WorldWideScience

Sample records for scandium perchlorates

  1. PERCHLORATE FACTS

    Science.gov (United States)

    Perchlorate is an anion (negative ion) with the formula C1O 4-. Perchlorate salts are famous in inorganic chemistry on account of their high solubilities. As a result, they are very difficult to remove. Although hot and concentrated perchloric acid is a strong oxidizing agent,...

  2. Los Alamos National Laboratory Perchlorate Issues.

    Energy Technology Data Exchange (ETDEWEB)

    Hjeresen, Denny; Rae, Steve; Beers, Bob; Saladen, Mike; Barr, Alice; Pope, Alicia; Dziewinski, Lacek; Scott, Jim; Holcomb, Robert; Hollis, Diana; Leslie Dale,; Williams, Laurie; Strietelmeier, Betty; Carlson, Bryan; Alexander, Rick; Worland, Pete; Hanson, Steve; Stine, Jim; Hiskey, Mike; Archuleta, Jose; Kinkead, Scott; Sherrard, Ann; Longmire, Pat; Witkowski, Marc; Gard, Marvin

    2003-08-04

    This document reviews the chemical structure of the perchlorate anion and the uses of perchlorates, related health issues, applicable drinking water regulations, water supply system monitoring, current laboratory perchlorate use, management of perchlorate compound risks, potential perchlorate sites and sources, the search for a lower perchlorate detection limit, and treatment of perchlorate contamination.

  3. Perchlorate in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Martinelango, P. Kalyani [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States); Tian Kang [Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409 (United States); Dasgupta, Purnendu K. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States)]. E-mail: Sandyd@ttu.edu

    2006-05-10

    There has been no reliable published data on the presence of perchlorate in seawater. Seaweeds are among the most important plant life in the ocean and are good sources of iodine and have been widely used as food and nutritional supplement. Perchlorate is known to inhibit the transport of iodide by the sodium iodide symporter (NIS), present e.g., in the thyroid and mammary glands. With perchlorate being increasingly detected in drinking water, milk and various other foods, increasing the iodide intake through inexpensive natural supplements may be an attractive solution for maintaining iodine assimilation. We report here measurable concentrations of perchlorate in several samples of seawater (detectable in about half the samples analyzed). We also report the iodide and perchlorate concentrations of 11 different species of seaweed and the corresponding bioconcentration factors (BCF) for perchlorate and iodide, relative to the seawater from which they were harvested. All seaweed samples came from the same region, off the coast of Northeastern Maine. Concentrations of iodide and perchlorate in four seawater samples collected from the region near harvest time were 30 {+-} 11 and 0.16 {+-} 0.084 {mu}g l{sup -1}, respectively. Concentrations of both iodide and perchlorate varied over a wide range for different seaweed species; iodide ranging from 16 to 3134 mg kg{sup -1} and perchlorate from 0.077 to 3.2 mg kg{sup -1}. The Laminaria species had the highest iodide concentration; Laminaria digitata is the seaweed species most commonly used in the kelp tablets sold in health food stores. Our sample of L. digitata contained 3134 {+-} 15 mg iodide/kg dry weight. The BCF varied widely for different species, with Laminaria species concentrating iodide preferentially over perchlorate. The iodide BCF (BCF{sub i}) to perchlorate BCF (BCF{sub p}) quotient ranged from 0.66 to 53; L. digitata and L. saccarina having a BCF{sub i}/BCF{sub p} value of 45 and 53, respectively, far

  4. Scandium recovery from slags after oxidized nickel ore processing

    Science.gov (United States)

    Smyshlyaev, Denis; Botalov, Maxim; Bunkov, Grigory; Rychkov, Vladimir; Kirillov, Evgeny; Kirillov, Sergey; Semenishchev, Vladimir

    2017-09-01

    One of the possible sources of scandium production - waste (slags) from processing of oxidized nickel ores, has been considered in present research work. The hydrometallurgical method has been selected as the primary for scandium extraction. Different reagents for leaching of scandium, such as sulfuric acid, various carbonate salts and fluorides, have been tested. Sulfuric acid has been recognized as an optimal leaching reagent. Sulfuric acid concentration of 100 g L-1 allowed recovering up to 97 % of scandium.

  5. 2-(Benzenesulfonamidopyridinium perchlorate

    Directory of Open Access Journals (Sweden)

    Xun Li

    2009-06-01

    Full Text Available In the title compound, C11H11N2O2S+·ClO4−, the dihedral angle between the benzene and pyridinium rings is 87.33 (10°. An intramolecular N—H...O interaction, with an S=O-bonded O atom as receptor, occurs in the cation. In the crystal structure, ion pairs occur, being linked by strong N—H...O hydrogen bonds. The perchlorate anion plays a further role in the molecular packing by accepting several weak C—H...O interactions.

  6. Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Morito; Nagase, Toshimi [Measurement Solution Research Center, National Institute of Advanced Industrials Science and Technology, Tosu, Saga 841-0052 (Japan); Umeda, Keiichi; Honda, Atsushi [Murata Manufacturing Co., Ltd., Nagaokakyo, Kyoto 617-8555 (Japan)

    2013-01-14

    The authors have investigated the influence of scandium concentration on the power generation figure of merit (FOM) of scandium aluminum nitride (Sc{sub x}Al{sub 1-x}N) films prepared by cosputtering. The power generation FOM strongly depends on the scandium concentration. The FOM of Sc{sub 0.41}Al{sub 0.59}N film was 67 GPa, indicating that the FOM is five times larger than that of AlN. The FOM of Sc{sub 0.41}Al{sub 0.59}N film is higher than those of lead zirconate titanate and Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} films, which is the highest reported for any piezoelectric thin films. The high FOM of Sc{sub 0.41}Al{sub 0.59}N film is due to the high d{sub 31} and the low relative permittivity.

  7. Hexacarbonyltechnetium(I perchlorate

    Directory of Open Access Journals (Sweden)

    D. N. Suglobov

    2008-09-01

    Full Text Available The title compound, [Tc(CO6]ClO4, was synthesized by the reaction of [TcCl(CO5] with AgClO4, followed by acidification with HClO4 under a CO atmosphere. The [Tc(CO6]+ cation has close to idealized octahedral geometry, with the bond angles between cis-CO groups close to 90° and the Tc—C bond lengths in the range 2.025 (3–2.029 (3Å. The perchlorate anion is disordered over two crystallographically equivalent half-occupied positions. The Tc atom in the [Tc(CO6]+ cation is located on an inversion centre.

  8. dl-Asparaginium perchlorate

    Directory of Open Access Journals (Sweden)

    Fatiha Guenifa

    2009-09-01

    Full Text Available Two enantiomeric counterparts (l- and d-asparginium cations related by glide planes are present in the structure of the title compound, C4H9N2O3+·ClO4−, with a 1:1 cation–anion ratio. The structure is built up from asparginium cations and perchlorate anions. In the crystal, molecules assemble in double layers parallel to (100 through N—H...O, O—H...O and C—H...O hydrogen bonds. In the asparginium layers, hydrogen bonds generate alternating R22(8 and R43(18 graph-set motifs. Further hydrogen bonds involving the anions and cations result in the formation of a three-dimensional network.

  9. Environmental perchlorate: Why it matters

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Andrea B. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States)]. E-mail: a.kirk@ttu.edu

    2006-05-10

    The only known mechanism of toxicity for perchlorate is interference with iodide uptake at the sodium-iodide symporter (NIS). The NIS translocates iodide across basolateral membranes to the thyroid gland so it can be used to form thyroid hormones (TH). NIS is also expressed in the mammary gland during lactation, so that iodide can be transferred from a mother to her child. Without adequate iodide, an infant cannot produce sufficient TH to meet its developmental needs. Effects expected from perchlorate are those that would be seen in conditions of hypothyroidism or hypothyroxinemia. The probability of a permanent adverse effect is greatest during early life, as successful neurodevelopment is TH-dependent. Study of perchlorate risk is complicated by a number of factors including thyroid status of the mother during gestation, thyroid status of the fetus, maternal and infant iodine intake, and exposure of each to other TH-disrupting chemicals. Perhaps the greatest standing issue, and the issue most relevant to the field of analytical chemistry, is the simple fact that human exposure has not been quantified. This review will summarize perchlorate's potential to adversely affect neurodevelopment. Whether current environmental exposures to perchlorate contribute to neuro-impairment is unknown. Risks posed by perchlorate must be considered in conjunction with iodine intake.

  10. Lifetime measurements and oscillator strengths in singly ionized scandium and the solar abundance of scandium

    Science.gov (United States)

    Pehlivan Rhodin, A.; Belmonte, M. T.; Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Pickering, J. C.; Clear, C.; Quinet, P.; Fivet, V.; Palmeri, P.

    2017-12-01

    The lifetimes of 17 even-parity levels (3d5s, 3d4d, 3d6s and 4p2) in the region 57 743-77 837 cm-1 of singly ionized scandium (Sc II) were measured by two-step time-resolved laser induced fluorescence spectroscopy. Oscillator strengths of 57 lines from these highly excited upper levels were derived using a hollow cathode discharge lamp and a Fourier transform spectrometer. In addition, Hartree-Fock calculations where both the main relativistic and core-polarization effects were taken into account were carried out for both low- and high-excitation levels. There is a good agreement for most of the lines between our calculated branching fractions and the measurements of Lawler & Dakin in the region 9000-45 000 cm-1 for low excitation levels and with our measurements for high excitation levels in the region 23 500-63 100 cm-1. This, in turn, allowed us to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical oscillator strengths for a set of 380 E1 transitions in Sc II. These oscillator strengths include the weak lines that were used previously to derive the solar abundance of scandium. The solar abundance of scandium is now estimated to logε⊙ = 3.04 ± 0.13 using these semi-empirical oscillator strengths to shift the values determined by Scott et al. The new estimated abundance value is in agreement with the meteoritic value (logεmet = 3.05 ± 0.02) of Lodders, Palme & Gail.

  11. Effect of nitrate on microbial perchlorate reduction

    Science.gov (United States)

    Sun, Y.; Coates, J. D.

    2007-12-01

    Over the last decade perchlorate has been recognized as an important emerging water contaminant that poses a significant public health threat. Because of its chemical stability, low ionic charge density, and significant water solubility microbial remediation has been identified as the most feasible method for its in situ attenuation. Our previous studies have demonstrated that dissimilatory perchlorate reducing bacteria (DPRB) capable of the respiratory reduction of perchlorate into innocuous chloride are ubiquitous in soil and sedimentary environments. As part of their metabolism these organisms reduce perchlorate to chlorite which is subsequently dismutated into chloride and molecular oxygen. These initial steps are mediated by the perchlorate reductase and chlorite dismutase enzymes respectively. Previously we found that the activity of these organisms is dependent on the presence of molybdenum and is inhibited by the presence of oxygen and to different extents nitrate. However, to date, there is little understanding of the mechanisms involved in the regulation of perchlorate reduction by oxygen and nitrate. As a continuation of our studies into the factors that control DPRB activity we investigated these regulatory mechanisms in more detail as a model organism, Dechloromonas aromatica strain RCB, transitions from aerobic metabolism through nitrate reduction to perchlorate reduction. In series of growth transition studies where both nitrate and perchlorate were present, preference for nitrate to perchlorate was observed regardless of the nitrate to perchlorate ratio. Even when the organism was pre-grown anaerobically in perchlorate, nitrate was reduced prior to perchlorate. Using non-growth washed cell suspension, perchlorate- grown D. aromatica was capable of reducing both perchlorate and nitrate concomitantly suggesting the preferentially utilization of nitrate was not a result of enzyme functionality. To elucidate the mechanism for preferential utilization of

  12. Smelting of Scandium by Microwave Irradiation.

    Science.gov (United States)

    Fujii, Satoshi; Tsubaki, Shuntaro; Inazu, Naomi; Suzuki, Eiichi; Wada, Yuji

    2017-09-27

    Scandium is being explored as an alloying element for aluminum alloys, which are gaining importance as high-performance lightweight structural alloys in the transportation industry. A few years ago, Sc was also found to be suitable for use in electrical devices. High-Sc-content ScAlN thin films have attracted significant attention because of their strong piezoelectricity. The piezoelectric response of ScAlN suggests that ScAlN thin films formed on a hard substrate would be suitable surface acoustic wave wideband filters for next-generation wireless communication systems. However, it is often difficult to use ScAlN thin films in MEMS devices-including acoustic ones-because of the extremely high price of metallic Sc, given the difficulty associated with smelting it. Here, we propose a novel process for smelting Sc metal by microwave irradiation. Sc metal was able to be obtained successfully from ScF₃ through a microwave-irradiation-based carbon reduction reaction. The reaction temperature for this reduction process was approximately 880°C, which is half of that for the conventional smelting process involving reduction with Ca. Thus, the proposed microwave irradiation process has significant potential for use in the smelting of Sc metal.

  13. Smelting of Scandium by Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Satoshi Fujii

    2017-09-01

    Full Text Available Scandium is being explored as an alloying element for aluminum alloys, which are gaining importance as high-performance lightweight structural alloys in the transportation industry. A few years ago, Sc was also found to be suitable for use in electrical devices. High-Sc-content ScAlN thin films have attracted significant attention because of their strong piezoelectricity. The piezoelectric response of ScAlN suggests that ScAlN thin films formed on a hard substrate would be suitable surface acoustic wave wideband filters for next-generation wireless communication systems. However, it is often difficult to use ScAlN thin films in MEMS devices—including acoustic ones—because of the extremely high price of metallic Sc, given the difficulty associated with smelting it. Here, we propose a novel process for smelting Sc metal by microwave irradiation. Sc metal was able to be obtained successfully from ScF3 through a microwave-irradiation-based carbon reduction reaction. The reaction temperature for this reduction process was approximately 880°C, which is half of that for the conventional smelting process involving reduction with Ca. Thus, the proposed microwave irradiation process has significant potential for use in the smelting of Sc metal.

  14. Perchlorate Reduction by Yeast for Mars Exploration

    Science.gov (United States)

    Sharma, Alaisha

    2015-01-01

    Martian soil contains high levels (0.6 percentage by mass) of calcium perchlorate (Ca(ClO4)2), which readily dissociates into calcium and the perchlorate ion (ClO4-) in water. Even in trace amounts, perchlorates are toxic to humans and have been implicated in thyroid dysfunction. Devising methods to lessen perchlorate contamination is crucial to minimizing the health risks associated with human exploration and colonization of Mars. We designed a perchlorate reduction pathway, which sequentially reduces perchlorate to chloride (Cl-) and oxygen (O2), for implementation in the yeast Saccharomyces cerevisiae. Using genes obtained from perchlorate reducing bacteria Azospira oryzae and Dechloromonas aromatica, we plan to assemble this pathway directly within S. cerevisiae through recombinational cloning. A perchlorate reduction pathway would enable S. cerevisiae to lower perchlorate levels and produce oxygen, which may be harvested or used directly by S. cerevisiae for aerobic growth and compound synthesis. Moreover, using perchlorate as an external electron acceptor could improve the efficiency of redox-imbalanced production pathways in yeast. Although several perchlorate reducing bacteria have been identified and utilized in water treatment systems on Earth, the widespread use of S. cerevisiae as a synthetic biology platform justifies the development of a perchlorate reducing strain for implementation on Mars.

  15. Hydrometallurgical methods of recovery of scandium from the wastes of various technologies

    Science.gov (United States)

    Molchanova, T. V.; Akimova, I. D.; Smirnov, K. M.; Krylova, O. K.; Zharova, E. V.

    2017-03-01

    The recovery of scandium from the wastes of the production of uranium, titanium, iron-vanadium, and alumina is studied. The applied acid schemes of scandium transfer to a solution followed by ion-exchange recovery and extraction concentration of scandium ensure the precipitation of crude scandium oxides containing up to 5% Sc2O3. Scandium oxides of 99.96-99.99% purity are formed after additional refining of these crude oxides according to an extraction technology using a mixture 15% multiradical phosphine oxide or Cyanex-925 + 15% tributyl phosphate in kerosene.

  16. Synthesis and Reactivity of a Scandium Terminal Hydride: H2  Activation by a Scandium Terminal Imido Complex.

    Science.gov (United States)

    Han, Xianghao; Xiang, Li; Lamsfus, Carlos A; Mao, Weiqing; Lu, Erli; Maron, Laurent; Leng, Xuebing; Chen, Yaofeng

    2017-10-20

    Dihydrogen is easily activated by a scandium terminal imido complex containing the weakly coordinated THF. The reaction proceeds through a 1,2-addition mechanism, which is distinct from the σ-bond metathesis mechanism reported to date for rare-earth metal-mediated H2 activation. This reaction yields a scandium terminal hydride, which is structurally well-characterized, being the first one to date. The reactivity of this hydride is reported with unsaturated substrates, further shedding light on the existence of the terminal hydride complex. Interestingly, the H2 activation can be reversible. DFT investigations further eludciate the mechanistic aspects of the reactivity of the scandium anilido-terminal hydride complex with PhNCS but also on the reversible H2 activation process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Vapor Pressure of Ammonium Perchlorate

    Science.gov (United States)

    data indicate that ammonium perchlorate sublimes by the dissociation process NH4ClO4 sub (s) = NH3 sub (g) + HClO4 sub (g). The heat of dissociation has been found to be 58 + or - 2 kcal/mole in the cited temperature range.

  18. Thermoelectric material comprising scandium doped zinc cadmium oxide

    DEFF Research Database (Denmark)

    2016-01-01

    There is presented a composition of scandium doped Zinc Cadmium Oxide with the general formula ZnzCdxScyO which the inventors have prepared, and for which material the inventors have made the insight that it is particularly advantageous as an n-type oxide material, such as particularly advantageous...

  19. Scandium/carbon filters for soft x rays

    NARCIS (Netherlands)

    Artioukov, IA; Kasyanov, YS; Kopylets, IA; Pershin, YP; Romanova, SA

    2003-01-01

    This Note deals with thin-film soft x-ray filters for operation at the wavelengths near carbon K edge (similar to4.5 nm). The filters were fabricated by magnetron sputtering deposition of thin layers of scandium (total thickness 0.1-0.2 mum) onto films of polypropylene (thickness 1.5 mum) and

  20. PERCHLORATE BEHAVIOR IN A MUNICIPAL LAKE FOLLOWING FIREWORKS DISPLAYS

    Science.gov (United States)

    Perchlorate salts of potassium and ammonium are the primary oxidants in pyrotechnic mixtures, yet insufficient information is available regarding the relationship between fireworks displays and the environmental occurrence of perchlorate. Here we document changes in perchlorate ...

  1. Perchlorate: environmental occurrence, interactions, and treatment

    National Research Council Canada - National Science Library

    Gu, Baohua, Ph. D; Coates, John D

    2006-01-01

    ..... ... . ... .. ... .. ... . ... ... .. . . . . , . , . , .. ... ... .. 14 Chapter 2. The Chemistry of Perchlorate in the Environment Gilbert M Brown and Baohua Gu Introduction ... 17 Redox Properties of Chlorine Compounds ... 18...

  2. An Enzymatic Bioassay for Perchlorate

    Science.gov (United States)

    2010-07-01

    such as cigarettes, cigars , and chewing tobacco at concentrations as high as 60 mg.kg-1 (Ellington et al., 2001). As these sorts of studies... filters . A minor increase in perchlorate concentration was observed in the control, which indicates a margin of error in either the analysis of...the final shelf products, such as cigarettes, cigars and chewing tobacco, at concentrations as high as 60 mg.kg-1. These facts combined with the

  3. Solvent extraction of scandium from lateritic nickel- cobalt ores using different organic reagents

    OpenAIRE

    Ferizoğlu Ece; Kaya Şerif; Topkaya Yavuz A.

    2016-01-01

    Scandium is the most important and strategic metal that can be recovered as a by-product from lateritic nickel-cobalt ores. In this research, different extractants were investigated in order to extract scandium from a sulfate medium by a using a solvent extraction method. Generally, the organic extractants are classified as acidic, neutral and basic organophosphorus compounds. However, in solvent extraction of scandium, the acidic and neutral organophosphorus compounds are preferred due to th...

  4. BASIC RESEARCH ON THE SEPARATION OF SCANDIUM YTTRIUM, AND THE RARE EARTHS BY SOLVENT EXTRACTION.

    Science.gov (United States)

    RARE EARTH ELEMENTS, * SOLVENT EXTRACTION ), (*CHELATE COMPOUNDS, RARE EARTH ELEMENTS), PURIFICATION, ATOMIC SPECTROSCOPY, SCANDIUM, YTTRIUM, PRASEODYMIUM, SAMARIUM, EUROPIUM, GADOLINIUM, TERBIUM, FLUORINE COMPOUNDS, KETONES

  5. Jarosite dissolution rates in perchlorate brine

    Science.gov (United States)

    Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.

    2018-02-01

    Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures Mars surface conditions. Therefore, jarosite-bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.

  6. 2,6-Diethylanilinium perchlorate

    Directory of Open Access Journals (Sweden)

    Salem S. Al-Deyab

    2010-03-01

    Full Text Available The asymmetric unit of the title molecular salt, C10H16N+·ClO4−, contains two cations and two anions. The atoms of one of the ethyl side chains of one of the cations are disordered over two sets of sites in a 0.531 (13:0.469 (13 ratio. In the crystal, the components are linked by N—H...O and bifurcated N—H...(O,O hydrogen bonds and weaker C—H...O interactions, such that the organic cations alternate with the perchlorate anions, forming ribbons in the a-axis direction.

  7. Hexacarbonyl?technetium(I) perchlorate

    OpenAIRE

    Gurzhiy, V. V.; Miroslavov, A. E.; G. V. Sidorenko; A. A. Lumpov; Krivovichev, S. V.; Suglobov, D. N.

    2008-01-01

    The title compound, [Tc(CO)6]ClO4, was synthesized by the reaction of [TcCl(CO)5] with AgClO4, followed by acidification with HClO4 under a CO atmosphere. The [Tc(CO)6]+ cation has close to idealized octa?hedral geometry, with the bond angles between cis-CO groups close to 90? and the Tc?C bond lengths in the range 2.025?(3)?2.029?(3)?. The perchlorate anion is disordered over two crystallographically equivalent half-occupied positions. The Tc atom in the [Tc(CO)6]+ cation is located on an in...

  8. Determination of scandium concentrate composition by WD-XRF and ICP-MS methods

    Science.gov (United States)

    Sarkisova, A. S.; Shibitko, A. O.; Abramov, A. V.; Rebrin, O. I.; Bunkov, G. M.; Lisienko, D. G.

    2017-09-01

    WD-XRF spectroscopy was applied for determining composition of scandium concentrate (ScC) containing 70 % scandium fluoride. Determination of ScC composition was performed using 6 glass beads reference materials produced by fusing synthesized mixture of analyte compounds with the lithium-borate flux in the ratio of 1:10. ScC powder with the known composition was then used as a powder pellet reference material to analyze scandium concentrate from technological line by external standard method. ICP-MS method was employed to control the ScC composition. The statistical data processing and metrological parameters evaluation of the analytical technique developed were carried out.

  9. A Colorimetric Bioassay for Perchlorate

    Science.gov (United States)

    Heinnickel, M. L.; Smith, S.; Coates, J. D.

    2007-12-01

    Recognition of perchlorate (ClO4-) as a widespread contaminant across the United States and its potential adverse affects towards human health has motivated the EPA to place ClO4- on its contaminant candidate list for drinking water supplies. While a federal MCL has not yet been set, a recommended public health goal of 1 ppb (μg.L-1) was established by the US EPA in 2002. To date, methods of detection require use of sensitive ion chromatographic equipment that are expensive, time consuming, and require highly trained personnel for use. Our studies are focused on the development of a highly sensitive, simple, and robust colorimetric bioassay based on the primary enzyme involved in microbial ClO4- reduction, the perchlorate reductase (Pcr). A previously published assay used reduced methyl viologen (MV, the dye is reduced with sodium hydrosulfite) as an electron donor to demonstrate Pcr activity. The assay directly correlates the amount of MV oxidized with the amount of ClO4- reduced by assuming a transfer of four electrons. To test this assumption, we compared actual concentrations of MV oxidized to ClO4- reduced in this assay. ClO4- concentrations were determined using a Dionex ICS-500 ion chromatography system, while MV concentrations were determined using a standard curve generated at 578 nm. Comparisons between the two revealed that twelve molecules of MV were oxidized for each molecule of ClO4- reduced. The oxidation of these additional eight MV molecules is explained by the interaction of the dye with chlorite (the product of the Pcr reaction) and other contaminants that could be present in the enzyme prep. This unsettling result indicated this assay would be problematic for the detection of ClO4- in soil, which has many chemicals that could react with MV. To improve upon this assay, we have tried to reduce ClO4- using less reactive dyes and reductants. The reductants ascorbic acid, NADH, and dithiothreitol drive Pcr catalyzed ClO4- reduction, however, they

  10. Tin etching from metallic and oxidized scandium thin films

    Science.gov (United States)

    Pachecka, M.; Lee, C. J.; Sturm, J. M.; Bijkerk, F.

    2017-08-01

    The role of oxide on Sn adhesion to Sc surfaces was studied with in-situ ellipsometry, X-ray photoelectron spectroscopy and secondary electron microscopy. Sn etching with hydrogen radicals was performed on metallic Sc, metallic Sc with a native oxide, and a fully oxidized Sc layer. The results show that Sn adsorbs rather weakly to a non-oxidized Sc surface, and is etched relatively easily by atomic hydrogen. In contrast, the presence of native oxide on Sc allows Sn to adsorb more strongly to the surface, slowing the etching. Furthermore, thinner layers of scandium oxide result in weaker Sn adsorption, indicating that the layer beneath the oxide plays a significant role in determining the adsorption strength. Unexpectedly, for Sn on Sc2O3, and, to a lesser extent, for Sn on Sc, the etch rate shows a variation over time, which is explained by surface restructuring, temperature change, and hydrogen adsorption saturation.

  11. Tin etching from metallic and oxidized scandium thin films

    Directory of Open Access Journals (Sweden)

    M. Pachecka

    2017-08-01

    Full Text Available The role of oxide on Sn adhesion to Sc surfaces was studied with in-situ ellipsometry, X-ray photoelectron spectroscopy and secondary electron microscopy. Sn etching with hydrogen radicals was performed on metallic Sc, metallic Sc with a native oxide, and a fully oxidized Sc layer. The results show that Sn adsorbs rather weakly to a non-oxidized Sc surface, and is etched relatively easily by atomic hydrogen. In contrast, the presence of native oxide on Sc allows Sn to adsorb more strongly to the surface, slowing the etching. Furthermore, thinner layers of scandium oxide result in weaker Sn adsorption, indicating that the layer beneath the oxide plays a significant role in determining the adsorption strength. Unexpectedly, for Sn on Sc2O3, and, to a lesser extent, for Sn on Sc, the etch rate shows a variation over time, which is explained by surface restructuring, temperature change, and hydrogen adsorption saturation.

  12. 76 FR 7762 - Drinking Water: Regulatory Determination on Perchlorate

    Science.gov (United States)

    2011-02-11

    ... AGENCY 40 CFR Part 141 RIN 2040-AF08 Drinking Water: Regulatory Determination on Perchlorate AGENCY... the Agency's) regulatory determination for perchlorate in accordance with the Safe Drinking Water Act... occur or there is a substantial likelihood that perchlorate will occur in public water systems with a...

  13. Environmental biotechnology and microbiology of (per)chlorate reducing bacteria

    NARCIS (Netherlands)

    Mehboob, F.; Schraa, G.; Stams, A.J.M.

    2011-01-01

    Perchlorates are the salts derived from perchloric acid (HClO4). They occur both naturally and through manufacturing. They have been used as a medicine for more than 50 years to treat thyroid gland disorders and are used extensively within the pyrotechnics industry, and ammonium perchlorate is also

  14. Extraction of scandium by liquid di-2-ethylhexylphosphoric acid in fusible diluents

    Directory of Open Access Journals (Sweden)

    Ainur Isatayeva

    2015-03-01

    Full Text Available Currently widespread distribution of extraction methods using fusible reagents can be explained by a number of advantages, such as high kinetic characteristics of the process, the ease separation of two phases, high selectivity of many extractants, relatively complete regeneration. For the extraction of scandium in technological order, neutral and cation exchange extractants can be used. Several extraction reagents melt easily at high temperatures, and such melts can be used for extraction. Efficiency of the extraction of metal by cation reagents depends on many factors. Extraction of scandium by melt mixtures of di-2-ethylhexylphosphoric acid - higher carboxylic acid - paraffin and the effect of acidity of the aqueous phase, the concentration of scandium and the aqueous extractant in the organic phase, the volume ratio of organic and aqueous phases on the extraction of metal were studied. It was found that the extraction of scandium proceeds through the cation exchange mechanism. Scandium was extracted quantitatively (> 99.0% from acid solutions. The optimal concentration of di-2-ethylhexylphosphoric acid in the extractant was 0,250 M, quantitative extraction of scandium was observed in the range of its concentrations of 10-3-10-6 M and the volume ratio of organic phases to aqueous phases of 1:5 - 1:20.

  15. Interaction of perchlorate and trichloroethene bioreductions in mixed anaerobic culture

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Li-Lian [Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou (China); Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang (China); Yang, Qiang [Hangzhou Institute of Environmental Protection Science, Hangzhou (China); Zhang, Zhao-Xin; Yi, Yang-Yi [Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou (China); Tang, Youneng [Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310-6046 (United States); Zhao, He-Ping, E-mail: zhaohp@zju.edu.cn [Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou (China); Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang (China); Hangzhou Institute of Environmental Protection Science, Hangzhou (China)

    2016-11-15

    This work evaluated the interaction of perchlorate and trichloroethene (TCE), two common co-contaminants in groundwater, during bioreduction in serum bottles containing synthetic mineral salts media and microbial consortia. TCE at concentrations up to 0.3 mM did not significantly affect perchlorate reduction; however, perchlorate concentrations higher than 0.1 mM made the reduction of TCE significantly slower. Perchlorate primarily inhibited the reduction of vinyl chloride (VC, a daughter product of TCE) to ethene. Mechanistic analysis showed that the inhibition was mainly because perchlorate reduction is thermodynamically more favorable than reduction of TCE and its daughter products and not because of toxicity due to accumulation of dissolved oxygen produced during perchlorate reduction. As the initial perchlorate concentration increased from 0 to 600 mg/L in a set of serum bottles, the relative abundance of Rhodocyclaceae (a putatively perchlorate-reducing genus) increased from 6.3 to 80.6%, while the relative abundance of Dehalococcoides, the only known genus that is able to reduce TCE all the way to ethene, significantly decreased. Similarly, the relative abundance of Proteobacteria (a phylum to which most known perchlorate-reducing bacteria belong) increased from 22% to almost 80%. - Graphical abstract: Fig. A plots the interaction of TCE and perchlorate bio-reduction under different concentrations of perchlorate and suggests that initial ethene wasn't formed until the perchlorate was completely reduced. B shows the electron donor utilization and oxygen generated during the experiment and indicates that it is perchlorate reduction over-competed for electron donor rather than oxygen generated that inhibits TCE reductive dechlorination. - Highlight: • Perchlorate slowed but did not inhibit the complete dechlorination of TCE. • The inhibition was mainly due to the thermodynamic preference of perchlorate to TCE. • The generated oxygen was consumed and

  16. Thermodynamic and kinetic study of scandium(III) complexes of DTPA and DOTA: a step toward scandium radiopharmaceuticals.

    Science.gov (United States)

    Pniok, Miroslav; Kubíček, Vojtěch; Havlíčková, Jana; Kotek, Jan; Sabatie-Gogová, Andrea; Plutnar, Jan; Huclier-Markai, Sandrine; Hermann, Petr

    2014-06-23

    Diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) scandium(III) complexes were investigated in the solution and solid state. Three (45)Sc NMR spectroscopic references suitable for aqueous solutions were suggested: 0.1 M Sc(ClO4)3 in 1 M aq. HClO4 (δSc =0.0 ppm), 0.1 M ScCl3 in 1 M aq. HCl (δSc =1.75 ppm) and 0.01 M [Sc(ox)4](5-) (ox(2-) = oxalato) in 1 M aq. K2C2O4 (δSc =8.31 ppm). In solution, [Sc(dtpa)](2-) complex (δSc = 83 ppm, Δν = 770 Hz) has a rather symmetric ligand field unlike highly unsymmetrical donor atom arrangement in [Sc(dota)](-) anion (δSc = 100 ppm, Δν = 4300 Hz). The solid-state structure of K8[Sc2(ox)7]⋅13 H2O contains two [Sc(ox)3](3-) units bridged by twice "side-on" coordinated oxalate anion with Sc(3+) ion in a dodecahedral O8 arrangement. Structures of [Sc(dtpa)](2-) and [Sc(dota)](-) in [(Hguanidine)]2[Sc(dtpa)]⋅3 H2O and K[Sc(dota)][H6 dota]Cl2⋅4 H2O, respectively, are analogous to those of trivalent lanthanide complexes with the same ligands. The [Sc(dota)](-) unit exhibits twisted square-antiprismatic arrangement without an axial ligand (TSA' isomer) and [Sc(dota)](-) and (H6 dota)(2+) units are bridged by a K(+) cation. A surprisingly high value of the last DOTA dissociation constant (pKa =12.9) was determined by potentiometry and confirmed by using NMR spectroscopy. Stability constants of scandium(III) complexes (log KScL 27.43 and 30.79 for DTPA and DOTA, respectively) were determined from potentiometric and (45)Sc NMR spectroscopic data. Both complexes are fully formed even below pH 2. Complexation of DOTA with the Sc(3+) ion is much faster than with trivalent lanthanides. Proton-assisted decomplexation of the [Sc(dota)](-) complex (τ1/2 =45 h; 1 M aq. HCl, 25 °C) is much slower than that for [Ln(dota)](-) complexes. Therefore, DOTA and its derivatives seem to be very suitable ligands for scandium

  17. Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@mail.kmutt.ac.th [Production Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2014-12-15

    Highlights: • Iron reduces the modification effects of scandium in Al–Si–Mg alloys. • Morphologies of Sc-rich intermetallic phases vary with Fe and Sc contents and the cooling rates. • Sc neutralizes effects of Fe by changing Fe-rich intermetallic phases from platelets to more cubic. - Abstract: In general, iron has a strong tendency to dissolve in molten aluminum. Iron has very low solid solubility in aluminum–silicon casting alloys, so it will form intermetallic compounds that cause detrimental effects on mechanical properties. In this work, the effects of iron on intermetallic compound formations in scandium modified Al–Si–Mg alloys were studied. There were two levels of iron addition (0.2 and 0.4 wt.%) and two levels of scandium addition (0.2 and 0.4 wt.%). We found that the effects of scandium modification decreased with increasing iron addition. The morphologies of the complex intermetallic compounds were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques. It was found that scandium changes the morphology of Fe-rich intermetallic compounds from β-phase (plate-like) to α-phase, which reduces the harmful effects of β-phase.

  18. Solvent extraction of scandium from lateritic nickel- cobalt ores using different organic reagents

    Directory of Open Access Journals (Sweden)

    Ferizoğlu Ece

    2016-01-01

    Full Text Available Scandium is the most important and strategic metal that can be recovered as a by-product from lateritic nickel-cobalt ores. In this research, different extractants were investigated in order to extract scandium from a sulfate medium by a using a solvent extraction method. Generally, the organic extractants are classified as acidic, neutral and basic organophosphorus compounds. However, in solvent extraction of scandium, the acidic and neutral organophosphorus compounds are preferred due to their higher extraction efficiencies. Thus, the aim of the present study was to compare the scandium extraction efficiencies of some acidic and neutral organic reagents. For this reason, Ionquest 290 (Bis(2,4,4-trimethylpenthyl phosphonic acid, DEHPA (Di(2-ethylhexyl phosphoric acid, Cyanex 272 ((Bis(2,4,4-trimethylpentyl phosphinic acid which are acidic organophosphorus compounds, and Cyanex 923 (Trialkylphosphine oxide, which is a neutral organophosphorus compound, were used. The extraction capacities of these organics were studied with respect to the extractant concentration at same pH and phase ratio. As a result of the study, DEHPA was found to have higher scandium extraction efficiency with lower iron extraction at pH = 0.55 at a phase ratio of 10:1 = A:O.

  19. Correlation between stoichiometry and properties of scandium oxide films prepared by reactive magnetron sputtering

    Science.gov (United States)

    Belosludtsev, Alexandr; Juškevičius, Kęstutis; Ceizaris, Lukas; Samuilovas, Romanas; Stanionytė, Sandra; Jasulaitienė, Vitalija; Kičas, Simonas

    2018-01-01

    Scandium oxide films were deposited on fused silica substrates by reactive pulsed DC magnetron sputtering. The use of feed-back optical emission monitoring enabled high-rate reactive deposition of films with tunable stoichiometry and properties. The under-stoichiometric, stoichiometric and over-stoichiometric scandium oxide films were prepared. The compressive stress in films was between 235 and 530 MPa. We showed that phase structure, density, surface roughness and optical properties of the scandium oxide are affected by the film stoichiometry and deposition conditions. Transparent scandium oxide films were slightly hydrophobic (94 ± 3°), homogeneous with a crystallite size of 20 ± 5 nm. The lowest extinction coefficient 0.7 × 10-3, the highest refractive index 2.08 (both quantities at the wavelength of 355 nm) and the highest density 4.1 ± 0.1 g cm-3 exhibited film prepared with the stoichiometric composition. Stoichiometric scandium oxide can be used in various optical applications as high refractive index and wide bandgap material. Transitions to under- or over-stoichiometry lead to a decrease of film density, refractive index and increase of the extinction coefficient.

  20. Atmospheric origins of perchlorate on Mars and in the Atacama

    Science.gov (United States)

    Catling, D. C.; Claire, M. W.; Zahnle, K. J.; Quinn, R. C.; Clark, B. C.; Hecht, M. H.; Kounaves, S.

    2010-01-01

    Isotopic studies indicate that natural perchlorate is produced on Earth in arid environments by the oxidation of chlorine species through pathways involving ozone or its photochemical products. With this analogy, we propose that the arid environment on Mars may have given rise to perchlorate through the action of atmospheric oxidants. A variety of hypothetical pathways can be proposed including photochemical reactions, electrostatic discharge, and gas-solid reactions. Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we made a preliminary study of the means to produce Atacama perchlorate to help shed light on the origin of Martian perchlorate. We investigated gas phase pathways using a 1-D photochemical model. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. The feasibility of gas phase production for the Atacama provides justification for future investigations of gas phase photochemistry as a possible source for Martian perchlorate.

  1. Mossbauer investigation of scandium oxide-hematite nanoparticles

    Science.gov (United States)

    Allwes, Mark; Sorescu, Monica

    Scandium oxide-doped hematite, xSc2O3*(1-x)alpha-Fe2O3 with molar concentration x =0.1, 0.3, and 0.5 was prepared by using ball milling, taking samples at times 0, 2, 4, 8, and 12 hours. The resulting Mossbauer spectra of the nanoparticles systems were parameterized using NORMOS-90. For each concentration, the spectra at 0 hours only consisted of 1 sextet, as the substitution of Sc2O3into Fe2O3 did not appear until after 2 hours of ball milling time (BMT). Concentration x =0.1 at BMT 2hours consisted of 2 sextets while x =0.3 and 0.5 were fit with 1 sextet and 1 quadrupole-split doublet. Concentration x =0.1 at BMT 4 and 8 hours consisted of 3 sextets, and at BMT 12 hours consisted of 4 sextets. For concentrations x =0.3 and 0.5 at BMT 4, 8, and 12 hours the spectra were fit with 3 sextets and 1 quadrupole-split doublet. With increasing initial concentration, the appearance of the quadrupole-split doublet became more pronounced, indicating the substitution of Fe into Sc2O3 occurred. But for x =0.1, the BMT did influence the number of sextets needed, causing an increase in substitution of Sc2O3 into Fe2O3.

  2. Association between toenail scandium levels and risk of acute myocardial infarction in European men: The EURAMIC and Heavy Metals Study

    NARCIS (Netherlands)

    Gómez-Aracena, J.; Martin-Moreno, J.M.; Riemersma, R.A.; Bode, P.; Gutiérrez-Bedmar, M.; Gorgojo, L.; Kark, J.D.; Garcia-Rodríguez, A.; Gomez-Gracia, E.; Kardinaal, A.F.M.; Aro, A.; Veer, P. van 't; Wedel, H.; Kok, F.J.; Fernández-Crehuet, J.

    2002-01-01

    The association between scandium status and risk of acute myocardial infarction (MI) was examined in a multicentre case control study in 10 centres from Europe and Israel. Scandium in toenails was assessed in 684 cases and 724 controls less than 70 years of age. Mean concentrations of toenail

  3. ACCUMULATION OF PERCHLORATE IN TOBACCO PLANTS: DEVELOPMENT OF A PLANT KINETIC MODEL

    Science.gov (United States)

    Previous studies have shown that tobacco plants are tolerant of perchlorate and will accumulate perchlorate in plant tissues. This research determined the uptake, translocation, and accumulation of perchlorate in tobacco plants. Three hydroponics growth studies were completed u...

  4. In-source laser spectroscopy developments at TRILIS-towards spectroscopy on actinium and scandium

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Sebastian, E-mail: raeder@triumf.ca; Dombsky, Marik; Heggen, Henning; Lassen, Jens; Quenzel, Thomas [TRIUMF, Canada' s National Laboratory for Nuclear and Particle Physics (Canada); Sjoedin, Marica [GANIL (France); Teigelhoefer, Andrea [TRIUMF, Canada' s National Laboratory for Nuclear and Particle Physics (Canada); Wendt, Klaus [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany)

    2013-04-15

    Resonance Ionization Laser Ion Sources (RILIS) have become a versatile tool for production and study of exotic nuclides at Isotope Separator On-Line (ISOL) facilities such as ISAC at TRIUMF. The recent development and addition of a grating tuned spectroscopy laser to the TRIUMF RILIS solid state laser system allows for wide range spectral scans to investigate atomic structures on short lived isotopes, e.g., those from the element actinium, produced in uranium targets at ISAC. In addition, development of new and improved laser ionization schemes for rare isotope production at ISAC is ongoing. Here spectroscopic studies on bound states, Rydberg states and autoionizing (AI) resonances on scandium using the existing off-line capabilities are reported. These results allowed to identify a suitable ionization scheme for scandium via excitation into an autoionizing state at 58,104 cm{sup - 1} which has subsequently been used for ionization of on-line produced exotic scandium isotopes.

  5. Maximizing microbial perchlorate degradation using a genetic algorithm: consortia optimization.

    Science.gov (United States)

    Kucharzyk, Katarzyna H; Soule, Terence; Hess, Thomas F

    2013-09-01

    Microorganisms in consortia perform many tasks more effectively than individual organisms and in addition grow more rapidly and in greater abundance. In this work, experimental datasets were assembled consisting of all possible selected combinations of perchlorate reducing strains of microorganisms and their perchlorate degradation rates were evaluated. A genetic algorithm (GA) methodology was successfully applied to define sets of microbial strains to achieve maximum rates of perchlorate degradation. Over the course of twenty generations of optimization using a GA, we saw a statistically significant 2.06 and 4.08-fold increase in average perchlorate degradation rates by consortia constructed using solely the perchlorate reducing bacteria (PRB) and by consortia consisting of PRB and accompanying organisms that did not degrade perchlorate, respectively. The comparison of kinetic rates constant in two types of microbial consortia additionally showed marked increases.

  6. Perchlorate Exposure and Thyroid Function in Ammonium Perchlorate Workers in Yicheng, China

    Directory of Open Access Journals (Sweden)

    Hongxia Chen

    2014-05-01

    Full Text Available The impact of low level dust on the thyroid function of workers chronically exposed to ammonium perchlorate (AP is uncertain and controversial. The aim of this study was to examine whether workers in China with long-term (>3 years occupational exposure to low levels of AP dust had affected thyroid homeostasis. Mean occupational exposures to AP dust ranged from 0.43 to 1.17 mg/m3. Geometric means of post-shift urinary perchlorate levels were 20.5 µg/L for those exposed and 12.8 µg/L for the controls. No significant differences were found for thyroid function parameters of FT3, FT4, or log TSH or for TPO prevalence or thyroglobulin levels. Additionally, no differences in findings were observed for complete blood count (CBC, serum biochemical profile, or pulmonary function test. Median urinary iodine levels of 172 and 184 µg/L showed that the workers had sufficient iodine intake. This study found no effect on thyroid function from long term, low-level documented exposure to ammonium perchlorate. It is the first study to report both thyroid status parameters and urinary perchlorate, a biomarker of internal perchlorate exposure, in occupationally exposed workers in China.

  7. Biodegradation of Perchlorate in Laboratory Reactors Under Different Environmental Conditions

    Science.gov (United States)

    2010-07-01

    perchlorate has been detected in some animal feed crops, dairy , and meat. Alfalfa, a beef cattle and dairy cow feed, tested at 109–555 µg/kg for samples...addition of acetate as an organic substrate stimulated rapid perchlorate degradation after a lag phase , presumably resulting from microbial...acclimation. The lag phase was elimi- nated after previous exposure or after microbes consumed the oxygen and the reactors went anaerobic. Perchlorate

  8. Process and Mechanical Properties: Applicability of a Scandium modified Al-alloy for Laser Additive Manufacturing

    Science.gov (United States)

    Schmidtke, K.; Palm, F.; Hawkins, A.; Emmelmann, C.

    The applicability of an aluminium alloy containing scandium for laser additive manufacturing (LAM) is considered. Modified aluminium alloys with a scandium content beyond the eutectic point offer great potential to become a high prioritized aerospace material. Depending on other alloying elements like magnesium or zirconium, strongly required weight reduction, corrosion resistance and improved strength properties of metallic light weight alloys can be achieved. The development, production and testing of parts built up by a laser powder bed process will be presented with regard to the qualification of the new material concept "ScalmalloyRP®" for laser additive manufacturing.

  9. Atmospheric Production of Perchlorate on Earth and Mars

    Science.gov (United States)

    Claire, M.; Catling, D. C.; Zahnle, K. J.

    2009-12-01

    Natural production and preservation of perchlorate on Earth occurs only in arid environments. Isotopic evidence suggests a strong role for atmospheric oxidation of chlorine species via pathways including ozone or its photochemical derivatives. As the Martian atmosphere is both oxidizing and drier than the driest places on Earth, we propose an atmospheric origin for the Martian perchlorates measured by NASA's Phoenix Lander. A variety of hypothetical formation pathways can be proposed including atmospheric photochemical reactions, electrostatic discharge, and gas-solid reactions. Here, we investigate gas phase formation pathways using a 1-D photochemical model (Catling et al. 2009, accepted by JGR). Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we start with a study of the means to produce Atacama perchlorate. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. These results are sensitive to estimated reaction rates for ClO3 species. The feasibility of gas phase production for the Atacama provides justification for further investigations of gas phase photochemistry as a possible source for Martian perchlorate. In addition to the Atacama results, we will present a preliminary study incorporating chlorine chemistry into an existing Martian photochemical model (Zahnle et al. JGR 2008).

  10. Synthesis and structural characterization of scandium SALEN complexes.

    Science.gov (United States)

    Meermann, Christian; Sirsch, Peter; Törnroos, Karl W; Anwander, Reiner

    2006-02-28

    A series of heteroleptic scandium SALEN complexes, [(SALEN)Sc(mu-Cl)]2 and (SALEN)Sc[N(SiHMe2)2] is obtained via amine elimination reactions using [Sc(N(i)Pr2)2(mu-Cl)(THF)]2 and Sc[N(SiHMe2)2]3(THF) as metal precursors, respectively. H(2)SALEN ligand precursors comprising H2Salen [(1,2-ethandiyl)bis(nitrilomethylidyne)bis(2,4-di-tert-butyl)phenol], H2Salpren [(2,2-dimethylpropanediyl)bis(nitrilomethylidyne)bis(2,4-di-tert-butyl)phenol], H2Salcyc [(1R,2R)-(-)-1,2-cyclohexanediyl)bis(nitrilomethylidyne)bis(2,4-di-tert-butyl)phenol] and H2Salphen [((1S,2S)-(-)-1,2-diphenylethandiyl)bis(nitrilomethylidyne)bis(2,4-di-tert-butyl)phenol] are selected according to solubility and ligand backbone variation ("=N-(R)-N=" bite angle) criteria. Consideration is given to the feasibility of [Cl --> NR2] and [N(SiHMe2)2--> OSiR3] secondary ligand exchange reactions. X-ray crystal structure analyses of donor-free (Salpren)Sc(N(i)Pr2), (R,R)-(Salcyc)Sc[N(SiHMe2)2], (Salen)Sc(OSi(t)BuPh2) and (Salphen)Sc(OSiH(t)Bu2) reveal (i) a very short Sc-N bond distance of 2.000(3) A, (ii) weak beta(Si-H)(amido)-Sc agostic interactions and (iii) an exclusive intramolecularly tetradentate and intrinsically bent coordination mode of the SALEN ligands with angle(Ph,Ph) dihedral angles and Sc-[N(2)O(2)] distances in the 124.27(9)-127.7(3) degrees and 0.638(1)-0.688(1) A range, respectively.

  11. Scandium SALEN complexes bearing chloro, aryloxo, and hydroxo ligands.

    Science.gov (United States)

    Meermann, Christian; Törnroos, Karl W; Anwander, Reiner

    2009-03-16

    Heteroleptic amide complexes (SALEN)Sc[N(SiHMe(2))(2)] (SALEN = Salen(tBu,tBu), Salcyc(tBu,tBu), or Salpren(tBu,tBu) if not stated differently) were examined as synthesis precursors according to silylamine elimination reactions. Treatment of (SALEN)Sc[N(SiHMe(2))(2)] with H(2)O or phenols (HOAr(R,R); R = tBu, iPr) afforded complexes [(SALEN)Sc(mu-OH)](2) and (SALEN)Sc(OAr(R,R)), while chloro exchange products were formed from the respective reactions with NH(4)Cl or AlMe(2)Cl. Such complexes [(SALEN)Sc(mu-Cl)](2) and (SALEN)ScCl(thf) were also obtained by utilizing alternative synthesis protocols, allowing for controlled donor absence and presence. Heteroleptic amide precursors [Sc(NiPr(2))(2)(mu-Cl)(thf)](2) and [Sc[N(SiHMe(2))(2)](2)(mu-Cl)(thf)](2) readily undergo amine elimination reactions with H(2)SALEN derivatives to form the corresponding chloride complexes. Spectroscopic and X-ray structural data of the heteroleptic scandium complexes revealed an exclusive intramolecular tetradentate coordination mode of the SALEN ligands independent of the SALEN ligand bite angle and the nature of the "second" ligand (chloro, amido, aryloxo, hydroxo). The coordination of the SALEN ligands is rationalized on the basis of (a) the displacement d of the metal center from the [N(2)O(2)] least-squares plane, (b) the dihedral angle alpha between the phenyl rings of the salicylidene moieties, and (c) the angle beta = Ct-Ln-Ct (Ct = centroid of the phenyl rings) in the case of strongly twisted ligands.

  12. Vertical distribution of scandium in the north central Pacific

    Science.gov (United States)

    Amakawa, Hiroshi; Nomura, Miho; Sasaki, Kazunori; Oura, Yasuji; Ebihara, Mitsuru

    2007-06-01

    The concentrations of scandium (Sc) in seawater, which have remained unreported since the early 1970s, were determined together with those of yttrium (Y) and lanthanides (Ln) with samples from the north central Pacific Ocean (St. BO-3). The Sc concentration shows a so-called nutrient-like profile: it increases gradually from the surface (about 2 pmol/kg) to the ocean floor (about 20 pmol/kg). That pattern closely resembles those of Y and Ln (correlation coefficient (r) > 0.92). Some light-to-middle Ln (Pr-Tb) exhibit a closer correlation with Sc than do Y, La, or heavy Ln (Ho-Lu). In contrast, Y/Sc and Ln/Sc ratios (elemental abundance ratios) indicate that Sc is depleted compared to either Y or Ln in seawater more than in loess, which represents chemical compositions of crustal material. These observations offer a conflicting view of chemical reactivity related Y, Ln, and Sc: r values show that the chemical reactivity of Sc resembles those of Y and Ln, but differences of Y/Sc and Ln/Sc ratios in seawater and in loess suggest that the chemical reactivity of Sc differs from those of Y and Ln. More Sc data for seawater are necessary to clarify the chemical reactivity of Sc in the ocean. We also propose that comparative studies of vertical profiles of Sc and such elements as Fe, Ti, Zr, and Hf showing so-called nutrient-like profiles at the same oceanic stations would be helpful and effective for clarifying the behavior of Sc in the ocean.

  13. 4-Bromoanilinium perchlorate 18-crown-6 clathrate

    Directory of Open Access Journals (Sweden)

    Min Guo

    2010-11-01

    Full Text Available The reaction of 4-bromoaniline, 18-crown-6, and perchloric acid in methanol yields the title compound, C6H7BrN+·ClO4−·C12H24O6, in which the protonated –NH3+ group forms three bifurcated N—H...O hydrogen bonds to the O atoms of the crown ether.

  14. In situ observation of the reaction of scandium and carbon by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Juarez-Arellano, Erick A., E-mail: eajuarez@unpa.edu.m [Institut fuer Geowissenschaften, Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Universidad del Papaloapan, Circuito Central 200, Parque Industrial, Tuxtepec 68301 (Mexico); Winkler, Bjorn [Institut fuer Geowissenschaften, Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Vogel, Sven C. [Los Alamos National Laboratory, Lujan Center. Mail Stop H805, Los Alamos, NM 87545 (United States); Senyshyn, Anatoliy [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen, Lichtenbergstr. 1, D-85747 Garching (Germany); Materialwissenschaft, TU Darmstadt, Petersensstr. 23, D-64287 Darmstadt (Germany); Kammler, Daniel R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Avalos-Borja, Miguel [CNyN, UNAM, A. Postal 2681, Ensenada, B.C. (Mexico)

    2011-01-05

    Research highlights: {yields} Exist two ScC cubic phases with B1-structure type differing in site occupancy of C. {yields} A new orthorhombic scandium carbide phase is formed at 1473(50) K. {yields} The recrystallization of alpha-Sc occurs between 1000 and 1223 K. - Abstract: The formation of scandium carbides by reaction of the elements has been investigated by in situ neutron diffraction up to 1823 K. On heating, the recrystallization of {alpha}-Sc occurs between 1000 and 1223 K. The formation of Sc{sub 2}C and ScC (NaCl-B1 type structure) phases has been detected at 1323 and 1373 K, respectively. The formation of a new orthorhombic scandium carbide phase was observed at 1473(50) K. Once the scandium carbides are formed they are stable upon heating or cooling. No other phases were detected in the present study, in which the system was always carbon saturated. The thermal expansion coefficients of all phases have been determined, they are constant throughout the temperature interval studied.

  15. The effects of aluminum or scandium on the toughness, density and ...

    African Journals Online (AJOL)

    The effects of the substitution of aluminum or scandium on the density, toughness as well as the stability of the phases formed by such an addition on platinum, iridium, rhodium and palladium metals were evaluated with the density functional quantum mechanical calculation methods. All the metals had four atoms per ...

  16. Effects of erbium‑and chromium‑doped yttrium scandium gallium ...

    African Journals Online (AJOL)

    2014-08-21

    Aug 21, 2014 ... surfaces because of its high power, and the ablation was deeper for these samples. High‑magnification SEM ... Key words: Erbium chromium‑doped yttrium scandium gallium garnet, diode laser, restorative dental materials, scanning electron ... garnet (Nd: YAG) and carbon dioxide (CO2) lasers on indirect ...

  17. Elimination of Perchlorate Oxidizers from Yellow Pyrotechnic Flare Compositions

    Science.gov (United States)

    2015-03-11

    Conference Presentation 3. DATES COVERED (From - To) 2002-2015 4. TITLE AND SUBTITLE Elimination of Perchlorate Oxidizers from Yellow Pyrotechnic ...ABSTRACT Fielded pyrotechnic compositions containing the environmentally-hazardous oxidizer potassium perchlorate are highly scrutinized due to...environmentally friendly, flare, pyrotechnic 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  18. Microbial (per)chlorate reduction in hot subsurface environments

    NARCIS (Netherlands)

    Liebensteiner, M.

    2014-01-01

     

    The microbial reduction of chlorate and perchlorate has been known for long as a respiratory process of mesophilic bacteria that thrive in diverse environments such as soils, marine and freshwater sediments. Chlorate and perchlorate are found in nature deriving from anthropogenic and

  19. High ozone increases soil perchlorate but does not affect foliar perchlorate content

    Science.gov (United States)

    Ozone (O3) is implicated in the natural source inventory of perchlorate (ClO4-), a hydrophilic salt that migrates to ground water and interferes with uptake of iodide in mammals, including humans. Tropospheric O3 is elevated in many areas. We previously showed (Grantz et al., 2013; Environmental Pol...

  20. Modelling salinity inhibition effects during biodegradation of perchlorate.

    Science.gov (United States)

    Park, C; Marchand, E A

    2006-07-01

    To determine the mathematical kinetic rates and mechanisms of acclimated perchlorate (ClO)-reducing microbial cultures by incorporating a term to relate the inhibitory effect of high salinity during biological reduction of concentrated perchlorate solutions. Salt toxicity associated with the biodegradation of concentrated perchlorate (200, 500, 1100, 1700 and 2400 mg l(-1) as ClO) was investigated using two microbial cultures isolated from a domestic wastewater treatment plant [return activated sludge (RAS) and anaerobic digester sludge (ADS)]. Experiments were performed in wastewaters containing various sodium chloride concentrations, ranging from 0% to 4.0% (w/v) NaCl (ionic strength: 0.14-0.82 mol l(-1), total dissolved solids: 5.3-42.6 g l(-1)) at near-neutral values of pH (6.7-7.8). Perchlorate biodegradation was stimulated through stepwise acclimation to high salinity. The ADS culture was capable of reducing perchlorate at salinities up to 4% NaCl, while the RAS culture exhibited complete inhibition of perchlorate degradation at 4% NaCl, probably resulting from either a toxic effect or enzyme inactivation of the perchlorate-reducing microbes. Further, a kinetic growth model was developed based on experimental data in order to express an inhibition function to relate specific growth rate and salinity. Biological reduction of concentrated perchlorate wastewaters using either acclimated RAS or ADS cultures is feasible up to 3% or 4% NaCl, respectively. In addition, the kinetic model including a salinity inhibition term should be effective in many practical applications such as improving reactor design and management, furthering the understanding of high salinity inhibition, and enhancing bioremediation under high salinity loading conditions. Applications of these findings in water treatment practice where ion exchange or membrane technologies are used to remove perchlorate from water can have the potential to increase the overall attractiveness of these

  1. Chlorine isotopic composition of perchlorate in human urine as a means of distinguishing among exposure sources.

    Science.gov (United States)

    Poghosyan, Armen; Morel-Espinosa, Maria; Valentin-Blasini, Liza; Blount, Benjamin C; Ferreccio, Catterina; Steinmaus, Craig M; Sturchio, Neil C

    2016-01-01

    Perchlorate (ClO4(-)) is a ubiquitous environmental contaminant with high human exposure potential. Natural perchlorate forms in the atmosphere from where it deposits onto the surface of Earth, whereas synthetic perchlorate is manufactured as an oxidant for industrial, aerospace, and military applications. Perchlorate exposure can potentially cause adverse health effects in humans by interfering with the production of thyroid hormones through competitively blocking iodide uptake. To control and reduce perchlorate exposure, the contributions of different sources of perchlorate exposure need to be quantified. Thus, we demonstrate a novel approach for determining the contribution of different perchlorate exposure sources by quantifying stable and radioactive chlorine isotopes of perchlorate extracted from composite urine samples from two distinct populations: one in Atlanta, USA and one in Taltal, Chile (Atacama region). Urinary perchlorate from the Atlanta region resembles indigenous natural perchlorate from the western USA (δ(37)Cl=+4.1±1.0‰; (36)Cl/Cl=1 811 (±136) × 10(-15)), and urinary perchlorate from the Taltal, Chile region is similar to natural perchlorate in nitrate salt deposits from the Atacama Desert of northern Chile (δ(37)Cl=-11.0±1.0‰; (36)Cl/Cl=254 (±40) × 10(-15)). Neither urinary perchlorate resembled the isotopic pattern found in synthetic perchlorate. These results indicate that natural perchlorate of regional provenance is the dominant exposure source for the two sample populations, and that chlorine isotope ratios provide a robust tool for elucidating perchlorate exposure pathways.

  2. Perchlorate isotope forensics with naturally produced 36Cl

    Science.gov (United States)

    Hillegonds, D.; Parker, D.; Singleton, M.; Buchholz, B.; Esser, B.; Moran, J.; Rood, D.; Finkel, R.

    2008-12-01

    The source of perchlorate (ClO4-) in many surface and groundwaters is not known. Recent studies (Parker et al., 2008) suggest that natural production is widespread and common, and may involve atmospheric processes. The isotopic composition of perchlorate chlorine and oxygen has proven useful for identifying anthropogenic/natural perchlorate sources (Bohlke et al, 2005) and for exploring biodegradation in environmental samples (Sturchio et al, 2007). The stable isotope approach, however, requires processing very large volumes of water to obtain milligrams of rigorously separated perchlorate for analysis, limiting its widespread application. Chlorine-36 (36Cl) is a long-lived and rare radionuclide produced cosmogenically in the upper atmosphere. The measurement of 36Cl/Cl by accelerator mass spectrometry (AMS) only requires micrograms of sample chlorine enabling lower volume extractions (less than 1/10th that required for stable isotope techniques), and potentially less rigorous perchlorate chemistry. The primary technical goal of our work is to determine the utility of 36Cl in distinguishing perchlorate source and in constraining mechanisms of natural perchlorate formation. We expect that synthetic perchlorate compounds produced using chloride brines from ancient sources and concentrated modern deposits will have low 36Cl/Cl ratios that will be distinct from natural perchlorate produced in the atmosphere. High levels of 36Cl in groundwater or rainwater perchlorate would then be an unambiguous indication of a natural atmospheric production, and the distribution of 36Cl/Cl in precipitation and groundwater (in conjunction with stable isotope compositions) would constrain the mechanism for natural perchlorate production in the atmosphere. Using accelerator mass spectrometry (AMS), we have measured 36Cl/Cl in a number of synthetic perchlorate salts (including potassium, sodium, magnesium, and ammonium salts). Synthetic salt 36Cl/Cl atom ratios range from 1 to 35 e-15

  3. Chemical and biological evaluation of scandium(III)-polyaminopolycarboxylate complexes as potential PET agents and radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Huclier-Markai, S.; Sabatie, A.; Ribet, S. [Univ. de Nantes (France). Lab. Subatech; Kubicek, V.; Hermann, P. [Charles Univ., Prague (Czech Republic). Dept. of Inorganic Chemistry; Paris, M. [Univ. de Nantes (France). Inst. des Materiaux; Vidaud, C. [CEA/DSV/iBEB/SBTN, Bagnols sur Ceze (France). Lab. d' Etude des Proteines Cibles; Cutler, C.S. [Univ. of Missouri, Columbia, MO (United States). Reserach Reactor Center

    2011-07-01

    Scandium isotopes ({sup 44}Sc, {sup 47}Sc) are more available and their properties are convenient for either PET imaging or radiotherapy. To use them in nuclear medicine, ligands forming complexes with a high stability are necessary. Available experimental data on stability constants for complexes of ligands such as EDTA, DTPA, DOTA, NOTA and TETA with various metal ions have been published. But scandium is the exception since scarce data is available in the literature. Values of stability constants of Sc(III) with the ligands were determined by free-ion selective radiotracer extraction, complemented by {sup 45}Sc NMR and potentiometry data. The thermodynamic stability of the Sc-complexes increases in the order TETA < NOTA < EDTA < DTPA < DOTA. The in vitro stability of the Sc(III) complexes was studied in the presence of hydroxyapatite and rat serum to estimate their in vivo stability. The most stable complex was shown to be Sc-DOTA.

  4. Precipitation behaviour and recrystallisation resistance in aluminum alloys with additions of hafnium, scandium and zirconium

    OpenAIRE

    Hallem, Håkon

    2005-01-01

    The overall objective of this work has been to develop aluminium alloys, which after hot and cold deformation are able to withstand high temperatures without recrystallising. This has been done by investigating aluminium alloys with various additions of hafnium, scandium and zirconium, with a main focus on Hf and to which extent it may partly substitute or replace Zr and/or Sc as a dispersoid forming elements in these alloys. What is the effect of hafnium, alone and in combination with Zr...

  5. Pilot-scale recovery of rare earths and scandium from phosphogypsum and uranium leachates

    Directory of Open Access Journals (Sweden)

    Mashkovtsev Maxim

    2016-01-01

    Full Text Available Ural Federal University (UrFU and VTT have performed joint research on development of industrial technologies for the extraction of REM and Scandium compounds from phosphogypsum and Uranium ISL leachate solutions. Leaching-absorption experiments at UrFU have been supported with multicomponent solution modelling by VTT. The simulations have been performed with VTT’s ChemSheet/Balas program and can be used for speciation calculations in the lixiviant solution. The experimental work combines solvent extraction with advanced ion exchange methodology in a pilot facility capable of treating 5 m3 solution per hour. Currently, the plant produces cerium carbonate, lanthanum oxide, neodymium oxide and concentrate of heavy rare earth metals. A batch of 45 t solids has been processed with the gain of 100 kg’s of REM concentrate. A mini-pilot plant with productivity above 50 liters per hour has been applied to recover scandium oxide and REE concentrates from the uranium ISL solution. As the preliminary product contains radioactivity (mainly strontium, an additional decontamination and cleaning of both concentrates by extraction has rendered a necessity. Finally a purified 99% concentrate of scandium oxide as well as 99% rare earth concentrate are received.

  6. Optimization of scandium oxide growth by high pressure sputtering on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Feijoo, P.C., E-mail: pedronska@fis.ucm.es; Pampillon, M.A.; San Andres, E.; Lucia, M.L.

    2012-12-30

    This work demonstrates the viability of scandium oxide deposition on silicon by means of high pressure sputtering. Deposition pressure and radio frequency power are varied for optimization of the properties of the thin films and the ScO{sub x}/Si interface. The physical characterization was performed by ellipsometry, Fourier transform infrared spectroscopy, x-ray diffraction and transmission electron microscopy. Aluminum gate electrodes were evaporated for metal-insulator-semiconductor (MIS) fabrication. From the electrical characterization of the MIS devices, the density of interfacial defects is found to decrease with deposition pressure, showing a reduced plasma damage of the substrate surface for higher pressures. This is also supported by lower flatband voltage shifts in the capacitance versus voltage hysteresis curves. Sputtering at high pressures (above 100 Pa) reduces the interfacial SiO{sub x} formation, according to the infrared spectra. The growth rates decrease with deposition pressure, so a very accurate control of the layer thicknesses could be provided. - Highlights: Black-Right-Pointing-Pointer Scandium oxide is considered as a high permittivity dielectric. Black-Right-Pointing-Pointer Scandium oxide was deposited on Si by high pressure sputtering. Black-Right-Pointing-Pointer Characterization was performed for deposition condition optimization. Black-Right-Pointing-Pointer High deposition pressures showed higher film and interface quality.

  7. Perchlorate Contamination of Drinking Water: Regulatory Issues and Legislative Actions

    National Research Council Canada - National Science Library

    Tiemann, Mary

    2007-01-01

    .... It also has been found in milk, fruits, and vegetables. Concern over the potential health risks of perchlorate exposure has increased, and some states and Members of Congress have urged the Environmental Protection Agency (EPA...

  8. Assembled cross-species perchlorate dose-response data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains dose-response data for perchlorate exposure in multiple species. These data were assembled from peer-reviewed studies. Species included in...

  9. Dimethylammonium perchlorate 18-crown-6 monohydrate clathrate

    Directory of Open Access Journals (Sweden)

    Jia-Zhen Ge

    2010-07-01

    Full Text Available The reaction of dimethylamine, 18-crown-6, and perchloric acid in methanol yields the title compound, C2H8N+·ClO4−·C12H24O6·H2O. The dimethylammonium cation and the water molecule interact with the 18-crown-6 unit: N—H...O hydrogen bonds are formed between the ammonium NH2+ group and four O atoms of the crown ether, while the water molecule on the other side of 18-crown-6 ring forms O—H...O hydrogen bonds with two other O atoms of the crown ether. All conventional donors and acceptors in the cations are thus engaged in hydrogen bonding. The ClO4− anion is disordered over two sites, and occupancies for the disordered O atoms were fixed at 0.5. In the crystal, the cations and anions are arranged in alternating layers.

