WorldWideScience

Sample records for scaling concrete

  1. Large Scale Glazed Concrete Panels

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Today, there is a lot of focus on concrete surface’s aesthitic potential, both globally and locally. World famous architects such as Herzog De Meuron, Zaha Hadid, Richard Meyer and David Chippenfield challenge the exposure of concrete in their architecture. At home, this trend can be seen...... in the crinkly façade of DR-Byen (the domicile of the Danish Broadcasting Company) by architect Jean Nouvel and Zaha Hadid’s Ordrupgård’s black curved smooth concrete surfaces. Furthermore, one can point to initiatives such as “Synlig beton” (visible concrete) that can be seen on the website www.......synligbeton.dk and spæncom’s aesthetic relief effects by the designer Line Kramhøft (www.spaencom.com). It is my hope that the research-development project “Lasting large scale glazed concrete formwork,” I am working on at DTU, department of Architectural Engineering will be able to complement these. It is a project where I...

  2. Domestic Wastewater Reuse in Concrete Using Bench-Scale Testing and Full-Scale Implementation

    Directory of Open Access Journals (Sweden)

    Ayoup M. Ghrair

    2016-08-01

    Full Text Available Demand for fresh water by the construction sector is expected to increase due to the high increase in the growth of construction activities in Jordan. This study aims to evaluate the potential of scale-up of the application of treated domestic wastewater in concrete from bench-scale to a full-scale. On the lab scale, concrete and mortar mixes using Primary and Secondary Treated Wastewater (PTW, STW and Distilled Water (DW were cast and tested after various curing ages (7, 28, 120, and 200 days. Based on wastewater quality, according to IS 456-2000, the STW is suitable for mortar and concrete production. Mortar made with STW at curing time up to 200 days has no significant negative effect on the mortar’s compressive strength. Conversely, the PTW exceeded the maximum permissible limits of total organic content and E coli. for concrete mixing-water. Using PTW results, a significant increase in the initial setting time of up to 16.7% and a decrease in the concrete workability are observed. In addition, using PTW as mixing water led to a significant reduction in the compressive strength up to 19.6%. The results that came out from scaling up to real production operation of ready-mix concrete were in harmony with the lab-scale results.

  3. Laboratory-scale sodium-carbonate aggregate concrete interactions

    International Nuclear Information System (INIS)

    Westrich, H.R.; Stockman, H.W.; Suo-Anttila, A.

    1983-09-01

    A series of laboratory-scale experiments was made at 600 0 C to identify the important heat-producing chemical reactions between sodium and carbonate aggregate concretes. Reactions between sodium and carbonate aggregate were found to be responsible for the bulk of heat production in sodium-concrete tests. Exothermic reactions were initiated at 580+-30 0 C for limestone and dolostone aggregates as well as for hydrated limestone concrete, and at 540+-10 0 C for dehydrated limestone concrete, but were ill-defined for dolostone concrete. Major reaction products included CaO, MgO, Na 2 CO 3 , Na 2 O, NaOH, and elemental carbon. Sodium hydroxide, which forms when water is released from cement phases, causes slow erosion of the concrete with little heat production. The time-temperature profiles of these experiments have been modeled with a simplified version of the SLAM computer code, which has allowed derivation of chemical reaction rate coefficients

  4. Scale and size effects in dynamic fracture of concretes and rocks

    Directory of Open Access Journals (Sweden)

    Petrov Y.

    2015-01-01

    Full Text Available Structural-temporal approach based on the notion of incubation time is used for interpretation of strain-rate effects in the fracture process of concretes and rocks. It is established that temporal dependences of concretes and rocks are calculated by the incubation time criterion. Experimentally observed different relations between ultimate stresses of concrete and mortar in static and dynamic conditions are explained. It is obtained that compressive strength of mortar at a low strain rate is greater than that of concrete, but at a high strain rate the opposite is true. Influence of confinement pressure on the mechanism of dynamic strength for concretes and rocks is discussed. Both size effect and scale effect for concrete and rocks samples subjected to impact loading are analyzed. Statistical nature of a size effect contrasts to a scale effect that is related to the definition of a spatio-temporal representative volume determining the fracture event on the given scale level.

  5. Resistance to Internal Damage and Scaling of Concrete Air Entrained By Microspheres

    Science.gov (United States)

    Molendowska, Agnieszka; Wawrzenczyk, Jerzy

    2017-10-01

    This paper report the test results of high strength concrete produced with slag cement and air entrained with polymer microspheres in three diameters. The study focused on determining the effects of the microsphere size and quantity on the air void structure and resistance to internal cracking and scaling of the concrete. The resistance to internal cracking was determined in compliance with the requirements of the modified ASTM C666 A method on beam specimens. The scaling resistance in a 3% NaCl solution was determined using the slab test in accordance with PKN-CEN/TS 12390-9:2007. The air void structure parameters were determined to PN-EN 480-11:1998. The study results indicate that the use of microspheres is an effective air entrainment method providing very good air void structure parameters. The results show high freeze-thaw durability of polymer microsphere-based concrete in exposure class XF3. The scaling resistance test confirms that it is substantially more difficult to protect concrete against scaling in the presence of the 3% NaCl solution (exposure class XF4). Concrete scaling is a complex phenomenon controlled by a number of independent factors.

  6. Investigation of porous concrete through macro and meso-scale testing

    NARCIS (Netherlands)

    Agar Ozbek, A.S.; Weerheijm, J.; Schlangen, H.E.J.G.

