t Hoff equation o...

  14. Determinación experimental mediante DSC de las estabilidades térmicas y las capacidades caloríficas: quinua, kiwicha y cañihua

    OpenAIRE

    Romero Carrión, Violeta; Tirado Rengifo, Arminda; Dávalos Prado, Juan

    2015-01-01

    El objetivo fue determinar mediante Calorímetría diferencial de barrido (“Differential Scanning Calorimetry”, DSC) el calor específico y los parámetros termofísicos de la descomposición completa y la gelatinización, de la quinua (Chenopodium quinoa, kiwicha (Amaranthus caudatus) y la cañihua (Chenopodium pallidicaule). Para la determinación del calor específico se usaron cápsulas de aluminio y tomando de referencia el c.e del zafiro, observándose picos en el termograma, entre 50 y 60°C y calo...

  15. COMPARATIVE KINETICS STUDY OF THE THERMAL AND THERMO-OXIDATIVE DEGRADATION OF A POLYSTYRENE-CLAY NANOCOMPOZITE BY TGA AND DSC

    Directory of Open Access Journals (Sweden)

    Ion Dranca

    2010-12-01

    Full Text Available The methods of thermogravimetry (TGA and differential scanning calorimetry (DSC have been used to study the thermal and thermo-oxidative degradation of polystyrene (PS and a PS-clay nanocomposite. An advanced isoconversional method has been applied for kinertic analysis. Introduction of the clay phase increasers the activation energy and affects the total heat of degradation, which suggests a change in the reaction mechanism. The obtained kinetic data permit a comparative assessment of the fire resistance of the studied materials

  16. Pcm inclusion in gypsum boards for thermal energy storage through latent heat: thermal characterization with DSC; Incorporacion de materiales de cambio de fase en placas de yeso para almacenamiento de energia termica mediante calor latente: caracterizacion termica del material mediante la tecnica DSC

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, A.; Neila, F. J.; Garcia, A.

    2011-07-01

    Differential Scanning Calorimetry (DSC) is a thermal analysis technique which has been used for more than three decades to measure the temperatures and heat flows associated with transitions in materials as a function of time. Other techniques, are Differential Thermal Analysis DTA and Conventional Calorimetry. There is great uncertainty in the values supplied by the manufacturers (because they are referred to pure substances) and the DSC should be used to get more accurate values. It will be analyzed the thermal storage capacity depending on temperature for several compound materials formed by some aggregates, mainly gypsum and phase change materials, in various proportions. The results have been compared with other building materials such as gypsum boards and brick layer. The suitability of the new construction material for thermal energy storage will be assessed in comparison with other materials traditionally used for this purpose. (Author) 21 refs.

  17. ATLAS calorimeters: Run-2 performances and Phase-II upgrades

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} cm^{-2} s^{-1}$. A Liquid Argon-lead sampling (LAr) calorimeter is employed as electromagnetic and hadronic calorimeters, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimeter. This presentation gives first an overview of the detector operation and data quality, as well as of the achieved performances of the ATLAS calorimetry system. Additionally the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) are presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to $L \\simeq 7.5 × 10^{34} cm^{-2} s^{-1}$ and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope with longer latenc...

  18. GEANT SIMULATIONS OF PRESHOWER CALORIMETER FOR CLAS12 UPGRADE OF THE FORWARD ELECTROMAGNETIC CALORIMETER

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, K.; Stepanyan, S.

    2007-01-01

    Hall B at the Thomas Jefferson National Accelerator Facility uses the CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance Spectrometer (CLAS) to study the structure of the nucleon. An upgrade from a 6 GeV beam to a 12GeV beam is currently planned. With the beam energy upgrade, more high-energy pions will be created from the interaction of the beam and the target. Above 6GeV, the angle between the two-decay photons of high-energy pions becomes too small for the current electromagnetic calorimeter (EC) of CLAS to differentiate between two photon clusters and single photon events. Thus, a preshower calorimeter will be added in front of the EC to enable fi ner granularity and ensure better cluster separation for all CLAS experiments at higher energies. In order to optimize cost without compromising the calorimeter’s performance, three versions of the preshower, varying in number of scintillator and lead layers, were compared by their resolution and effi ciency. Using GSIM, a GEANT detector simulation program for CLAS, the passage of neutral pions and single photons through CLAS and the new preshower calorimeter (CLAS12 EC) was studied. The resolution of the CLAS12 EC was calculated from the Gaussian fi t of the sampling fraction, the energy CLAS12 EC detected over the Monte Carlo simulated energy. The single photon detection effi ciency was determined from the energy and position of the photon hits. The fractional energy resolution measured was ΔE/E = 0.0972 in the fi ve-module version, 0.111 in the four-module version, and 0.149 in the three-module version. Both the fi ve- and four-module versions had 99% single photon detection effi ciency above 0.5GeV while the 3 module version had 99% effi ciency above 1.5GeV. Based on these results, the suggested preshower confi guration is the four-module version containing twelve layers of scintillator and fi fteen layers of lead. This version provides a reasonable balance of resolution, effi ciency, and

  19. Renal scan

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003790.htm Renal scan To use the sharing features on this ... anaphylaxis . Alternative Names Renogram; Kidney scan Images Kidney anatomy Kidney - blood and urine flow References Chernecky CC, ...

  20. Biodegradable lubricants-studies on thermo-oxidation of metal-working and hydraulic fluids by differential scanning calorimetry (DSC)

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, A.; Sprengel, A.; Niedermeier, D.; Spaeth, M. [Universitaet der Bundeswehr Muenchen, Neubiberg (Germany)

    1995-12-15

    In continuation of our study of the thermal-oxidative degradation of lubricants using PDSC, we investigated the biodegradable metal-working and hydraulic fluids that are available on the European market. Isothermal onset times of oxidation were measured at different sample temperatures and plotted against the reciprocal temperatures, giving straight ageing lines which were used to differentiate between the thermal-oxidative stabilities of the oils. The stabilities of metal-working oils and hydraulic fluids vary over a wide range. Synthetic ester oils are more stable than vegetable-based fluids; however, our work demonstrates that the latter can be improved by selected antioxidants to yield equal or even better thermal-oxidative stabilities. Measurements conducted on steel surfaces show a strong catalytic influence compared to an inert aluminium (Al{sub 2}O{sub 3}) surface for both fluids. We also investigated the stabilities of laboratory-aged hydraulic fluids (ASTM-D-2893). The results, by PDSC alone or in combination with conventional oxidation tests, show that the ageing behaviour of biodegradable lubricants can be assessed effectively. Commercial products are by no means of equal quality in this respect. In our opinion, single PDSC measurement could offer many advantages over the conventional oxidation tests used, such as the Baader test (DIN 51554) or the Rancimat test. Typical results for commercial products based on rapeseed oil and synthetic esters are presented

  1. Bon voyage to the hadronic calorimeter

    CERN Multimedia

    2006-01-01

    It was a grand entourage for the first half of the CMS hadronic forward calorimeter (HF) that was escorted to Cessy, France by the police on 11 July. The impressive trailer carrying the 7-m-long and 4-m-wide element was pushed and pulled by two specially designed trucks. It took the 64-m-long convoy around 5 hours to travel the 15 km to its final destination. The days leading up to this operation involved intensive checks to the balance and pressure of the hydraulic system of the trailer's wheels. As one side of the HF is slightly heavier than the other, it is crucial to take this into account when transporting such a massive object (each half of the HF weighs 260 tonnes). However, once these checks were complete, the transport was safely underway. The second half of the HF also received a police escort on 18 July as it made its way to the assembly hall at Point 5. The HF will be the first major detector to be lowered into the CMS cavern via the gantry crane in the coming months.

  2. New crystal technologies for novel calorimeter concepts

    CERN Document Server

    Lecoq, Paul

    2009-01-01

    Present calorimetric systems give a global information on the total energy deposit at a given time in large detector cells but provide no details on the cascade mechanism of this energy deposition in space and time, as well as on the physics of the signal generation. In the domain of High Energy Physics (HEP) high-precision measurement of hadrons and jets is one of the detector challenges at future high energy colliders. It has been shown that higher segmentation of the calorimter and/or the simultaneous recording of the scintillation light produced in an active medium, which is proportional to the total energy deposited by the shower particles, and the Cherenkov light, which is only produced by the charged, relativistic shower particles, can significantly improve the performance of present hadron calorimeters. At low energy, for instance for medical imaging devices, the detailed recording of the whole Compton-photoelectric interaction chain would have a strong impact on the spatial resolution, energy resolut...

  3. Important ATLAS Forward Calorimeter Milestone Reached

    CERN Document Server

    Loch, P.

    The ATLAS Forward Calorimeter working group has reached an important milestone in the production of their detectors. The mechanical assembly of the first electromagnetic module (FCal1C) has been completed at the University of Arizona on February 25, 2002, only ten days after the originally scheduled date. The photo shows the University of Arizona FCal group in the clean room, together with the assembled FCal1C module. The module consists of a stack of 18 round copper plates, each about one inch thick. Each plate is about 90 cm in diameter, and has 12260 precision-drilled holes in it, to accommodate the tube/rod electrode assembly. The machining of the plates, which was done at the Science Technology Center (STC) at Carleton University, Ottawa, Canada, required high precision to allow for easy insertion of the electrode copper tube. The plates have been carefully cleaned at the University of Arizona, to remove any machining residue and metal flakes. This process alone took about eleven weeks. Exactly 122...

  4. End Cap Calorimeter Inner Hadronic Module Installation

    Energy Technology Data Exchange (ETDEWEB)

    Stredde, H.J.; /Fermilab

    1990-10-11

    The fixture used to hold the IH module while the EC Calorimeter is pul led over it consists of two tripod frames with a double wide flange between them. The two tripods have legs made of 6-inch Schedule 40 pipe, these legs are tied together with 2-inch Schedule 40 pipe. One of the legs sits on and is attached to a box made of 3/4-inch plates. The fixture was analyzed using ANSYS. The element used was a 3-D beam (STIF4). Equivalent properties were figured for the double wide flange. The legs of the tripods were constrained in the Y direction (vertical). The box at the bottom of the tripod leg was not used in this analysis, the leg was constrained at the point of attachment to the box. The cross beam was loaded at two points representing the IH load. The reaction force at the point where the tripod leg attaches to the box was then used in an analysis of the box itself. The box was modeled using plate elements (STIF63). The bottom of the box was constrained in the Y (vertical) direction. The top of the box was loaded in roughly a circular area to represent the pipe attachment area. The reaction force from the previous analysis was divided among these nodes.

  5. Central Calorimeter Support Cradle Jack Failure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rudland, D.L.; /Fermilab

    1987-04-10

    The Central Calorimeter and its support cradle are to be supported by either hydraulic or mechanical jacks. If hydraulics are used, each support will use two hydraulically coupled jacks with two out of the four supports hydraulically coupled giving the effect of a three point support system. If mechanical jacks are used, all four points are used for support. Figure 2 shows two examples of jack placement on a 3.5 inch support plate. These two support scenarios lead to five jack failure cases to be studied. This report deals with the way in which a 0.25 inch drop (failed jack) at one support affects the stresses in the cradle. The stresses from each failure case were analyzed in two ways. First, stress factors, defined as quotients of stress intensities of the failed case with respect to the static case, were generated and then, hand calculations similar to those in Engineering Note 3740.215-EN-14 were done using the reaction forces from the failed case.

  6. The ATLAS Level-1 Calorimeter Trigger Architecture

    CERN Document Server

    Garvey, J; Mahout, G; Moye, T H; Staley, R J; Watkins, P M; Watson, A T; Achenbach, R; Hanke, P; Kluge, E E; Meier, K; Meshkov, P; Nix, O; Penno, K; Schmitt, K; Ay, Cc; Bauss, B; Dahlhoff, A; Jakobs, K; Mahboubi, K; Schäfer, U; Trefzger, T M; Eisenhandler, E F; Landon, M; Moyse, E; Thomas, J; Apostoglou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J; Gee, C N P; Gillman, A R; Perera, V J O; Qian, W; Bohm, C; Hellman, S; Hidvégi, A; Silverstein, S; RT 2003 13th IEEE-NPSS Real Time Conference

    2004-01-01

    The architecture of the ATLAS Level-1 Calorimeter Trigger system (L1Calo) is presented. Common approaches have been adopted for data distribution, result merging, readout, and slow control across the three different subsystems. A significant amount of common hardware is utilized, yielding substantial savings in cost, spares, and development effort. A custom, high-density backplane has been developed with data paths suitable for both the em/tt cluster processor (CP) and jet/energy-summation processor (JEP) subsystems. Common modules also provide interfaces to VME, CANbus and the LHC Timing, Trigger and Control system (TTC). A common data merger module (CMM) uses FPGAs with multiple configurations for summing electron/photon and tau/hadron cluster multiplicities, jet multiplicities, or total and missing transverse energy. The CMM performs both crate- and system-level merging. A common, FPGA-based readout driver (ROD) is used by all of the subsystems to send input, intermediate and output data to the data acquis...

  7. Hadronic vector boson decay and the art of calorimeter calibration

    Energy Technology Data Exchange (ETDEWEB)

    Lobban, Olga Barbara [Texas Tech Univ., Lubbock, TX (United States)

    2002-12-01

    Presented here are several studies involving the energy measurement of particles using calorimeters. The first study involves the effects of radiation damage on the response of a prototype calorimeter for the Compact Muon Solenoid experiment. We found that the effects of radiation damage on the calorimeter·s response arc dose dependent and that most of the damage will occur in the first year of running at the Large Hadron Collider. Another study involved the assessment of the Energy Flow Method an algorithm which combines the information from the calorimeter system is combined with that from the tracking system in an attmpt to improve the energy resolution for jet measurements. Using the Energy Flow method an improvement of $\\sim30\\%$ is found but this impovement decreases at high energies when the hadronic calorimeter resolution dominates the quality of the jet energy measurements. Finally, we developed a new method to calibrate a longitudinally segnmented calorimeter. This method eliminates problems with the traditional method used for the calorimeters at the Collider Detector at Fermilab. We applied this new method in the search for hadrunic decays of the $W$ and $Z$ bosons in a sample of dijet data taken during Tevatron Run IC. A signal of 9873±3950(sys) ±1130 events was found when the new calibration method was used. This corresponds to a cross section $\\sigma(p\\bar{p} \\to W,Z) \\cdot B(W,Z \\to jets) = 35.6 \\pm 14.2 ({\\rm sys}) \\pm 4.1 (\\rm{stat})$ nb.

  8. DSC of Milk Fats from Various Animals with High Levels of Medium ...

    African Journals Online (AJOL)

    NICO

    DSC of Milk Fats from Various Animals with High Levels of. Medium-Chain, Unsaturated and Polyunsaturated. Fatty Acids. Gernot Osthoffa,*, Arno Hugoa, Chris C. Joubertb and Jannie C. Swartsb. aDepartment of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa.

  9. The Outer Halos of Very Massive Galaxies: BCGs and their DSC in the Magneticum Simulations

    Science.gov (United States)

    Remus, Rhea-Silvia; Dolag, Klaus; Hoffmann, Tadziu

    2017-09-01

    Recent hydrodynamic cosmological simulations cover volumes up to Gpc^3 and resolve halos across a wide range of masses and environments, from massive galaxy clusters down to normal galaxies, while following a large variety of physical processes (star formation, chemical enrichment, AGN feedback) to allow a self-consistent comparison to observations at multiple wavelengths. Using the Magneticum simulations, we investigate the buildup of the diffuse stellar component (DSC) around massive galaxies within group and cluster environments. The DSC in our simulations reproduces the spatial distribution of the observed intracluster light (ICL) as well as its kinematic properties remarkably well. For galaxy clusters and groups we find that, although the DSC in almost all cases shows a clear separation from the brightest cluster galaxy (BCG) with regard to its dynamic state, the radial stellar density distribution in many halos is often characterized by a single Sersic profile, representing both the BCG component and the DSC, very much in agreement with current observational results. Interestingly, even in those halos that clearly show two components in both the dynamics and the spatial distribution of the stellar component, no correlation between them is evident.

  10. Multispectral image compression based on DSC combined with CCSDS-IDC.

    Science.gov (United States)

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.

  11. Multispectral Image Compression Based on DSC Combined with CCSDS-IDC

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC combined with image data compression (IDC approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE. Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS-based algorithm has better compression performance than the traditional compression approaches.

  12. Thermal analysis on parchments I: DSC and TGA combined approach for heat damage assessment

    DEFF Research Database (Denmark)

    Fessas, D.; Signorelli, M.; Schiraldi, A.

    2006-01-01

    was found between the collagen denaturation temperature and the moisture content of the parchment. Qualitative rules for the evaluation of the damage at the nano-and mesoscopic level were achieved on the basis of peculiarities of the shape and width of the DSC signals and confirmed by small angle X...

  13. Calibration of the ATLAS Tile hadronic calorimeter using muons

    CERN Document Server

    van Woerden, M C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. TileCal , together with the electromagnetic calorimeter, provides precise measurements of hadrons, jets, taus and the missing transverse energy. Cosmic rays muons and muon events produced by scraping 450 GeV protons in one collimator of the LHC machine have been used to test the calibration of the calorimeter. The analysis of the cosmic rays data shows: a) the response of the third longitudinal layer of the Barrel differs from those of the first and second Barrel layers by about 3-4%, respectively and b) the differences between the energy scales of each layer obtained in this analysis and the value set at beam tests using electrons are found to range between -3% and +1%. In the case of the scraping beam data, the responses of all the layer pairs were found to be consisten...

  14. ATLAS Calorimeters: Run-2 performance and Phase-II upgrade

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^{34} cm^{−2} s^{−1}. A liquid argon (LAr)-lead sampling calorimeter is employed as electromagnetic calorimeter and hadronic calorimter, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimter. This presentation will give first an overview of the detector operation and data quality, as well as the achieved performance of the ATLAS calorimetry system. Additionally, the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) will be presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to L ≃ 7.5 × 10^{34} cm^{−2} s^{−1} and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope wit...

  15. The ATLAS Tile Hadronic Calorimeter performance at the LHC

    CERN Document Server

    Francavilla, P; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identi cation and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical bers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read-out system exploiting di erent signal sources: laser light, charge injection, a radioactive source and the signal produced by minimum bias events. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons, splash events and most importantly the large sample of pp collision events. Results are discussed that demonstrate how the calorimeter is operated, how is monitored and what performance has been obtai...

  16. The ATLAS Tile Hadronic Calorimeter performance at the LHC

    CERN Document Server

    Francavilla, P; The ATLAS collaboration

    2012-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read-out system exploiting different signal sources: laser light, charge injection, a radioactive source and the signal produced by minimum bias events. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons, splash events and most importantly the large sample of pp collision events. Results are discussed that demostrate how the calorimeter is operated, how is monitored and what performance has been ob...

  17. Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.

    Science.gov (United States)

    Rinkevich, Frank D; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S; Dong, Ke

    2015-03-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effect of dead materials on calorimeter response and Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dharmaratna, W.G.D. (Florida State Univ., Tallahassee, FL (United States). Dept. of Physics)

    1992-01-01

    The D0 calorimeter system, cylindrical central calorimeter and two end calorimeters, is constructed with minimal cracks and dead regions in order to provide essentially hermetic coverage over the full solid angle. The effect of the existing few construction features which could perturb the uniformity of the calorimeter is studied in detail with beam tests. The results with the correction algorithms are presented. A comparison with the Monte Carlo simulation is made.

  19. Energy calibration of the barrel calorimeter of the CMD-3 detector

    Science.gov (United States)

    Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Bondar, A. E.; Grebenuk, A. A.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Mikhailov, K. Yu.; Logashenko, I. B.; Razuvaev, G. P.; Ruban, A. A.; Shebalin, V. E.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V.

    2017-04-01

    The VEPP-2000 e+e- collider has been operated in the Budker Institute of Nuclear Physics since 2010. Experiments are carried out with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon calorimeter and crystal CsI calorimeter, and end cap calorimeter with BGO crystals. This paper describes the procedures of the energy calibration of the combined barrel calorimeter of the CMD-3 detector.

  20. The lead-glass electromagnetic calorimeter for the SELEX experiment

    Energy Technology Data Exchange (ETDEWEB)

    M. Y. Balatz et al.

    2004-07-19

    A large-acceptance, highly segmented electromagnetic lead glass calorimeter for Experiment E781 (SELEX) at Fermi National Acceleration Laboratory was designed and built. This detector has been used to reconstruct photons and electrons with energies ranging from few GeV up to 500 GeV in the collisions of the 650 GeV {Sigma}{sup -} hyperons and {pi}{sup -} mesons with the target nucleons. The design, calibration and performance of the calorimeter are described. Energy resolution and position resolution are assessed using both calibration electron beams and {pi}{sup 0} mesons reconstructed in 650 GeV hadron-hadron interactions. The performance of the calorimeter in selecting resonant states that involve photons is demonstrated.

  1. OPAL Forward Calorimeter (half cylinder with lead scintillator)

    CERN Multimedia

    1 half cylinder piece is available for loan. The OPAL forward Detector Calorimeter was made in 4 half cylindrical pieces. Two full cylinders were placed round the LEP beam pipe about 3m downstream of the interaction point. The detector was used primarily to measure the luminosity of LEP (rate of interactions) and also to trigger on 2-photon events. In addition it formed an essential part of the detector coverage which OPAL needed to carry out searches for new particles such as the Higgs boson. The detector is made of scintillators sandwiched between lead sheets. The light from the scintillators passes via bars of wavelength shifter and light guides on its way to be measured by photomultipliers. There is a layer of gas filled tube chambers within the calorimeter. These provide a measure of the position of the particles interacting in the calorimeter.

  2. Prototype studies for a forward EM calorimeter in ALICE

    CERN Document Server

    Peitzmann, T

    2013-01-01

    A forward electromagnetic calorimeter (FoCal) based on SiW technology is being considered as a possible upgrade to the ALICE detector. This device should in particular feature an extremely high granularity allowing gamma/pi0 discrimination out to very high momenta. The main option considered for the high granularity layers is the use of CMOS pixel sensors. We will discuss the motivation and design principles of the proposed calorimeter and will then focus on the experience gained with a full CMOS-pixel calorimeter prototype. Preliminary results of this device show very good capabilities for shower profile measurements, and reasonable results for linearity and resolution, which are limited by the currently incomplete calibration.

  3. "Finger" structure of tiles in CMS Endcap Hadron Calorimeters

    CERN Document Server

    Afanasiev, Sergey; Danilov, Mikhail; Emeliantchik, Igor; Ershov, Yuri; Golutvin, Igor; Grinyov, B.V; Ibragimova, Elvira; Levchuk, Leonid; Litomin, Aliaksandr; Makankin, Alexander; Malakhov, Alexander; Moisenz, Petr; Nuritdinov, I; Popov, V.F; Rusinov, Vladimir; Shumeiko, Nikolai; Smirnov, Vitaly; Sorokin, Pavlo; Tarkovskiy, Evgueni; Tashmetov, A; Vasiliev, S.E; Yuldashev, Bekhzod; Zamyatin, Nikolay; Zhmurin, Petro

    2015-01-01

    Two CMS Endcap hadron calorimeters (HE) have been in operation for several years and contributed substantially to the success of the CMS Physics Program. The HE calorimeter suffered more from the radiation than it had been anticipated because of rapid degradation of scintillator segments (tiles) which have a high radiation flux of secondary particles. Some investigations of scintillators have shown that the degradation of plastic scintillator increases significantly at low dose rates. A proposal to upgrade up-grade the HE calorimeter has been prepared to provide a solution for survivability of the future LHC at higher luminosity and higher energy. A finger-strip plastic scintillator option has many advantages and is a lower cost alternative to keep the excellent HE performance at high luminosity. Measurements have been performed and this method has proved to be a good upgrade strategy.