  10. Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater

    Science.gov (United States)

    2007-03-01

    contaminated water to the surface for treatment . Both the pilot study at the Aerojet site, and this research are parts of an ESTCP-funded 7 project to...contaminated water (Urbansky, 2002). Filtering technologies such as reverse osmosis or nanofiltration are able to remove perchlorate by forcing the...complexity and cost to projects (GWRTAC, 2001). 2.5.2 DESTRUCTION In a review of perchlorate treatment projects, the Ground- Water Remediation Technologies

  11. Isotopic tracing of perchlorate in the environment

    Science.gov (United States)

    Sturchio, Neil C.; Böhlke, John Karl; Gu, Baohua; Hatzinger, Paul B.; Jackson, W. Andrew; Baskaran, Mark

    2012-01-01

    Isotopic measurements can be used for tracing the sources and behavior of environmental contaminants. Perchlorate (ClO 4 − ) has been detected widely in groundwater, soils, fertilizers, plants, milk, and human urine since 1997, when improved analytical methods for analyzing ClO 4 −concentration became available for routine use. Perchlorate ingestion poses a risk to human health because of its interference with thyroidal hormone production. Consequently, methods for isotopic analysis of ClO 4 − have been developed and applied to assist evaluation of the origin and migration of this common contaminant. Isotopic data are now available for stable isotopes of oxygen and chlorine, as well as 36Cl isotopic abundances, in ClO 4 − samples from a variety of natural and synthetic sources. These isotopic data provide a basis for distinguishing sources of ClO 4 − found in the environment, and for understanding the origin of natural ClO 4 − . In addition, the isotope effects of microbial ClO 4 − reduction have been measured in laboratory and field experiments, providing a tool for assessing ClO 4 − attenuation in the environment. Isotopic data have been used successfully in some areas for identifying major sources of ClO 4 − contamination in drinking water supplies. Questions about the origin and global biogeochemical cycle of natural ClO 4 − remain to be addressed; such work would benefit from the development of methods for preparation and isotopic analysis of ClO 4 − in samples with low concentrations and complex matrices.

  12. The NAS Perchlorate Review: Adverse Effects?

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Richard B.; Corley, Richard; Cowan, Linda; Utiger, Robert D.

    2005-11-01

    To the editor: Drs. Ginsberg and Rice argue that the reference dose for perchlorate of 0.0007 mg/kg per day recommended by the National Academies’ Committee to Assess the Health Implications of Perchlorate Ingestion is not adequately protective. As members of the committee, we disagree. Ginsberg and Rice base their conclusion on three points. The first involves the designation of the point of departure as a NOEL (no-observed-effect level) versus a LOAEL (lowest-observed-adverse- effect level). The committee chose as its point of departure a dose of perchlorate (0.007 mg/kg per day) that when given for 14 days to 7 normal subjects did not cause a significant decrease in the group mean thyroid iodide uptake (Greer et al. 2002). Accordingly, the committee considered it a NOEL. Ginsberg and Rice focus on the fact that only 7 subjects were given that dose, and they 1seem to say that attention should be paid only to the results in those subjects in whom there was a 1fall in thyroid iodide uptake, and that the results in those in whom there was no fall or an increase should be ignored. They consider the dose to be a LOAEL because of the fall in uptake in those few subjects. It is important to note that a statistically significant decrease of, for example, 5% or even 10%, would not be biologically important and, more important, would not be sustained. For example, in another study (Braverman et al. 2004), administration of 0.04 mg/kg per day to normal subjects for 6 months had no effect on thyroid iodide uptake when measured at 3 and 6 months, and no effect on serum thyroid hormone or thyrotropin concentrations measured monthly (inspection of Figure 5A in the paper by Greer et al. suggests that this dose would inhibit thyroid iodide uptake by about 25% if measured at 2 weeks). The second issue involves database uncertainty. In clinical studies, perchlorate has been administered prospectively to 68 normal subjects for 2 weeks to 6 months. In one study (Brabant et al. 1992

  13. Study on the affecting factors of perchlorate biodegradation

    Directory of Open Access Journals (Sweden)

    Qian WANG

    2015-12-01

    Full Text Available The environmental pollution of perchlorate is more and more serious because of its widely usage. Several parameters affecting perchlorate degradation are examined through batch experiments by perchlorate-degrading bacteria, which include temperature, pH, the concentration of carbon source, ClO-4, NO-3, and water-soluble and water-insoluble quinone compounds. Perchlorate-degrading bacteria is collected and enriched from a sewage treatment plant. The results suggested that the optimal conditions for perchlorate biodegradation are 30 ℃, pH 7.5~8.5 and 2.4 g/L acetate. Different NO-3 concentrations have significant effect on perchlorate biodegradation. The higher the initial concentration of ClO-4, the faster the degradation rate. The acceleration effect of AQDS is the best among dissolved quinone compounds, and the optimal concentration is 1.44 mmol/L. The acceleration effects of 1,5-dichloroanthraquinone is best among non-dissolved quinone compounds, and the optimal concentration is 0.090 mmol/L.

  14. Determination of Perchlorate in Bottled Water from Italy

    Directory of Open Access Journals (Sweden)

    Patrizia Iannece

    2013-06-01

    Full Text Available Perchlorate is regarded as an emerging persistent inorganic contaminant. It is widely known that perchlorate is an endocrine disruptor as it competitively inhibits iodide transport in the thyroid gland. As drinking water is the major source of human exposure to perchlorate, its occurrence in commercially available bottled waters purchased in different regions of Italy was investigated. Perchlorate was measured using the rapid, sensitive, and selective LC-ESI-MS/MS (liquid chromatography-electrospray tandem mass spectrometry method by multiple reaction monitoring (MRM of the transition 98.8→82.8, which corresponds to the loss of one oxygen atom in the perchlorate ion (ClO4−→ClO3−. The chlorine isotope ratio (35Cl/37Cl was used as a confirmation tool. The limit of quantification (LOQ for this method was 5 ng/L, and the recovery ranged from 94% to 108%. Perchlorate was detected in 44 of the 62 drinking waters tested, with concentrations ranging from <5 to 75 ng/L. These values are similar in magnitude to those reported in drinking water from the USA and do not pose an immediate health concern.

  15. Thermal and Evolved Gas Analysis of Magnesium Perchlorate: Implications for Perchlorates in Soils at the Mars Phoenix Landing Site

    Science.gov (United States)

    Ming, Douglas W.; Morris, R.V.; Lauer, H. V.; Sutter, B.; Golden, D.C.; Boynton, W.V.

    2009-01-01

    Perchlorate salts were discovered in the soils around the Phoenix landing site on the northern plains of Mars [1]. Perchlorate was detected by an ion selective electrode that is part of the MECA Wet Chemistry Laboratory (WCL). The discovery of a mass 32 fragment (likely 02) by the Thermal and Evolved-Gas Analyzer (TEGA) provided additional confirmation of a strong oxidizer in the soils around the landing site. The purpose of this paper is to evaluate the thermal and evolved gas behavior of perchlorate salts using TEGA-like laboratory testbed instruments. TEGA ovens were fabricated from high purity Ni. Hence, an additional objective of this paper is to determine the effects that Ni might have on the evolved gas behavior of perchlorate salts.

  16. Recovery of Scandium from Leachate of Sulfation-Roasted Bayer Red Mud by Liquid-Liquid Extraction

    Science.gov (United States)

    Liu, Zhaobo; Li, Hongxu; Jing, Qiankun; Zhang, Mingming

    2017-11-01

    The leachate obtained from sulfation-roasted Bayer red mud is suitable for extraction of scandium by liquid-liquid solvent extraction because it contains trace amounts of Fe3+ and Si4+. In this study, a completely new metallurgical process for selective recovery of scandium from Bayer red mud was proposed. The extraction performances of Sc3+, Fe3+, Al3+, Si4+, Ca2+, and Na+ from synthetic leachate of sulfation-roasted red mud were first investigated using organophosphorus extractants (di-2-ethylhexyl phosphoric acid P204 and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester P507) and carboxylic acid extractant (Versatic acid 10). It shows that P204 has an excellent extraction ability and that it can be applied to the scandium recovery. P507 and Versatic acid 10 are much poorer in performance for selective extraction of scandium. In the leachate of sulfation-roasted red mud, approximately 97% scandium can be recovered using a P204/sulfonated kerosene (1% v/v) extraction system under the condition of an organic-to-aqueous phase ratio of 10:1 and with an extraction temperature of 15°C.

  17. Developmental exposure to perchlorate alters synaptic transmission in hippocampus of the adult rat: in vivo studies.

    Science.gov (United States)

    Perchlorate, a contaminant found in food and water supplies throughout the USA, blocks iodine uptake into the thyroid gland to reduce circulating levels of thyroid hormone. Neurological function accompanying developmental exposure to perchlorate was evaluated in the present study...

  18. Perchlorate and chlorate reduction by the Crenarchaeon Aeropyrum pernix and two thermophilic Firmicutes

    NARCIS (Netherlands)

    Liebensteiner, M.G.; Pinkse, M.W.H.; Nijsse, B.; Verhaert, P.D.E.M.; Tsesmetzis, N.; Stams, A.J.M.; Lomans, B.P.

    2015-01-01

    This study reports the ability of one hyperthermophilic and two thermophilic microorganisms to grow anaerobically by the reduction of chlorate and perchlorate. Physiological, genomic and proteome analyses suggest that the Crenarchaeon Aeropyrum pernix reduces perchlorate with a periplasmic enzyme

  19. A perchlorate sensitive iodide transporter in frogs.

    Science.gov (United States)

    Carr, Deborah L; Carr, James A; Willis, Ray E; Pressley, Thomas A

    2008-03-01

    Nucleotide sequence comparisons have identified a gene product in the genome database of African clawed frogs (Xenopus laevis) as a probable member of the solute carrier family of membrane transporters. To confirm its identity as a putative iodide transporter, we examined the function of this sequence after heterologous expression in mammalian cells. A green monkey kidney cell line transfected with the Xenopus nucleotide sequence had significantly greater (125)I uptake than sham-transfected control cells. The uptake in carrier-transfected cells was significantly inhibited in the presence of perchlorate, a competitive inhibitor of mammalian Na(+)/iodide symporter. Tissue distributions of the sequence were also consistent with a role in iodide uptake. The mRNA encoding the carrier was found to be expressed in the thyroid gland, stomach, and kidney of tadpoles from X. laevis, as well as the bullfrog Rana catesbeiana. The ovaries of adult X. laevis also were found to express the carrier. Phylogenetic analysis suggested that the putative X. laevis iodide transporter is orthologous to vertebrate Na(+)-dependent iodide symporters. We conclude that the amphibian sequence encodes a protein that is indeed a functional Na(+)/iodide symporter in X. laevis, as well as R. catesbeiana.

  20. Evaluation of Alternative Causes of Wide-Spread, Low Concentration Perchlorate Impacts to Groundwater

    Science.gov (United States)

    2011-07-01

    has several greenhouses with hydroponics , curing barns, maintenance shops and a well trained staff in the cultural management practices for tobacco...nitrate fertilizer products. To assess the potential behavior of perchlorate applied historically by standard fertilization practices , nitrate was used... practices , nitrate was used as a surrogate for perchlorate. The behavior of perchlorate and nitrate applied to soils using Chilean nitrate fertilizer

  1. Aluminum-based drinking-water treatment residuals: A novel sorbent for perchlorate removal

    Energy Technology Data Exchange (ETDEWEB)

    Makris, Konstantinos C. [Department of Earth and Environmental Science, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249-0663 (United States); Sarkar, Dibyendu [Department of Earth and Environmental Science, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249-0663 (United States)]. E-mail: dibyendu.sarkar@utsa.edu; Datta, Rupali [Department of Earth and Environmental Science, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249-0663 (United States)

    2006-03-15

    Perchlorate contamination of aquifers and drinking-water supplies has led to stringent regulations in several states to reduce perchlorate concentrations in water at acceptable levels for human consumption. Several perchlorate treatment technologies exist, but there is significant cost associated with their use, and the majority of them are unable to degrade perchlorate to innocuous chloride. We propose the use of a novel sorbent for perchlorate, i.e. an aluminum-based drinking-water treatment residual (Al-WTR), which is a by-product of the drinking-water treatment process. Perchlorate sorption isotherms (23 {+-} 1 {sup o}C) showed that the greatest amount (65%) of perchlorate removed by the Al-WTR was observed with the lowest initial perchlorate load (10 mg L{sup -1}) after only 2 h of contact time. Increasing the contact time to 24 h, perchlorate removal increased from 65 to 76%. A significant correlation was observed between the amounts of perchlorate removed with evolved chloride in solution, suggesting degradation of perchlorate to chloride. - Drinking-water treatment residuals are a low-cost sorbent for perchlorate.

  2. The thermal decomposition behavior of ammonium perchlorate and of an ammonium-perchlorate-based composite propellant

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R.; Minier, L.

    1998-03-24

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl, and is shown to occur in the solid phase within the AP particles. 200{micro} diameter AP particles undergo 25% decomposition in the solid phase, whereas 20{micro} diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH{sub 3} + HClO{sub 4} followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  3. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material

    DEFF Research Database (Denmark)

    Han, Li; Christensen, Dennis Valbjørn; Bhowmik, Arghya

    2016-01-01

    Scandium-doped zinc cadmium oxide (Sc-doped ZnCdO) is proposed as a new n-type oxide thermoelectric material. The material is sintered in air to maintain the oxygen stoichiometry and avoid instability issues. The successful alloying of CdO with ZnO at a molar ratio of 1 : 9 significantly reduced...... is a good candidate for improving the overall conversion efficiencies in oxide thermoelectric modules. Meanwhile, Sc-doped ZnCdO is robust in air at high temperatures, whereas other n-type materials, such as Al-doped ZnO, will experience rapid degradation of their electrical conductivity and ZT....

  4. Crystal structure of iron(III perchlorate nonahydrate

    Directory of Open Access Journals (Sweden)

    Erik Hennings

    2014-12-01

    Full Text Available Since the discovery of perchlorate salts on Mars and the known occurrence of ferric salts in the regolith, there is a distinct possibility that the title compound could form on the surface of Mars. [Fe(H2O6](ClO43·3H2O was crystallized from aqueous solutions at low temperatures according to the solid–liquid phase diagram. It consists of Fe(H2O6 octahedra (point group symmetry -3. and perchlorate anions (point group symmetry .2 as well as non-coordinating water molecules, as part of a second hydrogen-bonded coordination sphere around the cation. The perchlorate appears to be slightly disordered, with major–minor component occupancies of 0.773 (9:0.227 (9.

  5. Direct measurement of perchlorate exposure biomarkers in a highly exposed population: a pilot study.

    Directory of Open Access Journals (Sweden)

    Paul English

    2011-03-01

    Full Text Available Exposure to perchlorate is ubiquitous in the United States and has been found to be widespread in food and drinking water. People living in the lower Colorado River region may have perchlorate exposure because of perchlorate in ground water and locally-grown produce. Relatively high doses of perchlorate can inhibit iodine uptake and impair thyroid function, and thus could impair neurological development in utero. We examined human exposures to perchlorate in the Imperial Valley among individuals consuming locally grown produce and compared perchlorate exposure doses to state and federal reference doses. We collected 24-hour urine specimen from a convenience sample of 31 individuals and measured urinary excretion rates of perchlorate, thiocyanate, nitrate, and iodide. In addition, drinking water and local produce were also sampled for perchlorate. All but two of the water samples tested negative for perchlorate. Perchlorate levels in 79 produce samples ranged from non-detect to 1816 ppb. Estimated perchlorate doses ranged from 0.02 to 0.51 µg/kg of body weight/day. Perchlorate dose increased with the number of servings of dairy products consumed and with estimated perchlorate levels in produce consumed. The geometric mean perchlorate dose was 70% higher than for the NHANES reference population. Our sample of 31 Imperial Valley residents had higher perchlorate dose levels compared with national reference ranges. Although none of our exposure estimates exceeded the U. S. EPA reference dose, three participants exceeded the acceptable daily dose as defined by bench mark dose methods used by the California Office of Environmental Health Hazard Assessment.

  6. A bioinspired iron catalyst for nitrate and perchlorate reduction.

    Science.gov (United States)

    Ford, Courtney L; Park, Yun Ji; Matson, Ellen M; Gordon, Zachary; Fout, Alison R

    2016-11-11

    Nitrate and perchlorate have considerable use in technology, synthetic materials, and agriculture; as a result, they have become pervasive water pollutants. Industrial strategies to chemically reduce these oxyanions often require the use of harsh conditions, but microorganisms can efficiently reduce them enzymatically. We developed an iron catalyst inspired by the active sites of nitrate reductase and (per)chlorate reductase enzymes. The catalyst features a secondary coordination sphere that aids in oxyanion deoxygenation. Upon reduction of the oxyanions, an iron(III)-oxo is formed, which in the presence of protons and electrons regenerates the catalyst and releases water. Copyright © 2016, American Association for the Advancement of Science.

  7. Scandium and yttrium phosphasalen complexes as initiators for ring-opening polymerization of cyclic esters.

    Science.gov (United States)

    Bakewell, Clare; White, Andrew J P; Long, Nicholas J; Williams, Charlotte K

    2015-03-02

    The synthesis and characterization of novel scandium and yttrium phosphasalen complexes is reported, where phosphasalen refers to two different bis(iminophosphorane) derivatives of the more ubiquitous salen ligands. The activity of the complexes as initiators for the ring-opening polymerization of cyclic esters is presented. The scandium complexes are inactive for lactide polymerization but slow and controlled initiators for ε-caprolactone polymerization. The lack of activity toward lactide exhibited by these compounds is probed, and a rare example of single-monomer insertion product, unable to undergo further reactions with lactide, is identified. In contrast, the analogous yttrium phosphasalen complex is a very active initiator for the ring-opening polymerization of rac-lactide (kobs = 1.5 × 10(-3) s(-1) at 1:500 [yttrium initiator]:[rac-lactide], 1 M overall concentration of lactide in THF at 298 K). In addition to being a very fast initiator, the yttrium complex also maintains excellent levels of polymerization control and a high degree of isoselectivity, with the probability of isotactic enchainment being Pi = 0.78 at 298 K.

  8. Thermodynamic parameters of scandium trifluoride and triiodide in the condensed state

    Science.gov (United States)

    Aristova, N. M.; Belov, G. V.

    2015-06-01

    The thermodynamic properties of new classes of compounds, particularly scandium trihalides ScF3, ScCl3, ScBr3, and ScI3, are added to the IVTANTHERMO software package. A critical analysis and processing of the entire array of primary data available in the literature is performed. An equation approximating the temperature dependence of heat capacity in the temperature range 298.15- T m (K) is derived for each crystalline scandium trihalide. The resulting equations C {/p po}( T) for the solid state and the data for the liquid phase are used to calculate the thermodynamic functions of entropy, the reduced Gibbs free energies, and the enthalpy increments. Both the experimental data available in literature and the missing estimated thermodynamic data are used in calculations. The error of the recommended values is estimated in all cases. In the first part of this work, we describe the thermodynamic properties of ScF3 and ScI3 used as the reference data for calculating the thermodynamic functions of ScCl3 and ScBr3, for which experimental data are either very scarce or missing altogether. The resulting data are added to the database of the IVTANTHERMO software package.

  9. The determination of residual perchlorate after the controlled ignition of selected fireworks compositions

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, K.; Ridley, W.; Guilbeault, R.; Duff, B.

    2008-04-15

    This study investigated perchlorate releases into the atmosphere caused by fireworks displays. Five perchlorate-based compositions were ignited in a sealed stainless steel vessel. The interior of the vessel and the exhaust filters were then washed with hot de-ionized water. Ion chromatography was then used to analyzed the water solutions. Amounts of perchlorate ion measured in the solution were then used to calculate the percentage of residual perchlorate based on the original mass of perchlorate contained within the samples. The study showed that 99.98 to 99.999 per cent of the initial mass of perchlorate in the samples was consumed during ignition. It was concluded that the incomplete combustion of fireworks caused by defective article construction will cause higher amounts of perchlorate releases into the environment. Stricter quality controls are needed to reduce the environmental impacts of fireworks. 14 refs., 4 tabs., 3 figs.

  10. An upper-bound assessment of the benefits of reducing perchlorate in drinking water.

    Science.gov (United States)

    Lutter, Randall

    2014-10-01

    The Environmental Protection Agency plans to issue new federal regulations to limit drinking water concentrations of perchlorate, which occurs naturally and results from the combustion of rocket fuel. This article presents an upper-bound estimate of the potential benefits of alternative maximum contaminant levels for perchlorate in drinking water. The results suggest that the economic benefits of reducing perchlorate concentrations in drinking water are likely to be low, i.e., under $2.9 million per year nationally, for several reasons. First, the prevalence of detectable perchlorate in public drinking water systems is low. Second, the population especially sensitive to effects of perchlorate, pregnant women who are moderately iodide deficient, represents a minority of all pregnant women. Third, and perhaps most importantly, reducing exposure to perchlorate in drinking water is a relatively ineffective way of increasing iodide uptake, a crucial step linking perchlorate to health effects of concern. © 2014 Society for Risk Analysis.

  11. Simultaneous detection of perchlorate and bromate using rapid high-performance ion exchange chromatography-tandem mass spectrometry and perchlorate removal in drinking water.

    Science.gov (United States)

    West, Danielle M; Mu, Ruipu; Gamagedara, Sanjeewa; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Burken, Joel G; Shi, Honglan

    2015-06-01

    Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 μg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.

  12. POLISHING EFFLUENT FROM A PERCHLORATE-REDUCING ANAEROBIC BIOLOGICAL CONTACTOR

    Science.gov (United States)

    The U.S. Environmental Protection Agency undertook at 3 ½ year pilot-scale biological perchlorate treatment study that included two long (311 and 340 days) examinations of anaerobic effluent polishing. The polishing system consisted of hydrogen peroxide addition and aeration, fo...

  13. Inhibition of lactate dehydrogenase isoenzymes by sodium perchlorate evaluated

    NARCIS (Netherlands)

    Sanders, G. T.; van der Neut, E.; van Straalen, J. P.

    1990-01-01

    We evaluated a method of measuring lactate dehydrogenase isoenzyme 1 (LD-1) selectively (Clin Chem 1987;33:991-2), in which all other LD isoenzymes were inhibited by adding sodium perchlorate to the reaction medium to a final concentration of 0.825 mol/L. In this study we used the different

  14. Branched polymeric media: Perchlorate-selective resins from hyperbranched polyethyleneimine

    KAUST Repository

    Chen, Dennis P.

    2012-10-02

    Perchlorate (ClO4 -) is a persistent contaminant found in drinking groundwater sources in the United States. Ion exchange (IX) with selective and disposable resins based on cross-linked styrene divinylbenzene (STY-DVB) beads is currently the most commonly utilized process for removing low concentrations of ClO4 - (10-100 ppb) from contaminated drinking water sources. However, due to the low exchange capacity of perchlorate-selective STY-DVB resins (∼0.5-0.8 eq/L), the overall cost becomes prohibitive when treating groundwater with higher concentration of ClO4 - (e.g., 100-1000 ppb). In this article, we describe a new perchlorate-selective resin with high exchange capacity. This new resin was prepared by alkylation of branched polyethyleneimine (PEI) beads obtained from an inverse suspension polymerization process. Batch and column studies show that our new PEI resin with mixed hexyl/ethyl quaternary ammonium chloride exchange sites can selectively extract trace amounts of ClO4 - from a makeup groundwater (to below detection limit) in the presence of competing ions. In addition, this resin has a strong-base exchange capacity of 1.4 eq/L, which is 1.75-2.33 times larger than those of commercial perchlorate-selective STY-DVB resins. The overall results of our studies suggest that branched PEI beads provide versatile and promising building blocks for the preparation of perchlorate-selective resins with high exchange capacity. © 2012 American Chemical Society.

  15. Relative source contributions for perchlorate exposures in a lactating human cohort

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Andrea B. [University of North Texas Health Sciences Center (United States); Dyke, Jason V. [University of Texas at Arlington (United States); Ohira, Shin-Ichi [Kumamoto University (Japan); Dasgupta, Purnendu K., E-mail: Dasgupta@uta.edu [University of Texas at Arlington (United States)

    2013-01-15

    Perchlorate is an iodine-uptake inhibitor and common contaminant of food and drinking water. Understanding the amount of perchlorate exposure occurring through non-water sources is essential for accurate estimates of human exposure levels, and establishment of drinking water limits for this pervasive contaminant. The study objective was to determine the amount of perchlorate intake derived from diet rather than water. Subjects provided drinking water samples, detailed fluid-intake records, 24 h urine collections and four milk samples for nine days. Samples were analyzed for perchlorate by isotope dilution ion chromatography–tandem mass spectrometry. Amounts of perchlorate derived from drinking water and dietary sources were calculated for each individual. Water of local origin was found to contribute a minor fraction of perchlorate intake. Estimated fraction intake from drinking water ranged from 0 to 36%. The mean and median dose of perchlorate derived from non-water sources by lactating women was 0.18 μg/kg/day (range: 0.06 to 0.36 μg/kg/day.) Lactating women consumed more fluid (mean 2.424 L/day) than has been assumed in recent risk assessments for perchlorate. The data reported here indicate that lactating women may be exposed to perchlorate through dietary sources at markedly higher levels than estimated previously. Exposures to perchlorate from non-water sources may be higher than recent estimates, including those used to develop drinking water standards. - Highlights: ► Residence in an area with perchlorate-contaminated water may be a poor predictor of exposure. ► Exposures to perchlorate from food are likely underestimated. ► The relative contributions for human perchlorate exposures should be weighted more heavily towards non-water sources.

  16. Recovery of Scandium(III) from Aqueous Solutions by Solvent Extraction with the Functionalized Ionic Liquid Betainium Bis(trifluoromethylsulfonyl)imide

    OpenAIRE

    Onghena, Bieke; Binnemans, Koen

    2015-01-01

    The ionic liquid betainium is(trifluoromethylsulfonyl)imide [Hbet][Tf2N] was used for the extraction of scandium from aqueous solutions. The influence of several extraction parameters on the extraction efficiency was investigated, including the initial metal concentration, phase ratio, and pH. The extraction kinetics was examined, and a comparison was made between conventional liquid−liquid extraction and homogeneous liquid−liquid extraction (HLLE). The stoichiometry of the extracted scandium...

  17. Modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [Manufacturing and Systems Engineering Program, Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand); Kajornchaiyakul, Julathep [National Metal and Material Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@kmutt.ac.th [Manufacturing and Systems Engineering Program, Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2013-10-25

    Highlights: •Morphologies and growth of Sc and Sr-modified eutectic silicon resemble those of dendrites. •Crystal orientation of eutectic aluminum depends on growth characteristics of eutectic silicon. •We report strong evidence of the occurrence of an impurity-induced twinning mechanism. -- Abstract: The modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium was studied. The crystallographic orientation relationships between primary dendrites and the eutectic phase of unmodified and modified Al–6Si–0.3 Mg alloys were determined using electron backscatter diffraction (EBSD). The orientation of aluminum modified with scandium in the eutectic phase was different from that of the neighboring primary dendrites. This result implies that eutectic aluminum grows epitaxially from the surrounding primary aluminum dendrites in the unmodified alloy and that eutectic aluminum grows competitively from the surrounding primary aluminum dendrites in the modified alloy. The pole figure maps of eutectic Si in the [1 0 0], [1 1 0] and [1 1 1] axes of the unmodified and Sc-modified alloys were different, suggesting that the eutectic Al and Si crystals in modified alloy growth are more isotropic and cover a larger set of directions. The lattice fringes of Si of the alloys with and without Sc modification were different in the TEM results. The lattice fringes of Si in modified alloy were found to be multiple twins. However, this was not observed in the unmodified alloy. The growth characteristic of eutectic Si crystal in modified alloy suggests the occurrence of multiple twinning reactions and the formation of a high density of twins. This modification mechanism by Sc is explained by the results of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analysis, which provide strong evidence of the occurrence of the impurity-induced twinning (IIT) mechanism.

  18. Grain refinement mechanism in an Al-Si-Mg alloy with scandium

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [Department of Production Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand); Kajornchaiyakul, Julathep [National Metal and Material Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@kmutt.ac.th [Department of Production Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2012-11-25

    Highlights: Black-Right-Pointing-Pointer Scandium can be used to refine aluminum grains in an Al-Si-Mg aluminum alloy. Black-Right-Pointing-Pointer The effectiveness of Sc is lower than that of conventional Al-Ti grain refiners. Black-Right-Pointing-Pointer Al{sub 3}Sc particles can act as heterogeneous nuclei of aluminum phases. Black-Right-Pointing-Pointer Higher alloying elements cause more intermetallic compound phases. Black-Right-Pointing-Pointer Those phases cannot effectively act as heterogeneous nuclei compared with Al{sub 3}Sc particles. - Abstract: Grain refinement of the primary aluminum ({alpha}-Al) phase in a hypoeutectic Al-Si alloy using scandium (Sc) was studied to identify the grain refinement mechanism. Optical microscopy (OM), Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques were extensively used in this study. We found that Sc refined grains of primary aluminum. However, the grain refinement efficiency of Sc was considerably lower than that of titanium (Ti) in the Al-Si-Mg foundry alloy. It was evident that the precipitated Sc-containing phases acted as heterogeneous nucleation sites for the primary aluminum phase. The Sc-containing heterogeneous sites are irregular in shape with sizes between 3 and 5 {mu}m. At least three groups of nuclei based on their chemical composition were found, i.e., (i) Al and Sc, (ii) Al, Si, Mg, and Sc, and (iii) Al, Si, Mg, Sc, and Fe. Crystal orientation mapping showed primary aluminum dendrites with one orientation in each grain near Al{sub 3}Sc particles. The grain refinement mechanism of Sc for aluminum relies on heterogeneous nucleation of Al{sub 3}Sc particles, with less responsibly for grain growth restriction. Many intermetallic phases with Al, Si, Fe, Mg and Sc as their major components were found, and these phases could not effectively act as heterogeneous nuclei.

  19. Perchlorate and Superfund Response to Uncertainty and the Geochemical Cycle

    Science.gov (United States)

    Mayer, K. P.

    2007-12-01

    Perchlorate, a chemical that had been known both in nature and through synthesis since the nineteenth century, only emerged into the limelight as an environmental contaminant in 1997. US EPA's Superfund Program became involved in perchlorate issues in the late 1980s and early 1990s due to the chemical's presence mixed with other contaminants at cleanup sites. Relying largely on pharmaceutical studies primarily from the 1950s and 1960s, EPA scientists in 1992 made a provisional estimate of toxicity and estimated that about 4 micrograms per liter (parts per billion or ppb) in drinking water would be protective. "Uncertainty factors" were incorporated to address for several identified information gaps. Results of new animal and human studies funded by the Defense Department and industry in the late 1990s shifted the concern from affects on adults with unhealthy thyroids to the potential developmental health risks to infants and children. EPA's January, 2002, draft toxicity assessment was referred to a committee of the National Research Council. In January, 2005, this committee recommended a "reference dose" based primarily on human clinical data. Many decisions remain on interpretation of the scientific recommendations for regulatory applications. After California's 1997 development of an analytical method to detect perchlorate in water to 4 ppb, EPA and state officials quickly discovered this chemical at 10 Superfund sites in the Pacific Southwest Region and at more than 30 other locations in California, Arizona and Nevada. Even before current research on the potential for natural sources of this anion, reported detections of perchlorate were investigated with reasonable care and appropriate skepticism. A brief overview of the search for likely sources of perchlorate detected in California water supplies is presented from a regional Superfund perspective. Some are clearly anthropogenic and others may be unrelated to industrial or disposal practices. Currently, there

  20. Environmental impacts of perchlorate with special reference to fireworks--a review.

    Science.gov (United States)

    Sijimol, M R; Mohan, Mahesh

    2014-11-01

    Perchlorate is an inorganic anion that is used in solid rocket propellants, fireworks, munitions, signal flares, etc. The use of fireworks is identified as one of the main contributors in the increasing environmental perchlorate contamination. Although fireworks are displayed for entertainment, its environmental costs are dire. Perchlorates are also emerging as potent thyroid disruptors, and they have an impact on the ecology too. Many studies have shown that perchlorate contaminates the groundwater and the surface water, especially in the vicinity of fireworks manufacturing sites and fireworks display sites. The health and ecological impacts of perchlorate released in fireworks are yet to be fully assessed. This paper reviews fireworks as a source of perchlorate contamination and its expected adverse impacts.

  1. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues.

    Science.gov (United States)

    He, Hongzhi; Gao, Haishuo; Chen, Guikui; Li, Huashou; Lin, Hai; Shu, Zhenzhen

    2013-10-01

    Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (pplants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing wetland to remediate high levels of perchlorate polluted water.

  2. An Investigation into Palladium-Catalyzed Reduction of Perchlorate in Water

    Science.gov (United States)

    2005-03-01

    been used to counteract a side-effect of amiodarone , a cardiac drug. Amiodarone produces free iodide when it degrades, and perchlorate is used to...interrupted and there is no mechanism to stop the production of stimulating hormones. The stimulating hormones direct the thyroid to produce...therapeutic application for perchlorate. Perchlorate is now used to counter a side-effect of amiodarone , a drug used to treat cardiac arrhythmia

  3. Perchlorate in fish from a contaminated site in east-central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, Christopher [Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409-1163 (United States)]. E-mail: chris.theodorakis@tiehh.ttu.edu; Rinchard, Jacques [Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409-1163 (United States); Anderson, Todd [Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409-1163 (United States); Liu, Fujun [Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409-1163 (United States); Park, June-Woo [Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409-1163 (United States); Costa, Filipe [Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409-1163 (United States); McDaniel, Leslie [Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409-1163 (United States); Kendall, Ronald [Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409-1163 (United States); Waters, Aaron [Institute of Environmental and Human Health, Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409-1163 (United States)

    2006-01-15

    Perchlorate, a known thyroid endocrine disruptor, contaminates surface waters near military instillations where solid fuel rocket motors are manufactured or assembled. To assess potential perchlorate exposure to fish and the human population which may feed on them, fish were collected around the Naval Weapons Industrial Reserve Plant in McLennan County, TX, and analyzed for the presence of the perchlorate anion. The sampling sites included Lake Waco and Belton Lake, and several streams and rivers within their watersheds. The general tendency was that perchlorate was only found in a few species sampled, and perchlorate was not detected in every individual within these species. When detected in the fish, perchlorate tissue concentrations were greater than that in the water. This may be due to highly variable perchlorate concentrations in the water coupled with individual-level variation in elimination from the body, or to routes of exposure other than water. - In perchlorate-contaminated lakes and streams, perchlorate is detected infrequently in fish heads, fillets, and whole bodies, but may be detected more often depending on species and seasonal trends, and always at concentrations higher in the fish than in the water.

  4. Perchlorate in sewage sludge, rice, bottled water and milk collected from different areas in China.

    Science.gov (United States)

    Shi, Yali; Zhang, Ping; Wang, Yawei; Shi, Jianbo; Cai, Yaqi; Mou, Shifen; Jiang, Guibin

    2007-10-01

    As a new emerging environmental contaminant, perchlorate has prompted people to pay more attention. The presence of perchlorate in the human body can result in improper regulation of metabolism for adults. Furthermore, it also causes developmental and behavioral problems for infants and children because it can interfere with iodide uptake into the thyroid tissue. In this paper, perchlorate in sewage sludge, rice, bottled drinking water and milk was detected for investigating the perchlorate pollution status in China. The places, where the samples were collected, cover most regions of China. Therefore, the final data on perchlorate levels will give an indication of the perchlorate pollution status in China. The final determination of perchlorate was performed by ion chromatography-electrospray tandem mass spectrometry with negative mode. The concentration of perchlorate in sewage sludge, rice, bottled drinking water and milk was in the range of 0.56-379.9 microg/kg, 0.16-4.88 mug/kg, 0.037-2.013 microg/L and 0.30-9.1 microg/L, respectively. The results show that perchlorate has been widespread in China.

  5. Kinetics analysis of a salt-tolerant perchlorate-reducing bacterium: effects of sodium, magnesium, and nitrate.

    Science.gov (United States)

    Xiao, Yeyuan; Roberts, Deborah J

    2013-08-06

    Salt-tolerant perchlorate-reducing bacteria can be used to regenerate ion-exchange brines or resins exhausted with perchlorate. A salt-tolerant perchlorate-reducing Marinobacter vinifirmus strain P4B1 was recently purified. This study determined the effects of Na(+) and Mg(2+) concentrations on the perchlorate reduction rate of P4B1. The results showed that strain P4B1 could utilize perchlorate and grow in the presence of 1.8% to 10.2% NaCl. Lower NaCl concentrations allowed faster perchlorate reduction. The addition of Mg(2+) to the culture showed significant effects on perchlorate reduction when perchlorate was the sole electron acceptor. A molar Mg(2+)/Na(+) ratio of ∼0.11 optimized perchlorate degradation and cell growth. When perchlorate and nitrate were both present, nitrate reduction did not start significantly until perchlorate was below 100 mg/L. Tests with washed cell suspensions indicated that strain P4B1 had both perchlorate and nitrate reduction enzymes. When the culture was exposed to both perchlorate and nitrate, the nitrate reduction enzyme activity was low. The maximum specific substrate utilization rate (Vm) and the half saturation coefficient (KS) for P4B1 (30 g/L NaCl) determined in this study were 0.049 ± 0.003 mg ClO4(-)/mg VSS-h and 18 ± 4 mg ClO4(-)/L, respectively.

  6. Identification and Characterization of Natural Sources of Perchlorate

    Science.gov (United States)

    2017-01-01

    is possible that hydroponic studies may not fully reflect uptake processes in normal soil plant systems. Plant- mediated transformation of ClO4...al., 2011) suggest that plant- mediated transformation may not be common. Our results further indicate no measurable plant- mediated exchange of O...Int. J. Phytoremediat. 6 (1), 63-83. Nzengung, V. A.; Wang, C.; Harvey, G. 1999. Plant- mediated transformation of perchlorate into chloride

  7. Elimination of Perchlorate Oxidizers from Pyrotechnic Flare Compositions

    Science.gov (United States)

    2007-03-09

    ESTCP Project, No.ER-0221, ’ Edible Oil Barriers for Treatment of Perchlorate Contaminated Groundwater" included a cost analysis in their final report...expressed in candelas (cd), where the candela is defined as, 1cd = 1 lm sr-1.) 21) R. C. Bordern, C. E. Zawtocki, M. T. Lieberman, " Edible Oil Barriers...are in widespread use, chemical anion exchange resin systems and systems involving biodegradation pathways. Fortunately, a recently completed

  8. Perchlorate Contamination of Drinking Water: Regulatory Issues and Legislative Actions

    Science.gov (United States)

    2008-10-16

    contaminated. The FDA found perchlorate in roughly 90% of lettuce samples (average levels ranged from 11.9 ppb to 7.7 ppb for lettuces ), and in 101...and Adult Men and Women Living in the United States,” Centers for Disease Control and Prevention, in Environmental Health Perspectives, December 2006...the amounts typically observed in water supplies.5 However, a 2006 study by the Centers for Disease Control and Prevention (CDC) of a representative

  9. 4-(2-Azaniumylethylpiperazin-1-ium bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Reisi

    2011-09-01

    Full Text Available In the title compound, C6H17N32+·2ClO4−, the piperazine ring adopts a chair conformation with the ethylammonium fragment occupying an equatorial position. In the crystal, the dications and perchlorate anions are linked through N—H...O hydrogen bonding and weak C—H...O hydrogen bonding into a three-dimensional supramolecular network.

  10. Tailored Granular Activated Carbon Treatment of Perchlorate in Drinking Water

    Science.gov (United States)

    2010-10-01

    layers. The carbon layer surfaces are generally uncharged ( hydrophobic ), and they thus repel water and charged inorganic species such as perchlorate...Xu et al., 2002; Kiraly and Findenegg, 1998); and onto cellulose, clay, quartz, titanium dioxide, zeolites , soils and membranes (Baillarger et al...carbon is termed “exhausted” and no additional removal of the compound from the liquid phase is observed. As with other hydrophobic compounds, a

  11. Bis[2-(2-pyridylsulfanylethyl]ammonium perchlorate

    Directory of Open Access Journals (Sweden)

    Guo-Qing Wang

    2010-09-01

    Full Text Available The cation and anion of the title salt, C14H18N3S2+·ClO4−, lie on a twofold rotation axis. The cation is a W-shaped entity with the aromatic rings at the ends; the ammonium NH2+ group is a hydrogen-bond donor to the pyridyl N atoms. The perchlorate ion has one O atom disordered over two sites in a 0.50:0.50 ratio.

  12. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry for Isotopes of Scandium, Titanium, Vanadium, Chromium, Manganese, and Iron

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, K; Hoffman, R D; Dietrich, F S; Bauer, R; Mustafa, M

    2004-11-30

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Local systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of scandium, titanium, vanadium, chromium, manganese, and iron (21 {le} Z {le} 26, 20 {le} N {le} 32).

  13. A composite cathode based on scandium doped titanate with enhanced electrocatalytic activity towards direct carbon dioxide electrolysis.

    Science.gov (United States)

    Yang, Liming; Xie, Kui; Wu, Lan; Qin, Qingqing; Zhang, Jun; Zhang, Yong; Xie, Ting; Wu, Yucheng

    2014-10-21

    A composite cathode based on redox-stable La0.2Sr0.8TiO(3+δ) (LSTO) can perform direct carbon dioxide electrolysis; however, the insufficient electro-catalytic activity limits the electrode performances and current efficiencies. In this work, catalytically active scandium is doped into LSTO to enhance the electro-catalytic activity for CO2 electrolysis. The structures, electronic conductivities and ionic conductivities of La0.2Sr0.8Ti(1-x)Sc(x)O (LSTS(x)O) (x = 0, 0.05, 0.1, 0.15 and 0.2) are systematically studied and further correlated with electrode performances. The ionic conductivities of single-phase LSTS(x)O (x = 0, 0.05, 0.1 and 0.15) remarkably improve versus the scandium doping contents though the electrical conductivities gradually change in an adverse trend. Electrochemical measurements demonstrate promising electrode polarisation of LSTS(x)O electrodes and increasing scandium doping contents accordingly improve electrode performances. The Faradic efficiencies of carbon dioxide electrolysis are enhanced by 20% with LSTS0.15O in contrast to bare LSTO electrodes in a solid oxide electrolyser at 800 °C.

  14. Assessment of the feasibility of anaerobic composting for treatment of perchlorate - contaminated soils in a war zone

    National Research Council Canada - National Science Library

    Mohammad Amin; Majid Giahi; Marjan Mansourian

    2015-01-01

      Aims: The objectives of this study were to determine the perchlorate concentrations in surface soils and assess feasibility of anaerobic bioremediation in full-scale for perchlorate-contaminated soils in a war zone...

  15. Growth and Survival of Perchlorate-Reducing Bacteria in Media Containing Elevated Perchlorate Concentrations and UV-C Conditions

    Science.gov (United States)

    Bywaters, K. F.; Mckay, C. P.; Quinn, R. C.

    2017-01-01

    Introduction: The identification of perchlorate (ClO4(-)) on Mars has led to the possibility that complete redox couples are available for microbial metabolism in contemporary surface environments. Perchlorate-reducing bacteria (PRB) utilize ClO4(-) and chlorate (ClO3(-)) as terminal electron acceptors due to the high reduction potential. Additionally, ClO4(-) salts have been suggested as a possible source of brines on Mars and spectral evidence indicates that the hydration of ClO4(-) salts in the regolith of Martian is linked to the surface recurring slope lineae (RSL). For these reasons PRB may serve as analog organisms for possible life on Mars. However, there is very little information on the viability of PRB in aqueous environments that contain high levels of perchlorate Microorganisms on or near the surface of Mars, such as in the RSL, would potentially be exposed to high-salinity and high ultraviolet radiation environments. Under these extreme conditions, microorganisms must possess mechanisms for maintaining continued high genome fidelity. To assess possible microbial viability in contemporary Mars analog environments we are investigating the tolerance of two PRB strains in aqueous conditions under high UV-C conditions and high ClO4(-) concentrations.

  16. The Effects of Ammonium Perchlorate on Reproduction and Development of Amphibians

    Science.gov (United States)

    2008-01-01

    Mitigating Ammonium Perchlorate (AP) Exposure........................................................................18 Table 5-1. Funding History and...amphibian species were reared on perchlorate-laden food (e.g., hydroponically grown lettuce) and their growth and development monitored. Thyroid...metamorphosis is unclear. Leaf lettuce was grown in sand under green house conditions and nourished with a hydroponic nutrient medium (30% Hoagland’s solution

  17. The effects of sodium perchlorate on the liver of Molly Fish ( Poecilia ...

    African Journals Online (AJOL)

    Adult male molly fishes were reared up to ten days in control water or in water containing sodium perchlorate at concentrations of 1, 5, 25 and 125 ppm. Remarkable steatosis, fibrosis, hyperemia and necrosis were distinguished in parallel with increasing sodium perchlorate concentrations. The striking cellular damages ...

  18. Lab-on-a-Chip Sensor for Monitoring Perchlorate in Ground and Surface Water

    Science.gov (United States)

    2012-02-01

    uses zwitterionic surfactants was immobilized on either a conventional or membrane -based stationary phase (electrostatic ion chromatography) em...of these surfactants above the critical micelle concentration ( CMC ), micellar interactions slow the migration of perchlorate, separating the analyte...the critical micelle concentration ( CMC ), micelles of the surfactants can selectively interact with perchlorate, reducing its apparent mobility

  19. Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars.

    Science.gov (United States)

    Oren, Aharon; Elevi Bardavid, Rahel; Mana, Lily

    2014-01-01

    In view of the finding of perchlorate among the salts detected by the Phoenix Lander on Mars, we investigated the relationships of halophilic heterotrophic microorganisms (archaea of the family Halobacteriaceae and the bacterium Halomonas elongata) toward perchlorate. All strains tested grew well in NaCl-based media containing 0.4 M perchlorate, but at the highest perchlorate concentrations, tested cells were swollen or distorted. Some species (Haloferax mediterranei, Haloferax denitrificans, Haloferax gibbonsii, Haloarcula marismortui, Haloarcula vallismortis) could use perchlorate as an electron acceptor for anaerobic growth. Although perchlorate is highly oxidizing, its presence at a concentration of 0.2 M for up to 2 weeks did not negatively affect the ability of a yeast extract-based medium to support growth of the archaeon Halobacterium salinarum. These findings show that presence of perchlorate among the salts on Mars does not preclude the possibility of halophilic life. If indeed the liquid brines that may exist on Mars are inhabited by salt-requiring or salt-tolerant microorganisms similar to the halophiles on Earth, presence of perchlorate may even be stimulatory when it can serve as an electron acceptor for respiratory activity in the anaerobic Martian environment.

  20. Thyroid hormones and thyroid disease in relation to perchlorate dose and residence near a superfund site.

    Science.gov (United States)

    Gold, Ellen B; Blount, Benjamin C; O'Neill Rasor, Marianne; Lee, Jennifer S; Alwis, Udeni; Srivastav, Anup; Kim, Kyoungmi

    2013-07-01

    Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Residential blocks were randomly selected from areas: (1) with potential perchlorate exposure via drinking water; (2) with potential exposure to environmental contaminants; and (3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20-50 years during 1988-1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone and free thyroxine) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Residential location and current perchlorate dose were not associated with thyroid function or disease. No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped.

  1. Transport and degradation of perchlorate in deep vadose zone: implications from direct observations during bioremediation treatment

    Science.gov (United States)

    Dahan, Ofer; Katz, Idan; Avishai, Lior; Ronen, Zeev

    2017-08-01

    An in situ bioremediation experiment of a deep vadose zone ( ˜ 40 m) contaminated with a high concentration of perchlorate (> 25 000 mg L-1) was conducted through a full-scale field operation. Favourable environmental conditions for microbiological reduction of perchlorate were sought by infiltrating an electron donor-enriched water solution using drip irrigation underlying an airtight sealing liner. A vadose zone monitoring system (VMS) was used for real-time tracking of the percolation process, the penetration depth of dissolved organic carbon (DOC), and the variation in perchlorate concentration across the entire soil depth. The experimental conditions for each infiltration event were adjusted according to insight gained from data obtained by the VMS in previous stages. Continuous monitoring of the vadose zone indicated that in the top 13 m of the cross section, perchlorate concentration is dramatically reduced from thousands of milligrams per litre to near-detection limits with a concurrent increase in chloride concentration. Nevertheless, in the deeper parts of the vadose zone (sources due to their enhanced biodegradation in the upper soil layers. Nevertheless, the increased DOC concentration with concurrent reduction in perchlorate and increase in the chloride-to-perchlorate ratio in the top 13 m indicate partial degradation of perchlorate in this zone. There was no evidence of improved degradation conditions in the deeper parts where the initial concentrations of perchlorate were significantly higher.

  2. Perchlorate and chlorate reduction by the Crenarchaeon Aeropyrum pernix and two thermophilic Firmicutes.

    Science.gov (United States)

    Liebensteiner, Martin G; Pinkse, Martijn W H; Nijsse, Bart; Verhaert, Peter D E M; Tsesmetzis, Nicolas; Stams, Alfons J M; Lomans, Bart P

    2015-12-01

    This study reports the ability of one hyperthermophilic and two thermophilic microorganisms to grow anaerobically by the reduction of chlorate and perchlorate. Physiological, genomic and proteome analyses suggest that the Crenarchaeon Aeropyrum pernix reduces perchlorate with a periplasmic enzyme related to nitrate reductases, but that it lacks a functional chlorite-disproportionating enzyme (Cld) to complete the pathway. Aeropyrum pernix, previously described as a strictly aerobic microorganism, seems to rely on the chemical reactivity of reduced sulfur compounds with chlorite, a mechanism previously reported for perchlorate-reducing Archaeoglobus fulgidus. The chemical oxidation of thiosulfate (in excessive amounts present in the medium) and the reduction of chlorite result in the release of sulfate and chloride, which are the products of a biotic-abiotic perchlorate reduction pathway in Ae. pernix. The apparent absence of Cld in two other perchlorate-reducing microorganisms, Carboxydothermus hydrogenoformans and Moorella glycerini strain NMP, and their dependence on sulfide for perchlorate reduction is consistent with the observations made on Ar. fulgidus. Our findings suggest that microbial perchlorate reduction at high temperature differs notably from the physiology of perchlorate- and chlorate-reducing mesophiles and that it is characterized by the lack of a chlorite dismutase and is enabled by a combination of biotic and abiotic reactions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Occurrence of perchlorate in groundwater, paired farmland soil, lettuce, and rhizosphere soil from Chengdu, China.

    Science.gov (United States)

    Tang, Yulu; Zhong, Bifeng; Qu, Bing; Feng, Shujin; Ding, Sanglan; Su, Shijun; Li, Zhi; Gan, Zhiwei

    2017-05-24

    A total of 28 groundwater, paired farmland soil, lettuce, and its rhizosphere soil samples were collected from Chengdu, China to detect perchlorate levels and to evaluate the relationships of perchlorate concentrations among these matrices. The perchlorate concentrations in the groundwater, farmland soil, lettuce, and rhizosphere soil samples ranged from below detection limit to 60.2 μg L-1, from below detection limit to 249 μg kg-1 dry weight (dw), from 2.07 to 1010 μg kg-1 wet weight, and from below detection limit to 314 μg kg-1 dw, respectively. Significant correlation was found in the perchlorate levels among the farmland soil, lettuce, and rhizosphere soil, suggesting that they have common pollution sources, or perchlorate might transfer from farmland soil-rhizosphere soil-plant. However, there is no significant correlation between groundwater and the other three matrices, indicating that infiltration from perchlorate contaminated farmland soil was not the predominant source for groundwater pollution in Chengdu. The perchlorate concentrations in the farmland soil and lettuce samples were significantly higher than those in the rhizosphere soil, primarily due to uptake of perchlorate through the rhizosphere micro-environment by lettuce, or accelerated degradation by rhizospheric microorganisms, which contributed more needs further investigation.

  4. Bifunctional lanthanum phosphate substrates as novel adsorbents and biocatalyst supports for perchlorate removal

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Sasidharan [Materials Science and Technology Division (India); Prajeesh, Gangadharan Puthiya Veetil; Anupama, Vijaya Nadaraja [Process Engineering and Environmental Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019 (India); Krishnakumar, Bhaskaran [Process Engineering and Environmental Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019 (India); Academy of Scientific and Industrial Research (AcSIR) (India); Hareesh, Padinhattayil [Materials Science and Technology Division (India); Nair, Balagopal N. [R and D Centre, Noritake Co. Ltd., Aichi (Japan); Warrier, Krishna Gopakumar [Materials Science and Technology Division (India); Academy of Scientific and Industrial Research (AcSIR) (India); Hareesh, Unnikrishnan Nair Saraswathy, E-mail: hareesh@niist.res.in [Materials Science and Technology Division (India); Academy of Scientific and Industrial Research (AcSIR) (India)

    2014-06-30

    Graphical abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign thermal gelation process, performed the role of dual functional sorbent facilitating perchlorate adsorption and bioremediation through the growth of perchlorate reducing microbial colonies. - Highlights: • Lanthanum phosphate monoliths as efficient perchlorate adsorbents. • And also as substrates for biofilm (perchlorate reducing bacteria) growth. • Environmentally benign thermal gelation process for substrate fabrication. • 98% adsorption efficiency for perchlorate concentrations up to 100 μg/L. • The regenerated monoliths show nearly 100% reusability. - Abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign colloidal forming process employing methyl cellulose, are reported here as excellent adsorbents of perchlorate with >98% efficiency and with 100% reusability. Additionally, the effectiveness of such substrates as biocatalyst supports that facilitate biofilm formation of perchlorate reducing microbes (Serratia marcescens NIIST 5) is also demonstrated for the first time. The adsorption of perchlorate ions is attributed to the pore structure of lanthanum phosphate substrate and the microbial attachment is primarily ascribed to its intrinsic hydrophobic property. Lanthanum phosphate thus emerges as a dual functional material that possesses an integrated adsorption/bioremediation property for the effective removal of ClO{sub 4}{sup −} which is an increasingly important environmental contaminant.

  5. Nitrate and (per)chlorate reduction pathways in (per)chlorate-reducing bacteria

    NARCIS (Netherlands)

    Oosterkamp, M.J.; Mehboob, F.; Schraa, G.; Plugge, C.M.; Stams, A.J.M.

    2011-01-01

    The reduction of (per)chlorate and nitrate in (per)chlorate-reducing bacteria shows similarities and differences. (Per)chlorate reductase and nitrate reductase both belong to the type II DMSO family of enzymes and have a common bis(molybdopterin guanine dinucleotide)molybdenum cofactor. There are

  6. Quantification of genes and gene transcripts for microbial perchlorate reduction in fixed-bed bioreactors.

    Science.gov (United States)

    De Long, S K; Li, X; Bae, S; Brown, J C; Raskin, L; Kinney, K A; Kirisits, M J

    2012-03-01

    Optimization of full-scale, biological perchlorate treatment processes for drinking water would benefit from knowledge of the location and quantity of perchlorate-reducing bacteria (PRB) and expression of perchlorate-related genes in bioreactors. The aim of this study was to quantify perchlorate removal and perchlorate-related genes (pcrA and cld) and their transcripts in bioreactors and to determine whether these genes or transcripts could serve as useful biomarkers for perchlorate treatment processes. Quantitative PCR (qPCR) assays targeting pcrA and cld were applied to two pilot-scale, fixed-bed bioreactors treating perchlorate-contaminated groundwater. pcrA and cld genes per microgram of DNA were two- to threefold higher and three- to fourfold higher, respectively, in the bioreactor showing superior perchlorate-removal performance. In a laboratory-scale bioreactor, quantities of pcrA and cld genes and transcripts were compared under two distinct performance conditions (c.60 and 20% perchlorate removal) for a 5-min empty bed contact time. cld genes per microgram of DNA were approximately threefold higher and cld transcripts per microgram of RNA were approximately sixfold higher under the higher perchlorate-removal condition. No differences in pcrA genes or transcripts per microgram of DNA or RNA, respectively, were detected between the c.60 and 20% perchlorate-removal conditions, possibly because these assays did not accurately quantify pcrA genes and transcripts in the mixed culture present. Quantities of cld genes and transcripts per microgram of DNA and RNA, respectively, were found to be higher when perchlorate removal was higher. However, quantities of pcrA and cld genes or transcripts were not found to directly correlate with perchlorate-removal rates. To our knowledge, this study represents the first application of qPCR assays to quantify perchlorate-related genes and transcripts in continuous-flow bioreactors. The results indicate that cld gene and

  7. Adsorption of hydrogen in Scandium/Titanium decorated nitrogen doped carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mananghaya, Michael, E-mail: mikemananghaya@gmail.com [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines); DOST-ASTHRDP, PCIEERD, Gen. Santos Ave., Bicutan, Taguig City 1631 (Philippines); Belo, Lawrence Phoa; Beltran, Arnel [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines)

    2016-09-01

    Nitrogen doped Carbon Nanotube with divacancy (4ND-CN{sub x}NT) that is decorated with Scandium and Titanium as potential hydrogen storage medium using the pseudo potential density functional method was investigated. Highly localized states near the Fermi level, which are derived from the nitrogen defects, contribute to strong Sc and Ti bindings, which prevent metal aggregation and improve the material stability. A detailed Comparison of the Hydrogen adsorption capability with promising system-weight efficiency of Sc over Ti was elucidated when functionalized with 4ND-CN{sub x}NT. Finally, the (Sc/4ND){sub 10}-CN{sub x}CNT composite material has a thermodynamically favorable adsorption and consecutive adsorption energy for ideal reversible adsorption and desorption of hydrogen at room temperature such that it can hold at least 5.8 wt% hydrogen molecules at the LDA and GGA level. - Highlights: • Carbon Nanotube with divacancy (4ND-CN{sub x}NT) decorated with Sc and Ti. • Nitrogen defects, contribute to strong Sc and Ti bindings. • H{sub 2} and (Sc/4ND){sub 10}-CN{sub x}CNT has a favorable adsorption. • 5.8 wt% adsorption at the LDA and GGA level.

  8. Urinary monitoring of exposure to yttrium, scandium, and europium in male Wistar rats.

    Science.gov (United States)

    Kitamura, Yasuhiro; Usuda, Kan; Shimizu, Hiroyasu; Fujimoto, Keiichi; Kono, Rei; Fujita, Aiko; Kono, Koichi

    2012-12-01

    On the assumption that rare earth elements (REEs) are nontoxic, they are being utilized as replacements of toxic heavy metals in novel technological applications. However, REEs are not entirely innocuous, and their impact on health is still uncertain. In the past decade, our laboratory has studied the urinary excretion of REEs in male Wistar rats given chlorides of europium, scandium, and yttrium solutions by one-shot intraperitoneal injection or oral dose. The present paper describes three experiments for the suitability and appropriateness of a method to use urine for biological monitoring of exposure to these REEs. The concentrations of REEs were determined in cumulative urine samples taken at 0-24 h by inductively coupled plasma atomic emission spectroscopy, showing that the urinary excretion of REEs is <2 %. Rare earth elements form colloidal conjugates in the bloodstream, which make high REEs accumulation in the reticuloendothelial system and glomeruli and low urinary excretion. The high sensitivity of inductively coupled plasma-argon emission spectrometry analytical methods, with detection limits of <2 μg/L, makes urine a comprehensive assessment tool that reflects REE exposure. The analytical method and animal experimental model described in this study will be of great importance and encourage further discussion for future studies.

  9. 2,6-Diethyl­anilinium perchlorate

    Science.gov (United States)

    Smirani Sta, Wajda; Rzaigui, Mohamed; S. Al-Deyab, Salem

    2010-01-01

    The asymmetric unit of the title mol­ecular salt, C10H16N+·ClO4 −, contains two cations and two anions. The atoms of one of the ethyl side chains of one of the cations are disordered over two sets of sites in a 0.531 (13):0.469 (13) ratio. In the crystal, the components are linked by N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds and weaker C—H⋯O inter­actions, such that the organic cations alternate with the perchlorate anions, forming ribbons in the a-axis direction. PMID:21580372

  10. Edible Oil Barriers for Treatment of Perchlorate Contaminated Groundwater

    Science.gov (United States)

    2006-02-16

    perchlorate is relatively recent. Work performed in soil at Longhorn Army Ammunition Plant in Texas identified chicken manure , cow manure , and...approaches have included pump-and-treat with air stripping and air sparging, both of which rely on physical dissociation of the contaminants from...270,290 gallons 1,023,276 L Section D: Electron Acceptors Dissolved Oxygen (DO) 0 to 8 5.78 32.0 4 7.94 745.185242 Nitrate Nitrogen (NO3 - - N) 1 to 10

  11. Particle size distribution and perchlorate levels in settled dust from urban roads, parks, and roofs in Chengdu, China.

    Science.gov (United States)

    Li, Yiwen; Shen, Yang; Pi, Lu; Hu, Wenli; Chen, Mengqin; Luo, Yan; Li, Zhi; Su, Shijun; Ding, Sanglan; Gan, Zhiwei

    2016-01-01

    A total of 27 settled dust samples were collected from urban roads, parks, and roofs in Chengdu, China to investigate particle size distribution and perchlorate levels in different size fractions. Briefly, fine particle size fractions (parks, respectively. Perchlorate was detected in all of the size-fractionated dust samples, with concentrations ranging from 73.0 to 6160 ng g(-1), and the median perchlorate levels increased with decreasing particle size. The perchlorate level in the finest fraction (wind erosion or traffic emission, and this could act as an important perchlorate pollution source for the indoor environment, and merits further study.

  12. Bacterial growth tolerance to concentrations of chlorate and perchlorate salts relevant to Mars

    Science.gov (United States)

    Al Soudi, Amer F.; Farhat, Omar; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.

    2017-07-01

    The Phoenix lander at Mars polar cap found appreciable levels of (per)chlorate salts, a mixture of perchlorate and chlorate salts of Ca, Fe, Mg and Na at levels of ~0.6% in regolith. These salts are highly hygroscopic and can form saturated brines through deliquescence, likely producing aqueous solutions with very low freezing points on Mars. To support planetary protection efforts, we have measured bacterial growth tolerance to (per)chlorate salts. Existing bacterial isolates from the Great Salt Plains of Oklahoma (NaCl-rich) and Hot Lake in Washington (MgSO4-rich) were tested in high concentrations of Mg, K and Na salts of chlorate and perchlorate. Strong growth was observed with nearly all of these salinotolerant isolates at 1% (~0.1 M) (per)chlorate salts, similar to concentrations observed in bulk soils on Mars. Growth in perchlorate salts was observed at concentrations of at least 10% (~1.0 M). Greater tolerance was observed for chlorate salts, where growth was observed to 2.75 M (>25%). Tolerance to K salts was greatest, followed by Mg salts and then Na salts. Tolerances varied among isolates, even among those within the same phylogenetic clade. Tolerant bacteria included genera that also are found in spacecraft assembly facilities. Substantial microbial tolerance to (per)chlorate salts is a concern for planetary protection since tolerant microbes contaminating spacecraft would have a greater chance for survival and proliferation, despite the harsh chemical conditions found near the surface of Mars.

  13. The relationship between perchlorate in drinking water and cord blood thyroid hormones: First experience from Iran

    Directory of Open Access Journals (Sweden)

    Ashraf Javidi

    2015-01-01

    Full Text Available Background: Considering the controversial information regarding the effects of perchlorate on thyroid function of high risk population as neonates, and given the high prevalence rate of thyroid disorders specially congenital hypothyroidism in our region, this study aims to investigate for the first time in Iran, the relationship between drinking groundwater perchlorate and cord blood thyroid hormones level in an industrial region. Methods: In this cross-sectional study, drinking groundwater perchlorate level of rural areas of Zarinshahr, Isfahan was measured. Simultaneously, cord blood level of thyroid hormones of neonates born in the studied region was measured. Thyroid function test of neonates in regions with low and high perchlorate level were compared. Results: In this study, 25 tap water samples were obtained for perchlorate measurement. Level of cord blood thyroid stimulating hormone (TSH, T4 and T3 of 25 neonates were measured. Mean (standard deviation of perchlorate, TSH, T4 and T3 was 3.59 (5.10 μg/l, 7.81 (4.14 mIU/m, 6.06 (0.85 mg/dl, and 63.46 (17.53 mg/dl, respectively. Mean levels of thyroid function tests were not different in low ( 0.05. Conclusions: Perchlorate did not appear to be related to thyroid function of neonates in the studied industrial region. It seems that iodine status of the regions, as well as other environmental contaminants and genetic background, could impact on its relation with thyroid function of neonates.

  14. A review of perchlorate (ClO4-) occurrence in fruits and vegetables.

    Science.gov (United States)

    Calderón, R; Godoy, F; Escudey, M; Palma, P

    2017-02-01

    Since the 1990s, a large number of studies around the world have reported the presence of perchlorate in different types of environmental matrices. In view of their inherent characteristics, such as high solubility, mobility, persistence, and low affinity for the surface of soil, perchlorates are mobilized through the water-soil system and accumulate in edible plant species of high human consumption. However, the ingestion of food products containing perchlorate represents a potential health risk to people due to their adverse effects on thyroid, hormone, and neuronal development, mainly in infants and fetuses. At present, research has been centered on determining sources, fates, and remediation methods and not on its real extension in vegetables under farming conditions. This review presents a comprehensive overview and update of the frequent detection of perchlorate in fruits and vegetables produced and marketed around the world. Additionally, the impact of fertilizer on the potential addition of perchlorate to soil and its mobility in the water-soil-plant system is discussed. This review is organized into the following sections: sources of perchlorate, mobility in the water-soil system, presence in fruits and vegetables in different countries, international regulations, and toxicological studies. Finally, recommendations for future studies concerning perchlorate in fruits and vegetables are presented.

  15. Perchlorate Exposure Reduces Primordial Germ Cell Number in Female Threespine Stickleback.

    Science.gov (United States)

    Petersen, Ann M; Earp, Nathanial C; Redmond, Mandy E; Postlethwait, John H; von Hippel, Frank A; Buck, C Loren; Cresko, William A

    2016-01-01

    Perchlorate is a common aquatic contaminant that has long been known to affect thyroid function in vertebrates, including humans. More recently perchlorate has been shown to affect primordial sexual differentiation in the aquatic model fishes zebrafish and threespine stickleback, but the mechanism has been unclear. Stickleback exposed to perchlorate from fertilization have increased androgen levels in the embryo and disrupted reproductive morphologies as adults, suggesting that perchlorate could disrupt the earliest stages of primordial sexual differentiation when primordial germ cells (PGCs) begin to form the gonad. Female stickleback have three to four times the number of PGCs as males during the first weeks of development. We hypothesized that perchlorate exposure affects primordial sexual differentiation by reducing the number of germ cells in the gonad during an important window of stickleback sex determination at 14-18 days post fertilization (dpf). We tested this hypothesis by quantifying the number of PGCs at 16 dpf in control and 100 mg/L perchlorate-treated male and female stickleback. Perchlorate exposure from the time of fertilization resulted in significantly reduced PGC number only in genotypic females, suggesting that the masculinizing effects of perchlorate observed in adult stickleback may result from early changes to the number of PGCs at a time critical for sex determination. To our knowledge, this is the first evidence of a connection between an endocrine disruptor and reduction in PGC number prior to the first meiosis during sex determination. These findings suggest that a mode of action of perchlorate on adult reproductive phenotypes in vertebrates, including humans, such as altered fecundity and sex reversal or intersex gonads, may stem from early changes to germ cell development.

  16. Perchlorate Exposure Reduces Primordial Germ Cell Number in Female Threespine Stickleback.

    Directory of Open Access Journals (Sweden)

    Ann M Petersen

    Full Text Available Perchlorate is a common aquatic contaminant that has long been known to affect thyroid function in vertebrates, including humans. More recently perchlorate has been shown to affect primordial sexual differentiation in the aquatic model fishes zebrafish and threespine stickleback, but the mechanism has been unclear. Stickleback exposed to perchlorate from fertilization have increased androgen levels in the embryo and disrupted reproductive morphologies as adults, suggesting that perchlorate could disrupt the earliest stages of primordial sexual differentiation when primordial germ cells (PGCs begin to form the gonad. Female stickleback have three to four times the number of PGCs as males during the first weeks of development. We hypothesized that perchlorate exposure affects primordial sexual differentiation by reducing the number of germ cells in the gonad during an important window of stickleback sex determination at 14-18 days post fertilization (dpf. We tested this hypothesis by quantifying the number of PGCs at 16 dpf in control and 100 mg/L perchlorate-treated male and female stickleback. Perchlorate exposure from the time of fertilization resulted in significantly reduced PGC number only in genotypic females, suggesting that the masculinizing effects of perchlorate observed in adult stickleback may result from early changes to the number of PGCs at a time critical for sex determination. To our knowledge, this is the first evidence of a connection between an endocrine disruptor and reduction in PGC number prior to the first meiosis during sex determination. These findings suggest that a mode of action of perchlorate on adult reproductive phenotypes in vertebrates, including humans, such as altered fecundity and sex reversal or intersex gonads, may stem from early changes to germ cell development.

  17. Transport and degradation of perchlorate in deep vadose zone: implications from direct observations during bioremediation treatment

    Directory of Open Access Journals (Sweden)

    O. Dahan

    2017-08-01

    Full Text Available An in situ bioremediation experiment of a deep vadose zone ( ∼  40 m contaminated with a high concentration of perchlorate (> 25 000 mg L−1 was conducted through a full-scale field operation. Favourable environmental conditions for microbiological reduction of perchlorate were sought by infiltrating an electron donor-enriched water solution using drip irrigation underlying an airtight sealing liner. A vadose zone monitoring system (VMS was used for real-time tracking of the percolation process, the penetration depth of dissolved organic carbon (DOC, and the variation in perchlorate concentration across the entire soil depth. The experimental conditions for each infiltration event were adjusted according to insight gained from data obtained by the VMS in previous stages. Continuous monitoring of the vadose zone indicated that in the top 13 m of the cross section, perchlorate concentration is dramatically reduced from thousands of milligrams per litre to near-detection limits with a concurrent increase in chloride concentration. Nevertheless, in the deeper parts of the vadose zone (< 17 m, perchlorate concentration increased, suggesting its mobilization down through the cross section. Breakthrough of DOC and bromide at different depths across the unsaturated zone showed limited migration capacity of biologically consumable carbon and energy sources due to their enhanced biodegradation in the upper soil layers. Nevertheless, the increased DOC concentration with concurrent reduction in perchlorate and increase in the chloride-to-perchlorate ratio in the top 13 m indicate partial degradation of perchlorate in this zone. There was no evidence of improved degradation conditions in the deeper parts where the initial concentrations of perchlorate were significantly higher.