    2010-01-01

    In designing a porous concrete, containing a high volume of air pores, the effects of its mesoscale phases on its macro level properties have to be known. For this purpose, porous concretes having different aggregate gradings and cement paste compositions were investigated through macro-scale

  7. Scale modeling of reinforced concrete structures subjected to seismic loading

    International Nuclear Information System (INIS)

    Dove, R.C.

    1983-01-01

    Reinforced concrete, Category I structures are so large that the possibility of seismicly testing the prototype structures under controlled conditions is essentially nonexistent. However, experimental data, from which important structural properties can be determined and existing and new methods of seismic analysis benchmarked, are badly needed. As a result, seismic experiments on scaled models are of considerable interest. In this paper, the scaling laws are developed in some detail so that assumptions and choices based on judgement can be clearly recognized and their effects discussed. The scaling laws developed are then used to design a reinforced concrete model of a Category I structure. Finally, how scaling is effected by various types of damping (viscous, structural, and Coulomb) is discussed

  8. Evolution of sorption properties in large-scale concrete structures accounting for long-term physical-chemical concrete degradation - 59297

    International Nuclear Information System (INIS)

    Perko, Janez; Jacques, Diederik; Mallants, Dirk; Seetharam, Suresh

    2012-01-01

    Long-term safety of radioactive waste disposal facilities relies on the longevity of natural or engineered barriers designed to minimize the migration of contaminants from the facility into the environment. Especially near surface disposal facilities, such as planned by ONDRAF/NIRAS for the Dessel site in Belgium, long-term safety relies almost exclusively on the containment ability of the engineered barriers (EB) with concrete being the most important EB material used. Concrete is preferred over other materials mainly due to its favourable chemical properties resulting in a high chemical retention capacity, and owing to its good hydraulic isolation properties. However, due to the long time frames typically involved in safety assessment, the chemical, physical and mechanical properties of concrete evolve in time. The alterations in concrete mineralogy also cause changes in pH and sorption behaviour for many radionuclides during chemical degradation processes. Application of dynamic sorption of concrete requires an adequate knowledge of long-term concrete degradation processes, knowledge of the effect of changing mineralogy to sorption of radionuclides and knowledge of large-scale system behaviour over time. Moreover, when applied to safety assessment models, special attention is required to assure robustness and transparency of the implementation. The discussion in this paper focuses on the sorption properties of concrete; selection of data, rescaling issues and on the hypotheses used to build a robust and yet transparent dynamic model for large-scale concrete structures for assessing the long-term performance. In this paper we summarize the steps required for the appropriate use of sorption values for large-scale cementitious components accounting for long-term concrete degradation in safety assessment studies. Four steps were recognized through the safety assessment in the framework of the license application for the near-surface disposal facility in Dessel

  9. Historic Concrete : From Concrete Repair to Concrete Conservation

    NARCIS (Netherlands)

    Heinemann, H.A.

    2013-01-01

    Concrete like materials were already applied during the Roman Empire. After the decline of the Roman Empire, a wide scale application of concrete only reappeared in the 19th century. Here lies also the origin of modern (reinforced) concrete. Since then, both concrete application and composition have

  10. Replica scaling studies of hard missile impacts on reinforced concrete

    International Nuclear Information System (INIS)

    Barr, P.; Carter, P.G.; Howe, W.D.; Neilson, A.J.

    1982-01-01

    Missile and target combinations at three different liners scales have been used in an experimental assessment of the applicability of replica scaling to the dynamic behaviour of reinforced concrete structures impacted by rigid missiles. Experimental results are presented for models with relative linear scales of 1, 0.37 and 0.12. (orig.) [de

  11. Penetration of chlorides in hardened concrete during frost salt scaling cycles

    Directory of Open Access Journals (Sweden)

    Moral N.

    2010-06-01

    Full Text Available Sixty samples from three concrete mixes (same components were prepared and subjected to frost salt scaling cycles. A set of 20 samples from the same mix was tested according to the French standard XP P18-420. Another set was exposed to different chloride concentrations. Different numbers of freeze/thaw cycles were applied to the last set. The mass of scaled-off particles follows a lognormal distribution. Despite high standard deviation, this scaling test enables to separate high resistant from very low resistant concrete. A combined analysis reveals that the scaling and the chloride penetration front are independent from a phenomenological point of view and that the chloride concentration on the exposed surface directly influences the amount of scaled mass according to the typical pessimum effect. These results raise two main questions: is the amount of chloride on the surface solution a direct or indirect parameter and what happens to this pessimum effect if we take into account the scaling test dispersion?

  12. Model abstraction addressing long-term simulations of chemical degradation of large-scale concrete structures

    International Nuclear Information System (INIS)

    Jacques, D.; Perko, J.; Seetharam, S.; Mallants, D.

    2012-01-01

    This paper presents a methodology to assess the spatial-temporal evolution of chemical degradation fronts in real-size concrete structures typical of a near-surface radioactive waste disposal facility. The methodology consists of the abstraction of a so-called full (complicated) model accounting for the multicomponent - multi-scale nature of concrete to an abstracted (simplified) model which simulates chemical concrete degradation based on a single component in the aqueous and solid phase. The abstracted model is verified against chemical degradation fronts simulated with the full model under both diffusive and advective transport conditions. Implementation in the multi-physics simulation tool COMSOL allows simulation of the spatial-temporal evolution of chemical degradation fronts in large-scale concrete structures. (authors)

  13. Intermediate-scale tests of sodium interactions with calcite and dolomite aggregate concretes

    International Nuclear Information System (INIS)

    Randich, E.; Acton, R.U.