  4. Generators, Calorimeter Trigger and J/ψ production at LHCb

    CERN Document Server

    Robbe, P

    This document presents results related to the preparation of the physics program ofLHCb: generator software development, calorimeter trigger commissioning and measurement of J/psi production. A detailed simulation is mandatory to developthe analysis tools needed for this program and a detailed generator framework hasbeen implemented which describes for example B mixing and CP violation in B decays in the LHCb hadronic environment. For hadronic decay modes, the trigger of the experiment is based at the first level on information provided by the calorimeters, and in particular the hadronic calorimeter. The large J/psi production cross-section at the LHC allows to perform, with the first data recorded, a measurement of the J/psi differential cross-section and to confront it with theoretical models to test QCD in the heavy quark sector.

  5. Calibration and monitoring of the ATLAS Tile calorimeter

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40~MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  6. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    CERN Document Server

    Bilki, Burak

    2010-01-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of $10^{34} cm^{-2} s^{-1}$, the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4\\% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm x 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R\\&D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  7. The ATLAS liquid Argon calorimeters read-out system

    CERN Document Server

    Blondel, A; Fayard, L; La Marra, D; Léger, A; Matricon, P; Perrot, G; Poggioli, L; Prast, J; Riu, I; Simion, S

    2004-01-01

    The calorimetry of the ATLAS experiment takes advantage of different detectors based on the liquid Argon (LAr) technology. Signals from the LAr calorimeters are processed by various stages before being delivered to the Data Acquisition system. The calorimeter cell signals are received by the front-end boards, which digitize a predetermined number of samples of the bipolar waveform and sends them to the Read-Out Driver (ROD) boards. The ROD board receives triggered data from 1028 calorimeter cells, and determines the precise energy and timing of the signals by processing the discrete samplings of the pulse. In addition, it formats the digital stream for the following elements of the DAQ chain, and performs monitoring. The architecture and functionality of the ATLAS LAr ROD board are discussed, along with the final design of the Processing Unit boards housing the Digital Signal Processors (DSP). (9 refs).

  8. R&D proposal the prism plastic calorimeter:PPC

    CERN Document Server

    Dobrzynski, Ludwik; Marchand, P; Nédélec, P; Salin, P; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    This proposal supports two goals: First Goal_Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter (PPC) towers with a new "liquid crystal" type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. Second Goal_ Describe how one can design a warm liquid calorimeter integrated into a LHC detector,and list the advantages of the PPC: low price, minimum of mechanical structures, minimum amount of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronics being outside the liquid and easily accessible, one has maximum flexibility to define them. The R&D program we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  9. Calibration of the Tile Hadronic Calorimeter of ATLAS at LHC

    CERN Document Server

    Boumediene, D

    2015-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated to the calorimeter, there is a composite device that allows to monitor and/or equalize the signals at various stages of their formation. This device is based on signal generation from different sources: radioactive, Laser, charge injection and minimum bias events produced in proton-proton collisions. Recent performances of these systems as well TileCal calibration stability are presented.

  10. Calibration and Monitoring systems of the ATLAS Tile Hadron Calorimeter

    CERN Document Server

    BOUMEDIENE, D; The ATLAS collaboration

    2012-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated to the calorimeter, there is a composite device that allows to monitor and/or equalize the signals at various stages of their formation. This device is based on signal generation from different sources: radioactive, LASER, charge injection and minimum bias events produced in proton-proton collisions. Recent performances of these systems are presented.

  11. Calibration and Monitoring systems of the ATLAS Tile Hadron Calorimeter

    CERN Document Server

    BOUMEDIENE, D; The ATLAS collaboration

    2012-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated on the calorimeter there is a composite device that allows to monitor and/or equalize the signals at various stages of its formation. This device is based on signal generation from different sources: radioactive, LASER and charge injection and minimum bias events produces in proton-proton collisions. In this contribution is given a brief description of the different systems hardware and presented the latest results on their performance, like the determination of the conversion factors, linearity and stability.

  12. Calibration of the Tile Hadronic Calorimeter of ATLAS at LHC

    CERN Document Server

    Boumediene, D; The ATLAS collaboration

    2014-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated on the calorimeter there is a composite device that allows to monitor and/or equalize the signals at various stages of its formation. This device is based on signal generation from different sources: radioactive, LASER and charge injection and minimum bias events produces in proton-proton collisions. In this contribution is given a brief description of the different systems hardware and presented the latest results on their performance, like the determination of the conversion factors, linearity and stability.

  13. The ATLAS liquid argon calorimeters Read Out Driver (ROD) system

    CERN Document Server

    Henry-Coüannier, F

    2000-01-01

    The electronic Readout chain for the Liquid Argon calorimeters of the ATLAS detector is briefly presented. Special attention is given to the Read Out Drivers (ROD) which will receive the triggered data from approximately 200,000 calorimeter cells at a 100 kHz event rate. In the ROD boards the energy will be computed for each cell from discrete samples of the waveform using optimal filtering algorithms running in fast digital signal processors. The monitoring of the calorimeter data will also be performed at the ROD level. Performances expected in ATLAS which have been evaluated from simulation studies are presented. A demonstrator system currently under construction is described and performances of the Processing Units (DSP daughter boards) are presented. 4 Refs.

  14. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Cameron Russell [Univ. of California, Berkeley, CA (United States)

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  15. Development of the CsI Calorimeter Subsystem for AMEGO

    Science.gov (United States)

    Grove, J. Eric; Woolf, Richard; Johnson, W. Neil; Phlips, Bernard

    2018-01-01

    We report on the development of the thallium-doped cesium iodide (CsI:Tl) calorimeter subsystem for the All-Sky Medium-Energy Gamma-ray Observatory (AMEGO). The CsI calorimeter is one of the three main subsystems that comprise the AMEGO instrument suite; the others include the double-sided silicon strip detector (DSSD) tracker/converter and a cadmium zinc telluride (CZT) calorimeter. Similar to the LAT instrument on Fermi, the hodoscopic calorimeter consists of orthogonally layered CsI bars. Unlike the LAT, which uses PIN photodiodes, the scintillation light readout from each end of the CsI bar is done with recently developed large-area silicon photomultiplier (SiPM) arrays. We currently have an APRA program to develop the calorimeter technology for a larger, future space-based gamma-ray observatory. Under this program, we are building and testing a prototype calorimeter consisting of 24 CsI bars (16.7 mm x 16.7 mm x 100 mm) arranged in 4 layers with 6 bars per layer. The ends of each bar are read out with a 2 x 2 array of 6 mm x 6 mm SensL J series SiPMs. Signal readout and processing is done with the IDEAS SIPHRA (IDE3380) ASIC. Performance testing of this prototype will be done with laboratory sources, a beam test, and a balloon flight in conjunction with the other subsystems led by NASA GSFC. Additionally, we will test 16.7 mm x 16.7 mm x 450 mm CsI bars with SiPM readout to understand the performance of longer bars in advance of the developing the full instrument.Acknowledgement: This work was sponsored by the Chief of Naval Research (CNR) and NASA-APRA (NNH15ZDA001N-APRA).

  16. Construction of a Forward Electro-magnetic Calorimeter SCISSORS III(I. Nuclear Physics)

    OpenAIRE

    石川, 貴嗣; 深澤, 宏司; 橋本, 亮; 石田, 孝司; 笠木, 治郎太; 鍬崎, 秀三; 宮原, 房史; 望月, 恵一; 中林, 匡; 縄, 健一; 岡田, 康友紀; 岡村, 憲有; 小野寺, 義人; 齋藤, 雄高; 清水, 肇

    2006-01-01

    A new electro-magnetic calorimeter complex FOREST with a solid angle of about 4π in total is under construction. It consists of three calorimeters: a forward one with CsI crystals, a middle one with lead scintillating fiber modules, and a backward one with lead glass Cerenkov counters. Recently, the forward calorimeter SCISSORS III takes shape.

  17. Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS.

    Science.gov (United States)

    You, Mei-Li

    2016-04-28

    Cumene hydroperoxide (CHP) is widely used in chemical processes, mainly as an initiator for the polymerization of acrylonitrile-butadiene-styrene. It is a typical organic peroxide and an explosive substance. It is susceptible to thermal decomposition and is readily affected by contamination; moreover, it has high thermal sensitivity. The reactor tank, transit storage vessel, and pipeline used for manufacturing and transporting this substance are made of metal. Metal containers used in chemical processes can be damaged through aging, wear, erosion, and corrosion; furthermore, the containers might release metal ions. In a metal pipeline, CHP may cause incompatibility reactions because of catalyzed exothermic reactions. This paper discusses and elucidates the potential thermal hazard of a mixture of CHP and an incompatible material's metal ions. Differential scanning calorimetry (DSC) and thermal activity monitor III (TAM III) were employed to preliminarily explore and narrate the thermal hazard at the constant temperature environment. The substance was diluted and analyzed by using a gas chromatography spectrometer (GC) and gas chromatography/mass spectrometer (GC/MS) to determine the effect of thermal cracking and metal ions of CHP. The thermokinetic parameter values obtained from the experiments are discussed; the results can be used for designing an inherently safer process. As a result, the paper finds that the most hazards are in the reaction of CHP with Fe(2+). When the metal release is exothermic in advance, the system temperature increases, even leading to uncontrollable levels, and the process may slip out of control.

  18. Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS

    Directory of Open Access Journals (Sweden)

    Mei-Li You

    2016-04-01

    Full Text Available Cumene hydroperoxide (CHP is widely used in chemical processes, mainly as an initiator for the polymerization of acrylonitrile–butadiene–styrene. It is a typical organic peroxide and an explosive substance. It is susceptible to thermal decomposition and is readily affected by contamination; moreover, it has high thermal sensitivity. The reactor tank, transit storage vessel, and pipeline used for manufacturing and transporting this substance are made of metal. Metal containers used in chemical processes can be damaged through aging, wear, erosion, and corrosion; furthermore, the containers might release metal ions. In a metal pipeline, CHP may cause incompatibility reactions because of catalyzed exothermic reactions. This paper discusses and elucidates the potential thermal hazard of a mixture of CHP and an incompatible material’s metal ions. Differential scanning calorimetry (DSC and thermal activity monitor III (TAM III were employed to preliminarily explore and narrate the thermal hazard at the constant temperature environment. The substance was diluted and analyzed by using a gas chromatography spectrometer (GC and gas chromatography/mass spectrometer (GC/MS to determine the effect of thermal cracking and metal ions of CHP. The thermokinetic parameter values obtained from the experiments are discussed; the results can be used for designing an inherently safer process. As a result, the paper finds that the most hazards are in the reaction of CHP with Fe2+. When the metal release is exothermic in advance, the system temperature increases, even leading to uncontrollable levels, and the process may slip out of control.

  19. Evaluation of mechanical properties and DSC study of commercial multilayer PA/PE film treated with E-beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Angel V. [UNIPAC Embalagens Ltda., Sao Paulo, SP (Brazil)]. E-mail: angel.ortiz@unipacnet.com; Moura, Esperidiana A.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: eabmoura@ipen.br; Coelho, Antonio C.V. [Sao Paulo Univ., SP (Brazil). Escola Politecnica]. E-mail: acvcoelh@usp.br

    2005-07-01

    Packaging materials have been widely processed by ionizing radiation in order to improve their chemical and physical properties and also for sterilization purposes. Basically, flexible packaging manufacturers apply specific radiation doses to promote cross-linking and scission of the polymeric chains and thus obtain alterations in certain properties of the material. While enhancing a specific property, significant losses may result in others. In this study, we examined the effects of E-beam radiation on a commercial multilayer PA6/LDPE based film, irradiated with doses up to 127 kGy. Food producers mostly use this structure as a thermoforming bottom web for processed meat products. Two weeks after irradiation, tensile strength and elongation of the film were analyzed. Both mechanical properties were again analyzed 18 months after irradiation took place. Significant changes of mechanical properties were observed specially 18 months after irradiation. Once cross-linking and scission are able to affect the material crystalline arrangement and consequently cause properties changes, a DSC ( Differential Scanning Calorimetry) study was carried out for doses up to 130 kGy in order to verify such changes. (author)

  20. Examination of fluorination effect on physical properties of saturated long-chain alcohols by DSC and Langmuir monolayer.

    Science.gov (United States)

    Nakahara, Hiromichi; Nakamura, Shohei; Okahashi, Yoshinori; Kitaguchi, Daisuke; Kawabata, Noritake; Sakamoto, Seiichi; Shibata, Osamu

    2013-02-01

    Partially fluorinated long-chain alcohols have been newly synthesized from a radical reaction, which is followed by a reductive reaction. The fluorinated alcohols have been investigated by differential scanning calorimetry (DSC) and compression isotherms in a Langmuir monolayer state. Their melting points increase with an increase in chain length due to elongation of methylene groups. However, the melting points for the alcohols containing shorter fluorinated moieties are lower than those for the typical hydrogenated fatty alcohols. Using the Langmuir monolayer technique, surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of monolayers of the fluorinated alcohols have been measured in the temperature range from 281.2 to 303.2K. In addition, a compressibility modulus (Cs(-1)) is calculated from the π-A isotherms. Four kinds of the alcohol monolayers show a phase transition (π(eq)) from a disordered to an ordered state upon lateral compression. The π(eq) values increase linearly with increasing temperatures. A slope of π(eq) against temperature for the alcohols with shorter fluorocarbons is unexpectedly larger than that for the corresponding fatty alcohols. Generally, fluorinated amphiphiles have a greater thermal stability (or resistance), which is a characteristic of highly fluorinated or perfluorinated compounds. Herein, however, the alcohols containing perfluorobutylated and perfluorohexylated chains show the irregular thermal behavior in both the solid and monolayer states. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Study of a Novel Concept for a Liquid Argon Calorimeter \

    CERN Multimedia

    2002-01-01

    % RD33 \\\\ \\\\ The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter prototype is proposed as a generic R\\&D project for a novel concept of calorimetry in proton-proton and electron-positron collider detectors: the $^{\\prime$Thin Gap Turbine$^{\\prime}$ (TGT). The TGT calorimeter has a modular construction, is flexible in its longitudinal and transverse granularity, and offers a uniform energy response and resolution, independent of the production angle of incident particles. An important aspect of the project is the development of fast, radiation-hard front-end electronics which is operating in the cold.

  2. An engineering prototype of the Imaging Calorimeter for ACCESS (ICA)

    Science.gov (United States)

    Rielage, K.; Christl, M.; Adams, J.; Binns, W. R.; Fountain, W.; Hink, P.; Howell, L.; Israel, M.; Kippen, R. M.; Lee, J.; Parnell, T.; Watts, J.

    2001-08-01

    The Imaging Calorimeter for ACCESS (Advanced Cosmic-ray Composition Experiment for Space Station) is one of several proposed concepts for the ACCESS calorimeter instrument designed to measure the spectrum of protons, helium and heavier nuclei up to ~10 15 eV. This design utilizes a carbon target and high atomic number absorber sampled by thin layers of scintillating fibers. An engineering prototype detector was tested at CERN in August 2000 composed of 15 radiation lengths of interaction material with two types of readout: photomultiplier tubes and an image intensified CCD system. An overview of this prototype and its performance will be presented.

  3. Tests of CMS Hadron Forward Calorimeter Upgrade Readout Box Prototype

    CERN Document Server

    Chatrchyan, Sergey; Sirunyan, Albert; Tumasyan, Armen; Mossolov, Vladimir; Shumeiko, Nikolai; Cornelis, Tom; Ochesanu, Silvia; Roland, Benoit Florent; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Spilbeeck, Alex; Alves, Gilvan Augusto; Martins, Thiago Dos Reis; Pol, Maria Elena; Vaz Da Silva Filho, Mario; Alda Junior, Walter Luiz; Carvalho, Wagner De Paula; Chinellato, Jose Augusto; De Oliveira Martins, Carley Pedro; Figueiredo, Diego Matos; Tonelli Manganote, Edmilson Jose; Molina Insfran, Jorge Andres; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Rosa Lopes Zachi, Alessandro; Finger, Miroslav; Finger, Michael; Tsamalaidze, Zviad; Borras, Kerstin; Gunnellini, Paolo; Jung, Hannes; Knutsson, Albert Hans; Lutz, Benjamin; Ribeiro Cipriano, Pedro Miguel; Sen, Niladri; Baus, Colin; Katkov, Igor; Ulrich, Ralf Matthias; Wohrmann, H; Panagiotou, Apostolos; Bencze, Gyorgy; Horvath, D; Bala, Suman; Gupta, Ruchi; Jindal, M; Lal, Manjit Kaur; Nishu, Nishu; Saini, Lovedeep Kaur; Banerjee, Sunanda; Bhattacharya, S; Gomber, Bhawna; Jain, Shilpi; Khurana, Raman; Sharan, Manoj Kumar; Aziz, Tariq; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Katta, Sudhakar; Banerjee, Sudeshna; Dugad, Shashikant Raichand; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Paktinat Mehdiabadi, Saeid; Zeinali, Maryam; Penzo, Aldo; Afanasyev, A; Bunin, Pavel; Ershov, Yuri; Fedoseev, Oleg; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Konoplynikov, V; Malakhov, Alexander; Moisenz, Petr; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoly; Andreev, Yuri; Dermenev, Alexander; Krasnikov, Nikolay; Pashenkov, Anatoli; Tlisov, Danila; Toropin, A; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kosov, Mikhail Vladimirovich; Kudinov, Ilya; Lychkovskaya, Natalia; Popov, V; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlassov, Evgueni; Zhokin, Alexander; Belyaev, A; Boos, Eduard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Savrin, Victor; Snigirev, Alexander; Vardanyan, Irina; Andreev, V; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Vinogradov, Alexey; Bayshev, Igor; Bityukov, Sergey; Grishin, Viatcheslav; Kryshkin, Victor; Petrov, V; Ryutin, Roman; Sobol, Andrey; Turchanovich, Leonid; Troshin, Sergey; Uzunyan, Andrey; Volkov, Alexey; Santanastasio, Francesco; Adiguzel, Aytul; Bakirci, Numan Mustafa; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; G�kbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Aliyev, Takhmasib; Deniz, Muhammed; Guler, Ali Murat; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gulmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Hatakeyama, Kenichi; Liu, H; Scarborough, Tara Ann; Rumerio, Paolo; Heister, Arno; Hill, C; Lawson, Philip Daniel; Lazic, Dragoslav; Rohlf, James; St. John, Jason; Sulak, Lawrence; Gennadiy, G; Laird, Edward; Landsberg, Greg; Narain, Meenakshi; Sinthuprasith, Tutanon; Tsang, Ka Vang; Long, Owen Rosser; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Stuart, David; To, Wing; West, Christopher Alan; Apresyan, Artur; Chen, Y; Mott, Alexander Robert; Spiropulu, Maria; Winn, David; Abdoulline, Salavat; Anderson, J; Chlebana, Frank; Freeman, James; Green, Daniel; Hanlon, J; Hirschauer, James Francis; Joshi, Umeshwar; Kunori, Shuichi; Musienko, Yuri; Sharma, Seema; Spalding, William Jeffrey; Tkaczyk, Slawomir; Vidal, Richard; Whitmore, Juliana; Wu, W; Gaultney, Vanessa; Linn, Stephan; Markowitz, Pete Edward; Martinez, German Ruben; Gleyzer, Sergei; Hagopian, Sharon Lee; Hagopian, Vasken; Jenkins, Charles Merrill; Baarmand, Marc M; Dorney, Brian L; Vodopiyanov, Igor; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren James; Duru, Firdevs; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony Richard; Nachtman, Jane; Newsom, Charles Ray; Norbeck, John Edwin; Olson, Jonathan Edward; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Schmidt, Ianos; Tiras, Emrah; Yetkin, Taylan; Yi, Kai; Kenny, Raymond Patrick; Murray, Michael Joseph; Wood, Jeffrey Scott; Baden, Andrew; Calvert, Brian Michael; Eno, Sarah Catherine; Gomez, Jaime Arturo; Grassi, Tullio; Hadley, Nicholas John; Kellogg, Richard; Kolberg, Ted; Lu, Y; Marionneau, Matthieu; Mignerey, Alice Louise Cox; Peterman, Alison Marie; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite Belt; Kao, Shih-Chuan; Klapoetke, Kevin Humphrey; Mans, Jeremiah Michael; Pastika, Nathaniel Joseph; Kroeger, Robert; Rahmat, Rahmat; Sanders, David; Cremaldi, Lucien Marcus; Jain, S; Anastassov, Anton; Velasco, Mayda Marie; Won, Steven; Heering, Adriaan; Karmgard, Daniel; Pearson, Tessa Jae; Ruchti, Randal; Berry, Edmund A; Halyo, Valerie; Hebda, Philip; Hunt, Adam Paul; Lujan, Paul Joseph; Marlow, Daniel; Medvedeva, Tatiana; Saka, Halil; Tully, Christopher; Zuranski, Andrzej Maciej; Barnes, Virgil Everett; Laasanen, Alvin; Bodek, Arie; Chung, Yeon Sei; de Barbaro, Pawel Jan; Eshaq, Yossof; Garcia-bellido, Aran Angel; Goldenzweig, Pablo David; Han, Ji Yeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert Adam; Flanagan, Will Hogan; Kamon, Teruki; Montalvo, Roy Joaquin; Sakuma, Tai; Akchurin, Nural; Damgov, Jordan; Dudero, Phillip Russell; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Gurrola, Alfredo; Milstene, Caroline

    2012-01-01

    A readout box prototype for CMS Hadron Forward calorimeter upgrade is built and tested in CERN H2 beamline. The prototype is designed to enable simultaneous tests of different readout options for the four anode upgrade PMTs, new front-end electronics design and new cabling. The response of the PMTs with different readout options is uniform and the background response is minimal. Multi-channel readout options further enhance the background elimination. Passing all the electronics, mechanical and physics tests, the readout box proves to be capable of providing the forward hadron calorimeter operations requirements in the upgrade era.

  4. The upgrade of the ATLAS first-level calorimeter trigger

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00227035; The ATLAS collaboration

    2016-01-01

    The first-level calorimeter trigger (L1Calo) had operated successfully through the first data taking phase of the ATLAS experiment at the CERN Large Hadron Collider. Toward forthcoming LHC runs, a series of upgrades is planned for L1Calo to face new challenges posed by the upcoming increases of the beam energy and the luminosity. This article reviews the ATLAS L1Calo trigger upgrade project that introduces new architectures for the liquid-argon calorimeter trigger readout and the L1Calo trigger processing system.

  5. Trigger processing using reconfigurable logic in the CMS calorimeter trigger

    CERN Document Server

    Brooke, J J; Heath, G P; Maddox, A J; Newbold, D; Rabbetts, P D

    2001-01-01

    We present the design of the Global Calorimeter Trigger processor for the CMS detector at LHC. This is a fully pipelined processor system which collects data from all the CMS calorimeters and produces summary information used in forming the Level-1 trigger decision for each event. The design in based on the use of state-of-the-art reconfigurable logic devices (FPGAs) and fast data links. We present the results of device testing using a low-latency pipelined sort algorithm, which demonstrate that an FPGA can be used to perform processing previously foreseen to require custom ASICs. Our design approach results in a powerful, flexible and compact processor system. (0 refs).