  18. Perchlorate as a Ground-Water Tracer Along the Lower Colorado River

    Science.gov (United States)

    Justet, L.; Lico, M. S.

    2008-12-01

    Anthropogenic perchlorate was first observed in the lower Colorado River (NV and AZ) in 1997. The perchlorate source was traced upstream from Hoover Dam and Lake Mead to Las Vegas Wash. Perchlorate migrated through the local surface- and ground-water systems to the Wash from nearby manufacturing facilities in Henderson, NV, which had been operating since the 1940s. The Nevada Division of Environmental Protection (NDEP) began monitoring perchlorate in the lower Colorado River at Willow Beach, located about 18 km south of the Dam, in 1997. A 3 μg/L reduction was observed at Willow Beach in 2003-2004, coincident with remediation at the Henderson site in 1999-2004. This observed decrease indicates that the effects of remediation rapidly propagated through the surface-water system below the Dam. In July 2008 water samples were collected and analyzed for perchlorate from eight springs along the lower Colorado River below Hoover Dam, from a discharge tunnel in the country rock at Hoover Dam, and from Lake Mead (above and below the thermocline). Lake Mead water collected above the thermocline east of Sentinel Island contained 3.9 μg/L perchlorate, while water below the thermocline contained 1.8 μg/L. Perchlorate concentrations were lower than the 2 to 4 μg/L quantitation limit for the six springs located more than 2 km south of the Dam. Samples from Pupfish Springs, about 0.9 km south of the Dam, contained 6.4-6.8 μg/L perchlorate. Water collected from the discharge tunnel in the Dam contained 8.2 μg/L perchlorate. Perchlorate concentrations observed at Pupfish Springs and the discharge tunnel in the Dam in 2008 are similar to those reported downstream at Willow Beach prior to 2003-2004 by NDEP indicating that the ground water travel time from the Dam to Pupfish Springs is between 4 and 70 years and the maximum flow velocities are between about 13-200 m/y. These rapid velocity estimates suggest that faults and fractures in the area are an important control on

  19. Perchlorate on Mars: a chemical hazard and a resource for humans

    Science.gov (United States)

    Davila, Alfonso F.; Willson, David; Coates, John D.; McKay, Christopher P.

    2013-10-01

    Perchlorate (ClO4 -) is widespread in Martian soils at concentrations between 0.5 and 1%. At such concentrations, perchlorate could be an important source of oxygen, but it could also become a critical chemical hazard to astronauts. In this paper, we review the dual implications of ClO4 - on Mars, and propose a biochemical approach for removal of perchlorate from Martian soil that would be energetically cheap, environmentally friendly and could be used to obtain oxygen both for human consumption and to fuel surface operations.

  20. Treatment of Perchlorate Contaminated Industrial Wastewater Commingled with High Explosives During Wide Concentration Variations

    National Research Council Canada - National Science Library

    Maloney, Stephen W; Atikovic, Emina; Suidan, Makram T

    2008-01-01

    .... It has recently been introduced in new munitions formulations. An Air Force formulation pairs perchlorate with RDX, and numerous Army formulations use it in conjunction with RDX as well as other new energetic chemicals...

  1. Perchlorate: Health Effects and Technologies for Its Removal from Water Resources

    Directory of Open Access Journals (Sweden)

    Thiruvenkatachari Viraraghavan

    2009-04-01

    Full Text Available Perchlorate has been found in drinking water and surface waters in the United States and Canada. It is primarily associated with release from defense and military operations. Natural sources include certain fertilizers and potash ores. Although it is a strong oxidant, perchlorate is very persistent in the environment. At high concentrations perchlorate can affect the thyroid gland by inhibiting the uptake of iodine. A maximum contaminant level has not been set, while a guidance value of 6 ppb has been suggested by Health Canada. Perchlorate is measured in environmental samples primarily by ion chromatography. It can be removed from water by anion exchange or membrane filtration. Biological and chemical processes are also effective in removing this species from water.

  2. ANALYSIS OF HYDROPONIC FERTILIZER MATRIXES FOR PERCHLORATE: COMPARISON OF ANALYTICAL TECHNIQUES

    Science.gov (United States)

    Seven retail hydroponic nitrate fertilizer products, two liquid and five solid, were comparatively analyzed for the perchlorate anion (ClO4-) by ion chromatography (IC) with suppressed conductivity detection, complexation electrospray ionization mass spectrometry (cESI-MS), norma...

  3. Quantification of genes and gene transcripts for microbial perchlorate reduction in fixed‐bed bioreactors

    National Research Council Canada - National Science Library

    De Long, S.K; Li, X; Bae, S; Brown, J.C; Raskin, L; Kinney, K.A; Kirisits, M.J

    2012-01-01

    Aims:  Optimization of full‐scale, biological perchlorate treatment processes for drinking water would benefit from knowledge of the location and quantity of perchlorate‐reducing bacteria (PRB...

  4. Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud.

    Science.gov (United States)

    Zhu, Xiaobo; Li, Wang; Tang, Sen; Zeng, Majian; Bai, Pengyuan; Chen, Lunjian

    2017-05-01

    D201 resin and P507 extractant diluted with sulfonated kerosene were used to respectively separate vanadium and scandium, and impurity ions from hydrochloric acid leaching solution of red mud. More than 99% of vanadium was selectively adsorbed from the hydrochloric acid leaching solution under the conditions of pH value of 1.8, volume ratio of leaching solution to resin of 10, and flow rate of 3.33 mL/min. Maximum extraction and separation of scandium was observed from the acid leaching solution at an aqueous pH value of 0.2. More than 99% of scandium can be selectively extracted using 15% P507, 5% TBP at the aqueous solution/organic phase (A/O) ratio of 10:1 for 6 min. The loaded organic phase was washed with 0.3 mol/L sulfuric acid, wherein most impurities were removed. After the process of desorption or stripping, precipitation, and roasting, high-purity V2O5 and Sc2O3 were obtained. Finally, a conceptual flow sheet was established to separate and recover vanadium and scandium from red mud hydrochloric acid leaching solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Validation data for the determination of perchlorate in water using ion chromatography with suppressed conductivity detection.

    Science.gov (United States)

    Seiler, Maike A; Jensen, Detlef; Neist, Udo; Deister, Ursula K; Schmitz, Franz

    2016-01-01

    Perchlorate salts are relatively stable, soluble in water, and migrate into groundwater sources. Groundwater is an essential source for drinking water suppliers. Perchlorate bears health risks as it is identified to impair normal thyroid function by interfering with iodine uptake by the thyroid gland. The development of a sensitive analytical method for the determination of perchlorate is therefore of the highest interest or public health. Ion chromatography is a sensitive method suitable for perchlorate determinations. This manuscript describes the validation of an ion chromatographic method. Perchlorate is determined by ion chromatography (IC) with conductivity detection after suppression (CD) applying isocratic elution. In this study, the suitability of IC-CD was tested for synthetic samples, selected environmental water, drinking water, and swimming pool water in order to evaluate potential matrix effects on the perchlorate signal even after sample preparation. A sample injection volume of 750 μL was applied to the selected 2-mm-IC column. In untreated samples, the perchlorate peak can be interfered by neighbouring signals from matrix ions like chloride, nitrate, carbonate, and sulphate. Depending on the concentration of the matrix ions, the perchlorate peak can show asymmetric shape in particular when the perchlorate concentration is low. Recovery is reduced with increasing matrix ion concentrations. Dedicated matrix elimination was applied to minimize such effects. A reporting limit of 1.5 μg/L perchlorate and an expanded measurement uncertainty of 13.2 % were achieved. The extended method validation proves the applicability of IC based on the EPA 314.0 method for the determination of trace amounts of perchlorate in water samples of different origin. The results support the development of a respective international standard pursued by ISO. The approach evidenced its working robustness and ease of use in terms of eluent preparation, chromatographic

  6. Luminescent Properties of Oxazine 170 Perchlorate Doped PMMA Fiber

    Directory of Open Access Journals (Sweden)

    Piotr Miluski

    2017-04-01

    Full Text Available The article presents fabrication and luminescent properties of poly(methyl methacrylate (PMMA fiber doped by Oxazine 170 perchlorate. The bright fluorescence of polymeric fiber (at molar fluorescent organic dye concentration 4.3 × 10−5 was characterized in terms of spectrum and signal attenuation vs. the fiber length. The significant changes in fluorescence spectrum (λmax red shift average slope 4.6 nm/cm and Full Width at Half Maximum (FWHM increasing slope 6.7 nm/cm have been noticed for the length of the fiber (0.02–0.08 m which corresponds to a high overlapping region of absorption and emission spectra of used dye. The red shift of λmax (c.a. 80 nm was presented in fabricated polymeric fiber at distance 0.85 m. The obtained characteristics can be used for luminescent properties optimization of fluorescent organic-dye-doped PMMA fiber.

  7. Perchlorate in dust fall and indoor dust in Malta: An effect of fireworks.

    Science.gov (United States)

    Vella, Alfred J; Chircop, Cynthia; Micallef, Tamara; Pace, Colette

    2015-07-15

    We report on the presence of perchlorate in the settleable dust of Malta, a small central Mediterranean island. Both dust fall collected directly as it precipitated from atmosphere over a period of one month and deposited indoor dust from domestic residences were studied. Perchlorate was determined by ion chromatography of water extracts of the collected dusts. Dust fall was collected from 43 towns during 2011 to 2013 and indoor dust was sampled from homes in the same localities. Perchlorate was detected in 108 of 153 samples of dust fall (71%) and in 28 of 37 indoor dust samples (76%). Detectable perchlorate in dust fall ranged from 0.52μgg(-1) to 561μgg(-1) with a median value of 6.2μgg(-1); in indoor dust, levels were from 0.79μgg(-1) to 53μgg(-1) with a median value of 7.8μgg(-1), the highest recorded anywhere to date. Statistical analysis suggested that there was no significant difference in perchlorate content of indoor dust and dust fall. Perchlorate levels in dust fall escalate during the summer in response to numerous religious feasts celebrated with fireworks and perchlorate persists at low μgg(-1) concentrations for several months beyond the summer festive period. In Malta, perchlorate derives exclusively from KClO4, imported for fireworks manufacture. Its residue in dust presents an exposure risk to the population, especially via ingestion by hand to mouth transfer. Our results suggest that wherever intensive burning of fireworks takes place, the environmental impact may be much longer lived than realised, mainly due to re-suspension and deposition of contaminated settled dust in the urban environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. On the stability of perchlorate ions against reductive attacks in electrochemical systems and in the environment

    Directory of Open Access Journals (Sweden)

    GYŐZŐ G. LÁNG

    2011-08-01

    Full Text Available The problems related to the electrochemical/electrocatalytic stability of perchlorate ions are reviewed in the light of recent experimental results. The electrocatalytic, catalytic, and electrochemical reduction processes are presented and the links between them are outlined. Some possible mechanisms of the complicated reduction processes are discussed. Various methods for the detection of reduction process are presented, e.g. voltammetry, impedance spectroscopy, and radiotracer methods. Environmental aspects and some methods for perchlorate removal and wastewater treatment are briefly summarized.

  9. Thyroid dyshormonogenesis detected through a modified perchlorate discharge test using a gamma-camera.

    Science.gov (United States)

    Khan, Sami U; Khan, Aakif U; Khan, Ayub; Khan, Kamran; Ullah, Hameed

    2009-07-01

    To find an easy tool to detect dyshormonogenesis. In this study, the standard perchlorate discharge test was modified by using a gamma-camera instead of a gamma-probe to detect this rare abnormality. By using this technique two cases of dyshormonogenesis were identified. The gamma-camera-based perchlorate discharge test is an easy, reliable, convenient, and feasible procedure where thyroid uptake probe is not available.

  10. The effects of sodium perchlorate on the liver of Molly Fish (Poecilia ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... potassium, 0.030 ± 0.008 mg/L for aluminium, 0.08 ± 0.055 mg/L for iron, and 6 ± 1 mg/L for nitrate. Sodium perchlorate 1-hydrate (Panreac Quimica SA-PA 134387,. CAS Number: 7791-07-3; Eksper Ltd. İzmir, Turkey) was used as the source of perchlorate and was added directly to system water.

  11. Uptake and Transformation of the Propellants 2,4-DNT, Perchlorate and Nitroglycerin by Grasses

    Science.gov (United States)

    2006-07-31

    Uptake of perchlorate was analyzed in terrestrial plants like cucumber (Cucunis sativus L.), lettuce (Lactuca sativa L.) and soybean (Glycine max...accumulate larger amounts of perchlorate when compared to cucumber and soybean (Yu 18 et al., 2004).The rate of uptake was dependent on the level of...explosives." Wat. Res. 35 (2001) 2101 - 2111. Rosser S.J., Christopher E. French , Bruce N.C. "Special symposium: Phytoremediation engineering plants for

  12. Field Demonstration of a Novel Biotreatment Process for Perchlorate Reduction in Groundwater

    Science.gov (United States)

    2010-12-01

    Variable due to pretreatment 0-0.05 mg L-1 Bacteria ND Coliforms , fecal coliforms , and E. coli in the reactor effluent were below the detection...DESCRIPTION The new treatment relies on autotrophic perchlorate reducing bacteria immobilized on zero valent iron (ZVI). As ZVI corrodes in water, hydrogen...is released from the reduction of water, which is then used by perchlorate-reducing bacteria as a source of electrons. Extensive research in the

  13. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    Science.gov (United States)

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  14. Effect of Hydration State of Martian Perchlorate Salts on Their Decomposition Temperatures During Thermal Extraction

    Science.gov (United States)

    Royle, Samuel H.; Montgomery, Wren; Kounaves, Samuel P.; Sephton, Mark A.

    2017-12-01

    Three Mars missions have analyzed the composition of surface samples using thermal extraction techniques. The temperatures of decomposition have been used as diagnostic information for the materials present. One compound of great current interest is perchlorate, a relatively recently discovered component of Mars' surface geochemistry that leads to deleterious effects on organic matter during thermal extraction. Knowledge of the thermal decomposition behavior of perchlorate salts is essential for mineral identification and possible avoidance of confounding interactions with organic matter. We have performed a series of experiments which reveal that the hydration state of magnesium perchlorate has a significant effect on decomposition temperature, with differing temperature releases of oxygen corresponding to different perchlorate hydration states (peak of O2 release shifts from 500 to 600°C as the proportion of the tetrahydrate form in the sample increases). Changes in crystallinity/crystal size may also have a secondary effect on the temperature of decomposition, and although these surface effects appear to be minor for our samples, further investigation may be warranted. A less than full appreciation of the hydration state of perchlorate salts during thermal extraction analyses could lead to misidentification of the number and the nature of perchlorate phases present.

  15. High-nitrogen-based pyrotechnics: perchlorate-free red- and green-light illuminants based on 5-aminotetrazole.

    Science.gov (United States)

    Sabatini, Jesse J; Moretti, Jared D

    2013-09-16

    Prototype testing of perchlorate-free hand-held signal illuminants for the US Army's M126 A1 red-star and M195 green-star parachute illuminants are described. Although previous perchlorate-free variants for these items have been developed based on high-nitrogen compounds that are not readily available, the new formulations consist of anhydrous 5-aminotetrazole as the suitable perchlorate replacement. Compared to the perchlorate-containing control, the disclosed illuminants exhibited excellent stabilities toward various ignition stimuli and had excellent pyrotechnic performance. The illuminants are important from both military and civil fireworks perspectives, as the perchlorate-free nature of the illuminants adequately address environmental concerns associated with perchlorate-containing red- and green-light-emitting illuminants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. PERCHLORATE: Occurrence is Widespread but at Varying Levels; Federal Agencies Have Taken Some Actions to Respond to and Lessen Releases

    Science.gov (United States)

    2010-08-01

    likely than others to contain perchlorate. For example, a 2009 study by researchers at the Centers for Disease Control and Prevention found perchlorate...Colorado River region reported perchlorate in milk and various fruits and vegetables, including lettuce , but researchers concluded that few...for Disease Control and Prevention, and academic researchers. We also interviewed officials from FDA, the U.S. Department of Agriculture, and EPA

  17. Urinary Perchlorate and Thyroid Hormone Levels in Adolescent and Adult Men and Women Living in the United States

    OpenAIRE

    Blount, Benjamin C.; Pirkle, James L; Osterloh, John D.; Valentin-Blasini, Liza; Caldwell, Kathleen L.

    2006-01-01

    Background Perchlorate is commonly found in the environment and known to inhibit thyroid function at high doses. Assessing the potential effect of low-level exposure to perchlorate on thyroid function is an area of ongoing research. Objectives We evaluated the potential relationship between urinary levels of perchlorate and serum levels of thyroid stimulating hormone (TSH) and total thyroxine (T4) in 2,299 men and women, ≥ 12 years of age, participating in the National Health and Nutrition Ex...

  18. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  19. High-nitrogen-based pyrotechnics: development of perchlorate-free green-light illuminants for military and civilian applications.

    Science.gov (United States)

    Sabatini, Jesse J; Raab, James M; Hann, Ronald K; Damavarapu, Reddy; Klapötke, Thomas M

    2012-06-01

    The development of perchlorate-free hand-held signal illuminants for the US Army's M195 green star parachute is described. Compared with the perchlorate-containing control, the optimized perchlorate-free illuminants were less sensitive toward various ignition stimuli while offering comparable burn times and visible-light outputs. The results were also important from the perspective of civilian fireworks because the development of perchlorate-free illuminants remains an important objective of the commercial fireworks industry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Concurrent microbial reduction of high concentrations of nitrate and perchlorate in an ion exchange membrane bioreactor.

    Science.gov (United States)

    Fox, Shalom; Bruner, Tali; Oren, Yoram; Gilron, Jack; Ronen, Zeev

    2016-09-01

    We investigated effective simultaneous removal of high loads of nitrate and perchlorate from synthetic groundwater using an ion exchange membrane bioreactor (IEMB). The aim of this research was to characterize both transport aspects and biodegradation mechanisms involved in the treatment process of high loads of the two anions. Biodegradation process was proven to be efficient with over 99% efficiency of both perchlorate and nitrate, regardless of their load. The maximum biodegradation rates were 18.3 (mmol m(-2)  h(-1) ) and 5.5 (mmol m(-2)  h(-1) ) for nitrate and perchlorate, respectively. The presence of a biofilm on the bio-side of the membrane only slightly increased the nitrate and perchlorate transmembrane flux as compared to the measured flux during a Donnan dialysis experiment where there is no biodegradation of perchlorate and nitrate in the bio-compartment. The nitrate flux in presence of a biofilm was 18.3 (±1.9) (mmole m(-2)  h(-1) ), while without the biofilm, the flux was 16.9 (±1.5) (mmole m(-2)  h(-1) ) for the same feed inlet nitrate concentration of 4 mM. The perchlorate transmembrane flux increased similarly by an average of 5%. Samples of membrane biofilm and suspended bacteria from the bio-reactor were analyzed for diversity and abundance of the perchlorate and nitrate reducing bacteria. Klebsiella oxytoca, known as a glycerol fermenter, accounted for 70% of the suspended bacteria. In contrast, perchlorate and nitrate reducing bacteria predominated in the biofilm present on the membrane. These results are consistent with our proposed two stage biodegradation mechanism where glycerol is first fermented in the suspended phase of the bio-reactor and the fermentation products drive perchlorate and nitrate bio-reduction in the biofilm attached to the membrane. These results suggest that the niche exclusion of microbial populations in between the reactor and membrane is controlled by the fluxes of the electron donors and

  1. Effect of fireworks display on perchlorate in air aerosols during the Spring Festival

    Science.gov (United States)

    Shi, Yali; Zhang, Ning; Gao, Jianmin; Li, Xin; Cai, Yaqi

    2011-02-01

    Perchlorate is regarded as a new emerging persistent inorganic environmental contaminant. It can result in important neurodevelopmental deficits and goiter in infants and children because of its inhibition of iodine uptake into the thyroid tissue. Furthermore, its presence in the human body can cause improper regulation of metabolism for adults. It is often used as ingredient in the production of fireworks. So fireworks display may influence the perchlorate levels in atmospheric particulate matter (PM). In this paper perchlorate was determined in air aerosol samples (Inhalable particulate matter (PM10) and larger particulate matter (PM10-100)) collected from two locations (Lanzhou City and Yuzhong County) in Gansu province over a month period (February 1rst to March 4th) during the Spring Festival (February 18th) in 2007 in order to study the effect of fireworks display on perchlorate in air aerosol. The results showed that different concentrations of perchlorate were detected in almost all samples, ranging from perchlorate were 91% (100%) and 50% (59%) for PM10-100 (PM10) in Lanzhou City and Yuzhong County, respectively. The highest concentrations were all found in the samples from two sites on New Year's Eve, which was 39.16 ng m -3 (PM10-100) and 9.89 ng m -3 (PM10) for Lanzhou city, 3.43 ng m -3 (PM10-100) and 4.97 ng m -3 (PM10) for Yuzhong County, 6.8-26.2 times as the mean concentrations during the period of no or limited fireworks display. This indicated that the fireworks display during the Spring Festival can result in the levels of perchlorate increase.

  2. Random-field Potts model for the polar domains of lead magnesium niobate and lead scandium tantalate

    Energy Technology Data Exchange (ETDEWEB)

    Qian, H.; Bursill, L.A

    1997-06-01

    A random filed Potts model is used to establish the spatial relationship between the nanoscale distribution of charges chemical defects and nanoscale polar domains for the perovskite-based relaxor materials lead magnesium niobate (PMN) and lead scandium tantalate (PST). The random fields are not set stochastically but are determined initially by the distribution of B-site cations (Mg, Nb) or (Sc, Ta) generated by Monte Carlo NNNI-model simulations for the chemical defects. An appropriate random field Potts model is derived and algorithms developed for a 2D lattice. It is shown that the local fields are strongly correlated with the chemical domain walls and that polar domains as a function of decreasing temperature is simulated for the two cases of PMN and PST. The dynamics of the polar clusters is also discussed. 33 refs., 9 figs.

  3. Microbial Community Structure during Nitrate and Perchlorate Reduction in Ion-exchange Brine Using the Hydrogen-based membrane Biofilm Reactor (MBIR)

    Science.gov (United States)

    Detoxification of perchlorate by microbial communities under denitrifying conditions has been recently reported, although the identity of the mixed populations involved in perchlorate reduction is not well understood. In order to address this, the bacterial diversity of membrane ...

  4. Effect of perchlorate in fertilisers on lettuce and fruit vegetables : Uptake and distribution of perchlorate in greenhouse soil-grown butterhead lettuce and solless-grown cucumber, sweet pepper, round and cherry tomate

    NARCIS (Netherlands)

    Voogt, W.; Eveleens, B.A.; Steenhuizen, J.W.; Vandevelde, I.; Vis, de R.; Lommel, van J.

    2014-01-01

    In 2013 traces of perchlorate were detected in fruits and vegetable samples. Because perchlorate (ClO4 -) is part of a group of substances (goitrogens) that may inhibit the uptake of iodine by the thyroid, these findings caused commotion in the markets. Fertilizers were named as one of the sources

  5. Chlorine-36 abundance in natural and synthetic perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Heikoop, Jeffrey M [Los Alamos National Laboratory; Dale, M [NON LANL; Sturchio, Neil C [UNIV OF ILLIONOIS; Caffee, M [PURDUE UNIV; Belosa, A D [UNIV OF ILLINOIS; Heraty, Jr., L J [UNIV OF ILLINOIS; Bohike, J K [RESTON, VA; Hatzinger, P B [SHAW ENIVIORNMENTAL C0.; Jackson, W A [TEXAS TECH; Gu, B [ORNL

    2009-01-01

    Perchlorate (ClO{sub 4}{sup -}) is ubiquitous in the environment. It occurs naturally as a product of atmospheric photochemical reactions, and is synthesized for military, aerospace, and industrial applications. Nitrate-enriched soils of the Atacama Desert (Chile) contain high concentrations of natural ClO{sub 4}{sup -}; nitrate produced from these soils has been exported worldwide since the mid-1800's for use in agriculture. The widespread introduction of synthetic and agricultural ClO{sub 4}{sup -} into the environment has complicated attempts to understand the geochemical cycle of ClO{sub 4}{sup -}. Natural ClO{sub 4}{sup -} samples from the southwestern United States have relatively high {sup 36}Cl abundances ({sup 36}Cl/Cl = 3,100 x 10{sup -15} to 28,800 x 10{sup -15}), compared with samples of synthetic ({sup 36}Cl/Cl = 0.0 x 10{sup -15} to 40 x 10{sup -15}) and Atacama Desert ({sup 36}Cl/Cl = 0.9 x 10{sup -15} to 590 x 10{sup -15}) ClO{sub 4}{sup -}. These data give a lower limit for the initial {sup 36}Cl abundance of natural ClO{sub 4}{sup -} and provide temporal and other constraints on its geochemical cycle.

  6. Widespread occurrence of (per)chlorate in the Solar System

    Science.gov (United States)

    Jackson, W. Andrew; Davila, Alfonso F.; Sears, Derek W. G.; Coates, John D.; McKay, Christopher P.; Brundrett, Maeghan; Estrada, Nubia; Böhlke, J. K.

    2015-11-01

    Perchlorate (ClO4-) and chlorate (ClO3-) are ubiquitous on Earth and ClO4- has also been found on Mars. These species can play important roles in geochemical processes such as oxidation of organic matter and as biological electron acceptors, and are also indicators of important photochemical reactions involving oxyanions; on Mars they could be relevant for human habitability both in terms of in situ resource utilization and potential human health effects. For the first time, we extracted, detected and quantified ClO4- and ClO3- in extraterrestrial, non-planetary samples: regolith and rock samples from the Moon, and two chondrite meteorites (Murchison and Fayetteville). Lunar samples were collected by astronauts during the Apollo program, and meteorite samples were recovered immediately after their fall. This fact, together with the heterogeneous distribution of ClO4- and ClO3- within some of the samples, and their relative abundance with respect to other soluble species (e.g., NO3-) are consistent with an extraterrestrial origin of the oxychlorine species. Our results, combined with the previously reported widespread occurrence on Earth and Mars, indicate that ClO4- and ClO3- could be present throughout the Solar System.

  7. Chlorine-36 as a tracer of perchlorate origin

    Science.gov (United States)

    Sturchio, N.C.; Caffee, M.; Beloso, Abelardo D.; Heraty, L.J.; Böhlke, J.K.; Hatzinger, P.B.; Jackson, W.A.; Gu, B.; Heikoop, J.M.; Dale, M.

    2009-01-01

    Perchlorate (ClO4-) is ubiquitous in the environment. It is produced naturally by atmospheric photochemical reactions, and also is synthesized in large quantities for military, aerospace, and industrial applications. Nitrate-enriched salt deposits of the Atacama Desert (Chile) contain high concentrations of natural ClO4-, and have been exported worldwide since the mid-1800s for use in agriculture. The widespread introduction of synthetic and agricultural ClO4- into the environment has contaminated numerous municipal water supplies. Stable isotope ratio measurements of Cl and O have been applied for discrimination of different ClO4- sources in the environment. This study explores the potential of 36Cl measurements for further improving the discrimination of ClO4- sources. Groundwater and desert soil samples from the southwestern United States (U.S.) contain ClO4- having high 36Cl abundances (36Cl/Cl = 3100 ?? 10-15 to 28,800 ?? 10 -15), compared with those from the Atacama Desert (36Cl/Cl = 0.9 ?? 10-15 to 590 ?? 10-15) and synthetic ClO4- reagents and products (36Cl/Cl = 0.0 ?? 10-15 to 40 ?? 1015). In conjunction with stable Cl and O isotope ratios, 36Cl data provide a clear distinction among three principal. ClO4- source types in the environment of the southwestern U.S. ?? 2009 American Chemical Society.

  8. Hydrogen oxidation on gold electrode in perchloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sustersic, M.G.; Almeida, N.V.; Von Mengershausen, A.E. [Facultad de Ingenieria y Ciencias Economico Sociales, Universidad Nacional de San Luis, 25 de Mayo N 384, 5730 Villa Mercedes, San Luis (Argentina)

    2010-06-15

    The aim of this research is to study the interface gold/perchloric acid solution in presence of hydrogen. The reactive is generated by H{sup +} ion reduction and by saturating the electrolyte with the gaseous H{sub 2}. No evidence of H{sub 2} dissociative adsorption is found. In special conditions, a strongly adsorbed layer is formed from the atoms diffusing from inside of the metal. The mass transport occurs in three ways: the diffusion of H atoms inwards, the diffusion of H atoms back to the surface and the dissolved H{sub 2} diffusion from the bulk electrolyte to the surface. When dissolved H{sub 2} reacts, the reaction is kinetically controlled when the H{sub 2} partial pressure is high, and it is diffusionally controlled when the reactive partial pressure is low. Above 0.7 V, (measured vs. RHE), the (100) plane surface reconstruction lifts, and the rate determining step is the H diffusion towards inside of the metal, and the current suddenly falls. The Hydrogen redox reaction on gold shows reversibility with respect to the potential when the reactives are the H diffusing outwards of the metal and the H{sup +} ion present in the electrolyte. However, the absolute current values of oxidation and reduction are different because the reactive sources are different. (author)

  9. Widespread occurrence of (per)chlorate in the Solar System

    Science.gov (United States)

    Jackson, W. Andrew; Davila, Alfonso F; Sears, Derek W. G.; Coates, John D.; McKay, Christopher P.; Brundrett, Meaghan; Estrada, Nubia; Böhlke, John Karl

    2015-01-01

    Perchlorate (ClO− 4 ) and chlorate (ClO− 3 ) are ubiquitous on Earth and ClO− 4 has also been found on Mars. These species can play important roles in geochemical processes such as oxidation of organic matter and as biological electron acceptors, and are also indicators of important photochemical reactions involving oxyanions; on Mars they could be relevant for human habitability both in terms of in situ resource utilization and potential human health effects. For the first time, we extracted, detected and quantified ClO− 4 and ClO− 3 in extraterrestrial, non-planetary samples: regolith and rock samples from the Moon, and two chondrite meteorites (Murchison and Fayetteville). Lunar samples were collected by astronauts during the Apollo program, and meteorite samples were recovered immediately after their fall. This fact, together with the heterogeneous distribution of ClO− 4 and ClO− 3 within some of the samples, and their relative abundance with respect to other soluble species (e.g., NO− 3 ) are consistent with an extraterrestrial origin of the oxychlorine species. Our results, combined with the previously reported widespread occurrence on Earth and Mars, indicate that ClO− 4 and ClO− 3 could be present throughout the Solar System.

  10. Perchlorate adsorption onto orange peel modified by cross-linking amine groups from aqueous solutions.

    Science.gov (United States)

    Zhang, Lixiang; Yang, Zhiquan; Li, Ting; Zhou, Shaoqi; Wu, Zhenyi

    2015-01-01

    Orange peel was made into a highly efficient bio-sorbent by modification with cross-linking amine groups for perchlorate removal. Bench-scale experiments were performed to explore the factors affecting the perchlorate adsorption onto the modified orange peel (MOP). Perchlorate could be removed effectively at a wide range of pH (from 1.5 to 11). The maximum adsorption capacity of MOP for perchlorate was calculated as 154.1 mg/g within 15 min. The Redlich-Peterson model was fitted to the adsorption isotherm very well (R2>0.99). The adsorption process was spontaneous and exothermic, which was proved by thermodynamic parameters (Gibbs energy and enthalpy). The pseudo-second-order kinetic model could provide satisfactory fitting of the experimental data (R2>0.99). The scanning electron microscopy and energy-dispersive X-ray analysis indicated that the surface of MOP became smooth and the contents of N and Cl in MOP were increased during the modification process. Elemental analysis results showed that the nitrogen content in MOP was increased to 5.5%, while it was 1.06% in orange peel. The adsorption mechanism was also explored using zeta potential and Fourier transform infrared spectroscopy analysis. Ion exchange was the primary mechanism responsible for uptake of perchlorate onto MOP.

  11. Perchlorate and Nitrate Remediation Efficiency and Microbial Diversity in a Containerized Wetland Bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Jr., B D; Dibley, V; Pinkart, H; Legler, T

    2004-06-09

    We have developed a method to remove perchlorate (14 to 27 {micro}g/L) and nitrate (48 mg/L) from contaminated groundwater using a wetland bioreactor. The bioreactor has operated continuously in a remote field location for more than two years with a stable ecosystem of indigenous organisms. This study assesses the bioreactor for long-term perchlorate and nitrate remediation by evaluating influent and effluent groundwater for reduction-oxidation conditions and nitrate and perchlorate concentrations. Total community DNA was extracted and purified from 10-g sediment samples retrieved from vertical coring of the bioreactor during winter. Analysis by denaturing gradient gel electrophoresis of short, 16S rDNA, polymerase-chain-reaction products was used to identify dominant microorganisms. Bacteria genera identified were closely affiliated with bacteria widely distributed in soils, mud layers, and fresh water. Of the 17 dominant bands sequenced, most were gram negative and capable of aerobic or anaerobic respiration with nitrate as the terminal electron acceptor (Pseudomonas, Acinetobacter, Halomonas, and Nitrospira). Several identified genera (Rhizobium, Acinetobactor, and Xanthomonas) are capable of fixing atmospheric nitrogen into a combined form (ammonia) usable by host plants. Isolates were identified from the Proteobacteria class, known for the ability to reduce perchlorate. Initial bacterial assessments of sediments confirm the prevalence of facultative anaerobic bacteria capable of reducing perchlorate and nitrate in situ.

  12. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fubing; Zhong, Yu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wang, Dongbo, E-mail: dongbowang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Fei; Zhao, Jianwei; Xie, Ting; Jiang, Chen; An, Hongxue; Zeng, Guangming; Li, Xiaoming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2017-02-05

    Highlights: • Pd/Pt-NACF served as an adsorption/electrocatalysis electrode to reduce perchlorate. • The possible mechanisms involved in the reaction process were explained. • The reusability and stability of Pd/Pt-NACF bifunctional material was evaluated. - Abstract: In this work, Pd/Pt supported on N-doped activated carbon fiber (Pd/Pt-NACF) was employed as the electrode for electrocatalytic degradation of perchlorate through adsorption/electroreduction process. Perchlorate in solution was firstly adsorbed on Pd/Pt-NACF and then reduced to non-toxic chloride by the catalytic function of Pd/Pt at a constant current (20 mA). Compared with Pd/Pt-ACF, the adsorption capacity and electrocatalytic degradation efficiency of Pd/Pt-NACF for perchlorate increased 161% and 28%, respectively. Obviously, positively charged N-functional groups on NACF surface enhanced the adsorption capacity of Pd/Pt-NACF, and the dissociation of hydrogen to atomic H* by the Pd/Pt nanostructures on the cathode might drastically promote the electrocatalytic reduction of perchlorate. The role of atomic H* in the electroreduction process was identified by tertiary butanol inhibition test. Meanwhile, the perchlorate degradation performance was not substantially lower after three successive adsorption/electrocatalytic degradation experiments, demonstrating the electrochemical reusability and stability of the as-prepared electrode. These results showed that Pd/Pt-NACF was effective for electrocatalytic degradation of perchlorate and had great potential in perchlorate removal from water.

  13. Kinetics of nitrate and perchlorate reduction in ion exchange brine using the membrane biofilm reactor (MBfR)

    Science.gov (United States)

    Several sources of bacterial inocula were tested for their ability to reduce nitrate and perchlorate in synthetic ion-exchange spent brine (3-4.5% salinity) using a hydrogen-based membrane biofilm reactor (MBfR). Nitrate and perchlorate removal fluxes reached as high as 5.4 g N ...

  14. Perchlorate exposure and association with iron homeostasis and other biological functions among NHANES 2005-2008 subjects

    Science.gov (United States)

    Perchlorate exposure and association with iron homeostasis and other biological functions among NHANES 2005-2008 subjects Schreinemachers DM, Ghio AJ, Cascio WE, Sobus JR. U.S. EPA, RTP, NC, USA Perchlorate (ClO4-), an environmental pollutant, is a known thyroid toxicant and...

  15. Validation of chlorine and oxygen isotope ratio analysis to differentiate perchlorate sources and to document perchlorate biodegradation

    Science.gov (United States)

    Paul B. Hatzinger,; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua

    2013-01-01

    Increased health concerns about perchlorate (ClO4-) during the past decade and subsequent regulatory considerations have generated appreciable interest in source identification. The key objective of the isotopic techniques described in this guidance manual is to provide evidence concerning the origin of ClO4- in soils and groundwater and, more specifically, whether that ClO4- is synthetic or natural. Chlorine and oxygen isotopic analyses of ClO4- provide the primary direct approach whereby different sources of ClO4- can be distinguished from each other. These techniques measure the relative abundances of the stable isotopes of chlorine (37Cl and 35Cl) and oxygen (18O, 17O, and 16O) in ClO4- using isotope-ratio mass spectrometry (IRMS). In addition, the relative abundance of the radioactive chlorine isotope 36Cl is measured using accelerator mass spectrometry (AMS). Taken together, these measurements provide four independent quantities that can be used to distinguish natural and synthetic ClO4- sources, to discriminate different types of natural ClO4-, and to detect ClO4- biodegradation in the environment. Other isotopic, chemical, and geochemical techniques that can be applied in conjunction with isotopic analyses of ClO4- to provide supporting data in forensic studies are also described.

  16. Perchlorate-selective membrane electrode based on a new complex of uranil.

    Science.gov (United States)

    Mazloum Ardakani, M; Jalayer, M; Naeimi, H; Zare, H R; Moradi, L

    2005-03-01

    A potentiometric ion-selective electrode based on new compound, as a carrier, has been successfully developed for detection of perchlorate anion in aqueous solution. Within the perchlorate ion concentration range 1.0x10(-6) to 1.0 mol L(-1) the electrode had a linear response with a Nernstian slope of 60.6+/-1.0 mV per decade . The limit of detection as determined from the intersection of the extrapolated linear segments of the calibration plot was 8.0x10(-7) mol L(-1). The proposed electrode has fairly a good discriminating ability towards ClO(4) (-) ion in comparison to other anions. The sensor has a response time of < or =10 s and can be used for at least 2 months without substantial divergence in potential. It was successfully applied to direct determination of perchlorate in urine and water.

  17. Perchlorate radiolysis on Mars and the origin of martian soil reactivity.

    Science.gov (United States)

    Quinn, Richard C; Martucci, Hana F H; Miller, Stephanie R; Bryson, Charles E; Grunthaner, Frank J; Grunthaner, Paula J

    2013-06-01

    Results from the Viking biology experiments indicate the presence of reactive oxidants in martian soils that have previously been attributed to peroxide and superoxide. Instruments on the Mars Phoenix Lander and the Mars Science Laboratory detected perchlorate in martian soil, which is nonreactive under the conditions of the Viking biology experiments. We show that calcium perchlorate exposed to gamma rays decomposes in a CO2 atmosphere to form hypochlorite (ClO(-)), trapped oxygen (O2), and chlorine dioxide (ClO2). Our results show that the release of trapped O2 (g) from radiation-damaged perchlorate salts and the reaction of ClO(-) with amino acids that were added to the martian soils can explain the results of the Viking biology experiments. We conclude that neither hydrogen peroxide nor superoxide is required to explain the results of the Viking biology experiments.

  18. A simplified method for obtaining high-purity perchlorate from groundwater for isotope analyses.

    Energy Technology Data Exchange (ETDEWEB)

    vonKiparski, G; Hillegonds, D

    2011-04-04

    Investigations into the occurrence and origin of perchlorate (ClO{sub 4}{sup -}) found in groundwater from across North America have been sparse until recent years, and there is mounting evidence that natural formation mechanisms are important. New opportunities for identifying groundwater perchlorate and its origin have arisen with the utilization of improved detection methods and sampling techniques. Additionally, application of the forensic potential of isotopic measurements has begun to elucidate sources, potential formation mechanisms and natural attenuation processes. Procedures developed appear to be amenable to enable high precision stable isotopic analyses, as well as lower precision AMS analyses of {sup 36}Cl. Immediate work is in analyzing perchlorate isotope standards and developing full analytical accuracy and uncertainty expectations. Field samples have also been collected, and will be analyzed when final qa/qc samples are deemed acceptable.

  19. Contact Electrification of Regolith Particles and Chloride Electrolysis: Synthesis of Perchlorates on Mars.

    Science.gov (United States)

    Tennakone, K

    2016-10-01

    Contact electrification of chloride-impregnated martian regolith particles due to eolian agitation and moisture condensation on coalesced oppositely charged grains may lead to spontaneous electrolysis that generates hypochlorite, chlorite, chlorate, and perchlorate with a concomitant reduction of water to hydrogen. This process is not curtailed even if moisture condenses as ice because chloride ionizes on the surface of ice. Limitations dictated by potentials needed for electrolysis and breakdown electric fields enable estimation of the required regolith grain size. The estimated dimension turns out to be of the same order of magnitude as the expected median size of martian regolith, and a simple calculation yields the optimum rate of perchlorate production. Key Words: Mars oxidants-Perchlorate-Dust electrification-Electrolysis. Astrobiology 16, 811-816.

  20. Development of methods for the selective separation of scandium, zirconium and tin for radiopharmaceutical applications; Entwicklung von Methoden zur selektiven Trennung von Scandium, Zirkonium und Zinn fuer radiopharmazeutische Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Dirks-Fandrei, Carina

    2014-07-01

    The subject of the present work is the development of fast and highly selective methods for the separation and purification of scandium, zirconium and tin radionuclides from potential target materials for use in nuclear medicine. A number of selected resins (TrisKem International) were first characterized with respect to their extraction behaviour towards a large number of cations. Characterization studies were performed in batch experiments by determination of weight distribution ratios D{sub w} and further the influence of interferences on the uptake of these elements was evaluated. Weight distribution ratios were determined in different acids and acid concentrations with main focus on scandium, tin or zirconium. The interference of macro amounts of Calcium and Ti on the Sc extraction was evaluated as well as the interference of macro amounts of Y on the Zr extraction. Best suited uptake conditions were found for Scandium on DGA were determined to be 2.5 M HNO{sub 3} for Ti-Targets and 0.1 M HNO{sub 3} for Calcium-Targets. Otherwise it is also possible to extract Sc with TRU Resin. High uptakes were obtained at 2.5 M HNO{sub 3} for simulated Ti- and Calcium-targets. Separation methods were developed using elution studies; employed conditions were chosen according to parameters evaluated in the batch-experiment. The developed methods allowed separating Sc very rapidly in high purity very rapidly from Ti- or Calcium-targets. For Zr a separation method based on UTEVA Resin has been developed. Following results of batch experiments simulated Y-target solution were loaded onto a UTEVA resin column from 6 M HNO{sub 3}; the elution of Zr could be performed in 0.01 M oxalic acid. Decontamination factors in the order of 10{sup 4}-10{sup 5} could be obtained applying the developed method; the method thus allowed separating Zr in a high purity. Initial testing of a method for the separation of Sn from Cd targets based on the use of TBP Resin showed that the TBP resin seems

  1. Fractionation of stable isotopes in perchlorate and nitrate during in situ biodegradation in a sandy aquifer

    Science.gov (United States)

    Hatzinger, P.B.; Bohlke, John Karl; Sturchio, N.C.; Gu, B.; Heraty, L.J.; Borden, R.C.

    2009-01-01

    An in situ experiment was performed in a shallow alluvial aquifer in Maryland to quantify the fractionation of stable isotopes in perchlorate (Cl and O) and nitrate (N and O) during biodegradation. An emulsified soybean oil substrate that was previously injected into this aquifer provided the electron donor necessary for biological perchlorate reduction and denitrification. During the field experiment, groundwater extracted from an upgradient well was pumped into an injection well located within the in situ oil barrier, and then groundwater samples were withdrawn for the next 30 h. After correction for dilution (using Br– as a conservative tracer of the injectate), perchlorate concentrations decreased by 78% and nitrate concentrations decreased by 82% during the initial 8.6 h after the injection. The observed ratio of fractionation effects of O and Cl isotopes in perchlorate (e18O/e37Cl) was 2.6, which is similar to that observed in the laboratory using pure cultures (2.5). Denitrification by indigenous bacteria fractionated O and N isotopes in nitrate at a ratio of ~0.8 (e18O/e15N), which is within the range of values reported previously for denitrification. However, the magnitudes of the individual apparent in situ isotope fractionation effects for perchlorate and nitrate were appreciably smaller than those reported in homogeneous closed systems (0.2 to 0.6 times), even after adjustment for dilution. These results indicate that (1) isotope fractionation factor ratios (e18O/e37Cl, e18O/e15N) derived from homogeneous laboratory systems (e.g. pure culture studies) can be used qualitatively to confirm the occurrence of in situ biodegradation of both perchlorate and nitrate, but (2) the magnitudes of the individual apparent e values cannot be used quantitatively to estimate the in situ extent of biodegradation of either anion.

  2. Linking methane oxidation with perchlorate reduction: a microbial base for possible Martian life

    Science.gov (United States)

    Miller, L. G.; Carlstrom, C.; Baesman, S. M.; Coates, J. D.; Oremland, R. S.

    2011-12-01

    Recent observations of methane (CH4) and perchlorate (ClO4-) within the atmosphere and surface of Mars, respectively, provide impetus for establishing a metabolic linkage between these compounds whereby CH4 acts as an electron donor and perchlorate acts as an electron acceptor. Direct linkage through anaerobic oxidation of methane (AOM) has not been observed. However, indirect syntrophic oxygenase-dependent oxidation of CH4 with an aerobic methane oxidizer is feasible. The pathway for anaerobic dissimilatory perchlorate reduction includes 3 steps. The first 2 are sequential reductions of (1) perchlorate to chlorate and (2) chlorate to chlorite, mediated by perchlorate reductase. The third step is disproportionation of chlorite to chloride and molecular oxygen, mediated by chlorite dismutase. Utilization of thusly derived oxygen by hydrocarbon-degrading organisms in anoxic environments was first demonstrated by Coates et. al. (1998)1, however the link to aerobic methane oxidation was not examined at that time. Here, we systematically explore the potential for several species of aerobic methanotrophs to couple with chlorite during dissimilatory perchlorate reduction. In one experiment, 0.5 kPa CH4 was completely removed in one day from the headspace of combined cell suspensions of Dechloromonas agitata strain CKB and Methylococcus capsulatus in the presence of 5 mM chlorite. Oxidation of labeled 14CH4 to 14CO2 under similar conditions was later confirmed. Another experiment demonstrated complete removal of 0.2 kPa CH4 over several days by Methylobacter albus strain BG8 with strain CKB in the presence of 5 mM chlorite. Finally, we observed complete removal of 0.2 kPa CH4 in bottles containing natural soil (enriched in methanotrophs by CH4 additions over several weeks) and strain CKB and in the presence of 10 mM chlorite. This soil, collected from a pristine lake shoreline, demonstrated endogenous methane, perchlorate, chlorate and chlorite uptake. Other soil and

  3. Determination of chlorate in potassium perchlorate pyrotechnic material by specific ion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yates, W.G.

    1976-08-31

    A method for the determination of chlorate ion in potassium perchlorate was developed. The analytical method utilized a reduction of the chlorate ion to the chloride ion with ferrous ammonium sulfate. The chloride ions produced by this reduction step were then determined with a specific ion electrode technique. The amount of chlorate ion was determined by calculating how much chlorate ion was represented by the analyzed chloride ion making an appropriate adjustment for the amount of free chloride ion found in the potassium perchlorate and deionized water.

  4. Calculation of Vibrational Spectra of Coordinated Perchlorate Ion in Dipolar Aprotic Solvents

    Science.gov (United States)

    Mikhailov, G. P.

    2014-09-01

    The vibrational spectrum of perchlorate ion coordinated to Li+, Na+, and Mg2+ cations in dipolar aprotic solvents (DAS) was studied using Hartree-Fock methods not taking into account (RHF) and accounting partially for electron correlation (MP2) and B3LYP density functional theory within the polarized continuum model (PCM). Experimental and calculated spectrum-structure correlations for coordinated perchlorate-ion complexes in DAS were analyzed. It was found that the best fi t of the experimental and calculated vibrational spectra was achieved by taking into account the electron correlation and non-specific solvation.

  5. In Situ Bioremediation of Perchlorate in Vadose Zone Soil Using Gaseous Electron Donors

    Science.gov (United States)

    2009-11-01

    National Aeronautics and Space Administration ND Non-detect NDMA N-Nitrosodimethylamine No. Number NO3 - Nitrate OD Outside diameter O&M...in the vicinity of the PBA (USGS, 1980). One seasonal wetland depression exists within the PBA (Gibson & Skordal, 1999). Vernal pools are not...0 20 40 60 80 C on ce nt ra tio n Depth (ft) Perchlorate (mg/kg) Moisture (%) Lab Perchlorate (mg/kg) Lab NO2/ NO3 (mg-N/kg) Figure 20 – CDM-INJ1

  6. Contact Electrification of Regolith Particles and Chloride Electrolysis: Synthesis of Perchlorates on Mars

    Science.gov (United States)

    Tennakone, K.

    2016-10-01

    Contact electrification of chloride-impregnated martian regolith particles due to eolian agitation and moisture condensation on coalesced oppositely charged grains may lead to spontaneous electrolysis that generates hypochlorite, chlorite, chlorate, and perchlorate with a concomitant reduction of water to hydrogen. This process is not curtailed even if moisture condenses as ice because chloride ionizes on the surface of ice. Limitations dictated by potentials needed for electrolysis and breakdown electric fields enable estimation of the required regolith grain size. The estimated dimension turns out to be of the same order of magnitude as the expected median size of martian regolith, and a simple calculation yields the optimum rate of perchlorate production.

  7. Perchlorate in Lake Water from an Operating Diamond Mine.

    Science.gov (United States)

    Smith, Lianna J D; Ptacek, Carol J; Blowes, David W; Groza, Laura G; Moncur, Michael C

    2015-07-07

    Mining-related perchlorate [ClO4(-)] in the receiving environment was investigated at the operating open-pit and underground Diavik diamond mine, Northwest Territories, Canada. Samples were collected over four years and ClO4(-) was measured in various mine waters, the 560 km(2) ultraoligotrophic receiving lake, background lake water and snow distal from the mine. Groundwaters from the underground mine had variable ClO4(-) concentrations, up to 157 μg L(-1), and were typically an order of magnitude higher than concentrations in combined mine waters prior to treatment and discharge to the lake. Snow core samples had a mean ClO4(-) concentration of 0.021 μg L(-1) (n=16). Snow and lake water Cl(-)/ClO4(-) ratios suggest evapoconcentration was not an important process affecting lake ClO4(-) concentrations. The multiyear mean ClO4(-) concentrations in the lake were 0.30 μg L(-1) (n = 114) in open water and 0.24 μg L(-1) (n = 107) under ice, much below the Canadian drinking water guideline of 6 μg L(-1). Receiving lake concentrations of ClO4(-) generally decreased year over year and ClO4(-) was not likely [biogeo]chemically attenuated within the receiving lake. The discharge of treated mine water was shown to contribute mining-related ClO4(-) to the lake and the low concentrations after 12 years of mining were attributed to the large volume of the receiving lake.

  8. Perchlorate-Coupled Carbon Monoxide (CO Oxidation: Evidence for a Plausible Microbe-Mediated Reaction in Martian Brines

    Directory of Open Access Journals (Sweden)

    Marisa R. Myers

    2017-12-01

    Full Text Available The presence of hydrated salts on Mars indicates that some regions of its surface might be habitable if suitable metabolizable substrates are available. However, several lines of evidence have shown that Mars’ regolith contains only trace levels of the organic matter needed to support heterotrophic microbes. Due to the scarcity of organic carbon, carbon monoxide (CO at a concentration of about 700 parts per million (about 0.4 Pa might be the single most abundant readily available substrate that could support near-surface bacterial activity. Although a variety of electron acceptors can be coupled to CO oxidation, perchlorate is likely the most abundant potential oxidant in Mars’ brines. Whether perchlorate, a potent chaotrope, can support microbial CO oxidation has not been previously documented. We report here the first evidence for perchlorate-coupled CO oxidation based on assays with two distinct euryarchaeal extreme halophiles. CO oxidation occurred readily in 3.8 M NaCl brines with perchlorate concentrations from 0.01 to 1 M. Both isolates were able to couple CO with perchlorate or chlorate under anaerobic conditions with or without nitrate as an inducer for nitrate reductase, which serves as a perchlorate reductase in extreme halophiles. In the presence of perchlorate, CO concentrations were reduced to levels well below those found in Mars’ atmosphere. This indicates that CO could contribute to the survival of microbial populations in hydrated salt formations or brines if water activities are suitably permissive.

  9. Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate.

    Science.gov (United States)

    Carlson, Hans K; Kuehl, Jennifer V; Hazra, Amrita B; Justice, Nicholas B; Stoeva, Magdalena K; Sczesnak, Andrew; Mullan, Mark R; Iavarone, Anthony T; Engelbrektson, Anna; Price, Morgan N; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D

    2015-06-01

    We investigated perchlorate (ClO(4)(-)) and chlorate (ClO(3)(-)) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H(2)S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance. Using tagged-transposon pools we identified genes responsible for sensitivity and resistance in Desulfovibrio alaskensis G20. We found that mutants in Dde_2702 (Rex), a repressor of the central sulfate-reduction pathway were resistant to both (per)chlorate and nitrate. In general, Rex derepresses its regulon in response to increasing intracellular NADH:NAD(+) ratios. In cells in which respiratory sulfate reduction is inhibited, NADH:NAD(+) ratios should increase leading to derepression of the sulfate-reduction pathway. In support of this, in (per)chlorate or nitrate-stressed wild-type G20 we observed higher NADH:NAD(+) ratios, increased transcripts and increased peptide counts for genes in the core Rex regulon. We conclude that one mode of (per)chlorate and nitrate toxicity is as direct inhibitors of the central sulfate-reduction pathway. Our results demonstrate that (per)chlorate are more potent inhibitors than nitrate in both pure cultures and communities, implying that they represent an attractive alternative for controlling sulfidogenesis in industrial ecosystems. Of these, perchlorate offers better application logistics because of its inhibitory potency, solubility, relative chemical stability, low affinity for mineral cations and high mobility in environmental systems.

  10. Dinuclear complexes of tetravalent cerium in an aqueous perchloric acid solution.

    Science.gov (United States)

    Ikeda-Ohno, Atsushi; Tsushima, Satoru; Hennig, Christoph; Yaita, Tsuyoshi; Bernhard, Gert

    2012-06-28

    Primary aquo species of tetravalent cerium (Ce(IV)) in perchloric acid has been identified as a single oxo-bridging dinuclear complex, not a mononuclear one, by extended X-ray absorption fine structure (EXAFS) spectroscopy combined with density functional theory (DFT) calculations.

  11. Removal of Perchlorate from Water and Wastewater by Catalytic Hydrogen Gas Membrane Systems

    Science.gov (United States)

    2007-01-01

    Quimica, Serie A: Quimica Fisica e Ingenieria Quimica, 1984. 80(2): p. 219-25. Logan, B.E. and D. LaPoint, Treatment of Perchlorate- and Nitrate...ion at iridium electrodes. Ion concentration and solution pH effects. Anales de Quimica, Serie A: Quimica Fisica e Ingenieria Quimica (1985), 81(3

  12. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    NARCIS (Netherlands)

    Balk, M.; Mehboob, F.; Gelder, van A.H.; Rijpstra, I.; Sinninghe-Damsté, J.S.; Stams, A.J.M.

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells

  13. A STUDY ON THE ACCUMULATION OF PERCHLORATE IN YOUNG HEAD LETTUCE

    Science.gov (United States)

    The overall objective of this study was to demonstrate in a greenhouse study the potential for incorporation of perchlorate from aqueous solutions of 10, 50, 100, 500, 1,000, 5,000, and 10,000 ppb into an agricultural food crop (lettuce; Lactuca sativa), which is typically grown ...

  14. Double-Polymer-Modified Pencil Lead for Stripping Voltammetry of Perchlorate in Drinking Water

    Science.gov (United States)

    Izadyar, Anahita; Kim, Yushin; Ward, Michelle M.; Amemiya, Shigeru

    2012-01-01

    The inexpensive and disposable electrode based on a double-polymer-modified pencil lead is proposed for upper-division undergraduate instrumental laboratories to enable the highly sensitive detection of perchlorate. Students fabricate and utilize their own electrodes in the 3-4 h laboratory session to learn important concepts and methods of…

  15. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  16. Tailored Granular Activated Carbon Treatment of Perchlorate in Drinking Water. ESTCP Cost and Performance Report

    Science.gov (United States)

    2011-08-01

    carbon layer surfaces are generally uncharged ( hydrophobic ), and they thus repel water and charged inorganic species such as perchlorate. However...cationic surfactants onto graphite, cellulose, clay, quartz, titanium dioxide, zeolites , soils, and membranes. However, the project team is not aware

  17. [Simultaneous determination of bromate and perchlorate in vegetable by ion chromatography tandem mass spectrometry].

    Science.gov (United States)

    Yang, Jiajia; Yang, Yi; Zhang, Jing; Shao, Bing; Wu, Yongning

    2012-03-01

    To develop a method for simultaneous determination of bromate and perchiorate in vegetable using ion chromatography tandem mass spectrometry. Target ions in vegetable matrix were extracted by water and purified using a GCB cartridge. With the hydrophilic Ion Pac AS19 column and linear gradient potassium hydroxide used as eluent, bromate and perchlorate were analyzed by a triple quadrupole mass spectrometer under negative electronspray ionization mode and multiple reaction monitoring (MRM). Internal standard calibration was used for quantification. Good linearity was achieved for bromate and perchlorate over the range of 0.1- 50 microg/L and 0.05-50 microg/L, respectively, with correlation coefficients R2 > 0.998. The quantification limits of the method were 2.5 microg/kg and 0.7 microg/kg for bromate and perchlorate, respectively. Mean recoveries of two target analytes (spiked at three concentration levels in 5 kinds of vegetables) ranged from 80.3% to 124%, with within-day precisions no more than 21.4% and intraday precisions no more than 12.2%. This method could be applied in the simultaneous detection of bromate and perchlorate in vegetable.

  18. PERCHLORATE LEVELS IN SAMPLES OF SODIUM NITRATE FERTILIZER DERIVED FROM CHILEAN CALICHE

    Science.gov (United States)

    Paleogeochemical deposits in northern Chile are a rich source of naturally occurring sodium nitrate. These caliche ores are mined and processed to isolate NaNO3 (16-0-0) for use in fertilizers. Coincidentally, these very same deposits are a natural soure of perchlorate anion (C...

  19. DISTRIBUTION OF PERCHLORATE IN SAMPLES OF SODIUM NITRATE (CHILE SALTPETER) FERTILIZER DERIVED FROM NATURAL CALICHE

    Science.gov (United States)

    Two lots of sodium nitrate fertilizer derived from Chilean caliche were analyzed to determine the distribution of perchlorate throughout the material. Although our samples represent a limited amount, we found that distribution was essentially homogeneous in any 100-g portion. Whe...

  20. The impact of an erbium, chromium:yttrium-scandium-gallium-garnet laser with radial-firing tips on endodontic treatment.

    Science.gov (United States)

    Schoop, U; Barylyak, A; Goharkhay, K; Beer, F; Wernisch, J; Georgopoulos, A; Sperr, W; Moritz, A

    2009-01-01

    Radial-firing tips should allow a more homogeneous laser irradiation of root canal walls. The aim of the study was to assess the effects of erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation in conjunction with those newly designed tips. The investigation comprised bacteriology, morphological evaluations and temperature measurements. Root canals were inoculated with two test strains and laser irradiated with power settings of 0.6 W and 0.9 W and a repetition rate of 20 Hz. Subsequently, the samples were subjected to microbiological evaluation. The morphological changes of the canal walls were assessed by scanning electron microscopy. To reveal possible thermal side effects, we carried out temperature measurements. The bacteriological evaluation revealed a decisive disinfectant effect. Scanning electron microscopy showed the homogeneous removal of smear layer from the root canal walls. The temperature rise at the root surface during the irradiation was moderate, yielding 1.3 degrees C for the 0.6 W setting and 1.6 degrees C for the 0.9 W setting. The investigations indicated that the Er,Cr:YSGG laser, in conjunction with radial-firing tips, is a suitable tool for the elimination of bacteria in root canals and for the removal of smear layer.

  1. Effect of scandium addition on the microstructure, mechanical and wear properties of the spray formed hypereutectic aluminum–silicon alloys

    Energy Technology Data Exchange (ETDEWEB)

    Raghukiran, Nadimpalli; Kumar, Ravi, E-mail: nvrk@iitm.ac.in

    2015-08-12

    Hypereutectic Al–x%Si–0.8Sc alloys (x=13, 16, 19 and 22 wt%) were produced by spray forming. The microstructures of all the alloys exhibited very fine silicon phase with average size of about 5–10 µm irrespective of the silicon content of the alloy. Transmission electron microscopy revealed the presence of a nano-scale scandium rich phase, identified as AlSi{sub 2}Sc{sub 2} (V-phase) uniformly distributed in the alloy. The presence of V-phase resulted in higher matrix hardness (1.34 GPa) in contrast to 1.04 GPa observed in the case of binary Al–Si alloys by nanoindentation. Isothermal heat treatment at 375 °C revealed insignificant coarsening of silicon phase in both binary and ternary alloys. The Al–x%Si–0.8Sc alloys exhibited higher flow stress and tensile strength in contrast to their binary alloy counterparts which was attributed to the bi-modal size distribution of the strengthening phases in the form of nano-scale V-phase and sub-micron to 10 µm size silicon particles. The pin-on-disk wear tests exhibited appreciable improvement in the wear performance of the relatively low-silicon content ternary alloys over their binary counterparts while the high-silicon content binary and ternary alloys exhibited no much difference in the wear performance.

  2. Scandium and Titanium Containing Single-Walled Carbon Nanotubes for Hydrogen Storage: a Thermodynamic and First Principle Calculation.

    Science.gov (United States)

    Mananghaya, Michael; Yu, Dennis; Santos, Gil Nonato; Rodulfo, Emmanuel

    2016-06-15

    The generalized gradient approximation (GGA) to density functional theory (DFT) calculations indicate that the highly localized states derived from the defects of nitrogen doped carbon nanotube with divacancy (4ND-CNxNT) contribute to strong Sc and Ti bindings, which prevent metal aggregation. Comparison of the H2 adsorption capability of Sc over Ti-decorated 4ND-CNxNT shows that Ti cannot be used for reversible H2 storage due to its inherent high adsorption energy. The Sc/4ND-CNxNT possesses favorable adsorption and consecutive adsorption energy at the local-density approximation (LDA) and GGA level. Molecular dynamics (MD) study confirmed that the interaction between molecular hydrogen and 4ND-CNxNT decorated with scandium is indeed favorable. Simulations indicate that the total amount of adsorption is directly related to the operating temperature and pressure. The number of absorbed hydrogen molecules almost logarithmically increases as the pressure increases at a given temperature. The total excess adsorption of hydrogen on the (Sc/4ND)10-CNxNT arrays at 300 K is within the range set by the department of energy (DOE) with a value of at least 5.85 wt%.

  3. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn

  4. High-performing red-light-emitting pyrotechnic illuminants through the use of perchlorate-free materials.

    Science.gov (United States)

    Moretti, Jared D; Sabatini, Jesse J; Poret, Jay C

    2014-07-07

    The development of perchlorate-free M662 40 mm illuminating pyrotechnic compositions is described. On the bases of cost, performance, and sensitivity, potassium periodate was determined to be most effective potassium perchlorate replacement in the compositions tested. The optimal periodate-based composition exceeded the performance of the perchlorate-containing control, exhibited low sensitivity values to impact, friction, and electrostatic discharge, and had high thermal onset temperatures. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Contribution of tap water to chlorate and perchlorate intake: a market basket study.

    Science.gov (United States)

    Asami, Mari; Yoshida, Nobue; Kosaka, Koji; Ohno, Koichi; Matsui, Yoshihiko

    2013-10-01

    The contributions of water to total levels of chlorate and perchlorate intake were determined using food and water samples from a market basket study from 10 locations in Japan between 2008 and 2009. Foods were categorized into 13 groups and analyzed along with tap water. The average total chlorate intake was 333 (min. 193-max. 486) μg/day for samples cooked with tap water. The contribution of tap water to total chlorate intake was as high as 47%-58%, although total chlorate intake was less than 32% of the tolerable daily intake, 1500 μg/day for body weight of 50 kg. For perchlorate, daily intake from water was 0.7 (0.1-4.4) μg/day, which is not high compared to the average total intake of 14 (2.5-84) μg/day, while the reference dose (RfD) is 35 μg/day and the provisional maximum tolerable daily intake (PMTDI) is 500 μg/day for body weight of 50 kg. The highest intake of perchlorate was 84 μg/day, where concentrations in foods were high, but not in water. The contribution of water to total perchlorate intake ranged from 0.5% to 22%, while the ratio of highest daily intake to RfD was 240% and that to PMTDI was 17%. Eight baby formulas were also tested--total chlorate and perchlorate intakes were 147 (42-332) μg/day and 1.11 (0.05-4.5) μg/day, respectively, for an ingestion volume of 1 L/day if prepared with tap water. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Development of a Screening Tool to Facilitate Technology Transfer of an Innovative Technology to Treat Perchlorate-Contaminated Water

    National Research Council Canada - National Science Library

    Craig, Daniel A

    2008-01-01

    Perchlorate contamination of drinking water is a significant problem nationwide. The purpose of this study was to develop a tool to predict the cost and performance of tailored granular activated carbon (T-GAC...

  7. Perchlorate exposure is associated with oxidative stress and indicators of serum iron homeostasis among NHANES 2005-2008 subjects

    Science.gov (United States)

    ABSTRACT Perchlorate (ClO4-), an oxidizing agent, is a ubiquitous environmental pollutant. Several studies have investigated its thyroid hormone disrupting properties. Its associations with other biological measures are largely unknown. This study, combining 2005-2008 National H...

  8. The Investigation of Perchlorate/Iron Phase Mixtures as A Possible Source of Oxygen Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Heil, E.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Freissinet C.; Glavin, D. P.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory suggested perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of pure perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Analog laboratory analysis of iron mineralogy detected in Gale materials that was physically mixed with Ca- and Mg-perchlorate has been shown to catalyze lower O2 release temperatures and approach some SAM O2 release data. Instead of physical mixtures used in previous work, the work presented here utilized perchlorate solutions added to Fe phases. This technique allowed for perchlorate to come in closer contact with the Fe-phase and may more closely mimic Mars conditions where humidity can increase enough to cause deliquescence of the highly hygroscopic perchlorate phases. The objective of this work is to: 1) Utilize a laboratory SAM analog instrument to evaluate the O2 release temperatures from Mg- and Ca-perchlorates solutions applied to Fephases detetected in Gale Crate; and 2) Determine if perchlorate solutions can provide improved matches with the SAM O2 temperature release profiles.

  9. [(6-Methyl-2-pyridylmethyl(2-pyridylmethylamine][(2-pyridylmethylamine]copper(II bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2008-01-01

    Full Text Available The title compound, [Cu(C6H8N2(C13H15N3](ClO42, is a mixed ligand complex with the CuII atom coordinated by (6-methyl-2-pyridylmethyl(2-pyridylmethylamine, acting as a tridentate ligand, and 2-(2-aminomethylpyridine, as a bidentate ligand, leading to an N5 square-pyramidal geometry. The amine H atoms are involved in hydrogen bonding to the perchlorate O atoms and there are extensive but weak intermolecular C—H...O interactions in the crystal structure. The perchlorate ions are each disordered over two positions, with site occupancies of 0.601 (8:0.399 (8 and 0.659 (11:0.341 (11.

  10. A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 2: parameter optimization and results and discussion.

    Science.gov (United States)

    Tang, Youneng; Zhao, Heping; Marcus, Andrew K; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2012-02-07

    Part 1 of this work developed a steady-state, multispecies biofilm model for simultaneous reduction of nitrate and perchlorate in the H(2)-based membrane biofilm reactor (MBfR) and presented a novel method to solve it. In Part 2, the half-maximum-rate concentrations and inhibition coefficients of nitrate and perchlorate are optimized by fitting data from experiments with different combinations of influent nitrate and perchlorate concentrations. The model with optimized parameters is used to quantitatively and systematically explain how three important operating conditions (nitrate loading, perchlorate loading, and H(2) pressure) affect nitrate and perchlorate reduction and biomass distribution in these reducing biofilms. Perchlorate reduction and accumulation of perchlorate-reducing bacteria (PRB) in the biofilm are affected by four promotion or inhibition mechanisms: simultaneous use of nitrate and perchlorate by PRB and competition for H(2), the same resources in PRB, and space in a biofilm. For the hydrogen pressure evaluated experimentally, a low nitrate loading (nitrate loading of >0.6 g N/m(2)-d begins to inhibit perchlorate removal, as the competition effects become dominant.