    1983-09-01

    Two intermediate-scale tests were performed to compare the behavior of calcite and dolomite aggregate concretes when attacked by molten sodium. The tests were performed as part of an interlaboratory comparison between Sandia National Laboratories and Hanford Engineering Development Laboratories. Results of the tests at Sandia National Laboratories are reported here. The results show that both concretes exhibit similar exothermic reactions with molten sodium. The large difference in reaction vigor suggested by thermodynamic considerations of CO 2 release from calcite and dolomite was not realized. Penetration rates of 1.4 to 1.7 mm/min were observed for short periods of time with reaction zone temperatures in excess of 800 0 C during the energetic attack. The penetration was not uniform over the entire sodium-concrete contact area. Rapid attack may be localized due to inhomogeneities in the concrete. The chemical reaction zone is less then one cm thick for the calcite concrete but is about seven cm thick for the dolomite concrete

  14. Evaluation of the Strength Variation of Normal and Lightweight Self-Compacting Concrete in Full Scale Walls

    DEFF Research Database (Denmark)

    Hosseinali, M.; Ranjbar, M. M.; Rezvani, S. M.

    2011-01-01

    -destructive testing. Self-compacting concrete (SCC) and lightweight self-compacting concrete (LWSCC) with different admixtures were tested and compared with normal concrete (NC). The results were also compared with results for standard cubic samples. The results demonstrate the effect of concrete type on the in situ......The strength of cast concrete along the height and length of large structural members might vary due to inadequate compaction, segregation, bleeding, head pressure, and material type. The distribution of strength within a series of full scale reinforced concrete walls was examined using non...

  15. Deicer scaling resistance of concrete mixtures containing slag cement. Phase 2 : evaluation of different laboratory scaling test methods.

    Science.gov (United States)

    2012-07-01

    With the use of supplementary cementing materials (SCMs) in concrete mixtures, salt scaling tests such as ASTM C672 have been found to be overly aggressive and do correlate well with field scaling performance. The reasons for this are thought to be b...

  16. Pervious concrete fill in Pearl-Chain Bridges: Using small-scale results in full-scale implementation

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Truelsen, R.

    2016-01-01

    distribution and strength properties is determined for 800 mm high blocks cast in different numbers of layers, and (2) full-scale implementation in a 26 m long Pearl-Chain Bridge. With a layer thickness of 27 cm, the small-scale tests indicated homogenous results; however, for the full-scale implementation......Pearl-Chain Bridge technology is a new prefabricated arch solution for highway bridges. This study investigates the feasibility of pervious concrete as a filling material in Pearl-Chain Bridges. The study is divided into two steps: (1) small-scale tests where the variation in vertical void...

  17. Modelling concrete behaviour at early-age: multi-scale analysis and simulation of a massive disposal structure

    International Nuclear Information System (INIS)

    Honorio-De-Faria, Tulio

    2015-01-01

    The accurate prediction of the long and short-term behaviour of concrete structures in the nuclear domain is essential to ensure optimal performances (integrity, containment properties) during their service life. In the particular case of massive concrete structures, at early age the heat produced by hydration reactions cannot be evacuated fast enough so that high temperatures may be reached and the resulting gradients of temperature might lead to cracking according to the external and internal restraints to which the structures are subjected. The goals of this study are (1) to perform numerical simulations in order to describe and predict the thermo-chemo-mechanical behaviour at early-age of a massive concrete structure devoted to nuclear waste disposal on surface, and (2) to develop and apply up-scaling tools to estimate rigorously the key properties of concrete needed in an early-age analysis from the composition of the material. Firstly, a chemo-thermal analysis aims at determining the influence of convection, solar radiation, re-radiation and hydration heat on the thermal response of the structure. Practical recommendations regarding concreting temperatures are provided in order to limit the maximum temperature reached within the structure. Then, by means of a mechanical analysis, simplified and more complex (i.e. accounting for coupled creep and damage) modelling strategies are used to assess scenarios involving different boundary conditions defined from the previous chemo-thermal analysis. Secondly, a study accounting for the multi-scale character of concrete is performed. A simplified model of cement hydration kinetics is proposed. The evolution of the different phases at the cement paste level can be estimated. Then, analytical and numerical tools to upscale the ageing properties are presented and applied to estimate the mechanical and thermal properties of cement based materials. Finally, the input data used in the structural analysis are compared with

  18. Intermediate-scale sodium-concrete reaction tests with basalt and limestone concrete

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Muhlestein, L.D.

    1981-01-01

    Ten tests were performed to investigate the chemical reactions and rate and extent of attack between sodium and basalt and limestone concretes. Test temperatures ranged from 510 to 870 0 C (950 to 1600 0 F) and test times from 2 to 24 hours. Sodium hydroxide was added to some of the tests to assess the impact of a sodium hydroxide-aided reaction on the overall penetration characteristics. Data suggest that the sodium penetration of concrete surfaces is limited. Penetration of basalt concrete in the presence of sodium hydroxide is shown to be less severe than attack by the metallic sodium alone. Presence of sodium hydroxide changes the characteristics of sodium penetration of limestone concrete, but no major differences in bulk penetration were observed as compared to penetration by metallic sodium

  19. Application of SCALE 6.1 MAVRIC Sequence for Activation Calculation in Reactor Primary Shield Concrete

    International Nuclear Information System (INIS)