  6. The NOE scintillating fiber calorimeter prototype test results

    CERN Document Server

    Alexandrov, K V; Bernardini, P; Brigida, M; Campana, D; Candela, A M; Caruso, R; Cassese, F; Ceres, A; D'Aquino, B; De Cataldo, G; De Mitri, I; Di Credico, A; Favuzzi, C; Fusco, P; Gargano, F; Giglietto, N; Giordano, F; Grillo, A; Guarino, F; Gustavino, C; Lamanna, E; Lauro, A; Leone, A; Loparco, F; Mancarella, G; Martello, D; Mazziotta, M N; Mikheyev, S P; Mongelli, M; Osteria, G; Palladino, Vittorio; Passeggio, G; Perchiazzi, M; Pontoniere, G; Rainó, A; Rocco, R; Romanucci, E; Rubizzo, U; Sacchetti, A; Scapparone, E; Spinelli, P; Tikhomirov, V; Vaccina, A; Vanzanella, E; Weber, M

    2001-01-01

    An intense R&D program has been carried out by the NOE collaboration during the last years, to develop a massive fine grain scintillating fiber calorimeter, to be used, in combination with an appropriate target, in a long base line experiment at the CERN to Gran Sasso (CNGS) neutrino beam. The performance of a 4 ton NOE calorimeter prototype exposed to a test beam at CERN PS is shown. Results on the linearity, electromagnetic and hadronic energy resolution are reported and compared with the Monte Carlo predictions. (13 refs).

  7. Design and Prototyping of a High Granularity Scintillator Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  8. Measurement of the Contribution of Neutrons to Hadron Calorimeter Signals

    CERN Document Server

    Akchurin, N; Cardini, A; Ferrari, R; Gaudio, G; Hauptman, J; Kim, H; La Rotonda, L; Livan, M; Meoni, E; Paar, H; Penzo, Aldo L; Pinci, D; Policicchio, Antonio; Popescu, S; Susinno, G; Roh, Y; Vandelli, W; Wigmans, R

    2007-01-01

    The contributions of neutrons to hadronic signals from the DREAM calorimeter are measured by analyzing the time structure of these signals. The neutrons, which mainly originate from the evaporation stage of nuclear breakup in the hadronic shower development process, contribute through elastic scattering off protons in the plastic scintillating fibers which provide the $dE/dx$ information in this calorimeter. This contribution is characterized by an exponential tail in the pulse shape, with a time constant of $\\sim 25$ ns. The relative contribution of neutrons to the signals increases with the distance from the shower axis. As expected, the neutrons do not contribute to the DREAM \\v{C}erenkov signals.

  9. ATLAS Tile Calorimeter: simulation and validation of the response

    CERN Document Server

    Faltova, J; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is readout by wavelength shifting fibers and transmitted to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being further transferred to off-detector data-acquisition systems. Detailed simulations are described in this contribution, ranging from the implementation of the geometrical elements to the realistic description of the electronics readout pulses, including specific noise treatment and the signal reconstruction. Special attention is given to the improved optical signal propagation and the validation with the real particle data.

  10. Cooperative scans

    NARCIS (Netherlands)

    M. Zukowski (Marcin); P.A. Boncz (Peter); M.L. Kersten (Martin)

    2004-01-01

    textabstractData mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most

  11. Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Ajaltouni, Ziad J; Alifanov, A; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K J; Astvatsaturov, A R; Aubert, Bernard; Augé, E; Autiero, D; Azuelos, Georges; Badaud, F; Baisin, L; Battistoni, G; Bazan, A; Bee, C P; Bellettini, Giorgio; Berglund, S R; Berset, J C; Blaj, C; Blanchot, G; Blucher, E; Bogush, A A; Bohm, C; Boldea, V; Borisov, O N; Bosman, M; Bouhemaid, N; Brette, P; Bromberg, C; Brossard, M; Budagov, Yu A; Buono, S; Calôba, L P; Camin, D V; Canton, B; Casado, M P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chase, Robert L; Chekhtman, A; Chevaleyre, J C; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Cozzi, L; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; de La Taille, C; Del Prete, T; Depommier, P; de Saintignon, P; De Santo, A; Dinkespiler, B; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Fassnacht, P; Fedyakin, N N; Ferrari, A; Ferreira, P; Ferrer, A; Flaminio, Vincenzo; Fouchez, D; Fournier, D; Fumagalli, G; Gallas, E J; Gaspar, M; Gianotti, F; Gildemeister, O; Gingrich, D M; Glagolev, V V; Golubev, V B; Gómez, A; González, J; Gordon, H A; Grabskii, V; Hakopian, H H; Haney, M; Hellman, S; Henriques, A; Holmgren, S O; Honoré, P F; Hostachy, J Y; Huston, J; Ivanyushenkov, Yu M; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karapetian, G V; Karyukhin, A N; Khokhlov, Yu A; Klioukhine, V I; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Laborie, G; Lami, S; Lapin, V; Lebedev, A; Lefebvre, M; Le Flour, T; Leitner, R; León-Florián, E; Leroy, C; Le Van-Suu, A; Li, J; Liba, I; Linossier, O; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; Lund-Jensen, B; Mahout, G; Maio, A; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marroquin, F; Martin, L; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miotto, A; Miralles, L; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Muanza, G S; Nagy, E; Némécek, S; Nessi, Marzio; Nicoleau, S; Noppe, J M; Olivetto, C; Orteu, S; Padilla, C; Pallin, D; Pantea, D; Parrour, G; Pereira, A; Perini, L; Perlas, J A; Pétroff, P; Pilcher, J E; Pinfold, James L; Poggioli, Luc; Poirot, S; Polesello, G; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Resconi, S; Richards, R; Riu, I; Romanov, V; Ronceux, B; Rumyantsev, V; Rusakovitch, N A; Sala, P R; Sanders, H; Sauvage, G; Savard, P; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Scheel, C V; Schwemling, P; Schindling, J; Seguin-Moreau, N; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shchelchkov, A S; Shevtsov, V P; Shochet, M J; Sidorov, V; Simaitis, V J; Simion, S; Sissakian, A N; Solodkov, A A; Sonderegger, P; Soustruznik, K; Stanek, R; Starchenko, E A; Stephani, D; Stephens, R; Studenov, S; Suk, M; Surkov, A; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Tisserant, S; Tokár, S; Topilin, N D; Trka, Z; Turcot, A S; Turcotte, M; Valkár, S; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Wagner, D; White, Alan R; Wingerter-Seez, I; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zdrazil, M; Zitoun, R; Zolnierowski, Y

    1996-01-01

    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300~GeV at an incident angle $\\theta$ of about 11$^\\circ$ is well-described by the expression $\\sigma/E = ((46.5 \\pm 6.0)\\%/\\sqrt{E} +(1.2 \\pm 0.3)\\%) \\oplus (3.2 \\pm 0.4)~\\mbox{GeV}/E$. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied.

  12. Results from a new combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Akhmadaliev, S Z; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K; Andrieux, M L; Aubert, Bernard; Augé, E; Badaud, F; Baisin, L; Barreiro, F; Battistoni, G; Bazan, A; Bazizi, K; Bee, C P; Belorgey, J; Belymam, A; Benchekroun, D; Berglund, S R; Berset, J C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bonivento, W; Borgeaud, P; Borisov, O N; Bosman, M; Bouhemaid, N; Breton, D; Brette, P; Bromberg, C; Budagov, Yu A; Burdin, S V; Calôba, L P; Camarena, F; Camin, D V; Canton, B; Caprini, M; Carvalho, J; Casado, M P; Cases, R; Castillo, M V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chalifour, M; Chekhtman, A; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Citterio, M; Cleland, W E; Clément, C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Coulon, J P; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; Delagnes, E; de La Taille, C; Del Peso, J; Del Prete, T; de Saintignon, P; Di Girolamo, B; Dinkespiler, B; Dita, S; Djama, F; Dodd, J; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Eynard, G; Farida, F; Fassnacht, P; Fedyakin, N N; Fernández de Troconiz, J; Ferrari, A; Ferrer, A; Flaminio, Vincenzo; Fournier, D; Fumagalli, G; Gallas, E J; García, G; Gaspar, M; Gianotti, F; Gildemeister, O; Glagolev, V; Glebov, V Yu; Gómez, A; González, V; González de la Hoz, S; Gordeev, A; Gordon, H A; Grabskii, V; Graugès-Pous, E; Grenier, P; Hakopian, H H; Haney, M; Hébrard, C; Henriques, A; Henry-Coüannier, F; Hervás, L; Higón, E; Holmgren, S O; Hostachy, J Y; Hoummada, A; Huet, M; Huston, J; Imbault, D; Ivanyushenkov, Yu M; Jacquier, Y; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karst, P; Karyukhin, A N; Khokhlov, Yu A; Khubua, J I; Klioukhine, V I; Kolachev, G M; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kozlov, V; Krivkova, P; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Kuzmin, M V; Labarga, L; Laborie, G; Lacour, D; Lami, S; Lapin, V; Le Dortz, O; Lefebvre, M; Le Flour, T; Leitner, R; Leltchouk, M; Le Van-Suu, A; Li, J; Liapis, C; Linossier, O; Lissauer, D; Lobkowicz, F; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; López-Amengual, J M; Lottin, J P; Lund-Jensen, B; Lundqvist, J M; Maio, A; Makowiecki, D S; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marrocchesi, P S; Marroquin, F; Martin, L; Martin, O; Martin, P; Maslennikov, A M; Massol, N; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miralles, L; Mirea, A; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Mosidze, M D; Moynot, M; Muanza, G S; Nagy, E; Nayman, P; Némécek, S; Nessi, Marzio; Nicod, D; Nicoleau, S; Niculescu, M; Noppe, J M; Onofre, A; Pallin, D; Pantea, D; Paoletti, R; Park, I C; Parrour, G; Parsons, J; Pascual, J I; Pereira, A; Perini, L; Perlas, J A; Perrodo, P; Petroff, P; Pilcher, J E; Pinhão, J; Plothow-Besch, Hartmute; Poggioli, Luc; Poirot, S; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Puzo, P; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Rescia, S; Resconi, S; Richards, R; Richer, J P; Riu, I; Roda, C; Roldán, J; Romance, J B; Romanov, V; Romero, P; Rusakovitch, N A; Sala, P R; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Sauvage, D; Sauvage, G; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shaldaev, E; Shchelchkov, A S; Shochet, M J; Sidorov, V; Silva, J; Simaitis, V J; Simion, S; Sissakian, A N; Soloviev, I V; Snopkov, R; Söderqvist, J; Solodkov, A A; Sonderegger, P; Soustruznik, K; Spanó, F; Spiwoks, R; Stanek, R; Starchenko, E A; Stavina, P; Stephens, R; Studenov, S; Suk, M; Surkov, A; Sykora, I; Taguet, J P; Takai, H; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Thion, J; Tikhonov, Yu A; Tisserand, V; Tisserant, S; Tokar, S; Topilin, N D; Trka, Z; Turcotte, M; Valkár, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vichou, I; Vincent, P; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Walter, C; White, A; Wielers, M; Wingerter-Seez, I; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zitoun, R; Zolnierowski, Y

    2000-01-01

    A new combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 10 to 300 GeV at an incident angle theta of about 12 degrees is well described by the expression sigma /E=((41.9+or-1.6)%/ square root E+(1.8+or-0.1)%)(+) (1.8+or-0.1)/E, where E is in GeV. The response to electrons and muons was evaluated. Shower profiles, shower leakage and the angular resolution of hadronic showers were also studied. Results are compared with those from the previous beam test. (22 refs).

  13. Long term stability of dye sensitized solar cells for large area power applications. LOTS-DSC

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, J.M.; Hinsch, A.; Van Roosmalen, J.A.M.; Van der Burg, N.P.G.; Bakker, N.J.; Kinderman, R.; Sommeling, P.M.; Spaeth, M. [Energy research Centre of the Netherlands ECN, Petten (Netherlands); Kern, R.; Sastrawan, R.; Ferber, J.; Schubert, M.; Hasenhindl, G.; Schill, C.; Lorenz, M.; Stangl, R.; Baumgaertner, S.; Peter, C. [Freiburg Materials Research Center FMF, Freiburg (Germany); Meyer, A.; Meyer, T. [Solaronix S.A., Aubonne (Switzerland); Uhlendorf, I.; Holzbock, J.; Niepmann, R. [Insitut fuer Angewandte Photovoltaik INAP, Gelsenkirchen (Germany)

    2001-11-01

    In this three-year project the project partners have worked on the long-term stability and efficiency of nanocrystalline Dye-sensitized Solar Cells (nc-DSC). Accelerated ageing tests on nc-DSC show that, to first order, a separation between the effects of the stress factors visible light soaking, UV-illumination and thermal treatment on the long-term stability can be made. The corresponding mechanisms are of electrochemical, photochemical and pure chemical nature respectively. It has been further proven that 2-valent salts like MgI{sub 2} and CaI{sub 2} as additives to the electrolyte have a strong stabilising effect during UV-illumination. Tests under continuos light soaking for several thousand hours demonstrate the ability of nc-DSCs to operate for at least 5-10 years under outdoor illumination conditions without major degradations. Continuos and periodic thermal tests according to IEC 1215 norms are promising but with 30% to 40% loss in efficiency still critical. Certified AM1.5 efficiencies up to 8.2% have been reached for nc-DSC on areas larger 1 cm., i.e. 2.5 cm{sup 2}. A 2-Dimensional electrical model describing the contributions of the various cell components to the electrical behaviour has been developed. 6 refs.

  14. Uso de DSC na determinação de parâmetros de vulcanização de látex de borracha natural The use of DSC in the determination of natural rubber latex vulcanization

    Directory of Open Access Journals (Sweden)

    Augusto C. C. Peres

    2006-03-01

    Full Text Available Os processos de obtenção de artefatos de borracha natural (NR a partir do látex e a composição dos sistemas de vulcanização são fundamentais na determinação da aplicabilidade e qualidade destes artefatos. Varias técnicas podem ser usadas para a verificação da eficiência do processamento e dos sistemas de vulcanização. O objetivo deste trabalho foi estudar a eficiência da vulcanização de látex de NR por dois sistemas de vulcanização SV1 (sistema convencional e SV2 (sistema eficiente em diferentes concentrações através de medidas calorimétricas. A Calorimetria Diferencial de Varredura (DSC mostrou ser uma técnica eficaz na obtenção de parâmetros de vulcanização como velocidade, tempo de pré-vulcanização, bem como do excesso de ligações cruzadas. Os resultados foram corroborados pelos ensaios de resistência à tração e análise óptica. De forma geral, o sistema de vulcanização convencional SV1, em comparação ao sistema eficiente SV2 mostrou-se mais adequado para uso, nas condições experimentais deste trabalho, por fornecer maior velocidade de vulcanização, maior segurança de processo e melhor desempenho mecânico.The manufacture of natural rubber goods from the latex has significant commercial interest. The processes to obtain these artifacts, the type and amounts of the vulcanization systems used are of utmost importance in determining their quality and suitability. A number of techniques can be used to verify the efficiency of both the processing and the vulcanization systems. The objective of this work was the study of the efficiency of NR latex vulcanization carried out by two vulcanization systems, namely SV1 (conventional system and SV2 (efficient system in different concentrations, by differential scanning calorimetry (DSC. The DSC has been found to be a very efficient technique for the acquisition of data which would allow the determination of the vulcanization rate, pre-vulcanization time

  15. Revisiting Cuts for Improved Calibrations of the PHENIX Muon Piston Calorimeter

    Science.gov (United States)

    Bownes, Emma; Phenix Collaboration

    2016-09-01

    The PHENIX Muon Piston Calorimeter (MPC) has been used extensively to study RHIC p+p and d+Au collisions, but has not been used as often in the analysis of Au+Au collisions. Forward/backward measurements of transverse energy 3 . 1 in the beam energy scan are of particular interest for studies of the strongly interacting quark-gluon plasma. Now that new methods are being employed to help calibrate the heavy ion collisions, focus can again be put on the optimal set of cuts for calibrating these runs. Studies leading to the determination of these cuts will be described. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.

  16. Update on the Hadron calorimeter of the CMS Experiment at CERN.

    CERN Document Server

    Hagopian, Vasken

    2008-01-01

    The construction and assembly of the Hadron Calorimeter is now complete and commissioning is almost done. The hadron calorimeter inside the CMS detector is made of scintillator and copper absorber covering the |η| range of 0.0 to 3.0. The forward calorimeter, made of quartz fibers and iron absorber, covers the |η| range of 3.0 to 5.0. Recent test beam effort is aimed at understanding of the performance of the Hadron Calorimeter in conjunction with the lead tungstate crystal Electromagnetic Calorimeter. Recent test beam results using production modules help us improve resolution. Work has started on several upgrade fronts for the high luminosity LHC.

  17. First physics pulses in the Barrel Electromagnetic Calorimeter with cosmics

    CERN Multimedia

    Laurent Serin

    2006-01-01

    The electromagnetic barrel calorimeter has been installed in its final position in October 2005. Since then, the calorimeter is being equipped with front-end electronics. Starting in April 2006, electronics calibration runs are taken a few times per week to debug the electronics and to study the performance in the pit (stability, noise). Today, 10 out of the 32 Front End crates are being read out, amounting to about 35000 channels. cool down, few little typos --> After a 6-week cool down, the barrel cryostat was filled with Liquid Argon in May. The presence of a few shorts (~1MΩ) at the edges of the modules was indicating the possibility of conducting dust having entered into the calorimeter with the flowing liquid. In order to try to improve this situation, the calorimeter was emptied and filled again, but this time by condensating the argon instead of flowing it in liquid phase. The new High Voltage tests are not showing any significant improvement but the situation is statisfactory for ATLAS runn...

  18. An electromagnetic calorimeter for the silicon detector concept

    Indian Academy of Sciences (India)

    Silicon calorimeters are quite stable. Since the largest change in response is due to the electronics, it is designed with an internal calibration system. This internal calibration should limit the spread within a chip to ∼1%. Chip-to-chip variations could be larger. Each sensor might be calibrated after the readout chip has been.

  19. Digital Filter Performance for the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Hadley, D R; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger is a hardware-based system designed to identify high-pT jets, electron/photon and tau candidates, and to measure total and missing ET in the ATLAS Liquid Argon and Tile calorimeters. It is a pipelined processor system, with a new set of inputs being evaluated every 25ns. The overall trigger decision has a latency budget of 2µs, including all transmission delays. The calorimeter trigger uses about 7200 reduced granularity analogue signals, which are first digitized at the 40 MHz LHC bunch-crossing frequency, before being passed to a digital Finite Impulse Response (FIR) filter. Due to latency and chip real-estate constraints, only a simple 5-element filter with limited precision can be used. Nevertheless this filter achieves a significant reduction in noise, along with improving the bunch-crossing assignment and energy resolution for small signals. The context in which digital filters are used for the ATLAS Level-1 Calorimeter Trigger will be presented, before describing ...

  20. Digital Filtering Performance in the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Hadley, D R; The ATLAS collaboration

    2010-01-01

    The ATLAS Level-1 Calorimeter Trigger is a hardware-based system designed to identify high-pT jets, elec- tron/photon and tau candidates, and to measure total and missing ET in the ATLAS Liquid Argon and Tile calorimeters. It is a pipelined processor system, with a new set of inputs being evaluated every 25ns. The overall trigger decision has a latency budget of 2µs, including all transmission delays. The calorimeter trigger uses about 7200 reduced granularity analogue signals, which are first digitized at the 40 MHz LHC bunch-crossing frequency, before being passed to a digital Finite Impulse Re- sponse (FIR) filter. Due to latency and chip real-estate constraints, only a simple 5-element filter with limited precision can be used. Nevertheless, this filter achieves a significant reduction in noise, along with improving the bunch-crossing assignment and energy resolution for small signals. The context in which digital filters are used for the ATLAS Level-1 Calorimeter Trigger is presented, before descr...

  1. ATLAS Liquid Argon Calorimeter at dawn of LHC Run-2

    CERN Document Server

    Camincher, Clement; The ATLAS collaboration

    2015-01-01

    At the start of the LHC Run-2 here is an overview of the Liquid Argon Calorimeter of ATLAS. It is described the main modifications done during the long shutdown (2013-2015). The first LAr-related results with 2015 data are also highlighted. Finally a short description present the foreseen Phase-I upgrade of the L1 Calo trigger.

  2. Ignitability analysis using the cone calorimeter and lift apparatus

    Science.gov (United States)

    Mark A. Dietenberger

    1996-01-01

    The irradiance plotted as function of time to ignition for wood materials tested in the Cone Calorimeter (ASTM E1354) differs signiticantly from that tested in the Lateral Ignition and Flame spread Test (LIFT) apparatus (ASTM E1321). This difference in piloted ignitabilty is primarily due to the difference in forced convective cooling of the specimen tested in both...

  3. Cone calorimeter testing of vegetation--an update

    Science.gov (United States)

    Robert H. White; David R. Weise; Kurt Mackes; Alison C. Dibble

    2002-01-01

    As part of efforts to address fire problems in the wildland-urban interface, the cone calorimeter is being used to measure the relative flammability of different plant species. In the first two studies, we tested plants used to landscape homes in California and an assortment of plants found in Colorado. Using the effective heat of combustion and the peak heat release...

  4. Upgrade of the ATLAS Calorimeters for Higher LHC Luminosities

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00424300; The ATLAS collaboration

    2016-01-01

    The upgrade of the LHC will bring instantaneous and total luminosities which are a factor 5-7 beyond the original design of the ATLAS Liquid Argon (LAr) and Tile Calorimeters and their read-out systems. Due to radiation requirements and a new hardware trigger concept the read-out electronics will be improved in two phases. In Phase-I, a dedicated read-out of the LAr Calorimeters will provide higher granularity input to the trigger, in order to mitigate pile-up effects and to reduce the background rates. In Phase-II, completely new read-out electronics will allow a digital processing of all LAr and Tile Calorimeter channels at the full 40 MHz bunch-crossing frequency and a transfer of calibrated energy inputs to the trigger. Results from system design and performance of the developed read-out components, including fully functioning demonstrator systems already operated on the detector, will be reported. Furthermore, the current Forward Calorimeter (FCal) may suffer from signal degradation and argon bubble form...

  5. Testbeam Studies of Production Modules of the ATLAS Tile Calorimeter

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Arabidze, A; Batkova, L; Batusov, V; Beck, H P; Bednar, P; Bergeaas Kuutmann, E; Biscarat, C; Blanchot, G; Bogush, A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, Yu A; Burckhart-Chromek, D; Caprini, M; Caloba, L; Calvet, D; Carli, T; Carvalho, J; Cascella, M; Castelo, J; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Corso-Radu, A; Cuenca, C; Damazio, D O; David, M; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Djobava, T; Dobson, M; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Efthymiopoulos, I; Eriksson, D; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Febbraro, R; Fedorko, I; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Francis, D; Fullana, E; Gadomski, S; Gameiro, S; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gorini, B; Grenier, P; Gris, P; Gruwé, M; Guarino, V; Guicheney, C; Sen-Gupta, A; Haeberli, C; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Holmgren, S; Hurwitz, M; Huston, J; Iglesias, C; Isaev, A; Jen-La Plante, I; Jon-And, K; Joos, M; Junk, T; Karyukhin, A; Kazarov, A; Khandanyan, H; Khramov, J; Khubua, J; Kolos, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Le Compte, T; Lefèvre, R; Lehmann, G; Leitner, R; Lembesi, M; Lesser, J; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lupi, A; Maidantchik, C; Maio, A; Makouski, M; Maliukov, S; Manousakis, A; Mapelli, L; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Mosidze, M; Némécek, S; Nessi, M; Nodulman, L; Nordkvist, B; Norniella, O; Onofre, A; Oreglia, M; Pallin, D; Pantea, D; Petersen, J; Pilcher, J E; Pina, J; Pinhão, J; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramstedt, M; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsev, V; Russakovich, N; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Satsunkevitch, I; Says, L-P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Da Silva, P; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Soloviev, I; Solovyanov, O; Sosebee, M; Spanó, F; Stanek, R; Starchenko, E; Starovoitov, P; Stavina, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tremblet, L; Tsiareshka, P; Tylmad, M; Underwood, D; Ünel, G; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2009-01-01

    We report test beam studies of {11\\,\\%} of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3~GeV to 350~GeV. Two independent studies showed that the light yield of the calorimeter was $\\sim 70$~pe/GeV, exceeding the design goal by {40\\,\\%}. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200~calorimeter cells the variation of the response was {2.4\\,\\%}. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5\\,\\% for 91~measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of {1.4\\,\\%} for the modules and projective angles studied. The respon...