  11. The presence of nitrate dramatically changed the predominant microbial community in perchlorate degrading cultures under saline conditions.

    Science.gov (United States)

    Stepanov, Victor G; Xiao, Yeyuan; Tran, Quyen; Rojas, Mark; Willson, Richard C; Fofanov, Yuriy; Fox, George E; Roberts, Deborah J

    2014-09-07

    Perchlorate contamination has been detected in both ground water and drinking water. An attractive treatment option is the use of ion-exchange to remove and concentrate perchlorate in brine. Biological treatment can subsequently remove the perchlorate from the brine. When nitrate is present, it will also be concentrated in the brine and must also be removed by biological treatment. The primary objective was to obtain an in-depth characterization of the microbial populations of two salt-tolerant cultures each of which is capable of metabolizing perchlorate. The cultures were derived from a single ancestral culture and have been maintained in the laboratory for more than 10 years. One culture was fed perchlorate only, while the other was fed both perchlorate and nitrate. A metagenomic characterization was performed using Illumina DNA sequencing technology, and the 16S rDNA of several pure strains isolated from the mixed cultures were sequenced. In the absence of nitrate, members of the Rhodobacteraceae constituted the prevailing taxonomic group. Second in abundance were the Rhodocyclaceae. In the nitrate fed culture, the Rhodobacteraceae are essentially absent. They are replaced by a major expansion of the Rhodocyclaceae and the emergence of the Alteromonadaceae as a significant community member. Gene sequences exhibiting significant homology to known perchlorate and nitrate reduction enzymes were found in both cultures. The structure of the two microbial ecosystems of interest has been established and some representative strains obtained in pure culture. The results illustrate that under favorable conditions a group of organisms can readily dominate an ecosystem and yet be effectively eliminated when their advantage is lost. Almost all known perchlorate-reducing organisms can also effectively reduce nitrate. This is certainly not the case for the Rhodobacteraceae that were found to dominate in the absence of nitrate, but effectively disappeared in its presence. This

  12. Non-aqueous titrimetric assay of gabapentin in capsules using perchloric acid as titrant

    OpenAIRE

    Sameer A. M. Abdulrahman; KANAKAPURA BASAVAIAH

    2011-01-01

    Two simple, rapid, accurate and inexpensive methods using visual and potentiometric titrimetric techniques are described for the determination of gabapentin (GBP) in bulk drug as well as in capsules. The methods are based on the neutralization reaction of the primary amino group of GBP with acetous perchloric acid as titrant in anhydrous acetic acid medium. The end point was detected either visually using crystal violet as indicator or potentiometrically using a modified glass electrode SCE e...

  13. Validation of a Novel Bioassay for Low-level Perchlorate Determination

    Science.gov (United States)

    2014-04-01

    analysisa Site Para- meterb A1 A2 A3 B1 B2 B3 C1 C2 C3 Average ± SDc 102, Hill AFB SPE date 27 Jul 2011 27 Jul 2011 27 Jul 2011 6 Aug...data from ion chromatographic determination of perchlorate in eluatesa Site Para- meterb A1 A2 A3 B1 B2 B3 C1 C2 C3 Average ± SDc PD (%) Histor

  14. Mechanism of H2S Oxidation by the Dissimilatory Perchlorate-Reducing Microorganism Azospira suillum PS

    Directory of Open Access Journals (Sweden)

    Misha G. Mehta-Kolte

    2017-02-01

    Full Text Available The genetic and biochemical basis of perchlorate-dependent H2S oxidation (PSOX was investigated in the dissimilatory perchlorate-reducing microorganism (DPRM Azospira suillum PS (PS. Previously, it was shown that all known DPRMs innately oxidize H2S, producing elemental sulfur (So. Although the process involving PSOX is thermodynamically favorable (ΔG°′ = −206 kJ ⋅ mol−1 H2S, the underlying biochemical and genetic mechanisms are currently unknown. Interestingly, H2S is preferentially utilized over physiological electron donors such as lactate or acetate although no growth benefit is obtained from the metabolism. Here, we determined that PSOX is due to a combination of enzymatic and abiotic interactions involving reactive intermediates of perchlorate respiration. Using various approaches, including barcode analysis by sequencing (Bar-seq, transcriptome sequencing (RNA-seq, and proteomics, along with targeted mutagenesis and biochemical characterization, we identified all facets of PSOX in PS. In support of our proposed model, deletion of identified upregulated PS genes traditionally known to be involved in sulfur redox cycling (e.g., Sox, sulfide:quinone reductase [SQR] showed no defect in PSOX activity. Proteomic analysis revealed differential abundances of a variety of stress response metal efflux pumps and divalent heavy-metal transporter proteins, suggesting a general toxicity response. Furthermore, in vitro biochemical studies demonstrated direct PSOX mediated by purified perchlorate reductase (PcrAB in the absence of other electron transfer proteins. The results of these studies support a model in which H2S oxidation is mediated by electron transport chain short-circuiting in the periplasmic space where the PcrAB directly oxidizes H2S to So. The biogenically formed reactive intermediates (ClO2− and O2 subsequently react with additional H2S, producing polysulfide and So as end products.

  15. Periodate salts as pyrotechnic oxidizers: development of barium- and perchlorate-free incendiary formulations.

    Science.gov (United States)

    Moretti, Jared D; Sabatini, Jesse J; Chen, Gary

    2012-07-09

    In a flash: pyrotechnic incendiary formulations with good stabilities toward various ignition stimuli have been developed without the need for barium or perchlorate oxidizers. KIO(4) and NaIO(4) were introduced as pyrotechnic oxidizers and exhibited excellent pyrotechnic performance. The periodate salts may garner widespread use in military and civilian fireworks because of their low hygroscopicities and high chemical reactivities. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Comparative assessment of the environmental sustainability of existing and emerging perchlorate treatment technologies for drinking water.

    Science.gov (United States)

    Choe, Jong Kwon; Mehnert, Michelle H; Guest, Jeremy S; Strathmann, Timothy J; Werth, Charles J

    2013-05-07

    Environmental impacts of conventional and emerging perchlorate drinking water treatment technologies were assessed using life cycle assessment (LCA). Comparison of two ion exchange (IX) technologies (i.e., nonselective IX with periodic regeneration using brines and perchlorate-selective IX without regeneration) at an existing plant shows that brine is the dominant contributor for nonselective IX, which shows higher impact than perchlorate-selective IX. Resource consumption during the operational phase comprises >80% of the total impacts. Having identified consumables as the driving force behind environmental impacts, the relative environmental sustainability of IX, biological treatment, and catalytic reduction technologies are compared more generally using consumable inputs. The analysis indicates that the environmental impacts of heterotrophic biological treatment are 2-5 times more sensitive to influent conditions (i.e., nitrate/oxygen concentration) and are 3-14 times higher compared to IX. However, autotrophic biological treatment is most environmentally beneficial among all. Catalytic treatment using carbon-supported Re-Pd has a higher (ca. 4600 times) impact than others, but is within 0.9-30 times the impact of IX with a newly developed ligand-complexed Re-Pd catalyst formulation. This suggests catalytic reduction can be competitive with increased activity. Our assessment shows that while IX is an environmentally competitive, emerging technologies also show great promise from an environmental sustainability perspective.

  17. Electrochemical reduction of CO2 to CO over Zn in propylene carbonate/tetrabutylammonium perchlorate

    Science.gov (United States)

    Shen, Feng-xia; Shi, Jin; Chen, Tian-you; Shi, Feng; Li, Qing-yuan; Zhen, Jian-zheng; Li, Yun-fei; Dai, Yong-nian; Yang, Bin; Qu, Tao

    2018-02-01

    Developing low cost and high efficient electrode for carbon dioxide (CO2) reduction in organic media is essential for practical application. Zn is a cheap metal and has high catalytic effects on CO2 reduction to carbon monoxide (CO) in aqueous solution. However, little attention has been given to investigate the performance of Zn in organic media for CO2 reduction. In present work, we have conducted CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate on Zn due to that propylene carbonate is a widely used industrial absorber, and tetrabutylammonium perchlorate is a commonly used organic supporting electrolyte. In addition, because electrochemical reduction of CO2 to CO naturally produces H2O, we have discussed water effects on CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate+6.8 wt % H2O. Our experiment results reveal that the faradaic efficiency for CO formation reaches to 83%, and the current density remains stable at 6.72 mA/cm2 at voltage -2.3 V for 4 h. Interestingly, Zn presents higher catalytic activity than Ag, and slightly lower than Au. X-ray photoelectron spectroscopy results confirm that no poisonous species is formed and absorbed on the cathode, which is an important advantage in practical application.

  18. Treatment of amiodarone induced hyperthyroidism with potassium perchlorate and methimazole during amiodarone treatment.

    Science.gov (United States)

    Reichert, L. J.; de Rooy, H. A.

    1989-01-01

    To exploit the antiarrhythmic effect of amiodarone when patients develop the side effect of thyrotoxicosis three patients with hyperthyroidism induced by amiodarone were given simultaneously 1 g potassium perchlorate a day for 40 days and a starting dose of 40 mg methimazole a day while they continued to take amiodarone. As hyperthyroidism might have recurred after potassium perchlorate treatment was stopped the dose of methimazole was not reduced until biochemical hypothyroidism (raised thyroid stimulating hormone concentrations) was achieved. The patients became euthyroid (free triiodothyronine concentration returned to normal values) in two to five weeks and hypothyroid in 10 to 14 weeks. One patient became euthyroid while taking 5 mg methimazole a day and 600 mg amiodarone weekly; the two others required substitution treatment with thyroxine sodium while taking 5 mg methimazole or 50 mg propylthiouracil (because of an allergic reaction to methimazole) and 2100 or 1400 mg amiodarone weekly. Hyperthyroidism induced by amiodarone may be treated with potassium perchlorate and methimazole given simultaneously while treatment with amiodarone is continued. PMID:2547467

  19. Maximizing microbial degradation of perchlorate using a genetic algorithm: Media optimization.

    Science.gov (United States)

    Kucharzyk, Katarzyna H; Crawford, Ronald L; Paszczynski, Andrzej J; Soule, Terence; Hess, Thomas F

    2012-01-01

    Microbial communities are under constant influence of physical and chemical components in ecosystems. Shifts in conditions such as pH, temperature or carbon source concentration can translate into shifts in overall ecosystem functioning. These conditions can be manipulated in a laboratory setup using evolutionary computation methods such as genetic algorithms (GAs). In work described here, a GA methodology was successfully applied to define sets of environmental conditions for microbial enrichments and pure cultures to achieve maximum rates of perchlorate degradation. Over the course of 11 generations of optimization using a GA, we saw a statistically significant 16.45 and 16.76-fold increases in average perchlorate degradation rates by Dechlorosoma sp. strain KJ and Dechloromonas sp. strain Miss R, respectively. For two bacterial consortia, Pl6 and Cw3, 5.79 and 5.75-fold increases in average perchlorate degradation were noted. Comparison of zero-order kinetic rate constants for environmental conditions in GA-determined first and last generations of all bacterial cultures additionally showed marked increases. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effects of scandium addition on iron-bearing phases and tensile properties of Al–7Si–0.6Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Yu-Chih [Department of Mechanical Engineering, National Central University, Jhongli, Taiwan (China); Wu, Chih-Ting [Department of Vehicle Engineering, Army Academy R.O.C., Jhongli, Taiwan (China); Bor, Hui-Yun; Horng, Jain-Long; Tsai, Mu-Lin [Department of Mechanical Engineering, National Central University, Jhongli, Taiwan (China); Institute of Materials Science and Engineering, National Central University, Jhongli, Taiwan (China); Lee, Sheng-Long, E-mail: shenglon@cc.ncu.edu.tw [Department of Mechanical Engineering, National Central University, Jhongli, Taiwan (China); Institute of Materials Science and Engineering, National Central University, Jhongli, Taiwan (China)

    2014-01-21

    Iron is the most deleterious impurity in aluminum alloys and can easily combine with aluminum to form an acicular β-Al{sub 5}FeSi phase that reduces ductility during the solidification of the molten metal. Adding scandium (Sc) to Al–7Si–0.6Mg alloys can transform the acicular β-Al{sub 5}FeSi phase into a comparatively harmless nodular Sc–Fe phase (Al{sub 12}Si{sub 6}Fe{sub 2}(Mg,Sc){sub 5}). This Sc–Fe phase has a lower hardness and elastic modulus than the β-Al{sub 5}FeSi phase; it is thus less likely to initiate cracks in the Al matrix. Moreover, the nodular Sc–Fe phase can improve the fluidity of Al during solidification, reducing interdendritic shrinkage. Tensile testing measurements showed that the elongation of Al–7Si–0.6Mg alloys with 0.04 and 0.12 wt% Sc can be respectively increased by 115% and 110% compared to Al–7Si–0.6Mg without Sc. The corresponding quality indices are increased by 17% and 19%, respectively, suggesting that the tensile properties of Al–7Si–0.6Mg alloys can be enhanced by adding scandium.

  1. Separation of (44)Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of (44)Ti/(44)Sc generator system.

    Science.gov (United States)

    Radchenko, V; Meyer, C A L; Engle, J W; Naranjo, C M; Unc, G A; Mastren, T; Brugh, M; Birnbaum, E R; John, K D; Nortier, F M; Fassbender, M E

    2016-12-16

    Scandium-44g (half-life 3.97h [1]) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, (18)F, due to its favorable decay parameters. One source of (44g)Sc is the long-lived parent nuclide (44)Ti (half-life 60.0 a). A (44)Ti/(44g)Sc generator would have the ability to provide radionuclidically pure (44g)Sc on a daily basis. The production of (44)Ti via the (45)Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) (44)Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems based on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Results indicate that ZR resin in HCl media represents an effective (44)Ti/(44g)Sc separation system. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: Kinetics and bacterial community structure.

    Science.gov (United States)

    Wan, Dongjin; Liu, Yongde; Wang, Yiyi; Wang, Hongjie; Xiao, Shuhu

    2017-01-01

    This study investigated the simultaneous removal of perchlorate and nitrate from aqueous solution in an up-flow sulfur autotrophic reduction reactor. A nitrate and perchlorate containing pollution solution was treated with a remarkable removal efficiency greater than 97%. The concentration of nitrate was 22.03 ± 1.07 mg-N/L coexisting with perchlorate either 21.87 ± 1.03 mg/L or 471.7 ± 50.3 μg/L, in this case the reactor could be operated at a hydraulic retention time (HRT) ranging from 12.00 h to 0.75 h. Half-order kinetics model fit the experimental data well; this indicates that diffusion in the biofilm was the limiting step. Perchlorate reduction required a longer reaction time than the coexisting nitrate, regardless of the perchlorate concentration. Sulfur (S) disproportionation was inhibited when nitrate was not completely removed; whereas it was accelerated when perchlorate decreased to low concentrations. This process therefore generated excessive sulfate and consumed much more alkalinity. High-throughput sequencing method was used to analyze bacterial community spatial distribution in the reactor under different operational conditions. The reduction of the two contaminants was accompanied by a decrease in biodiversity. The results indicated that Sulfuricella, Sulfuritalea Thiobacillus, and Sulfurimonas are effective DB (denitrification bacteria)/PRB (perchlorate reduction bacteria). The Chlorobaculum genus was the dominant bacteria associated with S disproportionation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Coupled Surface-Atmosphere Chemistry of the Martian Peroxide and Perchlorate Oxidants

    Science.gov (United States)

    Atreya, Sushil K.; Wilson, Eric; Encrenaz, Thérèse; Kaiser, Ralf; Mahaffy, Paul

    2017-04-01

    Oxidants play a significant role in planetary habitability. On Mars, while they can be a source of nutrients, they can also destroy surface organics. They may also impact the atmospheric trace gas chemistry. Hydrogen peroxide was first detected in the martian atmosphere in 2003 [1,2], and perchlorates were detected in the surface in 2008 in the polar region [3] and 2012 in the equatorial region [4,5]. Global and seasonal maps of hydrogen peroxide have been generated from regular observations since 2003 [6], while all indications are that perchlorates are ubiquitous on Mars. Homogeneous gas phase chemistry can generally explain the observed atmospheric hydrogen peroxide, but the magnitude of seasonal variation poses a challenge. Heterogeneous chemistry involving airborne dust lifted from the surface and triboelectric processes [6,7] may play a role. Perchlorate formation on Mars is poorly understood, but one thing is clear that the same atmospheric process that works reasonably well for terrestrial perchlorates fails at Mars. An alternative proposal to perchlorate formation in an ancient aqueous environment is an initiation throughout the history of Mars in the surface by radiolysis to source gaseous ClO2 to the atmosphere with subsequent further oxidation [8]. This talk will discuss the current status of oxidant chemistry on Mars in the above context and provide directions for future laboratory and modeling studies. References: [1] Encrenaz, T., et al. (2004) Icarus 170, 424. [2] Clancy, R.T., et al. (2004) Icarus 168, 116. [3] Hecht, M.H., et al. (2009) Science, 325(5936), 64, doi:10.1126/science.1172466. [4] Glavin, D.P., et al. (2013) JGR Planets 118, 1955, doi:10.1002/jgre.20144. [5] Ming, D.W., et al. (2014) Science, 343(6169), doi:10.1126/science.1245267. [6] Encrenaz, T., et al. (2015) A&A. 578, A127 (12pp), DOI: 10.1051/0004-6361/201425448. [7] Atreya, S.K., et al. (2006) Astrobiology 6 (no. 3), 439. [8] Wilson, E.H. et al., (2016) JGR Planets, doi: 10

  4. Mesophilic, Circumneutral Anaerobic Iron Oxidation as a Remediation Mechanism for Radionuclides, Nitrate and Perchlorate

    Science.gov (United States)

    Bose, S.; Thrash, J. C.; Coates, J. D.

    2008-12-01

    Iron oxidation is a novel anaerobic metabolism where microorganisms obtain reducing equivalents from the oxidization of Fe(II) and assimilate carbon from organic carbon compounds or CO2. Recent evidence indicates that in combination with the activity of dissimilatory Fe(III)-reducing bacteria, anaerobic microbial Fe(II) oxidation can also contribute to the global iron redox cycle. Studies have also proved that Fe(II)- oxidation is ubiquitous in diverse environments and produce a broad range of insoluble iron forms as end products. These biogenic Fe(III)-oxides and mixed valence Fe minerals have a very high adsorption capacity of heavy metals and radionuclides. Adsorption and immobilization by these biogenic Fe phases produced at circumneutral pH, is now considered a very effective mode of remediation of radionuclides like Uranium, especially under variable redox conditions. By coupling soluble and insoluble Fe(II) oxidation with nitrate and perchlorate as terminal electron acceptors in-situ, anaerobic Fe-oxidation can also be used for environmental cleanup of Fe through Fe-mineral precipitation, as well as nitrate and perchlorate through reduction. Coupling of Fe as the sole electron and energy source to the reduction of perchlorate or nitrate boosts the metabolism without building up biomass hence also taking care of biofouling. To understand the mechanisms by which microorganisms can grow at circumneutral pH by mesophilic, anaerobic iron oxidation and the ability of microorganisms to reduce nitrate and perchlorate coupled to iron oxidation recent work in our lab involved the physiological characterization of Dechlorospirillum strain VDY which was capable of anaerobic iron-oxidation with either nitrate or perchlorate serving as terminal electron acceptor. Under non-growth conditions, VDY oxidized 3mM Fe(II) coupled to nitrate reduction, and 2mM Fe(II) coupled to perchlorate reduction, in 24 hours. It contained a copy of the RuBisCO cbbM subunit gene which was

  5. Estimated dietary exposure of Canadians to perchlorate through the consumption of fruits and vegetables available in Ottawa markets.

    Science.gov (United States)

    Wang, Zhongwen; Forsyth, Don; Lau, Benjamin P-Y; Pelletier, Luc; Bronson, Roni; Gaertner, Dean

    2009-10-14

    There has been increasing concern over the contamination of drinking water and food with perchlorate. Studies have reported perchlorate in a variety of foods, including lettuce, milk, fruits, and juices. In this study, 150 food samples were analyzed by ion chromatography tandem mass spectrometry (IC-MS/MS) to determine the concentrations of perchlorate in imported and domestic fruits and vegetables available from retail outlets in Ottawa, Canada. Perchlorate was found in most of the tested food types with concentrations appearing to vary by commodity and country of origin. Levels ranged from nondetectable to 536 microg/kg, with Guatemalan cantaloupes (156 +/- 232 microg/kg), United States spinach (133 +/- 24.9 microg/kg), Chilean green grapes (45.5 +/- 13.3 microg/kg), and United States Romaine lettuce (29.1 +/- 10.5 microg/kg) having the highest concentrations. Dietary exposure to perchlorate from analyzed fruits and vegetables was estimated to be approximately 36.6 and 41.1 ng/kg bw/day for toddlers (1-4 yrs) and children (5-11yrs), respectively.

  6. Can perchlorates be transformed to hydrogen peroxide (H2O2) products by cosmic rays on the Martian surface?

    Science.gov (United States)

    Crandall, Parker B.; Góbi, Sándor; Gillis-Davis, Jeffrey; Kaiser, Ralf I.

    2017-09-01

    Due to their oxidizing properties, perchlorates (ClO4-) are suggested by the planetary science community to play a vital role in the scarcity of organics on the Martian surface. However, alternative oxidation agents such as hydrogen peroxide (H2O2) have received surprisingly little attention. In this study, samples of magnesium perchlorate hexahydrate (Mg(ClO4)2 · 6H2O) were exposed to monoenergetic electrons and D2+ ions separately, sequentially, and simultaneously to probe the effects of galactic cosmic ray exposure of perchlorates and the potential incorporation of hydrogen (deuterium) into these minerals. The experiments were carried out under ultrahigh-vacuum conditions at 50 K, after which the samples were slowly heated to 300 K while the subliming products were monitored by a quadrupole mass spectrometer. In all cases, molecular oxygen (O2) was detected upon the onset of irradiation and also during the warmup phase. In case of a simultaneous D2+-electron exposure, deuterated water (D2O) and deuterium peroxide (D2O2) were also detected in the warmup phase, whereas only small amounts of D2O2 were found after an exclusive D2+ irradiation. These experiments yield the first data identifying hydrogen peroxide as a potential product in the interaction of cosmic rays with perchlorates in the Martian regolith revealing that perchlorates are capable of producing multiple oxidizing agents (O2 and D2O2) that may account for the destruction of organics on the Martian surface.

  7. 37Cl/35Cl isotope ratio analysis in perchlorate by ion chromatography/multi collector -ICPMS: Analytical performance and implication for biodegradation studies.

    Science.gov (United States)

    Zakon, Yevgeni; Ronen, Zeev; Halicz, Ludwik; Gelman, Faina

    2017-10-01

    In the present study we propose a new analytical method for 37Cl/35Cl analysis in perchlorate by Ion Chromatography(IC) coupled to Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). The accuracy of the analytical method was validated by analysis of international perchlorate standard materials USGS-37 and USGS -38; analytical precision better than ±0.4‰ was achieved. 37Cl/35Cl isotope ratio analysis in perchlorate during laboratory biodegradation experiment with microbial cultures enriched from the contaminated soil in Israel resulted in isotope enrichment factor ε37Cl = -13.3 ± 1‰, which falls in the range reported previously for perchlorate biodegradation by pure microbial cultures. The proposed analytical method may significantly simplify the procedure for isotope analysis of perchlorate which is currently applied in environmental studies. Copyright © 2017. Published by Elsevier Ltd.

  8. Combined effects of perchlorate, thiocyanate, and iodine on thyroid function in the National Health and Nutrition Examination Survey 2007–08

    Energy Technology Data Exchange (ETDEWEB)

    Steinmaus, Craig, E-mail: craigs@berkeley.edu [Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, 1515 Clay St. 16th Floor, Oakland, CA 94612 (United States); Miller, Mark D., E-mail: ucsfpehsumiller@gmail.com [Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, 1515 Clay St. 16th Floor, Oakland, CA 94612 (United States); Cushing, Lara, E-mail: lara.cushing@berkeley.edu [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 93720-3050 (United States); Blount, Benjamin C., E-mail: bkb3@cdc.gov [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Mail Stop F47, Atlanta, GA (United States); Smith, Allan H., E-mail: ahsmith@berkeley.edu [Arsenic Health Effects Research Group, 1950 Addison St., Suite 204, University of California, Berkeley, CA 94704 (United States)

    2013-05-15

    Perchlorate, thiocyanate, and low iodine intake can all decrease iodide intake into the thyroid gland. This can reduce thyroid hormone production since iodide is a key component of thyroid hormone. Previous research has suggested that each of these factors alone may decrease thyroid hormone levels, but effect sizes are small. We hypothesized that people who have all three factors at the same time have substantially lower thyroid hormone levels than people who do not, and the effect of this combined exposure is substantially larger than the effects seen in analyses focused on only one factor at a time. Using data from the 2007–2008 National Health and Nutrition Examination Survey, subjects were categorized into exposure groups based on their urinary perchlorate, iodine, and thiocyanate concentrations, and mean serum thyroxine concentrations were compared between groups. Subjects with high perchlorate (n=1939) had thyroxine concentrations that were 5.0% lower (mean difference=0.40 μg/dl, 95% confidence interval=0.14–0.65) than subjects with low perchlorate (n=2084). The individual effects of iodine and thiocyanate were even smaller. Subjects with high perchlorate, high thiocyanate, and low iodine combined (n=62) had thyroxine concentrations 12.9% lower (mean difference=1.07 μg/dl, 95% confidence interval=0.55–1.59) than subjects with low perchlorate, low thiocyanate, and adequate iodine (n=376). Potential confounders had little impact on results. Overall, these results suggest that concomitant exposure to perchlorate, thiocyanate, and low iodine markedly reduces thyroxine production. This highlights the potential importance of examining the combined effects of multiple agents when evaluating the toxicity of thyroid-disrupting agents. -- Highlights: ► Recent data suggest that essentially everyone in the US is exposed to perchlorate. ► Perchlorate exposure may be associated with lower thyroid hormone levels. ► Some groups may be more susceptible to

  9. Perchlorate in indoor dust and human urine in China: contribution of indoor dust to total daily intake.

    Science.gov (United States)

    Zhang, Tao; Chen, Xiaojia; Wang, Dou; Li, Rudan; Ma, Yufang; Mo, Weiwen; Sun, Hongwen; Kannan, Kurunthachalam

    2015-02-17

    Perchlorate is used in fireworks and China is the largest fireworks producer and consumer in the world. Information regarding human exposure to perchlorate is scarce in China, and exposure via indoor dust ingestion (EDI indoor dust) has rarely been evaluated. In this study, perchlorate was found in indoor dust (detection rate: 100%, median: 47.4 μg/g), human urine (99%, 26.2 ng/mL), drinking water (100%, 3.99 ng/mL), and dairy milk (100%, 12.3 ng/mL) collected from cities that have fireworks manufacturing areas (Yueyang and Nanchang) and in cities that do not have fireworks manufacturing industries (Tianjin, Shijiazhuang, Yuxi and Guilin) in China. In comparison with perchlorate levels reported for other countries, perchlorate levels in urine samples from fireworks sites and nonfireworks sites in China were higher. Median indoor dust perchlorate concentrations were positively correlated (r = 0.964, p adults (0.669 μg/kg bw/day), and children (median: 0.373 μg/kg bw/day), respectively. Toddlers (0.258 μg/kg bw/day) had the highest median EDI indoor dust, which was 2 to 5 times greater than the EDI indoor dust calculated for other age groups (the range of median values: 0.044 to 0.127 μg/kg bw/day). Contribution of indoor dust to EDItotal was 26%, 28%, and 7% for toddlers, children, and adults, respectively. Indoor dust contributed higher percentage to EDI total than that by dairy milk (0.5-5%).

  10. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars.

    Science.gov (United States)

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-09-09

    The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2(T) M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth's subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  11. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars

    Directory of Open Access Journals (Sweden)

    Viktoria Shcherbakova

    2015-09-01

    Full Text Available The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2T M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth’s subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  12. Gd-Sc-based mixed-metal nitride cluster fullerenes: mutual influence of the cage and cluster size and the role of scandium in the electronic structure.

    Science.gov (United States)

    Svitova, Anna L; Popov, Alexey A; Dunsch, Lothar

    2013-03-18

    The influence of the cage as well as of the cluster size has been studied in Gd-Sc nitride cluster fullerenes, which have been synthesized and isolated for these studies. A series of carbon cages ranging from C78 to C88 have been synthesized, isolated, and characterized in detail using absorption and vibrational spectroscopy as well as electrochemistry and density functional theory calculations. Gd-Sc mixed-metal cluster fullerenes in carbon cages different from C80 were described for the first time. A review of their structures, properties, and stability is given. The synthesis was performed with melamine as an effective solid source of nitrogen, providing high fullerene yield and suppressing empty fullerene formation. Substitution of gadolinium by scandium imposes a noticeable influence on the electronic structure of nitride cluster fullerenes as revealed by electrochemical, spectroscopic, and computational methods.

  13. 2-(2-Hydroxy-3-methoxyphenyl-1H-benzimidazol-3-ium perchlorate

    Directory of Open Access Journals (Sweden)

    Chuan Chen

    2012-06-01

    Full Text Available In the title molecular salt, C14H13N2O2+·ClO4−, the ring systems in the cation are almost coplanar [dihedral angle = 5.53 (13°]. Intramolecular N—H...O and O—H...O hydrogen bonds generate S(6 and S(5 rings, respectively. In the crystal, the two H atoms involved in the intramolecular hydrogen bonds also participate in intermolecular links to acceptor O atoms of the perchlorate anions. A simple intermolecular N—H...O bond also occurs. Together, these form a double-chain structure along [101].

  14. Nitrate and Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction

    Science.gov (United States)

    2014-01-01

    was a former agricultural well that was not being used as a water source prior to the demonstration. Contamination of perchlorate and VOCs is...199-209. Evans, P.J., J. Smith, T. Singh, H. Hyung, C. Arucan, D. Berokoff, D. Frieze, R. Overstreet, R. Vigo, B.E. Rittmann, A. Ontiveros- Valencia ...membrane-biofilm reactor. J. AWWA 94 no. 11: 103-114. Rittmann, B.E., A. Ontiveros- Valencia , H.-P. Zhao, Y. Tang, B. Kim, S. van Ginkel, and R

  15. Study of the Deposition of Ammonium Perchlorate Following the Static Firing of MK-58 Rocket Motors

    Science.gov (United States)

    2008-10-01

    live fire training does not contribute to the accumulation of perchlorate in the environment. Résumé …..... Des mises à feu statiques de moteurs ...implique de déterminer les sources potentielles de ce contaminant. Le missile Sparrow AIM-7, propulsé par un moteur MK-58 à base de PA, est le principal...missile air-air de moyenne portée utilisé sur les avions de chasse américains et canadiens depuis de nombreuses années. Quinze moteurs MK-58 provenant

  16. Large angular jump mechanism observed for hydrogen bond exchange in aqueous perchlorate solution.

    Science.gov (United States)

    Ji, Minbiao; Odelius, Michael; Gaffney, K J

    2010-05-21

    The mechanism for hydrogen bond (H-bond) switching in solution has remained subject to debate despite extensive experimental and theoretical studies. We have applied polarization-selective multidimensional vibrational spectroscopy to investigate the H-bond exchange mechanism in aqueous NaClO4 solution. The results show that a water molecule shifts its donated H-bonds between water and perchlorate acceptors by means of large, prompt angular rotation. Using a jump-exchange kinetic model, we extracted an average jump angle of 49 +/- 4 degrees, in qualitative agreement with the jump angle observed in molecular dynamics simulations of the same aqueous NaClO4 solution.

  17. A vacuum ultraviolet photoionization study on the thermal decomposition of ammonium perchlorate

    Science.gov (United States)

    Góbi, Sándor; Zhao, Long; Xu, Bo; Ablikim, Utuq; Ahmed, Musahid; Kaiser, Ralf I.

    2018-01-01

    Pyrolysis products of ammonium perchlorate (NH4ClO4) at 483 K were monitored on line and in situ via single photon photoionization reflectron time-of-flight spectrometry (PI-ReTOF-MS) in the photon energy range of 9.00-17.50 eV. The photoionization efficiency curves (PIE) of the subliming product molecules were collected and allowed for detection of three class of products containing chlorine, nitrogen, and oxygen including atoms and free radicals. These results suggest a new insight into possible low-temperature decomposition pathways of NH4ClO4.

  18. Copper scandium zirconium phosphate

    DEFF Research Database (Denmark)

    Bond, Andrew David; Warner, Terence Edwin

    2013-01-01

    components. The [Sc(III)Zr(IV)(PO(4))(3)](2-) framework is composed of corner-sharing Sc/ZrO(6) octahedra and PO(4) tetrahedra. The Sc and Zr atoms are disordered on one atomic site on a crystallographic threefold axis. The P atom of the phosphate group lies on a crystallographic twofold axis. Nonframework...

  19. Rapid analysis of perchlorate, chlorate and bromate ions in concentrated sodium hypochlorite solutions.

    Science.gov (United States)

    Pisarenko, Aleksey N; Stanford, Benjamin D; Quiñones, Oscar; Pacey, Gilbert E; Gordon, Gilbert; Snyder, Shane A

    2010-02-05

    A sensitive, rapid, and rugged liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for measuring concentrations of perchlorate, chlorate, and bromate ions in concentrated sodium hypochlorite solutions is presented. The LC-MS/MS method offers a practical quantitation limit (PQL) of 0.05 microg L(-1) for ClO(4)(-), 0.2 microg L(-1) for BrO(3)(-), and 0.7 microg L(-1) for ClO(3)(-) and a sample analysis time of only 10 min. Additionally, an iodometric titration technique was compared with the LC-MS/MS method for measurement of chlorate ion at high concentration. The LC-MS/MS method was the most reproducible for chlorate concentrations below 0.025 M while the iodometric titration method employed was the most reproducible above 0.025 M. By using both methods, concentrations of chlorate can be measured over a wide range, from 0.7 microg L(-1) to 210 g L(-1) in hypochlorite ion solutions. Seven quenching agents were also evaluated for their ability to neutralize hypochlorite ion, thereby stopping formation of perchlorate ion in solution, without adversely impacting the other oxyhalide ions. Malonic acid was chosen as the quenching agent of choice, meeting all evaluation criteria outlined in this manuscript. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Experimental study on multiple-pulse performance characteristics of ammonium perchlorate/aluminum powder rocket motor

    Science.gov (United States)

    Li, Yue; Hu, Chunbo; Deng, Zhe; Li, Chao; Sun, Haijun; Cai, Yupeng

    2017-04-01

    The performance characteristics of ammonium perchlorate/aluminum powder rocket motor were investigated experimentally based on a powder rocket testing system. Three-pulse experiment with one hour interval and four-pulse experiment with 15 s interval were conducted with a bi-propellant powder feed system. The experiments demonstrate the feasibility of the powder rocket for the multiple-pulse operation and the synchronization of powder feed method. The multiple-pulse performance characteristics were analyzed accordingly. It shows that the motor initiates steadily with the mass flow rate of 2.5 g/s for oxidizer powder fluidization gas and 2.0 g/s for fuel powder fluidization gas. The relative standard deviation was adopted to describe the repeatability characteristics of the pulses. The relative standard deviation of ammonium perchlorate and aluminum pistons velocity is 0.072 and 0.007, and that of oxidizer-fuel mass feed ratio is 0.052. The motor performed well with good repeatability of combustor pressure, start-up response and combustion efficiency during the multiple-pulse tests. Low frequency combustion pressure oscillations,3.6-4.2 Hz with amplitudes up to 18.7% of mean combustor pressure, were encountered. The phenomenon appeared seriously at first pulse, then alleviated at the following pulses. Further analysis of test results showed that increasing chamber pressure could ameliorate the oscillation.

  1. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  2. The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy

    Science.gov (United States)

    Zapata, Félix; García-Ruiz, Carmen

    2018-01-01

    Inorganic oxidizing energetic salts including nitrates, chlorates and perchlorates are widely used in the manufacture of not only licit pyrotechnic compositions, but also illicit homemade explosive mixtures. Their identification in forensic laboratories is usually accomplished by either capillary electrophoresis or ion chromatography, with the disadvantage of dissociating the salt into its ions. On the contrary, vibrational spectroscopy, including IR and Raman, enables the non-invasive identification of the salt, i.e. avoiding its dissociation. This study focuses on the discrimination of all nitrate, chlorate and perchlorate salts that are commercially available, using both Raman and IR spectroscopy, with the aim of testing whether every salt can be unequivocally identified. Besides the visual spectra comparison by assigning every band with the corresponding molecular vibrational mode, a statistical analysis based on Pearson correlation was performed to ensure an objective identification, either using Raman, IR or both. Positively, 25 salts (out of 72) were unequivocally identified using Raman, 30 salts when using IR and 44 when combining both techniques. Negatively, some salts were undistinguishable even using both techniques demonstrating there are some salts that provide very similar Raman and IR spectra.

  3. Thermal Decomposition of Calcium Perchlorate/Iron-Mineral Mixtures: Implications of the Evolved Oxygen from the Rocknest Eolian Deposit in Gale Crater, Mars

    Science.gov (United States)

    Bruck, A. M.; Sutter, B.; Ming, D. W.; Mahaffy, P.

    2014-01-01

    A major oxygen release between 300 and 500 C was detected by the Mars Curiosity Rover Sample Analysis at Mars (SAM) instrument at the Rocknest eolian deposit. Thermal decomposition of perchlorate (ClO4-) salts in the Rocknest samples are a possible explanation for this evolved oxygen release. Releative to Na-, K-, Mg-, and Fe-perchlorate, the thermal decomposition of Ca-perchlorate in laboratory experiments released O2 in the temperature range (400-500degC) closest to the O2 release temperatures observed for the Rocknest material. Furthermore, calcium perchlorate could have been the source of Cl in the chlorinated-hydrocarbons species that were detected by SAM. Different components in the Martian soil could affect the decomposition temperature of calcium per-chlorate or another oxychlorine species. This interaction of the two components in the soil could result in O2 release temperatures consistent with those detected by SAM in the Rocknest materials. The decomposition temperatures of various alkali metal perchlorates are known to decrease in the presence of a catalyst. The objective of this work is to investigate catalytic interactions on calcium perchlorate from various iron-bearing minerals known to be present in the Rocknest material

  4. Adhesive bonding to dentin with iron (II) perchlorate primers and a tri-n-butylborane-initiated luting agent.

    Science.gov (United States)

    Taira, Y; Matsumura, H; Yoshida, K; Tanaka, T; Atsuta, M

    1998-09-01

    This study was conducted to measure the tensile bond strength of a resin to dentin when the dentin was primed with iron (II) perchlorate modified aqueous 2-hydroxyethyl methacrylate (HEMA) or an iron (II) perchlorate modified commercial self-etching primer (ED primer, Kuraray Co.). Bovine dentin surfaces were ground flat and each specimen underwent one of the following two treatments: (1) priming with 2.0 x 10(-6) to 5.0 x 10(-4) mol/g iron (II) perchlorate in aqueous HEMA solutions after etching with 10 wt% phosphoric acid; (2) priming with self-etching primers containing 4.0 x 10(-7) to 2.0 x 10(-4) mol/g iron (II) perchlorate. Each specimen was then bonded to a stainless-steel rod with a luting agent (MMA-TBB resin) consisting of methyl methacrylate (MMA), poly(methyl methacrylate) (PMMA), and tri-n-butylborane (TBB) initiator. Tensile strengths of the bonded tooth specimens were then determined after 1 day immersion in water. Results were analyzed using ANOVA and Duncan's new multiple range test (p MMA-TBB resin, are potentially applicable for seating resin-bonded restorations.

  5. The effect of water content on the electropolishing behavior of Inconel 718 alloy in perchloric-acetic acid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C A [Department of Mechanical Engineering, Chang Gung University, Taoyuan 333, Taiwan (China)], E-mail: gfehu@mail.cgu.edu.tw; Chen, Y C [Department of Mechanical Engineering, Chang Gung University, Taoyuan 333, Taiwan (China)

    2009-09-15

    The electropolishing behavior of Inconel 718 alloy was studied in perchloric-acetic acid mixtures using a rotating disc electrode. The electropolishing behavior of an Inconel 718 weld, which was prepared with electron beam welding, was also investigated. A leveled but not brightened surface can be achieved when Inconel 718 alloy is potentiostatically polished in the acid mixture with 20 vol.% perchloric acid. Interestingly, a brightening effect could be obtained in this acid mixture by adding 10-50 ml l{sup -1} water or by being at rest at room temperature for several days. When electropolishing in acid mixture with 40 vol.% perchloric acid, leveling and brightening of the Inconel 718 surface can be detected. When electropolished in this acid mixture, the fusion zone of the Inconel 718 weld cannot be leveled together with its nearby base metal. Nevertheless, a good polished surface of the Inconel 718 weld can be achieved with the acid mixture with 20 vol.% perchloric acid by adding 40 ml l{sup -1} of water. Electropolishing was performed in the limiting diffusion current region where the transport of water to the anode seemed to be the rate-determining process.

  6. Chitosan Derivatives as Important Biorefinery Intermediates. Quaternary Tetraalkylammonium Chitosan Derivatives Utilized in Anion Exchange Chromatography for Perchlorate Removal

    Directory of Open Access Journals (Sweden)

    Shakeela Sayed

    2015-04-01

    Full Text Available There has recently been great interest in the valorization of biomass waste in the context of the biorefinery. The biopolymer chitosan, derived from chitin, is present in large quantities of crustacean waste. This biomass can be converted into value-added products with applications in energy, fuel, chemicals and materials manufacturing. The many reported applications of this polymer can be attributed to its unique properties, such as biocompatibility, chemical versatility, biodegradability and low toxicity. Cost effective water filters which decontaminate water by removal of specific impurities and microbes are in great demand. To address this need, the development of ion exchange resins using environmentally friendly, renewable materials such as biopolymers as solid supports was evaluated. The identification and remediation of perchlorate contaminated water using an easy, inexpensive method has come under the spotlight recently. Similarly, the use of a low cost perchlorate selective solid phase extraction (SPE cartridge that can be rapidly employed in the field is desirable. Chitosan based SPE coupled with colorimetric analytical methods showed promise as a renewable anion exchange support for perchlorate analysis or removal. The polymers displayed perchlorate retention comparable to the commercial standard whereby the quaternized iron loaded polymer TMC-Fe(III displayed the best activity.

  7. Perchlorate, Nitrate, and Iodine Uptake and Distribution in Lettuce (Lactuca sativa L.) and Potential Impact on Background Levels in Humans

    NARCIS (Netherlands)

    Voogt, W.; Jackson, A.

    2010-01-01

    Much focus has been placed on the impact of exposure to perchlorate (ClO4-) from drinking water. Recently, it has become more apparent that a significant percentage of the total ClO4- exposure may be due to ingestion of food. Most studies have only evaluated the uptake and distribution of ClO4- by

  8. Demonstration of a Full-Scale Fluidized Bed Bioreactor for the Treatment of Perchlorate at Low Concentrations in Groundwater

    Science.gov (United States)

    2009-01-01

    in the La Puente Valley County Water District, California was 4.95 million dollars, with a daily operational cost of nearly $1,000 dollars for...PERCHLORATE CONC., FILTERED WATER PLC Loop configured level switch SYSTEM RECYCLE 2 sec. Note 1: Reference LMI literature related to flow

  9. Medium effects on a C-H bond fission reaction. Solvent and salt effects on the solvolysis of arylsulfonylmethyl perchlorates.

    NARCIS (Netherlands)

    Menninga, Lubbertus

    1976-01-01

    In this thesis, medium effects on the general basecatelyzed solvolysis of two arylsulfonylmethyl perchlorates are described and analyzed in some detail. For the aqueous media, special attention is given to possible effects due to changes in diffusionally averaged water structure. ... Zie: Summary

  10. Synthesis and characterization of reduced scandium halide containing one- and two-dimensional metal bonded arrays. [Sc--ScCl3; Cs3Sc2Cl9; CsScCl3

    Energy Technology Data Exchange (ETDEWEB)

    Poeppelmeier, K.R.

    1978-08-01

    The stabilization effect of metal-metal bond formation on reduced scandium compounds was studied. The binary compounds Sc/sub 7/Cl/sub 12/, Sc/sub 5/Cl/sub 8/, Sc/sub 7/Cl/sub 10/ and ScCl were prepared by high temperature techniques and were characterized by single crystal x-ray diffraction. The respective metal arrays in these compounds can be viewed as fragments of scandium metal ranging from discrete six atom metal cluster species (Sc(Sc/sub 6/Cl/sub 12/)), through intermediate single and double infinite chain configurations ((ScCl/sub 2/)(Sc/sub 4/Cl/sub 6/)) and ((ScCl/sub 2/)(Sc/sub 6/Cl/sub 8/)) to double metal close-packed sheets (ScCl). The halogen atoms effectively isolate the clusters, chains and sheets by bonding face, edge or exo positions on the metal arrays. The common occurrence of isolated scandium (III) ions emphasizes that a minimum number of bonding electrons is required to stabilize what are formally anionic metal arrays. The distribution of the reduction electrons in these anisotropic materials was studied by magnetic susceptibility, EPR and uv-X photoelectron spectroscopy. The ternary compounds studied were Cs/sub 3/Sc/sub 2/Cl/sub 9/ and CsScCl/sub 3/. The anion-bridged metal chain of the hexagonal perovskite structure was found to stabilize scandium (II). CsScCl/sub 3/ was found to be grossly nonstoichiometric on the transition metal site and the effects of the mixed valence character were studied between the single valence extremes Cs/sub 3/Sc/sub 2 + x/Cl/sub 9/; 0< x < 1.0.

  11. Spatial distribution of perchlorate, iodide and thiocyanate in the aquatic environment of Tianjin, China: environmental source analysis.

    Science.gov (United States)

    Qin, Xiaolei; Zhang, Tao; Gan, Zhiwei; Sun, Hongwen

    2014-09-01

    Although China is the largest producer of fireworks (perchlorate-containing products) in the world, the pathways through which perchlorate enters the environment have not been characterized completely in this country. In this study, perchlorate, iodide and thiocyanate were measured in 101 water samples, including waste water, surface water, sea water and paired samples of rain water and surface runoff collected in Tianjin, China. The concentrations of the target anions were generally on the order of rain>surface water≈waste water treatment plant (WWTP) influent>WWTP effluent. High concentrations of perchlorate, iodide and thiocyanate were detected in rain samples, ranging from 0.35 to 27.3 (median: 4.05), 0.51 to 8.33 (2.92), and 1.31 to 107 (5.62) ngmL(-)(1), respectively. Furthermore, the concentrations of the target anions in rain samples were significantly (r=0.596-0.750, p<0.01) positively correlated with the concentrations obtained in the paired surface runoff samples. The anions tested showed a clear spatial distribution, and higher concentrations were observed in the upper reaches of rivers, sea waters near the coast, and rain-surface runoff pairs sampled in urban areas. Our results revealed that precipitation may act as an important source of perchlorate, iodide and thiocyanate in surface water. Moreover, iodide concentrations in the Haihe River and Dagu Drainage Canal showed a good correlation with an ideal marker (acesulfame) of domestic waste water, indicating that input from domestic waste water was an important source of iodide in the surface waters of Tianjin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Impacts of nitrate and electron donor on perchlorate reduction and microbial community composition in a biologically activated carbon reactor.

    Science.gov (United States)

    Zhu, Yanping; Wu, Min; Gao, Naiyun; Chu, Wenhai; Wang, Shuaifeng

    2016-12-01

    The sensitivity of perchlorate reduction and microbial composition to varied nitrate and acetate loadings was studied in a biologically activated carbon reactor with perchlorate loading and empty bed contact time fixed at 5 mg/L and 226 min, respectively. In stage 1, the sole electron acceptor ClO4- realized complete removal with ≥21.95 mg C/L of acetate supply. As nitrate loading gradually increased to 5 mg/L (stage 2), perchlorate reduction was slightly promoted and both ClO4- and NO3- were completely removed at an acetate loading of 29.7 mg C/L. When nitrate loading continued increasing to 10-60 mg/L (stage 3), perchlorate reduction converted to be inhibited, along with nondetectable NO3- and approximately exhausted DOC in effluent. When acetate loading increased to 43.9 mg C/L in stage 4, both ClO4- and NO3- were again removed, though lags still existed in perchlorate reduction. β-Proteobacteria accounted for about 60%, 55%, 58%, 61% and 12% in samples from the base and top of the filter in stage 1 and those from the base, middle and top in stage 4, respectively. These findings implied that ratio of NO3- to ClO4- loadings and acetate loading were two key factors impacting ClO4- reduction and microbial structure along the filter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Perchlorate and selected metals in water and soil within Mount Rushmore National Memorial, South Dakota, 2011–15

    Science.gov (United States)

    Hoogestraat, Galen K.; Rowe, Barbara L.

    2016-04-14

    Mount Rushmore National Memorial is located in the east-central part of the Black Hills area of South Dakota and is challenged to provide drinking water to about 3 million annual visitors and year-round park personnel. An environmental concern to water resources within Mount Rushmore National Memorial has been the annual aerial fireworks display at the memorial for the Independence Day holiday during 1998–2009. A major concern of park management is the contamination of groundwater and surface water by perchlorate, which is used as an oxidizing agent in firework displays. A study by the U.S. Geological Survey, in cooperation with the National Park Service, was completed to characterize the occurrence of perchlorate and selected metals (constituents commonly associated with fireworks) in groundwater and surface water within and adjacent to Mount Rushmore National Memorial during 2011–15. Concentrations of perchlorate and metals in 106 water samples (collected from 6 groundwater sites and 14 surface-water sites) and 11 soil samples (collected from 11 soil sites) are reported.Within the Mount Rushmore National Memorial boundary, perchlorate concentrations were greatest in the Lafferty Gulch drainage basin, ranging from less than 0.20 to 38 micrograms per liter (μg/L) in groundwater samples and from 2.2 to 54 μg/L in surface-water samples. Sites within the Starling Gulch drainage basin also had some evidence of perchlorate contamination, with concentrations ranging from 0.61 to 19 μg/L. All groundwater and surface-water samples within the unnamed tributary to Grizzly Bear Creek drainage basin and reference sites outside the park boundary had concentrations less than 0.20 μg/L. Perchlorate concentrations in samples collected at the 200-foot-deep production well (Well 1) ranged from 17 to 38 μg/L with a median of 23 μg/L, whereas perchlorate concentrations in samples from the 500-foot-deep production well (Well 2) ranged from 2.1 to 17 μg/L, with a median of 6

  14. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier

    Science.gov (United States)

    Borden, Robert C.

    2007-10-01

    A detailed field pilot test was conducted to evaluate the use of edible oil emulsions for enhanced in situ biodegradation of perchlorate and chlorinated solvents in groundwater. Edible oil substrate (EOS®) was injected into a line of ten direct push injection wells over a 2-day period to form a 15-m-long biologically active permeable reactive barrier (bio-barrier). Field monitoring results over a 2.5-year period indicate the oil injection generated strongly reducing conditions in the oil-treated zone with depletion of dissolved oxygen, nitrate, and sulfate, and increases in dissolved iron, manganese and methane. Perchlorate was degraded from 3100 to 20,000 μg/L to below detection (oil and adaptation of the in situ microbial community. Approximately 4 months after emulsion injection, concentrations of 1,1,1-trichloroethane (TCA), perchloroethene (PCE), trichloroethene (TCE) and their degradation products appeared to reach a quasi steady-state condition. During the period from 4 to 18 months, TCA was reduced from 30-70 μM to 0.2-4 μM during passage through the bio-barrier. However, 1-9 μM 1,1-dichloroethane (DCA) and 8-14 μM of chloroethane (CA) remained indicating significant amounts of incompletely degraded TCA were discharging from the oil-treated zone. During this same period, PCE and TCE were reduced with concurrent production of 1,2- cis-dichloroethene ( cis-DCE). However, very little VC or ethene was produced indicating reductive dechlorination slowed or stopped at cis-DCE. The incomplete removal of TCA, PCE and TCE is likely associated with the short (5-20 days) hydraulic retention time of contaminants in the oil-treated zone. The permeability of the injection wells declined by 39-91% (average = 68%) presumably due to biomass growth and/or gas production. However, non-reactive tracer tests and detailed monitoring of the perchlorate plume demonstrated that the permeability loss did not result in excessive flow bypassing around the bio

  15. Monitoring Performance of a Dual Wall Permeable Reactive Barrier for Treating Perchlorate and TCE

    Science.gov (United States)

    Dowman, C. E.; Hashimoto, Y.; Warner, S.; Bennett, P.; Gandhi, D.; Szerdy, F.; Neville, S.; Fennessy, C.; Scow, K. M.

    2008-12-01

    AMEC Geomatrix, through collaboration with Aerojet General Corporation and the University of California, Davis (UCD), has performed work leading to the installation of a dual wall permeable reactive barrier (PRB) system capable of treating perchlorate and chlorinated aliphatic hydrocarbon compounds (CAHs), including trichloroethylene (TCE), at Aerojet's Area 40 site in Sacramento, California. This unique system consisted of an upgradient zero-valent iron (ZVI) permeable reactive barrier (PRB) that is intended to not only degrade CAHs, but also, provide hydrogen generated from the ZVI corrosion process, to a downgradient bio-effective PRB (carbohydrate solution circulated through a gravel-packed trench) for destroying perchlorate. The subsurface was characterized during a site investigation, and numerous logistical and site-specific challenges of installation were addressed. The site-specific challenges included installation of a passive remediation system in a remote location with no access to electricity. The selected remediation system was keyed into the undulating bedrock 20 to 25 feet below the ground surface without the use of shoring. Under a collaborative effort, UCD provided initial bench testing. AMEC Geomatrix designed and installed the dual wall system consisting of two approximately parallel 50-foot long by 2-foot thick by 25-foot deep PRB segments which are separated by about 8 feet perpendicular to the approximate direction of groundwater flow. AMEC Geomatrix performed the installation of performance monitoring network, which consisted of 21 wells, and monitored these points for a 6-month period. Monitoring and sampling techniques were designed to measure water levels and water quality parameters in the subsurface during sampling events, to better assess the hydrologic and chemical processes. The monitoring results indicate that the upgradient ZVI PRB effectively treats groundwater with TCE concentrations approaching 60 mg/L, and in addition, may

  16. Scandium functionalized carbon aerogel: Synthesis of nanoparticles and structure of a new ScOCl and properties of NaAlH{sub 4} as a function of pore size

    Energy Technology Data Exchange (ETDEWEB)

    Javadian, Payam; Nielsen, Thomas K. [Center for Energy Materials, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000 Aarhus (Denmark); Ravnsbæk, Dorthe B. [Department of Material Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02142, MA (United States); Jepsen, Lars H. [Center for Energy Materials, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000 Aarhus (Denmark); Polanski, Marek [Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw (Poland); Plocinski, Tomasz [Faculty of Material Science and Engineering, Warsaw University of Technology, 144 Woloska Str., 02-507 Warsaw (Poland); Kunce, Izabela [Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw (Poland); Besenbacher, Flemming [Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Bystrzycki, Jerzy [Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw (Poland); Jensen, Torben R., E-mail: trj@chem.au.dk [Center for Energy Materials, Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000 Aarhus (Denmark)

    2015-11-15

    A new method for scandium-functionalization of carbon aerogels forming nanoparticles of a new scandiumoxochloride, ScOCl is presented. Sodium aluminiumhydride, NaAlH{sub 4}, is successfully melt infiltrated into the nano porous scaffolds with pore sizes of D{sub max}=7, 10, 13, 21, 26 and 39 nm, containing scandium based nano particles (<2.9 wt%) confirmed by elemental analysis and scanning electron microscopy. A systematic study of hydrogen storage properties of the nano composite materials is presented. An aqueous solution of ScCl{sub 3} was initially infiltrated and formed nanoconfined [Sc(OH)(H{sub 2}O){sub 5}]{sub 2}Cl{sub 4}(H{sub 2}O){sub 2}, which transforms to nanoparticles of a new scandium oxochloride, ScOCl at 192 °C and to Sc{sub 2}O{sub 3} at 420 °C. ScOCl crystallizes in an orthorhombic unit cell a=3.4409(8), b=3.9613(6) and c=8.178(2) Å, space group Pmmn, and is built from layers of [ScO{sub 4}Cl{sub 2}] octahedra forming neutral ScOCl layers. Temperature programmed desorption mass spectroscopy shows slightly improved kinetics for release of hydrogen with decreasing pore size. Continuous cycling of hydrogen release and uptake measured by the Sieverts' method reveal a larger preserved hydrogen storage capacity for scandium-functionalized aerogel with the larger pores (39 nm). - Highlights: • New synthesis approach for nanoporous Sc-functionalization carbon aerogel (Sc-CA). • The new scandium oxochloride, ScOCl, structure is obtained. • NaAlH{sub 4} nanoconfined in Sc-CA with pores ranging between 7 nm

  17. Perchlorate remediation using packed-bed bioreactors and electricity generation in microbial fuel cells (MFCs)

    Science.gov (United States)

    Min, Booki

    Two pilot-scale fixed bed bioreactors were operated in continuous mode in order to treat groundwater contaminated by perchlorate. The bioreactors were constructed and operated side-by-side at the Texas Street Well Facility in Redlands, California. Each reactor was packed with either sand or plastic media. A perchlorate-reducing bacterium, Dechlorosoma sp. KJ, was used to inoculate the bioreactors. Perchlorate was successfully removed down to a non-detectable level (flow rate of 0.126 L/s. A regular backwashing cycle (once a week) was an important factor for completely removing perchlorate in groundwater. Power generation directly from pure or mixed organic matter was examined using microbial fuel cells (MFCs), which were run either in batch or continuous mode. In batch experiments, both a pure culture (Geobactor metallireducens) and a mixed culture (wastewater inoculum) were used as the biocatalyst, and acetate was added as substrate in the anode chamber of the MFC. Power output in a membrane MFC with either inoculum was essentially the same, with 40 +/- 1 mW/m2 for G. metallireducens and 38 +/- 1 mW/m2 for mixed culture. A different type of the MFC containing a salt bridge instead of a membrane system was examined to generate power using the same substrate and pure culture as used in the membrane MFC. Power output in the salt bridge MFC was 2.2 mW/m 2. It was found that the lower power output was directly attributed to the higher internal resistance of the salt bridge system (19920 +/- 50 O) in comparison with that of the membrane system (1286 +/- 1 O). Continuous electricity generation was examined in a flat plate microbial fuel cell (FPMFC) using domestic wastewater and specific organic substrates. The FPMFC, containing a combined electrode/proton exchange membrane (PEM), was initially acclimated for one month to domestic wastewater, and then was operated as a plug flow reactor system. Power density using domestic wastewater as a substrate was 72 +/- 1 mW/m2 at

  18. Large Angular Jump Mechanism Observed for Hydrogen Bond Exchange in Aqueous Perchlorate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Minbiao; /SLAC, PULSE /Stanford U., Phys. Dept.; Odelius3, Michael; /Stockholm U.; Gaffney1, K.J.; /aff SLAC, PULSE

    2010-06-11

    The mechanism for hydrogen bond (H-bond) switching in solution has remained subject to debate despite extensive experimental and theoretical studies. We have applied polarization-selective multidimensional vibrational spectroscopy to investigate the H-bond exchange mechanism in aqueous NaClO{sub 4} solution. The results show that a water molecule shifts its donated H-bonds between water and perchlorate acceptors by means of large, prompt angular rotation. Using a jump-exchange kinetic model, we extract an average jump angle of 49 {+-} 4{sup o}, in qualitative agreement with the jump angle observed in molecular dynamics simulations of the same aqueous NaClO{sub 4} solution.

  19. Potentiometric Electronic Tongue to Resolve Mixtures of Sulfide and Perchlorate Anions

    Directory of Open Access Journals (Sweden)

    Deivy Wilson

    2011-03-01

    Full Text Available This work describes the use of an array of potentiometric sensors and an artificial neural network response model to determine perchlorate and sulfide ions in polluted waters, by what is known as an electronic tongue. Sensors used have been all-solid-state PVC membrane selective electrodes, where their ionophores were different metal-phtalocyanine complexes with specific and anion generic responses. The study case illustrates the potential use of electronic tongues in the quantification of mixtures when interfering effects need to be counterbalanced: relative errors in determination of individual ions can be decreased typically from 25% to less than 5%, if compared to the use of a single proposed ion-selective electrode.

  20. Thermal analysis of the exothermic reaction between galvanic porous silicon and sodium perchlorate.

    Science.gov (United States)

    Becker, Collin R; Currano, Luke J; Churaman, Wayne A; Stoldt, Conrad R

    2010-11-01

    Porous silicon (PS) films up to ∼150 μm thick with specific surface area similar to 700 m(2)/g and pore diameters similar to 3 nm are fabricated using a galvanic corrosion etching mechanism that does not require a power supply. After fabrication, the pores are impregnated with the strong oxidizer sodium perchlorate (NaClO(4)) to create a composite that constitutes a highly energetic system capable of explosion. Using bomb calorimetry, the heat of reaction is determined to be 9.9 ± 1.8 and 27.3 ± 3.2 kJ/g of PS when ignited under N(2) and O(2), respectively. Differential scanning calorimetry (DSC) reveals that the energy output is dependent on the hydrogen termination of the PS.

  1. The Nitrate/Perchlorate Ratio on Mars as an Indicator for Habitability

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; McKay, C. P.; Navarro-Gonzalex, R.; Freissinet, C.; Conrad, P. G.; Mahaffy, P. R.; Archer, P. D., Jr.; Ming, D. W.; Niles, P. B.; hide

    2015-01-01

    Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and the potential development of a nitrogen cycle at some point in martian history. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected evolved nitric oxide (NO) gas during pyrolysis of scooped aeolian sediments and drilled mudstone acquired in Gale Crater. The detection of NO suggests an indigenous source of fixed N, and may indicate a mineralogical sink for atmospheric N2 in the form of nitrate. The ratio of nitrate to oxychlorine species (e.g. perchlorate) may provide insight into the extent of development of a nitrogen cycle on Mars.

  2. Non-aqueous titrimetric assay of gabapentin in capsules using perchloric acid as titrant

    Directory of Open Access Journals (Sweden)

    SAMEER A.M. ABDULRAHMAN

    2011-06-01

    Full Text Available Two simple, rapid, accurate and inexpensive methods using visual and potentiometric titrimetric techniques are described for the determination of gabapentin (GBP in bulk drug as well as in capsules. The methods are based on the neutralization reaction of the primary amino group of GBP with acetous perchloric acid as titrant in anhydrous acetic acid medium. The end point was detected either visually using crystal violet as indicator or potentiometrically using a modified glass electrode SCE electrode system. Both methods are applicable over the range 1.0-16.0 mg of GBP and the titration reaction follows a 1:1 stoichiometry. The methods were successfully applied to the determination of GBP in capsules. The validity of the proposed methods was further ascertained by parallel determination by a reference method and by recovery studies via standard-addition technique.

  3. Inhibiting effects of some oxadiazole derivatives on the corrosion of mild steel in perchloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Lebrini, Mounim [Laboratoire de Cristallochimie et Physicochimie du Solide UMR 8012 ENSCL, BP. 108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, Fouad [Laboratoire de Cristallochimie et Physicochimie du Solide UMR 8012 ENSCL, BP. 108, F-59652 Villeneuve d' Ascq Cedex (France); Laboratoire de Chimie de Coordination et d' Analytique, Universite Chouaib Doukkali, Faculte des Sciences, B.P. 20, El Jadida (Morocco); Vezin, Herve [Laboratoire de Chimie Organique et Macromoleculaire, CNRS UMR 8009, USTL Ba-hat t C4, F-59655 Villeneuve d' Ascq Cedex (France); Lagrenee, Michel [Laboratoire de Cristallochimie et Physicochimie du Solide UMR 8012 ENSCL, BP. 108, F-59652 Villeneuve d' Ascq Cedex (France)]. E-mail: michel.lagrenee@ensc-lille.fr

    2005-11-15

    The efficiency of 3,5-bis(n-pyridyl)-1,3,4-oxadiazole (n-POX, n = 1, 2, 3), as corrosion inhibitors for mild steel in 1 M perchloric acid (HClO{sub 4}) have been determined by weight loss measurements and electrochemical studies. The results show that these inhibitors revealed a good corrosion inhibition even at very low concentrations. Comparison of results among those obtained by the studied oxadiazoles shows that 3-POX was the best inhibitor. Polarisation curves indicate that n-pyridyl substituted-1,3,4-oxadiazoles are mixed type inhibitors in 1 M HClO{sub 4}. The adsorption of these inhibitors follows a Langmuir isotherm model. The electronic properties of n-POX, obtained using the AM1 semi-empirical quantum chemical approach, were correlated with their experimental efficiencies using the linear resistance model (LR)

  4. Comparative Demonstration of Active and Semi-Passive In Situ Bioremediation Approaches for Perchlorate Impacted Groundwater: Active In Situ Bioremediation Demonstration

    Science.gov (United States)

    2013-04-01

    a system that simply treats a downgradient plume of perchlorate. Applying an active approach in the source area would have a higher initial capital...airbags, and commercial explosives . Perchlorate exhibits high solubility and mobility in water and is stable, being degraded only under anaerobic...large volumes of oil emulsion that can reduce the hydraulic conductivity of the treatment zone and cause diversion of groundwater around the

  5. Application of Probabilistic Risk Assessment in Establishing Perchlorate and Goitrogen Risk Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Douglas Crawford-Brown

    2015-08-01

    Full Text Available This paper applies probabilistic risk assessment in quantifying risks from cumulative and aggregate risk pathways for selected goitrogens in water and food. Results show that the percentages of individuals with a Hazard Index (HI value above 1 ranges between 30% and 50% both with and without serum half-life correction when a traditional regulatory assessment approach based on establishment of a No Observed Effects Level (NOEL is used. When an exposure-response curve is instead used and a threshold of 50% inhibition is assumed, 1.1% or less of the population exceeds an HI value of 1 with no serum half-life correction, rising to as high as 11% when serum half-life correction is applied. If 0% to 5% threshold for iodide uptake inhibition is assumed for production of adverse effects, the percentage of the population with an HI above 1 is 46.2% or less with no serum half-life correction, and 47.2% or less when serum half-life correction is applied. The probabilistic analysis shows that while there are exposed groups for whom perchlorate exposures are the primary cause of individuals having HI values above 1, these constitute significantly less than 1% of the population. Instead, the potential risk from exposure to goitrogens is dominated by nitrates without serum half-life correction and thiocyanates with serum half-life correction, suggesting public health protection is better accomplished by a focus on these and other goitrogens expect in highly limited cases where waterborne perchlorate is at unusually high concentrations.

  6. Mechanical strength and ionic conductivity of polymer electrolyte membranes prepared from cellulose acetate-lithium perchlorate

    Science.gov (United States)

    Sudiarti, T.; Wahyuningrum, D.; Bundjali, B.; Made Arcana, I.

    2017-07-01

    The need for secondary batteries is increasing every year. The secondary battery using a liquid electrolyte has some weaknesses. A solid polymer electrolyte is the alternative electrolytes developed to replace the liquid electrolyte type. This study was conducted to determine the effect of lithium perchlorate content on the polymer electrolyte membranes of cellulose acetate-LiClO4. The cellulose acetate-LiClO4 membranes were prepared by mixing cellulose acetate and LiClO4 in various compositions using tetrahydrofurane (THF) as solvent. The effect of LiClO4 ratios on the polymer electrolyte membranes was studied by analysis of the functional groups using FTIR (Fourier Transform Infrared) spectroscopy measurement, the ionic conductivity by EIS (Electrochemical Impedance Spectroscopy) method, and mechanical properties by tensile tester measurements. The ionic conductivity of the membranes increased with the increasing in the ratios of lithium perchlorate content in the membranes and reached the optimum value at 1.79×10-4 S cm-1 corresponded to the cellulose acetate doped with 25% (w/w) LiClO4 membrane. The presence of 10% (w/w) LiClO4 content within cellulose acetate membranes can increase the mechanical properties of the membranes from 19.89 to 43.29 MPa for tensile strength, and from 2.55 to 4.53% for elongation at break. However, when the cellulose acetate membranes containing ratio of LiClO4 more than 10% (w/w), consequently the tensile strength tended to decrease and the elongation at break was increased.

  7. Perchlorate and Volatiles in the Brine of Lake Vida (antarctica): Implication for the Analysis of Mars Sediments

    Science.gov (United States)

    Kenig, F. P. H.; Chou, L.; McKay, C.; Jackson, W. A.; Doran, P. T.; Murray, A. E.; Fritsen, C. H.