    Kim, Yong IL

    2014-01-01

    Activation calculation requires flux information at desired location and reaction cross sections for the constituent elements to obtain production rate of activation products. Generally it is not an easy task to obtain fluxes or reaction rates with low uncertainties in a reasonable time for deep penetration problems by using standard Monte Carlo methods. The MAVRIC (Monaco with Automated Variance Reduction using Importance Calculations) sequence in SCALE 6.1 code package is intended to perform radiation transport on problems that are too challenging for standard, unbiased Monte Carlo methods. And the SCALE code system provides plenty of ENDF reaction types enough to consider almost all activation reactions in the nuclear reactor materials. To evaluate the activation of the important isotopes in primary shield, SCALE 6.1 MAVRIC sequence has been utilized for the KSNP reactor model and the calculated results are compared to the isotopic activity concentration of related standard. Related to the planning for decommission, the activation products in concrete primary shield such as Fe-55, Co-60, Ba-133, Eu-152, and Eu-154 are identified as important elements according to the comparisons with related standard for exemption. In this study, reference data are used for the concrete compositions in the activation calculation to see the applicability of MAVRIC code to the evaluation of activation inventory in the concrete primary shield. The composition data of trace elements as shown in Table 1 are obtained from various US power plant sites and accordingly they have large variations in quantity due to the characteristics of concrete composition. In practical estimation of activation radioactivity for a specific plant related to decommissioning, rigorous chemical analysis of concrete samples of the plant would first have to be performed to get exact information for compositions of concrete. Considering the capability of solving deep penetration transport problems and richness

  20. Gas and water permeability of concrete for reactor buildings--prototype scale specimens

    International Nuclear Information System (INIS)

    Mills, R.H.

    1987-02-01

    The permeability testing was performed on four concrete cylinders, 0.25 m in diameter and 2 m long, modelling the wall-thickness of reactor containment structures on the prototype scale. Tests were performed on the cylinders before and after artificial induction of longitudinal cracks, intented to model defects developing after some period of adverse service conditions. Permeability increased greatly with the introduction of longitudinal cracks in the concrete, and was also affected by moisture content and casting direction. The influence of reinforcing steel could not be resolved within the bounds of experimental variability. Ultrasound measurements were taken on each cylinder before and after cracking, and a correlation between increased permeability and lowered Ultrasonic Pulse Velocity was observed. Ultrasonic Pulse Velocity measurements thus show promise as a means of continuous monitoring of the integrity of the concrete barrier in service

  1. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....

  2. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    Directory of Open Access Journals (Sweden)

    Cuizhen Xue

    2016-01-01

    Full Text Available The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.

  3. Large scale high strain-rate tests of concrete

    Directory of Open Access Journals (Sweden)

    Kiefer R.

    2012-08-01

    Full Text Available This work presents the stages of development of some innovative equipment, based on Hopkinson bar techniques, for performing large scale dynamic tests of concrete specimens. The activity is centered at the recently upgraded HOPLAB facility, which is basically a split Hopkinson bar with a total length of approximately 200 m and with bar diameters of 72 mm. Through pre-tensioning and suddenly releasing a steel cable, force pulses of up to 2 MN, 250 μs rise time and 40 ms duration can be generated and applied to the specimen tested. The dynamic compression loading has first been treated and several modifications in the basic configuration have been introduced. Twin incident and transmitter bars have been installed with strong steel plates at their ends where large specimens can be accommodated. A series of calibration and qualification tests has been conducted and the first real tests on concrete cylindrical specimens of 20cm diameter and up to 40cm length have commenced. Preliminary results from the analysis of the recorded signals indicate proper Hopkinson bar testing conditions and reliable functioning of the facility.

  4. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    OpenAIRE

    Cuizhen Xue; Aiqin Shen; Yinchuan Guo; Tianqin He

    2016-01-01

    The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM) as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, ...

  5. Work for radiation shielding concrete in large-scaled radiation facilities

    International Nuclear Information System (INIS)

    Konomi, Shinzo; Sato, Shoni; Otake, Takao.

    1980-01-01

    This paper reports the radiation shielding concrete work in the construction of radiation laboratory facilities of Electrotechnical Laboratory, a Japanese Government agency for the research and development of electronic technology. The radiation shielding walls of the facilities are made of ordinary concrete, heavy weight concrete and raw iron ore. This paper particularly relates the use of ordinary concrete which constitutes the majority of such concretes. The concrete mix was determined so as to increase its specific gravity for better shielding effect, to improve mass concrete effect and to advance good workability. The tendency of the concrete to decrease its specific gravity and the temperature variations were also made on how to place concrete to secure good shielding effect and uniform quality. (author)

  6. Meso-scale modeling of irradiated concrete in test reactor

    International Nuclear Information System (INIS)

    Giorla, A.; Vaitová, M.; Le Pape, Y.; Štemberk, P.

    2015-01-01

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  7. Meso-scale modeling of irradiated concrete in test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, A. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Vaitová, M. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic); Le Pape, Y., E-mail: lepapeym@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Štemberk, P. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic)

    2015-12-15

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  8. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    OpenAIRE

    Gilson Morales; Antonio Edésio Jungles; Sheila Elisa Scheidemantel Klein; Juliana Guarda

    2010-01-01

    This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects consid...

  9. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    OpenAIRE

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were...