  6. The Energy Response of the ATLAS Calorimeter System

    CERN Document Server

    Schlager, G; Carli, T; Fabjan, Christian Wolfgang; Henriques, A

    2006-01-01

    The Large Hadron Collider (LHC) currently under construction at the European Organization for Nuclear Research (CERN) in Geneva will collide two proton beams with a center-of-mass energy of 14 TeV. At this high energy frontier a new chapter of particle physics will be opened. The ATLAS experiment is a general-purpose LHC detector for proton-proton collisions. The electromagnetic liquid argon-lead sampling calorimeter (LAr Calorimeter) is designed to measure the energy and position of electrons and photons with high precision and the hadronic scintillator-iron sampling calorimeter (TileCal) complements the measurement of the energy and direction of jets. Both calorimeters are installed in the ATLAS experimental cavern and are presently being commissioned. To be able to start the commissioning of the TileCal in an early phase, even before the final electronic readout system was available, a mobile data acquisition system (MobiDAQ) was developed in the context of this PhD-thesis. It is capable of reading up to e...

  7. Upgrade of hadron endcap calorimeters CMS at LHC

    Science.gov (United States)

    Bunin, P. D.; Zaroubin, A. V.

    2017-09-01

    We present the survey of the main tasks in upgrading the hadron endcap (HE) calorimeters of the CMS experiment at LHC. The results of the HE upgrade during the LHC Long Shutdown (2013-2014) and plans for upgrade during LHC Extended Year End Technical Stop (December 2016-May 2017) are discussed.

  8. Development of shashlik electromagnetic calorimeter prototype for SoLID

    Science.gov (United States)

    Shen, C.; Wang, Y.; Xiao, D.; Han, D.; Zou, Z.; Li, Y.; Zheng, X.; Chen, J.

    2017-03-01

    A shashlik electromagnetic calorimeter will be produced in Hall A of Jefferson Laboratory for Solenoidal large Intensity Device (SoLID) to measure the energy deposition of electrons and hadrons, and to provide particle identification after the energy of the accelerator was upgraded to 12 GeV. Tsinghua University is the member of Hall A collaboration in charge of development and production of the large shashlik electromagnetic calorimeter of SoLID. One module of that calorimeter is composed by 194 layers. Each layer consists of a 1.5 mm thick plastic scintillator put on top of a 0.5 mm thick lead plate. Scintillation light is read out by wave-length shifter fibers penetrating through the calorimeter modules longitudinally along the direction of flight of the impact particle. This paper describes the design and construction of that module, as well as a few optimization studies meant to improve its performance. A detailed Geant4 simulation also shows that an energy resolution of 5%/√ E (GeV) and a good containment for electromagnetic showers can be achieved, as well as some basic electron identification. A prototype of that module will be tested soon with an electron beam at JLab.

  9. Last fibre for the CMS's forward hadronic calorimeter

    CERN Multimedia

    2004-01-01

    In February an important milestone was passed by the CMS's forward hadronic calorimeter project: the last of 450000 quartz fibres was inserted and the wedge preparation phase has now been completed. Ten thousand working hours were spent on inserting 450 000 quartz fibres into the CMS's forward hadronic calorimeter! Patience and meticulous attention to detail were the two qualities required by the five people who undertook this special job at CERN. On 6 February their task was completed. "The CMS's forward hadronic calorimeter (HF) covers the region immediately close to the LHC beam, 0.6 degrees to 6 degrees from the beam line," explains project coordinator Tiziano Camporesi. The detection of high energy jets in this angular region will be very important in helping to identify the signature of the Higgs boson or possibly any new boson produced in proton-proton collision in the LHC. Rita Fodor, 19, is working on one wedge of the CMS's forward hadronic calorimeter in building 186. She and her...

  10. Calorimeter energy calibration using the energy conservation law

    Indian Academy of Sciences (India)

    A new calorimeter energy calibration method was developed for the proposed ILC detectors. The method uses the center-of-mass energy of the accelerator as the reference. It has been shown that using the energy conservation law it is possible to make ECAL and HCAL cross calibration to reach a good energy resolution ...

  11. Feature-extraction algorithms for the PANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Kavatsyuk, M.; Guliyev, E.; Lemmens, P. J. J.; Loehner, H.; Poelman, T. P.; Tambave, G.; Yu, B

    2009-01-01

    The feature-extraction algorithms are discussed which have been developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA detector at the future FAIR facility. Performance parameters have been derived in test measurements with cosmic rays, particle and photon

  12. MRI Scans

    Science.gov (United States)

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from ...

  13. Bone Scan

    Science.gov (United States)

    ... posts Join Mayo Clinic Connect Bone scan About Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  14. Geometric alignment of the CMD-3 endcap electromagnetic calorimeter using events of two-quantum annihilation

    Science.gov (United States)

    Akhmetshin, R. R.; Grigoriev, D. N.; Kazanin, V. F.; Kuzmenko, A. E.; Timofeev, A. V.

    2017-08-01

    Since 2010 the electromagnetic endcap calorimeter based on BGO crystals is used in experiments as one of the systems of the CMD-3 detector. The spacial resolution is one of crucial parameters of the calorimeter. Inaccurate knowledge of the real calorimeter position can limit the resolution. In this work the alignment of the center of the calorimeter with respect to the tracking system of the CMD-3 detector has been performed using events of two-quantum annihilation. The alignment technique that has been used to determine the position of the calorimeter is described. Finally, the improvement in spacial resolution of the calorimeter after applying the correction for the real calorimeter position is shown.

  15. Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu A; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; Davidek, M; David, T; Dawson, J; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Lapin, V; Le Compte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Russakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovianov, J; Silva, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tr...

  16. Identification of ageing biomarkers in human dermis biopsies by thermal analysis (DSC) combined with Fourier transform infrared spectroscopy (FTIR/ATR).

    Science.gov (United States)

    Tang, R; Samouillan, V; Dandurand, J; Lacabanne, C; Lacoste-Ferre, M-H; Bogdanowicz, P; Bianchi, P; Villaret, A; Nadal-Wollbold, F

    2017-11-01

    The purpose of this clinical study was to identify suitable biomarkers for a better understanding of the molecular and organizational changes in human dermis during intrinsic and extrinsic ageing. Sun-exposed and non-exposed skin biopsies were collected from twenty-eight women devised in two groups (20-30 and ≥60 years old). The hydric organization and thermal transitions were determined by Differential Scanning Calorimetry (DSC). Fourier Transform Infrared spectroscopy (FTIR) was used to identify the absorption bands of the dermis and to quantify the different absorbance ratio. The amounts of total, freezable and unfreezable water were determined. A significant increasing amount of freezable water is evidenced in sun-exposed area skin of aged group compared with young group (P=.0126). Another significant effect of extrinsic ageing (P=.0489) is the drastic decrease of fibrillary collagen, the main protein component of dermis. The only significant effect of intrinsic ageing (P=.0184) is an increase of the heat-stable fraction of collagens in dermis. DSC and FTIR are well-suited techniques to characterize human skin, giving accurate results with a high reproducibility. The combination of these techniques is useful for a better understanding of human skin modifications with intrinsic and extrinsic ageing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Peter, E-mail: pl404@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS (United Kingdom); Wojcik, Tomasz [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Povoden-Karadeniz, Erwin [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Falahati, Ahmad [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Kozeschnik, Ernst [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria)

    2014-10-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed.

  18. Performance of the NuTeV Fe-Scintillator Sampling Calorimeter and Implications for Thin Calorimeters

    Science.gov (United States)

    Avvakumov, S.; Adams, T.; Alton, A.; de Barbaro, L.; de Barbaro, P.; Berlin, D.; Bernstein, R. H.; Bodek, A.; Bolton, T.; Brau, J.; Buchholz, D.; Budd, H.; Bugel, L.; Conrad, J.; Drucker, R. B.; Frey, R.; Formaggio, J.; Goldman, J.; Goncharov, M.; Harris, D. A.; Johnson, R. A.; Koutsoliotas, S.; Kim, J. H.; Krishnaswami, G. K.; Lamm, M. J.; Marsh, W.; Mason, D.; McNulty, C.; McFarland, K. S.; Naples, D.; Nienaber, P.; Romosan, A.; Sakumoto, W. K.; Schellman, H.; Shaevitz, M. H.; Spentzouris, P.; Stern, E. G.; Tamminga, B.; Vakili, M.; Vaitaitis, A.; Wu, V.; Yang, U. K.; Yu, J.; Zeller, G. P.

    1999-08-01

    NuTeV is a neutrino-nucleon deep inelastic scattering experiment at Fermilab. The NuTeV detector is a traditional heavy target neutrino detector which consists of an iron/liquid scintillator sampling calorimeter followed by a muon spectrometer. The calorimeter response to hadrons, muons and electrons has been measured in an in situ calibration beam over the energy range from 4.5 to 190 GeV. The small non-linearity of the response to hadrons is compared to the expectation from the measured ratio of responses between electrons and hadrons combined with the energy dependence of the fractional electromagnetic energy deposition in the form of neutral pions in hadronic showers fπ0( Eπ). The predictions use fπ0( Eπ) from the Monte Carlo simulations by GHEISHA, GFLUKA and GCALOR and also from the parameterizations of Wigmans and Groom. In addition, a study based on the NuTeV hadron calibration data of the effectiveness of a thin calorimeter is presented. The results of this study have important consequences for the energy resolution of calorimeters used in other applications; for example, measuring the cosmic ray flux in space or with balloon-based experiments.

  19. Performance of the NuTeV Fe-scintillator sampling calorimeter and implications for thin calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Avvakumov, S.; Adams, T.; Alton, A.; Barbaro, L. de; Barbaro, P. de; Berlin, D.; Bernstein, R.H.; Bodek, A.; Bolton, T.; Brau, J.; Buchholz, D.; Budd, H.; Bugel, L.; Conrad, J.; Drucker, R. B.; Frey, R.; Formaggio, J.; Goldman, J.; Goncharov, M.; Harris, D. A.; Johnson, R. A.; Koutsoliotas, S.; Kim, J. H.; Krishnaswami, G. K.; Lamm, M. J.; Marsh, W.; Mason, D.; McNulty, C.; McFarland, K. S.; Naples, D.; Nienaber, P.; Romosan, A.; Sakumoto, W. K.; Schellman, H.; Shaevitz, M. H.; Spentzouris, P.; Stern, E. G.; Tamminga, B.; Vakili, M.; Vaitaitis, A.; Wu, V.; Yang, U. K.; Yu, J.; Zeller, G. P

    1999-08-01

    NuTeV is a neutrino-nucleon deep inelastic scattering experiment at Fermilab. The NuTeV detector is a traditional heavy target neutrino detector which consists of an iron/liquid scintillator sampling calorimeter followed by a muon spectrometer. The calorimeter response to hadrons, muons and electrons has been measured in an in situ calibration beam over the energy range from 4.5 to 190 GeV. The small non-linearity of the response to hadrons is compared to the expectation from the measured ratio of responses between electrons and hadrons combined with the energy dependence of the fractional electromagnetic energy deposition in the form of neutral pions in hadronic showers f{sub {pi}{sup 0}}(E{sub {pi}}). The predictions use f{sub {pi}{sup 0}}(E{sub {pi}}) from the Monte Carlo simulations by GHEISHA, GFLUKA and GCALOR and also from the parameterizations of Wigmans and Groom. In addition, a study based on the NuTeV hadron calibration data of the effectiveness of a thin calorimeter is presented. The results of this study have important consequences for the energy resolution of calorimeters used in other applications; for example, measuring the cosmic ray flux in space or with balloon-based experiments.

  20. Differential scanning calorimetry of the effects of temperature and humidity on phenol-formaldehyde resin cure

    Science.gov (United States)

    X.-M. Wang; B. Riedl; A.W. Christiansen; R.L. Geimer

    1994-01-01

    Phenol-formaldehyde (PF) resin is a widely used adhesive in the manufacture of wood composites. However, curing behaviour of the resin under various environmental conditions is not well known. A differential scanning calorimeter was employed to characterize the degree of resin cure in this study. Resin-impregnated glass cloth samples with varied moisture contents (0,31...

  1. Entalpia reticular, entalpia de fusão e temperatura de fusão de adutos: algumas correlações empíricas utilizando DSC

    OpenAIRE

    Farias Robson Fernandes de

    1999-01-01

    By using DSC data is shown that there are empirical correlations between lattice enthalpy, melting enthalpy and the temperature of melting for adducts, and that is possible, using only a single DSC curve, estimate the value of DM Hmq.

  2. DTA and DSC study on the effect of mechanical dispersion on poly(tetrafluorethylene properties

    Directory of Open Access Journals (Sweden)

    Dumitraşa Mihai

    2014-12-01

    Full Text Available Poly(tetrafluorethylene particles were obtained by mechanical processing of the formed polymer (Teflon bar. In order to assess the effect of mechanical wear on polymer properties, their melting and crystallization behaviour was investigated by DSC and DTA, and the results were compared to the ones obtained for the native polymer. An increase of the crystallinity degree and an accentuated decrease of the average molecular weight were found for the samples submitted to mechanical wear, as a result of mechanical degradation of the polymer

  3. Effects of pH and buffer concentration on the thermal stability of etanercept using DSC and DLS.

    Science.gov (United States)

    Kim, Nam Ah; An, In Bok; Lim, Dae Gon; Lim, Jun Yeul; Lee, Sang Yeol; Shim, Woo Sun; Kang, Nae-Gyu; Jeong, Seong Hoon

    2014-01-01

    The protein size, electrical interaction, and conformational stability of etanercept (marketed as Enbrel®) were examined by thermodynamic and light scattering methods with changing pH and buffer concentration. As pH of etanercept increased from pH 6.6 to 8.6, electrical repulsion in the solution increased, inducing a decrease in protein size. However, the size changed less in high buffer concentration and irreversible aggregation issues were not observed; in contrast, aggregates of about 1000 nm were observed in low buffer concentration at the pH range. Three significant unfolding transitions (Tm) were observed by differential scanning calorimetry (DSC). Unlikely to Tm1, Tm2 and Tm3 were increased as the pH increased. Higher Tm at high buffer concentration was observed, indicating increased conformational stability. The apparent activation energy of unfolding was further investigated since continuous increase of Tm2 and Tm3 was not sufficient to determine optimal conditions. A higher energy barrier was calculated at Tm2 than at Tm3. In addition, the energy barriers were the highest at pH from 7.4 to 7.8 where higher Tm1 was also observed. Therefore, the conformational stability of protein solution significantly changed with pH dependent steric repulsion of neighboring protein molecules. An optimized pH range was obtained that satisfied the stability of all three domains. Electrostatic circumstances and structural interactions resulted in irreversible aggregation at low buffer concentrations and were suppressed by increasing the concentration. Therefore, increased buffer concentration is recommended during protein formulation development, even in the earlier stages of investigation, to avoid protein instability issues.

  4. Scanning table

    CERN Multimedia

    1960-01-01

    Before the invention of wire chambers, particles tracks were analysed on scanning tables like this one. Today, the process is electronic and much faster. Bubble chamber film - currently available - (links can be found below) was used for this analysis of the particle tracks.

  5. Scan Statistics

    CERN Document Server

    Glaz, Joseph

    2009-01-01

    Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.

  6. Noise dependence with pile-up in the ATLAS Tile Calorimeter. Pile-up noise studies in the ATLAS TileCal calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Araque, J.P. [ATLAS Tile Calorimeter System, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Departamento de Fisica da Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-07-01

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment, positioned between the electromagnetic calorimeter and the muon chambers. It comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. These conditions are really challenging when dealing with the energy measurements in the calorimeter since not only the energy from an interesting event will be measured but a component coming from other collisions, which are difficult to distinguish from the interesting one, will also be present. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects calorimeter noise under different circumstances are described. (author)

  7. The CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Mastrolorenzo, Luca

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with SiPM readout. The intrinsic high-precision timing capabilities of the silicon sensors wi...

  8. The CMS High Granularity Calorimeter for the High Luminosity LHC

    CERN Document Server

    Sauvan, Jean-baptiste

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities...

  9. Readiness of the ATLAS Tile Calorimeter for LHC collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muino, P.; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Fopma, J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gurriana, L.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Hollander, D.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manhaes de Andrade Filho, L.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Miller, M.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.M.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Ponsot, P.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Ribeiro, N.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, JEM; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schonig, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Tunnell, C.D.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valero, A.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.

    2010-01-01

    The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of the timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design of 1%. The determination of the global energy scale was performed with an uncertainty of 4%.

  10. The readout driver (ROD) for the ATLAS liquid argon calorimeters

    CERN Document Server

    Efthymiopoulos, I

    2001-01-01

    The Readout Driver (ROD) for the Liquid Argon calorimeter of the ATLAS detector is described. Each ROD module receives triggered data from 256 calorimeter cells via two fiber-optics 1.28 Gbit/s links with a 100 kHz event rate (25 kbit/event). Its principal function is to determine the precise energy and timing of the signal from discrete samples of the waveform, taken each period of the LHC clock (25 ns). In addition, it checks, histograms, and formats the digital data stream. A demonstrator system, consisting of a motherboard and several daughter-board processing units (PUs) was constructed and is currently used for tests in the lab. The design of this prototype board is presented here. The board offers maximum modularity and allows the development and testing of different PU designs based on today's leading integer and floating point DSPs. (3 refs).

  11. Particle Showers in a Highly Granular Hadron Calorimeter

    CERN Document Server

    Simon, Frank

    2010-01-01

    The CALICE collaboration has constructed highly granular electromagnetic and hadronic calorimeter prototypes to evaluate technologies for the use in detector systems at a future Linear Collider. The hadron calorimeter uses small scintillator cells individually read out with silicon photomultipliers. The system with 7608 channels has been successfully operated in beam tests at DESY, CERN and Fermilab since 2006, and represents the first large scale tests of these devices in high energy physics experiments. The unprecedented granularity of the detector provides detailed information of the properties of hadronic showers, which helps to constrain hadronic shower models through comparisons with model calculations. We will discuss results on longitudinal and lateral shower profiles compared to a variety of different shower models, and present studies of the energy reconstruction of hadronic showers using software compensation techniques.

  12. Performance of the CHORUS lead-scintillating fiber calorimeter

    CERN Document Server

    Buontempo, S

    1997-01-01

    We report on the design and performance of the lead-scintillating fiber calorimeter of the CHORUS experiment, which searches for νμ-ντ oscillations in the CERN Wide Band Neutrino beam. Two of the three sectors in which the calorimeter is divided are made of lead and plastic scintillating fibers, and they represent the first large scale application of this technique for combined electromagnetic and hadronic calorimetry. The third sector is built using the sandwich technique with lead plates and scintillator strips and acts as a tail catcher for the hadronic energy flow. From tests performed at the CERN SPS and PS an energy resolution of σ(E)/E=(32.3±2.4)%/E(GeV)+(1.4±0.7)% was measured for pions, and σ(E)/E=(13.8±0.9)%/E(GeV)+(−0.2±0.4)% for electrons.

  13. Response Uniformity of the ATLAS Liquid Argon Electromagnetic Calorimeter

    CERN Document Server

    Aharrouche, M; Di Ciaccio, L; El Kacimi, M; Gaumer, O; Gouanère, M; Goujdami, D; Lafaye, R; Laplace, S; Le Maner, C; Neukermans, L; Perrodo, P; Poggioli, L; Prieur, D; Przysiezniak, H; Sauvage, G; Wingerter-Seez, I; Zitoun, R; Lanni, F; Lü, L; Ma, H; Rajagopalan, S; Takai, H; Belymam, A; Benchekroun, D; Hakimi, M; Hoummada, A; Gao, Y; Stroynowsk, R; Aleksa, M; Carli, T; Fassnacht, P; Gianotti, F; Hervás, L; Lampl, W; Collot, J; Hostachy, J Y; Ledroit-Guillon, F; Malek, F; Martin, P; Viret, S; Leltchouk, M; Parsons, J A; Simion, S; Barreiro, F; Del Peso, J; Labarga, L; Oliver, C; Rodier, S; Barrillon, P; Benchouk, C; Djama, F; Hubaut, F; Monnier, E; Pralavorio, P; Sauvage, D; Serfon, C; Tisserant, S; Tóth, J; Banfi, D; Carminati, L; Cavalli, D; Costa, G; Delmastro, M; Fanti, M; Mandell, L; Mazzanti, M; Tartarelli, F; Kotov, K; Maslennikov, A; Pospelov, G; Tikhonov, Yu; Bourdarios, C; Fayard, L; Fournier, D; Iconomidou-Fayard, L; Kado, M; Parrour, G; Puzo, P; Rousseau, D; Sacco, R; Serin, L; Unal, G; Zerwas, D; Dekhissi, B; Derkaoui, J; EL Kharrim, A; Maaroufi, F; Cleland, W; Lacour, D; Laforge, B; Nikolic-Audit, I; Schwemling, Ph; Ghazlane, H; Cherkaoui El Moursli, R; Idrissi Fakhr-Eddine, A; Boonekamp, M; Kerschen, N; Mansoulié, B; Meyer, P; Schwindlingy, J; Lund-Jensen, B

    2007-01-01

    The construction of the ATLAS electromagnetic liquid argon calorimeter modules is completed and all the modules are assembled and inserted in the cryostats. During the production period four barrel and three endcap modules were exposed to test beams in order to assess their performance, ascertain the production quality and reproducibility, and to scrutinize the complete energy reconstruction chain from the readout and calibration electronics to the signal and energy reconstruction. It was also possible to check the full Monte Carlo simulation of the calorimeter. The analysis of the uniformity, resolution and extraction of constant term is presented. Typical non-uniformities of 0.5% and typical global constant terms of 0.6% are measured for the barrel and end-cap modules.

  14. Phase I Upgrade of the CMS Hadron Calorimeter

    CERN Document Server

    Cooper, Seth Isaac

    2014-01-01

    In preparation for Run 2 (2015) and Run 3 of the LHC (2019), the CMS hadron calorimeter has begun a series of ambitious upgrades. These include new photodetectors in addition to improved front-end and back-end readout electronics. In the hadron forward calorimeter, the existing photomultiplier tubes are being replaced with thinner window, multi-anode readout models, while in the central region, the hybrid photodiodes will be replaced with silicon photomultipliers. The front-end electronics will include high precision timing readout, and the backend electronics will handle the increased data bandwidth. The barrel and endcap longitudinal segmentation will also be increased. This report will describe the motivation for the upgrade, its major components, and its current status.

  15. Calibration for the ATLAS Level-1 Calorimeter-Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, F.

    2007-12-19

    This thesis describes developments and tests that are necessary to operate the Pre-Processor of the ATLAS Level-1 Calorimeter Trigger for data acquisition. The major tasks of Pre-Processor comprise the digitizing, time-alignment and the calibration of signals that come from the ATLAS calorimeter. Dedicated hardware has been developed that must be configured in order to fulfill these tasks. Software has been developed that implements the register-model of the Pre-Processor Modules and allows to set up the Pre-Processor. In order to configure the Pre-Processor in the context of an ATLAS run, user-settings and the results of calibration measurements are used to derive adequate settings for registers of the Pre-Processor. The procedures that allow to perform the required measurements and store the results into a database are demonstrated. Furthermore, tests that go along with the ATLAS installation are presented and results are shown. (orig.)