    2015-12-01

    A cold (-13.4 °C), saline (188 psu) evaporative brine is encapsulated in the thick (> 27 m) ice of Lake Vida (McMurdo Dry Valleys, Antarctica). The Lake Vida brine (LVBr), which contains abundant dissolved organic carbon (48.2 mmol/L), support an active but slow microbial community. LVBr contains oxychlorines with 50 μg/L of perchlorate and 11 μg/L of chlorate. The McMurdo Dry Valleys have often been considered as a good Mars analog. The oxychlorine-rich brine of Lake Vida constitutes a potential equivalent to perchlorate-rich preserved saline liquid water on Mars. We report here on the artifacts created by oxychlorines upon analysis of volatiles and volatile organic compounds (VOCs) of LVBr by direct immersion (DI) and head space (HS) solid phase micro extraction (SPME) gas chromatography-mass spectrometry (GCMS). We compare analytical blanks to a standard containing 40 μg/L of perchlorate and to actual LVBr sample runs. All blanks, perchlorate blanks and samples were analyzed using two types of SPME fibers, CarboxenTM/polydimethylsiloxane (PDMS) and divinylbenzene (DVB)/ PDMS. The similarities and differences between our results and those obtained by the Sample Analysis at Mars instruments of the rover Curiosity are discussed. The volatiles evolved from LVBr upon analysis with DI- and HS-SPME GCMS are dominated by CO2, dichloromethane, HCl, and volatile organic sulfur compounds (VOSCs, such as DMS, DMDS). The volatiles also include oxygenated compounds such as acids and ketones, aromatic compounds, hydrocarbons, chlorinated compounds (dominated by dichloromethane). Apart from the VOSCs, short chain hydrocarbons and some functionalized compounds derived from the brine itself, all compounds observed are artifacts formed upon oxychlorine breakdown in the injector of the GCMS. The distribution of aromatic compounds seems to be directly dependant on the type of SPME fiber used. The perchlorate blanks show a clear pattern of carbon limitation, likely affecting the

  8. Novel miniaturized sensors for potentiometric batch and flow-injection analysis (FIA) of perchlorate in fireworks and propellants.

    Science.gov (United States)

    Almeer, Saeed H M A; Zogby, Ibrahim A; Hassan, Saad S M

    2014-11-01

    Three planar miniaturized perchlorate membrane sensors (3×5 mm(2)) are prepared using a flexible Kaptan substrate coated with nitron-perchlorate (NT-ClO4) [sensor 1], methylene blue-perchlorate (MB-ClO4) [sensor II] and indium-porphyrin (In-Por) [sensor III] as electroactive materials in PVC membranes plasticized with 2-NPPE. Sensors I, II and III display near-Nernstian response for 1.0×10(-5)-1.0×10(-2), 3.1×10(-5)-1.0×10(-2) and 3.1×10(-6)-1.0×10(-2) mol L(-1) ClO4(-) with lower detection limits of 6.1×10(-6), 6.9×10(-6) and 1.2×10(-6) mol L(-1), and anionic calibration slopes of 50.9±0.4, 48.4±0.4 and 57.7±0.3 mV decade(-1), respectively. Methods for determining perchlorate using these sensors offer many attractive advantages including simplicity, flexibility, cost effectiveness, wide linear dynamic response range (0.1-1000 ppm), low detection limit (<1.2×10(-6) mol L(-1)≡0.1 ppm), small sample test volume (100 μL), safety, short response time (<20 s), long life span (~8 weeks), and extended wide working pH range (4.5-8.0). The sensors show high selectivity in the presence of some inorganic ions (e.g., PO4(3-), SO4(2-), S2O3(2-), NO2(-), NO3(-), N3(-), CN(-), Cl(-), Br(-), I(-)) and automation feasibility. Indium-porphyrin based membrane sensor (sensor III) is used as a detector in a wall-jet flow injection set-up to enable accurate flow injection analysis (FIA) of perchlorate in some fireworks without interferences from the associated reducing agents (sulfur and charcoal), binders (dextrin, lactose), coloring agents (calcium, strontium, copper, iron, sodium), color brighten (linseed oil) and regulators (aluminum flakes) which are commonly used in the formulations. The sensor is also used for perchlorate assessment in some propellant powders. The results fairly agree with data obtained by ion-chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The Effect of Mars-relevant Minerals on the Water Uptake of Magnesium Perchlorate and Implications for the Near-surface of Mars

    Science.gov (United States)

    Primm, Katherine; Gough, Raina; Rivera-Valentin, Edgard G.; Tolbert, Margaret

    2017-10-01

    The water uptake and release by hygroscopic salts such as perchlorate has been well studied in the decade since they were first discovered on the surface of Mars. However, there have been few studies on the effect of the insoluble regolith minerals on this well documented interaction of perchlorate and water vapor. In this work, we investigate the effect that two insoluble Mars-relevant minerals, montmorillonite and Mojave Mars Simulant (MMS), have on the water uptake (deliquescence), ice formation, and recrystallization (efflorescence) of pure magnesium perchlorate. We studied mixtures of equal parts (by mass) magnesium perchlorate hexahydrate and either montmorillonite or MMS. Although montmorillonite and MMS are insoluble minerals that may serve as nuclei for either ice nucleation or salt efflorescence, we find that these minerals did not affect any of the phase transitions of magnesium perchlorate. The salt-mineral mixture behaved like pure magnesium perchlorate in all cases, with stable deliquescence as well as metastable brine supersaturation and supercooling observed. Experiments were performed in both N2 and CO2 atmospheres, with no detectable difference. We use data from the Rover Environmental Monitoring Station instrument on MSL and from the Thermal and Electrical Conductivity Probe instrument on Phoenix, as well as modeling of the shallow subsurface near the rover and lander, to determine the likelihood of liquid water and water ice at Gale Crater and the Phoenix landing site.

  10. Crystal structure of aqua(perchloratobis[μ-(E-2-({[2-(pyridin-2-ylethyl]imino}methylphenolato-κ4N,N′,O:O]dicopper(II perchlorate

    Directory of Open Access Journals (Sweden)

    Ugochukwu Okeke

    2017-11-01

    Full Text Available The title compound, [Cu2(ClO4(C14H13N2O2(H2O]ClO4, crystallizes as an unsymmetrical dinuclear cation bridged by the phenoxy O atoms with one CuII atom coordinated by a water molecule and the other by a perchlorate anion, thus making both CuII atoms five-coordinate, and with a further perchlorate anion present for charge balance. A long interaction [2.9893 (5 Å] between one of the two CuII atoms and an O atom of the perchlorate counter-ion links the cations and anions into linear chains along the a-axis direction. In addition, the water H atoms link with the perchlorate counter-ion. These interactions, along with numerous C—H...O interactions between the tetrahedral perchlorate anions, link the ions into a complex three-dimensional array. One of the perchlorate anions is disordered over two conformations with occupancies of 0.586 (4 and 0.414 (4.

  11. Dracorhodin perchlorate induces apoptosis in bladder cancer cells through Bcl-2, Bcl-XL, survivin down-regulation and caspase-3 activation

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2013-08-01

    Full Text Available Urinary bladder cancer is one of the most commonly diagnosed urological malignancies worldwide. Dracorhodin perchlorate, anthocyanin red pigment, has been recently shown to induce apoptotic cell death in several types of cancer cells. However, there is no report elucidating its effect on bladder cancer T24 cells. In this study, for the first time, we investigated the effects of dracorhodin perchlorate on the cell viability and apoptosis in human bladder cancer T24 cells. DNA flow cytometric analysis demonstrated that dracorhodin perchlorate markedly rendered apoptosis of T24 cells in a time-dependent manner. Dracorhodin perchlorate significantly induced the dissipation of mitochondrial membrane potential in T24 cells. Furthermore, dracor-hodin perchlorate-induced apoptosis was regulated by activation of caspase-3 and down-regulation of antiapoptotic proteins, Bcl-2, Bcl-XL, and survivin in T24 cells. These in vitro results suggested that dracorhodin perchlorate should be further examined for in vivo activity and molecular mechanism in human bladder cancer.

  12. Capture of perchlorate by a surface-modified bio-sorbent and its bio-regeneration properties: Adsorption, computations and biofouling.

    Science.gov (United States)

    Ren, Zhongfei; Xu, Xing; Gao, Baoyu; Li, Yanwei; Kong, Jian; Shang, Yanan; Song, Wen; Zhang, Qingzhu

    2017-10-01

    A magnetic amine-crosslinked reed (MACR) was synthesized by an insitu precipitation method and used for perchlorate uptake. The morphological properties of clean MACR, perchlorate-saturated MACR and bio-regenerated MACR samples were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and zeta potential measurements. The adsorption capacities of perchlorate by clean and bio-regenerated MACRs were determined. The density functional theory (DFT) method was employed to evaluate the binding free energies between various anions and ammonium/hydroxy groups. The maximum adsorption (Q max ) of perchlorate by MACR was calculated to be 195.5-232.8 mg/g at 30-50 °C. The theoretical computation of adsorption-free energies indicated that ammonium groups were dominant in the process of perchlorate adsorption; other anions, such as [H 2 PO 4 ] - , [NO 3 ] - and [SO 4 ] 2- , showed relatively higher binding free energies than [ClO 4 ] - , which corresponded to the results of competitive adsorption. The spent MACR was then bio-regenerated in a sealed 250-ml conical flask with perchlorate-reducing bacteria (30 °C, 160 rpm) and reached 81.4% of recovery within 3 days. Some hydrophobic macromolecules of extracellular polymeric substances (EPS) might have attached to the surface of MACR, which was validated by the zeta potential, SEM and excitation emission matrix (EEM) fluorescence spectroscopy results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Thermal Diffusivity and Specific Heat Measurements of Titanium Potassium Perchlorate Titanium Subhydride Potassium Perchlorate 9013 Glass 7052 Glass SB-14 Glass and C-4000 Muscovite Mica Using the Flash Technique

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Paul Elliott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    The flash technique was used to measure the thermal diffusivity and specific heat of titanium potassium perchlorate (TKP) ignition powder (33wt% Ti - 67wt% KP) with Ventron sup- plied titanium particles, TKP ignition powder (33wt% Ti - 67wt% KP) with ATK supplied titanium particles, TKP output powder (41wt% Ti - 59wt% KP), and titanium subhydride potassium perchlorate (THKP) (33wt% TiH 1.65 - 67wt% KP) at 25°C. The influence of density and temperature on the thermal diffusivity and specific heat of TKP with Ventron supplied titanium particles was also investigated. Lastly, the thermal diffusivity and specific heats of 9013 glass, 7052 glass, SB-14 glass, and C-4000 Muscovite mica are presented as a function of temperature up to 300° C.

  14. The use of the erbium, chromium:yttrium-scandium-gallium-garnet laser in endodontic treatment: the results of an in vitro study.

    Science.gov (United States)

    Schoop, Ulrich; Goharkhay, Kawe; Klimscha, Johannes; Zagler, Manuela; Wernisch, Johann; Georgopoulos, Apostolos; Sperr, Wolfgang; Moritz, Andreas

    2007-07-01

    The use of the erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser has become accepted in the field of cavity preparation. The development of miniaturized and flexible fiber tips has allowed this device to be used in endodontics. The authors conducted an in vitro study to assess the effects of Er,Cr:YSGG laser irradiation on root canals. The authors inoculated root canals with two bacteria, laser irradiated them at two power settings and subjected them to a quantitative microbiological evaluation. They used scanning electron microscopy (SEM) to assess morphological changes in endodontically processed and laser-irradiated root canal walls. They measured temperature increases on the root surface to determine possible thermal side effects. The bacteriological evaluation revealed a disinfecting effect in the root dentin samples that was dependent on the output power but not specific for the bacterial species investigated. SEM showed the removal of the smear layer from the root canal walls and the exposure of dentinal tubules. The temperature rise during irradiation was moderate when standardized power settings were used. The Er,Cr:YSGG laser can be used to eliminate bacteria in root canals. It also effectively removes smear layer and debris from the canal wall. Practitioners can use the Er,Cr:YSGG laser to prepare root canals for endodontic therapy.

  15. Aluminum-Scandium Alloys: Material Characterization, Friction Stir Welding, and Compatibility With Hydrogen Peroxide (MSFC Center Director's Discretionary Fund Final Report, Proj. No. 04-14)

    Science.gov (United States)

    Lee, J. A.; Chen, P. S.

    2004-01-01

    This Technical Memorandum describes the development of several high-strength aluminum (Al) alloys that are compatible with hydrogen peroxide (H2O2) propellant for NASA Hypersonic-X (Hyper-X) vehicles fuel tanks and structures. The yield strengths for some of these Al-magnesium-based alloys are more than 3 times stronger than the conventional 5254-H112 Al alloy, while maintaining excellent H2O2 compatibility similar to class 1 5254 alloy. The alloy development strategy is to add scandium, zirconium, and other transitional metals with unique electrochemical properties, which will not act as catalysts, to decompose the highly concentrated 90 percent H2O2. Test coupons are machined from sheet metals for H2O2 long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloys using friction stir welding has also been explored. The new high-strength alloys could represent an enabling material technology for Hyper-X vehicles, where flight weight reduction is a critical requirement.

  16. High-fluence and high-density treatment of perioral rhytides using a new, fractionated 2,790-nm ablative erbium-doped Yttrium Scandium Gallium Garnet Laser.

    Science.gov (United States)

    Ciocon, David H; Hussain, Mussarat; Goldberg, David J

    2011-06-01

    In this study, we evaluated the safety and efficacy of a novel 2,790-nm erbium-doped yttrium scandium gallium garnet (Er:YSGG) laser system for the treatment of facial photodamage and perioral wrinkles using a single-treatment, high-fluence, high-density protocol. Eleven female participants with Fitzpatrick skin types II to III and facial wrinkles underwent a single full-face fractional ablative treatment with a 2,790-nm Er:YSGG laser. Follow-up visits were completed at 1, 2, and 6 weeks 3 and 6 months. Quartile improvement scale (0-4) and Fitzpatrick wrinkle scores (1-9) were used for the assessments. Based on blinded photographic assessments, the mean difference in Fitzpatrick wrinkle scores for full face wrinkles was 1.5 ± 1.2 (a reduction from 6.6 to 5.1; paired t-test, p = .003). There was also a statistically significant mean reduction of 1.7 ± 1.3 in perioral wrinkle scores (from 6.7 to 5.0; p = .002). No serious adverse events were reported. A novel, fractionated, ablative 2,790-nm Er:YSGG laser can safely and effectively treat photodamage and perioral wrinkles in a single treatment using a high-fluence, high-density protocol. Cutera provided the equipment used in this study and funding to Dr. Goldberg. © 2011 by the American Society for Dermatologic Surgery, Inc.

  17. Impact of layer and substrate properties on the surface acoustic wave velocity in scandium doped aluminum nitride based SAW devices on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Gillinger, M., E-mail: manuel.gillinger@tuwien.ac.at; Knobloch, T.; Schneider, M.; Schmid, U. [Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna (Austria); Shaposhnikov, K.; Kaltenbacher, M. [Institute of Mechanics and Mechatronics, TU Wien, 1040 Vienna (Austria)

    2016-06-06

    This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotating the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.

  18. Bis(μ-bis{[4-(2-pyridylpyrimidin-2-yl]sulfanyl}methanedisilver(I bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Hai-Bin Zhu

    2010-12-01

    Full Text Available In the macrocyclic centrosymmetric dinuclear complex, [Ag2(C19H14N6S22](ClO42, the AgI atom, bis{[4-(2-pyridylpyrimidin-2-yl]sulfanyl}methane (2-bppt ligand and perchlorate anion each lie on a twofold rotation axis. The 2-bppt ligand chelates two four-coordinated AgI atoms through its two bipyridine-like arms. The O atoms of the perchlorate anion are disordered each over two positions of equal occupancy. Adjacent complex molecules are linked by π–π interactions between the pyridine and pyrimidine rings [centroid–centroid distance = 3.663 (8 Å].

  19. Poly[[tetrakis(μ2-pyrazine N,N′-dioxide-κ2O:O′erbium(III] tris(perchlorate

    Directory of Open Access Journals (Sweden)

    James D. Buchner

    2010-09-01

    Full Text Available The title three-dimensional coordination network, {[Er(C4H4N2O24](ClO43}n, is isostructural to that of other lanthanides. The Er+3 cation lies on a fourfold roto-inversion axis. It is coordinated in a distorted square-antiprismatic fashion by eight O atoms from bridging pyrazine N,N′-dioxide ligands. There are two unique pyrazine N,N′-dioxide ligands. One ring is located around an inversion center, and there is a a twofold rotation axis at the center of the other ring. There are also two unique perchlorate anions. One is centered on a twofold rotation axis and the other on a fourfold roto-inversion axis. The perchlorate anions are located in channels that run perpendicular to (001 and (110 and interact with the coordination network through C—H...O hydrogen bonds.

  20. Bis[5-(pyridin-2-ylpyrazine-2-carbonitrile-κ2N4,N5]silver(I perchlorate

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2011-12-01

    Full Text Available In the mononuclear title complex, [Ag(C10H6N42]ClO4, the AgI ion is surrounded by two 5-(pyridin-2-ylpyrazine-2-carbonitrile ligands, forming a considerably distorted square-planar N4-coordination geometry, with two short and two long Ag—N distances. Each perchlorate anion links two mononuclear coordination units through C—H...O(perchlorate hydrogen bonding, forming an infinite tape structure along [110]. Intermolecular π–π stacking interactions between adjacent pyridine and pyrazine rings [centroid–centroid distances of 3.777 (3 and 3.879 (2 Å] further assemble the tape motifs into a three-dimensional supramolecular structure.

  1. Analysis of perchlorate, thiocyanate, nitrate and iodide in human amniotic fluid using ion chromatography and electrospray tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Blount, Benjamin C. [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341 (United States)]. E-mail: bblount@cdc.gov; Valentin-Blasini, Liza [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341 (United States)

    2006-05-10

    Because of health concerns surrounding in utero exposure to perchlorate, we developed a sensitive and selective method for quantifying iodide, as well as perchlorate and other sodium-iodide symporter (NIS) inhibitors in human amniotic fluid using ion chromatography coupled with electrospray ionization tandem mass spectrometry. Iodide and NIS inhibitors were quantified using a stable isotope-labeled internal standards (Cl{sup 18}O{sub 4} {sup -}, S{sup 13}CN{sup -} and {sup 15}NO{sub 3} {sup -} with excellent assay accuracy of 100%, 98%, 99%, 95% for perchlorate, thiocyanate, nitrate and iodide, respectively, in triplicate analysis of spiked amniotic fluid sample). Excellent analytical precision (<5.2% RSD for all analytes) was found when amniotic fluid quality control pools were repetitively analyzed for iodide and NIS-inhibitors. Selective chromatography and tandem mass spectrometry reduced the need for sample cleanup, resulting in a rugged and rapid method capable of routinely analyzing 75 samples/day. Analytical response was linear across the physiologically relevant concentration range for the analytes. Analysis of a set of 48 amniotic fluid samples identified the range and median levels for perchlorate (0.057-0.71, 0.18 {mu}g/L), thiocyanate (<10-5860, 89 {mu}g/L), nitrate (650-8900, 1620 {mu}g/L) and iodide (1.7-170, 8.1 {mu}g/L). This selective, sensitive, and rapid method will help assess exposure of the developing fetus to low levels of NIS-inhibitors and their potential to inhibit thyroid function.

  2. Supercritical Carbon Dioxide Extraction of Coronene in the Presence of Perchlorate for In Situ Chemical Analysis of Martian Regolith

    Science.gov (United States)

    McCaig, Heather C.; Stockton, Amanda; Crilly, Candice; Chung, Shirley; Kanik, Isik; Lin, Ying; Zhong, Fang

    2016-09-01

    The analysis of the organic compounds present in the martian regolith is essential for understanding the history and habitability of Mars, as well as studying the signs of possible extant or extinct life. To date, pyrolysis, the only technique that has been used to extract organic compounds from the martian regolith, has not enabled the detection of unaltered native martian organics. The elevated temperatures required for pyrolysis extraction can cause native martian organics to react with perchlorate salts in the regolith and possibly result in the chlorohydrocarbons that have been detected by in situ instruments. Supercritical carbon dioxide (SCCO2) extraction is an alternative to pyrolysis that may be capable of delivering unaltered native organic species to an in situ detector. In this study, we report the SCCO2 extraction of unaltered coronene, a representative polycyclic aromatic hydrocarbon (PAH), from martian regolith simulants, in the presence of 3 parts per thousand (ppth) sodium perchlorate. PAHs are a class of nonpolar molecules of astrobiological interest and are delivered to the martian surface by meteoritic infall. We also determined that the extraction efficiency of coronene was unaffected by the presence of perchlorate on the regolith simulant, and that no sodium perchlorate was extracted by SCCO2. This indicates that SCCO2 extraction can provide de-salted samples that could be directly delivered to a variety of in situ detectors. SCCO2 was also used to extract trace native fluorescent organic compounds from the martian regolith simulant JSC Mars-1, providing further evidence that SCCO2 extraction may provide an alternative to pyrolysis to enable the delivery of unaltered native organic compounds to an in situ detector on a future Mars rover.

  3. Development of a Portable Fiberoptic Surface Enhanced Raman Sensor for In-Situ Detection and Monitoring of Perchlorate and Energetics

    Science.gov (United States)

    2012-01-01

    explosives and solid rocket fuels , although it is also present in a number of commercial products such as fireworks, road flares and Chilean nitrate...groundwater and surface water and is a key component of solid rocket fuel , explosives, fireworks, road flares and other products.6,25 Perchlorate can...is ( )0 ,mε ε= −P E (3) where εm and ε0 are the electric permittivities of the material and vacuum, respectively. This polarization results from

  4. Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Li, Xiang; Danell, Ryan M; Brinckerhoff, William B; Pinnick, Veronica T; van Amerom, Friso; Arevalo, Ricardo D; Getty, Stephanie A; Mahaffy, Paul R; Steininger, Harald; Goesmann, Fred

    2015-02-01

    Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars.

  5. Multi-fractal property of perchlorate reductase gene sequences and DNA photonics application to UV fluorescence detection on Mars-like surfaces

    Science.gov (United States)

    Tremberger, George, Jr.; Cheung, Eric; Gadura, N.; Holden, Todd; Subramaniam, Raji; Sullivan, Regina; Schneider, Pat; Flamholz, Alex; Lieberman, David H.; Cheung, Tak D.

    2009-08-01

    The discovery of perchlorate on Mars raises the possibility of the existence of perchlorate reduction microbes on that planet. The perchlorate reductase gene sequence fractal dimensions of two Dechloromonas species were compared with five other sequences in the microbial dimethyl sulfoxide (DMSO) reductase family. A nucleotide sequence can be expressed as a numerical sequence where each nucleotide is assigned its proton number. The resulting numerical sequence can be investigated for its fractal dimension in terms of evolution and chemical properties for comparative studies. Analysis of the fractal dimensions for the DMSO reductase family supports phylogenetic analyses that show that the perchlorate reductase gene sequences are members of the same family. A sub-family with roughly the same nucleotide length emerges having the property that the gene fractal dimension is negatively correlated with the Shannon di-nucleotide entropy (R2 ~ 0.95, N =5). The gene sequence fractal dimension is found to be positively correlated with the neighbor joining distances reported in a published protein phylogeny tree (R2~ 0.92, N = 5). The multi-fractal property associated with these genes shows that perchlorate reductase has lower dimensionality as compared to the relatively higher dimensionality DNA-break repair genes Rec-A and Rad-A observed in the Dechloromonas aromatica and Deinococcus radiodurans genomes. The studied perchlorate gene sequences show a higher Shannon di-nucleotide entropy (~3.97 bits) relative to Dechloromonas aromatica DNA repair sequences (~3.87 bits Rec-A, ~3.92 bits Rad-A), suggesting that there are fewer constraints on nucleotide variety in the perchorlate sequences . These observations thus allow for the existence of perchlorate reducing microbes on Mars now or in the past. Timeresolved UV fluorescence study near the emission bands of nucleotide sequences could be used for bio-detection on Mars-like surfaces and the results may further constrain the

  6. Immunological detection of small organic molecules in the presence of perchlorates: relevance to the life marker chip and life detection on Mars.

    Science.gov (United States)

    Rix, Catherine S; Sims, Mark R; Cullen, David C

    2011-11-01

    The proposed ExoMars mission, due to launch in 2018, aims to look for evidence of extant and extinct life in martian rocks and regolith. Previous attempts to detect organic molecules of biological or abiotic origin on Mars have been unsuccessful, which may be attributable to destruction of these molecules by perchlorate salts during pyrolysis sample extraction techniques. Organic molecules can also be extracted and measured with solvent-based systems. The ExoMars payload includes the Life Marker Chip (LMC) instrument, capable of detecting biomarker molecules of extant and extinct Earth-like life in liquid extracts of martian samples with an antibody microarray assay. The aim of the work reported here was to investigate whether the presence of perchlorate salts, at levels similar to those at the NASA Phoenix landing site, would compromise the LMC extraction and detection method. To test this, we implemented an LMC-representative sample extraction process with an LMC-representative antibody assay and used these to extract and analyze a model sample that consisted of a Mars analog sample matrix (JSC Mars-1) spiked with a representative organic molecular target (pyrene, an example of abiotic meteoritic infall targets) in the presence of perchlorate salts. We found no significant change in immunoassay function when using pyrene standards with added perchlorate salts. When model samples spiked with perchlorate salts were subjected to an LMC-representative liquid extraction, immunoassays functioned in a liquid extract and detected extracted pyrene. For the same model sample matrix without perchlorate salts, we observed anomalous assay signals that coincided with yellow coloration of the extracts. This unexpected observation is being studied further. This initial study indicates that the presence of perchlorate salts, at levels similar to those detected at the NASA Phoenix landing site, is unlikely to prevent the LMC from extracting and detecting organic molecules from

  7. Occurrence of perchlorate and thiocyanate in human serum from e-waste recycling and reference sites in Vietnam: association with thyroid hormone and iodide levels.

    Science.gov (United States)

    Eguchi, Akifumi; Kunisue, Tatsuya; Wu, Qian; Trang, Pham Thi Kim; Viet, Pham Hung; Kannan, Kurunthachalam; Tanabe, Shinsuke

    2014-07-01

    Perchlorate (ClO4 (-)) and thiocyanate (SCN(-)) interfere with iodide (I(-)) uptake by the sodium/iodide symporter, and thereby these anions may affect the production of thyroid hormones (THs) in the thyroid gland. Although human exposure to perchlorate and thiocyanate has been studied in the United States and Europe, few investigations have been performed in Asian countries. In this study, we determined concentrations of perchlorate, thiocyanate, and iodide in 131 serum samples collected from 2 locations in Northern Vietnam, Bui Dau (BD; electrical and electronic waste [e-waste] recycling site) and Doung Quang (DQ; rural site) and examined the association between serum levels of these anions with levels of THs. The median concentrations of perchlorate, thiocyanate, and iodide detected in the serum of Vietnamese subjects were 0.104, 2020, and 3.11 ng mL(-1), respectively. Perchlorate levels were significantly greater in serum of the BD population (median 0.116 ng mL(-1)) than those in the DQ population (median 0.086 ng mL(-1)), which indicated greater exposure from e-waste recycling operations by the former. Serum concentrations of thiocyanate were not significantly different between the BD and DQ populations, but increased levels of this anion were observed among smokers. Iodide was a significant positive predictor of serum levels of FT3 and TT3 and a significant negative predictor of thyroid-stimulating hormone in males. When the association between serum levels of perchlorate or thiocyanate and THs was assessed using a stepwise multiple linear regression model, no significant correlations were found. In addition to greater concentrations of perchlorate detected in the e-waste recycling population, however, given that lower concentrations of iodide were observed in the serum of Vietnamese females, detailed risk assessments on TH homeostasis for females inhabiting e-waste recycling sites, especially for pregnant women and their neonates, are required.

  8. Excitation of skinned muscle fibers by imposed ion gradients. IV. Effects of stretch and perchlorate ion.

    Science.gov (United States)

    Stephenson, E W

    1989-01-01

    Depolarizing ion gradients stimulate 45Ca release in skeletal muscle fibers skinned by microdissection. Several lines of indirect evidence suggest that sealed transverse (T) tubules rather than sarcoplasmic reticulum (SR) are the locus of such stimulatory depolarization. Two implications of this hypothesis were tested. (a) A requirement for signal transmission was evaluated from the stimulation of 45Ca efflux in fibers that had been highly stretched, an intervention that can impair the electrical stimulation of intact fibers. Length was increased over approximately 95-115 s, after loading with 45Ca and rinsing at normal length; prestimulus 45Ca loss due to stretch itself was very small. In the first study, stimulation of 45Ca release by KCl replacement of K propionate was inhibited completely in fibers stretched to twice slack length, compared with fibers at 1.05-1.1 times slack length. Identical protocols did not alter 45Ca release stimulated by caffeine or Mg2+ reduction, implying that SR Ca release per se was fully functional and inhibition was selective for a preceding step in ionic stimulation. In a second study, stimulation by choline Cl replacement of K methanesulfonate, at constant [K+] [Cl-] product, was inhibited strongly; total 45Ca release decreased 69%, and stimulation above control loss decreased 78%, in segments stretched to twice the length at which sarcomere spacing had been 2.2 micron, compared with paired controls from the same fibers kept at 2.3 micron. (b) Perchlorate potentiation of T tubule activation was evaluated in fibers stimulated at constant [K+] [Cl-] at normal length (2.3 micron); this anion shifts the voltage dependence of intramembrane charge movement and contractile activation in intact fibers. Perchlorate (8 mM) potentiated both submaximal stimulation of Ca2+-dependent 45Ca release by partial choline Cl replacement of K methanesulfonate and the small Ca2+-insensitive 45Ca efflux component stimulated by nearly full replacement in

  9. Influence of Magnesium Perchlorate on the Pyrolysis of Organic Compounds in Martian Soil Analogs

    Science.gov (United States)

    Steininger, Harald; Goesmann, Fred

    2010-05-01

    Detection and identification of organic molecules derived from present or past life is the goal of the Martian Organic Molecule Analyser of the 2018 ExoMars mission of ESA. One part of the instrument is a pyrolysis gas chromatograph mass spectrometer pyr-GC-MS while the other is a laser desorption mass spectrometer. In the pyr-GC-MS a soil sample of app. 200 mg and then heated to a temperature of 900°C. [1] During this process the organic molecules desorb from the surface and are separated on the column of the GC and identified in the MS. The direct pyrolysis of soil samples without previous extraction is an uncommon way of sample preparation. In addition to the parameters of the pyrolysis of pure samples, for example temperatures and the soil composition influences the measurements in several ways. To evaluate the influence of the relative large surface of the soil on the pyrolysis and derivatization several tests have been conducted with simple organic molecules. The Phoenix mission discovered considerable amounts of magnesium perchlorate in the soil at the landing site. Perchlorates are oxidizing components and therefore might interact with the expected organics within the soil, especially if the soil is heated within the pyrolysis ovens. The end-product of this oxidation would be carbon dioxide which is indistinguishable from the atmospheric carbon dioxide. For the test several organic compounds have been used, for example phenylalanine and benzoic acid. Carboxylic acids are stable intermediates in the oxidation of aromatic compounds and therefore the simplest aromatic carboxylic acid, benzoic acid has been considered to be present on Mars. [2] Along with oxidation of the used compounds also chlorination of the aromatic rings was observed. This reaction leads to a large variety of chlorinated aromatics which would be easy to detect in the GC-MS. A further investigation on the concentration dependency of this reaction is planned. References [1] Geffroy

  10. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes

    KAUST Repository

    Yoon, Jaekyung

    2009-09-01

    Rejection characteristics of chromate, arsenate, and perchlorate were examined for one reverse osmosis (RO, LFC-1), two nanofiltration (NF, ESNA, and MX07), and one ultrafiltration (UF and GM) membranes that are commercially available. A bench-scale cross-flow flat-sheet filtration system was employed to determine the toxic ion rejection and the membrane flux. Both model and natural waters were used to prepare chromate, arsenate, and perchlorate solutions (approximately 100 μg L-1 for each anion) in mixtures in the presence of other salts (KCl, K2SO4, and CaCl2); and at varying pH conditions (4, 6, 8, and 10) and solution conductivities (30, 60, and 115 mS m-1). The rejection of target ions by the membranes increases with increasing solution pH due to the increasingly negative membrane charge with synthetic model waters. Cr(VI), As(V), and ClO4 - rejection follows the order LFC-1 (>90%) > MX07 (25-95%) ≅ ESNA (30-90%) > GM (3-47%) at all pH conditions. In contrast, the rejection of target ions by the membranes decreases with increasing solution conductivity due to the decreasingly negative membrane charge. Cr(VI), As(V), and ClO4 - rejection follows the order CaCl2 < KCl ≅ K2SO4 at constant pH and conductivity conditions for the NF and UF membranes tested. For natural waters the LFC-1 RO membrane with a small pore size (0.34 nm) had a significantly greater rejection for those target anions (>90%) excluding NO3 - (71-74%) than the ESNA NF membrane (11-56%) with a relatively large pore size (0.44 nm), indicating that size exclusion is at least partially responsible for the rejection. The ratio of solute radius (ri,s) to effective membrane pore radius (rp) was employed to compare ion rejection. For all of the ions, the rejection is higher than 70% when the ri,s/rp ratio is greater than 0.4 for the LFC-1 membrane, while for di-valent ions (CrO4 2 -, SO4 2 -, and HAsSO4 2 -) the rejection (38-56%) is fairly proportional to the ri,s/rp ratio (0.32-0.62) for the ESNA

  11. Action of perchlorate on the voltage dependent inactivation of excitation-contraction coupling in frog skeletal muscle fibres.

    Science.gov (United States)

    Píriz, Nazira; Pizarro, Gonzalo

    2007-01-01

    Perchlorate is an agonist of excitation-contraction coupling (ECC) in skeletal muscle displacing charge movement and release activation towards more negative voltages. Contradictory effects of this compound on the voltage dependent inactivation (VDI) of ECC ranging from no effect to a negative shift have been previously reported. In this study we report the effect of the extracellular application of 8 mM perchlorate to cut frog fibres on: (1) the charge movement that activates release (Q(1)), (2) the charge movement measured in fibres inactivated by depolarization (Q(2)) and (3) on the steady state VDI of Q(1) and Ca(2+) release. Our findings were: (1) The central voltage of Q(1) was negatively displaced by perchlorate from -29.0 +/- 1.6 to -38.4 +/- 1.7 mV (n = 4). The maximum Q(1) was not significantly affected while the slope of the Q(1) vs. V was increased by perchlorate. (2) The central voltage of Q(2) was shifted from -91.6 +/- 1.4 to -102.3 +/- 1.5 mV (n = 4). (3) The central voltage of the steady state inactivation curve of Q(1) went from -39.3 +/- 1.8 to -48.6 +/- 1.2 mV (mean +/- SEM, n = 6). Perchlorate had a paradoxical effect on Ca(2+) release, while potentiated the release flux in fibres held at -90 mV (peak release flux increased from 3.9 +/- 1.1 to 6.8 +/- 1.9 microM/ms, n = 5) it had an inhibitory effect when applied to fibres at a depolarized holding potential (peak release flux decreased from 3.9 +/- 0.9 to 2.0 +/- 0.5 microM/ms, n = 9). The above findings suggest that the effect on the steady state inactivation is a direct consequence of the negative shift in Q(1) activation. The negative shift in the steady state inactivation of Q(1) correlated well with the effect on Ca(2+) release.

  12. Structure and temperature effects on Nd3+ spectra in polycrystalline mixed scandium aluminum garnets Y3ScxAl5-xO12

    Science.gov (United States)

    Lupei, A.; Lupei, V.; Hau, S.; Gheorghe, C.; Voicu, F.

    2015-09-01

    New spectroscopic data obtained from high resolution low temperature absorption and emission spectra of Nd3+ in mixed scandium aluminum garnets Y3ScxAl5-xO12 - (x = 0-2) translucent ceramics revealed transition dependent composition effects: modification of the shapes (Lorentz at x = 0 and 2, quasi-Gauss at x = 1, x-dependent asymmetric for other x values, with obvious multicenter structure for low x), widths and shifts of the lines. Nd3+ electronic structure dependence on structural changes with composition is analyzed in terms of nephelauxetic effect and maximum splitting of manifolds: Sc3+ co-doping reduces the nephelauxetic effect, and the increase of 4F3/2 splitting from 85 cm-1 (x = 0) to 98 cm-1 (x = 2) denotes the lowering of local symmetry. The multicenter structure and inhomogeneous broadening of Nd3+ lines is attributed to crystal field distributions determined by the random occupancy of the octahedral sites by Sc3+ and Al3+. For low x (0.2) the resolved two satellites S1, S2 that accompany Nd:YAG lines are correlated to anisotropic crystal field perturbations produced by the n.n. Sc3+ by analogy to those determined by Y3+-antisites (excess of Y3+ ions that enter in octahedral sites of the melt-grown YAG crystals). The temperature evolution of the Nd3+ spectral characteristics (line intensity, shift, broadening) in the 10-300 K range is analyzed in terms of thermal population of the Stark levels, of the effect on electron-phonon interaction and on lattice expansion. The relevance of the spectroscopic properties on the laser emission characteristics in these systems is discussed.

  13. Dissolved scandium, yttrium, and lanthanum in the surface waters of the North Atlantic: Potential use as an indicator of scavenging intensity

    Science.gov (United States)

    Till, C. P.; Shelley, R. U.; Landing, W. M.; Bruland, K. W.

    2017-08-01

    Recent work has begun to elucidate the biogeochemical cycling of scandium (Sc) in the open ocean, but so far no surface distribution data have been reported of dissolved Sc, and no basin-scale surface distributions have been reported of yttrium (Y) or lanthanum (La). This work presents basin-wide surface Sc, Y, and La data in a section across the North Atlantic subtropical gyre (2011 GEOTRACES GA03) and investigates the potential utility of these distributions. This work uses dissolved and aerosol concentration data for La and Sc to estimate their surface ocean residence times in both the center of the oligotrophic gyre and near the African coastline. This work additionally shows that the surface distribution of Sc in the North Atlantic correlates with the shape of the gyre as inferred by isotherm depth, with lower Sc concentrations at the gyre boundaries. This pattern suggests that Sc could be drawn down by the elevated particle flux at the gyre boundaries. In this case, Sc removal could be used as an indicator of scavenging intensity. In order to account for variable input of Sc to the surface ocean, we propose normalizing the Sc distribution to that of Y or La, which are much less particle reactive and are input via dust to the surface North Atlantic in constant ratios with Sc. Such normalization improves the correlation with isotherm depth. We propose that the variations in dissolved Y/Sc and La/Sc ratios may be due to preferential Sc scavenging and could therefore indicate scavenging intensity.

  14. On new ternary equiatomic scandium transition metal aluminum compounds ScTAl with T = Cr, Ru, Ag, Re, Pt, and Au

    Energy Technology Data Exchange (ETDEWEB)

    Radzieowski, Mathis; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Haverkamp, Sandra [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; University of Sao Paulo, Sao Carlos, SP (Brazil). Inst. of Physics

    2016-08-01

    The new equiatomic scandium transition metal aluminides ScTAl for T = Cr, Ru, Ag, Re, Pt, and Au were obtained by arc-melting of the elements followed by subsequent annealing for crystal growth. The samples were studied by powder and single crystal X-ray diffraction. The structures of three compounds were refined from single crystal X-ray diffractometer data: ScCrAl, MgZn{sub 2} type, P6{sub 3}/mmc, a = 525.77(3), c = 858.68(5) pm, R{sub 1} = 0.0188, wR{sub 2} = 0.0485, 204 F{sup 2} values, 13 variables, ScPtAl, TiNiSi type, Pnma, a = 642.83(4), b = 428.96(2), c = 754.54(5) pm, R{sub 1} = 0.0326, wR{sub 2} = 0.0458, 448 F{sup 2} values, 20 variables and ScAuAl, HfRhSn type, P anti 62c, a = 722.88(4), c = 724.15(4) pm, R{sub 1} = 0.0316, wR{sub 2} = 0.0653, 512 F{sup 2} values, 18 variables. Phase pure samples of all compounds were furthermore investigated by magnetic susceptibility measurements, and Pauli-paramagnetism but no superconductivity was observed down to 2.1 K for all of them. The local structural features and disordering phenomena have been characterized by {sup 27}Al and {sup 45}Sc magic angle spinning (MAS) and static NMR spectroscopic investigations.

  15. Treatment of infraorbital dark circles in atopic dermatitis with a 2790-nm erbium: yttrium scandium gallium garnet laser: a pilot study.

    Science.gov (United States)

    Park, Kui Young; Oh, In Young; Moon, Nam Ju; Seo, Seong Jun

    2013-04-01

    Although many Asian atopic patients have orbital darkening symptom and the demand to treat this condition is increasing, little has been reported in the literature on the treatment of infraorbital dark circles in atopic dermatitis. To evaluate the clinical efficacy and safety of 2790-nm erbium:yttrium scandium gallium garnet (Er:YSGG) laser therapy for reducing infraorbital dark circles in atopic dermatitis patients. Ten Korean patients over 21 year with mild atopic dermatitis and infraorbital dark circles were enrolled in this study. Patients who need active atopic dermatitis treatments are excluded because of the possibility of aggravation after laser treatment. They were treated for dark circles using a 2790-nm Er:YSGG laser. The treatment parameters were 1.8-2.2 J/cm² fluence, 6-mm spot size, and 0.3-ms pulse width with 10% overlap over the infraorbital areas once with a 4-week interval between treatments. Efficacy was assessed with a quartile grading score ranging from 0 to 5 by a blinded investigator, and the patients also documented their degree of satisfaction with the same grading score. All possible side effects were evaluated. The clinical assessment showed 74.5% (2.7) and 72.5% (2.5) improvements, and the patient satisfaction scale scores improved an average of 74% (2.4) and 71.5% (2.3) at 2 months and 4 months after treatment, respectively. There were no severe side effects or aggravation of atopic dermatitis. Our study suggests that 2790-nm Er:YSGG laser therapy can be effectively and safely used in the treatment of infraorbital dark circles in atopic dermatitis patients.

  16. The influence of cation ordering, oxygen vacancy distribution and proton siting on observed properties in ceramic electrolytes: the case of scandium substituted barium titanate.

    Science.gov (United States)

    Torino, Nico; Henry, Paul F; Knee, Christopher S; Bjørheim, Tor Svendsen; Rahman, Seikh M H; Suard, Emma; Giacobbe, Carlotta; Eriksson, Sten G

    2017-07-04

    The origin of the 2-order of magnitude difference in the proton conductivity of the hydrated forms of hexagonal and cubic oxygen deficient BaScxTi1-xO3-δ (x = 0.2 and x = 0.7) was probed using a combination of neutron diffraction and density functional theory techniques to support published X-ray diffraction, conductivity, thermogravimetric and differential scanning calorimetry studies. Cation ordering is found in the 6H structure type (space group P63/mmc) adopted by BaSc0.2Ti0.8O3-δ with scandium preferentially substituting in the vertex sharing octahedra (2a crystallographic site) and avoiding the face-sharing octahedra (4f site). This is coupled with oxygen vacancy ordering in the central plane of the face-sharing octahedra (O1 site). In BaSc0.7Ti0.3O3-δ a simple cubic perovskite (space group Pm3[combining macron]m) best represents the average structure from Rietveld analysis with no evidence of either cation ordering or oxygen vacancy ordering. Significant diffuse scattering is observed, indicative of local order. Hydration in both cases leads to complete filling of the available oxygen vacancies and permits definition of the proton sites. We suggest that the more localised nature of the proton sites in the 6H structure is responsible for the significantly lower proton conduction observed in the literature. Within the 6H structure type final model, proton diffusion requires a 3-step process via higher energy proton sites that are unoccupied at room temperature and is also likely to be anisotropic whereas the highly disordered cubic perovskite proton position allows 3-dimensional diffusion by well-described modes. Finally, we propose how this knowledge can be used to further materials design for ceramic electrolytes for proton conducting fuel cells.

  17. Carbon-coated copper nanoparticles prepared by detonation method and their thermocatalysis on ammonium perchlorate

    Directory of Open Access Journals (Sweden)

    Chongwei An

    2017-03-01

    Full Text Available Carbon-coated copper nanoparticles (CCNPs were prepared by initiating a high-density charge pressed with a mixture of microcrystalline wax, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, and copper nitrate hydrate (Cu(NO32·3H2O in an explosion vessel filled with nitrogen gas. The detonation products were characterized by transmission electron microcopy (TEM, high resolution transmission electron microcopy (HRTEM, energy dispersive X-ray spectroscopy (EDX, X-ray diffraction (XRD, and Raman spectroscopy. The effects of CCNPs on thermal decomposition of ammonium perchlorate (AP were also investigated by differential scanning calorimeter (DSC. Results indicated that the detonation products were spherical, 25-40 nm in size, and had an apparent core-shell structure. In this structure, the carbon shell was 3-5 nm thick and mainly composed of graphite, C8 (a kind of carbyne, and amorphous carbon. When 5 wt.% CCNPs was mixed with 95 wt.% AP, the high-temperature decomposition peak of AP decreased by 95.97, 96.99, and 96.69 °Cat heating rates of 5, 10, and 20 °C/min, respectively. Moreover, CCNPs decreased the activation energy of AP as calculated through Kissinger’s method by 25%, which indicated outstanding catalysis for the thermal decomposition of AP.

  18. Crystal structure of bis(1-benzyl-1H-1,2,4-triazole perchloric acid monosolvate

    Directory of Open Access Journals (Sweden)

    Yong-Qi Qin

    2014-12-01

    Full Text Available The title compound, 2C9H9N3·HClO4, was prepared by reaction of 1-benzyl-1H-1,2,4-triazole and HClO4 in ethanol at room temperature. The asymmetric unit consists of two molecules of 1-benzyl-1H-1,2,4-triazole and one of HClO4 molecule. The benzene and triazole rings make dihedral angles of 85.45 (8 and 84.76 (8° in the two molecules. The H-atom position of the perchloric acid molecule is split over two O atoms (real peaks on difference map, with site-occupation factors of 0.5. These H atoms form two classical hydrogen bonds [2.546 (5 and 2.620 (4 Å] with the same N atoms in both molecules. Five intermolecular non-classical C—H...O interactions, with C...O distances in the range 3.147 (5–3.483 (5 Å, are found in the crystal structure.

  19. Crystal structure of bis-(1-benzyl-1H-1,2,4-triazole) perchloric acid monosolvate.

    Science.gov (United States)

    Qin, Yong-Qi; Xue, Jin-Hui; Qiao, Yuan-Biao; Zhang, Zi-Feng

    2014-12-01

    The title compound, 2C9H9N3·HClO4, was prepared by reaction of 1-benzyl-1H-1,2,4-triazole and HClO4 in ethanol at room temperature. The asymmetric unit consists of two mol-ecules of 1-benzyl-1H-1,2,4-triazole and one of HClO4 mol-ecule. The benzene and triazole rings make dihedral angles of 85.45 (8) and 84.76 (8)° in the two mol-ecules. The H-atom position of the perchloric acid mol-ecule is split over two O atoms (real peaks on difference map), with site-occupation factors of 0.5. These H atoms form two classical hydrogen bonds [2.546 (5) and 2.620 (4) Å] with the same N atoms in both mol-ecules. Five inter-molecular non-classical C-H⋯O inter-actions, with C⋯O distances in the range 3.147 (5)-3.483 (5) Å, are found in the crystal structure.

  20. Ferroelectric Polarization Switching Dynamics and Domain Growth of Triglycine Sulfate and Imidazolium Perchlorate

    KAUST Repository

    Ma, He

    2016-04-10

    The weak bond energy and large anisotropic domain wall energy induce many special characteristics of the domain nucleation, growth, and polarization switch in triglycine sulfate (TGS) and imidazolium perchlorate (IM), two typical molecular ferroelectrics. Their domain nucleation and polarization switch are rather slower than those of conventional oxide ferroelectrics, which may be due to the weaker bond energy of hydrogen bond or van der Waals bond than that of ionic bond. These chemical bonds dominate the elastic energy, with the latter being an important component of domain wall energy and playing an important role in domain nucleation and domain growth. The ratio of anisotropic domain wall energy to Gibbs free energy is large in TGS and IM, which allows a favorable domain shape and a special domain evolution under a certain electric field. Therefore, this study not only sheds light on the physical nature but also indicates the application direction for molecular ferroelectrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  1. Efficient decomposition of perchlorate to chloride ions in subcritical water by use of steel slag.

    Science.gov (United States)

    Hori, Hisao; Kamijo, Ayae; Inoue, Miki; Chino, Asako; Wu, Qian; Kannan, Kurunthachalam

    2016-08-03

    Decomposition of perchlorate (ClO4(-)) in subcritical water in the presence of steel slag, a by-product of the steel industry, was investigated. Reactivity of ClO4(-) was low in pure subcritical water state up to 300 °C, whereas adding steel slag efficiently accelerated the decomposition of ClO4(-) to Cl(-), with no leaching of heavy metals such as chromium and other environmentally undesirable elements (boron and fluorine). When the reaction was performed in subcritical water at a relatively low temperature (250 °C) for 6 h, virtually all ClO4(-) ions were removed from the reaction solution. The concentration of Cl(-) after the reaction was well accounted for by the sum of the amount of Cl(-) ascribed to the decomposition of ClO4(-) and the amount of Cl(-) leached from the slag. This method was successfully applied to decompose ClO4(-) in water samples collected from a man-made reflection pond following a fireworks display, even though these samples contained much higher concentrations of Cl(-) and SO4(2-) than ClO4(-).

  2. Carbon-coated copper nanoparticles prepared by detonation method and their thermocatalysis on ammonium perchlorate

    Science.gov (United States)

    An, Chongwei; Ding, Penghui; Ye, Baoyun; Geng, Xiaoheng; Wang, Jingyu

    2017-03-01

    Carbon-coated copper nanoparticles (CCNPs) were prepared by initiating a high-density charge pressed with a mixture of microcrystalline wax, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and copper nitrate hydrate (Cu(NO3)2.3H2O) in an explosion vessel filled with nitrogen gas. The detonation products were characterized by transmission electron microcopy (TEM), high resolution transmission electron microcopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Raman spectroscopy. The effects of CCNPs on thermal decomposition of ammonium perchlorate (AP) were also investigated by differential scanning calorimeter (DSC). Results indicated that the detonation products were spherical, 25-40 nm in size, and had an apparent core-shell structure. In this structure, the carbon shell was 3-5 nm thick and mainly composed of graphite, C8 (a kind of carbyne), and amorphous carbon. When 5 wt.% CCNPs was mixed with 95 wt.% AP, the high-temperature decomposition peak of AP decreased by 95.97, 96.99, and 96.69 °Cat heating rates of 5, 10, and 20 °C/min, respectively. Moreover, CCNPs decreased the activation energy of AP as calculated through Kissinger's method by 25%, which indicated outstanding catalysis for the thermal decomposition of AP.

  3. (μ-1,4,7,10-Tetraoxacyclododecanebis[(1,4,7,10-tetraoxacyclododecanelithium] bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Ilia A. Guzei

    2010-04-01

    Full Text Available 12-Crown-4 ether (12C4 and LiClO4 combine to form the ionic title compound, [Li2(C8H16O43](ClO42, which is composed of discrete Li/12C4 cations and perchlorate anions. In the [Li2(12C43]2+ cation there are two peripheral 12C4 ligands, which each form four Li—O bonds with only one Li+ atom. Additionally there is a central 12C4 in which diagonal O atoms form one Li—O bond each with both Li+ atoms. Therefore each Li+ atom is pentacoordinated in a distorted square-pyramidal geometry, forming four longer bonds to the O atoms on the peripheral 12C4 and one shorter bond to an O atom of the central 12C4. The cation occupies a crystallographic inversion centre located at the center of the ring of the central 12C4 ligand. The Li+ atom lies above the cavity of the peripheral 12C4 by 0.815 (2 Å because it is too large to fit in the cavity.

  4. Poly[[μ2-acetato-aquadi-μ3-isonicotinato-holmium(IIIsilver(I] perchlorate

    Directory of Open Access Journals (Sweden)

    Sun Feng

    2009-12-01

    Full Text Available In the title three-dimensional heterometallic complex, {[AgHo(C6H4NO22(C2H3O2(H2O]ClO4}n, the HoIII ion is eight-coordinated by four O atoms from four different isonicotinate ligands, three O atoms from two different acetate ligands and one O atom of a water molecule. The two-coordinate AgI ion is bonded to two N atoms from two different isonicotinate anions. These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network. The coordinated water molecules link the carboxylate group of the acetate ligand and the nitrate ligand by O—H...O hydrogen bonding. The crystal structure is further stabilized by hydrogen bonds. The perchlorate ion is disordered over two sites with site-occupancy factors 0.539 (12 and 0.461 (12, while the methyl group of the acetate ligand is disordered over two sites with site-occupancy factors 0.51 (4 and 0.49 (4.

  5. Synthesis, growth and characterization of a nonlinear optical crystal: l-Leucinium perchlorate

    Directory of Open Access Journals (Sweden)

    P. Baskaran

    2017-01-01

    Full Text Available An amino acid based semiorganic nonlinear optical family single crystal of l-leucinium perchlorate (LLPCl was grown by the solvent evaporation method at ambient temperature. Good optical quality single crystals up to a size of 6 mm × 5 mm × 3 mm were obtained. The single-crystal XRD analysis shows that the grown crystals have a monoclinic structure. Fourier transform infrared (FTIR spectral analysis and UV–vis spectral studies were also carried out. Microhardness mechanical studies show that the hardness number (Hv of a LLPCl single crystal decreases with the load as measured by the Vickers microhardness method. The dielectric properties of the grown crystal were analysed by varying the frequency. Photoconductivity analysis gives the variation of the photocurrent and dark current. The nonlinear optical properties were studied using the Kurtz and Perry powder method and the second harmonic generation efficiency was found to be 2.6 times higher than that of KDP crystals.

  6. In Situ Detection of Chlorine Dioxide (C1O2) in the Radiolysis of Perchlorates and Implications for the Stability of Organics on Mars

    Science.gov (United States)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I.

    2016-12-01

    Magnesium perchlorate hexahydrate (Mg(ClO4)2 · 6H2O) samples were exposed to energetic electrons to investigate the products of the decomposition of perchlorates in the Martian soil and to infer their role in the degradation of organics on Mars. The samples were monitored online and in situ via infrared spectroscopy as well as electron impact (EI-QMS) and reflectron time-of-flight mass spectrometry coupled with single photon ionization (PI-ReTOF-MS). Our study reveals that besides chlorates ({{{ClO}}3}-) and molecular oxygen (O2), the chlorine dioxide radical (ClO2) was observed online and in situ for the first time as a radiolysis product of solid perchlorates. Chlorine dioxide, which is used on Earth as a strong oxidizing agent in water disinfection and bleaching, represents a proficient oxidizer—potentially more powerful than molecular oxygen—to explain the lack of abundant organics in the Martian soil.

  7. The emerging role of titrimetry in late nineteenth-century industrial problem solving: the example of trace analysis for perchlorate in Chile saltpetre.

    Science.gov (United States)

    Travis, Anthony S

    2014-02-01

    Trace analysis is usually associated with high-sensitivity analysis instrumentation. It became fully established from the 1960s following consensus among different groups of practitioners over protocols, reference materials, sensitivity, and accuracy and precision. As a consequence, wet chemical methods have been relegated to a secondary role, contrasting with their tremendous historical significance in detecting, identifying, and estimating small amounts of material. This is particularly relevant to the state-of-the-science analytical determinations stimulated by the effect of minor components in commodities of commercial importance. Here, I select a single example: attempts made during the 1890s to determine the amount of potassium perchlorate (KCIO4) that occurs in Chile saltpetre (sodium nitrate). The application of titrimetry, particularly the adaptation of Volhard's method for chloride analysis, was crucial in the efforts to estimate perchlorate in the nitrate used for explosives and to track the impact of perchlorate concentrations on certain important agricultural crops.

  8. Comparative study of the uses of poly(4-vinylpyridine) and poly(diallyldimethylammonium) chloride for the removal of perchlorate from aqueous solution by polyelectrolyte-enhanced ultrafiltration.

    Science.gov (United States)

    Roach, Jim D; Lane, Rachael F; Hussain, Yasin

    2011-01-01

    An application of polyelectrolyte-enhanced ultrafiltration utilizes cationic polyelectrolytes to electrostatically bind anionic species. The colloid and target anion are then concentrated using an ultrafilter, producing a filtrate with a lower concentration of the target. This study compared the performances of poly(4-vinylpyridine) (P4VP) and poly(diallyldimethylammonium) chloride (PDADMAC) for the removal of perchlorate. Potentiometric titration data revealed that the ionization properties of P4VP in aqueous solution vary as functions of titrant utilized, degree of protonation, and counterion concentration. The greater affinity of perchlorate over chloride for the protonated pyridine residues of P4VP provided up to 95.8% retention of perchlorate under the solution conditions investigated. Through ultrafiltration experiments, the effects solution pH, counterion concentration, and polymer concentration were examined for both P4VP and PDADMAC. In addition, the effectiveness of P4VP recovery and reuse was also assessed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. A Reflectron Time-of-Flight Mass Spectrometric Study on the Degradation Pathways of Glycine on Mars in the Presence of Perchlorates and Ionizing Radiation

    Science.gov (United States)

    Góbi, Sándor; Förstel, Marko; Maksyutenko, Pavlo; Kaiser, Ralf I.

    2017-02-01

    The absence of abundant organics on the Martian surface is a much discussed observation. So far, no explanation is completely satisfactory. In this study we aim for a deeper understanding of the degradation processes of organics in the presence of perchlorates that can take place on the Martian surface. Our primary goal is to study the radiation-induced decomposition process of glycine (H2NCH2COOH) in the absence and presence of an oxidizer relevant to the Martian surface—perchlorate anions ({{{ClO}}4}-). Glycine and various samples of glycine-1-13C (+H3NC{{{{H}}}2}13COO-)-magnesium perchlorate hexahydrate (Mg(ClO4)2 · 6H2O) were exposed to energetic electrons mimicking secondary electrons originating from the interaction of galactic cosmic rays (GCRs) with the Martian regolith. Using isotope-labeled and deuterated pure glycine samples such as glycine-1-13C, glycine-d5 (+D3NCD2COO-), glycine-N,N,N-d3 (+D3NCH2COO-), and glycine-2,2-d2 (+H3NCD2COO-), we can conclude that decarboxylation (carbon dioxide loss) of the glycine molecule is exclusively the first decay step during irradiation regardless of whether perchlorate anions are present or not. In pure glycine samples, the decarboxylation co-product methylamine (CH3NH2) and its radiolytic decay product ammonia could both be detected explicitly for the first time. In the presence of perchlorates, (partial) oxidation of the glycine decarboxylation product CH3NH2 may occur. Because the decarboxylation is an equilibrium reaction and the CH3NH2 is effectively removed from the system by this oxidation, glycine cannot be recycled. Therefore the depletion of the CH3NH2 facilitates the process, resulting in an overall 10-fold increase in the formation rate of carbon dioxide and its elevated concentrations in the perchlorate-containing irradiated samples.

  10. Di-μ-chlorido-bis{[2-({[2-(2-pyridylethyl](2-pyridylmethylamino}methylphenol]zinc(II} bis(perchlorate dihydrate

    Directory of Open Access Journals (Sweden)

    Sara E. Coelho

    2010-02-01

    Full Text Available The title compound, [Zn2Cl2(C20H21N3O2](ClO42·2H2O, consists of a dinuclear ZnII cationic complex, two disordered perchlorate anions and two water molecules as solvate. The [Zn2(μ-Cl2(HL2]2+ cation [HL is 2-({[2-(2-pyridylethyl](2-pyridylmethylamino}methylphenol] has a centrosymmetric structure with the ZnII ions in a distorted octahedral environment surrounded by an N3OCl2 donor set. HL acts as a tetradentate ligand through three N atoms from one amine group and two pyridyl arms and one O atom from the phenolic arm. The three N-donor sites of the HL ligand are arranged in meridional fashion, with the pyridine rings coordinated in trans positions with respect to each other. Consequently, the amine and phenol groups are trans to the asymmetric di-μ-chlorido exogenous bridges. A polymeric chain is formed along [010] by C(12R42(8 intermolecular hydrogen bonding. The perchlorate anion is disordered and was modelled by two sites in a 0.345 (18:0.655 (18 ratio. Water–perchlorate O—H...O interactions form cyclic structures, while phenol–water O—H...O interactions generate an infinite chain. In addition, weak intermolecular C—H...π(Ph interactions between pyridine donor and phenol acceptor groups of neighboring cations build a two-dimensional polymeric structure parallel to (110.

  11. Effects of the anti-thyroidal compound potassium-perchlorate on the thyroid system of the zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Florian, E-mail: florian.schmidt@zoo.uni-heidelberg.de [Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Schnurr, Sarah; Wolf, Raoul; Braunbeck, Thomas [Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany)

    2012-03-15

    The increasing pollution of aquatic habitats with anthropogenic compounds has led to various test strategies to detect hazardous chemicals. However, information on effects of pollutants in the thyroid system in fish, which is essential for growth, development and parts of reproduction, is still scarce. Other vertebrate groups such as amphibians or mammals are well-studied; so the need for further knowledge especially in fish as a favored vertebrate model test organism is evident. Modified early life-stage tests were carried out with zebrafish exposed to the known thyroid inhibitor potassium perchlorate (0, 62.5, 125, 250, 500 and 5000 {mu}g/L) to identify adverse effects on the hypothalamic-pituitary-thyroid axis. Especially higher perchlorate concentrations led to conspicuous alterations in thyroidal tissue architecture and to effects in the pituitary. In the thyroid, severe hyperplasia at concentrations {>=}500 {mu}g/L together with an increase in follicle number could be detected. The most sensitive endpoint was the colloid, which showed alterations at {>=}250 {mu}g/L. The tinctorial properties and the texture of the colloid changed dramatically. Interestingly, effects on epithelial cell height were minor. The pituitary revealed significant proliferations of TSH-producing cells resulting in alterations in the ratio of adeno- to neurohypophysis. The liver as the main site of T4 deiodination showed severe glycogen depletion at concentrations {>=}250 {mu}g/L. In summary, the thyroid system in zebrafish showed effects by perchlorate from concentrations {>=}250 {mu}g/L, thus documenting a high sensitivity of the zebrafish thyroid gland for goitrogens. In the future, such distinct alterations could lead to a better understanding and identification of potential thyroid-disrupting chemicals.

  12. Perchlorate and Volatiles of the Brine of Lake Vida (Antarctica): Implication for the in Situ Analysis of Mars Sediments

    Science.gov (United States)

    Kenig, Fabien; Chou, Luoth; McKay, Christopher P.; Jackson, W. Andrew; Doran, Peter T.; Murray, Alison E.; Fritsen, Christian H.

    2016-01-01

    The cold (-13.4 C), cryoencapsulated, anoxic, interstitial brine of the 27 m-thick ice of Lake Vida (Victoria Valley, Antarctica) contains 49 microgram L-1 of perchlorate and 11 microgram L-1 of chlorate. Lake Vida brine (LVBr) may provide an analog for potential oxychlorine-rich subsurface brine on Mars. LVBr volatiles were analyzed by solid-phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS) with two different SPME fibers. With the exception of volatile organic sulfur compounds, most other volatiles observed were artifacts produced in the GC injector when the thermal decomposition products of oxychlorines reacted with reduced carbon derived from LVBr and the SPME fiber phases. Analysis of MilliQ water with perchlorate (40 microgram L-1) showed low level of organic artifacts, reflecting carbon limitation. In order to observe sample-derived organic compounds, both in analog samples and on Mars, the molar abundance of reduced carbon in a sample must exceed those of O2 and Cl2 produced during decomposition of oxychlorines. This suggests that the abundance of compounds observed by the Sample Analysis at Mars (SAM) instruments in Sheepbed samples (CB-3, CB5, and CB6) may be controlled by an increase in the reduced-carbon/oxychlorine ratio of these samples. To increase chances of in situ detection of Martian organics during pyrolysis-GC-MS, we propose that the derivatization agents stored on SAM may be used as an external source of reduced carbon, increasing artificially the reduced-carbon to perchlorate ratio during pyrolysis, allowing the expression of more abundant and perhaps more diverse Martian organic matter.

  13. Analysis of perchlorate in foods and beverages by ion chromatography coupled with tandem mass spectrometry (IC-ESI-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    El Aribi, Houssain [Applied Biosystems/MDS Sciex, 71 Four Valley Drive, Concord, Ont., L4K 4V8 (Canada)]. E-mail: houssain.aribi@sciex.com; Le Blanc, Yves J.C. [Applied Biosystems/MDS Sciex, 71 Four Valley Drive, Concord, Ont., L4K 4V8 (Canada); Antonsen, Stephen [Dionex Canada Ltd., 1540 Cornwall Road, Oakville, Ont., L6J 7W5 (Canada); Sakuma, Takeo [Applied Biosystems/MDS Sciex, 71 Four Valley Drive, Concord, Ont., L4K 4V8 (Canada)

    2006-05-10

    A new IC-ESI-MS/MS method, with simple sample preparation procedure, has been developed for quantification and confirmation of perchlorate (ClO{sub 4} {sup -}) anions in water, fresh and canned food, wine and beer samples at low part-per-trillion (ng l{sup -1}) levels. To the best of our knowledge, this is the first time an analytical method is used for determination of perchlorate in wine and beer samples. The IC-ESI-MS/MS instrumentation consisted of an ICS-2500 ion chromatography (IC) system coupled to either an API 2000{sup TM} or an API 3200{sup TM} mass spectrometer. The IC-ESI-MS/MS system was optimized to monitor two pairs of precursor and fragment ion transitions, i.e., multiple reaction monitoring (MRM). All samples had oxygen-18 isotope labeled perchlorate internal standard (ISTD) added prior to extraction. Chlorine isotope ratio ({sup 35}Cl/{sup 37}Cl) was used as a confirmation tool. The transition of {sup 35}Cl{sup 16}O{sub 4} {sup -} (m/z 98.9) into {sup 35}Cl{sup 16}O{sub 3} {sup -} (m/z 82.9) was monitored for quantifying the main analyte; the transition of {sup 37}Cl{sup 16}O{sub 4} {sup -} (m/z 100.9) into {sup 37}Cl{sup 16}O{sub 3} {sup -} (m/z 84.9) was monitored for examining a proper isotopic abundance ratio of {sup 35}Cl/{sup 37}Cl; and the transition of {sup 35}Cl{sup 18}O{sub 4} {sup -} (m/z 107.0) into {sup 35}Cl{sup 18}O{sub 3} {sup -} (m/z 89.0) was monitored for quantifying the internal standard. The minimum detection limit (MDL) for this method in de-ionized water is 5 ng l{sup -1} (ppt) using the API 2000{sup TM} mass spectrometer and 0.5 ng l{sup -1} using the API 3200{sup TM} mass spectrometer. Over 350 food and beverage samples were analyzed mostly in triplicate. Except for four, all samples were found to contain measurable amounts of perchlorate. The levels found ranged from 5 ng l{sup -1} to 463.5 {+-} 6.36 {mu}g kg{sup -1} using MRM 98.9 {sup {yields}} 82.9 and 100 {mu}l injection.

  14. cis-Aquabis(2,2′-bipyridine-κ2N,N′fluoridochromium(III bis(perchlorate dihydrate

    Directory of Open Access Journals (Sweden)

    Torben Birk

    2010-02-01

    Full Text Available The title mixed aqua–fluoride complex, [CrF(C10H8N22(H2O](ClO42·2H2O, has been synthesized by aquation of the corresponding difluoride complex using lanthanide(III ions as F− acceptors. The complex crystallizes with a CrIII ion at the center of a distorted octahedral coordination polyhedron with a cis arrangement of ligands. The crystal packing shows a hydrogen-bonding pattern involving water molecules, the coordinated F atom and the perchlorate anions

  15. Bis(N,N-dimethylformamide-κObis(1-methylimidazole-2-carbaldehyde oximato-κ2N,Omanganese(III perchlorate

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2008-11-01

    Full Text Available In the title compound, [Mn(C5H6N3O2(C3H7NO]ClO4, the MnIII atom lies on the inversion centre of the centrosymmetric complex cation and has a distorted octahedral coordination geometry, formed by two N atoms and two O atoms from two 1-methylimidazole-2-carbaldehyde oximate ligands and two O atoms from two dimethylformamide ligands. Perchlorate acts as a counterion to balance the charge. The crystal structure of the title compound is stabilized by C—H...O hydrogen-bonding interactions.

  16. A study of the pyramidality index in tris(2,4,6-triisopropylphenyl)phosphonium perchlorate.

    Science.gov (United States)

    Boeré, René T; Zhang, Yuankui

    2013-09-01

    The title compound, C45H70P(+)·ClO4(-) or [Tripp3PH(+)][ClO4(-)], was produced from the perchlorate salt of the corresponding radical cation Tripp3P(·+) through very slow H-atom abstraction reactions in a solution of 1,2-dimethoxyethane (Tripp is 2,4,6-triisopropylphenyl). The H atom on the P atom was located in a difference map and was freely refined with an isotropic displacement consistent with full occupancy [P-H = 1.37 (3) Å]. It is the most sterically congested triarylphosphonium salt yet to be reported and has a `propeller' arrangement of the three Tripp groups around the P atom, with the protonation site located along the molecular threefold axis. There are short contacts between the flanking isopropyl methine H atoms and the P atom [P···H = 1.99 (2)-2.17 (2) Å]. The sum of the angles around the P atom [Σ(C-P-C) = 349.9 (6)°] is a convenient index of pyramidality for tricoordinate centres. This value is significantly larger than in analogous Mes3PH(+) salts (Mes is mesityl or 2,4,6-trimethylphenyl), for which the average of the three reported structures in the literature is Σ(C-P-C) = 345.3 (6)°. For comparison, in the ubiquitous Ph3PH(+) salts, this parameter has a typical average value of only 333.3 (9)°. The value of Σ(C-P-C) in the title compound is midway between that of the neutral phosphane Tripp3P [334.4 (6)°] and the phosphoniumyl radical cation Tripp3P(·+) [359.8 (2)°]. This geometrical feature provides additional support for the assignment as a phosphonium salt.