  10. Optimization of compositions of multicomponent fine-grained fiber concretes modified at different scale levels.

    Directory of Open Access Journals (Sweden)

    NIZINA Tatyana Anatolevna,

    2017-04-01

    Full Text Available The paper deals with perspectives of modification of cement composites at different scale levels (nano-, micro-, macro-. Main types of micro- and nanomodifiers used in modern concrete technology are presented. Advantages of fullerene particles applied in nanomodification of cement concretes have been shown. Use of complex modifiers based on dispersed fibers, mineral additives and nanoparticles is proposed. These are the basic components of the fiber fine-grained concretes: cement of class CEM I 42,5R produced by JSC «Mordovcement», river sand of Novostepanovskogo quarry (Smolny settlement, Ichalkovsky district, Republic of Mordovia, densified condensed microsilica (DCM-85 produced by JSC «Kuznetskie Ferrosplavy» (Novokuznetsk, highly active metakaolin white produced by LLC «D-Meta» (Dneprodzerzhinsk, waterproofing additive in concrete mix «Penetron Admix» produced by LLC «Waterproofing materials plant «Penetron» (Ekaterinburg, polycarboxylate superplasticizer Melflux 1641 F (Construction Polymers BASF, Germany. Dispersed reinforcement of concretes was provided by injection of the fibers of three types: polypropylene multifilament fiber with cutting length of 12 mm, polyacrylonitrile synthetic fiber FibARM Fiber WВ with cutting length of 12 mm and basalt microfiber «Astroflex-MBM» modified by astralene with length about 100÷500 microns. Analysis of results of the study focused on saturated D-optimal plan was carried out by polynomial models «mixture I, mixture II, technology – properties» that considers the impact of six variable factors. Optimum fields of variation of fine-grained modified fiber concrete components have been identified by the method of experimental-statistical modeling. Polygons of distribution levels of factors of modified cement fiber concretes are constructed, that allowed tracing changes in fields of tensile in compressive strength and tensile strength in bending at age of 28 days depending on target

  11. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact. Pt.3: Analyses of full-scale aircraft impact

    International Nuclear Information System (INIS)

    Jun Mizuno; Norihide Koshika; Eiichi Tanaka; Atsushi Suzuki; Yoshinori Mihara; Isao Nishimura

    2005-01-01

    Steel plate reinforced concrete (SC) walls and slabs are structural members in which the rebars of reinforced concrete are replaced by steel plates. Steel plate reinforced concrete structures are more attractive structural design alternatives to reinforced concrete structures, especially with thick, heavily reinforced walls and slabs such as nuclear structures, because they enable a much shorter construction period, greater earthquake resistant and more cost effectiveness. Experimental and analytical studies performed by the authors have also shown that SC structures are much more effective in mitigating damage against scaled aircraft models , as described in Parts 1 and 2 of this study. The objective of Part 3 was to determine the protective capability of SC walls and roofs against a full-scale aircraft impact by conducting numerical experiments to investigate the fracture behaviors and limit thicknesses of SC panels and to examine the effectiveness of SC panels in detail under design conditions. Furthermore, a simplified method is proposed for evaluating the localized damage induced by a full-scale engine impact. (authors)

  12. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    Science.gov (United States)

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Special protective concretes

    International Nuclear Information System (INIS)

    Bouniol, P.

    2001-01-01

    Concrete is the most convenient material when large-scale radiation protection is needed. Thus, special concretes for nuclear purposes are used in various facilities like reactors, reprocessing centers, storage sites, accelerators, hospitals with nuclear medicine equipment, food ionization centers etc.. The recent advances made in civil engineering for the improvement of concrete durability and compactness are for a large part transposable to protection concretes. This article presents the basic knowledge about protection concretes with the associated typological and technological aspects. A large part is devoted to the intrinsic properties of concretes and to their behaviour in irradiation and temperature conditions: 1 - definition and field of application of special protective concretes; 2 - evolution of concepts and technologies (durability of structures, techniques of formulation, new additives, market evolution); 3 - design of protective structures (preliminary study, radiation characteristics, thermal constraints, damping and dimensioning, mechanical criteria); 4 - formulation of special concretes (general principles, granulates, hydraulic binders, pulverulent additives, water/cement ratio, reference composition of some special concretes); 5 - properties of special concretes (damping and thermo-mechanical properties); 6 - induced-irradiation and temperature phenomena (activation, radiolysis, mineralogical transformations, drying, shrinking, creep, corrosion of reinforcement). (J.S.)

  14. Investigating porous concrete with improved strength: Testing at different scales

    NARCIS (Netherlands)

    Agar-Ozbek, A.S.; Weerheijm, J.; Schlangen, E.; Breugel, K. van

    2013-01-01

    Porous concrete incorporates a high percentage of meso-size air voids that makes its mechanical characteristics remarkably different from normal concrete. A research project was undertaken to design a special type of porous concrete, that fractures into small fragments when exposed to impact loading

  15. Model techniques for testing heated concrete structures

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1983-01-01

    Experimental techniques are described which may be used in the laboratory to measure strains of model concrete structures representing to scale actual structures of any shape or geometry, operating at elevated temperatures, for which time-dependent creep and shrinkage strains are dominant. These strains could be used to assess the distribution of stress in the scaled structure and hence to predict the actual behaviour of concrete structures used in nuclear power stations. Similar techniques have been employed in an investigation to measure elastic, thermal, creep and shrinkage strains in heated concrete models representing to scale parts of prestressed concrete pressure vessels for nuclear reactors. (author)

  16. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    Directory of Open Access Journals (Sweden)

    Gilson Morales

    2010-12-01

    Full Text Available This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects considering the eco-design theory. Moreover, the scale allowed classifying the materials and processes environmental impact through four score categories which resulted in a single final impact score. It was concluded that the EI scale could be cheap, accessible, and relevant tool for environmental impact controlling and reduction, allowing the planning and material specification to minimize the construction negative effects caused in the environment.

  17. Results of fission product release from intermediate-scale MCCI [molten core-concrete interaction] tests

    International Nuclear Information System (INIS)

    Spencer, B.W.; Thompson, D.H.; Fink, J.K.; Gunther, W.H.; Sehgal, B.R.