  16. Commissioning of the CMS Hadron Forward Calorimeters Phase I Upgrade

    CERN Document Server

    Bilki, Burak

    2017-01-01

    The final phase of the CMS Hadron Forward Calorimeters Phase I upgrade is being performed during the Extended Year End Technical Stop of 2016 â?? 2017. In the framework of the upgrade, the PMT boxes are being reworked to implement two channel readout in order to exploit the benefits of the multi-anode PMTs in background tagging and signal recovery. The front-end electronics is also being upgraded to QIE10-based electronics which will implement larger dynamic range and a 6-bit TDC to eliminate the background to have an effect on the trigger. Following this major upgrade, the Hadron Forward Calorimeters will be commissioned for operation readiness in 2017. Here we describe the details and the components of the upgrade, and discuss the operational experience and results obtained during the upgrade and commissioning.

  17. Commissioning of the CMS Hadron Forward Calorimeters Phase I Upgrade

    CERN Document Server

    Bilki, Burak

    2017-01-01

    The final phase of the CMS Hadron Forward Calorimeters Phase I upgrade was performed during the Extended Year End Technical Stop of 2016 and 2017. In the framework of the upgrade, the PMT boxes were reworked to implement two channel readout in order to exploit the benefits of the multi-anode PMTs in background tagging and signal recovery. The front-end electronics were also upgraded to QIE10-based electronics which implement larger dynamic range and a 6-bit TDC. Following this major upgrade, the Hadron Forward Calorimeters were commissioned for operation readiness in 2017. Here we describe the details and the components of the upgrade, and discuss the operational experience and results obtained during the upgrade and commissioning.

  18. Performance and Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Starovoitov, P; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. This detector is instrumental for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being transferred to off-detector data-acquisition systems. After an initial setting of the absolute energy scale in test beams with particles of well-defined momentum, the calibrated scale is transferred to the rest of the detector via the response to radioactive sources. The calibrated scale is validated in situ with muons and single hadrons whereas the timing performance is checked with muons and jets. A brief description of the individual calibration systems (Cs radioactive source, laser, charge injection, minimum bias) is provided. Their combination allows to calibr...

  19. ATLAS Tile Calorimeter time calibration, monitoring and performance

    CERN Document Server

    Davidek, Tomas; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons particles is presented.

  20. ATLAS Tile Calorimeter time calibration, monitoring and performance

    Science.gov (United States)

    Davidek, T.; ATLAS Collaboration

    2017-11-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons is presented.

  1. The New Readout System of the NA62 LKr Calorimeter

    CERN Document Server

    Ceccucci, A; Farthouat, P; Lamanna, G; Rouet, J; Ryjov, V; Venditti, S

    2015-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the photon-veto system; to cope with the demanding NA62 re- quirements,itsback-endelectron icshadtobecompletelyrenewed. The new readout system is based on the Calorimeter REAdout Module (CREAM) [3], a 6U VME board whose design and pro- duction was sub-contracted to CAEN [4], with CERN NA62 group continuously supervising the de velopment and production phase. The first version of the board was delivered by the manufacturer in March 2013 and, as of June 2014, the full board production is ongoing. In addition to describing the CREAM board, all aspects of the new LKr readout system, including its integration within the NA62 TDAQ scheme, will be treated.

  2. Calibration of the Electromagnetic Calorimeter of the CMS experiment

    CERN Document Server

    Argiro, Stefano

    2008-01-01

    The electromagnetic calorimeter (ECAL) of the CMS experiment is an homogeneous, hermetic detector with high granularity. Its potential performances are outstanding in terms of energy resolution, dynamic range and noise level. These characteristics make the calorimeter the most powerful device in the search of the decay in two photons of the Higgs particle. However, the energy resolution depends crucially on the channel to channel intercalibration precision. Therefore, great attention must be given to the calibration process. In this contribution we will describe the strategy that the ECAL group has devised to calibrate the detector. We will report on the pre-calibration processes that have already been performed, the strategies for intercalibration at startup and those foreseen when sufficient statistics will be accumulated to use W and Z events. For the normal data taking regime, an intercalibration precision of 0.5\\% should be reached, while the response of the detector will be monitored regularly.

  3. ATLAS Tile Calorimeter: simulation and validation of the response

    CERN Document Server

    Davidek, T; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) is the central secti1 on of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is readout by wavelength shifting fibers and transmitted to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are measured and digitized before being further transferred to off-detector data-acquisition systems. Detailed simulations are described in this contribution, ranging from the implementation of the geometrical elements to the realistic description of the electronics readout pulses, including specific noise treatment and the signal reconstruction. Special attention is given to the improved optical signal propagation and the validation with the real particle data.

  4. The front-end electronics for LHCb calorimeters

    CERN Document Server

    Breton, D

    2002-01-01

    For the readout of the calorimeters of the LHCb experiment at CERN, specific front-end electronics have been designed. In particular, three different front-end analog chips were studied respectively for the ECAL/HCAL, preshower and scintillator pad detector. We will present the three front-end electronic chains, point out their specific requirements together with their common purpose, and describe the corresponding ASICs. (6 refs).

  5. MC simulation of the ATLAS hadronic calorimeter performance

    CERN Document Server

    Varanda, M J

    2002-01-01

    Several MC studies of the tile hadronic calorimeter (Tilecal) using GEANT3 and GEANT4 have been done after tuning the code with data from tests with high energy particle beams at CERN. The comparison between the two codes started with the study of the simulation of the electromagnetic interactions and results are presented. A preliminary study of the evaluation of the simulation of the hadronic interactions is also presented. (3 refs).

  6. New method of fast simulation for a hadron calorimeter response

    CERN Document Server

    Kulchitskii, Yu A; Tokar, S; Zenis, T

    2003-01-01

    In this work we present the new method of a fast Monte-Carlo simulation of a hadron calorimeter response. It is based on the three-dimensional parameterization of the hadronic shower obtained from the ATLAS TILECAL test beam data and GEANT simulations. A new approach of including the longitudinal fluctuations of hadronic shower is described. The obtained results of the fast simulation are in good agreement with the TILECAL experimental data. (15 refs).

  7. Time Reconstruction and Performance of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The resolution and the linearity of time measurements made with the CMS electromagnetic calorimeter are studied with samples of data from test beam electrons, cosmic rays, and beam-produced muons. The resulting time resolution measured by lead tungstate crystals is better than 100 ps for energy deposits larger than 10 GeV. Crystal-to-crystal synchronization with a precision of 500 ps is performed using muons produced with the first LHC beams in 2008.

  8. CMS Hadron Forward Calorimeter Phase I Upgrade Status

    CERN Document Server

    Onel, Yasar

    2015-01-01

    The Hadron Forward Calorimeter of CMS is going through a complete Phase I upgrade. The current photomultiplier tubes (PMTs) are being replaced with thinner window, higher quantum efficiency, four-anode photomultiplier tubes. The new PMTs will provide better light detection performance, a significantly reduced background and unique handles to recover the signal in the presence of background. This report will describe the nature of the essential upgrade elements with supporting beam test results and the status of the upgrade progression.

  9. Micro-Fabricated DC Comparison Calorimeter for RF Power Measurement

    Directory of Open Access Journals (Sweden)

    Bilel Neji

    2014-10-01

    Full Text Available Diode detection and bolometric detection have been widely used to measure radio frequency (RF power. However, flow calorimeters, in particular micro-fabricated flow calorimeters, have been mostly unexplored as power meters. This paper presents the design, micro-fabrication and characterization of a flow calorimeter. This novel device is capable of measuring power from 100 \\(\\mu\\W to 200 mW. It has a 50-Ohm load that is heated by the RF source, and the heat is transferred to fluid in a microchannel. The temperature change in the fluid is measured by a thermistor that is connected in one leg of a Wheatstone bridge. The output voltage change of the bridge corresponds to the RF power applied to the load. The microfabricated device measures 25.4 mm \\(\\times\\ 50.8 mm, excluding the power supplies, microcontroller and fluid pump. Experiments demonstrate that the micro-fabricated sensor has a sensitivity up to 22 \\(\\times\\ \\(10^{-3}\\ V/W. The typical resolution of this micro-calorimeter is on the order of 50 \\(\\mu\\W, and the best resolution is around 10 \\(\\mu\\W. The effective efficiency is 99.9\\% from 0–1 GHz and more than 97.5\\% at frequencies up to 4 GHz. The measured reflection coefficient of the 50-Ohm load and coplanar wave guide is less than \\(-25\\ dB from 0–2 GHz and less than \\(-16\\ dB at 2–4 GHz.

  10. Micro-fabricated DC comparison calorimeter for RF power measurement.

    Science.gov (United States)

    Neji, Bilel; Xu, Jing; Titus, Albert H; Meltzer, Joel

    2014-10-27

    Diode detection and bolometric detection have been widely used to measure radio frequency (RF) power. However, flow calorimeters, in particular micro-fabricated flow calorimeters, have been mostly unexplored as power meters. This paper presents the design, micro-fabrication and characterization of a flow calorimeter. This novel device is capable of measuring power from 100 μW to 200 mW. It has a 50-Ohm load that is heated by the RF source, and the heat is transferred to fluid in a microchannel. The temperature change in the fluid is measured by a thermistor that is connected in one leg of a Wheatstone bridge. The output voltage change of the bridge corresponds to the RF power applied to the load. The microfabricated device measures 25.4 mm × 50.8 mm, excluding the power supplies, microcontroller and fluid pump. Experiments demonstrate that the micro-fabricated sensor has a sensitivity up to 22 × 10⁻³ V/W. The typical resolution of this micro-calorimeter is on the order of 50 μW, and the best resolution is around 10 μW. The effective efficiency is 99.9% from 0−1 GHz and more than 97.5% at frequencies up to 4 GHz. The measured reflection coefficient of the 50-Ohm load and coplanar wave guide is less than −25 dB from 0−2 GHz and less than −16 dB at 2−4 GHz.

  11. Design, Construction and Testing of the Digital Hadron Calorimeter (DHCAL) Electronics

    CERN Document Server

    Adams, C; Bilki, B; Butler, J; Corriveau, F; Cundiff, T; Drake, G; Francis, K; Guarino, V; Haberichter, B; Hazen, E; Hoff, J; Holm, S; Kreps, A; DeLurgio, P; Monte, L Dal; Mucia, N; Norbeck, E; Northacker, D; Onel, Y; Pollack, B; Repond, J; Schlereth, J; Smith, J R; Trojand, D; Underwood, D; Velasco, M; Walendziak, J; Wood, K; Wu, S; Xia, L; Zhang, Q; Zhao, A

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of the electronic readout system of this prototype calorimeter. The system is based on the DCAL front-end chip and a VME-based back-end.

  12. LHCb : First years of running for the LHCb calorimeter system and preparation for run 2

    CERN Multimedia

    Chefdeville, Maximilien

    2015-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). It comprises a calorimeter system composed of four subdetectors: a Scintillating Pad Detector (SPD) and a Pre-Shower detector (PS) in front of an electromagnetic calorimeter (ECAL) which is followed by a hadron calorimeter (HCAL). They are used to select transverse energy hadron, electron and photon candidates for the first trigger level and they provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The calorimeter has been pre-calibrated before its installation in the pit. The calibration techniques have been tested with data taken in 2010 and used regularly during run 1. For run 2, new calibration methods have been devised to follow and correct online the calorimeter detector response. The design and construction characteristics of the LHCb calorimeter will be recalled. Strategies for...

  13. Silicon photomultipliers. Properties and applications in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Feege, Nils

    2008-12-15

    Silicon Photomultipliers (SiPMs) are novel semiconductor-based photodetectors operated in Geiger mode. Their response is not linear, and both their gain and their photon detection efficiency depend on the applied bias voltage and on temperature. The CALICE collaboration investigates several technology options for highly granular calorimeters for the future ILC. The prototype of a scintillator-steel sampling calorimeter with analogue readout for hadrons constructed at DESY and successfully operated in testbeam experiments at DESY, CERN and FNAL by this collaboration is the first large scale application for 7608 SiPMs developed by MEPhI. This thesis deals with properties of the SiPMs used in the calorimeter prototype. The effective numer of pixels of the SiPMs, which influences their saturation behaviour, is extracted from in situ measurements and compared to results obtained for the bare SiPMs. In addition, the effects of temperature and voltage changes on the parameters necessary for the calibration of the SiPMs and the detector are determined. Methods which allow for correcting or compensating these effects are evaluated. An approach to improve the absolute calibration of the temperature sensors in the prototype is described and temperature profiles are studied. Finally, a procedure to adjust the light yield of the cells of the prototype is presented. The results of the application of this procedure during the commissioning of the detector at FNAL are discussed. (orig.)

  14. Quality Factor for the Hadronic Calorimeter in High Luminosity Conditions

    CERN Document Server

    Seixas, Jose; The ATLAS collaboration; Manhaes de Andrade Filho, Luciano; Sotto-Maior-Peralva, Bernardo

    2015-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of ATLAS experiment and has about 10,000 eletronic channels. An Optimal Filter (OF) has been used to estimate the energy sampled by the calorimeter and applies a Quality Factor (QF) for signal acceptance. An approach using Matched Filter (MF) has also been pursued. In order to cope with the luminosity rising foreseen for LHC operation upgrade, different algorithms have been developed. Currently, the OF measure for signal acceptance is implemented through a chi-square test. At a low luminosity scenario, such QF measure has been used as a way to describe how the acquired signal is compatible to the pulse shape pattern. However, at high-luminosity conditions, due to pile up, this QF acceptance is no longer possible when OF is employed, and the QF becomes a measure to indicate whether the reconstructed signal suffers or not from pile up. Methods are being developed in order to recover the superposed information, and the QF may be us...

  15. The CDF calorimeter upgrade for RunIIb

    CERN Document Server

    Huston, J; Kuhlmann, S; Lami, S; Miller, R; Paoletti, R; Turini, N; Ukegawa, F

    2004-01-01

    The physics program at the Fermilab Tevatron Collider will continue to explore the high energy elementary particle physics until the LHC commissioning. The upgrade of the CDF calorimeter opens a new window for improving the jet energy resolution, important in finding various signals such as Higgs by correcting the energy loss in the dead material and adding information in the jet algorithms using charged particles. It plays an important role in soft electron tagging of b- jets and photon identification in SUSY. The upgrade of the CDF calorimeter includes: a) the replacement of slow gas detector on the front face of the Central Calorimeter with Preshower (CPR) based on 2cm thick scintillator tiles segmented in eta and Phi and read out by WLS fibers running into a groove on the surface of each tiles. The WLS fibers are placed to clear fibers after leaving the tiles; b) the replacement of the Central Crack Chamber (CCR) with 5mm thick scintillator tiles read with the same technique: To finalize the design parame...

  16. The CMS PbWO4 Electromagnetic Calorimeter

    CERN Document Server

    Lethuillier, M

    2004-01-01

    The electromagnetic calorimeter under construction for the CMS experiment at LHC will be the largest crystal calorimeter ever built. The very fast and precise energy measurement of electrons and photons is based upon 76000 lead tungstate crystals read by avalanche photodiodes (APD) in the central barrel region and vacuum phototriodes (VPT) in the endcap regions. The major challenges to be faced are the ability to operate in a strong magnetic field of 4T and under unprecedented radiation levels, the LHC bunch crossing time of 25 ns, the need for a precise energy measurement over a very large dynamic range, from approximately 50 MeV to more than 1 TeV, and the high reliability required of the full on-board readout chain which will be inaccessible after the start of LHC in 2007. A review of the calorimeter design is given and the current status of the construction is reported. Highlights of results obtained during beam tests are also presented.

  17. Applying fast calorimetry on a spent nuclear fuel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liljenfeldt, Henrik [Swedish Nuclear Fuel and Waste Management (Sweden); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Uppsala Univ. (Sweden)

    2015-04-15

    Recently at Los Alamos National Laboratory, sophisticated prediction algorithms have been considered for the use of calorimetry for treaty verification. These algorithms aim to predict the equilibrium temperature based on early data and therefore be able to shorten the measurement time while maintaining good accuracy. The algorithms have been implemented in MATLAB and applied on existing equilibrium measurements from a spent nuclear fuel calorimeter located at the Swedish nuclear fuel interim storage facility. The results show significant improvements in measurement time in the order of 15 to 50 compared to equilibrium measurements, but cannot predict the heat accurately in less time than the currently used temperature increase method can. This Is both due to uncertainties in the calibration of the method as well as identified design features of the calorimeter that limits the usefulness of equilibrium type measurements. The conclusions of these findings are discussed, and suggestions of both improvements of the current calorimeter as well as what to keep in mind in a new design are given.

  18. DIRAC v2 a DIgital Readout Asic for hadronic Calorimeter

    CERN Document Server

    Gaglione, R; Chefdeville, M; Drancourt, C; Vouters, G

    2009-01-01

    DIRAC is a 64 channel mixed-signal readout integrated circuit designed for Micro-Pattern Gaseous Detectors (MICROMEGAS, Gas Electron Multiplier) or Resistive Plate Chambers. These detectors are foreseen as the active part of a digital hadronic calorimeter for a high energy physics experiment at the International Linear Collider. Physic requirements lead to a highly granular hadronic calorimeter with up to thirty million channels with probably only hit information (digital calorimeter). The DIRAC ASIC has been especially designed for these constraints. Each channel of the DIRAC chip is made of a 4 gains charge preamplifier, a DC-servo loop, 3 switched comparators and a digital memory, thus providing additional energy information for a hit. A bulk MICROMEGAS detector with embedded DIRAC v1 ASIC has been built. The tests of this assembly, both in laboratory with X-Rays and in a beam at CERN are presented, demonstrating the feasibility of a bulk MICROMEGAS detector with embedded electronics. The second version of...

  19. An automated flow calorimeter for heat capacity and enthalpy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sandarusi, J.A.; Yesavage, V.F.

    1988-11-01

    An automated flow calorimeter has been developed for the measurement of heat capacity and latent enthalpies of fluids at elevated temperatures (300-700 K) and pressure (< 30 MPa) with a design accuracy of 0.1%. The method of measurement is the traditional electrical power input flow calorimeter, utilizing a precision metering pump, which eliminates the need for flow-rate monitoring. The calorimeter cell uses a unique concentric coil design with passive metal radiation shields and active guard heaters to minimize heat leakage, eliminate the traditional constant-temperature bath, and facilitate easy component replacement. An additional feature of the instrument is a complete automation system, greatly simplifying operation of the apparatus. A novel multitasking software scheme allows a single microcomputer simultaneously to control all system temperatures, provide continuous monitoring and updates on system status, and log data. Preliminary results for liquid water mean heat capacities show the equipment to be performing satisfactorily, with data accuracies of better than /plus minus/0.3%. Minor equipment modifications and better thermometry are required to reduce systemic errors and to achieve the designed operational range.

  20. The backward end-cap for the PANDA electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, Luigi; Maas, Frank; Rodriguez Pineiro, David; Valente, Roserio [Helmholtz-Institut Mainz - Johannes Gutenberg-Universitaet Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Lin, Dexu; Noll, Oliver [Helmholtz-Institut Mainz - Johannes Gutenberg-Universitaet Mainz (Germany)

    2014-07-01

    The PANDA experiment at the new FAIR facility will cover a broad experimental programme in hadron structure and spectroscopy. As a multipurpose detector, the PANDA spectrometer needs to ensure almost 4π coverage of the scattering solid angle, full and accurate multiple-particle event reconstruction and very good particle identification capabilities. % The electromagnetic calorimeter (EMC) will be a key item for many of these aspects. Particle energies ranging from some MeVs to several GeVs have to be measured with a relative resolution of 1% + 2%/√(E/ GeV). % It will be a homogeneous calorimeter made of PbWO{sub 4} crystals and will be operated at -25 {sup circle} C, in order to improve the scintillation light yield. With the exception of the very forward section, the light will be detected by large area avalanche photodiodes. % The whole calorimeter has been designed in three sections: a forward end-cap, a central barrel and a backward end-cap (BWEC). % In this contribution, a status report on the development of the BWEC is given.

  1. The ATLAS tile calorimeter ROD injector and multiplexer board

    Energy Technology Data Exchange (ETDEWEB)

    Valero, A., E-mail: alberto.valero@cern.c [Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC, Paterna, 46071 Valencia (Spain); Castillo, V.; Ferrer, A. [Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC, Paterna, 46071 Valencia (Spain); Gonzalez, V. [Departamento de Ingenieria electronica, Universidad de Valencia, Burjassot, 46100 Valencia (Spain); Hernandez, Y.; Higon, E. [Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC, Paterna, 46071 Valencia (Spain); Sanchis, E. [Departamento de Ingenieria electronica, Universidad de Valencia, Burjassot, 46100 Valencia (Spain); Solans, C. [Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC, Paterna, 46071 Valencia (Spain); Torres, J. [Departamento de Ingenieria electronica, Universidad de Valencia, Burjassot, 46100 Valencia (Spain); Valls, J.A. [Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC, Paterna, 46071 Valencia (Spain)

    2011-02-11

    The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.

  2. The Phase II Upgrade of the ATLAS Calorimeter

    CERN Document Server

    Tartarelli, Giuseppe Francesco; The ATLAS collaboration

    2017-01-01

    This presentation will show the status of the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC). For the HL-LHC, the instantaneous luminosity is expected to increase up to L ≃ 7.5 × 1034 cm−2 s−1 and the average pile-up up to 200 interactions per bunch crossing. The Liquid Argon (LAr) calorimeter electronics will need to be replaced to cope with these challenging conditions: the expected radiation doses will indeed exceed the qualification range of the current readout system, and the upgraded trigger system will require much longer data storage in the electronics (up to 60 us), that the current system cannot sustain. The status of the R&D of the low-power ASICs (pre-amplifier, shaper, ADC, serializer and transmitters) and of the readout electronics design will be discussed. Moreover, a High Granularity Timing Detector (HGTD) is proposed to be added in front of the LAr calorimeters in the end-cap region (2.4 <|eta|< 4.2) for pile-up mitigation a...

  3. Test system for the production of the ATLAS Tile Calorimeter front- end electronics

    CERN Document Server

    Calvet, D

    2004-01-01

    The Atlas hadronic Tile Calorimeter front-end electronics is fully included in the so-called "super-drawers". The 256 super-drawers needed for the entire calorimeter are assembled and extensively tested in Clermont-Ferrand before being sent to CERN to be inserted in the calorimeter modules. A mobile system has been developed to perform a complete test of the super-drawers during their insertion.

  4. Application of calorimeters for 5 MeV EB and bremsstrahlung dosimetry

    DEFF Research Database (Denmark)

    Sato, T.; Takahashi, T.; Saito, T.

    1993-01-01

    Graphite and water calorimeters, which were developed for use a 10 MeV electron beams (EB) at Riso National Laboratory, were used for process validation and routine dosimeter calibration at a 5 MeV EB. Water calorimeters were used for reference measurements for 5 MeV EB, the response was found...... at 5 MeV EB. Graphite calorimeters gave reproducible readings within 3.3 % relative errors (95 % confidence level) for X-ray measurement....