  17. Effects of erbium-and chromium-doped yttrium scandium gallium garnet and diode lasers on the surfaces of restorative dental materials: a scanning electron microscope study.

    Science.gov (United States)

    Hatipoglu, M; Barutcigil, C

    2015-01-01

    The aim of this study is to evaluate the potential effects of laser irradiation, which is commonly performed in periodontal surgery, on the surfaces of restorative materials. Five different restorative dental materials were used in this study, as follows: (1) Resin composite, (2) poly acid-modified resin composite (compomer), (3) conventional glass ionomer cement (GIC), (4) resin-modified glass ionomer cement (RMGIC), and (5) amalgam. Four cylindrical samples (8 mm diameter, 2 mm height) were prepared for each restorative material. In addition, four freshly extracted, sound human incisors teeth were selected. Two different laser systems commonly used in periodontal surgery were examined in this study: A 810 nm diode laser at a setting of 1 W with continuous-phase laser irradiation for 10 s, and an erbium-and chromium-doped yttrium scandium gallium garnet (Er, Cr: YSGG) laser at settings of 2.5 W, 3.25 W, and 4 W with 25 Hz laser irradiation for 10 s. Scanning electron microscopy (SEM) analysis was performed to evaluate the morphology and surface deformation of the restorative materials and tooth surfaces. According to the SEM images, the Er, Cr: YSGG laser causes irradiation markings that appear as demineralized surfaces on tooth samples. The Er, Cr: YSGG laser also caused deep defects on composite, compomer, and RMGIC surfaces because of its high power, and the ablation was deeper for these samples. High-magnification SEM images of GIC samples showed the melting and combustion effects of the Er, Cr: YSGG laser, which increased as the laser power was increased. In amalgam samples, neither laser left significant harmful effects at the lowest power setting. The diode laser did cause irradiation markings, but they were insignificant compared with those left by the Er, Cr: YSGG laser on the surfaces of the different materials and teeth. Within the limitations of this study, it can be concluded that Er, Cr: YSGG laser irradiation could cause distortions of the surfaces

  18. Proton dynamics in the perchloric acid clathrate hydrate HClO4.5.5H2O.

    Science.gov (United States)

    Desmedt, Arnaud; Stallmach, Frank; Lechner, Ruep E; Cavagnat, Dominique; Lassègues, Jean-Claude; Guillaume, François; Grondin, Joseph; Gonzalez, Miguel A

    2004-12-15

    In the perchloric acid clathrate hydrate HClO4.5.5H2O, the perchlorate anions are contained inside an aqueous host crystalline matrix, positively charged because of the presence of delocalized acidic protons. Our experimental results demonstrate that the microscopic mechanisms of proton conductivity in this system are effective on a time scale ranging from nanosecond to picosecond. In the present paper, we discuss more specifically on the relaxation processes occurring on a nanosecond time scale by combining high-resolution quasielastic neutron scattering and 1H pulse-field-gradient nuclear magnetic resonance experiments. The combination of these two techniques allows us to probe proton dynamics in both space and time domains. The existence of two types of proton dynamical processes has been identified. The slowest one is associated to long-range translational diffusion of protons between crystallographic oxygen sites and has been precisely characterized with a self-diffusion coefficient of 3.5 x 10(-8) cm2/s at 220 K and an activation energy of 29.2+/-1.4 kJ/mol. The fastest dynamical process is due to water molecules' reorientations occurring every 0.7 ns at 220 K with an activation energy of 17.4+/-1.5 kJ/mol. This powerful multitechnique approach provides important information required to understand the microscopic origin of proton transport in an ionic clathrate hydrate. (c) 2004 American Institute of Physics

  19. Inducing porosity and growing carbon nanofibers in ferroin perchlorate: An example of morphological transitions in coordination complexes

    Science.gov (United States)

    Avraham, Efrat Shawat; Fleker, Ohad; Benisvy, Laurent; Oakes, Landon; Pint, Cary L.; Nessim, Gilbert D.

    2017-09-01

    Inducing porosity in solid coordination complex crystals, which are an important class of catalysts, is critical for many applications where a high surface area is required. However, unlike metal organic frameworks (MOFs), fabrication of porous coordination crystals remains a significant challenge. Here we demonstrate a simple method to produce and modulate porosity in coordination complex crystals using ferroin perchlorate, a model system that combines a common ionic complex with a very reactive counter-ion. Using thermal chemical vapor deposition (CVD), we show that by annealing ferroin perchlorate crystals at 350 °C under a flow of ethylene, hydrogen, argon, and oxygen, we induced pores in the crystal. We demonstrate that small amounts of oxygen, which may combine with hydrogen to form water, are essential for pore formation. We also demonstrate that pore size and density can be easily controlled by varying the ethylene flow. Upon raising the annealing temperature to 500 °C, we observed a second transition in which carbon nanofibers (CNFs) grew from the porous crystal. This approach represents a simple and effective method for the synthesis of porous materials with good control over pore size and density. It also enables the synthesis of complex networks of nanostructures (in our case CNFs) by simply varying process parameters such as temperature and gas flows. This represents an important advance for the fabrication of porous coordination complex crystals.

  20. Analysis of Mixed Aryl/Alkyl Esters by Pyrolysis Gas Chromatography-Mass Spectrometry in the Presence of Perchlorate

    Science.gov (United States)

    Burton, A. S.; Locke, D. R.; Lewis, E. K.

    2017-01-01

    Mars is an important target for Astrobiology. A key goal of the MSL mission was to determine whether Mars was habitable in the past, a que-tion that has now been definitely determined to be yes. Another key goal for Mars exploration is to understand the origin and distribution of organic material on Mars; this question is being addressed by the SAM instrument on MSL, and will also be informed by two upcoming Mars exploration missions, ExoMars and Mars 2020. These latter two missions have instrumentation capable of detecting and characterize organic molecules. Over the next decade, these missions will analyze organics in surface, near-surface and sub-surface samples. Each mission has the capability to analyze organics by different methods (pyrolysis gas chromatography-mass spectrometry [py-GC-MS]; laser desorption and thermal volatilization GC-MS; and Raman spectroscopy). Plausibly extraterrestrial organics were recently discovered by the Mars Science Laboratory (MSL), providing an important first step towards understanding the organic inventory on Mars [1]. The compounds detected were chlorobenzenes and chloroalkanes, but it was argued that chlorination of these compounds occurred during pyrolysis of samples containing unchlorinated organics in the presence of perchlorate. A recent report analyzed a suite of aromatic (benzene, toluene, benzoic acid, phthalic acid, and mellitic acid) and aliphatic (acetic acid, propane, propanol, and hexane) by pyrolysis under SAM-like conditions in the presence of perchlorate to attempt to constrain possible precursor molecules for the organic molecules detected on Mars. For aromatic compounds, the aromatic acids all readily produced SAM-relevant chlorobenzes, whereas benzene and toluene did not. This observation suggests that the chlorobenzene detected on Mars could have derived from compounds like mellitic acid, consistent with the previous hypothesis by Benner et al. [3]. Among the aliphatic molecules, it was shown that

  1. A MIXTURE OF AMMONIUM PERCHLORATE AND SODIUM CHLORATE ENHANCES ALTERATIONS OF THE PITUITARY-THYROID AXIS CAUSED BY THE INDIVIDUAL CHEMICALS IN ADULT MALE F344 RATS

    Science.gov (United States)

    Ammonium perchlorate (AP) and sodium chlorate (SC) have been detected in public drinking water supplies in many parts of the U.S. These chemicals cause perturbations in pituitary-thyroid homeostasis in animals by competitively inhibiting the iodide uptake, thus hindering the synt...

  2. Mechanism of the oxidation of propane-1,2-diol and its derivatives with Ce(IV) in aqueous solutions of perchloric acid

    Energy Technology Data Exchange (ETDEWEB)

    Dziegiec, J.; Andriewski, G. [Lodz Univ. (Poland)

    1994-02-20

    Stoichiometry of the oxidation of acetone and propane-1,2-diol and its derivatives with Ce(IV) in aqueous solutions of perchloric acid is determined, and mechanisms of the reactions are proposed. Intermediates and final products of these reactions are identified. 19 refs., 1 fig.

  3. Activation of glycosyl trichloroacetimidates with perchloric acid on silica (HClO4–SiO2) provides enhanced α-selectivity

    Science.gov (United States)

    Ludek, Olaf R.; Gu, Wenlu; Gildersleeve, Jeffrey C.

    2010-01-01

    Obtaining high stereoselectivity in glycosylation reactions is often challenging in the absence of neighboring group participation. In this study, we demonstrate that activation of glycosyl trichloroacetimidate donors with immobilized perchloric acid on silica (HClO4–SiO2) provides higher α-selectivity than trimethylsilyl triflate (TMSOTf) for reactions that do not involve neighboring group participation. PMID:20692651

  4. Comparative Demonstration of Active and Semi-Passive In Situ Bioremediation Approaches for Perchlorate-Impacted Groundwater (Longhorn Army Ammunition Plant)

    Science.gov (United States)

    2009-01-01

    perchlorate rather than transferring it to another waste stream (e.g., impacted resin or brine) requiring costly treatment or disposal. Recent bench...subsurface geology at Site 16 consists primarily of a thin veneer of Quaternary alluvium mantling Tertiary age formations of the Wilcox and Midway Groups

  5. EFFECTS OF LOW DOSE MIXTURES OF PCB126 AND PERCHLORATE ON THE HYPTHALAMIC-PITUITARY-THYROID (HPT) AXIS IN THE MALE RAT.

    Science.gov (United States)

    Perchlorate (ClO4) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) are environmental contaminants known to disturb thyroid hormone homeostasis by well defined modes of action that lead to hypothyroidism in the rat. PCB126 increases phase II conjugation of T4 (T4-glucuronide) by indu...

  6. Peer Review for EPA’s Proposed Approaches to Inform the Derivation of a Maximum Contaminant Level Goal for Perchlorate in Drinking Water

    Science.gov (United States)

    EPA is developing approaches to inform the derivation of a Maximum Contaminant Level Goal (MCLG) for perchlorate in drinking water under the Safe Drinking Water Act. EPA previously conducted an independent, external, scientific peer review of the draft biologically-based dose-res...

  7. Demonstration and Validation of a Portable Raman Sensor for In-Situ Detection and Monitoring of Perchlorate (ClO4 )

    Science.gov (United States)

    2017-03-01

    alcohol rinse. Reactive 47 ion etching was then used to form 100 nm posts capped by the 10 nm Cr deposits. In the final step, 40 nm Au was deposited on...sample bottle ). 64 Table 6.1. Perchlorate Concentrations of the Six Ground Water Samples Determined via Ion Chromatography (IC) by CB&I and

  8. Comparison of Pumped and Diffusion Sampling Methods to Monitor Concentrations of Perchlorate and Explosive Compounds in Ground Water, Camp Edwards, Cape Cod, Massachusetts, 2004-05

    Science.gov (United States)

    LeBlanc, Denis R.; Vroblesky, Don A.

    2008-01-01

    Laboratory and field tests were conducted at Camp Edwards on the Massachusetts Military Reservation on Cape Cod to examine the utility of passive diffusion sampling for long-term monitoring of concentrations of perchlorate and explosive compounds in ground water. The diffusion samplers were constructed of 1-inch-diameter rigid, porous polyethylene tubing. The results of laboratory tests in which diffusion samplers were submerged in containers filled with ground water containing perchlorate, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) indicate that concentrations inside the diffusion samplers equilibrated with concentrations in the containers within the 19-day-long test period. Field tests of the diffusion samplers were conducted in 15 wells constructed of 2- or 2.5-inch-diameter polyvinyl chloride pipe with 10-foot-long slotted screens. Concentrations of perchlorate, RDX, and HMX in the diffusion samplers placed in the wells for 42 to 52 days were compared to concentrations in samples collected by low-flow pumped sampling from 53 days before to 109 days after retrieval of the diffusion samples. The results of the field tests indicate generally good agreement between the pumped and diffusion samples for concentrations of perchlorate, RDX, and HMX. The concentration differences indicate no systematic bias related to contaminant type or concentration levels.

  9. Studies on composite solid propellant with tri-modal ammonium perchlorate containing an ultrafine fraction

    Directory of Open Access Journals (Sweden)

    K.V. Suresh Babu

    2017-08-01

    Full Text Available Composite solid propellant is prepared using tri-modal Ammonium perchlorate (AP containing coarse, fine and ultrafine fractions of AP with average particle size (APS 340, 40 and 5 μm respectively, in various compositions and their rheological, mechanical and burn rate characteristics are evaluated. The optimum combination of AP coarse to fine to ultrafine weight fraction was obtained by testing of series of propellant samples by varying the AP fractions at fixed solid loading. The concentration of aluminium was maintained constant throughout the experiments for ballistics requirement. The propellant formulation prepared using AP with coarse to fine to ultrafine ratio of 67:24:9 has lowest viscosity for the propellant paste and highest tensile strength due to dense packing as supported by the literature. A minimum modulus value was also observed at 9 wt. % of ultrafine AP concentration indicates the maximum solids packing density at this ratio of AP fractions. The burn rate is evaluated at different pressures to obtain pressure exponent. Incorporation of ultrafine fraction of AP in propellant increased burn rate without adversely affecting the pressure exponent. Higher solid loading propellants are prepared by increased AP concentration from 67 to 71 wt. % using AP with coarse to fine to ultrafine ratio of 67:24:9. Higher solid content up to 89 wt. % was achieved and hence increased solid motor performance. The unloading viscosity showed a trend with increased AP content and the propellant couldn't able to cast beyond 71 wt. % of AP. Mechanical properties were also studied and from the experiments noticed that % elongation decreased with increased AP content from 67 to 71 wt.%, whereas tensile strength and modulus increased. Burn rate increased with increased AP content and observed that pressure exponent also increased and it is high for the propellant containing with 71 wt.% of AP due to increased oxidiser to fuel ratio. Catalysed

  10. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    Science.gov (United States)

    Ali, Saima; Hannula, Simo-Pekka

    2017-05-01

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO4) solution (Process 1), and ethylene glycol (EG) mixture with HClO4 and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted to nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25-600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m2 g-1 is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes.

  11. Selective Anion Exchange Resins for the Removal of Perchlorate [(CIO{sub 4}{sup -})] from Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Gu, B.

    1999-05-20

    The primary objective of this project was to evaluate a novel bifunctional anion exchange resin for the cost-effective, in situ treatment of groundwater contaminated with perchlorate (ClO{sub 4}{sup -}). Both laboratory and field studies were performed to determine the selectivity and capacity of the bifunctional synthetic resins to sorb ClO{sub 4}{sup -} from simulated or actual contaminated groundwater. A number of synthetic bifunctional resins, including two commercial versions made by Purolite International and three commercially available, mono-functional resins, were tested. Initial laboratory batch and column breakthrough studies determined the best synthetic resins and the optimal conditions for the field experiment. Laboratory results indicated that the bifunctional synthetic resins, D-3696 and RO-02-119 were highly selective toward ClO{sub 4}{sup -} and performed {approx}5 times better than the best commercial nitrate resin (Purolite{reg_sign} A-520E) and more than an order of magnitude better than some nonselective commercial resins (e.g. Amberlite{reg_sign} IRA-900). The bifunctional resins were particularly effective in removing trace quantities of ClO{sub 4}{sup -} in groundwater to below the detection limit ({approx} 3 {micro}g/L). A field trial demonstrated that the bifunctional resin (D-3696) was able to treat {approx} 110,000 bed volumes of groundwater before a 10% breakthrough of ClO{sub 4}{sup -} occurred under the column flow-through conditions (running at {approx} 2 bed volumes per minute). On the other hand, the Purolite{reg_sign} A-520E resin was able to treat {approx} 23,000 bed volumes of groundwater under the same experimental conditions. No pretreatment was needed to remove either dissolved organic matter or other competing anions (such as SO{sub 4}{sup 2-} or NO{sub 3}{sup -}) in the groundwater, and the treatment process did not alter the water quality by removing or adding secondary by-products because of the high selectivity of the

  12. Effect of ammonium perchlorate grain sizes on the combustion of solid rocket propellant

    Energy Technology Data Exchange (ETDEWEB)

    Hegab, A.; Balabel, A. [Menoufia Univ., Menoufia (Egypt). Faculty of Engineering

    2007-07-01

    The combustion of heterogeneous solid rocket propellant consisting of ammonium perchlorate (AP) particles was discussed with reference to the chemical and physical complexity of the propellant and the microscopic scale of the combustion zone. This study considered the primary flame between the decomposition products of the binder and the AP oxidizer; the primary diffusion flame from the oxidizer; density and conductivity of the AP and binder; temperature-dependent gas-phase transport properties; and, an unsteady non-planer regression surface. Three different random packing disc models for the AP particles imbedded in a matrix of a hydroxyl terminated polybutadience (HTPB) fuel-binder were used as a base of the combustion code. The models have different AP grain sizes and distribution with the fuel binder. A 2D calculation was developed for the combustion of heterogeneous solid propellant, accounting for the gas phase physics, the solid phase physics and an unsteady non-planar description of the regressing propellant surface. The mathematical model described the unsteady burning of a heterogeneous propellant by simultaneously solving the combustion fields in the gas phase and the thermal field in the solid phase with appropriate jump condition across the gas/solid interface. The gas-phase kinetics was represented by a two-step reaction mechanism for the primary premixed flame and the primary diffusion flame between the decomposition products of the HTPB and the oxidizer. The essentially-non-oscillatory (ENO) scheme was used to describe the propagation of the unsteady non-planer regression surface. The results showed that AP particle size has a significant effect on the combustion surface deformation as well as on the burning rate. This study also determined the effect of various parameters on the surface propagation speed, flame structure, and the burning surface geometry. The speed by which the combustion surface recedes was found to depend on the exposed pressure

  13. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Saima, E-mail: saima.ali@aalto.fi; Hannula, Simo-Pekka

    2017-05-15

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO{sub 4}) solution (Process 1), and ethylene glycol (EG) mixture with HClO{sub 4} and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted to nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m{sup 2} g{sup −1} is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical abstract

  14. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data

    Science.gov (United States)

    Estrada, Nubia Luz; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua; Harvey, Greg; Burkey, Kent O.; Grantz, David A.; McGrath, Margaret T.; Anderson, Todd A.; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B.; Jackson, W. Andrew

    2017-01-01

    Natural perchlorate (ClO4−) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ37Cl, δ18O, and Δ17O), indicating that ClO4− may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO4−, but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO4− in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO4− was transported from solutions into plants similarly to NO3− but preferentially to Cl− (4-fold). The ClO4− isotopic compositions of initial ClO4− reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO4− uptake or accumulation. The ClO4− isotopic composition of field-grown snap beans was also consistent with that of ClO4− in varying proportions from irrigation water and precipitation. NO3− uptake had little or no effect on NO3− isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε (15N/18O) ratio of 1.05 was observed between NO3− in hydroponic solutions and leaf extracts, consistent with partial NO3− reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO4− in commercial produce, as illustrated by spinach, for which the ClO4− isotopic composition was similar to that of indigenous natural ClO4−. Our results indicate that some types of plants can accumulate and (presumably) release ClO4− to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO4−and NO3− in plants may be useful for determining sources of fertilizers and sources of ClO4− in their growth environments and

  15. Influence of c-axis orientation and scandium concentration on infrared active modes of magnetron sputtered Sc{sub x}Al{sub 1−x}N thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mayrhofer, P. M.; Bittner, A.; Schmid, U. [Institute of Sensor and Actuator Systems, Vienna University of Technology, Floragasse 7, 1040 Vienna (Austria); Eisenmenger-Sittner, C. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8, 1040 Vienna (Austria); Euchner, H. [Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria)

    2013-12-16

    Doping of wurtzite aluminium nitride (AlN) with scandium (Sc) significantly enhances the piezoelectric properties of AlN. Sc{sub x}Al{sub 1−x}N thin films with different Sc concentrations (x = 0 to 0.15) were deposited by DC reactive magnetron sputtering. Infrared (IR) absorbance spectroscopy was applied to investigate the Sc concentration dependent shift of the IR active modes E{sub 1}(TO) and A{sub 1}(TO). These results are compared to ab initio simulations, being in excellent agreement with the experimental findings. In addition, IR spectroscopy is established as an economical and fast method to distinguish between thin films with a high degree of c-axis orientation and those exhibiting mixed orientations.

  16. Aqua[1-(pyridin-2-ylethanone oximato][1-(2-pyridin-2-ylethanone oxime]copper(II perchlorate monohydrate

    Directory of Open Access Journals (Sweden)

    Baoyun Zhong

    2012-07-01

    Full Text Available In the title compound, [Cu(C7H7N2O(C7H8N2O(H2O]ClO4·H2O, the CuII ion is five-coordinated by the N atoms from the 1-(pyridin-2-ylethanone oximate and 1-(pyridin-2-ylethanone oxime ligands and by the water O atom in a distorted square-pyramidal geometry. The two organic ligands are linked by an intramolecular O—H...O hydrogen bond. In the crystal, molecules and ions are linked by O—H...O hydrogen-bonding interactions, forming chains along the a axis. The perchlorate O atoms are disordered in a 0.58 (2:0.42 (2 ratio.

  17. Phase behaviour and molecular dynamics in the binary system of sodium perchlorate and 1,2-propanediamine

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Yukio [Department of Natural Science Education, Joint Graduate School, Hyogo University of Teacher Education (Japan); Takeda, Kiyoshi, E-mail: takeda@naruto-u.ac.j [Department of Chemistry, Naruto University of Education, 748 Nakajima, Takashima Naruto-cho, Naruto, Tokushima 772-8502 (Japan); Honda, Makoto [Department of Physics, Naruto University of Education (Japan)

    2011-03-15

    The phase and glass transition behaviour in a binary mixture of sodium perchlorate and 1,2-propanediamine {l_brace}(NaClO{sub 4}){sub x}(12PDA){sub 1-x}, x < 0.40{r_brace} was investigated by differential scanning calorimetry and Raman scattering measurements. A eutectic point and a peritectic point were found at x = 0.17 and 0.19, respectively. The phase diagram indicates the existence of solvated compounds of (NaClO{sub 4}){sub 1}(12PDA){sub 4} and (NaClO{sub 4}){sub 2}(12PDA){sub 5}. The concentration dependence of the glass transition point shows a sigmoid curve implying an underlying anomaly.

  18. 2-[5-(Pyridin-2-yl-1,3,4-thiadiazol-2-yl]pyridin-1-ium perchlorate

    Directory of Open Access Journals (Sweden)

    Abdelhakim Laachir

    2017-03-01

    Full Text Available The cation of the title molecular salt, C12H9N4S+·ClO4−, is approximately planar, with the pyridine and pyridinium rings being inclined to the central thiadiazole ring by 6.51 (9 and 9.13 (9°, respectively. The dihedral angle between the pyridine and pyridinium rings is 12.91 (10°. In the crystal, the cations are linked by N—H...O and C—H...O hydrogen bonds, involving the perchlorate anion, forming chains propagating along the [100] direction. The chains are linked by weak offset π–π interactions [inter-centroid distance = 3.586 (1 Å], forming layers parallel to the ab plane.

  19. Moessbauer spectra of Eu(III) and Gd(III) complexes of phosphine oxides with chelating perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masashi, E-mail: takahasi@chem.sci.toho-u.ac.jp; Hirai, Yuya [Toho University (Japan)

    2012-03-15

    The reaction of Ln(ClO{sub 4}){sub 3}{center_dot} nH{sub 2}O with triphenylphosphine oxide (TPPO) in methanol has led to the formation of [Ln(ClO{sub 4}){sub 2}(tppo){sub 4}]ClO{sub 4}{center_dot}MeOH (Ln = Nd, Eu, Gd, Dy, Yb), in which the perchlorate anion acts as a symmetric bidentate. The emission spectra of Eu(III)-TPPO complexes, showing enhancement in the intensity due to the phenyl group, indicate an isotropic electron distribution for the nitrato complex [Eu(NO{sub 3}){sub 3}(tppo){sub 2}(EtOH)]. {sup 151}Eu and {sup 155}Gd Moessbauer spectra of the TPPO complexes also lead to the same conclusion.

  20. Synthesis of CNTs/CuO and its catalytic performance on the thermal decomposition of ammonium perchlorate

    Directory of Open Access Journals (Sweden)

    Ping Cui

    2016-05-01

    Full Text Available Copper oxide (CuO nanoparticles were successfully deposited on carbon nanotubes’ (CNTs surface via complex-precipitation method, the nanocomposite was characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, X-ray powder diffraction (XRD, Raman spectroscopy, Fourier transform infrared (FT-IR and Brunauer–Emmett–Teller (BET. The catalytic performance of CNTs/CuO on ammonium perchlorate (AP decomposition was analyzed by differential thermal analyzer (DTA, the DTA results showed its excellent catalytic effect on AP decomposition, as 8 wt.% CNTs/CuO was added in AP, the second exothermic peak temperature decreased by 158 °C. Such composite may be a promising candidate for catalyzing the AP thermal decomposition.

  1. High-precision gravimetric coulometry using the silver-perchloric acid coulometer: Titration of arsenious oxide with electrogenerated iodine.

    Science.gov (United States)

    Newton, C M

    1977-06-01

    High-precision gravimetric coulometry with a silver-perchloric acid coulometer is evaluated as an alternative to the conventional titrimetric method. The loss of weight (caused by electrolytic dissolution) of a highly pure silver anode in series with the cathode of a conventional constant-current titration system is measured and related to the number of equivalents of substance titrated. The precision of the method is determined by titrations of the Standard Reference Material 83C arsenious oxide (99.99% pure) with electrogenerated iodine, using biamperometric end-point detection. Depending on the size of the sample, an ultimate precision of 25 ppm is obtained. The assay for 0.5-g samples of the SRM material is 99.993(9) +/- 0.002(5)% purity.

  2. The perchlorate discharge test with {sup 123}I for the diagnosis of the Pendred syndrome in children; Der Depletionstest mit {sup 123}Iod zur Diagnose des Pendred-Syndroms bei Kindern

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, K.; Fischer, S. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum der Ludwig-Maximilians-Univ. Muenchen (Germany)

    2009-03-15

    The method for the diagnosis of the Pendred Syndrome in children by the Perchlorate discharge test using {sup 123}I is described. The older child, who has the Pendred Syndrome and the obligatory hearing deficit, frequently has neither a goitre nor hypothyroidism, but other investigations (bone growth, scars and function tests) can also show changes. However a more certain diagnosis of this disorder in children is possible by the perchlorate discharge test using {sup 123}I. (orig.)

  3. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    Science.gov (United States)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; hide

    2013-01-01

    A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the

  4. Crystal structure of aqua-(perchlorato)bis-[μ-(E)-2-({[2-(pyridin-2-yl)eth-yl]imino}-meth-yl)phenolato-κ4N,N',O:O]dicopper(II) perchlorate.

    Science.gov (United States)

    Okeke, Ugochukwu; Gultneh, Yilma; Butcher, Ray J

    2017-11-01

    The title compound, [Cu2(ClO4)(C14H13N2O)2(H2O)]ClO4, crystallizes as an unsymmetrical dinuclear cation bridged by the phen-oxy O atoms with one CuII atom coordinated by a water mol-ecule and the other by a perchlorate anion, thus making both CuII atoms five-coordinate, and with a further perchlorate anion present for charge balance. A long inter-action [2.9893 (5) Å] between one of the two CuII atoms and an O atom of the perchlorate counter-ion links the cations and anions into linear chains along the a-axis direction. In addition, the water H atoms link with the perchlorate counter-ion. These inter-actions, along with numerous C-H⋯O inter-actions between the tetra-hedral perchlorate anions, link the ions into a complex three-dimensional array. One of the perchlorate anions is disordered over two conformations with occupancies of 0.586 (4) and 0.414 (4).

  5. Two scandium-biuret complexes: [Sc(C2H5N3O2)(H2O)5]Cl3 x H2O and [Sc(C2H5N3O2)4](NO3)3.

    Science.gov (United States)

    Harrison, William T A

    2008-05-01

    The scandium(III) cations in the structures of pentaaqua(biuret-kappa(2)O,O')scandium(III) trichloride monohydrate, [Sc(C(2)H(5)N(3)O(2))(H(2)O)(5)]Cl(3) x H(2)O, (I), and tetrakis(biuret-kappa(2)O,O')scandium(III) trinitrate, [Sc(C(2)H(5)N(3)O(2))(4)](NO(3))(3), (II), are found to adopt very different coordinations with the same biuret ligand. The roles of hydrogen bonding and the counter-ion in the establishment of the structures are described. In (I), the Sc(3+) cation adopts a fairly regular pentagonal bipyramidal coordination geometry arising from one O,O'-bidentate biuret molecule and five water molecules. A dense network of N-H...Cl, O-H...O and O-H...Cl hydrogen bonds help to establish the packing, resulting in dimeric associations of two cations and two water molecules. In (II), the Sc(3+) cation (site symmetry 2) adopts a slightly squashed square-antiprismatic geometry arising from four O,O'-bidentate biuret molecules. A network of N-H...O hydrogen bonds help to establish the packing, which features [010] chains of cations. One of the nitrate ions is disordered about an inversion centre. Both structures form three-dimensional hydrogen-bond networks.

  6. High-nitrogen-based pyrotechnics: longer- and brighter-burning, perchlorate-free, red-light illuminants for military and civilian applications.

    Science.gov (United States)

    Sabatini, Jesse J; Nagori, Amita V; Chen, Gary; Chu, Phillip; Damavarapu, Reddy; Klapötke, Thomas M

    2012-01-09

    The full-up prototype testing of perchlorate-free, hand-held, signal illuminants for the US Army's M126A1 red star parachute hand-held signal is described. Compared to the perchlorate-containing control, the disclosed illuminants yielded excellent stabilities toward various ignition stimuli while offering superior pyrotechnic performance. Militarily, the illuminants provided further evidence that development of smaller hand-held signal items in an environmentally conscious way is a realistic and obtainable goal. The results are also important from the perspective of civilian fireworks, as the development of brighter, longer-burning, and environmentally compatible red-light-emitting pyrotechnics is now possible. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    Science.gov (United States)

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Impact of inorganic pollutants perchlorate and hexavalent chromium on efficacy of Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis against Culex quinquefasciatus (Diptera: Culicidae).

    Science.gov (United States)

    Sorensen, Mary A; Walton, William E; Trumble, John T

    2007-09-01

    The effects of two widespread environmental pollutants, perchlorate and hexavalent chromium, were assessed on the efficacy of Bacillus thuringiensis subsp. israelensis (Bti) and Bacillus sphaericus (Bsph) against fourth instars of Culex quinquefasciatus Say (Diptera: Culicidae) in 24-h laboratory bioassays. Although 250 mg/liter perchlorate, a level somewhat higher than would be considered ecologically relevant, did not affect the control provided by either larvicide, presence of 1.04 mg/liter hexavalent chromium, an ecologically relevant concentration, increased the efficacy of both Bti and Bsph by 21 and 80%, respectively. In the presence of hexavalent chromium, improved suppression could be expected from Bacillus applications at the current label rates. However, because hexavalent chromium has been shown to affect many taxa, we propose that the potential exists for increased susceptibility of nontarget organisms to Bacillus products in polluted habitats.

  9. The Investigation of Magnesium Perchlorate/Iron Phase-mineral Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Heil, E.; Archer, P. D.; Ming, D. W.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P. R.; Niles, P. B.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumber-land (CB) drill hole materials in Gale Crater (Fig. 1) [1,2]. Chlorinated hydrocarbons have also been detect-ed by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [1,2,3,4]. These detections along with the detection of perchlorate (ClO4(-)) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) [5] suggesting perchlo-rate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal tempera-ture match to the SAM O2 and HCl release data [1,2]. Catalytic reactions of Fe phases in the Gale Crater ma-terial with perchlorates can potentially reduce the de-composition temperatures of these otherwise pure per-chlorate/chlorate phases [e.g., 6,7]. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate was found to cause O2 release temperatures to be closer match to the SAM O2 release data and enhance HCl gas releases. Exact matches to the SAM data has unfortnunately not been achieved with Ca-perchlorate-Fe-phase mixtures [8]. The effects of Fe-phases on magnesium perchlorate thermal decomposi-tion release of O2 and HCl have not been evaluated and may provide improved matches to the SAM O2 and HCl release data. This work will evaluate the thermal decomposition of magnesium perchlorate mixed with fayalite/magnetite phase and a Mauna Kea palagonite (HWMK 919). The objectives are to 1) summarize O2 and HCl releases from the Gale Crater materials, and 2) evaluate the O2 and HCl releases from the Mg-perchlorate + Fe phase mixtures to determine if Mg-perchlorate mixed with Fe-phases can explain the Gale Crater O2 and HCl releases.

  10. Graphite-Supported Perchloric Acid (HClO4-C: An Efficient and Recyclable Heterogeneous Catalyst for the One-Pot Synthesis of Amidoalkyl Naphthols

    Directory of Open Access Journals (Sweden)

    Zhen-Kai Lei

    2013-01-01

    Full Text Available An efficient and direct protocol for the preparation of amidoalkylnaphthols employing a multi-component, one-pot condensation reaction of 2-naphthol, aromatic aldehydes and acetamide or benzamide in the presence of graphite supported perchloric acid under solvent-free conditions is described. The thermal solvent-free procedure offers advantages such as simple work-up, shorter reaction times and higher product yields, and the catalyst exhibited remarkable reactivity and can be recycled.

  11. Graphite-supported perchloric acid (HClO4-C): an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols.

    Science.gov (United States)

    Lei, Zhen-Kai; Xiao, Li; Lu, Xiao-Quan; Huang, He; Liu, Chen-Jiang

    2013-01-28

    An efficient and direct protocol for the preparation of amidoalkylnaphthols employing a multi-component, one-pot condensation reaction of 2-naphthol, aromatic aldehydes and acetamide or benzamide in the presence of graphite supported perchloric acid under solvent-free conditions is described. The thermal solvent-free procedure offers advantages such as simple work-up, shorter reaction times and higher product yields, and the catalyst exhibited remarkable reactivity and can be recycled.

  12. Limited overshooting of NH{sub 4}{sup +} ions in ammonium perchlorate; Ograniczene przeskoki jonow NH{sub 4}{sup +} w nadchloranie amonowym

    Energy Technology Data Exchange (ETDEWEB)

    Birczynski, A.; Lalowicz, Z.T. [Inst. of Nuclear Physics, Cracow (Poland); Ingman, L.P.; Punkkinen, M.; Ylinen, E.E. [Wihuri Physical Lab., Turku Univ., Turku (Finland)

    1995-12-31

    The interpretation of NMR spectra for polycrystalline sample of ammonium perchlorate in helium temperature assumes the tunneling of NH{sub 4}{sup +}. Such interpretation does not agree with experimental data. The hypothesis of additional motion (fast rotation around one of C3 axis) has been checked and discussed on the base of NMR spectra of NH{sub 4}ClO{sub 4} monocrystal for the temperature range 2.1-25 K. 9 refs, 1 fig.

  13. (Acetonitrile-κNaqua[N,N′-bis(pyridin-2-ylmethylethane-1,2-diamine-κ4N,N′,N′′,N′′′]zinc(II perchlorate

    Directory of Open Access Journals (Sweden)

    Ugochukwu Okeke

    2017-10-01

    Full Text Available The structure of the title compound, [Zn(C14H18N4(C2H3N(H2O](ClO42, contains a six-coordinate cation consisting of the tetradentate bispicen ligand, coordinated water, and coordinated acetonitrile, with the latter two ligands adopting a cis configuration. There are two formula units in the asymmetric unit. Both cations show almost identical structural features with the bispicen ligand adopting the more common cis-β conformation. One of the four perchlorate anions is disordered over two positions, with occupancies of 0.9090 (15 and 0.0910 (15. There is extensive inter-ionic hydrogen bonding between the perchlorate anions and O—H and N—H groups in the cations, including a bifurcated hydrogen bond between an N—H group and two O atoms of one perchlorate anion. As a result of this extended hydrogen-bond network, the ions are linked into a complex three-dimensional array.

  14. The Investigation of Chlorate and Perchlorate/Saponite Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    Science.gov (United States)

    Clark, J.; Sutter, B.; Min, D. W.; Mahaffy, P.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected O2 and HCl gas releases from all analyzed Gale Crater sediments, which are attributed to the presence of perchlorates and/or chlorates in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates release O2 and HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce significant HCl releases comparable to those detected by the SAM instrument. In order to better explain the Gale Crater HCl releases, perchlorates and chlorates were mixed with Gale Crater analog saponite, which is found at abundances from 8 to 20 wt % in the John Klein and Cumberland drill samples. Mixtures of chlorates or perchlorates with calcium-saponite or ferrian-saponite were heated to 1000 deg C in a Labsys EVO differential scanning calorimeter/mass spectrometer configured to operate similarly to the SAM oven/quadrupole mass spectrometer system. Our results demonstrate that all chlorate and perchlorate mixtures produce significant HCl releases below 1000 deg C as well as depressed oxygen peak release temperatures when mixed with saponite. The type of saponite (calcium or ferrian saponite) did not affect the evolved gas results significantly. Saponite/Mg-perchlorate mixtures produced two HCl releases similar to the Cumberland drilled sample. Mg-chlorate mixed with saponite produced HCl releases similar to the Big Sky drilled sample in an eolian sandstone. A mixture of Ca-perchlorate and saponite produced HCl and oxygen releases similar to the Buckskin mudstone drilled sample and the Gobabeb 2 eolian dune material. Ca-chlorate mixed with saponite produced both

  15. Oxidation of clindamycin phosphate by cerium(IV in perchloric acid medium – A kinetic and mechanistic approach

    Directory of Open Access Journals (Sweden)

    Seema S. Badi

    2017-02-01

    Full Text Available Methyl 7-chloro-6,7,8-trideoxy-6-[(2S,4R-1-methyl-4-propylpyrrolidine-2-carboxamido]-1-thio-1-threo-D-galactooctapyranoside monohydrochloride, commonly called clindamycin phosphate(CYN-P used largely as an antibiotic for the treatment of serious infections caused by susceptible Gram-positive bacteria and an-aerobic bacteria was oxidized by using Ceric ammonium sulphate (Ce(IV in perchloric acid medium. Progress of the reaction was followed by measuring the decrease in absorbance of ceric ammonium sulphate at 360 nm. The reaction was found to be first order each in [CYN-P] and [Ce(IV]. Order in [HClO4] was calculated as 0.8. The reactive species of Ce(IV appears to be H3Ce(SO44−. Stoichiometry of the reaction was found to be 2:1 of [Ce(IV]:[CYN-P]. Initially added product did not alter the rate of reaction. A free radical mechanism was proposed, and rate law was derived and verified. The activation parameters, ΔH≠, ΔS≠, ΔG≠ and log A were found to be 54.7 kJ mol−1, −117 J K−1 mol−1, 103 kJ mol−1 and 7, respectively.

  16. Crystal structure of bis­(1-benzyl-1H-1,2,4-triazole) perchloric acid monosolvate

    Science.gov (United States)

    Qin, Yong-Qi; Xue, Jin-hui; Qiao, Yuan-Biao; Zhang, Zi-Feng

    2014-01-01

    The title compound, 2C9H9N3·HClO4, was prepared by reaction of 1-benzyl-1H-1,2,4-triazole and HClO4 in ethanol at room temperature. The asymmetric unit consists of two mol­ecules of 1-benzyl-1H-1,2,4-triazole and one of HClO4 mol­ecule. The benzene and triazole rings make dihedral angles of 85.45 (8) and 84.76 (8)° in the two mol­ecules. The H-atom position of the perchloric acid mol­ecule is split over two O atoms (real peaks on difference map), with site-occupation factors of 0.5. These H atoms form two classical hydrogen bonds [2.546 (5) and 2.620 (4) Å] with the same N atoms in both mol­ecules. Five inter­molecular non-classical C—H⋯O inter­actions, with C⋯O distances in the range 3.147 (5)–3.483 (5) Å, are found in the crystal structure. PMID:25553052

  17. Preparation of magnetic Ni-P amorphous alloy microspheres and their catalytic performance towards thermal decomposition of ammonium perchlorate

    Science.gov (United States)

    Deng, Yi; Yang, Yuanyi; Ge, Liya; Yang, Weizhong; Xie, Kenan

    2017-12-01

    In this work, a series of amorphous Ni-P alloys with diverse microspheric structures and magnetic properties were successfully prepared through a facile aqueous solution reduction using sodium hypophosphite as reducing agent with the assistance of polyvinylpyrrolidone (PVP). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and laser particle size analysis were used to investigate the structure of Ni-P alloy particles, which demonstrated that the as-prepared alloys possessed spherical morphologies and tunable compositions. We investigated the effects of the synthesis conditions including reaction temperature, initial Ni2+ concentration, pH value, and surfactant type on the morphologies and chemical constitutes of Ni-P alloy particles. Compared with other microsphere counterparts (ferromagnetism), the spherical Ni-P alloy powders with diameter of about 500 nm exhibited apparent paramagnetism. In addition, the catalytic performance of the products on the thermal decomposition of ammonium perchlorate (AP) was further investigated via thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). These Ni-P noncrystalline alloy particles with different magnetic properties and good catalytic activities would broaden the technological and industrial applications of Ni-P alloys in petrochemical reaction, soft magnetic devices, and burning rate catalysts.

  18. Nanotoxic Profiling of Novel Iron Oxide Nanoparticles Functionalized with Perchloric Acid and SiPEG as a Radiographic Contrast Medium

    Directory of Open Access Journals (Sweden)

    Muhamad Idham Mohamed

    2015-01-01

    Full Text Available Emerging syntheses and findings of new metallic nanoparticles (MNPs have become an important aspect in various fields including diagnostic imaging. To date, iodine has been utilized as a radiographic contrast medium. However, the raise concern of iodine threats on iodine-intolerance patient has led to search of new contrast media with lower toxic level. In this animal modeling study, 14 nm iron oxide nanoparticles (IONPs with silane-polyethylene glycol (SiPEG and perchloric acid have been assessed for toxicity level as compared to conventional iodine. The nanotoxicity of IONPs was evaluated in liver biochemistry, reactive oxygen species production (ROS, lipid peroxidation mechanism, and ultrastructural evaluation using transmission electron microscope (TEM. The hematological analysis and liver function test (LFT revealed that most of the liver enzymes were significantly higher in iodine-administered group as compared to those in normal and IONPs groups P<0.05. ROS production assay and lipid peroxidation indicator, malondialdehyde (MDA, also showed significant reductions in comparison with iodine group P<0.05. TEM evaluation yielded the aberration of nucleus structure of iodine-administered group as compared to those in control and IONPs groups. This study has demonstrated the less toxic properties of IONPs and it may postulate that IONPs are safe to be applied as radiographic contrast medium.

  19. Kinetics and mechanism of permanganate oxidation of iota- and lambda-carrageenan polysaccharides as sulfated carbohydrates in acid perchlorate solutions.

    Science.gov (United States)

    Hassan, Refat M; Fawzy, Ahmed; Ahmed, Gamal A; Zaafarany, Ishaq A; Asghar, Basim H; Takagi, Hideo D; Ikeda, Yasuhisa

    2011-10-18

    The kinetics of oxidation of iota- and lambda-carrageenan as sulfated carbohydrates by permanganate ion in aqueous perchlorate solutions at a constant ionic strength of 2.0 mol dm(-3) have been investigated spectrophotometrically. The pseudo-first-order plots were found to be of inverted S-shape throughout the entire courses of reactions. The initial rates were found to be relatively slow in the early stages, followed by an increase in the oxidation rates over longer time periods. The experimental observations showed first-order dependences in permanganate and fractional first-order kinetics with respect to both carrageenans concentration for both the induction and autoacceleration periods. The results obtained at various hydrogen ion concentrations showed that the oxidation processes in these redox systems are acid-catalyzed throughout the two stages of oxidation reactions. The added salts lead to the prediction that Mn(III) is the reactive species throughout the autoacceleration periods. Kinetic evidence for the formation of 1:1 intermediate complexes was revealed. The kinetic parameters have been evaluated and tentative reaction mechanisms in good agreement with the kinetic results are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Specific interactions of functionalised gold surfaces with ammonium perchlorate or starch; towards a chemical cartography of their mixture

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, D. [CNRS, UMR CNRS 7609, Laboratoire de Reactivite de Surface, Paris (France); Universite Pierre et Marie Curie - UPMC Paris VI, Laboratoire de Reactivite de Surface, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France); Mercader, C.; Quere, S.; Hairault, L. [CEA, DAM, Le Ripault, F-37260 Monts (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France); Methivier, C. [CNRS, UMR CNRS 7609, Laboratoire de Reactivite de Surface, Paris (France); Universite Pierre et Marie Curie - UPMC Paris VI, Laboratoire de Reactivite de Surface, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France); Pradier, C.M., E-mail: claire-Marie.pradier@upmc.fr [CNRS, UMR CNRS 7609, Laboratoire de Reactivite de Surface, Paris (France); Universite Pierre et Marie Curie - UPMC Paris VI, Laboratoire de Reactivite de Surface, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Measurements of interactions by Quartz Crystal Microbalance. Black-Right-Pointing-Pointer AFM and CFM measurements, tip functionalisation. Black-Right-Pointing-Pointer Surface nano-imaging. - Abstract: By functionalising gold samples, planar wafers or AFM tips, with an acid- or an amino acid-terminated thiols, mercaptoundecanoic acid (MUA) and homocystein (H-Cyst) respectively, we were able to differentiate the interactions with ammonium perchlorate (AP) and starch (S), two components of a nanocomposition mixture. To do so, the interaction between gold functionalized surfaces and the two targeted compounds have been characterized and quantified by several complementary techniques. Polarisation modulation-infrared spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS), providing chemical analyses of gold surfaces after contacting S or AP, proved that both compounds were retained on MUA or H-Cyst-modified surfaces, but to various extents. Quartz crystal microbalance on-line measurements enabled to monitor the kinetics of interaction and showed distinct differences in the behaviour of MUA and H-Cyst-surfaces towards the two compounds. Having observed that only H-Cyst-modified surfaces enables to get a contrast on the chemical force microscopy (CFM) images, this new result could be well explained by examining the data obtained by combining the above-mentioned surface characterisation techniques.

  1. US Environmental Protection Agency Method 314.1, an automated sample preconcentration/matrix elimination suppressed conductivity method for the analysis of trace levels (0.50 microg/L) of perchlorate in drinking water.

    Science.gov (United States)

    Wagner, Herbert P; Pepich, B V; Pohl, C; Later, D; Joyce, R; Srinivasan, K; Thomas, D; Woodruff, A; Deborba, B; Munch, D J

    2006-06-16

    Since 1997 there has been increasing interest in the development of analytical methods for the analysis of perchlorate. The US Environmental Protection Agency (EPA) Method 314.0, which was used during the first Unregulated Contaminant Monitoring Regulation (UCMR) cycle, supports a method reporting limit (MRL) of 4.0 microg/L. The non-selective nature of conductivity detection, combined with very high ionic strength matrices, can create conditions that make the determination of perchlorate difficult. The objective of this work was to develop an automated, suppressed conductivity method with improved sensitivity for use in the second UCMR cycle. The new method, EPA Method 314.1, uses a 35 mm x 4 mm cryptand concentrator column in the sample loop position to concentrate perchlorate from a 2 mL sample volume, which is subsequently rinsed with 10 mM NaOH to remove interfering anions. The cryptand concentrator column is combined with a primary AS16 analytical column and a confirmation AS20 analytical column. Unique characteristics of the cryptand column allow perchlorate to be desorbed from the cryptand trap and refocused on the head of the guard column for subsequent separation and analysis. EPA Method 314.1 has a perchlorate lowest concentration minimum reporting level (LCMRL) of 0.13 microg/L in both drinking water and laboratory synthetic sample matrices (LSSM) containing up to 1,000 microg/L each of chloride, bicarbonate and sulfate.

  2. Crystal structure of aqua(perchlorato)bis[μ-(E)-2-({[2-(pyridin-2-yl)ethyl]imino}methyl)phenolato-κ4N,N′,O:O]dicopper(II) perchlorate

    OpenAIRE

    Ugochukwu Okeke; Yilma Gultneh; Butcher, Ray J.

    2017-01-01

    The title compound, [Cu2(ClO4)(C14H13N2O)2(H2O)]ClO4, crystallizes as an unsymmetrical dinuclear cation bridged by the phen­oxy O atoms with one CuII atom coordinated by a water mol­ecule and the other by a perchlorate anion, thus making both CuII atoms five-coordinate, and with a further perchlorate anion present for charge balance. A long inter­action [2.9893 (5) Å] between one of the two CuII atoms and an O atom of the perchlorate counter-ion links the cations and anions into linear chains...

  3. Negative association between serum parathyroid hormone levels and urinary perchlorate, nitrate, and thiocyanate concentrations in U.S. adults: the National Health and Nutrition Examination Survey 2005-2006.

    Directory of Open Access Journals (Sweden)

    Wen-Ching Ko

    Full Text Available Perchlorate, nitrate, and thiocyanate are well-known inhibitors of the sodium-iodide symporter and may disrupt thyroid function. This exploratory study investigated the association among urinary perchlorate, nitrate, and thiocyanate concentrations and parathyroid hormone (PTH levels in the general U.S. population.We analyzed data on 4265 adults (aged 20 years and older from the National Health and Nutrition Examination Survey in 2005 through 2006 to evaluate the relationship among urinary perchlorate, nitrate, and thiocyanate concentration and PTH levels and the presence of hyperparathyroidism cross-sectionally.The geometric means and 95% confidence interval (95% CI concentrations of urinary perchlorate, nitrate, and thiocyanate were 3.38 (3.15-3.62, 40363 (37512-43431, and 1129 (1029-1239 ng/mL, respectively. After adjusting for confounding variables and sample weights, creatinine-corrected urinary perchlorate was negatively associated with serum PTH levels in women (P = 0.001, and creatinine-corrected urinary nitrate and thiocyanate were negatively associated with serum PTH levels in both sex groups (P = 0.001 and P<0.001 for men, P = 0.018 and P<0.001 for women, respectively. Similar results were obtained from sensitivity analyses performed for exposure variables unadjusted for creatinine with urinary creatinine added as a separate covariate. There was a negative relationship between hyperparathyroidism and urinary nitrate and thiocyanate [odds ratio (95% CI = 0.77 (0.60-0.98 and 0.69 (0.61-0.79, respectively].A higher urinary concentration of perchlorate, nitrate, and thiocyanate is associated with lower serum PTH levels. Future studies are needed to determine the pathophysiological background of the observation.

  4. Degradation of Adenine on the Martian Surface in the Presence of Perchlorates and Ionizing Radiation: A Reflectron Time-of-flight Mass Spectrometric Study

    Energy Technology Data Exchange (ETDEWEB)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [Department of Chemistry, University of Hawaii at Mānoa, Honolulu, HI 96822 (United States)

    2017-04-01

    The aim of the present work is to unravel the radiolytic decomposition of adenine (C{sub 5}H{sub 5}N{sub 5}) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine–magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surface of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO{sub 2}), isocyanic acid (HNCO), isocyanate (OCN{sup −}), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R{sub 1}R{sub 2}–C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H{sub 2}N–C≡N) was detected in both irradiated samples as well.

  5. Establishment of the conditions for the determination of the concentration of the uranyl ion in perchloric media by Fluorescence; Establecimiento de las condiciones para la determinacion de la concentracion del ion uranilo en medio perclorico por Fluorescencia

    Energy Technology Data Exchange (ETDEWEB)

    Contreras R, A.; Ordonez R, E.; Fernandez V, S.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: contraida@yahoo.com.mx

    2004-07-01

    The influence of the p H is reported in the spectra of luminescence of the ion uranyl in sodium perchlorate 2M. The best spectra were observed to ph <3 that to neutral and basic p Hs this is explained by the present species. They were carried out four calibration curves for the uranyl in perchloric acid media, taking into account the area under the curve, the maximum height of two characteristic peaks of this ion, in those that one observes a better correlation with the maximum height of the peak located to 486.7 nm. (Author)

  6. Evaluation of perchlorate sources in the Rialto-Colton and Chino California subbasins using chlorine and oxygen isotope ratio analysis

    Science.gov (United States)

    Hatzinger, Paul B.; Böhlke, John Karl; Izbicki, John; Teague, Nicholas F.; Sturchio, Neil C.

    2015-01-01

    Perchlorate (ClO4-) in groundwater can be from synthetic or natural sources, the latter of which include both historical application of imported nitrate fertilizers from the Atacama Desert of Chile and naturally deposited ClO4- that forms atmospherically and accumulates in arid regions such as the southwestern US. The objective of this study was to evaluate the use of isotopic data to distinguish sources of ClO4- in groundwater in a specific region of the Rialto-Colton and Chino, CA groundwater subbasins (Study Area). This region includes two groundwater ClO4- plumes emanating from known military/industrial source areas, and a larger area outside of these plumes having measurable ClO4-. Perchlorate extracted from wells in this region was analyzed for chlorine and oxygen stable isotope ratios (δ37Cl, δ18O, δ17O) and radioactive chlorine-36 (36Cl) isotopic abundance, along with other geochemical, isotopic, and hydrogeologic data. Isotope data indicate synthetic, Atacama, and indigenous natural ClO4- were present in the Study Area. Stable isotope data from nearly all sampled wells within the contours of the two characterized plumes, including those located in a perched zone and within the regional groundwater aquifer, were consistent with a dominant synthetic ClO4- source. In wells downgradient from the synthetic plumes and in the Chino subbasin to the southwest, isotopic data indicate the dominant source of ClO4- largely was Atacama, presumably from historical application of nitrate fertilizer in this region. Past agricultural land use and historical records are consistent with this source being present in groundwater. The 36Cl and δ18O data indicate that wells having predominantly synthetic or Atacama ClO4- also commonly contained small fractions of indigenous natural ClO4-. The indigenous ClO4- was most evident isotopically in wells having the lowest overall ClO4- concentrations (< 1 μg/L), consistent with its occurrence as a low-level background constituent

  7. Field Demonstration and Validation of a New Device for Measuring Groundwater and Perchlorate Fluxes at IHDIV-NSWC, Indian Head, MD

    Science.gov (United States)

    2006-07-01

    following practices are expressly forbidden during on-site investigations: • Smoking, eating, drinking, or chewing gum or tobacco while in the work...biologically stable. The positive charge on the quaternary amine functional group is not pH -dependent (in the pH range of environmental interest) and is...perchlorate levels ranging from 8 to 430 mg/L, and nitrate varying from 4 to approximately 50 mg/L (see Figures 3-2 and 3-6). The pH of site groundwater was

  8. Direct Growth of CuO Nanorods on Graphitic Carbon Nitride with Synergistic Effect on Thermal Decomposition of Ammonium Perchlorate

    Directory of Open Access Journals (Sweden)

    Linghua Tan

    2017-05-01

    Full Text Available Novel graphitic carbon nitride/CuO (g-C3N4/CuO nanocomposite was synthesized through a facile precipitation method. Due to the strong ion-dipole interaction between copper ions and nitrogen atoms of g-C3N4, CuO nanorods (length 200–300 nm, diameter 5–10 nm were directly grown on g-C3N4, forming a g-C3N4/CuO nanocomposite, which was confirmed via X-ray diffraction (XRD, transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS. Finally, thermal decomposition of ammonium perchlorate (AP in the absence and presence of the prepared g-C3N4/CuO nanocomposite was examined by differential thermal analysis (DTA, and thermal gravimetric analysis (TGA. The g-C3N4/CuO nanocomposite showed promising catalytic effects for the thermal decomposition of AP. Upon addition of 2 wt % nanocomposite with the best catalytic performance (g-C3N4/20 wt % CuO, the decomposition temperature of AP was decreased by up to 105.5 °C and only one decomposition step was found instead of the two steps commonly reported in other examples, demonstrating the synergistic catalytic activity of the as-synthesized nanocomposite. This study demonstrated a successful example regarding the direct growth of metal oxide on g-C3N4 by ion-dipole interaction between metallic ions, and the lone pair electrons on nitrogen atoms, which could provide a novel strategy for the preparation of g-C3N4-based nanocomposite.

  9. Atacama perchlorate as an agricultural contaminant in groundwater: Isotopic and chronologic evidence from Long Island, New York

    Science.gov (United States)

    Böhlke, J.K.; Hatzinger, P.B.; Sturchio, N.C.; Gu, B.; Abbene, I.; Mroczkowski, S.J.

    2009-01-01

    Perchlorate (ClO4-) is a common groundwater constituent with both synthetic and natural sources. A potentially important source of ClO4- is past agricultural application of ClO4--bearing natural NO3- fertilizer imported from the Atacama Desert, Chile, but evidence for this hasbeenlargely circumstantial. Here we report ClO4- stable isotope data (??37Cl, ??18O, and ??17O), along with other supporting chemical and isotopic environmental tracer data, to document groundwater ClO4- contamination sources and history in parts of Long Island, New York. Sampled groundwaters were oxic and ClO4- apparently was not affected by biodegradation within the aquifers. Synthetic ClO4- was indicated by the isotopic method in groundwater near a fireworks disposal site at a former missile base. Atacama ClO4- was indicated in agricultural and urbanizing areas in groundwaters with apparent ages >20 years. In an agricultural area, ClO4- concentrations and ClO4-/NO3- ratios increased withgroundwaterage, possiblybecauseof decreasing application rates of Atacama NO3- fertilizers and/or decreasing ClO4- concentrations in Atacama NO 3- fertilizers in recent years. Because ClO 4-/NO3- ratios of Atacama NO 3- fertilizers imported in the past (???2 ?? 10-3 mol mol-1) were much higher than the ClO 4-/NO3- ratio of recommended drinking-water limits (7 ?? 10-5 mol mol-1 in New York), ClO4- could exceed drinkingwater limits even where NO3- does not, and where Atacama NO3- was only a minor source of N. Groundwater ClO4- with distinctive isotopic composition was a sensitive indicator of past Atacama NO3- fertilizer use on Long Island and may be common in other areas that received NO3- fertilizers from the late 19th century through the 20th century. ?? 2009 American Chemical Society.

  10. Effects of salinity on simultaneous reduction of perchlorate and nitrate in a methane-based membrane biofilm reactor.

    Science.gov (United States)

    Zhang, Yin; Chen, Jia-Xian; Wen, Li-Lian; Tang, Youneng; Zhao, He-Ping

    2016-12-01

    This study builds upon prior work showing that methane (CH4) could be utilized as the sole electron donor and carbon source in a membrane biofilm reactor (MBfR) for complete perchlorate (ClO4-) and nitrate (NO3-) removal. Here, we further investigated the effects of salinity on the simultaneous removal of the two contaminants in the reactor. By testing ClO4- and NO3- at different salinities, we found that the reactor performance was very sensitive to salinity. While 0.2 % salinity did not significantly affect the hydrogen-based MBfR for ClO4- and NO3- removals, 1 % salinity completely inhibited ClO4- reduction and significantly lowered NO3- reduction in the CH4-based MBfR. In salinity-free conditions, NO3- and ClO4- removal fluxes were 0.171 g N/m2-day and 0.091 g/m2-day, respectively, but NO3- removal fluxes dropped to 0.0085 g N/m2-day and ClO4- reduction was completely inhibited when the medium changed to 1 % salinity. Scanning electron microscopy (SEM) showed that the salinity dramatically changed the microbial morphology, which led to the development of wire-like cell structures. Quantitative real-time PCR (qPCR) indicated that the total number of microorganisms and abundances of functional genes significantly declined in the presence of NaCl. The relative abundances of Methylomonas (methanogens) decreased from 31.3 to 5.9 % and Denitratisoma (denitrifiers) decreased from 10.6 to 4.4 % when 1 % salinity was introduced.

  11. Geochemical Trends and Natural Attenuation of RDX, Nitrate, and Perchlorate in the Hazardous Test Area Fractured-Granite Aquifer, White Sands Missile Range, New Mexico, 1996-2006

    Science.gov (United States)

    Langman, Jeff B.; Robertson, Andrew J.; Bynum, Jamar; Gebhardt, Fredrick E.

    2008-01-01

    A fractured-granite aquifer at White Sands Missile Range is contaminated with the explosive compound RDX, nitrate, and perchlorate (oxidizer associated with rocket propellant) from the previous use of the Open Burn/Open Detonation site at the Hazardous Test Area. RDX, nitrate, and perchlorate ground-water concentrations were analyzed to examine source characteristics, spatial and temporal variability, and the influence of the natural attenuation processes of dilution and degradation in the Hazardous Test Area fractured-granite aquifer. Two transects of ground-water wells from the existing monitoring-site network - one perpendicular to ground-water flow (transect A-A') and another parallel to ground-water flow (transect B-B') - were selected to examine source characteristics and the spatial and temporal variability of the contaminant concentrations. Ground-water samples collected in 2005 from a larger sampling of monitoring sites than the two transects were analyzed for various tracers including major ions, trace elements, RDX degradates, dissolved gases, water isotopes, nitrate isotopes, and sulfate isotopes to examine the natural attenuation processes of dilution and degradation. Recharge entrains contaminants at the site and transports them downgradient towards the Tularosa Basin floor through a poorly connected fracture system(s). From 1996 to 2006, RDX, nitrate, and perchlorate concentrations in ground water downgradient from the Open Burn/Open Detonation site have been relatively stable. RDX, nitrate, and perchlorate in ground water from wells near the site indicate dispersed contaminant sources in and near the Open Burn/Open Detonation pits. The sources of RDX and nitrate in the pit area have shifted with time, and the shift correlates with the regrading of the south and east berms of each pit in 2002 and 2003 following closure of the site. The largest RDX concentrations were in ground water about 0.1 mile downgradient from the pits, the largest perchlorate

  12. (2,2'-Bipyridine-4,4'-dicarboxylic acid-κ2N,N')chlorido(2,2':6',2''-terpyridyl-κ3N,N',N'')ruthenium(II) perchlorate ethanol monosolvate monohydrate

    DEFF Research Database (Denmark)

    Nielsen, Anne; McKenzie, Christine Joy; Bond, Andrew David

    2012-01-01

    ,4 '-dicarboxylic acid ligands, with interplanar separations of 3.65 (1) and 3.72 (1) angstrom. Three O atoms of the perchlorate ion are each disordered equally over two positions. The hydroxy group of the ethanol molecule is also disordered over two sites with refined occupancies of 0.794 (9) and 0.206 (9)....

  13. Esterification from derivates of styrene by acetic acid using perchloric acid as a catalyzer; Esterificacion de derivados de estireno con acido acetico en presencia de acido perclorico como catalizador

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de la Cuesta, P.J.; Rus Martinez, E.; Palomino sosa, R.; Palomino Perez, F. I. [Departamento deIngenieria Quimica, Facultad de Ciencias, Universidad de Malaga, Malaga (Spain)

    1995-11-01

    The present work is focused to develop the production of esters from derivatives of styrene by acetic acid using perchloric acid as a catalyst. The kinetics of the reaction was studied and analysis of the variables was carried out. 18 refs.

  14. Treatment of Perchlorate-Contaminated Groundwater Using Highly-Selective, Regenerable Anion-Exchange Resins at Edwards Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Gu, B.

    2003-05-30

    Selective ion exchange is one of the most effective treatment technologies for removing low levels of perchlorate (ClO{sub 4}{sup -}) from contaminated water because of its high efficiency without adverse impacts on the water quality caused by adding or removing any chemicals or nutrients. This report summarizes both the laboratory and a field pilot-scale studies to determine the ability and efficiency of the bifunctional synthetic resins to remove ClO{sub 4}{sup -} from the contaminated groundwater at the Edwards Air Force Base in California. Regeneration of the resins after groundwater treatment was also evaluated using the FeCl{sub 3}-HCl regeneration technique recently developed at Oak Ridge National Laboratory. On the basis of this study, the bifunctional resin, D-3696 was found to be highly selective toward ClO{sub 4}{sup -} and performed much better than one of the best commercial nitrate-selective resins (Purolite A-520E) and more than an order of magnitude better than the Purolite A-500 resin (with a relatively low selectivity). At an influent concentration of {approx} 450 {micro}g/L ClO{sub 4}{sup -} in groundwater, the bifunctional resin bed treated {approx} 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO{sub 4}{sup -} occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO{sub 4}{sup -}. However, the presence of high iron or iron oxyhydroxides and/or biomass in groundwater caused a significant fouling of the resin beds and greatly influenced the effectiveness in regenerating the resins sorbed with ClO{sub 4}{sup -}. Under such circumstances, a prefilter ({approx} 0.5-1 {micro}m) was found to be necessary to remove these particulates and to reduce the risk of fouling of the resin beds. Without significant fouling, the resin bed could be effectively regenerated by the FeCl{sub 3} displacement technique

  15. Atacama perchlorate as an agricultural contaminant in groundwater: Isotopic and chronologic evidence from Long Island, New York

    Energy Technology Data Exchange (ETDEWEB)

    Bohlke, J. K. [U.S. Geological Survey, Reston, VA; Hatzinger, Paul B. [Shaw Environmental, Inc., Lawrenceville, NJ; Sturchio, N. C. [University of Illinois, Chicago; Gu, Baohua [ORNL; Abbene, I. [U.S. Geological Survey; Mroczkowki, S. J. [U.S. Geological Survey

    2009-01-01

    Perchlorate (ClO{sub 4}{sup -}) is a common groundwater constituent with both synthetic and natural sources. A potentially important source of ClO{sub 4}{sup -} is past agricultural application of ClO{sub 4}{sup -}-bearing natural NO{sub 3}{sup -} fertilizer imported from the Atacama Desert, Chile, but evidence for this has been largely circumstantial. Here we report ClO{sub 4}{sup -} stable isotope data ({delta}{sup 37}Cl, {delta}{sup 18}O, and {Delta}{sup 17}O), along with other supporting chemical and isotopic environmental tracer data, to document groundwater ClO{sub 4}{sup -} contamination sources and history in parts of Long Island, New York. Sampled groundwaters were oxic and ClO{sub 4}{sup -} apparently was not affected by biodegradation within the aquifers. Synthetic ClO{sub 4}{sup -} was indicated by the isotopic method in groundwater near a fireworks disposal site at a former missile base. Atacama ClO{sub 4}{sup -} was indicated in agricultural and urbanizing areas in groundwaters with apparent ages >20 years. In an agricultural area, ClO{sub 4}{sup -} concentrations and ClO{sub 4}{sup -}/NO{sub 3}{sup -} ratios increased with groundwater age, possibly because of decreasing application rates of Atacama NO{sub 3}{sup -} fertilizers and/or decreasing ClO{sub 4}{sup -} concentrations in Atacama NO{sub 3}{sup -} fertilizers in recent years. Because ClO{sub 4}{sup -}/NO{sub 3}{sup -} ratios of Atacama NO{sub 3}{sup -} fertilizers imported in the past (2 x 10{sup -3} mol mol{sup -1}) were much higher than the ClO{sub 4}{sup -}/NO{sub 3}{sup -} ratio of recommended drinking-water limits (7 x 10{sup -5} mol mol{sup -1} in New York), ClO{sub 4}{sup -} could exceed drinking-water limits even where NO{sub 3}{sup -} does not, and where Atacama NO{sub 3}{sup -} was only a minor source of N. Groundwater ClO{sub 4}{sup -} with distinctive isotopic composition was a sensitive indicator of past Atacama NO{sub 3}{sup -} fertilizer use on Long Island and may be common in

  16. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oliver, Michael S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  17. Diaqua-tetra-kis-(1,3-di-4-pyridylpropane-κN)-manganese(II) bis-(perchlorate) ses-qui-hydrate.

    Science.gov (United States)

    Kuai, Hai-Wei; Cheng, Xiao-Chun

    2011-11-01

    In the title complex, [Mn(C(13)H(14)N(2))(4)(H(2)O)(2)](ClO(4))(2)·1.5H(2)O, the Mn(II) ion is coordinated by four N atoms from four different 1,3-di-4-pyridyl-propane mol-ecules and two O atoms from two coordinated water mol-ecules, leading to a distorted MnN(4)O(2) octa-hedral geometry. Each 1,3-di-4-pyridyl-propane ligand displays a monodentate coordinating mode. In the crystal, there exist O-H⋯O, O-H⋯N and C-H⋯O hydrogen bonds. The perchlorate anions and the coordinated and lattice water mol-ecules play an important role in the formation of these hydrogen bonds. One of the two lattice water molecules shows half-occupancy.

  18. Structural Peculiarities of Ion-Conductive Organic-Inorganic Polymer Composites Based on Aliphatic Epoxy Resin and Salt of Lithium Perchlorate

    Science.gov (United States)

    Matkovska, Liubov; Iurzhenko, Maksym; Mamunya, Yevgen; Tkachenko, Igor; Demchenko, Valeriy; Synyuk, Volodymyr; Shadrin, Andriy; Boiteux, Gisele

    2017-06-01

    The article is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of organic-inorganic polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. On the one hand, the results showed that the introduction of LiClO4 salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li+ ion and ligand. On the other hand, the appearance of amorphous microinclusions, probably of inorganic nature, was also found.