    1988-01-01

    A program of reactor-material molten core-concrete interaction (MCCI) tests and related analyses are under way at Argonne National Laboratory under sponsorship of the Electric Power Research Institute (EPRI). The particular objective of these tests is to provide data pertaining to the release of nonvolatile fission products such as La, Ba, and Sr, plus other aerosol materials, from the coupled thermal-hydraulic and chemical processes of the MCCI. The first stages of the program involving small and intermediate-scale tests have been completed. Three small-scale tests (/approximately/5 kg corium) and nine intermediate-scale tests (/approximately/30 kg corium) were performed between September 1985 and September 1987. Real reactor materials were used in these tests. Sustained internal heat generation at nominally 1 kW per kg of melt was provided by direct electrical heating of the corium mixture. MCCI tests were performed with both fully and partially oxidized corium mixtures that contained a variety of nonradioactive materials such as La 2 O 3 , BaO, and SrO to represent fission products. Both limestone/common sand and basaltic concrete basemats were used. The system was instrumented for characterization of the thermal hydraulic, chemical, gas release, and aerosol release processes

  18. Concrete and corrosion monitoring during the 2nd supercontainer half-scale test

    International Nuclear Information System (INIS)

    Areias, L.; Troullinous, I.; Verstricht, J.; Iliopoulos, S.; Pyl, L.; Voet, E.; Van Ingelgem, Y.; Kursten, B.; Craeye, B.; Coppens, E.; Van Marcke, P.

    2015-01-01

    The Super-container (SC) is a reference design concept for the packaging of spent fuel (SF) and vitrified high-level radioactive waste (HLW). The SC conceptual design is based on a multiple barrier system consisting of an outer stainless steel envelope, a concrete buffer and a water-tight carbon steel overpack containing one or more waste canisters. The experimental test described in this paper uses a so called 'half-scale' model of the SC. A metal container containing an electrical heat source is used to simulate the heat-emitting waste of a real overpack. A total of 182 sensors have been installed to monitor the half-scale model. The majority of the sensors are embedded in the concrete materials, while a limited number of them are installed around the outside of the structure to measure the ambient temperature, relative humidity and air velocity. The instrumentation included the use of fibre optics to measure both distributed as well as semi-distributed temperature and strain in the three orthogonal directions, Digital Image Correlation (DIC) and Acoustic Emission (AE) to monitor microcrack initiation and evolution, and a new PermaZEN corrosion sensor to measure the active corrosion of the carbon steel overpack. The combined results of DIC and AE monitoring have enabled the detection and measurement of surface movement, captured the onset of micro crack formation and its propagation, and measured the displacement and strain fields at different levels across the height of the half-scale test as a function of time. In particular, the DIC measurements clearly identified the appearance of the first micro cracks formed on the concrete surface of the buffer with a crack width resolution of approximately 13 microns. The results of a laboratory test performed with the corrosion sensor show a rapid onset of corrosion at the beginning of the test followed by an equally rapid decrease in corrosion after only a few days of testing. The measured corrosion rates

  19. Pipe missile impact experiments on concrete models

    International Nuclear Information System (INIS)

    McHugh, S.; Gupta, Y.; Seaman, L.

    1981-06-01

    The experiments described in this study are a part of SRI studies for EPRI on the local response of reinforced concrete panels to missile impacts. The objectives of this task were to determine the feasibility of using scale model tests to reproduce the impact response of reinforced concrete panels observed in full-scale tests with pipe missiles and to evaluate the effect of concrete strength on the impact response. The experimental approach consisted of replica scaling: the missile and target materials were similar to those used in the full-scale tests, with all dimensions scaled by 5/32. Four criteria were selected for comparing the scaled and full-scale test results: frontface penetration, backface scabbing threshold, internal cracking in the panel, and missile deformation

  20. Concrete protection from sodium spills by intentionally defected liners, small-scale tests S9 and S10

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Boehmer, W.D.

    1975-07-01

    Two small scale tests were performed to determine the protection against sodium attack afforded to a concrete surface by a defected steel liner. An inert atmosphere was maintained over the sodium pool, which was heated electrically to 1600 0 F for 2--6 hrs in one test, to 1380 0 F for 19 hrs in the other. The 10 inch diameter vertical concrete surface was separated from the sodium by a liner plate in which small defects had been drilled. The plates provided significant protection against direct chemical attack, but most of the water was released from the concrete through the defects to react in the sodium pool region. The liners were corroded significantly in the defect areas. (U.S.)

  1. The influence of the scale effect and high temperatures on the strength and strains of high performance concrete

    Directory of Open Access Journals (Sweden)

    Korsun Vladimyr Ivanovych

    2014-03-01

    Full Text Available The most effective way to reduce the structure mass, labor input and expenses for its construction is to use modern high-performance concrete of the classes С50/60… С90/105, which possess high physical and mathematic characteristics. One of the constraints for their implementation in mass construction in Ukraine is that in design standards there are no experimental data on the physical and mathematic properties of concrete of the classes more than С50/60. Also there are no exact statements on calculating reinforced concrete structures made of high-performance concretes.The authors present the results of experimental research of the scale effect and short-term and long-term heating up to +200 ° C influence on temperature and shrinkage strain, on strength and strain characteristics under compression and tensioning of high-strength modified concrete of class C70/85. The application of high performance concretes is challenging in the process of constructing buildings aimed at operating in high technological temperatures: smoke pipes, coolers, basins, nuclear power plants' protective shells, etc. Reducing cross-sections can lead to reducing temperature drops and thermal stresses in the structures.