  5. Hadron calorimeter with MAPD readout in the NA61/SHINE experiment

    CERN Document Server

    Ivashkin, A; Asfandiyarov, R; Bravar, A; Blondel, A; Dominik, W; Fodor, Z; Gazdzicki, M; Golubeva, M; Guber, F; Hasler, A; Korzenev, A; Kuleshov, S; Kurepin, A; Laszlo, A; Marin, V; Musienko, Yu; Petukhov, O; Röhrich, D; Sadovsky, A; Sadygov, Z; Tolyhi, T; Zerrouk, F

    2012-01-01

    The modular hadron calorimeter with micro-pixel avalanche photodiodes readout for the NA61/SHINE experiment at the CERN SPS is presented. The calorimeter consists of 44 independent modules with lead-scintillator sandwich structure. The light from the scintillator tiles is captured by and transported with WLS-fibers embedded in scintillator grooves. The construction provides a longitudinal segmentation of the module in 10 sections with independent MAPD readout. MAPDs with pixel density of $~10^{4}$/mm$^2$ ensure good linearity of calorimeter response in a wide dynamical range. The performance of the calorimeter prototype in a beam test is reported.

  6. SUITABILITY OF A NEW CALORIMETER FOR EXOTIC MESON SEARCHES

    Energy Technology Data Exchange (ETDEWEB)

    Bookwalter, C.; Ostrovidov, A.; Eugenio, P.

    2007-01-01

    Exotic mesons, particles that have quantum numbers that are inaccessible to conventional quark-model mesons, are predicted by quantum chromodynamics (QCD), but past experiments seeking to identify exotic candidates have produced controversial results. The HyCLAS experiment (E04005) at Thomas Jefferson National Accelerator Facility (TJNAF) proposes the use of the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) in Hall B to study the photoproduction of exotic mesons. However, the base detector package at CLAS is not ideal for observing and measuring neutral particles, particularly at forward angles. The Deeply Virtual Compton Scattering (DVCS) experiment at TJNAF has commissioned a new calorimeter for detecting small-angle photons, but studies must be performed to determine its suitability for a meson spectroscopy experiment. The ηπ system has been under especial scrutiny in the community as a source for potential exotics, so the new calorimeter’s ability at reconstructing these resonances must be evaluated. To achieve this, the invariant mass of showers in the calorimeter are reconstructed. Also, two electroproduction reaction channels analogous to photoproduction channels of interest to HyCLAS are examined in DVCS data. It is found that, while not ideal, the new calorimeter will allow access to additional reaction channels, and its inclusion in HyCLAS is warranted. Results in basic shower reconstruction show that the calorimeter has good effi ciency in resolving π° decays, but its η reconstruction is not as strong. When examining ep → epπ°η, preliminary reconstruction of the ηπ° system shows faint signals in the a0(980) region. In the ep → e n π+ η channel, preliminary reconstruction of the ηπ+ system gave good signals in the a0(980) and a2(1320) regions, but statistics were poor. While more analyses are necessary to improve statistics and remove background, these preliminary results support the claim

  7. Synthesis, characterization and TG-DSC study of cadmium halides adducts with caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Robson F. de; Silva, Ademir O. da; Silva, Umberto G. da

    2003-11-28

    The synthesis, characterization and TG-DSC study of the compounds CdX{sub 2}{center_dot}ncaff, for which X: Cl, Br and I; n=1 and 2 and caff: caffeine is reported. It is verified that caffeine is coordinated through more than one coordination site, despite the fact that the nitrogen of the imidazole ring is the main coordination site. The following thermal stability trend is observed: Cl>Br>I and monoadducts are more stable than bisadducts. The thermal degradation (td) enthalpies have the values (kJ mol{sup -1}): 58.2 and 71.5; 74.9 and 91.4; 31.1 and 47.5 for Cl, Br and I mono and bisadducts, respectively.

  8. Comparison of dual-echo DSC-MRI- and DCE-MRI-derived contrast agent kinetic parameters.

    Science.gov (United States)

    Quarles, C Chad; Gore, John C; Xu, Lei; Yankeelov, Thomas E

    2012-09-01

    The application of dynamic susceptibility contrast (DSC) MRI methods to assess brain tumors is often confounded by the extravasation of contrast agent (CA). Disruption of the blood-brain barrier allows CA to leak out of the vasculature leading to additional T(1), T(2) and T(2) relaxation effects in the extravascular space, thereby affecting the signal intensity time course in a complex manner. The goal of this study was to validate a dual-echo DSC-MRI approach that separates and quantifies the T(1) and T(2) contributions to the acquired signal and enables the estimation of the volume transfer constant, K(trans), and the volume fraction of the extravascular extracellular space, v(e). To test the validity of this approach, DSC-MRI- and dynamic contrast enhanced (DCE) MRI-derived K(trans) and v(e) estimates were spatially compared in both 9L and C6 rat brain tumor models. A high degree of correlation (concordance correlation coefficients >0.83, Pearson's r>0.84) and agreement was found between the DSC-MRI- and DCE-MRI-derived measurements. These results indicate that dual-echo DSC-MRI can be used to simultaneously extract reliable DCE-MRI kinetic parameters in brain tumors in addition to conventional blood volume and blood flow metrics. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Review of MEMS differential scanning calorimetry for biomolecular study

    Science.gov (United States)

    Yu, Shifeng; Wang, Shuyu; Lu, Ming; Zuo, Lei

    2017-12-01

    Differential scanning calorimetry (DSC) is one of the few techniques that allow direct determination of enthalpy values for binding reactions and conformational transitions in biomolecules. It provides the thermodynamics information of the biomolecules which consists of Gibbs free energy, enthalpy and entropy in a straightforward manner that enables deep understanding of the structure function relationship in biomolecules such as the folding/unfolding of protein and DNA, and ligand bindings. This review provides an up to date overview of the applications of DSC in biomolecular study such as the bovine serum albumin denaturation study, the relationship between the melting point of lysozyme and the scanning rate. We also introduce the recent advances of the development of micro-electro-mechanic-system (MEMS) based DSCs.

  10. Review of MEMS differential scanning calorimetry for biomolecular study

    Science.gov (United States)

    Yu, Shifeng; Wang, Shuyu; Lu, Ming; Zuo, Lei

    2017-07-01

    Differential scanning calorimetry (DSC) is one of the few techniques that allow direct determination of enthalpy values for binding reactions and conformational transitions in biomolecules. It provides the thermodynamics information of the biomolecules which consists of Gibbs free energy, enthalpy and entropy in a straightforward manner that enables deep understanding of the structure function relationship in biomolecules such as the folding/unfolding of protein and DNA, and ligand bindings. This review provides an up to date overview of the applications of DSC in biomolecular study such as the bovine serum albumin denaturation study, the relationship between the melting point of lysozyme and the scanning rate. We also introduce the recent advances of the development of micro-electro-mechanic-system (MEMS) based DSCs.

  11. Kinetic analysis by DSC of the cationic curing of mixtures of DGEBA and 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lidia [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, C/Marcelli Domingo s/n, 43007 Tarragona (Spain); Ramis, Xavier [Laboratori de Termodinamica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Salla, Josep Maria [Laboratori de Termodinamica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain)], E-mail: salla@mmt.upc.edu; Mantecon, Ana; Serra, Angels [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, C/Marcelli Domingo s/n, 43007 Tarragona (Spain)

    2007-11-25

    The kinetics of the thermal cationic cure reaction of mixtures in different proportions of diglycidylether of bisphenol A (DGEBA) with 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione) (MCP) initiated by ytterbium or lanthanum triflates or using a conventional initiator, BF{sub 3}.MEA was investigated. The non-isothermal differential scanning calorimetry (DSC) experiments at a controlled heating rate was used for obtaining the kinetic parameters of the reactive systems. BF{sub 3}.MEA and lanthanide triflates initiated curing systems follow a complete different kinetic model. Among lanthanide triflates, ytterbium is the most active initiator.

  12. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ... the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is a ...

  13. Thyroid Scan and Uptake

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ... the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is a ...

  14. Response of the D0 calorimeter to cosmic ray muons

    Energy Technology Data Exchange (ETDEWEB)

    Kotcher, Jonathan [New York Univ., NY (United States)

    1992-10-01

    The D0 Detector at the Fermi National Accelerator Laboratory is a large multipurpose detector facility designed for the study of proton-antiproton collision products at the center-of-mass energy of 2 TeV. It consists of an inner tracking volume, hermetic uranium/liquid argon sampling calorimetry, and an outer 47π muon detector. In preparation for our first collider run, the collaboration organized a Cosmic Ray Commissioning Run, which took place from February--May of 1991. This thesis is a detailed study of the response of the central calorimeter to cosmic ray muons as extracted from data collected during this run. We have compared the shapes of the experimentally-obtained pulse height spectra to the Landau prediction for the ionization loss in a continuous thin absorber in the four electromagnetic and four hadronic layers of the calorimeter, and find good agreement after experimental effects are folded in. We have also determined an absolute energy calibration using two independent methods: one which measures the response of the electronics to a known amount of charge injected at the preamplifiers, and one which uses a carry-over of the calibration from a beam test of central calorimeter modules. Both absolute energy conversion factors agree with one another, within their errors. The calibration determined from the test beam carryover, relevant for use with collider physics data, has an error of 2.3%. We believe that, with further study, a final error of ~1% will be achieved. The theory-to-experiment comparison of the peaks (or most probable values) of the muon spectra was used to determine the layer-to-layer consistency of the muon signal. We find that the mean response in the 3 fine hadronic layers is (12 ± 2%) higher than that in the 4 electromagnetic layers. These same comparisons have been used to verify the absolute energy conversion factors. The conversion factors work well for the electromagnetic sections.

  15. Performance of the ATLAS LAr Calorimeter with Cosmic Muons and LHC Single Beam Data

    CERN Document Server

    MANGEARD, PS

    2009-01-01

    The Liquid Argon (LAr) calorimeter is a key detector component in the ATLAS experiment at the LHC, designed to provide precision measurements of electrons, photons, jets and missing transverse energy. The LAr calorimeter has been installed in the ATLAS cavern and filled with liquid argon since 2006. Cosmic muon data, first triggered via specially developed trigger boards on the LVL1 output of the Tile calorimeter and later with the standard ATLAS LVL1 calorimeter trigger, have been recorded at various stages of commissioning. In Sept 2008, with the first single beams circulating in the LHC ring and a near full readout of the calorimeter, events resulting from beam-gas interactions and beam-collimator splash were recorded. We present here the calorimeter performance study based on these cosmic muon and LHC beam events. With the reconstructed muon minimum ionizing signal in the calorimeter, the uniformity of the barrel electromagnetic calorimeter can be checked. The timing alignment as measured from the data ca...

  16. LHCb: High Voltage system for the LHCb calorimeter detectors at CERN

    CERN Multimedia

    Konoplyannikov, A

    2006-01-01

    All calorimeters are equipped with Hamamatsu photo tubes as devices for light to signal conversion. Eight thousand R7899-20 tubes are used for the electromagnetic and hadronic calorimeters and two hundred 64 channels multi-anode R7600 -00-M64 for Scintillator-Pad/Preshower detectors. Similar photo-detectors are widely used in the Molecular Imaging applications.

  17. Proposal for research and development of a hadron calorimeter for high magnetic fields

    CERN Document Server

    Bayatyan, G L; Margarian, A T; CERN. Geneva. Detector Research and Development Committee

    1994-01-01

    We intend to pursue the R&D necessary to demonstrate that a Cu- scintillator hadron calorimeter can operate reliably and well at the LHC at large pseudorapidities (| eta | 1 lambda) placed after 5-7 lambda, the effect on performance of a high resolution electromagnetic calorimeter, the design of a hermetic mechanical structure, the issues of calibration and monitoring.

  18. Design studies and sensor tests for the beam calorimeter of the ILC detector

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, E.

    2007-03-15

    The International Linear Collider (ILC) is being designed to explore particle physics at the TeV scale. The design of the Very Forward Region of the ILC detector is considered in the presented work. The Beam Calorimeter - one of two electromagnetic calorimeters situated there - is the subject of this thesis. The Beam Calorimeter has to provide a good hermeticity for high energy electrons, positrons and photons down to very low polar angles, serve for fast beam diagnostics and shield the inner part of the detector from backscattered beamstrahlung remnants and synchrotron radiation. As a possible technology for the Beam Calorimeter a diamond-tungsten sandwich calorimeter is considered. Detailed simulation studies are done in order to explore the suitability of the considered design for the Beam Calorimeter objectives. Detection efficiency, energy and angular resolution for electromagnetic showers are studied. At the simulation level the diamondtungsten design is shown to match the requirements on the Beam Calorimeter performance. Studies of polycrystalline chemical vapour deposition (pCVD) diamond as a sensor material for the Beam Calorimeter are done to explore the properties of the material. Results of the measurements performed with pCVD diamond samples produced by different manufacturers are presented. (orig.)

  19. ATLAS Tile Calorimeter extended barrel side C, assembly and installation in the cavern.

    CERN Multimedia

    Nikolai Topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  20. ATLAS Tile Calorimeter extended barrel Side A assembly and installation in the cavern.

    CERN Multimedia

    Nikolai Topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  1. A simple and inexpensive modulated light calorimeter using an optical fiber light guide

    Science.gov (United States)

    Garfield, N. J.; Howson, M. A.; Overend, N.

    1998-05-01

    A computer controlled ac calorimeter has been constructed which uses a simple and readily available optical fiber and an infrared light-emitting diode as the heat source. The ways in which the calorimeter differs from using halogen lamp heating are discussed.

  2. Drift time measurement in the ATLAS liquid argon electromagnetic calorimeter using cosmic muons

    NARCIS (Netherlands)

    Aad, G.; et al., [Unknown; Bentvelsen, S.; Colijn, A.P.; de Jong, P.; Doxiadis, A.; Garitaonandia, H.; Gosselink, M.; Kayl, M.S.; Koffeman, E.; Lee, H.; Mechnich, J.; Mussche, I.; Ottersbach, J.P.; Rijpstra, M.; Ruckstuhl, N.; Tsiakiris, M.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Vermeulen, J.C.; Vreeswijk, M.

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the

  3. Particle ID Studies in a Highly Granular Hadron Calorimeter

    CERN Document Server

    Reichelt, Christian Günther

    2013-01-01

    CERN Summer Student Report: Highly granular hadronic calorimeters optimized for the Particle Flow Paradigm are being developed for future linear colliders. A new algorithm for identifying shower starts has been developed for analyses of data from the CALICE tungsten DHCAL prototype. The new algorithm improves the linearity between the reconstructed and generated interaction layers in Monte Carlo simulations, and it is applied as part of the particle identification of muons and pions. Additionally, the effective nuclear interaction length for pions in the DHCAL is estimated by analysing the distribution of interaction layers.

  4. The AFS hadron calorimeter at the CERN ISR

    CERN Document Server

    Botner, O; Fabjan, Christian Wolfgang; Gordon, H; Jeffreys, P; Kesseler, G; Molzon, W R; Oren, Y; Rosselet, L; Schindler, R; Smith, S D; Van der Lans, J; Wang, C J; Willis, W J; Witzeling, W; Woody, C

    1981-01-01

    The hadron calorimeter for the AFS experiment at CERN consists of a fine sampling uranium/copper scintillator sandwich. It is designed for high modularity and will provide azimuthal coverage over 8 sterad. The authors describe the optical readout system, consisting of acrylic scintillator and wavelength shifter plates, and present the performance of test modules with respect to the energy resolution for electrons ( sigma =0.16/ square root E) and hadrons ( sigma =0.36/ square root E), the linearity of response and the ratio of electron to hadron response (e/ pi =1.11). (4 refs).

  5. CMS Hadron Forward Calorimeter Phase I Upgrade Status

    CERN Document Server

    AUTHOR|(CDS)2071924

    2015-01-01

    The Hadron Forward Calorimeter of CMS completed the Long Shutdown 1 part of the Phase I upgrade. Approximately 1800 photomultiplier tubes were replaced with thinner window, higher quantum efficiency, four-anode photomultiplier tubes. The new photomultiplier tubes will provide better light detection performance, a significantly reduced background and unique handles to recover the signal in the presence of background. The upgrade is also associated with new cabling and channel segmentation options. This report will describe the upgrade and the nature of the essential upgrade elements with supporting test results.

  6. Status and Performance of the ALICE/PHOS Electromagnetic Calorimeter

    CERN Document Server

    Ippolitov, Mikhail

    2008-01-01

    The PHOS is a high resolution electromagnetic calorimeter in the ALICE experiment at the LHC. The PHOS is dedicated for measurements of gammas and neutral mesons in a wide dynamic range with high energy and spatial resolutions. The PHOS is subdivided into 5 independent rectangular modules. The module is segmented into 3584 detection channels (64 × 56 matrix). Each channel consists of a 22 × 22 × 180 mm3 lead-tungstate crystal, coupled with 5 × 5 mm2 avalanche photo diode. The first PHOS module was assembled, commissioned and tested with 2 GeV/c electrons at CERN on the T10 PS secondary beam-line.

  7. CMS Level-1 Upgrade Calorimeter Trigger Prototype Development

    CERN Document Server

    Klabbers, Pamela Renee

    2013-01-01

    As the LHC increases luminosity and energy, it will become increasingly difficult to select interesting physics events and remain within the readout bandwidth limitations. An upgrade to the CMS Calorimeter Trigger implementing more complex algorithms is proposed. It utilizes AMC cards with Xilinx FPGAs running in micro-TCA crate with card interconnections via crate backplanes and optical links operating at up to 10 Gbps. Prototype cards with Virtex-6 and Virtex-7 FPGAs have been built and software frameworks for operation and monitoring developed. The physics goals, hardware architectures, and software will be described in this talk. More details can be found in a separate poster at this conference.

  8. ATLAS Tile Calorimeter performance for the phase II upgrade

    CERN Document Server

    Sellapillay, Kevissen

    2017-01-01

    The first part of the internship is focused on trying to assess the performance of the upgraded geometry of the ATLAS Tile Calorimeter. To do this, we use Monte Carlo generated samples for the upgraded geometry and from the current geometry, then we derive the pT response and resolution. The second part of the study is an analysis of the sensitivity of the two different geometries to a new heavy boson that would decay into a top quark pair $Z^{\\prime} \\rightarrow t\\bar{t}$.

  9. Run 2 Upgrades to the CMS Level-1 Calorimeter Trigger

    CERN Document Server

    Kreis, B.; Cavanaugh, R.; Mishra, K.; Rivera, R.; Uplegger, L.; Apanasevich, L.; Zhang, J.; Marrouche, J.; Wardle, N.; Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.; Baber, M.; Bundock, A.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Tapper, A.; Foudas, C.; Beaudette, F.; Cadamuro, L.; Mastrolorenzo, L.; Romanteau, T.; Sauvan, J.B.; Strebler, T.; Zabi, A.; Barbieri, R.; Cali, I.A.; Innocenti, G.M.; Lee, Y.J.; Roland, C.; Wyslouch, B.; Guilbaud, M.; Li, W.; Northup, M.; Tran, B.; Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.; Cepeda, M.; Dasu, S.; Dodd, L.; Forbes, R.; Gorski, T.; Klabbers, P.; Levine, A.; Ojalvo, I.; Ruggles, T.; Smith, N.; Smith, W.; Svetek, A.; Tikalsky, J.; Vicente, M.

    2016-01-21

    The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards.

  10. Electronic calibration developed for the CMS electromagnetic calorimeter

    CERN Document Server

    Baek, Y W; David, P Y; Ditta, J; Hermel, V; Fouque, N; Mendiburu, J P; Nédélec, P; Peigneux, J P; Poireau, V; Rebecchi, P; Silou, D

    2004-01-01

    An electronic system, designed to provide a relative calibration for the readout of the CMS electromagnetic calorimeter (CMS-ECAL), is described. On request, this system injects a pulse at the input of a predetermined group of preamplifiers with preselected amplitude and a shape identical to the one produced by the photodetectors. Several chips, in DMILL 0.8 mu m technology, have been developed for integration on the front-end electronics. We describe the principle, the testing, the measurement of their precision, and radiation hardness. (6 refs).

  11. ATLAS tile hadronic calorimeter signal reconstruction and performance.

    CERN Document Server

    Nguyen, D; The ATLAS collaboration

    2014-01-01

    We present the signal reconstruction and performance of ATLAS tile hadronic calorimeter (TileCal) using proton-proton collision data. The signal reconstruction algorithms, optimal filter and match filter, are discussed together with their signal reconstruction performances. We demonstrate the effects of increasing LHC pile-up conditions on noise description and signal reconstruction. Furthermore, the average energy deposited in a TileCal cell and the TileCal response to single isolated charged particles are presented. Finally, we discuss the TileCal upgrade plans during LHC shutdowns.

  12. Commissioning of Upgrade Forward Hadron Calorimeters of CMS

    CERN Document Server

    Bilki, Burak

    2016-01-01

    The CMS experiment at the Large Hadron Collider (LHC) at CERN is upgrading the photo-detection and readout system of the forward hadron calorimeter (HF). During Long Shutdown 1, all of the original PMTs were replaced with multi-anode, thin window photomultipliers. At the same time, the back-end readout system was upgraded to micro-TCA readout. Here we report on the experience with commissioning and calibrating the HF front-end as well as the online operational challenges of the micro-TCA system.

  13. Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Laszlo, Andras; Pal, Andras; Vesztergombi, Gyorgy; Zálán, Peter; Fenyvesi, Andras; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sharma, Seema; Sudhakar, Katta; Verma, Piyush; Hashemi, Majid; Mohammadi-Najafabadi, M; Paktinat, S; Babich, Kanstantsin; Golutvin, Igor; Kalagin, Vladimir; Kamenev, Alexey; Konoplianikov, V; Kosarev, Ivan; Moissenz, K; Moissenz, P; Oleynik, Danila; Petrosian, A; Rogalev, Evgueni; Semenov, Roman; Sergeyev, S; Shmatov, Sergey; Smirnov, Vitaly; Vishnevskiy, Alexander; Volodko, Anton; Zarubin, Anatoli; Druzhkin, Dmitry; Ivanov, Alexander; Kudinov, Vladimir; Orlov, Alexandre; Smetannikov, Vladimir; Gavrilov, Vladimir; Gershtein, Yuri; Ilyina, N; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Ulyanov, A; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Teplov, V; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Kalinin, Alexey; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; de Visser, Theo; Vlassov, E; Aydin, Sezgin; Bakirci, Mustafa Numan; Cerci, Salim; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Koylu, S; Kurt, Pelin; Onengüt, G; Ozkurt, Halil; Polatoz, A; Sogut, Kenan; Topakli, Huseyin; Vergili, Mehmet; Yetkin, Taylan; Cankoc, K; Esendemir, Akif; Gamsizkan, Halil; Güler, M; Ozkan, Cigdem; Sekmen, Sezen; Serin-Zeyrek, M; Sever, Ramazan; Yazgan, Efe; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grynev, B; Lyubynskiy, Vadym; Senchyshyn, Vitaliy; Hauptman, John M; Abdullin, Salavat; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Los, Serguei; ODell, V; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Arcidy, M; Hazen, Eric; Heering, Arjan Hendrix; Lawlor, C; Lazic, Dragoslav; Machado, Emanuel; Rohlf, James; Varela, F; Wu, Shouxiang; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Mans, Jeremy; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gusum, K; Kim, Heejong; Spezziga, Mario; Thomas, Ray; Wigmans, Richard; Baarmand, Marc M; Mermerkaya, Hamit; Ralich, Robert; Vodopiyanov, Igor; Kramer, Laird; Linn, Stephan; Markowitz, Pete; Cushman, Priscilla; Ma, Yousi; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Tully, Christopher; Bodek, Arie; De Barbaro, Pawel; Budd, Howard; Chung, Yeon Sei; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T

    2008-01-01

    Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\\% to 5\\%.

  14. Mitigation of Anomalous APD Signals in the CMS Electromagnetic Calorimeter

    CERN Document Server

    Theofilatos, Konstantinos

    2012-01-01

    Anomalous, large signals are observed in the barrel region of the CMS electromagnetic calorimeter during pp collisions at the LHC. Laboratory and beam-test studies, as well as Monte Carlo simulations, have been used to understand their origin. They are ascribed to direct energy depositions by particles in the Avalanche Photo-Diodes used for the scintillation light readout. Their properties and rates are summarized. The methods employed to reject these signals in the online trigger selection and in the offline event reconstruction are presented.