  19. Sol–gel method to prepare graphene/Fe{sub 2}O{sub 3} aerogel and its catalytic application for the thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Yuanfei; Li, Xiaoyu; Li, Guoping; Luo, Yunjun, E-mail: yjluo@bit.edu.cn [Beijing Institute of Technology, School of Materials Science and Engineering (China)

    2015-10-15

    Graphene/Fe{sub 2}O{sub 3} (Gr/Fe{sub 2}O{sub 3}) aerogel was synthesized by a simple sol–gel method and supercritical carbon dioxide drying technique. In this study, the morphology and structure were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and nitrogen sorption tests. The catalytic performance of the as-synthesized Gr/Fe{sub 2}O{sub 3} aerogel on the thermal decomposition of ammonium perchlorate (AP) was investigated by thermogravimetric and differential scanning calorimeter. The experimental results showed that Fe{sub 2}O{sub 3} with particle sizes in the nanometer range was anchored on the Gr sheets and Gr/Fe{sub 2}O{sub 3} aerogel exhibits promising catalytic effects for the thermal decomposition of AP. The decomposition temperature of AP was obviously decreased and the total heat release increased as well.

  20. Bis{tris[2-(2-oxidobenzylideneazaniumylethyl]amine-κ3O,O′,O′′}calcium bis(perchlorate acetonitrile disolvate

    Directory of Open Access Journals (Sweden)

    Muhammet Kose

    2011-02-01

    Full Text Available The title complex, [Ca(C27H30N4O32](ClO42·2CH3CN, is composed of centrosymmetric (CaL22+ cations [L = tris(2-hydroxybenzoylaminoethylamine = H3saltren], uncoordinated perchlorate anions and acetonitrile solvent molecules. The calcium ion is six-coordinated and is bonded to all phenoxy O atoms from both zwitterionic saltren molecules. There are strong intramolecular N—H...O hydrogen bonds. The cations are linked into chains via weak intermolecular C—H...O hydrogen bonds and C—H...π and π–π stacking interactions [centroid–centroid distances = 3.306 (3 and 3.415 (3 Å].

  1. Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments

    Science.gov (United States)

    Jackson, W Andrew; Böhlke, John Karl; Andraski, Brian J.; Fahlquist, Lynne S.; Bexfield, Laura M.; Eckardt, Frank D.; Gates, John B.; Davila, Alfonso F.; McKay, Christopher P.; Rao, Balaji; Sevanthi, Ritesh; Rajagopalan, Srinath; Estrada, Nubia; Sturchio, Neil C.; Hatzinger, Paul B.; Anderson, Todd A.; Orris, Greta J.; Betancourt, Julio L.; Stonestrom, David A.; Latorre, Claudio; Li, Yanhe; Harvey, Gregory J.

    2015-01-01

    Natural perchlorate (ClO4−) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4− compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4− in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4− to the more well-studied atmospherically deposited anions NO3−and Cl− as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4− is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10−1to 106 μg/kg. Generally, the ClO4− concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3− and ClO4− co-occur at molar ratios (NO3−/ClO4−) that vary between ∼104and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4− reduction, as indicated in part by NO3− isotope data. In contrast, much larger ranges of Cl−/ClO4− and Cl−/NO3−ratios indicate Cl− varies independently from both ClO4− and NO3−. The general lack of correlation between Cl− and ClO4− or NO3− implies that Cl− is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a

  2. (1H-Benzimidazole-5-carboxylic acid-κN3(1H-benzimidazole-6-carboxylic acid-κN3silver(I perchlorate

    Directory of Open Access Journals (Sweden)

    Li Ma

    2011-04-01

    Full Text Available The reaction of 1H-benzimidazole-5-carboxylic acid with silver nitrate in the presence of perchloric acid under hydrothermal conditions yielded the title complex, [Ag(C8H6N2O22]ClO4, which comprises of an [Ag(C8H6N2O22] mononuclear cation and a perchlorate anion. The AgI ion is coordinated by two N atoms from two different neutral 1H-benzimidazole-5-carboxylic acid ligands with an N—Ag—N bond angle of 163.21 (14°, forming an [Ag(C8H6N2O22] mononuclear cation. Although both ligands in the mononuclear cation are monodentate with one N atom coordinated to the metal ion, they are different: one is N3 coordinated to the Ag I ion and the N1 atom protonated, the other with the N1 coordinated to the Ag I ion and the N3 atom protonated (and thus formally a 1H-benzimidazole-6-carboxylic acid rather than a 1H-benzimidazole-5-carboxylic acid ligand. The planes of the two planar ligands are roughly perpendicular, making a dihedral angle of 84.97 (2°. The packing of the ions is stablized by extensive O—H...O, N—H...O and C—H...O hydrogen bonds, and by remote Ag...O interactions [3.002 (3, 3.581 (5 and 3.674 (5 Å].

  3. Investigation of the Structure, Optical and Electrical Properties of Lithium Perchlorate Doped Polyaniline Composite: Aloe Vera Used as a Bio-Plasticizer

    Science.gov (United States)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Sharanappa, Chapi; Raghu, S.; Devendrappa, H.

    2017-08-01

    Bio-plasticizer based polyaniline (PANI)/lithium perchlorate (LiClO4) composites were synthesized by the facile in situ method. The composites were characterized using the Fourier transform infrared spectroscopy (FT-IR) to identify the chemical interactions. A band appeared at 1502 cm-1 due to the presence of the -H2CO- group and CH2 scissor mode vibration for the PAL15% composite. This considerable change in the morphology of LiClO4 homogeneous dispersion in a PANI matrix was investigated by scanning electron microscopy (SEM). The UV-Visible absorption (UV-Vis) showed 300-400 nm attributed to the π-π* transition and exhibited a red shift from 535 nm to 617 nm in the visible region, indicating a decrease in band gap. The variations in dielectric constant with the addition of lithium perchlorate (LiClO4) at different temperatures and in the frequency range of 20 Hz-1 MHz were assessed through impedance analysis. The temperature dependent electrical conductivity increased with increasing temperature as well as dopant concentration. High conductivity of 1.41 × 10-3 S/cm corresponding to activation energy of 0.02 eV and 2.95 eV optical band gap for 15 wt.% of LiClO4 concentration was observed. The cyclic voltammetry measurement revealed a typical rectangular shape of the integral area, suggesting that the composite has strong electrochemical strength and is a possible candidate for electrochemical super capacitor and solar cell applications.

  4. Investigation of the Structure, Optical and Electrical Properties of Lithium Perchlorate Doped Polyaniline Composite: Aloe Vera Used as a Bio-Plasticizer

    Science.gov (United States)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Sharanappa, Chapi; Raghu, S.; Devendrappa, H.

    2017-12-01

    Bio-plasticizer based polyaniline (PANI)/lithium perchlorate (LiClO4) composites were synthesized by the facile in situ method. The composites were characterized using the Fourier transform infrared spectroscopy (FT-IR) to identify the chemical interactions. A band appeared at 1502 cm-1 due to the presence of the -H2CO- group and CH2 scissor mode vibration for the PAL15% composite. This considerable change in the morphology of LiClO4 homogeneous dispersion in a PANI matrix was investigated by scanning electron microscopy (SEM). The UV-Visible absorption (UV-Vis) showed 300-400 nm attributed to the π- π* transition and exhibited a red shift from 535 nm to 617 nm in the visible region, indicating a decrease in band gap. The variations in dielectric constant with the addition of lithium perchlorate (LiClO4) at different temperatures and in the frequency range of 20 Hz-1 MHz were assessed through impedance analysis. The temperature dependent electrical conductivity increased with increasing temperature as well as dopant concentration. High conductivity of 1.41 × 10-3 S/cm corresponding to activation energy of 0.02 eV and 2.95 eV optical band gap for 15 wt.% of LiClO4 concentration was observed. The cyclic voltammetry measurement revealed a typical rectangular shape of the integral area, suggesting that the composite has strong electrochemical strength and is a possible candidate for electrochemical super capacitor and solar cell applications.

  5. Thyroid scintigraphy and perchlorate test after recombinant human TSH: a new tool for the differential diagnosis of congenital hypothyroidism during infancy

    Energy Technology Data Exchange (ETDEWEB)

    Fugazzola, Laura; Vannucchi, Guia; Mannavola, Deborah; Beck-Peccoz, Paolo [University of Milan and Fondazione Policlinico IRCCS, Department of Medical Sciences, Milan (Italy); Persani, Luca [University of Milan and Istituto Auxologico Italiano, Department of Medical Sciences, Via Zucchi, Cusano, Milan (Italy); Carletto, Marco; Longari, Virgilio [Fondazione Policlinico IRCCS, Department of Nuclear Medicine, Milan (Italy); Vigone, Maria C.; Cortinovis, Francesca; Weber, Giovanna [Universita Vita-Salute S. Raffaele, Centro di Endocrinologia dell' Infanzia e dell' Adolescenza, Milan (Italy); Beccaria, Luciano [A. Manzoni Hospital, Paediatric Unit, Lecco (Italy)

    2007-09-15

    Prompt initiation of l-thyroxine therapy in neonates with congenital hypothyroidism (CH) often prevents the performance of functional studies. Aetiological diagnosis is thus postponed until after infancy, when the required investigations are performed after l-thyroxine withdrawal. The aim of this study was to verify the efficacy and safety of new protocols for rhTSH (Thyrogen) testing during l-thyroxine replacement in the differential diagnosis of CH. Ten CH patients (15-144 months old) were studied. Seven had neonatal evidence of gland in situ at the ultrasound examination performed at enrolment and received two rhTSH injections (4 {mu}g/kg daily, i.m.) with {sup 123}I scintigraphy and perchlorate test on day 3. Three patients with an ultrasound diagnosis of thyroid dysgenesis received three rhTSH injections with {sup 123}I scintigraphy on days 3 and 4. TSH and thyroglobulin (Tg) determinations were performed on days 1, 3 and 4, and neck ultrasound on day 1. rhTSH stimulation caused Tg levels to increase in eight cases. Blunted Tg responses were seen in two patients with ectopia and hypoplasia. Interestingly, in two cases the association of different developmental defects was demonstrated. Perchlorate test revealed a total iodide organification defect in two patients, including one with a neonatal diagnosis of Pendred's syndrome, who were subsequently found to harbour TPO mutations. rhTSH did not cause notable side-effects. These new rhTSH protocols always resulted in accurate disease characterisation, allowing specific management and targeted genetic analyses. Thus, rhTSH represents a valid and safe alternative to l-thyroxine withdrawal in the differential diagnosis of CH in paediatric patients. (orig.)

  6. Perchlorate Questions and Answers

    Science.gov (United States)

    ... change how the FDA evaluates the safety of foods? The FDA uses the most up-to-date science, including information from the EPA, when it conducts safety assessments. The FDA will review the new information ...

  7. (2-Aminobenzoato-κ2O,O′(rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′nickel(II perchlorate monohydrate

    Directory of Open Access Journals (Sweden)

    Seik Weng Ng

    2010-10-01

    Full Text Available In the title salt, [Ni(C7H6NO2(C16H36N4]ClO4·H2O, the NiII cation is O,O′-chelated by the benzoate anion and N,N′,N′′,N′′′-chelated by the macrocycle ligand, confering a distorted octahedral geometry on the metal atom. The complex cations, perchlorate anions and uncoordinated water molecules are linked by N—H...O and O—H...O hydrogen bonds into a three-dimensional network. The perchlorate ion is disordered over two positions in a 0.554 (8:0.446 (8 ratio.

  8. catena-Poly[[silver(I-μ-1,2-bis(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-ylethane-κ2N:N′] perchlorate hemihydrate

    Directory of Open Access Journals (Sweden)

    Ay Jong

    2012-05-01

    Full Text Available In the title coordination polymer, {[Ag(C12H20N2O2]ClO4·0.5H2O}n, the AgI cation is coordinated by two N atoms from two 1,2-bis(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-ylethane (L ligands in a nearly linear geometry [N—Ag—N = 171.07 (8°]. The L ligand bridges adjacent Ag+ cations, forming a polymeric chain running along the c axis. The lattice water molecule is situated on a twofold rotation axis, and links to the perchlorate anion via an O—H...O hydrogen bond. The long Ag...O separation of 3.200 (4 Å indicates a weak interaction between the perchlorate anion and the AgI cation. Weak C—H...O hydrogen bonding occurs between the chain and the lattice water molecule and between the chain and perchlorate anions. Both five-membered rings of the L ligand display envelope conformations; in one five-membered ring, the flap C atom is disordered on opposite sides of the ring with occupancies of 0.65 and 0.35.

  9. Crystal structure of trans-dichlorido(1,4,8,11-tetraazaundecane-κ4Nchromium(III perchlorate determined from synchrotron data

    Directory of Open Access Journals (Sweden)

    Dohyun Moon

    2016-03-01

    Full Text Available The structure of the title complex, [CrCl2(2,3,2-tet]ClO4 (2,3,2-tet is 1,4,8,11-tetraazaundecane, C7H20N4, has been determined from synchrotron data. The CrIII ion is coordinated by the four N atoms of the 1,4,8,11-tetraazaundecane ligand in the equatorial plane and two chloride ions in an axial arrangement, displaying a slightly distorted octahedral coordination environment. The two H atoms of the secondary amines are grouped on the same side of the equatorial N4 plane (meso-RS conformation. The Cr—N bond lengths range from 2.069 (2 to 2.084 (2 Å, while the mean Cr—Cl bond length is 2.325 (2 Å. The crystal structure is stabilized by intermolecular hydrogen-bonding interactions between the primary and secondary amine groups of the 2,3,2-tet ligands, the Cl ligands and the O atoms of the perchlorate counter-anion, forming corrugated layers parallel to (010.

  10. Constants and thermodynamics of the acid-base equilibria of triglycine in water-ethanol solutions containing sodium perchlorate at 298 K

    Science.gov (United States)

    Pham Tkhi, L.; Usacheva, T. R.; Tukumova, N. V.; Koryshev, N. E.; Khrenova, T. M.; Sharnin, V. A.

    2016-02-01

    The acid-base equilibrium constants for glycyl-glycyl-glycine (triglycine) in water-ethanol solvents containing 0.0, 0.1, 0.3, and 0.5 mole fractions of ethanol are determined by potentiometric titration at 298.15 K and an ionic strength of 0.1, maintained with sodium perchlorate. It is established that an increase in the ethanol content in the solvent reduces the dissociation constant of the carboxyl group of triglycine (increases p K 1) and increases the dissociation constant of the amino group of triglycine (decreases p K 2). It is noted that the weakening of the acidic properties of a triglycinium ion upon an increase of the ethanol content in the solvent is due to the attenuation of the solvation shell of the zwitterionic form of triglycine, and to the increased solvation of triglycinium ions. It is concluded that the acid strength of triglycine increases along with a rise in the EtOH content in the solvent, due to the desolvation of the tripeptide zwitterion and the enhanced solvation of protons.

  11. MOF-derived hollow NiO-ZnO composite micropolyhedra and their application in catalytic thermal decomposition of ammonium perchlorate

    Science.gov (United States)

    Yang, Ji-Min

    2017-07-01

    Ni(II)-doped Zn-based coordination polymer particles (Ni(II)-doped Zn-CPPs) with controllable shape and size were successfully synthesized by solvothermal method, which further transformed to porous ZnO-NiO composite micropolyhedra without significant alterations in shape by calcination in air. Those products were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), infrared spectroscopy (IR) and gas adsorption measurements. The catalytic activity of ZnO-NiO composites for the thermal decomposition of ammonium perchlorate (AP) was investigated. The result shows that all ZnO-NiO composites efficiently catalyzed the thermal decomposition of AP, and NiO-ZnO composite hollow octahedrons have the highest catalytic efficiency compared with that of most materials reported to now, indicating that porous ZnO-NiO composite micropolyhedra could be a promising candidate material for application in AP-based propellant.

  12. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  13. Redetermination of diaqua[N,N′-bis(3-methoxy-2-oxidobenzylideneethylenediamine-κ4O,N,N′,O′]manganese(III perchlorate at 100 K

    Directory of Open Access Journals (Sweden)

    Shabana Noor

    2016-11-01

    Full Text Available The crystal structure of the organic–inorganic title salt, [Mn(C18H18N2O4(H2O2]ClO4, has been redetermined at 100 K. In contrast to the crystal structure determinations at room temperature [Akitsu et al. (2005. Acta Cryst. C61, m324–m328; Bermejo et al. (2007. Eur. J. Inorg. Chem. pp. 3789–3797], positional disorder of the ethylene bridge in the Schiff base ligand and the perchlorate anion is not observed at 100 K. The MnIII ion is six-coordinated with the tetradentate Schiff base chelate ligand N,N′-bis(3-methoxy-2-oxybenzylideneethylenediamine occupying coordination sites in the equatorial plane and the aqua ligands residing in the two axial positions. The octahedral coordination sphere of the MnIII ion exhibits an axial elongation due to the Jahn–Teller effect, which is characteristic of a d4 high-spin electronic configuration.

  14. Crystal growth, physical properties and computational insights of semi-organic non-linear optical crystal diphenylguanidinium perchlorate grown by conventional solvent evaporation method

    Science.gov (United States)

    Kajamuhideen, M. S.; Sethuraman, K.; Ramamurthi, K.; Ramasamy, P.

    2018-02-01

    A splendid nonlinear optical single crystals diphenylguanidinium perchlorate (DPGP) was lucratively grown by low cost solvent evaporation method with the dimensions of 8 × 4 × 2 mm3. Structural and morphological studies of grown crystal were confirmed using X-ray diffraction studies. The presence of diverse functional groups was identified using FTIR and RAMAN studies. The molecular structure of a grown crystal was inveterate by NMR studies. The optical transmittance of DPGP crystal was analyzed using UV-vis-NIR studies. Photoluminescence spectrum shows sharp, well defined emission peak at 388 nm. Thermal studies assign that adduct is stable with the melting point of 164 °C. Microhardness studies declare that DPGP crystal belongs to the soft material class and their yield strength and elastic stiffness constant values were evaluated. Photoconductivity studies revealed the negative photoconductive nature of DPGP crystal. Second harmonic generation (SHG) efficiency of the DPGP crystal was 1.4 times that of potassium dihydrogen phosphate. Etching studies were carried out for different etching time. The dielectric studies were performed at different frequency. Laser damage threshold properties of DPGP crystal were examined using Nd:YAG laser system. The HOMO-LUMO energy gap evident the charge transfer interaction of the molecule. The calculated first order hyperpolarizability value is 5 times greater than that of urea. Thus, the grown DPGP single crystals are well suited for NLO device fabrications.

  15. Carcinoembryonic antigen: assay following heat compared with perchloric acid extraction in patients with colon cancer, non-neoplastic gastrointestinal diseases, or chronic renal failure.

    Science.gov (United States)

    Witherspoon, L R; Shuler, S E; Alyea, K; Husserl, F E

    1983-10-01

    Heat inactivation has been proposed as an alternative to perchloric acid (PCA) precipitation for the extraction of carcinoembryonic antigen (CEA) from human plasma. We examined a commercial RIA kit using heat inactivation, and compared results with those obtained with PCA precipitation. Adequate sensitivity (1.5 micrograms CEA/l plasma), satisfactory analytical recovery of CEA added to plasma, and dilutional linearity of samples found to have elevated CEA concentrations, were demonstrated for the heat-inactivation assay. Between-assay precision was better with the heat inactivation than with the PCA assay. Although the absolute concentration of CEA estimated after heat inactivation was consistently lower than that estimated after PCA extraction of plasma specimens, there was excellent correlation between results obtained with the two methods in colon cancer patients free of disease, colon cancer patients with residual or recurrent disease, patients with benign gastrointestinal disease, and in patients with chronic renal failure. We conclude that the heat-inactivation assay is an excellent alternative to the PCA assay.

  16. Carcinoembryonic antigen: assay following heat compared with perchloric acid extraction in patients with colon cancer, non-neoplastic gastrointestinal diseases, or chronic renal failure

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, L.R.; Shuler, S.E.; Alyea, K.; Husserl, F.E.

    1983-10-01

    Heat inactivation has been proposed as an alternative to perchloric acid (PCA) precipitation for the extraction of carcinoembryonic antigen (CEA) from human plasma. A commercial RIA kit using heat inactivation was examined and results compared with those obtained with PCA precipitation. Adequate sensitivity (1.5 ..mu..g CEA/I plasma), satisfactory analytical recovery of CEA added to plasma, and dilutional linearity of samples found to have elevated CEA concentrations, were demonstrated for the heat-inactivation assay. Between-assay precision was better with the heat inactivation than with the PCA assay. Although the absolute concentration of CEA estimated after heat inactivation was consistently lower than that estimated after PCA extraction of plasma specimens, there was excellent correlation between results obtained with the two methods in colon cancer patients free of disease, colon cancer patients with residual or recurrent disease, patients with benign gastrointestinal disease, and in patients with chronic renal failure. The heat-inactivation assay is an excellent alternative to the PCA assay.

  17. Unmasking Heavily O-Glycosylated Serum Proteins Using Perchloric Acid: Identification of Serum Proteoglycan 4 and Protease C1 Inhibitor as Molecular Indicators for Screening of Breast Cancer.

    Science.gov (United States)

    Lee, Cheng-Siang; Taib, Nur Aishah Mohd; Ashrafzadeh, Ali; Fadzli, Farhana; Harun, Faizah; Rahmat, Kartini; Hoong, See Mee; Abdul-Rahman, Puteri Shafinaz; Hashim, Onn Haji

    2016-01-01

    Heavily glycosylated mucin glycopeptides such as CA 27.29 and CA 15-3 are currently being used as biomarkers for detection and monitoring of breast cancer. However, they are not well detected at the early stages of the cancer. In the present study, perchloric acid (PCA) was used to enhance detection of mucin-type O-glycosylated proteins in the serum in an attempt to identify new biomarkers for early stage breast cancer. Sensitivity and specificity of an earlier developed sandwich enzyme-linked lectin assay were significantly improved with the use of serum PCA isolates. When a pilot case-control study was performed using the serum PCA isolates of normal participants (n = 105) and patients with stage 0 (n = 31) and stage I (n = 48) breast cancer, higher levels of total O-glycosylated proteins in sera of both groups of early stage breast cancer patients compared to the normal control women were demonstrated. Further analysis by gel-based proteomics detected significant inverse altered abundance of proteoglycan 4 and plasma protease C1 inhibitor in both the early stages of breast cancer patients compared to the controls. Our data suggests that the ratio of serum proteoglycan 4 to protease C1 inhibitor may be used for screening of early breast cancer although this requires further validation in clinically representative populations.

  18. Visible and Near-IR Reflectance Spectra for Smectite, Sulfate And Perchlorate under Dry Conditions for Interpretation of Martian Surface Mineralogy

    Science.gov (United States)

    Morris, R.V.; Ming, W.; Golden, D.C.; Arvidson, R.E.; Wiseman, S.M.; Lichtenberg, K.A.; Cull, S.; Graff, T.G.

    2009-01-01

    Visible and near-IR (VNIR) spectral data for the martian surface obtained from orbit by the MRO-CRISM and OMEGA instruments are interpreted as having spectral signatures of H2O/OH-bearing phases, including smectites and other phyllosilicates, sulfates, and high-SiO2 phases [e.g., 1-4]. Interpretations of martian spectral signatures are based on and constrained by spectra that are obtained in the laboratory on samples with known mineralogical compositions and other physicochemical characteristics under, as appropriate, Mars-like environmental conditions (e.g., temperature, pressure, and humidity). With respect to environmental conditions, differences in the absolute concentration of atmospheric H2O can effect the hydration state and therefore the spectra signatures of smectite phyllosilicates (solvation H2O) and certain sulfates (hydration H2O) [e.g., 5-7]. We report VNIR spectral data acquired under humid (laboratory air) and dry (dry N2 gas) environments for two natural smectites (nontronite API-33A and saponite SapCa-1) to characterize the effect of solvation H2O on spectral properties. We also report spectral data for the thermal dehydration products of (1) melanterite (FeSO4.7H2O) in both air and dry N2 gas and (2) Mg-perchlorate (Mg(ClO4)2.6H2O) in dry N2 environments. Spectral measurements for samples dehydrated in dry N2 were made without exposing them to humid laboratory air.

  19. cis-Aquabis(2,2'-bipyridine-κ2N,N')-fluoridochromium(III) bis(perchlorate) dihydrate

    DEFF Research Database (Denmark)

    Birk, Torben; Bendix, Jesper

    2010-01-01

    The title mixed aqua-fluoride complex, [CrF(C(10)H(8)N(2))(2)(H(2)O)](ClO(4))(2)·2H(2)O, has been synthesized by aqua-tion of the corresponding difluoride complex using lanthan-ide(III) ions as F(-) acceptors. The complex crystallizes with a Cr(III) ion at the center of a distorted octa-hedral co......The title mixed aqua-fluoride complex, [CrF(C(10)H(8)N(2))(2)(H(2)O)](ClO(4))(2)·2H(2)O, has been synthesized by aqua-tion of the corresponding difluoride complex using lanthan-ide(III) ions as F(-) acceptors. The complex crystallizes with a Cr(III) ion at the center of a distorted octa......-hedral coordination polyhedron with a cis arrangement of ligands. The crystal packing shows a hydrogen-bonding pattern involving water mol-ecules, the coordinated F atom and the perchlorate anions....

  20. Pure CuCr2O4 nanoparticles: Synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate

    Science.gov (United States)

    Hosseini, Seyed Ghorban; Abazari, Reza; Gavi, Azam

    2014-11-01

    In the present paper a pure phase of the copper chromite spinel nanoparticles (CuCr2O4 SNPs) were synthesized via the sol-gel route using citric acid as a complexing agent. Then, the CuCr2O4 SNPs has been characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In the next step, with the addition of Cu-Cr-O nanoparticles (NPs), the effects of different parameters such as Cu-Cr-O particle size and the Cu/Cr molar ratios on the thermal behavior of Cu-Cr-O NPs + AP (ammonium perchlorate) mixtures were investigated. As such, the catalytic effect of the Cu-Cr-O NPs for thermal decomposition of AP was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA/DSC results showed that the samples with different morphologies exhibited different catalytic activity in different stages of thermal decomposition of AP. Also, in the presence of Cu-Cr-O nanocatalysts, all of the exothermic peaks of AP shifted to a lower temperature, indicating the thermal decomposition of AP was enhanced. Moreover, the heat released (ΔH) in the presence of Cu-Cr-O nanocatalysts was increased to 1490 J g-1.

  1. Complete doping in solid-state by silica-supported perchloric acid as dopant solid acid: Synthesis and characterization of the novel chiral composite of poly [(±)-2-(sec-butyl) aniline

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza, E-mail: modaresi@chem.usb.ac.ir

    2016-05-15

    Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersive X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant. - Highlights: • The solid-state synthesis of the novel chiral composites of poly[(±)-2-(sec-butyl)aniline] (PSBA) and silica-supported perchloric acid (SSPA). • It takes 120 h for complete deprotonation of PSBA.HCl salt. • Use of SSPA as dopant solid acid for the first time to attain the complete doping of PSBA. • The coating of silica surface with PSBA.

  2. Synthesis and crystal structure of a new 2,6-dimethyl piperazine-1,4-diium perchlorate monohydrate: [C{sub 6}H{sub 16}N{sub 2}](ClO{sub 4}){sub 2} · H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mleh, C. Ben [Université de Carthage, Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte (Tunisia); Roisnel, T. [Université de Rennes I, Centre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes (France); Marouani, H., E-mail: houda.marouani@fsb.rnu.tn [Université de Carthage, Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte (Tunisia)

    2017-03-15

    A proton transfer compound 2,6-dimethyl piperazine-1,4-diium perchlorate monohydrate was synthesized by slow evaporation at room temperature using 2,6-dimethyl piperazine as template. The asymmetric unit contains one organic dication, two crystal graphically independent perchlorate anions and one water molecule. Each organic entities is engaged in a large number of bifurcated and non-bifurcated N–H···O (O) and C–H···O hydrogen bonds with different species and enhanced the three dimensional supramolecular network. In addition, the diprotonated piperazine ring adopts a chair conformation with the methyl groups occupying equatorial positions.

  3. Propylthiouracil, Perchlorate, and Thyroid-Stimulating Hormone Modulate High Concentrations of Iodide Instigated Mitochondrial Superoxide Production in the Thyroids of Metallothionein I/II Knockout Mice

    Directory of Open Access Journals (Sweden)

    Qi Duan

    2016-03-01

    Full Text Available BackgroundIncreased oxidative stress has been suggested as one of the underlying mechanisms in iodide excess-induced thyroid disease. Metallothioneins (MTs are regarded as scavengers of reactive oxygen species (ROS in oxidative stress. Our aim is to investigate the effects of propylthiouracil (PTU, a thyroid peroxidase inhibitor, perchlorate (KClO4, a competitive inhibitor of iodide transport, and thyroid stimulating hormone (TSH on mitochondrial superoxide production instigated by high concentrations of iodide in the thyroids of MT-I/II knockout (MT-I/II KO mice.MethodsEight-week-old 129S7/SvEvBrd-Mt1tm1Bri Mt2tm1Bri/J (MT-I/II KO mice and background-matched wild type (WT mice were used.ResultsBy using a mitochondrial superoxide indicator (MitoSOX Red, lactate dehydrogenase (LDH release, and methyl thiazolyl tetrazolium (MTT assay, we demonstrated that the decreased relative viability and increased LDH release and mitochondrial superoxide production induced by potassium iodide (100 µM can be relieved by 300 µM PTU, 30 µM KClO4, or 10 U/L TSH in the thyroid cell suspensions of both MT-I/II KO and WT mice (P<0.05. Compared to the WT mice, a significant decrease in the relative viability along with a significant increase in LDH release and mitochondrial superoxide production were detected in MT-I/II KO mice(P<0.05.ConclusionWe concluded that PTU, KClO4, or TSH relieved the mitochondrial oxidative stress induced by high concentrations of iodide in the thyroids of both MT-I/II KO and WT mice. MT-I/II showed antioxidant effects against high concentrations of iodide-induced mitochondrial superoxide production in the thyroid.

  4. Synthesis and luminescence properties of two novel europium (III) perchlorate complexes with bis(benzylsulfinyl)methane and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Xian, E-mail: nmglwx@163.com [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Guo, Feng [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Zheng, Yu-Shan [Inner Mongolia Autonomous Region Product Quality Inspection Institute, Hohhot 010010 (China); Cao, Xiao-Fang; Feng, Shu-Yan; Bai, Juan; Xin, Xiao-Dong [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China)

    2014-09-15

    Two novel binary and ternary Europium (III) perchlorate complexes were synthesized. The binary complex was prepared with bis(benzylsulfinyl)methane as ligand, and the ternary complex was with bis(benzylsulfinyl)methane as first ligand and 1,10-Phenanthroline as second ligand. They were characterized by element analysis, molar conductivity, coordination titration analysis, IR, TG-DSC, {sup 1}HNMR and UV spectra. The results indicated that the composition of binary and ternary complexes was EuL{sub 2.5}·(ClO{sub 4}){sub 3}·3H{sub 2}O and Eu{sub 2}L{sub 4}·phen·(ClO{sub 4}){sub 6}·12H{sub 2}O (L=C{sub 6}H{sub 5}CH{sub 2}SOCH{sub 2}SOCH{sub 2}C{sub 6}H{sub 5}), respectively. The fluorescent spectra illustrated that the complexes displayed characteristic Europium (III) ion fluorescence in solid state, indicating the ligands favored energy transfer to the excitation state energy level of it. The strongest characteristic fluorescence emission intensity of the ternary system was 1.87 times as strong as that of the binary system. The fluorescent quantum yields of the Eu (III) ternary and binary complexes were also calculated. Additionally, the phosphorescence spectra and the luminescence mechanisms of the complexes were studied and explained. - Highlights: • Two rare earth complexes are new. And they are stabilized. • The intensities of the two rare earth complexes were all stronger and the lifetimes were longer. • The introduction of the second organic ligand1,10-Phenanthroline enhanced the fluorescence intensity. • The fluorescent quantum yields of two complexes being calculated are both very high.

  5. Extraction and separation studies of zinc(II and copper(II with D2EHPA and PC-88A from perchlorate media

    Directory of Open Access Journals (Sweden)

    PURSHOTTAM M. DHADKE

    2002-01-01

    Full Text Available The extraction behaviours of Zn(II and Cu(II from perchlorate media have been investigated using bis-2-ethylhexyl phosphoric acid (D2EHPA and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester, (PC-88A in toluene. The extraction of Zn(II was found to be quantitative in the pH range 2.5 to 3.0 and 3.0 to 4.0 using 1.0x10-1 mol dm-3 D2EHPA and 1.0 ´ 10-2 mol dm-3 PC-88A in toluene, respectively, while Cu(II was extracted quantitatively in the pH range 6.0 to 8.0 and 5.5 to 7.0 with 1.0x10-2 mol dm-3 and 1.0x10-3 mol dm-3 D2EHPA and PC-88A in toluene, respectively. Zn(II was stripped with 4.0 mol dm-3 HCl, while Cu(II with 2.0 mol dm-3 H2SO4 and 3.0 mol dm-3 HNO3 from the organic phase containing D2EHPA and PC-88A, respectively. The probable extracted species were ascertained by log D vs. log [HR] plot to be ZnR42HR and CuR2.2HR for both the reagents. These methods were used for the determination of Zn(II and Cu(II in real samples. The separation of Zn(II and Cu(II were carried out from each other and with associated metals.

  6. Investigation of complexing equilibria of molybdenyl ion with mandelic acid, based on catalytic polarographic currents of perchlorate-ion and nitrate-ion reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zajtsev, P.M.; Zhdanov, S.I.; Dergacheva, E.N. (Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Khimicheskikh Reaktivov i Osobo Chistykh Veshchestv, Moscow (USSR))

    1984-01-01

    In Mo/sup 6 +/-(lO/sub 4/-and Mo/sup 6 +/ - NO/sub 3//sup -/) systems catalytic polarographic current of lO/sub 4//sup -/and NO/sub 3//sup -/ anions reduction on dropping mercury electrode in perchlorate and sulfate media is caused by the reaction of these anions with Mo/sup 3 +/. Introduction of mandelic acid (L) leads to the catalytic current decrease owing to the fact that in the reaction with ClO/sub 4/-and NO/sub 3//sup -/ anions the Mo/sup 3 +/ complex with L possesses lesser reactivity than the Mo/sup 3 +/ aquo-ion or its sulfate complex. As molybdenyl-ions (MoO/sub 2//sup 2 +/ and MoO/sub 2//sup +/) form with mandelic acid a monoligand labile complex and Mo/sup 3 +/ is inert, by dependence of catalytic current value on mandelic acid concentration the constant (K/sub 1/) of the complex formation of MoO/sub 2//sup 2 +/xL can be calculated. In 0.5 mol/l HClO/sub 4/ by catalytic current of anions ClO/sub 4//sup -/ K/sub 1/=(260+-10) lxmol/sup -1/ and in 0.5 mol/l H/sub 2/SO/sub 4/+0.1 mol/l NaNO/sub 3/ by catalytic current of the anion NO/sub 3/-K/sub 1/=(240+-26).

  7. (μ-Acetato-κ2O:O′[μ-2,6-bis({bis[(pyridin-2-yl-κNmethyl]amino-κN}methyl-4-methylphenolato-κ2O:O](methanol-κOdizinc bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Biswanath Das

    2014-04-01

    Full Text Available The binuclear title complex, [Zn2(C33H33N6O(CH3COO2(CH3OH](ClO42, was synthesized by the reaction between 2,6-bis({[bis(pyridin-2-ylmethyl]amino}methyl-4-methylphenol (H-BPMP, Zn(OAc2 and NaClO4. The two ZnII ions are bridged by the phenolate O atom of the octadentate ligand and the acetate group. An additional methanol ligand is terminally coordinated to one of the ZnII ions, rendering the whole structure unsymmetric. Other symmetric dizinc complexes of BPMP have been reported. However, to the best of our knowledge, the present structure, in which the two ZnII ions are distinguishable by the number of coordinating ligands and the coordination geometries (octahedral and square-pyramidal, is unique. The dizinc complex is a dication, and two perchlorate anions balance the charge. The –OH group of the coordinating methanol solvent molecule forms a hydrogen bond with a perchlorate counter-anion. One of the anions is disordered over two sets of sites with an occupancy ratio of 0.734 (2:0.266 (2.

  8. Thermal Reactivity of Organic Molecules in the Presence of Chlorates and Perchlorates and the Quest for Organics on Mars with the SAM Experiment Onboard the Curiostiy Rover

    Science.gov (United States)

    Szopa, Cyril; Millan, Maeva; Buch, Arnaud; Belmahdi, Imene; Coll, Patrice; Glavin, Daniel P.; Freissinet, Caroline; Eigenbrode, Jennifer; archer, doug; sutter, brad; Summons, Roger; Navarro-Gonzalez, Rafael; Mahaffy, Paul; cabane, Michel

    2016-10-01

    One of the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples collected by Curiosity when they are heated up to ~850°C. With this aim SAM uses a gas-chromatograph coupled to a mass spectrometer (GC-MS) able to detect and identify both inorganic and organic molecules released by the samples.During the pyrolysis, chemical reactions occur between oxychlorines, probably homogeneously distributed at Mars's surface, and organic compounds SAM seeks for. This was confirmed by the first chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM that were entirely attributed to reaction products occurring between these oxychlorines and organics from instrument background. But SAM also detected in the Sheepbed mudstone of Gale crater, chloroalkanes produced by reaction between oxychlorines and Mars indigenous organics, proving for the first time the presence of organics in the soil of Mars. However, the identification of the molecules at the origin of these chloroalkanes is much more difficult due to the complexity of the reactivity occurring during the sample pyrolysis. If a first study has already been done recently with this aim, it was relatively limited in terms of parameters investigated.This is the reason why, we performed a systematic study in the laboratory to help understanding the influence of oxychlorines on organic matter during pyrolysis. With this aim, different organic compounds from various chemical families (e.g. amino and carboxylic acids) mixed with different perchlorates and chlorates, in concentrations compatible with the Mars soil from estimations done with SAM measurements, were pyrolyzed under SAM like conditions. The products of reaction were analyzed and identified by GC-MS in order to show a possible correlation between them and the parent molecule. Different parameters were tested for the pyrolysis to evaluate their potential influence on the

  9. Synthesis, characterization and luminescence of europium perchlorate with MABA-Si complex and coating structure SiO2@Eu(MABA-Si) luminescence nanoparticles.

    Science.gov (United States)

    Fu, Zhi-Fang; Li, Wen-Xian; Bai, Juan; Bao, Jin-Rong; Cao, Xiao-Fang; Zheng, Yu-Shan

    2017-05-01

    This article reports a novel category of coating structure SiO 2 @Eu(MABA-Si) luminescence nanoparticles (NPs) consisting of a unique organic shell, composed of perchlorate europium(III) complex, and an inorganic core, composed of silica. The binary complex Eu(MABA-Si) 3 ·(ClO 4 ) 3 ·5H 2 O was synthesized using HOOCC 6 H 4 N(CONH(CH 2 ) 3 Si(OCH 2 CH 3 ) 3 ) 2 (MABA-Si) and was used as a ligand. Furthermore, the as-prepared silica NPs were successfully coated with the -Si(OCH 2 CH 3 ) 3 group of MABA-Si to form Si-O-Si chemical bonds by means of the hydrolyzation of MABA-Si. The binary complexes were characterized by elemental analysis, molar conductivity and coordination titration analysis. The results indicated that the composition of the binary complex was Eu(MABA-Si) 3 ·(ClO 4 ) 3 ·5H 2 O. Coating structure SiO 2 @Eu(MABA-Si) NPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and infrared (IR) spectra. Based on the SEM and TEM measurements, the diameter of core-SiO 2 particles was ~400 and 600 nm, and the thickness of the cladding layer Eu(MABA-Si) was ~20 nm. In the binary complex Eu(MABA-Si) 3 ·(ClO 4 ) 3 ·5H 2 O, the fluorescence spectra illustrated that the energy of the ligand MABA-Si transferred to the energy level for the excitation state of europium(III) ion. Coating structure SiO 2 @Eu(MABA-Si) NPs exhibited intense red luminescence compared with the binary complex. The fluorescence lifetime and fluorescence quantum efficiency of the binary complex and of the coating structure NPs were also calculated. The way in which the size of core-SiO 2 spheres influences the luminescence was also studied. Moreover, the luminescent mechanisms of the complex were studied and explained. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Thermal decomposition of ammonium perchlorate in the presence of Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, WenJing [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Ping, E-mail: lipinggnipil@home.ipe.ac.cn [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Xu, HongBin; Sun, Randi; Qing, Penghui; Zhang, Yi [Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-01

    Highlights: • The amorphous Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles containing surface hydroxyls were prepared by a hydrolytic co-precipitation method. • The Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles show excellent catalytic ability for AP decomposition. • The surface hydroxyls and amorphous form of Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles promote ammonia oxidation of AP. - Abstract: An Al(OH){sub 3}·Cr(OH){sub 3} nanoparticle preparation procedure and its catalytic effect and mechanism on thermal decomposition of ammonium perchlorate (AP) were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis and mass spectroscopy (TG-MS). In the preparation procedure, TEM, SAED, and FT-IR showed that the Al(OH){sub 3}·Cr(OH){sub 3} particles were amorphous particles with dimensions in the nanometer size regime containing a large amount of surface hydroxyl under the controllable preparation conditions. When the Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles were used as additives for the thermal decomposition of AP, the TG-DSC results showed that the addition of Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles to AP remarkably decreased the onset temperature of AP decomposition from approximately 450 °C to 245 °C. The FT-IR, RS and XPS results confirmed that the surface hydroxyl content of the Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles decreased from 67.94% to 63.65%, and Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles were limitedly transformed from amorphous to crystalline after used as additives for the thermal decomposition of AP. Such behavior of Al(OH){sub 3}·Cr(OH){sub 3} nanoparticles promoted the oxidation of NH{sub 3} of AP to decompose to N{sub 2}O first, as indicated by the TG-MS results, accelerating the AP thermal decomposition.

  11. Stable isotope analyses of oxygen (18 O:17 O:16 O) and chlorine (37 Cl:35 Cl) in perchlorate: reference materials, calibrations, methods, and interferences.

    Science.gov (United States)

    Böhlke, J K; Mroczkowski, Stanley J; Sturchio, Neil C; Heraty, Linnea J; Richman, Kent W; Sullivan, Donald B; Griffith, Kris N; Gu, Baohua; Hatzinger, Paul B

    2017-01-15

    Perchlorate (ClO4- ) is a common trace constituent of water, soils, and plants; it has both natural and synthetic sources and is subject to biodegradation. The stable isotope ratios of Cl and O provide three independent quantities for ClO4- source attribution and natural attenuation studies: δ37 Cl, δ18 O, and δ17 O (or Δ17 O or 17 Δ) values. Documented reference materials, calibration schemes, methods, and interferences will improve the reliability of such studies. Three large batches of KClO4 with contrasting isotopic compositions were synthesized and analyzed against VSMOW-SLAP, atmospheric O2 , and international nitrate and chloride reference materials. Three analytical methods were tested for O isotopes: conversion of ClO4- to CO for continuous-flow IRMS (CO-CFIRMS), decomposition to O2 for dual-inlet IRMS (O2-DIIRMS), and decomposition to O2 with molecular-sieve trap (O2-DIIRMS+T). For Cl isotopes, KCl produced by thermal decomposition of KClO4 was reprecipitated as AgCl and converted into CH3 Cl for DIIRMS. KClO4 isotopic reference materials (USGS37, USGS38, USGS39) represent a wide range of Cl and O isotopic compositions, including non-mass-dependent O isotopic variation. Isotopic fractionation and exchange can affect O isotope analyses of ClO4- depending on the decomposition method. Routine analyses can be adjusted for such effects by normalization, using reference materials prepared and analyzed as samples. Analytical errors caused by SO42- , NO3- , ReO42- , and C-bearing contaminants include isotope mixing and fractionation effects on CO and O2 , plus direct interference from CO2 in the mass spectrometer. The results highlight the importance of effective purification of ClO4- from environmental samples. KClO4 reference materials are available for testing methods and calibrating isotopic data for ClO4- and other substances with widely varying Cl or O isotopic compositions. Current ClO4- extraction, purification, and analysis techniques provide

  12. Stable isotope analyses of oxygen (18O:17O:16O) and chlorine (37Cl:35Cl) in perchlorate: reference materials, calibrations, methods, and interferences

    Science.gov (United States)

    Böhlke, John Karl; Mroczkowski, Stanley J.; Sturchio, Neil C.; Heraty, Linnea J.; Richman, Kent W.; Sullivan, Donald B.; Griffith, Kris N.; Gu, Baohua; Hatzinger, Paul B.

    2017-01-01

    RationalePerchlorate (ClO4−) is a common trace constituent of water, soils, and plants; it has both natural and synthetic sources and is subject to biodegradation. The stable isotope ratios of Cl and O provide three independent quantities for ClO4− source attribution and natural attenuation studies: δ37Cl, δ18O, and δ17O (or Δ17O or 17Δ) values. Documented reference materials, calibration schemes, methods, and interferences will improve the reliability of such studies.MethodsThree large batches of KClO4 with contrasting isotopic compositions were synthesized and analyzed against VSMOW-SLAP, atmospheric O2, and international nitrate and chloride reference materials. Three analytical methods were tested for O isotopes: conversion of ClO4− to CO for continuous-flow IRMS (CO-CFIRMS), decomposition to O2 for dual-inlet IRMS (O2-DIIRMS), and decomposition to O2 with molecular-sieve trap (O2-DIIRMS+T). For Cl isotopes, KCl produced by thermal decomposition of KClO4 was reprecipitated as AgCl and converted into CH3Cl for DIIRMS.ResultsKClO4 isotopic reference materials (USGS37, USGS38, USGS39) represent a wide range of Cl and O isotopic compositions, including non-mass-dependent O isotopic variation. Isotopic fractionation and exchange can affect O isotope analyses of ClO4− depending on the decomposition method. Routine analyses can be adjusted for such effects by normalization, using reference materials prepared and analyzed as samples. Analytical errors caused by SO42−, NO3−, ReO42−, and C-bearing contaminants include isotope mixing and fractionation effects on CO and O2, plus direct interference from CO2 in the mass spectrometer. The results highlight the importance of effective purification of ClO4− from environmental samples.ConclusionsKClO4 reference materials are available for testing methods and calibrating isotopic data for ClO4− and other substances with widely varying Cl or O isotopic compositions. Current ClO4−extraction, purification

  13. (Benzoato-κ2O,O′(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′nickel(II perchlorate benzoic acid solvate

    Directory of Open Access Journals (Sweden)

    Yong-Qiang Dai

    2008-12-01

    Full Text Available In the title compound, [Ni(C7H5O2(C16H36N4]ClO4·C7H6O2, the Ni atom displays a distorted octahedral coordination geometry with four N atoms of the ligand rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (L in a folded configuration and two benzoate (bz O atoms. The [Ni(rac-L(bz]+ complex cation, perchlorate anion and benzoic acid molecules engage in hydrogen bonding, with N...O distances between 2.970 (3 and 3.123 (3 Å and an O...O distance of 2.691 (3 Å.

  14. (μ-Diphenylphosphanido-κ2P:P′bis[2,2′-(pyridine-2,6-diyldiphenyl-κ3C1,N,C1′gold(III] perchlorate acetonitrile solvate

    Directory of Open Access Journals (Sweden)

    Jian-Hua Liu

    2008-09-01

    Full Text Available The title complex, [Au2(C17H11N2(C12H10P]ClO4·C2H3N, contains two AuIII atoms bridged by a diphenylphosphanide ligand. Each Au atom is in a square-planar environment coordinated by diphenylphosphanide and 2,6-diphenylpyridine ligands. There are weak π–π stacking interactions between neighbouring molecules (the interplanar separations between two neighbouring dpp units are 3.40 and 3.57 Å. The intramolecular Au...Au separation is 3.788 (5 Å. The crystal structure shows weak intermolecular C—H...O and C—H...N hydrogen bonds involving an O atom of the perchlorate counter-ion and the N atom of the acetonitrile solvent molecule, respectively.

  15. (2-Carboxybenzoato-κ2O1,O1′(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4Nnickel(II perchlorate monohydrate

    Directory of Open Access Journals (Sweden)

    Guang-Chuan Ou

    2009-07-01

    Full Text Available The title compound, [Ni(C8H5O4(C16H36N4]ClO4·H2O, has the NiII atom in a distorted octahedral geometry, surrounded by coordination by four N atoms of the 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane ligand in a folded configuration, and two carboxylate O atoms of the 2-carboxybenzoate ligand in cis positions. The complex cation, the disordered perchlorate anion [occupancies 0.639 (8:0.361 (8] and uncoordinated water molecules engage in N—H...O and O—H...O hydrogen bonding, forming a layer structure parallel to (010.

  16. Demonstration and Validation of a Portable Raman Sensor for In-Situ Detection and Monitoring of Perchlorate (ClO4-)

    Energy Technology Data Exchange (ETDEWEB)

    Hatzinger, Paul B. [Shaw Environmental, Inc., Lawrenceville, NJ (United States); Eres, Gyula [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gu, Baohua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubb, Aaron M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    Costs for environmental analysis and monitoring are increasing at a rapid rate and represent a significant percentage of the total and future remedial expenses at many U.S. Department of Defense (DoD) contaminated sites. It has been reported that about 30 to 40% of the remediation budget is usually spent on long-term monitoring (LTM), of which a large percentage represents laboratory analytical costs. Energetics such as perchlorate (ClO4-) are among the most frequently detected contaminants in groundwater and surface water at or near military installations due to their persistence and mobility. Currently, the standard protocol entails collecting samples in the field, packaging them, and shipping them overnight to a designated laboratory for analysis. This process requires significant sample preparation and handling, and analytical results may not be available for several days to weeks. In this project, we developed and demonstrated a portable Raman sensor based on surface enhanced Raman scattering (SERS) technology to detect ClO4- in contaminated water. We summarize major accomplishments as follows: • A SERS sensor based on elevated gold (Au) nano-ellipse dimer architectures was designed and developed for ClO4- with a detection limit of ~10-6 M (or 100 μg/L); The performance of these sensors was evaluated and optimized through variation of their geometric characteristics (i.e., dimer aspect ratio, dimer separation, etc.). • Large-scale commercial production of SERS substrate sensors via nanoimprinting by Nanova Inc. and Nanoimprint lithography (NIL) technology was successfully demonstrated. This is a substantial step forward toward the commercialization of the SERS sensors and may potentially lead to significantly reduced fabrication costs of SERS substrates. • Commercially produced SERS sensors were demonstrated to detect ClO4- at levels above 10-6

  17. Scandium doped Strontium Titanate Ceramics: Structure, Microstructure, and Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Tkach, Alexander

    2008-08-01

    Full Text Available Sc-doped strontium titanate (ST ceramics were synthesised by solid state reaction, according to the composition Sr1-1.5xScxTiO3 with x = 0-0.01. Structural properties and microstructure development was examined by XRD and SEM. The dielectric properties were evaluated as a function of the temperature and frequency in the radio frequency range. Lattice parameter, density and grain size, were found to decrease slightly with increasing Sc content. The dielectric permittivity and losses decrease also. Sc-doping has only a weak effect on the quantum paraelectric behaviour of ST and no dielectric anomaly was observed, what is probably related to the limited solubility of Sc on the Sr site of the perovskite lattice of ST.

    Se sintetizaron materiales cerámicos de titanato de estroncio dopado con escandio mediante reacción en estado sólido De acuerdo a la composición Sr1-1.5xScxTiO3 con x= 0-0.1. Las propiedades estructurales y el desarrollo microestructural se estudiaron mediante XRD y SEM. La propiedades dieléctricas se estudiaron como función de la temperatura y de la frecuencia en el rango de la frecuencias de radio. Se observó que los parámetros de red, la densidad y el tamaño del grano disminuyen ligeramente con el contenido en Sc. La permitividad dieléctrica y las perdidas también disminuyen. El dopado con Sc tiene un efecto muy ligero sobre el comportamiento paraeléctrico cuántico del titanato de estroncio y no se observó anomalías dioeléctricas , lo que está probablemente relacionado con la baja solubilidad del Sc en posiciones del Sr en la estructura tipo perovskita del titanato de estroncio.

  18. Phenoxyl radical complexes of gallium, scandium, iron and manganese.

    Science.gov (United States)

    Adam, B; Bill, E; Bothe, E; Goerdt, B; Haselhorst, G; Hildenbrand, K; Sokolowski, A; Steenken, S; Weyhermüller, T; Wieghardt, K

    1997-02-01

    The hexadentate macrocyclic ligands 1,4,7-tris(3,5-dimethyl-2-hydroxybenzyl)-1,4,7-triazacyclononane (L CH 3H3 ), 1,4,7-tris(3,5-di-tert-butyl-2-hydroxybenzyl)-1,4,7-triazacyclononane (L(Bu) H3 ) and 1,4,7-tris(3-tert-butyl-5-methoxy-2-hydroxybenzyl)-1,4,7-triazacyclononane (L OCH 3-H3 ) form very stable octahedral neutral complexes LM(III) with trivalent (or tetravalent) metal ions (Ga(III) , Sc(III) , Fe(III) , Mn(III) , Mn(IV) ). The following complexes have been synthesized: [L(Bu) M], where M = Ga (1), Sc (2), Fe (3); [L(Bu) Mn(IV) ]PF6 (4'); [L OCH 3M], where M = Ga (1 a), Sc (2 a), Fe (3 a); [L OCH 3Mn(IV) ]PF6 (4 a'); [L CH 3M], where M = Sc (2 b), Fe (3 b), Mn(III) (4 b); [L CH 3Mn(IV) ]2 (ClO4 )3 (H3 O)(H2 O)3 (4 b'). An electrochemical study has shown that complexes 1, 2, 3, 1 a, 2 a and 3 a each display three reversible, ligand-centred, one-electron oxidation steps. The salts [L OCH 3Fe(III) ]ClO4 and [L OCH 3Ga(III) ]ClO4 , have been isolated as stable crystalline materials. Electronic and EPR spectra prove that these oxidations produce species containing one, two or three coordinated phenoxyl radicals. The Mössbauer spectra of 3 a and [3 a](+) show conclusively that both compounds contain high-spin iron(III) central ions. Temperature-dependent magnetic susceptibility measurements reveal that 3 a has an S = 5/2 and [3a](+) an S = 2 ground state. The latter is attained through intramolecular antiferromagnetic exchange coupling between a high-spin iron(III) (S1 = 5/2) and a phenoxyl radical (S2 = 1/2) (H = - 2JS1 S2 ; J = - 80 cm(-1) ). The manganese complexes undergo metal- and ligand-centred redox processes, which were elucidated by spectroelectrochemistry; a phenoxyl radical Mn(IV) complex [Mn(IV) L OCH 3](2+) is accessible. Copyright © 1997 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Atomic layer deposition of scandium-based oxides

    Energy Technology Data Exchange (ETDEWEB)

    Nyns, Laura; Lisoni, Judit G.; Bosch, Geert van den; Elshocht, Sven van; Houdt, Jan van [IMEC, Leuven (Belgium)

    2014-02-15

    Gd{sub x}Sc{sub 2-x}O{sub 3} and Al{sub x}Sc{sub 2-x}O{sub 3} have been investigated as potential high-k intergate dielectric (IGD) in planar NAND flash technology, such as hybrid floating gate (HFG). We have examined the atomic layer deposition (ALD) of Sc{sub 2}O{sub 3}, Gd{sub x}Sc{sub 2-x}O{sub 3}, and Al{sub x}Sc{sub 2-x}O{sub 3} on Si using Sc(MeCp){sub 3}, Gd({sup i}PrCp){sub 3}, TMA, and H{sub 2}O as precursors. The composition of Gd{sub x}Sc{sub 2-x}O{sub 3} and Al{sub x}Sc{sub 2-x}O{sub 3} ranged from 4% to 76% Gd and from 7% to 66% Al, respectively. All compositions show linear growth behavior. While pure Sc{sub 2}O{sub 3} is crystalline as-deposited, the layer becomes amorphous once ∝20% of Al is added. The (222) reflection of the cubic phase is also seen for Gd{sub x}Sc{sub 2-x}O{sub 3} with less than 9% Gd. The bandgap of as-deposited Gd{sub x}Sc{sub 2-x}O{sub 3} decreases with increasing Gd content while the opposite trend is observed for Al{sub x}Sc{sub 2-x}O{sub 3}. A k-value of ∝21 can be obtained for Gd{sub x}Sc{sub 2-x}O{sub 3} with approximately 26-52% Gd, irrespective of the Gd content. For Al{sub x}Sc{sub 2-x}O{sub 3} on the other hand, a maximum k-value of ∝19 is achieved with ∝48% Al. Although the k-value of Al{sub x}Sc{sub 2-x}O{sub 3} is lower than that of Gd{sub x}Sc{sub 2-x}O{sub 3}, its large breakdown field makes this material more suitable for HFG flash applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Spark plasma sintering of aluminum powders prealloyed with scandium additions

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, R.W.; Kraus, N.P.; Bishop, D.P., E-mail: Paul.Bishop@dal.ca

    2016-03-07

    The objective of this research was to commence work on the spark plasma sintering (SPS) of Al–Sc alloys in an effort to develop fundamental data in this area. In this precursory study, a series of binary systems containing 0.1 to 0.4 wt% Sc were processed in laboratory and industrial-scale equipment. Data revealed that all powders were responsive to SPS in both scenarios and that sintering temperature was a variable of critical importance. Hardness of as-sintered products scaled directly with Sc concentration but varied inversely with SPS temperature owing to in-situ aging of the raw powders. Hardness losses could be recovered through a post-SPS heat treatment into the T6 condition. Industrially processed slugs of Al-0.4Sc-T6 exhibited full densification and offered the highest hardness (786+/−8 MPa). This was accompanied by a nominal tensile yield strength of 197 MPa, UTS of 226 MPa and tensile ductility of 11%.

  1. Tin etching from metallic and oxidized scandium thin films

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, J.M.; Bijkerk, Frederik

    The role of oxide on Sn adhesion to Sc surfaces was studied with in-situ ellipsometry, X-ray photoelectron spectroscopy and secondary electron microscopy. Sn etching with hydrogen radicals was performed on metallic Sc, metallic Sc with a native oxide, and a fully oxidized Sc layer. The results show

  2. The structural and magnetic properties of holmium/scandium superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.

    1997-01-01

    The properties of Ho/Sc superlattices grown by molecular beam epitaxy (MBE) have been investigated using X-ray and neutron diffraction techniques. Structural studies reveal the novel existence of more than one a lattice parameter. Examining the magnetic properties, it is found that the Ho 4f...

  3. Crystal structure, quantum mechanical study and spectroscopic studies of nitrate and perchlorate salts of 3-chloroaniline, [C6H7ClN]NO3 (I) and [C6H7ClN]ClO4 (II)

    Science.gov (United States)

    Bayar, I.; Khedhiri, L.; Jeanneau, E.; Lefebvre, F.; Ben Nasr, C.

    2017-06-01

    Two new organic-inorganic hybrid compounds, 3-chloroanilinium nitrate (I) and 3-chloanilinium perchlorate (II), have been synthesized by an acid/base reaction at room temperature in the presence of 3-chloroaniline as an organic-structure directing agent and their structures were determined by single crystal X-ray diffraction. Compound I, [C6H7ClN]NO3, crystallizes in the orthorhombic space group Pbca with a = 10.4137(16), b = 9.6232(11), c = 16.059(2) Å, V = 1609.3(4) and z = 8. Full-matrix least-squares refinement converged at R = 0.041 and Rw = 0.121. Compound II, [C6H7ClN]ClO4, belongs to the monoclinic system, space group P21/n with the following parameters: a = 10.684(2), b = 7.2667(12), c = 12.229(2) Å, β = 104.27(2)°, V = 920.1(3) and z = 4. The structure was refined to R = 0.054 and Rw = 0.102. Both salts form anionic parallel layers alternating with thick slabs of [C6H7NCl]+ organic molecules. Charge balance is achieved by the protonated amine which interacts with the inorganic framework through hydrogen bonding. Solid-state 13C CP-MAS NMR spectroscopy is in agreement with the X-ray structures. Ab initio calculations allow the partial attribution of carbon signals to the various atoms of the organic groups. Electronic properties such as HOMO and LUMO energies were studied by Quantum mechanical evaluation by using the B3LYP/6-31+G* method.

  4. (Acetonitrile{2-[bis(pyridin-2-ylmethyl-κ2Namino-κN]-N-(2,6-dimethylphenylacetamide-κO}(perchlorato-κOzinc (acetonitrile{2-[bis(pyridin-2-ylmethyl-κ2Namino-κN]-N-(2,6-dimethylphenylacetamide-κO}zinc tris(perchlorate

    Directory of Open Access Journals (Sweden)

    Ove Alexander Høgmoen Åstrand

    2013-02-01

    Full Text Available In the title salt, [Zn(C22H24N4O(CH3CN][Zn(ClO4(C22H24N4O(CH3CN](ClO43, two differently coordinated zinc cations occur. In the first complex, the metal ion is coordinated by the N,N′,N′′,O-tetradentate acetamide ligand and an acetonitrile N atom, generating an approximate trigonal–bipyramidal coordination geometry, with the O atom in an equatorial site and the acetonitrile N atom in an axial site. In the second complex ion, a perchlorate ion is also bonded to the zinc ion, generating a distorted trans-ZnO2N4 octahedron. Of the uncoordinating perchlorate ions, one lies on a crystallographic twofold axis and one lies close to a twofold axis and has a site occupancy of 0.5. N—H...O and N—H...(O,O hydrogen bonds are observed in the crystal. Disordered solvent molecules occupy about 11% of the unit-cell volume; their contribution to the scattering was removed with the SQUEEZE routine of the PLATON program [Spek (2009. Acta Cryst. D65, 148–155.].

  5. Facile fabrication of Fe{sub 3}O{sub 4} and Co{sub 3}O{sub 4} microspheres and their influence on the thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifu, E-mail: yfzhang@dlut.edu.cn; Meng, Changgong

    2016-07-25

    Fe{sub 3}O{sub 4} and Co{sub 3}O{sub 4} microspheres were successfully synthesized by the hydrothermal decomposition of iron oxalate and cobalt oxalate solution. The composition and morphology of synthesized powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The catalytic properties of the as-obtained Fe{sub 3}O{sub 4} and Co{sub 3}O{sub 4} microspheres on the thermal decomposition of ammonium perchlorate (AP) were evaluated by thermo-gravimetric analysis and differential thermal analysis (TGA/DTA) methods. The thermal decomposition temperatures of AP in the presence of 1, 2, 4 and 8 wt% of Fe{sub 3}O{sub 4} microspheres were respectively decreased by 58, 80, 102 and 129 °C (lowered to 398, 376, 354 and 327 °C). And the thermal decomposition temperatures of AP in the presence of 1, 2, 4 and 8 wt% of Co{sub 3}O{sub 4} microspheres were respectively decreased by 55, 74, 112 and 131 °C (lowered to 401, 382, 344 and 325 °C). The analysis of the thermal gravimetric analyzer couplet with infrared spectroscopy (TG-IR) test reveal that the additives can accelerate the thermal decomposition of AP via the high-temperature decomposition. All the results suggest the as-prepared Fe{sub 3}O{sub 4} and Co{sub 3}O{sub 4} microspheres have highly catalytic properties on the thermal decomposition of AP, which can be used as the promising additives in the future. - Graphical abstract: Real-time FTIR spectra to reveal the thermal decomposition process of AP. - Highlights: • Highly uniform Fe{sub 3}O{sub 4} and Co{sub 3}O{sub 4} microspheres were successfully synthesized. • The T{sub c} of AP with 1, 2, 4 and 8 wt% of Fe{sub 3}O{sub 4} microspheres was decreased by 58, 80, 102 and 129 °C. • The T{sub c} of AP with 1, 2, 4 and 8 wt% of Co{sub 3}O{sub 4} microspheres was decreased by 55, 74, 112 and 131 °C. • The thermal decomposition process of AP was detected by TG-IR.

  6. Temperature Independent Catalytic Two-Electron Reduction of Dioxygen by Ferrocenes with a Tris[2-(2-pyridyl)ethyl]amine-Copper(II) Catalyst in the Presence of Perchloric Acid

    Science.gov (United States)

    Das, Dipanwita; Lee, Yong-Min; Ohkubo, Kei; Nam, Wonwoo; Karlin, Kenneth D.; Fukuzumi, Shunichi

    2013-01-01

    Selective two-electron plus two-proton (2e−/2H+) reduction of O2 to hydrogen peroxide by ferrocene (Fc) or 1,1′-dimethylferrocene (Me2Fc) in the presence of perchloric acid is catalyzed efficiently by a mononuclear copper(II) complex, [CuII(tepa)]2+ {tepa = tris[2-(2-pyridyl)ethyl]amine} (1) in acetone. The E1/2 value for [CuII(tepa)]2+ as measured by cyclic voltammetry is 0.07 V vs Fc/Fc+ in acetone, being significantly positive, which makes it possible to use relatively weak one-electron reductants such as Fc and Me2Fc for the overall two-electron reduction of O2. Fast electron transfer from Fc or Me2Fc to 1 affords the corresponding CuI complex, [CuI(tepa)]+ (2), which reacts at low temperature (193 K) with O2, however only in presence of HClO4 to afford the hydroperoxo complex, [CuII(tepa)(OOH)]2+ (3). The detailed kinetic study on the homogeneous catalytic system reveals the rate-determining step to be the O2-binding process in the presence of HClO4 at lower temperature as well as at room temperature. The O2-binding kinetics in the presence of HClO4 were studied, demonstrating that the rate of formation of the hydroperoxo complex (3) as well as the overall catalytic reaction remained virtually the same with changing temperature. The apparent lack of an activation energy for the catalytic two-electron reduction of O2 is shown to result from the existence of a pre-equilibrium between 2 and O2 prior to the formation of the hydroperoxo complex 3. No further reduction of [CuII(tepa)(OOH)]2+ (3) by Fc or Me2Fc occurred, and instead 3 is protonated by HClO4 to yield H2O2 accompanied by regeneration of 1, thus completing the catalytic cycle for the two-electron reduction of O2 by Fc or Me2Fc. PMID:23394287

  7. Crystal structure of bis{μ2-2,2′-[(4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diylbis(methylene]bis(4-oxo-4H-pyran-3-olato}dicobaltcalcium bis(perchlorate 1.36-hydrate

    Directory of Open Access Journals (Sweden)

    Patrizia Rossi

    2017-12-01

    Full Text Available The title compound, [CaCo2(C22H30N4O62](ClO42·1.36H2O or {Ca[Co(H–2L1]2}·2ClO4·1.36H2O {where L1 is 4,10-bis[(3-hydroxy-4-pyron-2-ylmethyl]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane}, is a trinuclear complex whose asymmetric unit comprises a quarter of the {Ca[Co(H–2L1]2}2+ trinuclear complex, half of a perchlorate ion and 0.34-water molecules. In the neutral [Co(H–2L1] moiety, the cobalt ion is hexacoordinated in a trigonal–prismatic fashion by the surrounding N4O2 donor set. A Ca2+ cation holds together two neutral [Co(H–2L1] moieties and is octacoordinated in a distorted trigonal–dodecahedral fashion by the surrounding O atoms belonging to the deprotonated oxide and carbonyl groups of two [Co(H–2L1] units. The coordination of the CoII cation preorganizes L1 and an electron-rich area forms, which is able to host hard metal ions. The comparison between the present structure and the previously published ones suggests a high versatility of this ligand; indeed, hard metal ions with different nature and dimensions lead to complexes having different stoichiometry (mono- and dinuclear monomers and trinuclear dimers or even a polymeric structure. The heterotrinuclear CoII–CaII–CoII complexes are connected in three dimensions via weak C—H...O hydrogen bonds, which are also responsible for the interactions with the perchlorate anions and the lattice water molecules. The perchlorate anion is disordered about a twofold rotation axis and was refined giving the two positions a fixed occupancy factor of 0.5. The crystal studied was refined as a two-component inversion twin [BASF parameter = 0.14 (4].