  2. Axisymmetric analysis of a 1:6-scale reinforced concrete containment building using a distributed cracking model for the concrete

    International Nuclear Information System (INIS)

    Weatherby, J.R.

    1987-09-01

    Results of axisymmetric structural analyses of a 1:6 scale model of a reinforced concrete nuclear containment building are presented. Both a finite element shell analysis and a simplified membrane analysis were made to predict the structural response and ultimate pressure capacity of the model. Analytical results indicate that the model will fail at an internal pressure of 187 psig when the stress level in the hoop reinforcement at the midsection of the cylinder exceeds the ultimate strength of the bar splices. 5 refs., 34 figs., 6 tabs

  3. Full-scale turbine-missile concrete impact experiments. Final report

    International Nuclear Information System (INIS)

    Woodfin, R.L.

    1983-02-01

    Four full-scale experiments were conducted at Sandia National Laboratories' rocket sled facility to provide data on the response of reinforced concrete containment walls to impact and penetration by postulated turbine-produced missiles. The missiles' mass, velocity, and attitude, and the steel liner thickness, were varied. A 1476-kg, 120 0 segment cut from a shrunk-on turbine disc was used for three experiments, and a 2100-kg, 137 0 segment of another disc was used for one experiment. The targets were concrete panels fabricated of commercial ready-mix concrete of strength 24 to 28 MPa at 28 days and heavily reinforced (approx. = 5% by volume) with No. 18 (57-mm-dai) bars. Impacts were perpendicular to the targets at their centers. Three impacts were with the sharp corner of the missile forward (piercing) and one was with the rounded side forward (blunt). Rebar strains, liner strains, and rear face kinematic quantities were recorded for each test. Internal pressure pulses generated by the impacts were recorded on two tests. High-speed camera coverage was extensive. Depth of penetration was the primary measure diameter. Penetration depths into the 1.37-m-thick panels ranged from 33 cm for the blunt impact of the 1476-kg missile at 92 m/s to 65 cm for the piercing impact of the 2100-kg missile at 115m/s. Impact at the piercing attitude caused significantly more severe rear face cracking than did impact at the blunt attitude, but since rear face panel displacements in excess of 6 cm and velocities greater than 7 m/s were measured, results suggested that impact at a blunt attitude might cause scabbing at lower velocities than impact at a piercing attidude. In these tests, the presence of a 9.5-mm-thick steel liner on the rear face of the panel in the latter two tests precluded scabbing. Results also indicated that design formulas in common use give conservative results

  4. Comparison of vibration test results for Atucha II NPP and large scale concrete block models

    International Nuclear Information System (INIS)

    Iizuka, S.; Konno, T.; Prato, C.A.

    2001-01-01

    In order to study the soil structure interaction of reactor building that could be constructed on a Quaternary soil, a comparison study of the soil structure interaction springs was performed between full scale vibration test results of Atucha II NPP and vibration test results of large scale concrete block models constructed on Quaternary soil. This comparison study provides a case data of soil structure interaction springs on Quaternary soil with different foundation size and stiffness. (author)

  5. Posttest analysis of the 1:6 scale reinforced concrete containment

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.; Marchertas, A.H.

    1989-01-01

    A prediction of the response of the Sandia National Laboratories 1:6-scale reinforced concrete containment model test was made by Argonne National Laboratory. ANL along with nine other organizations performed a detailed nonlinear response analysis of the 1:6-scale model containment subjected to overpressurization in the fall of 1986. The two-dimensional code Temp-Stress and the three-dimensional Neptune code were utilized to predict the global response of the structure, to identify global failure sites and the corresponding failure pressures, and to identify some local failure sites and pressure levels. A series of axisymmetric models was studied with the two-dimensional computer program Temp-Stress. The comparison of these pretest computations with test data from the containment model has provided a test for the capability of the respective finite element codes to predict global failure modes, and hence serves as a validation of these codes. The two-dimensional analyses are discussed in this paper

  6. A unified bond theory, probabilistic meso-scale modeling, and experimental validation of deformed steel rebar in normal strength concrete

    Science.gov (United States)

    Wu, Chenglin

    Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study.

  7. NFAP calculation of the response of a 1/6 scale reinforced concrete containment model

    International Nuclear Information System (INIS)

    Costantino, C.J.; Pepper, S.; Reich, M.

    1989-01-01

    The details associated with the NFAP calculation of the pressure response of the 1/6th scale model containment structure are discussed in this paper. Comparisons are presented of some of the primary items of interest with those determined from the experiment. It was found from this comparison that the hoop response of the containment wall was adequately predicted by the NFAP finite element calculation, including the response in the high pressure, high strain range at which cracking of the concrete and yielding of the hoop reinforcement occurred. In the vertical or meridional direction, it was found that the model was significantly softer than predicted by the finite element calculation; that is, the vertical strains in the test were three to four times larger than computed in the NFAP calculation. These differences were noted even at low strain levels at which the concrete would not be expected to be cracked under tensile loadings. Simplified calculations for the containment indicate that the vertical stiffness of the wall is similar to that which would be determined by assuming the concrete fully cracked. Thus, the experiment indicates an anomalous behavior in the vertical direction

  8. The potentials of porous concrete for ballistic protection

    OpenAIRE

    Weerheijm, J.; Roebroeks, G.; Krabbenborg, D.; Agar Ozbek, A.S.