  15. The development of vacuum phototriodes for the CMS electromagnetic calorimeter

    CERN Document Server

    Bell, K W; Cockerill, D J A; Flower, P S; Hobson, P R; Imrie, D C; Kennedy, B W; Lintern, A L; Pattison, C A X; Sproston, M; Williams, J H

    2001-01-01

    A new generation of vacuum phototriodes (VPTs) has been developed for application in the end-cap sub-system of the crystal electromagnetic calorimeter (ECAL) for the CMS experiment at the CERN Large Hadron Collider (LHC). These VPTs must operate with high reliability for at least 10 years in an extremely hostile environment. Results are presented from an extensive programme of tests, demonstrating that the required properties of significant gain in a 4 T magnetic field, resistance to ionising radiation, and stable operation with large photocurrents can all be satisfied in a robust, compact, inexpensive device. (12 refs).

  16. The Hadron Calorimeter of the compact muon solenoid (CMS)

    Science.gov (United States)

    Hagopian, Vasken; CMS Collaboration

    1998-02-01

    The Hadron Calorimeter of CMS is about 1,000 tons of copper and scintillator sandwich in a 4 tesla magnetic field. It will be built in three segments, the barrel surrounding the central portion and the two end caps. The scintillators will use a tower structure made of grooved megatiles with wavelength shifting (WLS) fibers imbedded inside the grooves. The coverage extends to η = 3.0 and is hermetic with very few gaps. The 1995 test beam data was taken inside a 3 tesla magnet showed that it will work in a magnetic field, but will require a tail catcher inside the muon system.

  17. ATLAS Level-1 Calorimeter Trigger Upgrade for Phase-I

    CERN Document Server

    Qian, W; The ATLAS collaboration

    2012-01-01

    The ATLAS Level-1 Trigger requires several upgrades to maintain physics sensitivity as the LHC luminosity is raised. One of the most challenging is the electron trigger, with a major development planned for installation in 2018. New on-detector electronics will be installed to digitize electromagnetic calorimetry signals, providing trigger access to shower profile information. The trigger processing will be ATCA-based, with each multi-FPGA module processing ~1 Tbit/s of calorimeter digits within the current 2.5 microseconds Level-1 Trigger latency limit. This paper will address the system architecture and design, and give the status of a current technology demonstrator.

  18. Radiation hardness of WLS fibres for the ATLAS Tile Calorimeter

    CERN Document Server

    David, M; Maio, A

    2007-01-01

    In this document we present the data obtained in the irradiation in a Co-60 source of WLS fibers for the TileCal calorimeter. The optical, mechanical and radiation hardness properties of these fibers were developed in close contact with three producers: Bicron, Kuraray and Pol.Hi.Tech. The results on the degradation of the light output and attenuation length from five irradiations are presented. The fibers were irradiated with a total dose at least 3 times higher than the dose predicted for 10 years of operation of LHC at nominal luminosity.

  19. A detailed study of the performance of the uranium-gas sampling calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Arefiev, A.; Burov, S.; Chumakov, M.; Galaktionov, Yu.; Gordeev, A.; Gorodkov, Yu.; Kamyshkov, Yu.; Klimentov, A.; Koutsenko, V.; Kunin, A.; Malinin, A.; Morgunov, V.; Plyaskin, V.; Pojidaev, V.; Rozhkov, A.; Savin, A.; Shevchenko, S.; Shevchenko, V.; Shmakov, K.; Shoutko, V.; Shumilov, E.; Tarkovsky, E.; Tchoudakov, V.; Vorobiev, I. (Institut Teoreticheskoj i Ehksperimental' noj Fiziki, Moscow (USSR)); Azemoon, T.; Bal, R.; Capell, M.; Goldfarb, S.; Jones, L.W.; Mills, G.B.; Roe, B.P. (Michigan Univ., Ann Arbor (USA)); Chen, H.S.; Lu, Y.S.; Tung, K.L. (Academia Sinica, Beijing (China). Inst. of High Energy Physics); Chen, M.; Ting, S.C.C. (Massachusetts Inst. of Tech., Cambridge (USA)); Gong, Z.F. (CCAST World Lab., Beijing, BJ (China) China Univ. of Science and Technology, Hefei, AH); Lecomte, P.; LeCoultre, P.; Lettry, J.; Lin, Z.R.; Spiess, B. (Eidgenoessische Technische Hochschule, Zurich (Switzerland)); Ulbricht, J. (Paul Scherrer Inst., Wuerenlingen (Switzerland)); L3 Collaboration

    1989-12-20

    Results of experimental studies of the performance of the uranium calorimeter with gas sampling detectors are presented. There is further evidence showing the importance of the contribution of the neutron component of a hadronic shower to the detected signal. The response and the resolution of the uranium calorimeter are measured in the momentum range 0.3-0.6 GeV/c for the different incident particles and different gases that are used in the detectors. For a calorimeter structure with double-gas-detector layers, the correlation between signals from two calorimeters formed by chambers filled with different gas mixtures is measured. The topics that are relevant to the performance of the L3 uranium-gas sampling calorimeter - such as its operation in the magnetic field, the energy dependence of muon response, the uranium noise, as well as the electronics optimization - are discussed. (orig.).

  20. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    Cerda Alberich, Leonor; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region |η| < 1.7. Jointly with the other calorimeters it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sa...

  1. Construction of a hadron calorimeter for Jefferson Lab Hall-A Super Bigbite Spectrometer

    Science.gov (United States)

    Mamyan, Vahe

    2015-04-01

    A ``shashlik'' hadron calorimeter is being constructed for the new Super Bigbite Spectrometer in Jefferson Lab Hall-A. The calorimeter will be used in nucleon-coincidence form-factor experiments taking advantage of Jefferson Labs' 12 GeV upgrade. An adiabatic light guide has been developed for the calorimeter based on laser cut acrylic sheets. A prototype module has been built to measure time resolution of the calorimeter for cosmic ray muons as well as to validate the Geant4 simulation. Several innovations in the calorimeter design will be discussed, in particular the choice of the scintillator, wave length shifter and the construction process of the light. The results of prototype tests is compared with Geant4 simulation for cosmic ray muons and prediction of HCal time and special resolution for hadrons in the 2-10 GeV/c momentum range will be presented. SBS COLLABORATION.

  2. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221190; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton col...

  3. The contribution to the the calibration of LAr calorimeters at the ATLAS Experiment

    CERN Document Server

    Pecsy, Martin; Strizenec, Pavol

    The presented thesis brings various contributions to the testing and validation of the ATLAS detector calorimeter calibration. Since the ATLAS calorimeter is non-compensating, the sophisticated software calibration of the calorimeter response is needed. One of the ATLAS official calibration methods is the local hadron calibration. This method is based on detailed simulations providing information about the true deposited energy in calorimeter. Such calibration consists of several independent steps, starting with the basic electromagnetic scale signal calibration and proceeding to the particle energy calibration. Calibration starts from the topological clusters reconstruction and calibration at EM scale. These clusters are classified as EM or hadronic and the hadronic ones receive weights to correct for the invisible energy deposits of hadrons. To get the final reconstructed energy the out-of-cluster and dead material corrections are applied in next steps. The tests of calorimeter response with the first real ...

  4. Calibration and performance of the ATLAS Tile Calorimeter during the Run 2 of the LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is a hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. It is a non-compensating sampling calorimeter comprised of steel and scintillating plastic tiles which are read-out by photomultiplier tubes (PMTs). The TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalising the calorimeter response at each stage of the signal propagation. The performance of the calorimeter and its calibration has been established with cosmic ray muons and the large sample of the proton-proton collisions to study the energy response at the electromagnetic scale, probe of the hadron...

  5. Calibration and Performance of the ATLAS Tile Calorimeter during the LHC Run 2

    CERN Document Server

    Faltova, Jana; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter is established with the large sample of the proton-proton collisions. Isolated hadrons a...

  6. Theoretical Aspects of Differential Scanning Calorimetry as a Tool for the Studies of Equilibrium Thermodynamics in Pharmaceutical Solid Phase Transitions.

    Science.gov (United States)

    Faroongsarng, Damrongsak

    2016-06-01

    Although differential scanning calorimetry (DSC) is a non-equilibrium technique, it has been used to gain energetic information that involves phase equilibria. DSC has been widely used to characterize the equilibrium melting parameters of small organic pharmaceutical compounds. An understanding of how DSC measures an equilibrium event could make for a better interpretation of the results. The aim of this mini-review was to provide a theoretical insight into the DSC measurement to obtain the equilibrium thermodynamics of a phase transition especially the melting process. It was demonstrated that the heat quantity obtained from the DSC thermogram (ΔH) was related to the thermodynamic enthalpy of the phase transition (ΔH (P) ) via: ΔH = ΔH (P) /(1 + K (- 1)) where K was the equilibrium constant. In melting, the solid and liquefied phases presumably coexist resulting in a null Gibbs free energy that produces an infinitely larger K. Thus, ΔH could be interpreted as ΔH (P). Issues of DSC investigations on melting behavior of crystalline solids including polymorphism, degradation impurity due to heating in situ, and eutectic melting were discussed. In addition, DSC has been a tool for determination of the impurity based on an ideal solution of the melt that is one of the official methods used to establish the reference standard.

  7. Thermodynamic optimization of individual steel database by means of systematic DSC measurements according the CALPHAD approach

    Science.gov (United States)

    Presoly, P.; Six, J.; Bernhard, C.

    2016-03-01

    Reliable thermodynamic data are essential information required for the design of new steel types and are a prerequisite to effective process optimization and simulation. Moreover, it is important to know the exact temperatures at which the high-temperature phase transformations (TLiquid, TSolid, TPerit, Tγ→δ) occur in order to describe the solidification sequence and to describe further processing parameters. By utilizing DTA/DSC measurements, our earlier experimental studies of selected commercial DP, TRIP and high-Mn TWIP steels, have indicated that currently commercially available databases can often not be utilised to reliably describe the behaviour and microstructural development in such complex alloy systems. Because of these ostensible deficiencies, an experimental study was undertaken in an attempt to determine the pertaining thermodynamic data to analyse the behaviour of the important five- component Fe-C-Si-Mn-Al alloy system. High purity model alloys with systematic alloy variations were prepared and utilized in order to determine the influence of individual alloying elements in this complex, but industrially important alloy system. The present study provides new validated experimental thermodynamic data and analysis of the five-component Fe-C-Si- Mn-Al system, which will allow the construction of new phase diagrams, prediction of solidification sequences and the assessment of micro-segregation.

  8. Development and validation of an open source quantification tool for DSC-MRI studies.

    Science.gov (United States)

    Gordaliza, P M; Mateos-Pérez, J M; Montesinos, P; Guzmán-de-Villoria, J A; Desco, M; Vaquero, J J

    2015-03-01

    This work presents the development of an open source tool for the quantification of dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion studies. The development of this tool is motivated by the lack of open source tools implemented on open platforms to allow external developers to implement their own quantification methods easily and without the need of paying for a development license. This quantification tool was developed as a plugin for the ImageJ image analysis platform using the Java programming language. A modular approach was used in the implementation of the components, in such a way that the addition of new methods can be done without breaking any of the existing functionalities. For the validation process, images from seven patients with brain tumors were acquired and quantified with the presented tool and with a widely used clinical software package. The resulting perfusion parameters were then compared. Perfusion parameters and the corresponding parametric images were obtained. When no gamma-fitting is used, an excellent agreement with the tool used as a gold-standard was obtained (R(2)>0.8 and values are within 95% CI limits in Bland-Altman plots). An open source tool that performs quantification of perfusion studies using magnetic resonance imaging has been developed and validated using a clinical software package. It works as an ImageJ plugin and the source code has been published with an open source license. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Some considerations on the vibrational environment of the DSC-DCMIX1 experiment onboard ISS

    Science.gov (United States)

    Jurado, R.; Gavaldà, Jna.; Simón, M. J.; Pallarés, J.; Laverón-Simavilla, A.; Ruiz, X.; Shevtsova, V.

    2016-12-01

    The present work attempts to characterize the accelerometric environment of the DSC-DCMIX1 thermodiffusion experiment carried out in the International Space Station, from November 7th 2011 until January 16th 2012. Quasi-steady and vibrational/transient data coming from MAMS and SAMS2 sensors have been downloaded from the database of the PIMS NASA website. To be as exhaustive as possible, simultaneous digital signals coming from different SAMS2 sensors located in the Destiny and Columbus modules have also been considered. In order to detect orbital adjustments, dockings, undockings, as well as, quiescent periods, when the experiment runs were active, we have used the quasi-steady eight hours averaged (XA, YA and ZA) acceleration functions as well as the eight hours RMS ones. To determine the spectral contents of the different signals the Thomson multitaper and Welch methods have been used. On the other hand, to suppress the high levels of noise always existing in the raw SAMS2 signals, denoising techniques have been preferred for comparative reboostings considerations. Finally, the RMS values for specific 1/3 octave frequency bands showed that the International Space Station vibratory limit requirements have not been totally accomplished during both quiescent periods and strong disturbances, specially in the low frequency range.

  10. Differential scanning calorimetry studies of Se85Te15–xPbx (x = 4, 6 ...

    Indian Academy of Sciences (India)

    Unknown

    2000-06-14

    Jun 14, 2000 ... quenched in ice cold water. About 10–15 mg of the powder samples were taken and subjected to the differen- tial scanning calorimetry at different heating rates. The DSC equipment was calibrated prior to the mea- surement using high purity elements such as Pb, Sn and. In, with known melting enthalpies ...

  11. Aqueous solutions of proline and NaCl studied by differential scanning calorimetry at subzero temperatures

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Jørgensen, Bo; Nielsen, Jette

    1997-01-01

    The hydration properties of proline are studied by differential scanning calorimetry (DSC) in aqueous solutions during freezing to -60 degrees C and subsequent heating to +20 degrees C. The concentration of proline in the freeze concentrated solution was estimated to approximately 50 wt% (w...

  12. Detection of sunflower oil in extra virgin olive oil by fast differential scanning calorimetry

    NARCIS (Netherlands)

    Wetten, I.A.; Herwaarden, A.W.; Splinter, R.; Boerrigter-Eenling, R.; Ruth, van S.M.

    2015-01-01

    Extra virgin olive oil (EVOO) is an economically valuable product, due to its high quality and premium price. Therefore it is vulnerable for adulteration by means of the addition of cheaper vegetable oils. Differential scanning calorimetry (DSC) has been suggested as a fast technique for the

  13. On the Frequency Correction in Temperature-Modulated Differential Scanning Calorimetry of Glass Transition

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, J.C.; Allan, D.C.

    2012-01-01

    Temperature-modulated differential scanning calorimetry (TMDSC) is based on conventional DSC but with a sinusoidally modulated temperature path. Simulations of TMDSC signals were performed for Corning EAGLE XG® glass over a wide range of modulation frequencies. Our results reveal that the frequency...

  14. Insights into glass transition and relaxation behavior using temperature-modulated differential scanning calorimetry

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, J.C.; Allan, D.C.

    Temperature-modulated differential scanning calorimetry (TMDSC) is based on conventional DSC but with a sinusoidally modulated temperature path. Our simulations of TMDSC signals prove that the frequency correction of non-reversing heat flow can give a master curve within a certain range of freque...

  15. KINETIC-STUDY OF THE PHOTOINITIATED POLYMERIZATION OF A LIQUID-CRYSTALLINE DIACRYLATE MONOMER BY DSC IN THE ISOTHERMAL MODE

    NARCIS (Netherlands)

    Doornkamp, Annette; VANEKENSTEIN, GORA; TAN, YY

    1992-01-01

    The photoinitiated polymerization of the liquid crystalline (LC) diacrylate monomer 1,4-(-2-methyl phenylene)-bis[4-(6-acryloyloxy-hexamethyleneoxy)benzoate] with T(k,n) = 85-degrees-C and T(i) = 118-degrees-C, was studied by d.s.c. at various temperatures under different conditions. In the

  16. Cosmic muon tomography of pure cesium iodide calorimeter crystals

    CERN Document Server

    Frlez, E; Assamagan, Ketevi A; Brönnimann, C; Flügel, T; Krause, B; Lawrence, D W; Mzhavia, D A; Pocanic, D; Renker, D; Ritt, S; Slocum, P L; Soic, N; Br"onnimann, Ch.; Fl"ugel, Th.

    2000-01-01

    Scintillation properties of pure CsI crystals used in the shower calorimeter being built for precise determination of the pi+ -> pi0 e+ nu decay rate are reported. Seventy-four individual crystals, polished and wrapped in Teflon foil, were examined in a multiwire drift chamber system specially designed for transmission cosmic muon tomography. Critical elements of the apparatus and reconstruction algorithms enabling measurement of spatial detector optical nonuniformities are described. Results are compared with a Monte Carlo simulation of the light response of an ideal detector. The deduced optical nonuniformity contributions to the FWHM energy resolution of the PIBETA CsI calorimeter for the pi+ -> e+ nu 69.8 MeV positrons and the monoenergetic 70.8 MeV photons were 2.7% and 3.7%, respectively. The upper limit of optical nonuniformity correction to the 69.8 MeV positron low-energy tail between 5 MeV and 55 MeV was +0.2%, as opposed to the +0.3% tail contribution for the photon of the equivalent total energy. ...

  17. Simulation of the CLAS12 Forward Electromagnetic Calorimeter

    Science.gov (United States)

    Musalo, C. J.; Gilfoyle, G. P.; Carbonneau, J.

    2010-11-01

    The primary mission of Jefferson Lab (JLab) is to reveal the quark and gluon structure of nucleons and nuclei and to deepen our understanding of matter and quark confinement. At JLab there is a need for high-performance computing for data analysis and simulations. The precision of many future experiments will be limited by systematic uncertainties and not statistical ones; making accurate simulations vital. A physics-based simulation of a new detector (CLAS12) is currently being developed called gemc. This new program uses the package Geant4 to calculate the interactions of particles with matter in the components of CLAS12. We have added the electromagnetic calorimeter (EC) detector to the gemc simulation. The EC is a sampling electromagnetic calorimeter made up of alternating layers of lead and plastic scintillator used to detect electrons, photons, and neutrons. The mathematical model of the EC geometry was streamlined to make the code more robust. This geometry is stored in a mysql database on a server at JLab and it was modified using Perl scripts. The new geometry was tested by sending straight tracks (no magnetic field) through the edges of specific layers using the geantino, a Geant4 virtual particle that does not interact with materials. Work supported by US Department of Energy contract DE-FG02-96ER40980.

  18. The Mu2e Undoped CsI Crystal Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Atanov, N.; et al.

    2018-01-07

    The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not the final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.

  19. First data with the ATLAS Level-1 Calorimeter Trigger

    CERN Document Server

    Achenbach, R; Aharrouche, M; Andrei, V; Åsman, B; Barnett, BM; Bauss, B; Bendel, M; Bohm, C; Booth, JRA; Bracinik, J; Brawn, IP; Charlton, DG; Childers, JT; Collins, NC; Curtis, CJ; Davis, AO; Eckweiler, S; Eisenhandler, E F; Faulkner, PJW; Fleckner, J; Föhlisch, F; Gee, CNP; Gillman, AR; Goeringer, C; Groll, M; Hadley, DR; Hanke, P; Hellman, S; Hidvegi, A; Hillier, SJ; Johansen, M; Kluge, E-E; Kühl, T; Landon, M; Lendermann, V; Lilley, JN; Mahboubi, K; Mahout, G; Meier, K; Middleton, RP; Moa, T; Morris, JD; Müller, F; Neusiedl, A; Ohm, C; Oltmann, B; Perera, VJO; Prieur, D; Qian, W; Rieke, S; Rühr, F; Sankey, DPC; Schäfer, U; Schmitt, K; Schultz-Coulon, H-C; Seidler, P; Silverstein, S; Sjölin, J; Staley, RJ; Stamen, R; Stockton, MC; Tan, CLA; Tapprogge, S; Thomas, JP; Thompson, PD; Watkins, PM; Watson, A; Weber, P; Wessels, M; Wildt, M

    2008-01-01

    The ATLAS Level-1 Calorimeter Trigger is one of the main elements of the first stage of event selection for the ATLAS experiment at the LHC. The input stage consists of a mixed analogue/digital component taking trigger sums from the ATLAS calorimeters. The trigger logic is performed in a digital, pipelined system with several stages of processing, largely based on FPGAs, which perform programmable algorithms in parallel with a fixed latency to process about 300 Gbyte/s of input data. The real-time output consists of counts of different types of physics objects, and energy sums. The final system consists of over 300 custom-built VME modules, of several different types. The installation at ATLAS of these modules, and the necessary infrastructure, was completed at the end of 2007. The system has since undergone intensive testing, both in standalone mode, and in conjunction with the whole of the ATLAS detector in combined running. The final steps of commissioning, and experience with running the full-scale system...

  20. New calorimeters for space experiments: physics requirements and technological challenges

    Science.gov (United States)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  1. Multi-Anode Photomultplier (MAPMT) readout for High Granularity Calorimeters

    CERN Document Server

    Mkrtchyan, Tigran; The ATLAS collaboration

    2017-01-01

    Hadron calorimeter high performance in jet sub-structure measurements can be achieved for objects with $p_{T}$ greater than 1 TeV if the readout geometry is finely segmented in $\\Delta\\eta \\times \\Delta\\phi$. A feasibility study to increase the readout granularity of TileCal, the central hadron calorimeter of the ATLAS detector, is presented. We show a preliminary study exploring the possibility to increase by a factor 4 the present readout granularity of the inner layer cells of TileCal (0.1->0.025 in $\\Delta\\eta$) and to split into two layers the intermediate section of TileCal. The proposed solution is designed to cope with mechanical and readout bandwidth and power constraints. Assuming that the mechanics of the Tile modules cannot be changed, Multi-Anode PMTs with same boundary geometry of the present single-anode PMTs are considered to readout WLS bers, ideally one per pixel, carrying the signals from the individual scintillating tiles of each detector cells. The discussed challenges of the design are: ...

  2. Cryogenic Tests of the Atlas Liquid Argon Calorimeter

    CERN Document Server

    Fabre, C; Chalifour, M; Gonidec, A; Passardi, Giorgio

    2006-01-01

    The ATLAS liquid argon calorimeter consists of the barrel and two end-cap detectors housed in three independent cryostats filled with a total volume of 78 m3 of liquid argon. During cool-down the temperature differences in the composite structure of the detectors must be kept within strict limits to avoid excessive mechanical stresses and relative displacements. During normal operation the formation of gas bubbles, which are detrimental to the functioning of the detector, must be prevented and temperature gradients of less than 0.7 K across the argon bath are mandatory due to the temperature dependence of the energy measurements. Between April 2004 and May 2005 the barrel (120 t) and one end-cap (219 t) underwent qualification tests at the operating temperature of 87.3 K using a dedicated test facility at ground level. These tests provided a validation of the cooling methods to be adopted in the final underground configuration. In total 6.9 GJ and 15.7 GJ were extracted from the calorimeters and a temperature...

  3. First Wheel of the Hadronic EndCap Calorimeter Completed

    CERN Document Server

    Oram, C.J.

    2002-01-01

    With the LAr calorimeters well advanced in module production, the attention is turning to Batiment 180 where the calorimeter modules are formed into complete detectors and inserted into their respective cryostats. For the Hadronic End Cap (HEC) Group the task in B180 is to assemble the wheels, rotate them into their final orientation, and put them onto the cradle in front of the End Cap Cryostat. These tasks have been completed for the first HEC wheel in the B180 End Cap Clean Room. Given that this wheel weighs 70 tons the group is very relieved to have established that these gymnastics with the wheel proceed in a routine fashion. To assemble a wheel we take modules that have already been cold tested, do the final electrical testing and locate them onto the HEC wheel assembly table. Four wheels are required in total, each consisting of 32 modules. Wheel assembly is done in the horizontal position, creating a doughnut-like object sitting on the HEC table. The first picture shows the last module being added ...