  8. In Situ Bioremediation of Perchlorate in Groundwater

    Science.gov (United States)

    2009-07-01

    drinking, chewing gum or tobacco, taking medication, or smoking in contaminated or potentially contaminated areas or where the possibility for the...levels ranging from 8 to 430 mg/L, and nitrate varying from 4 to approximately 50 mg/L. The pH of site groundwater was generally below 5.0. A field...approximately 20,000 gallons of groundwater was re-circulated through each plot. Groundwater pH was elevated to >6.0 in all Test Plot wells during the

  9. Background Perchlorate Source Identification Technical Guidance

    Science.gov (United States)

    2013-12-01

    Tetrafluoride SOCAL Southern California SOP Standard Operating Procedure Sr Strontium SSC Space & Naval Warfare Systems Center STW Strike Warfare SUA...Service UV Ultraviolet VOC Volatile Organic Compounds WD War Department RCRA Resource Conservation and Recovery Act 1 1...and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), and the SDWA. In addition, several states have identified advisory

  10. Perchlorate Removal, Destruction, and Field Monitoring Demonstration

    Science.gov (United States)

    2006-10-02

    TCE – Trichloroethylene TPM – Technical Program Manager VOC – Volatile Organic Carbon WBA – Weak Base Anion 1 1. Introduction 1.1...will apprise the ESTCP TPM of project status and discuss project development. The ARA PM will distribute the final QAPP as approved by ESTCP to all...hazards via inhalation, dermal contact or absorption, and ingestion. Some are also suspected or known to be carcinogenic, mutagenic , or toxic

  11. In Situ Bioremediation of Perchlorate in Groundwater

    Science.gov (United States)

    2009-08-01

    treatment approach is biostimulation through electron donor addition. A good method for adding electron donor and mixing that donor with...wells Reduction of TCE levels in treatment zone in Phase II and/or Phase III of study using biostimulation +/- bioaugmentation Reduction by >95

  12. S,S-Diphenyl-S-pyrrolidinoiminosulfonium perchlorate

    Directory of Open Access Journals (Sweden)

    Md. Chanmiya Sheikh

    2017-09-01

    Full Text Available The asymmetric unit of the title salt, C16H19N2S+·ClO4−, consists of two crystallographically independent cations and anions. In the salt, protonation occurs at the nitrile N atom attached to the S atom of the corresponding λ6-sulfanenitrile. The structures of the two independent cations are almost the same and the configuration around the S atom is a slightly distorted tetrahedral geometry, with two S—N bonds and two S—C bonds. The S—N(pyrrolidine and S=N bond lengths are 1.6216 (18 and 1.503 (2 Å, respectively, for one cation, and 1.6236 (19 and 1.502 (2 Å, respectively, for the other. The dihedral angles between the two phenyl rings in the cations are 76.61 (9 and 76.42 (9°. There are N—H...O hydrogen bonds, which link the cation and the anion. The cation–anion pairs are further linked by C—H...O and C—H...N hydrogen bonds, forming a three-dimensional network.

  13. Diaqua[μ-11,23-di-tert-butyl-3,7,15,19-tetraazatricyclo[19.3.1.19,13]tetracosa-1(25,2,6,9,11,13(26,14,19,21,23-dodecaene-25,26-diolato-κ4N3,N7,O25,O26:κ4N15,N19,O25,O26]dicopper(II bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Qiang Xu

    2012-08-01

    Full Text Available In the dinuclear title complex, [Cu2(C30H38N4O2(H2O2](ClO42, the coordination cation has crystallographically imposed twofold rotational symmetry. The CuII ion is five-coordinated by two N and two O atoms from the macrocylic ligand and one O atom from a water molecule, forming a square-pyramidal N2O3 geometry with the water molecule in the apical position. The distance between the two CuII atoms is 3.0930 (5 Å. Hydrogen bonds between water molecules and between water molecules and perchlorate anions assemble two cations and four anions into discrete supermolecules of S4 symmetry. Intramolecular O—H...N hydrogen bonds are also observed. The perchlorate anion and the tert-butyl group are disordered over two positions, with occupancies of the major positions of 0.527 (11 and 0.592 (9, respectively.

  14. Crystal structure of cis-dichlorido(1,4,8,11-tetraazacyclotetradecane-κ4Nchromium(III (oxalato-κ2O1,O2(1,4,8,11-tetraazacyclotetradecane-κ4Nchromium(III bis(perchlorate from synchrotron data

    Directory of Open Access Journals (Sweden)

    Dohyun Moon

    2016-10-01

    Full Text Available In the asymmetric unit of the title compound, [CrCl2(C10H24N4][Cr(C2O4(C10H24N4](ClO42 (C10H24N4 = 1,4,8,11-tetraazacyclotetradecane, cyclam; C2O4 = oxalate, ox, there are two independent halves of the [CrCl2(cyclam]+ and [Cr(ox(cyclam]+ cations, and one perchlorate anion. In the complex cations, which are completed by application of twofold rotation symmetry, the CrIII ions are coordinated by the four N atoms of a cyclam ligand, and by two chloride ions or one oxalate bidentate ligand in a cis arrangement, displaying an overall distorted octahedral coordination environment. The Cr—N(cyclam bond lengths are in the range of 2.075 (5 to 2.096 (4 Å while the Cr—Cl and Cr—O(ox bond lengths are 2.3358 (14 and 1.956 (4 Å, respectively. Both cyclam moieties adopt the cis-V conformation. The slightly distorted tetrahedral ClO4− anion remains outside the coordination sphere. The supramolecular architecture includes N—H...O and N—H...Cl hydrogen bonding between cyclam NH donor groups, O atoms of the oxalate ligand or ClO4− anions and one Cl ligand as acceptors, leading to a three-dimensional network structure.

  15. Low-dimensional compounds containing cyano groups. IV. Bis(2,2'-bipyridine-kappa(2)N,N1)(dicyanamido-kappaN')copper(II) perchlorate and mu-dicyanamido-kappa(2)N1:N5-bis[bis(2,2'-bipyridine-kappa(2)N,N')copper(II)] triperchlorate ethanol hemisolvate, complexes with unusual dicyanamide coordination.

    Science.gov (United States)

    Potocnák, Ivan; Burcák, Milan; Massa, Werner; Jäger, Lothar

    2002-10-01

    From reaction mixtures containing the same reagents, the two novel title complexes, with unusual coordination modes of the dicyanamide (dca) ligand, have been prepared. The first compound, [Cu(C(2)N(3))(C(10)H(8)N(2))(2)]ClO(4), represents a relatively rare class of compounds, with the dca ligand coordinated in a monodentate manner. Its structure is formed by the [Cu(bpy)(2)N(CN)(2)](+) complex cation (bpy is 2,2'-bipyridine) and a ClO(4)(-) anion, which does not enter the inner coordination sphere. The Cu centre is five-coordinate within a strongly distorted trigonal bipyramid to two bpy molecules and one dca ligand, which is coordinated through one nitrile N atom in the equatorial plane. The second compound, [Cu(2)(C(2)N(3))(C(10)H(8)N(2))(4)](ClO(4))(3).0.5C(2)H(6)O, contains dca coordinated in the more common bidentate manner, but instead of a chain structure, a unique binuclear complex is formed. The asymmetric unit consists of the [Cu(bpy)(2)N(CN)(2)(bpy)(2)Cu](3+) binuclear complex cation, the charge of which is neutralized by three uncoordinated perchlorate anions, and a half-molecule of ethanol. Both Cu centres in the cation are five-coordinate, adopting a slightly distorted trigonal-bipyramidal environment.

  16. Electrostatic repulsion between the cations of (1-methyl-1H-imidazole-κN3(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′platinum(II perchlorate nitromethane monosolvate prevents Pt...Pt interactions

    Directory of Open Access Journals (Sweden)

    Matthew Akerman

    2011-08-01

    Full Text Available The reaction between [Pt(terpyCl]·2H2O (terpy = 2′,2′′:6′,2′′-terpyridine and 1-methylimidazole (MIm in the presence of two equivalents of AgClO4 in nitromethane yields the title compound, [Pt(C15H11N3(C4H6N2](ClO42·CH3NO2. The dicationic complexes are arranged in a staggered configuration. The torsion angle subtended by the 1-methylimidazole ring relative to the terpyridine ring is 114.9 (5°. Intermolecular C—H...O interactions between the perchlorate anions and the H atoms of the terpy ligand are observed. Consideration of related phenylbipyridyl complexes of platinum(II, which are monocationic, leads to the conclusion that the electrostatic repulsion between the dicationic chelates prevents the formation of Pt...Pt interactions. These interactions are a common feature associated with the monocationic species.

  17. Production of scandium-44m and scandium-44g with deuterons on calcium-44: cross section measurements and production yield calculations

    Science.gov (United States)

    Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2015-09-01

    HIGHLIGHTS • Production of Sc-44m, Sc-44g and contaminants. • Experimental values determined using the stacked-foil technique. • Thick-Target production Yield (TTY) calculations. • Comparison with the TALYS code version 1.6. Among the large number of radionuclides of medical interest, Sc-44 is promising for PET imaging. Either the ground-state Sc-44g or the metastable-state Sc-44m can be used for such applications, depending on the molecule used as vector. This study compares the production rates of both Sc-44 states, when protons or deuterons are used as projectiles on an enriched Calcium-44 target. This work presents the first set of data for the deuteron route. The results are compared with the TALYS code. The Thick-Target production Yields of Sc-44m and Sc-44g are calculated and compared with those for the proton route for three different scenarios: the production of Sc-44g for conventional PET imaging, its production for the new 3 γ imaging technique developed at the SUBATECH laboratory and the production of a Sc-44m/Sc-44g in vivo generator for antibody labelling.

  18. Synthetic applications of aqueous accelerated [3,3] sigmatropic rearrangements of allyl vinyl ethers. [1,3] sigmatropic rearrangements of allyl vinyl ethers in 3 M lithium perchlorate-diethyl ether at ambient temperature. New methods to effect the retro Diels-Alder reaction of N-alkyl-2-azanorbornenes

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.D.

    1992-01-01

    Claisen rearrangements employed in the synthesis of natural and unnatural products that were heretofore difficult or impossible using conventional means are realized through the agency of water. Allyl vinyl ether 35, the unprotected form of McMurry's aphidicolin intermediate 7, rearranged after 24 h in 2.5:1 water/methanol at 80[degrees]C, affording aldehyde 40 in 70--85% yield. Acetaldehyde elimination witnessed using conventional reaction conditions was suppressed when employing water. The application of a Claisen rearrangement within the molecular framework of fenestranes was realized for the first time. Fenestrene vinyl ethers 28 and 30 rearranged to form the fenestrenes 29 and 31, respectively. Noteworthy is fenestrene 29, the first fenestrane synthesized possessing a trans-ring fusion common to two five-membered rings. The medium of 3.0 M lithium perchlorate-diethyl ether has been found to induce the rarely witnessed rearrangement of allyl vinyl ethers, despite the fact that the corresponding sigmatropic rearrangement is energetically more favorable. Yields are very good; however, in some instances the sigmatropic rearrangement and elimination processes compete slightly. Results from the observed stereoselectivities, concentration effects on reaction rate, and a crossover study indicate that these shifts take place via dissociated ions followed by recombination, and that the observed stereoselectivities are a result of unequal steric effects in the transition states for recombination. Copper(II) and sulfonic acid ion exchange resins have been found to readily catalyze the heterocycloreversion of N-alkyl-2-azanorbornenes to the corresponding primary amines, eliminating the necessity of employing a reactive dienophile to trap out the released cyclopentadiene.

  19. Structure, solvation, and dynamics of Mg²⁺, Ca²⁺, Sr²⁺, and Ba²⁺ complexes with 3-hydroxyflavone and perchlorate anion in acetonitrile medium: a molecular dynamics simulation study.

    Science.gov (United States)

    Agieienko, Vira N; Kolesnik, Yaroslav V; Kalugin, Oleg N

    2014-05-21

    Molecular dynamics simulations of complexes of Mg(2+), Ca(2+), Sr(2+), and Ba(2+) with 3-hydroxyflavone (flavonol, 3HF) and ClO₄⁻ in acetonitrile were performed. The united atoms force field model was proposed for the 3HF molecule using the results of DFT quantum chemical calculations. 3HF was interpreted as a rigid molecule with two internal degrees of freedom, i.e., rotation of the phenyl ring and of the OH group with respect to the chromone moiety. The interatomic radial distribution functions showed that interaction of the cations with flavonol occurs via the carbonyl group of 3HF and it is accompanied with substitution of one of the acetonitrile molecules in the cations' first solvation shells. Formation of the cation-3HF complexes does not have significant impact on the rotation of the phenyl ring with respect to the chromone moiety. However, the orientation of the flavonol's OH-group is more sensitive to the interaction with doubly charged cations. When complex with Mg(2+) is formed, the OH-group turns out of the plane of the chromone moiety that leads to rupture of intramolecular H-bond in the ligand molecule. Complexation of Ca(2+), Sr(2+), and BaClO₄⁺ with 3HF produces two structures with different OH-positions, as in the free flavonol with the intramolecular H-bond and as in the complex with Mg(2+) with disrupted H-bonding. It was shown that additional stabilization of the [MgClO4(3HF)](+) and [BaClO4(3HF)](+) complexes is determined by strong affinity of perchlorate anion to interact with flavonol via intracomplex hydrogen bond between an oxygen atom of the anion and the hydrogen atom of the 3-hydroxyl group. Noticeable difference in the values of the self-diffusion coefficients for Kt(2+) from one side and ClO₄⁻, 3HF, and AN in the cations' coordination shell from another side implies quite weak interaction between cation, anion, and ligands in the investigated complexes.

  20. Structures and H2 adsorption properties of porous scandium metal-organic frameworks.

    Science.gov (United States)

    Ibarra, Ilich A; Lin, Xiang; Yang, Sihai; Blake, Alexander J; Walker, Gavin S; Barnett, Sarah A; Allan, David R; Champness, Neil R; Hubberstey, Peter; Schröder, Martin

    2010-12-10

    Two new three-dimensional Sc(III) metal-organic frameworks {[Sc(3)O(L(1))(3)(H(2)O)(3)]·Cl(0.5)(OH)(0.5)(DMF)(4)(H(2)O)(3)}(∞) (1) (H(2)L(1)=1,4-benzene-dicarboxylic acid) and {[Sc(3)O(L(2))(2)(H(2)O)(3)](OH)(H(2)O)(5)(DMF)}(∞) (2) (H(3)L(2)=1,3,5-tris(4-carboxyphenyl)benzene) have been synthesised and characterised. The structures of both 1 and 2 incorporate the trinuclear trigonal planar [Sc(3)(O)(O(2)CR)(6)] building block featuring three Sc(III) centres joined by a central μ(3)-O(2-) donor. Each Sc(III) centre is further bound by four oxygen donors from four different bridging carboxylate anions, and a molecule of water located trans to the μ(3)-O(2-) donor completes the six coordination at the metal centre. Frameworks 1 and 2 show high thermal stability with retention of crystallinity up to 350 °C. The desolvated materials 1a and 2a, in which the solvent has been removed from the pores but with water or hydroxide remaining coordinated to Sc(III), show BET surface areas based upon N(2) uptake of 634 and 1233 m(2) g(-1), respectively, and pore volumes calculated from the maximum N(2) adsorption of 0.25 cm(3) g(-1) and 0.62 cm(3) g(-1), respectively. At 20 bar and 78 K, the H(2) isotherms for desolvated 1a and 2a confirm 2.48 and 1.99 wt% total H(2) uptake, respectively. The isosteric heats of adsorption were estimated to be 5.25 and 2.59 kJ mol(-1) at zero surface coverage for 1a and 2a, respectively. Treatment of 2 with acetone followed by thermal desolvation in vacuo generated free metal coordination sites in a new material 2b. Framework 2b shows an enhanced BET surface area of 1511 m(2) g(-1) and a pore volume of 0.76 cm(3) g(-1), with improved H(2) uptake capacity and a higher heat of H(2) adsorption. At 20 bar, H(2) capacity increases from 1.99 wt% in 2a to 2.64 wt% for 2b, and the H(2) adsorption enthalpy rises markedly from 2.59 to 6.90 kJ mol(-1).

  1. Scandium and Chromium in the Strontium Filament in the Homunculus of eta Carinae

    Science.gov (United States)

    Gull, T.R.; Melendez, M.; Baustista, M.A.; Ballance, C.; Hartman, H.; Lodders, K.; Martinez, M.

    2008-01-01

    We continue a systematic study of chemical abundances of the Strontium Filament found in the ejecta of eta Carinae. To this end we interpret the emission spectrum of Sc II and Cr II using multilevel non-LTE models of these systems. Since the atomic data for these ions was previously unavailable, we carry out ab initio calculations of radiative transition rates and electron impact excitation rate coefficients. The observed spectrum is emitted from a mostly neutral region with electron density of the order of 10(exp 7) cm (exp -3) and a temperature between 6000 and 7000 K. These conditions are consistent with our previous diagnostics from [Ni II], [Ti II], amd [Sr II]. The observed spectrum indicates an abundance of Sc relative Ni that more than 40 times the solar values, while the Cr/Ni abundance ratio is roughly solar. Various scenarios of depletion and dust destruction are suggested to explain such abnormal abundances.

  2. Lithium scandium phosphate-based electrolytes for solid state lithium rechargeable microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Amatucci, G.G. (Dept. of Ceramics, Rutgers Univ., Piscataway, NJ (United States)); Safari, A. (Dept. of Ceramics, Rutgers Univ., Piscataway, NJ (United States)); Shokoohi, F.K. (Bellcore, Red Bank, NJ (United States)); Wilkens, B.J. (Bellcore, Red Bank, NJ (United States))

    1993-04-01

    Li[sub 3]Sc[sub 2](PO[sub 4])[sub 3] is a promising candidate for use as an electrolyte in solid state lithium rechargeable microbatteries due to its stability in air, ease of preparation, and resistance to dielectric breakdown. The room temperature ionic conductivity was optimized resulting in an increase of over two orders of magnitude to 3 x 10[sup -6] S/cm. The formation of Li[sub 3](Sc[sub 2-x]M[sub x])(PO[sub 4])[sub 3], where M=Al[sup 3+] of Y[sup 3+], resulted in the decrease of porosity, greater sinterability, and considerable enhancement of the ionic conductivity. Yttrium substitutions enhanced the conductivity slightly while aluminum increased the room temperature ionic conductivity to 1.5 x 10[sup -5] S/cm for x=0.4. Preliminary electron beam evaporation of Li[sub 3]Sc[sub 2](PO[sub 4])[sub 3] yielded amorphous thin films with ionic conductivity as high as 5 x 10[sup -5] S/cm and a composition of Li[sub 4.8]Sc[sub 1.4](PO[sub 4])[sub 3]. (orig.)

  3. The Low-Lying Electronic States of Scandium Monocarbide, ScC

    Science.gov (United States)

    Chen, Chiao-Wei; Merer, Anthony; Hsu, Yen-Chu

    2017-06-01

    Extensive wavelength-resolved fluorescence studies have been carried out for the electronic bands of ScC and Sc{}^{13}C lying in the range 14000 - 16000 cm^{-1}. Taken together with detailed rotational analyses of these bands, these studies have clarified the natures of the low-lying electronic states. The ground state is an Ω = 3/2 state, with a vibrational frequency of 648 cm^{-1}, and the first excited electronic state is an Ω = 5/2 state, with a frequency of 712 cm^{-1}, lying 155.54 cm^{-1} higher. These states are assigned as the lowest spin-orbit components of X^2Π_i and a^4Π_i, respectively. The quartet nature of the a state is confirmed by the observation of the ^4Π_{3/2} component, 18.71 cm^{-1} above the ^4Π_{5/2} component. The strongest bands in the region studied are two ^4Δ_{7/2} - ^4Π_{5/2} transitions, where the upper states lie 14355 and 15445 cm^{-1} above X^2Π_{3/2}. Extensive doublet-quartet mixing occurs, which results in some complicated emission patterns. The energy order, a^4Π above X^2Π, is consistent with the ab initio calculations of Kalemos et al., but differs from that found by Simard et al in the isoelectronic YC molecule. A. Kalemos, A. Mavridis and J.F. Harrison, J. Phys. Chem. A155, 755 (2001). B. Simard, P.A. Hackett and W.J. Balfour, Chem. Phys. Lett., 230, 103 (1994).

  4. Effect of scandium on structure and hardening of Al–Ca eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Belov, N.A., E-mail: nikolay-belov@yandex.ru [National Research and Technological University “MISIS”, 4, Leninsky pr., Moscow 119049 (Russian Federation); Naumova, E.A. [Bauman Moscow State Technical University, 5, 2 ul. Baumanskaya, Moscow, 105005 (Russian Federation); Alabin, A.N. [National Research and Technological University “MISIS”, 4, Leninsky pr., Moscow 119049 (Russian Federation); UC RUSAL, 13/1, Nikoloyamskaya st., Moscow, 109240 (Russian Federation); Matveeva, I.A. [UC RUSAL, 13/1, Nikoloyamskaya st., Moscow, 109240 (Russian Federation)

    2015-10-15

    The phase composition, structure and hardening of alloys in the aluminium corner of the Al–Ca–Sc system were studied in the range up to 10% Ca and up to 1% S≿. The experimental study (optical, scanning and transmission electron microscopy with electron-microprobe analysis, differential thermal analysis and hardness measurements) was combined with Thermo-Calc software simulation for the optimization of the alloy composition. It was shown that only phases of the binary systems (Al{sub 4}Ca and Al{sub 3}Sc) might be in equilibrium with the aluminium solid solution. It was shown that the (Al) + Al{sub 4}Ca eutectic had a much finer structure as compared with the Al–Si eutectic, which suggests a possibility of reaching higher mechanical properties as compared to commercial alloys of the A356 type. The influence of the annealing temperature within the range up to 600 °C on the structure and hardness of the Al–Ca–Sc experimental alloys was studied. It was determined that the maximum hardening corresponded to the annealing at 300 °C, which was due to the precipitation of Al{sub 3}Sc nanoparticles with their further coarsening. With an example of an Al-7.6% Ca-0.3% Sc model experimental alloy, a principal possibility of manufacturing aluminium casting alloys based on the (Al) + Al{sub 4}Ca eutectic was demonstrated. Unlike commercial alloys of the A356 type, the model alloy does not require quenching, as hardening particles are formed in the course of annealing of casting. - Highlights: • Al–Ca–Sc phase diagram in aluminum corner. • Formation of Al{sub 3}Sc nanoparticles in eutectic (Al) + Al{sub 4}Ca during heating at 300–450 °C. • Hardening and thermal stability of proposed (Al–Ca–Sc) and commercial (Al–Si–Mg, 356 type) eutectic alloys.

  5. Conditioning of red mud for subsequent titanium and scandium recovery. A conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, G.; Xakalashe, B.; Kaussen, F.; Friedrich, Bernd [RWTH Aachen Univ. (Germany). IME Inst. of Process Metallurgy and Metal Recycling; Yagmurlu, B. [RWTH Aachen Univ. (Germany). IME Inst. of Process Metallurgy and Metal Recycling; MEAB Chemie Technik GmbH, Aachen (Germany)

    2017-03-15

    Leaching experiments were undertaken on red mud materials (red mud and red mud slag). The red mud slag was produced via the carbothermic reduction of red mud at high temperatures (T > 1500 C) via SAF treatment. Furthermore, iron was recovered in the smelting step to the metal phase. Ti and Sc were successfully recovered from the red mud materials by hydrometallurgical treatment. For both critical metals, it was found that sulfuric acid was the best mineral acid among others. Since direct red mud leaching had some shortcomings, a route designed to overcome them is proposed. For optimal Ti and Sc recovery from red mud a promising process flowsheet combining pyrometallurgical and hydrometallurgical treatment is proposed as follows: pyrometallurgical processing (fluxed smelting to produce calcium oxide based slag phases and controlled cooling for crystalline and glassy slags), leaching for maximized Ti- and Sc extraction and followed by a multistage precipitation (for metal recovery and solution purification). Initial trial results showed that the proposed process is promising.

  6. Supercritical fluid chemical deposition of Pd nanoparticles on magnesium–scandium alloy for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Couillaud, Samuel; Kirikova, Marina [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Zaïdi, Warda; Bonnet, Jean-Pierre [LRCS, UMR CNRS 6007, 33 rue Saint-Leu, 80039-Amiens (France); Marre, Samuel; Aymonier, Cyril [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Zhang, Junxian; Cuevas, Fermin; Latroche, Michel [ICMPE, CNRS-UPEC, UMR 7182, 2-8 rue Henri Dunant, 94320-Thiais (France); Aymard, Luc [LRCS, UMR CNRS 6007, 33 rue Saint-Leu, 80039-Amiens (France); Bobet, Jean-Louis, E-mail: bobet@icmcb-bordeaux.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac (France); Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France)

    2013-10-15

    Highlights: •Nanoparticles of Pd were deposed on the binary compound Mg{sub 0.65}Sc{sub 0.35} using the Supercritical Fluid Chemical Deposition (SFCD) method. •Numerous parameters were tested and optimized in order to obtain a homogeneous deposition. •At the first step, Pd@Mg0.65Sc0.35 decomposes into ScH{sub 2} and MgH{sub 2} under hydrogen pressure (1 MPa) at 330 °C. •The mixture, after decomposition absorbs hydrogen reversibly on Mg/MgH{sub 2} couple with good kinetics. -- Abstract: The deposition of Pd nanoparticles on the binary compound Mg{sub 0.65}Sc{sub 0.35} using the Supercritical Fluid Chemical Deposition (SFCD) method was performed. There, the SFCD operating parameters (co-solvent, temperature, CO{sub 2} and hydrogen pressure, reaction time) have been optimized to obtain homogeneous deposition of Pd nanoparticles (around 10 nm). The hydrogenation properties of the optimized Pd@Mg{sub 0.65}Sc{sub 0.35} material were determined and compared to those of Mg{sub 0.65}Sc{sub 0.35}Pd{sub 0.024}. The latter compound forms at 300 °C and 1 MPa of H{sub 2} a hydride that crystallizes in the fluorite structure, absorbs reversibly 1.5 wt.% hydrogen and exhibits fast kinetics. In contrast, Pd@Mg{sub 0.65}Sc{sub 0.35} compound decomposes into ScH{sub 2} and MgH{sub 2} during hydrogen absorption under the same conditions. However, reversible sorption reaches 3.3 wt.% of hydrogen while keeping good kinetics. The possible roles of Pd on the hydrogen-induced alloy decomposition are discussed.

  7. Geochemistry of oceanic igneous rocks - Ridges, islands, and arcs - With emphasis on manganese, scandium, and vanadium

    Science.gov (United States)

    Doe, B.R.

    1997-01-01

    A database on a number of elements in oceanic volcanic rocks is presented, including the principal major-element oxides - SiO2, TiO2, Al2O3, Fe2O3(T), MnO, MgO, CaO, Na2O, K2O, and P2O5 (where T refers to total iron) - and the trace elements - Ba, Ce, Cr, Cu, Ni, Sc, Sr, V, Pb (mainly by isotope dilution), Yb, Zn, and Zr. Interpretations are given for transition metals, with emphasis on Mn, Sc, and V, in order to determine the concentration of the elements in primitive melts and assess their trends in magmatic differentiation. Transition metals are not enriched in plagioclase, so all are incompatible with pure plagioclase removal - that is, they become enriched in the melt. Both Cr and Ni are known to be highly compatible with olivine separation - i.e., they are depleted in the melt early in differentiation. Also, Sc is compatible with clinopyroxene (Cpx) removal from the melt and is depleted by separation of Cpx. Copper does not fit well in any of the principal silicates, but Cu, like Ni, is greatly enriched in sulfides that may remain in the source or separate from the magma. Decreasing Ni abundances and increasing Cu contents during differentiation are a sign of olivine separation. In the analysis presented herein, V - in the absence of Cpx separation - is found to behave remarkably like the moderately incompatible element Zn, and these two elements add to the list of element pairs of similar incompatibility whose ratios are insensitive to differentiation and to submarine weathering as well. Both are enhanced in titanomagnetite, so both would he compatible during titanomagnetite separation. When Cpx separates, however, V becomes compatible like Sc, but Zn remains incompatible. Thus, decreasing V (and Sc) contents and increasing Zn contents during differentiation are a sign of Cpx separation. Manganese often behaves much like Zn and therefore is moderately incompatible, but Mn is less compatible than Zn and V in titanomagnetite. Thus, decreasing Zn and V with increasing Mn is an indication of titanomagnetite removal. Dual compatible and incompatible trends with differentiation are found chiefly for Cu, Sc, and Sr. Distinguishing mid-ocean ridge basalts (MORB), oceanic-island volcanic rocks (OIV), and island-arc volcanic rocks (IAV) may be accomplished by plots of Ce/Yb versus Ba/Ce, where OIV plot to higher values of Ce/Yb than do MORB, and IAV data plot to higher values of Ba/Ce than do those of MORB. These ratios do not seem to be significantly affected by submarine weathering.

  8. Heteroepitaxial growth and electric properties of (110)-oriented scandium nitride films

    Science.gov (United States)

    Ohgaki, Takeshi; Sakaguchi, Isao; Ohashi, Naoki; Haneda, Hajime

    2017-10-01

    ScN films were grown on MgO(110) substrates and α-Al2O3(10 1 bar 0) substrates by a molecular beam epitaxy method, and their crystalline orientation, crystallinity, and electric properties were examined. (110)-oriented ScN films were epitaxially grown on MgO(110) substrates with the same crystal orientations, and ScN films with an orientation relationship (110)ScN || (10 1 bar 0)α-Al2O3 and [001]ScN || [ 1 2 bar 10 ]α-Al2O3 were epitaxially grown on α-Al2O3(10 1 bar 0) substrates. Remarkably, electric-resistivity anisotropy was observed for ScN films grown on MgO(110) substrates, and the anisotropy depended on the growth temperature. The carrier concentration and Hall mobility of the ScN films grown on α-Al2O3(10 1 bar 0) substrates ranged from 1019-1021 cm-3 and 10-150 cm2 V-1 s-1, respectively. The crystallinity, crystalline-orientation anisotropy, and electric properties of the films were strongly affected by growth conditions. For the growth of ScN films with high mobility on α-Al2O3(10 1 bar 0) substrates, a high temperature and an appropriate ratio of source materials were necessary.

  9. Experimental partitioning of rare earth elements and scandium among armalcolite, ilmenite, olivine and mare basalt liquid

    Science.gov (United States)

    Irving, A. J.; Merrill, R. B.; Singleton, D. E.

    1978-01-01

    An experimental study was carried out to measure partition coefficients for two rare-earth elements (Sm and Tm) and Sc among armalcolite, ilmenite, olivine and liquid coexisting in a system modeled on high-Ti mare basalt 74275. This 'primitive' sample was chosen for study because its major and trace element chemistry as well as its equilibrium phase relations at atmospheric pressure are known from previous studies. Beta-track analytical techniques were used so that partition coefficients could be measured in an environment whose bulk trace element composition is similar to that of the natural basalt. Partition coefficients for Cr and Mn were determined in the same experiments by microprobe analysis. The only equilibrium partial melting model appears to be one in which ilmenite is initially present in the source region but is consumed by melting before segregation of the high-Ti mare basalt liquid from the residue.

  10. Effects of erbium‑and chromium‑doped yttrium scandium gallium ...

    African Journals Online (AJOL)

    Results: According to the SEM images, the Er, Cr: YSGG laser causes irradiation markings that appear as demineralized surfaces on tooth samples. The Er, Cr: YSGG laser also caused deep defects on composite, compomer, and RMGIC surfaces because of its high power, and the ablation was deeper for these samples.

  11. Structural and magnetic properties of holmium-scandium alloys and superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.

    1997-01-01

    in the alloys form a basal-plane helix at all temperatures, with distortions of the helical arrangement for samples with the highest Ho concentrations. The dependences of the Neel temperature, T-N and the helical wave vector upon both temperature and concentration are compared with those of other alloy systems......The properties of Ho-Sc alloys and superlattices grown by molecular-beam epitaxy have been investigated using x-ray and neutron-diffraction techniques. Structural studies reveal that the alloy samples have different a lattice parameters for the Sc-seed layer and the Ho:Sc alloy grown on top....... It is found that a good description of the dependence of T-N upon concentration is given by a virtual-crystal model where the peak in the conduction-electron susceptibility varies linearly between that of the pure constituents. In the superlattices, the moments also form a basal-plane helix at T...

  12. Cage-Core Interactions in Fullerenes Enclosing Metal Clusters with Multiple Scandium and Yttrium Atoms.

    Science.gov (United States)

    Dan, Liu; Hagelberg, Frank

    2007-03-01

    Pronounced stability has been reported for metallofullerenes of the form NSc3@CN (N = 68, 78) /1/. In response of these and related findings, Density Functional Theory studies have been performed on the relation between cage-core interactions and the geometry as well as stability of endofullerenes with metal impurities containing Sc and Y. Substantial electron transfer from the metal core to the fullerene cage combines with electron backdonation, involving the interaction between the occupied orbitals of the negatively charged cage and the unoccupied d orbitals of the positively charged core. The Hueckel 4n+2 rule, well established in organic chemistry, is shown to provide a valuable heuristic tool for understanding the intramolecular electron transfer and the related stability gain /1/. The usefulness of the aromaticity concept for explaining and predicting the architecture of metallofullerenes is further exemplified by the units Sc2@C84 and Y2@C84 which were analyzed in spin triplet and singlet conditions. The Sc2 core turns out to be realized by two separated ions, while Y2 forms a bound subunit. These findings are in agreement with conclusions based on the 4n + 2 rule, assisted by Nucleus Independent Chemical Shift (NICS) calculations. /1/ Stevenson, S.; Fowler, P.W.; Heine, T.; Duchamp, J.C.; Rice, G.; Glass, T.; Harich, K.; Hadju, F.; Bible, R.; Dorn, H.C. Nature, 2000, 408, 427, /2/ S. S. Park, D. Liu, F. Hagelberg, J. Phys. Chem. A 109, 8865 (2005).

  13. EFFECT OF SCANDIUM ON HIDROGEN DISSOCIATION ENERGY AT MAGNESIUM SURFACE: AB INITIO DFT STUDY

    Directory of Open Access Journals (Sweden)

    I Wayan Sutapa

    2010-07-01

    Full Text Available The dissociative chemisorption of hydrogen on both pure and Sc-incorporated Mg(0001 surfaces have been studied by ab initio density functional theory (DFT calculation. The calculated dissociation energy of hydrogen molecule on a pure Mg(0001 surface (1.200 eV is in good agreement with comparable theoretical studies. For the Sc-incorporated Mg(0001 surface, the activated barrier decreases to 0.780 eV due to the strong interaction between the molecular orbital of hydrogen and the d metal state of Sc. This could explain the experimentally observed improvement in absorption kinetics of hydrogen when transition metals have been introduced into the magnesium materials.   Keywords: Dissociation, Adsorption, Chemisorptions, DFT, Magnesium

  14. Isolated hepatic perfusion as a treatment for uveal melanoma liver metastases (the SCANDIUM trial)

    DEFF Research Database (Denmark)

    Olofsson, Roger; Ny, Lars; Eilard, Malin Sternby

    2014-01-01

    BACKGROUND: Uveal melanoma is the most common primary intraocular malignancy in adults. Despite successful control of the primary tumor, metastatic disease will ultimately develop in approximately 50% of patients, with the liver being the most common site for metastases. The median survival...... of the longest surviving patients in Sweden during the same time period (26 versus 12 months). METHODS/DESIGN: This is the protocol for a multicenter phase III trial randomizing patients with isolated liver metastases of uveal melanoma to IHP or best alternative care (BAC). Inclusion criteria include liver...

  15. Hydrogen bonding induced polymorphism in the scandium(III) complex with ε-caprolactam

    Energy Technology Data Exchange (ETDEWEB)

    Virovets, Alexander V.; Peresypkina, Eugenia V. [Institute of Inorganic Chemistry SB RAS, Novosibirsk (Russian Federation); Novosibirsk State Univ. (Russian Federation); Cherkasova, Elizaveta V.; Cherkasova, Tatjana G. [Kuzbass State Technical Univ., Kemerovo (Russian Federation)

    2015-11-01

    Two polymorphs of [Sc(cpl){sub 6}][Cr(NCS){sub 6}] (cpl=ε- C{sub 6}H{sub 11}NO), trigonal and monoclinic, form purple elongated narrow plates and brownish-purple prisms and are formed concomitantly irrespectively of the crystallization conditions. In the trigonal polymorph both cation and anion possess C{sub 3i} site symmetry while in the monoclinic form cation and anion lie on inversion centre and 2-fold axis respectively. The nature of the polymorphism traces back to a redistribution of inter- and intramolecular hydrogen bonds that causes different conformation of the complex cations, different hydrogen bonding and different molecular packings. The [Sc(cpl){sub 6}]{sup 3+} cations in the structure of the trigonal polymorph form intermolecular N(H)..S, and in the monoclinic form both N(H)..S inter- and N(H)..O intramolecular hydrogen bonds with NCS groups of [Cr(NCS){sub 6}]{sup 3-} and cpl ligands. This aggregation leads to chains, where the cations and the anions alternate, in the trigonal modification and to layers, in which each ion is surrounded by four counterions, in the monoclinic form. Both polymorphs possess thermochromic properties, and a reversible color change from light purple to dark green takes place at 470-475 K.

  16. Perchlorate and Halogen-Free High Energy Dense Oxidizers (HEDO)

    Science.gov (United States)

    2011-06-01

    balance value yielding smokeless combustion and less toxic fumes on decomposition. The compounds are water insoluble in contrast to energetic salts, a...comparable to RDX (Table 8). The compound melts at 109 °C (onset) and is stable up to 153 °C (onset). 10 is compatible with fine aluminium powder. Long

  17. Alternative for Perchlorates in Incendiary and Pyrotechnic Formulations for Projectiles

    Science.gov (United States)

    2009-08-01

    Polytetrafluoroethylene QINETIQ/09/00368 Page vii PVC Polyvinylchloride T Toxicity TG Thermogravimetry Te Extrapolated onset temperature Tp Peak...chloride ( PVC ). They all showed high persistence but low values for bioaccumulation, toxicity and ecotoxicity. In addition, the binder calcium resinate was...data including Hazard Classification, Health Hazard and a Lifecycle Environmental Analysis before transition of the formulation into ammunition

  18. Direct Fixed-Bed Biological Perchlorate Destruction Demonstration

    Science.gov (United States)

    2009-04-01

    storage, and disposal of explosive waste. The area was formerly used as a citrus grove, and those groves are believed to have used large qualities of... Genomic Center at Washington University (St. Louis, Missouri) for DNA sequencing. Raw sequence readings obtained from the Genomic Center were entered

  19. In-Situ Bioreduction and Removal of Ammonium Perchlorate

    Science.gov (United States)

    2006-05-09

    an adult can ultimately result in hypothyroidism (25, 130). Furthermore, because the thyroid hormones are required for normal physical and mental...0.003 0.0035 0.004 0 1 2 3 4 5 Gr ow th rat e/ h our % NaCl 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 5 10 15 20 25 30 35 40 Gr ow th rat e/ h ou...r Temp (oC) 0 0.001 0.002 0.003 0.004 0.005 4.5 5 5.5 6 6.5 7 7.5 8 Gr ow th rat e/h ou r pH Figure 5.20 Growth of strain AH on acetate (10

  20. In Situ Bioremediation of Perchlorate in Vadose Zone Source Areas

    Science.gov (United States)

    2011-01-01

    DAP Solid Amendments (Treatment # 2): 2. Cheese whey (500 mg/kg) + DAP 3. Soybean oil/peat moss (1:2) + DAP 4. Bioreactor sludge + DAP 5...amendments. Error bars are not shown. 3.2.2.2 Solid Amendments Nitrate. Among the solid and/or slow release substrates, cheese whey ...most rapidly promoted nitrate biodegradation (Figure 3.7). In samples amended with cheese whey , nitrate-N declined from an average of 175 mg/kg to

  1. Engineered Intrinsic Bioremediation of Ammonium Perchlorate in Groundwater

    Science.gov (United States)

    2010-12-01

    2007), modeling and optimization of fermentation factors for alkaline protease production using a feed-forward neural network and GA (Rao et al...methods 6850 ( HPLC /ESI/MS) and 6860 (IC/ESI/MS) for groundwater analysis. The methods can also be used for drinking water, wastewater and soil samples...samples that were examined included an anaerobic sludge enrichment culture from a sewage treatment plant in the city of Moscow (Idaho, USA), a sample of

  2. Direct Fixed-Bed Biological Perchlorate Destruction Demonstration

    Science.gov (United States)

    2008-09-01

    ENGINNEERING $ 563,000 $ 986,000 OWNER’S RESERVE FOR CHANGE ORDERS $ 176,000 $ 309,000 ESTIMATED TOTAL COST $4,193,000 $7,395,000 7.3.4...CONTRACTOR OVERHEAD & PROFIT $ 275,000 $ 275,000 N/A1 SALES TAX $ 110,000 $ 110,000 N/A1 ENGINNEERING $ 501,000 $ 501,000 N/A1 OWNER’S

  3. Validation of Chlorine and Oxygen Isotope Ratio Analysis To Differentiate Perchlorate Sources and To Document Perchlorate Biodegradation

    Science.gov (United States)

    2013-05-31

    concepts. Rapid Com. Mass Spectr. 19:627-636. ASTDR, 2005. Agency for Toxic Substances and Disease Registry, Area of Interest, Morrow and Umatilla...1b). Land use in this area in 2006-2007 was largely agricultural, with turf grass, corn, grapes, and potatoes as important crops. The DL wells were...carbonate commonly used to neutralize acidity, possibly some KCl as a source of K, and S or SO42- (e. g., CaSO4, [NH4]2SO4) to fertilize potatoes

  4. The platinum-rich scandium silicide Sc{sub 2}Pt{sub 9}Si{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Vosswinkel, Daniel; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-10-01

    Single crystals of Sc{sub 2}Pt{sub 9}Si{sub 3} have been obtained from an arc-melted and inductively annealed sample of the starting composition Sc:4Pt:2Si. The Sc{sub 2}Pt{sub 9}Si{sub 3} structure (Tb{sub 2}Pt{sub 9}Ge{sub 3} type, space group C2/c) was refined from single crystal X-ray diffractometer data: a=1303.4(1), b=749.9(1), c=973.5(1), β=116.44(1) {sup circle}, wR2=0.0731, 1643 F{sup 2} values and 67 variables. The structure contains three basic coordination polyhedra Sc rate at Pt{sub 11}, Si1 rate at Pt{sub 8} and Si2 rate at Pt{sub 8} which show a simple condensation pattern avoiding direct Sc-Si and Si-Si bonding.

  5. Effects of substituting ytterbium for scandium on the microstructure and age-hardening behaviour of Al–Sc alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, N.Q., E-mail: quoctuan1884@gmail.com [CT2M – Centre for Mechanical and Materials Technologies, University of Minho, Azurém, 4800-058 Guimarães (Portugal); Pinto, A.M.P.; Puga, H. [CT2M – Centre for Mechanical and Materials Technologies, University of Minho, Azurém, 4800-058 Guimarães (Portugal); Rocha, L.A. [CT2M – Centre for Mechanical and Materials Technologies, University of Minho, Azurém, 4800-058 Guimarães (Portugal); Universidade Estadual Paulista (Unesp), Faculdade de Ciências de Bauru, SP 17033-360 (Brazil); Barbosa, J. [CT2M – Centre for Mechanical and Materials Technologies, University of Minho, Azurém, 4800-058 Guimarães (Portugal)

    2014-04-01

    In order to reduce the cost of Al–Sc alloys and maintain their mechanical properties, the microstructure and mechanical properties of Al–0.24 wt% Sc–0.07 wt% Yb in comparison with Al–0.28 wt% Sc alloys were studied. The aging behaviour, precipitate morphologies, precipitate coarsening and precipitation hardening of both alloys were investigated. The average diameter and the size distribution of nanoscale Al{sub 3}Sc and Al{sub 3}(Sc,Yb) precipitates at various aging conditions were measured. Transmission electron microscopy (TEM) and high-resolution TEM were used to deeply understand the precipitate evolution. A maximum hardness around 73 (HV{sub 30}) was obtained with a precipitate diameter from 4.3 to 5.6 nm for both alloys.

  6. Phonon thermal conductivity of scandium nitride for thermoelectrics from first-principles calculations and thin-film growth

    Science.gov (United States)

    Kerdsongpanya, Sit; Hellman, Olle; Sun, Bo; Koh, Yee Kan; Lu, Jun; Van Nong, Ngo; Simak, Sergei I.; Alling, Björn; Eklund, Per

    2017-11-01

    The knowledge of lattice thermal conductivity of materials under realistic conditions is vitally important since many modern technologies require either high or low thermal conductivity. Here, we propose a theoretical model for determining lattice thermal conductivity, which takes into account the effect of microstructure. It is based on ab initio description that includes the temperature dependence of the interatomic force constants and treats anharmonic lattice vibrations. We choose ScN as a model system, comparing the computational predictions to the experimental data by time-domain thermoreflectance. Our experimental results show a trend of reduction in lattice thermal conductivity with decreasing domain size predicted by the theoretical model. These results suggest a possibility to control thermal conductivity by microstructural tailoring and provide a predictive tool for the effect of the microstructure on the lattice thermal conductivity of materials based on ab initio calculations.

  7. Influence of scandium addition on the high-temperature grain size stabilization of oxide-dispersion-strengthened (ODS) ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lulu, E-mail: lli18@ncsu.edu; Xu, Weizong; Saber, Mostafa; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.

    2015-06-11

    The influence of 1–4 at% Sc addition on the thermal stability of mechanically alloyed ODS ferritic alloy was studied in this work. Sc addition was found to significantly stabilize grain size and microhardness at high temperatures. Grain sizes of samples with 1 and 4 at% Sc was found maintained in the nanoscale range at temperatures up to 1000 °C with hardness maintained at 5.6 and 6.7 GPa, respectively. The detailed microstructure was also investigated from EDS elemental mapping, where nanofeatures [ScTiO] were observed, while nanosized [YTiO] particles were rarely seen. This is probably due to the concentration difference between Sc and Y, leading to the formation of [ScTiO] favoring that of [YTiO]. Precipitation was considered as the major source for the observed high temperature stabilization. In addition, 14YT–Sc alloys without large second phases such as Ti-oxide can exhibit better performance compared to conventional ODS materials.

  8. The effect of composition on the mechanism of continuous recrystallization and superplastic response of aluminum-scandium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, III, Edwin Luther [Univ. of California, Berkeley, CA (United States)

    1993-05-01

    The continuous recrystallization (CRX) appears to be fundamental in Al-Sc because it occurs irrespective of solute composition. It appears to be due to a combination of subgrain coalescence at low strains and incorporation of additional dislocations generated during grain boundary sliding at higher strains when the misorientation has increased sufficiently. Alloying additives such as Mg, Li are more important with respect to deformation after CRX is completed. Mg, and to a lesser extent Li, affect the max m-values (strain-rate sensitivities) in Al-Sc by changing the melting points (mp). Max m- values correlate inversely with mp so that the alloy with the greatest Mg had the highest m-values and lowest mp; the stress is raised at which power-law creep and breakdown occurs. The power-law breakdonw at much lower stresses in Al-0.5Sc and Al-1.2Li-0.5Sc causes the m-value to decrease more rapidly with strain rate. Al alloys for commercial superplastic applications should contain elements that raise the power-law strength so that the m-values are maximized while preserving the post-formed mechanical properties. Refs, figs, tabs.

  9. Phonon thermal conductivity of scandium nitride for thermoelectrics from first-principles calculations and thin-film growth

    DEFF Research Database (Denmark)

    Kerdsongpanya, Sit; Hellman, Olle; Sun, Bo

    2017-01-01

    The knowledge of lattice thermal conductivity of materials under realistic conditions is vitally important since many modern technologies require either high or low thermal conductivity. Here, we propose a theoretical model for determining lattice thermal conductivity, which takes into account...

  10. Scandium and Titanium Containing Single-Walled Carbon Nanotubes for Hydrogen Storage: a Thermodynamic and First Principle Calculation

    National Research Council Canada - National Science Library

    Mananghaya, Michael; Yu, Dennis; Santos, Gil Nonato; Rodulfo, Emmanuel

    2016-01-01

    The generalized gradient approximation (GGA) to density functional theory (DFT) calculations indicate that the highly localized states derived from the defects of nitrogen doped carbon nanotube with divacancy (4ND-CNxNT...

  11. Perchlorate Removal, Destruction and Field Monitoring Demonstration (Groundwater RemediationPilot-Scale)

    Science.gov (United States)

    2008-08-01

    Series Calcite Contactor Treated Water Figure 4. Process Configuration for Capital and O&M Cost Analyses. CO2 Filter Neutralization LiquiCel Membrane ...1 60 $ 10,000 Equipment Quantity Unit Total Cost Ion exchange vessels 2 10 ft dia. $ 200,000 Calcite contactor 1 100 gpm $ 30,000 LiquiCel Membranes ...by varying the pH and using a combination of air/ membrane stripping and calcite contacting. Treated water had a Langelier Saturation Index (LSI

  12. Ecological Risk Assessment of Perchlorate in Avian Species, Rodents, Amphibians and Fish

    Science.gov (United States)

    2003-04-01

    maternally deposited THin eggs during oogenesis . Females were weighed and cryobranded (DBS AF-1-07) for identification prior to exposure. On day 69 of...untreated water or 14040 ppb AP for 10 wk to assess AP effects on maternally deposited TH in eggs during oogenesis . Females will be weighed and

  13. Evaluation of an Innovative Technology for Treatment of Water Contaminated with Perchlorate and Organic Compounds

    Science.gov (United States)

    2009-03-26

    109  Figure 4-5: Relationship between Influent Concentrations [µg/L] for 2- Nitrotoluene ...diverse group of organics: benzene, toluene , n-hexane, n-heptane, 1-hexanol, 1-heptanol, diethyl ether, methy tert-butyl ether, diisopropyl ether, 3...chloride (VC) 8800 9,442.24 0.4916 TCE 1100 47,720.62 0.4442 PCE 150 74,344.71 0.3814 Nitrobenzene 2000 85,497.49 0.0938 2- Nitrotoluene 650

  14. FT IR spectroscopy of silicon oxide layers prepared with perchloric acid

    Science.gov (United States)

    Kopani, M.; Mikula, M.; Takahashi, M.; Rusnák, J.; Pinčík, E.

    2013-03-01

    Chlorine oxidation is important methods for improvement of many properties such as passivation of mobile oxide charge, breakdown strength or enhancement of the minority-carrier lifetime in the underlying silicon. In this study we consider effects influencing the density of SiO2 layers formed by three different methods: thermal oxidation at 850 °C, low temperature oxidation method by use of nitric acid - HNO3 (NAOS) and HClO4 afterward passivated with KCN/HCN solutions. Thicknesses of SiO2 layers determined by both capacitance-voltage (C-V) and XPS revealed fast oxidation rate compared with samples prepared by thermal oxidation. FT IR measurement showed that all absorption spectra are almost similar. Higher absorption of the sample prepared in HClO4 was observed. No Sisbnd Cl bonds were visible. Calculated atomic density of the SiO2 layer obtained from IR measurements was lowest for sample formed in HClO4. Chlorine oxidation results in higher oxidation rate (higher thickness) and formation of stoichiometric SiO2 layer with lower density. Following KCN/HCN passivation causes formation of Sisbnd N, Sisbnd O and Sisbnd OH bonds at the expense of Sisbnd Cl bonds.

  15. Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture.

    Science.gov (United States)

    He, Yu-Cai; Liu, Feng; Gong, Lei; Lu, Ting; Ding, Yun; Zhang, Dan-Ping; Qing, Qing; Zhang, Yue

    2015-02-01

    To improve the enzymatic saccharification of lignocellulosic biomass, a mixture of ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) was used for pretreating corn stover in this study. After the optimization in oil-bath system, the optimum pretreatment temperature and time were 130 °C and 30 min, respectively. After the saccharification of 10 g/L pretreated corn stover for 48 h, the saccharification rate was obtained in the yield of 77.4 %. To decrease pretreatment temperature and shorten pretreatment time, ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) media under microwave irradiation was employed to pretreat corn stover effectively at 100 °C and 200 W for 5 min. Finally, the recovered hydrolyzates containing glucose obtained from the enzymatic hydrolysis of pretreated corn stovers could be fermented into ethanol efficiently. These results would be helpful for developing a cost-effective pretreatment combined with enzymatic saccharification of cellulosic materials for the production of lignocellulosic ethanol.

  16. Effect of petroleum coke expanding by perchloric acid on the performance of the resulted activated carbon

    Science.gov (United States)

    Deng, Mei-Gen; Wang, Ren-Qing

    2014-10-01

    Petroleum coke (PC) was expanded by using KMnO4 as oxidant and HClO4 as intercalator so as to decrease the amount of KOH needed for the successive activation. Activated carbon (AC) was prepared by activation of the expanded PC (EPC) at KOH/coke mass ratio of 3:1 (denoted as EAC-3). As a comparison, AC was also made by activation of PC at KOH/coke mass ratio of 3:1, 4:1 and 5:1 (denoted as AC-3, AC-4 and AC-5). Influence of expanding modification on the structure and performance of PC and AC was investigated. The results revealed that the expanding treatment increased the interplanar distance of PC microcrystalline from 0.344 to 0.362 nm and decreased the microcrystalline thickness from 2.34 to 1.57 nm. The specific surface area of EAC-3 and AC-5 was 3461 and 3291 m2ṡg-1, respectively. The average pore size of EAC-3 was 2.19 nm, which is 0.11 nm larger than that of AC-5. At a scan rate of 0.5 mVṡs-1, EAC-3 and AC-5 achieved a specific gravimetric capacitance of 486 and 429 Fṡg-1, respectively. Supercapacitor based on EAC-3 possessed lower resistance and better power performance.

  17. The electrochemical polishing behavior of the Inconel 718 alloy in perchloric-acetic mixed acids

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.A. [Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan (China)], E-mail: gfehu@mail.cgu.edu.tw; Chen, Y.C.; Chang, J.H. [Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan (China)

    2008-02-15

    The electropolishing behavior of the Inconel 718 alloy was studied by using rotating disc electrode (RDE) in the HClO{sub 4}-CH{sub 3}COOH mixed acids with different HClO{sub 4}-concentrations. After electropolishing, surface morphologies of RDE specimens were examined with surface profiler, atomic force microscope and scanning electron microscope. According to the surface morphologies observed, three types of anodic dissolution behavior can be characterized in relation to the HClO{sub 4}-content in mixed acids; namely, leveling without brightening of the surface in the mixed acids with 10 and 20 vol% HClO{sub 4}, leveling and brightening of the surface in the mixed acids with 30 and 40 vol% HClO{sub 4}, and a matt and gray surface in the mixed acids with 50 vol% or more HClO{sub 4}. Anodic dissolution in the first and second dissolution types follows a mass-transfer controlled mechanism, in which a linear relationship between the reciprocal of limiting-current density and the reciprocal of square root of rotating speed of RDE specimen can be detected. Owing to precipitation of salt film on the polished surface of the Inconel 718 material, saturated dissolved metallic ions could be the chemical species for the mass-controlled mechanism. The salt film, in addition, could enhance the corrosion resistance of the Inconel 718 alloy.

  18. Natural Attenuation of Perchlorate in Groundwater: Processes, Tools and Monitoring Techniques

    Science.gov (United States)

    2008-04-01

    O’Toole, S.S., P. Breen, and D.T. Canavan , 2004. Evaluating Plume Capture Through Mass Flux Estimates. Abstract of poster presented at the...www.geo.sunysb.edu/lig/Conferences/abstracts-04/ canavan /canavan.htm.) Penfold, L., 2004. “Critical Issues for Definitive Analysis of Low Concentrations of

  19. Environmental Health Assessment for Work Unit RM 08-03, Ammonium Perchlorate Alternatives (Ionic Liquids)

    Science.gov (United States)

    2010-05-01

    has been noted to produce systemic problems in humans, to include lung and liver damage , conjunctivitis, tremors, lethargy, long-term...death within less than 24 hours after dose administration. Gross necropsy revealed discoloration of the intestines (Landry et al.,2005). 7.4.2... Salmonella typhimurium strain TA98. Treatment with S9 fraction eliminated this tendency, which was not present either with or without S9 activation

  20. Possible Detection of Perchlorates by Evolved Gas Analysis of Rocknest Soils: Global Implication

    Science.gov (United States)

    Archer, P. D., Jr.; Sutter, B.; Ming, D. W.; McKay, C. P.; Navarro-Gonzalez, R.; Franz, H. B.; McAdam, A.; Mahaffy, P. R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on board the Mars Science Laboratory (MSL) recently ran four samples from an aeolian bedform named Rocknest. Rocknest was selected as the source of the first samples analyzed because it is representative of both windblown material in Gale crater as well as the globally-distributed dust. The four samples analyzed by SAM were portioned from the fifth scoop at this location. The material delivered to SAM passed through a 150 m sieve and should have been well mixed during the sample acquisition/ preparation/handoff process. Rocknest samples were heated to 835 C at a 35 C/minute ramp rate with a He carrier gas flow rate of 1.5 standard cubic centimeters per minute and at an oven pressure of 30 mbar. Evolved gases were detected by a quadrupole mass spectrometer (QMS).

  1. Passive Biobarrier for Treating Co-mingled Perchlorate and RDX in Groundwater at an Active Range

    Science.gov (United States)

    2016-05-12

    NSWC, Dahlgren was chosen for the demonstration. 4.2 SITE LOCATION AND HISTORY NSWC, Dahlgren is located in King George County, VA along the Potomac... bench sheets, personal and instrument logs, and other relevant data to verify that data pertaining to each sample were consistent throughout the record...Lee, and K.-H. Oh. 2008. Simultaneous degradation of nitroaromatic compounds TNT, RDX, atrazine, and simazine by Pseudomonas putida HK-6 in bench

  2. Edible Oil Barriers for Treatment of Chlorinated Solvent and Perchlorate-Contaminated Groundwater

    Science.gov (United States)

    2010-02-01

    often include groundwater extraction with ion exchange or aboveground bioreactors to remove the contaminant (ITRC, 2005). The capital investment and O... special methods may be needed to help distribute substrate throughout aquifer (e.g., trenching, hydraulic fracturing, high pressure injection, or...parameters for simulating emulsion transport and retention. A pulse of EOS® was injected into the columns followed by chase water. The results

  3. Ecological Risk Assessment of Perchlorate in Avian Species, Rodents, Amphibians and Fish

    Science.gov (United States)

    2008-08-01

    149. Muto, T., T. Watanabe, M. Moto , M. Okamura, Y. Kashida, Y. Kanai, K. Mistumori, and H. Endou. 2003. Time course of expression of 7, 12...grannular RDX and 50 ml ultrapure H20 (>18 MΩ) were evenly incorporated into 3 kg soil by mixing for 30 min with a hand-held electric food mixer. The... electric mixer. Following spiking of soils with RDX, 140 g of soil was added to plastic “conetainers” (Stuewe & Son, Corvalis, OR, USA), creating

  4. Ecological Risk Assessment of Perchlorate in Avian Species, Rodents, Amphibians and Fish

    Science.gov (United States)

    2007-06-01

    the University of South Carolina Peromyscus Stock Center Sex : Male and Female 12.0 PROCEDURE FOR IDENTIFYING THE TEST SYSTEM: A Standard...Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane- utilizing bacterium isolated from poplar

  5. Ecological Risk Assessment of Perchlorate in Avian Species, Rodents, Amphibians and Fish: FY2003

    Science.gov (United States)

    2005-10-01

    and bioaccumulation in bush bean hydroponic plants. Environ. Toxicol. Chem. 10:845-855. Levine, B.S., E. M. Furedi, D.E. Gordon, J.M. Burns, and...is the zebrafish (Danio rerio). Zebrafish are frequently used in biomedical research and have the advantage of having available a wealth of

  6. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars

    National Research Council Canada - National Science Library

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-01-01

    .... The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which...

  7. Salicylato[tris(N-methylbenzimidazol-2-ylmethylamine]zinc(II perchlorate dimethylformamide sesquisolvate

    Directory of Open Access Journals (Sweden)

    Huilu Wu

    2008-01-01

    Full Text Available In the title complex, [Zn(C7H5O3(C27H27N7]ClO4·1.5C3H7NO, the ZnII atom is five-coordinated by four N atoms from a tris(N-methylbenzimidazol-2-ylmethylamine ligand and one O atom from a salicylate ligand in a distorted trigonal-bipyramidal geometry (τ parameter = 0.84, with approximate molecular C3 symmetry. One dimethylformamide molecule lies on a general position and is disordered over two coplanar orientations with equal occupancy. A second dimethylformamide molecule is disordered about a twofold rotation axis.

  8. Perchloratobis[1-(1,10-phenanthrolin-2-yl-2-pyridone]zinc(II perchlorate

    Directory of Open Access Journals (Sweden)

    Qing Ru Zhao

    2009-08-01

    Full Text Available In the title mononuclear complex, [Zn(ClO4(C17H11N3O2]ClO4, the ZnII ion is coordinated in a distorted octahedral geometry. The dihedral angles between the pyridine rings and the mean planes of the 1,10-phenanthroline ring system in each of the 1-(1,10-phenanthrolin-2-yl-2-pyridone (PP ligands is 24.51 (10° for the tridendate PP ligand and 73.55 (6° for the bidentate PP ligand. Within the molecule there is a weak π–π interaction between the pyridine ring of the bidentate ligand and the 1,10-phenanthroline ring system of the tridendate ligand with a centroid–centroid distance of 3.6383 (19 Å.

  9. Evaluation of Potential for Monitored Natural Attenuation of Perchlorate in Groundwater (Indian Head)

    Science.gov (United States)

    2010-07-01

    ranges between 50 and 100 feet wide (80 feet average). During the warmer months of the year, Zone 2 is covered in vegetation such as Pontederia ... cordata (pickerelweed) and Zizaniopsis miliacea (giant cut grass) and other wetland vegetative species (Figure 3-11). 22 Figure 3-11

  10. Ecological Risk Assessment of Perchlorate in Avian Species, Rodents, Amphibians and Fish: FY2004

    Science.gov (United States)

    2006-03-01

    Burlington, NC). They were fed a diet consisting of dog food. Water was supplied daily. Crickets were maintained in aquaria on a 12 h light:12 h dark...Arlington, VA, USA Johnson MS, Paulus HI, Salice CJ, Checkai RT, Simini M. 2004. Toxicologic and histopathologic response of the terrestrial salamander ...If t, (µg·h -1) may be written as 1 m If p Cft i i ii υ= × ×∑ = where pi = proportion of total diet contributed by item i at time t Cfi

  11. Anion-exchange separation of Pt and Pd using perchloric and hydrochloric acid solutions

    Science.gov (United States)

    Petrie, R.K.; Morgan, J.W.

    1982-01-01

    On Biorad Ag-1X8 anion-exchange resin (200-400 mesh), Pd and Pt may be separated from one another by elution with 0.2M HClO4, and 5M HClO4, respectively. If present, Au may be retained by making the elutriants 0.003M in HCl. Alternatively, reduction by H2SO3 enables elution of Pt2+ with 6M HCl before recovery of Pd2+ with 0.2M HClO4??Ir4+ is reduced to Ir3+ by H2SO3 and may be eluted ahead of Pt2+ by 2M HCl. ?? 1982 Akade??miai Kiado??.

  12. Thermodynamic studies of phosphate adsorption on Pt(1 1 1) electrode surfaces in perchloric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mostany, Jorge [Instituto de Electroquimica, Universidad de Alicante, Apdo. 99, E-03080 Alicante (Spain); Departamento de Quimica, Universidad Simon Bolivar, Apdo. 89000, Caracas 1080A (Venezuela, Bolivarian Republic of)], E-mail: jmosta@usb.ve; Martinez, Pedro; Climent, Victor; Herrero, Enrique; Feliu, Juan M. [Instituto de Electroquimica, Universidad de Alicante, Apdo. 99, E-03080 Alicante (Spain)

    2009-10-01

    The thermodynamics of the so-called perfectly polarizable electrode was employed to analyze the total charge densities for a nearly defect-free Pt(1 1 1) electrode in a series of NaH{sub 2}PO{sub 4} solutions with an excess of inert electrolyte (0.1 M HClO{sub 4}) at constant ionic strength and pH. Thermodynamic analysis using both electrode potential and charge density as independent electrical variables is described. The Gibbs excess, Gibbs energy of adsorption and charge numbers both at constant electrode potential and constant chemical potential for anion adsorption at the Pt(1 1 1) surface have been determined. The calculated electrosorption valencies and charge numbers at constant chemical potential are close to two electrons per adsorbed anion, suggesting that in the absence of co-adsorbed species, HPO{sub 4}{sup 2-} is the predominant adsorbed species. The maximum Gibbs excess of adsorbed hydrogenphosphate attains a value of {approx}3.2 x 10{sup 14} ions cm{sup -2} which corresponds to a coverage of {approx}0.22 ML.

  13. Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration

    Science.gov (United States)

    2013-09-01

    are more sensitive to nutrient limitation, a situation that might favor the abundance of DB with nirS in autotrophic biofilms. SRB (assayed by...fraction of SRB could be active in O2 respiration, fermentation of organics, and even NO3- respiration. Therefore, the metabolic diversity of SRB

  14. Environmental Health Assessment for Pyrotechnic Perchlorate Elimination/Mitigation Program for M118/M119 Simulators

    Science.gov (United States)

    2009-09-11

    Triethylene 112-24-3 Tetramine Epon 828 ™ 25068-38-6 17.4% 14.7% Iron Oxide Red 1332-37-2, 4% (Ferric oxide) 1309-37-1 Potassium Benzoate 582-25-2 17...component resulting from its physical or chemical properties. However, few data were found for some of the commercial plasticizers (e.g. Epon ™, Epikure

  15. Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration

    Science.gov (United States)

    2013-11-18

    lol ~. io (Sib··· ml’ (! ’fi’L$0 \\s 0 - (2) l 0 1.1~ ~ .ST~ ~ :J:>\\LUT& ’J’b A 5: 1 ~urrtot.J (~>,TP-A"’f’) -n=:. 11!𔄀 tN 12-A~ of AI61MCn...Hydrogen Sulfide (ppm) NOTES CONT.: • CO>UT"~..,- ~oza-- \\S ~ lol !CEO \\lP A.t>.lb ~ 4\\A.t MoOS:!i. -6\\ta.ew I~ INS~ lT· ’. ’ I

  16. Anaerobic Treatment of Wastewaters Containing Perchlorate from Munitions Handling and Production

    Science.gov (United States)

    2008-01-01

    human health as well as to other classes of organisms such as algae, plants , earthworms, aquatic invertebrates, and animals including mammals (Van Aken... vitamins , varies from researcher to researcher. When working at an industrial plant , it also becomes expensive. This expense is not due to the underlying...Three laboratory-scale anaero- bic fluidized bed reactors were monitored. A fourth reactor, located at McAlester Army Ammunition Plant , currently

  17. Passive Biobarrier for Treating Co-Mingled Perchlorate and RDX in Groundwater at an Active Range

    Science.gov (United States)

    2016-12-31

    oil substrates consist of small, stable oil droplets that are completely miscible in water (Borden et al., 2008a). When injected into the subsurface...8330a-nitroaromatics-and-nitramines-high-performance- liquid . 5 EPA Method 314.0. 6 https://standardmethods.org/store/ProductView.cfm?ProductID=38... partial penetration of the MW. Well construction, pump test, and slug test data were inserted into a USGS spreadsheet (USGS, 2010) designed to

  18. Evaluation of Potential for Monitored Natural Attenuation of Perchlorate in Groundwater

    Science.gov (United States)

    2010-09-01

    or brine for ice control along Elkton Rd. and in the parking lot of the YMCA has resulted in stormwater runoff containing elevated chloride that has... stripping it is assumed that it was discharged directly to Little Elk Creek. 3.2.2.2 In Situ Bioremediation Pilot Test In 2004, Arcadis performed a pilot...Samples for other analyses were collected directly into laboratory-supplied containers. All samples were immediately labeled and placed on ice in

  19. Field and Laboratory Evaluation of the Potential for Monitored Natural Attenuation of Perchlorate in Groundwater

    Science.gov (United States)

    2007-07-01

    10 feet above lake level. 3.1.2 Site Contaminants In the mid-1970s, paint strippers , consisting of TCE and other solvents including methylene ...of methylene chloride (MC) up to 1,350,000 µg/L and TCE up to 89,800 µg/L. The TCE degradation product cis-1,2-dichloroethene (cis-1,2-DCE) has...32.9 600 6.8 1,2-Dichloroethane µg/L 156 2,310 15.7 Cis-1,2-Dichloroethene µg/L 12,500 245,000 1,180 Methylene Chloride µg/L 2.82 26,100 ɝ

  20. Treatment of dissolved perchlorate, nitrate, and sulfate using zero-valent iron and organic carbon.

    Science.gov (United States)

    Liu, YingYing; Ptacek, Carol J; Blowes, David W

    2014-05-01

    Waters containing ClO and dissolved NO, derived from detonated explosives and solid propellants, often also contain elevated concentrations of other dissolved constituents, including SO. Four column experiments, containing mixtures of silica sand, zero-valent Fe (ZVI) and organic C (OC) were conducted to evaluate the potential for simultaneous removal of NO, SO and ClO. Initially, the flow rate was maintained at 0.5 pore volumes (PV) d and then decreased to 0.1 PV d after 100 PV of flow. Nitrate concentrations decreased from 10.8 mg L (NO-N) to trace levels through NO reduction to NH using ZVI alone and through denitrification using OC. Observations from the mixture of ZVI and OC suggest a combination of NO reduction and denitrification. Up to 71% of input SO (24.5 ± 3.5 mg L) was removed in the column containing OC, and >99.7% of the input ClO (857 ± 63 μg L) was removed by the OC- and (ZVI + OC)-containing columns as the flow rate was maintained at 0.1 PV d. Nitrate and ClO removal followed first-order and zero-order rates, respectively. Nitrate >2 mg L (NO-N) inhibited ClO removal in the OC-containing column but not in the (ZVI + OC)-containing column. Sulfate did not inhibit ClO degradation within any of the columns. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.