  4. Scintillator calorimeters for a future linear collider experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hartbrich, Oskar

    2016-07-15

    This thesis presents the first analysis of a full calorimeter system based on the scintillator-SiPM technology. In the testbeam campaign at the Fermilab testbeam facility in May 2009, the combined scintillator-SiPM prototype calorimeter system consisting of the CALICE Scintillator Electromagnetic Calorimeter (ScECAL), the CALICE Analogue Hadronic Calorimeter (AHCAL) and the CALICE Tail Catcher and Muon Tracker (TCMT) were operated in particle beams of electrons, pions and muons in the energy range up to 32 GeV. The absorber material and sampling fraction of the ScECAL is different from the AHCAL and TCMT, which complicates the reconstruction of shower energies and potentially impacts the achievable energy resolution of showers extending through the whole calorimeter system. A clean selection of single particle events of a given particle type is obtained using the information from the beam instrumentation installed in the beam line and from the reconstruction of features of the shower topology to identify additional particles entering the detectors. The remaining contaminations are found to be small enough to not significantly bias the results. Possible selection biases on the energy response or resolution are found to be negligible in simulation studies. A detailed validation of the ScECAL model is performed with electromagnetic showers and interactions, ranging from the single cell spectra of MIP particles up to full electromagnetic shower profile and their response and resolution. Adapting the geometry of the ScECAL simulation model can reduce the observed discrepancies, however not within reasonable ranges of modification. The analysis of pion data recorded with the combined scintillator-SiPM system aims to extract the energy resolution for single, contained pion showers, both in comparison to different simulations and to the resolutions obtained from a similar setup without the ScECAL. In the ScECAL the longitudinal shower profile as a function of distance to

  5. Energy Measurement of Hadrons with the CERN ATLAS Calorimeter

    CERN Document Server

    Speckmayer, Peter; Fabjan, Christian Wolfgang

    2008-01-01

    The ATLAS detector is a multi-purpose detector measuring the energy and direction of particles produced in proton-proton collisions at a center of mass energy of 14 TeV provided by the Large Hadron Collider at the European center of particle physics, CERN. The main aim of this thesis is to assess the precision of the present understanding of the interactions of hadrons with matter (as implemented in Monte Carlo (MC) simulations) to describe the response of the ATLAS calorimeter and to predict the correction necessary to measure the full energy of pions. The simulations are compared to testbeam data. The present description of the response of the ATLAS central calorimeter is able to predict the energy corrections, as verified by using testbeam data. For the Combined Testbeam 2004 (CTB) a full slice of the central region of the ATLAS detector including all sub-detectors has been installed in the H8 beam line of the CERN SPS accelerator. Pions and electrons with the energies ranging from 1 to 350 GeV have been m...

  6. A first-level calorimeter trigger for the ATLAS experiment

    CERN Document Server

    Perera, V.; Gee, N; Gillman, A R; Hatley, R; Leake, J W; Quinton, S; Shah, T P; Eisenhandler, Eric F; Landon, M; Brawn, I P; Carney, R E; Garvey, J; Staley, R J; Watson, A T; Ellis, Nick

    1995-01-01

    In the RD27 collaboration the authors have carried out system studies on the implementation of the first level calorimeter trigger processor system for the ATLAS experiment to be mounted at the Large Hadron Collider (LHC) at CERN. A demonstrator trigger system operated successfully with the RD3 and RD33 calorimeters at the full 40 MHz LHC bunch crossing (BC) rate. The prototype application-specific integrated circuits (ASICs) in this system each processed data from only a single trigger cell and its environment, which would lead to an extremely large system for ATLAS. Using eight-bit parallel data even the use of ASICs, processing multiple trigger cells would demand unacceptably large numbers of input pins and module connections. Initial studies of this I/O problem produced a solution based on asynchronous transmission of zero-suppressed and BC-tagged data on 160 Mbit/s serial links. This approach appeared to be feasible but would have introduced additional latency of about 20 BCs. Further studies have led to...

  7. The CMS calorimeter trigger upgrade for the LHC Run II

    CERN Document Server

    Zabi, Alexandre

    2014-01-01

    The CMS experiment implements a sophisticated two-level online selection system that achieves a rejection factor of nearly 10e5. The first level (L1) is based on coarse information coming from the calorimeters and the muon detectors while the High-Level Trigger combines fine-grain information from all sub-detectors. During Run II, the LHC will increase its centre of mass energy up to 13 TeV and progressively reach an instantaneous luminosity of 2e34 cm-2s-1. In order to guarantee a successful and ambitious physics program under this intense environment, the CMS Trigger and Data acquisition system must be consolidated. In particular the L1 calorimeter Trigger hardware and architecture will be modified. The goal is to maintain the current thresholds (e.g., for electrons and photons) and improve the performance for the selection of tau leptons. This can only be achieved by designing an updated trigger architecture based on the recent microTCA technology. Racks can be equipped with fast optical links and latest...

  8. Electronics and triggering challenges for the CMS High Granularity Calorimeter

    CERN Document Server

    Lobanov, Artur

    2017-01-01

    The High Granularity Calorimeter (HGCAL), presently being designed by the CMS collaboration to replace the CMS endcap calorimeters for the High Luminosity phase of LHC, will feature six million channels distributed over 52 longitudinal layers. The requirements for the front-end electronics are extremely challenging, including high dynamic range (0-10 pC), low noise (~2000e- to be able to calibrate on single minimum ionising particles throughout the detector lifetime) and low power consumption (~10mW/channel), as well as the need to select and transmit trigger information with a high granularity. Exploiting the intrinsic precision-timing capabilities of silicon sensors also requires careful design of the front-end electronics as well as the whole system, particularly clock distribution. The harsh radiation environment and requirement to keep the whole detector as dense as possible will require novel solutions to the on-detector electronics layout. Processing all the data from the HGCAL imposes equally large ch...

  9. CsI calorimeter with 3-D position resolution

    CERN Document Server

    Schopper, Herwig Franz; Shaw, H; Nefzger, C; Zoglauer, A; Schönfelder, V; Kanbach, G

    2000-01-01

    New gamma-ray calorimeter have been developed for the MEGA Compton camera. They consist of arrays of small CsI(Tl) scintillator bars read out by Silicon PIN-diodes and low noise, self-triggering frontend electronics. The length of the bars (the thickness of the calorimeter) can be varied for different applications to fit the stopping power needed and the light loss tolerable. In this paper we present calibration results from 2 cm long bars with diodes on one side, and 8 cm long bars with diodes on two opposite sides. Double-sided readout gives 3-D information of interactions which will be used to overcome the limited position resolution in Anger-cameras at high energies. Simpler detection devices like Anger-cameras might finally resolve only the centre of gravity. As events from gamma-rays with energies of MeV do extend over several cm, it is a prerequisite for an imaging device to resolve the interaction structure in detail. Combining CsI(Tl) scintillators, Silicon PIN-photodiodes and frontend electronics in...

  10. Phase1 upgrade of the CMS-HF Calorimeter

    CERN Document Server

    Gulmez, Erhan

    2016-01-01

    In this presentation, results of the Phase I upgrade of the CMS Hadron Forward Calorimeter (HF) are discussed. The CMS-HF Calorimeter was using regular PMTs. Cherenkov light produced in the quartz fibers embedded in the iron absorber was read out with the PMTs. However, occasionally, stray muons hitting the PMT windows cause Cherenkov radiation in the PMT itself and produce large signals. These large signals mimic a very high-energy particle and are tagged as important by the trigger. To reduce this problem, PMTs had to be replaced. The four-anode PMTs that were chosen have thinner windows; thereby reducing the Cherenkov radiation in the PMT window. As part of the upgrade, the read-out electronics is to be replaced so that the PMTs are read out in two channels by connecting each pair of anodes to a single channel. Information provided by these two channels will help us reject the false signals due to the stray muons since the Cherenkov radiation in the PMT window is more likely to produce a signal only in one...

  11. gFEX, the ATLAS Calorimeter Global Feature Extractor

    CERN Document Server

    Takai, Helio; The ATLAS collaboration; Chen, Hucheng

    2015-01-01

    The global feature extractor (gFEX) is a component of the Level-1 Calorimeter trigger Phase-I upgrade for the ATLAS experiment. It is intended to identify patterns of energy associated with the hadronic decays of high momentum Higgs, W, & Z bosons, top quarks, and exotic particles in real time at the LHC crossing rate. The single processor board will be implemented as a fast reconfigurable processor based on four large FPGAs. The board will receive coarse-granularity information from all the ATLAS calorimeters on 264 optical fibers with the data transferred at the 40 MHz LHC clock frequency. The gFEX will be controlled by a single system-on-chip processor, ZYNQ, that will be used to configure FPGAs, monitor board health, and interface to external signals. Although the board is being designed specifically for the ATLAS experiment, it is sufficiently generic that it could be used for fast data processing at other HEP or NP experiments. We will present the design of the gFEX board and discuss how it is being...

  12. Beam Test of the ATLAS Level-1 Calorimeter Trigger System

    CERN Document Server

    Garvey, J; Mahout, G; Moye, T H; Staley, R J; Thomas, J P; Typaldos, D; Watkins, P M; Watson, A; Achenbach, R; Föhlisch, F; Geweniger, C; Hanke, P; Kluge, E E; Mahboubi, K; Meier, K; Meshkov, P; Rühr, F; Schmitt, K; Schultz-Coulon, H C; Ay, C; Bauss, B; Belkin, A; Rieke, S; Schäfer, U; Tapprogge, T; Trefzger, T; Weber, GA; Eisenhandler, E F; Landon, M; Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J; Gee, C N P; Gillman, A R; Mirea, A; Perera, V J O; Qian, W; Sankey, D P C; Bohm, C; Hellman, S; Hidvegi, A; Silverstein, S

    2005-01-01

    The Level-1 Calorimter Trigger consists of a Preprocessor (PP), a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce Region-of-Interest (RoIs) and trigger multiplicities. The latter are sent in real time to the Central Trigger Processor (CTP) where the Level-1 decision is made. On receipt of a Level-1 Accept, Readout Driver Modules (RODs), provide intermediate results to the data acquisition (DAQ) system for monitoring and diagnostic purpose. RoI information is sent to the RoI builder (RoIB) to help reduce the amount of data required for the Level-2 Trigger The Level-1 Calorimeter Trigger System at the test beam consisted of 1 Preprocessor module, 1 Cluster Processor Module, 1 Jet/Energy Module and 2 Common Merger Modules. Calorimeter energies were sucessfully handled thourghout the chain and trigger object sent to the CTP. Level-1 Accepts were sucessfully produced and used to drive the readout path. Online diagno...

  13. SIGNAL RECONSTRUCTION PERFORMANCE OF THE ATLAS HADRONIC TILE CALORIMETER

    CERN Document Server

    Do Amaral Coutinho, Y; The ATLAS collaboration

    2013-01-01

    "The Tile Calorimeter for the ATLAS experiment at the CERN Large Hadron Collider (LHC) is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are readout by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front-end electronics allows to read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read-out system is responsible for reconstructing the data in real-time fulfilling the tight time constraint imposed by the ATLAS first level trigger rate (100 kHz). The main component of the read-out system is the Digital Signal Processor (DSP) which, using an Optimal Filtering reconstruction algorithm, allows to compute for each channel the signal amplitude, time and quality factor at the required high rate. Currently the ATLAS detector and the LHC are undergoing an upgrade program tha...

  14. [Digital scanning converter for medical endoscopic ultrasound imaging].

    Science.gov (United States)

    Chen, Xiaodong; Zhang, Hongxu; Zhou, Peifan; Wen, Shijie; Yu, Daoyin

    2009-02-01

    This paper mainly introduces the design of digital scanning converter (DSC) for medical endoscopic ultrasound imaging. Fast modified vector totational CORDIC (FMVR-CORDIC) arithmetic complete coordinate conversion is used to increase the speed of ultrasonic scanning imaging. FPGA is used as the kernel module to control data transferring, related circuits and relevant chips' working, and to accomplish data preprocessing. With the advantages of simple structure, nice flexibility and convenience, it satisfies the demand for real-time displaying in this system. Finally, the original polar coordinate image is transformed to rectangular coordinate grey image through coordinate transformation. The system performances have been validated by the experimental result.

  15. Low-energetic hadron interactions in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Feege, Nils

    2011-12-15

    The CALICE collaboration develops imaging calorimeters for precision measurements at a future electron-positron linear collider. These calorimeters feature a fine granularity in both longitudinal and transverse direction, which is needed to fulfill the shower separation requirement of Particle Flow reconstruction algorithms. CALICE has constructed prototypes for several design options for electromagnetic and hadron calorimeters and has successfully operated these detectors during combined test-beam programs at DESY, CERN, and Fermilab since 2005. The focus of this dissertation is on the prototype for a hadron calorimeter with analog readout (AHCAL), which is a 1m{sup 3} scintillator-steel sampling calorimeter with 38 sensitive layers and a depth of 5.3 nuclear interaction lengths. Each scintillator layer is pieced together from separate tiles with embedded silicon photomultipliers (SiPMs) for measuring the scintillation light. With a total of 7608 readout channels, the AHCAL prototype represents the first large-scale application of SiPMs. This thesis covers the commissioning and operation of the AHCAL and other detectors for several months at the Fermilab Test-beam Facility in 2008 and 2009 and the analysis of electron and pion data collected during these measurements. The analysis covers energies from 1 GeV to 30 GeV and is the first analysis of AHCAL data at energies below 8 GeV. Because the purity of the recorded data is not sufficient for analysis, event selection procedures for electrons and pions at these energies and a method to estimate the purities of these data samples are developed. The calibration of detectors employing SiPMs requires parameters that change with operating voltage and temperature. The correction of these parameters for the effects of temperature variations during data collection and their portability to different operating conditions are evaluated using the AHCAL as an example. This is important for the use of this technology in a

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... limitations of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... top of page What are some common uses of the procedure? The thyroid scan is used to ...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... of the Thyroid Scan and Uptake? What is a Thyroid Scan and Uptake? A thyroid scan is ... of page What are some common uses of the procedure? The thyroid scan is used to determine ...

  18. Lumbar spine CT scan

    Science.gov (United States)

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower ... The lumbar CT scan is good for evaluating large herniated disks, ... smaller ones. This test can be combined with a myelogram to get ...

  19. Arm CT scan

    Science.gov (United States)

    CAT scan - arm; Computed axial tomography scan - arm; Computed tomography scan - arm; CT scan - arm ... stopping.) A computer creates separate images of the arm area, called slices. These images can be stored, ...

  20. Thoracic spine CT scan

    Science.gov (United States)

    CAT scan - thoracic spine; Computed axial tomography scan - thoracic spine; Computed tomography scan - thoracic spine; CT scan - ... Philadelphia, PA: Elsevier Mosby; 2013:chap 44. US Food and Drug Administration. Computed tomography (CT). Updated August ...

  1. Thermal Properties of Trogamid by Conventional and Fast Scanning Calorimetry

    Science.gov (United States)

    Cebe, Peggy; Merfeld, John; Mao, Bin; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    We use conventional slow scan rate differential scanning calorimetry, and fast scanning chip-based calorimetry (FSC), to investigate the crystallization and melting behavior of Trogamid, a chemical relative of nylon. Fundamental thermal properties of Trogamid were studied, including the melt crystallization kinetics, heat of fusion, and the solid and liquid state heat capacities. Using slow scan DSC (at 5 K/min), Trogamid displays a glass transition relaxation process at ~133 C, melting endotherm peak at 250 C, and is stable upon repeated heating to 310 C. When using slow scan DSC, the isothermal melt crystallization temperatures were restricted to 225 C or above. Trogamid crystallizes rapidly from the melt and conventional calorimetry is unable to cool sufficiently fast to prevent nucleation and crystal growth prior to stabilization at lower crystallization temperatures. Using FSC we were able to cool nano-gram sizes samples at 2000 K/s to investigate a much lower range of melt crystallization temperatures, from 205-225 C. The experimental protocol for performing FSC on semicrystalline polymers to obtain liquid state heat capacity data will be presented. National Science Foundation, Polymers Program DMR-1206010; DAAD; Tufts Faculty Supported Leave.

  2. Prediction of the long-term efficacy of STA-MCA bypass by DSC-PI

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-01-01

    Full Text Available Superficial temporal artery-middle cerebral artery (STA-MCA bypass [1,2] is an important and effective type of surgical revascularization that is widely used in the treatment of ischemic cerebral artery disease. However, a means of predicting its postoperative efficacy has not been established [3,4]. The present study analyzes the correlation between preoperative perfusion parameters (obtained using dynamic susceptibility contrast-enhanced perfusion imaging, DSC-PI and postoperative long-term prognosis (using modified Rankin Scale, mRS scores. The preoperative perfusion parameters were defined by a combination of perfusion-weighted imaging and the Alberta Stroke Program Early Computerized Tomography Score (PWI-ASPECTS and included cerebral blood flow (CBF-ASPECTS, cerebral blood volume (CBV-ASPECTS, mean transit time (MTT-ASPECTS, and time to peak (TTP-ASPECTS. Preoperative and postoperative scores were determined for 33 patients that received a unilateral STA-MCA bypass in order to discover the most reliable imaging predictive index as well as to define the threshold value for a favorable clinical outcome. The results showed that all of the PWI-ASPECTS scores were significantly negatively correlated with clinical prognosis. Receiver operating curve (ROC analysis of the preoperative parameters in relation to long term prognosis showed the area under curve (AUC was maximal for the CBF-ASPECTS score (P = 0.002. A preoperative score of less than six indicated a poor postoperative prognosis (sensitivity = 74.1%, specificity = 100%, AUC = 0.843. In conclusion, preoperative PWI-ASPECTS scores have been found useful as predictive indexes for the long-term prognosis of STA-MCA bypass patients, with higher scores indicating better postoperative long-term outcomes. As the most valuable prognostic indicator, the preoperative CBF-ASPECTS score has potential for use as a major index in screening and outcome prediction of patients under consideration for STA

  3. Comparison of two highly granular hadronic calorimeter concepts

    Energy Technology Data Exchange (ETDEWEB)

    Neubueser, Coralie

    2016-11-15

    The CALICE collaboration develops hadron calorimeter technologies with high granularity for future electron-positron linear colliders. These technologies differ in active material, granularity and their readout and thus their energy reconstruction schemes. The Analogue Hadron Calorimeter (AHCAL), based on scintillator tiles with Silicon Photomultiplier readout, measures the signal amplitude of the energy deposition in the cells of at most 3 x 3 cm{sup 2} size. The Digital, Resistive Plate Chamber (RPC) based, HCAL (DHCAL) detects hits above a certain threshold by firing pad sensors of 1 x 1 cm{sup 2}. A 2 bit readout is provided by the, also RPC based, Semi-Digital HCAL (SDHCAL), which counts hits above three different thresholds per 1 x 1 cm{sup 2} pad. All three calorimeter concepts have been realised in 1 m{sup 3} prototypes with interleaved steel absorber and tested at various test beams. The differences in active medium, granularity and readout have different impacts on the energy resolution and need to be studied independently. This analysis concentrates on the comparison between these technologies by investigating the impact of the different energy reconstruction schemes on the energy resolution of the AHCAL testbeam data and simulation. Additionally, a so-called software compensation algorithm is developed to weight hits dependent on their energy content and correct for the difference in the response to the electromagnetic and hadronic sub-showers (e/h≠1) and thus reduce the influence of fluctuations in the π{sup 0} generation. The comparison of the energy resolutions revealed that it is mandatory for the AHCAL with 3 x 3 cm{sup 2} cell size to have analogue signal readout, to apply the software compensation algorithm and thus achieve the best possible energy resolution. The effect of the granularity is studied with a simulation of the AHCAL with 1 x 1 cm{sup 2} cell size, and it has been found that to achieve the best possible energy resolution the semi

  4. Study of the interactions of pions in the CALICE silicon-tungsten calorimeter prototype

    CERN Document Server

    Adloff, C; Repond, J; Yu, J; Eigen, G; Mikami, Y; Watson, N K; Wilson, J A; Goto, T; Mavromanolakis, G; Thomson, M A; Ward, D R; Yan, W; Benchekroun, D; Hoummada, A; Khoulaki, Y; Apostolakis, J; Ribon, A; Uzhinskiy, V; Benyamna, M; Carloganu, C; Fehr, F; Gay, P; Blazey, G C; Chakraborty, D; Dyshkant, A; Francis, K; Hedin, D; Lima, J G; Zutshi, V; Hostachy, J Y; Krastev, K; Morin, L; D'Ascenzo, N; Cornett, U; David, D; Fabbri, R; Falley, G; Gadow, K; Garutti, E; Gottlicher, P; Jung, T; Karstensen, S; Lucaci-Timoce, A I; Lutz, B; Meyer, N; Morgunov, V; Reinecke, M; Sefkow, F; Smirnov, P; Vargas-Trevino, A; Wattimena, N; Wendt, O; Feege, N; Groll, M; Haller, J; Heuer, R D; Morozov, S; Richter, S; Samson, J; Kaplan, A; Schultz-Coulon, H C; Shen, W; Tadday, A; Bilki, B; Norbeck, E; Onel, Y; Kim, E J; Kim, G; Kim, D W; Lee, K; Lee, S C; Kawagoe, K; Tamura, Y; Dauncey, P D; Magnan, A M; Yilmaz, H; Zorba, O; Bartsch, V; Postranecky, M; Warren, M; Wing, M; Green, M G; Salvatore, F; Bedjidian, M; Kieffer, R; Laktineh, I; Fouz, M C; Bailey, D S; Barlow, R J; Kelly, M; Thompson, R J; Danilov, M; Tarkovsky, E; Baranova, N; Karmanov, D; Korolev, M; Merkin, M; Voronin, A; Frey, A; Lu, S; Seidel, K; Simon, F; Soldner, C; Weuste, L; Bonis, J; Bouquet, B; Callier, S; Cornebise, P; Doublet, Ph; Faucci Giannelli, M; Fleury, J; Li, H; Martin-Chassard, G; Richard, F; de la Taille, Ch; Poeschl, R; Raux, L; Seguin-Moreau, N; Wicek, F; Anduze, M; Boudry, V; Brient, J C; Gaycken, G; Jeans, D; Mora de Freitas, P; Musat, G; Reinhard, M; Rouge, A; Ruan, M; Vanel, J C; Videau, H; Park, K H; Zacek, J; Cvach, J; Gallus, P; Havranek, M; Janata, M; Marcisovsky, M; Polak, I; Popule, J; Tomasek, L; Tomasek, M; Ruzicka, P; Sicho, P; Smolik, J; Vrba, V; Zalesak, J; Belhorma, B; Belmir, M; Nam, S W; Park, I H; Yang, J; Chai, J S; Kim, J T; Kim, G B; Kang, J; Kwon, Y J

    2010-01-01

    A prototype silicon-tungsten electromagnetic calorimeter for an ILC detector was tested in 2007 at the CERN SPS test beam. Data were collected with electron and hadron beams in the energy range 8 to 80 GeV. The analysis described here focuses on the interactions of pions in the calorimeter. One of the main objectives of the CALICE program is to validate the Monte Carlo tools available for the design of a full-sized detector. The interactions of pions in the Si-W calorimeter are therefore confronted with the predictions of various physical models implemented in the GEANT4 simulation framework.

  5. Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meie