    2015-01-01

    A special porous concrete has been developed by the Delft University in collaboration with TNO. The concrete has a static compressive strength of 45 MPa. It fragments at impact into small size debris relative to reference concrete. The porous concrete was developed at laboratory scale and tested at small scale. In collaboration with the Military Science faculty of NLDA a procedure was developed to upscale the production. Panels of 0.5m x 0.5m x 0.10m were produced at slightly lower strength t...

  9. Sodium-concrete reaction model development

    International Nuclear Information System (INIS)

    Nguyen, D.H.; Muhlestein, L.D.; Postma, A.K.

    1982-07-01

    Major observations have been formulated after reviewing test results for over 100 sodium-concrete reaction tests. The observations form the basis for developing a mechanistic model to predict the transient behavior of sodium-concrete reactions. The major observations are listed. Mechanisms associated with sodium and water transport to the reaction zone are identified, and represented by appropriate mathematical expressions. The model attempts to explain large-scale, long-term (100 h) test results were sodium-concrete reactions terminated even in the presence of unreacted sodium and concrete

  10. Large-scale experiment with laying shielding concrete at Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Hoenig, A.; Svoboda, R.; Rosa, J.

    1984-01-01

    In some places the concrete walls of the biological shielding are so thin that it is not possible to control the density of the deposited concrete. An experiment was therefore carried out which was to demonstrate that concrete may be deposited by sinking through concrete tubes or by a concrete pump from a height of 8 metres. Two test walls A and B were concreted using the non-standardized method and the third wall was used as the standard. The following tests were conducted on the two non-standardized walls: test of miscibility of extra-heavy concrete, ultrasonic test of homogeneity, and samples were taken for tests of density. Density was determined radiometrically using a narrow gamma beam. Statistical evaluation of the results showed that the homogeneity of density of the concrete was the best in the standard wall, in walls A and B the variation coefficient did not exceed 8 per mille. An exception was made to the rule and concrete with a max. 16 mm grain size was deposited from the height of 8 m on condition of strict observance of production technology. (J.P.)

  11. Development of heat resistant concrete and its application to concrete casks. Improvement of neutron shielding performance of concrete in high temperature environment

    International Nuclear Information System (INIS)

    Owaki, Eiji; Hata, Akihito; Sugihara, Yutaka; Shimojo, Jun; Taniuchi, Hiroaki; Mantani, Kenichi

    2003-01-01

    Heat resistant concrete with hydrogen, which is able to shield neutron at more than 100degC, was developed. Using this new type concrete, a safety concrete cask having the same concept of metal casks was designed and produced. The new type cask omitted the inhalation and exhaust vent of the conventional type concrete casks. The new concrete consists of Portland cement added calcium hydroxide, iron powder and iron fiber. It showed 2.17 g/cm 3 density, 10.8 mass% water content, 1.4 W/(m·K) thermal conductivity at 150degC. Increasing of heat resistance made possible to produce the perfect sealing type structure, which had high shielding performance of radiation no consideration for streaming of radiation. Moreover, a monitor of sealing can be set. General view of concrete casks, outer view of 1/3 scaled model, cask storage system in the world, properties of new developed heat resistant concrete, results of shielding calculation are contained. (S.Y.)

  12. Behaviour of concrete under high confinement: study in triaxial compression and in triaxial extension at the mesoscopic scale

    International Nuclear Information System (INIS)

    Dupray, F.

    2008-12-01

    This Ph.D. thesis aims at characterising and modeling the mechanical behaviour of concrete under high confinement at the mesoscopic scale. This scale corresponds to that of the large aggregates and the cementitious matrix. The more general scope of this study is the understanding of concrete behaviour under dynamic loading. A dynamic impact can generate mean pressures around 1 GPa. But the characterisation of a material response, in an homogeneous state of stress, can only be achieved through quasi-static tests. The experimentations led in 3S-R Laboratory have underlined the importance of the aggregates in the triaxial response of concrete. Modeling concrete at the mesoscopic level, as a composite of an aggregates phase and a mortar phase, permits a representation of the aggregates effect. An experimental study of the behaviour of mortar phase is performed. Usual tests and hydrostatic and triaxial high confinement tests are realised. The parameters of a constitutive model that couples plasticity with a damage law are identified from these tests. This model is able to reproduce the nonlinear compaction of mortar, the damage behaviour under uniaxial tension or compression, and plasticity under high confinement. The biphasic model uses the finite element method with a cubic and regular mesh. A Monte-Carlo method is used to place quasi-spherical aggregates that respect the given particle size of a reference concrete. Each element is identified by belonging either to the mortar or to the aggregate phase. Numerical simulations are compared with the experimental tests on this concrete. The parameters for these simulations are only identified on the mortar. The simulations reproduce the different phases observed in hydrostatic compression. The evolution of axial moduli under growing confinement is shown, as is the good reproduction of the limit-states experimentally observed under high confinement. The fracture aspect of numerical simulations is comparable with that of

  13. Engineering properties of fly ash concrete

    International Nuclear Information System (INIS)

    Hilmi Mahmud

    1999-01-01

    This paper presents some of the engineering properties of Malaysian fly ash concrete. Workability, compressive, flexural, tensile splitting, drying shrinkage, elastic modulus and non destructive tests were performed on fly ash and control OPC concrete specimens. Data show that concrete containing 25% fly ash replacement of cement exhibit superior or similar engineering properties to that normal concrete without fly ash. These encouraging results demonstrated the technical merits of incorporating fly ash in concrete and should pave the way for wide scale use of this versatile material in the Malaysian construction industry. (author)

  14. The potentials of porous concrete for ballistic protection

    NARCIS (Netherlands)

    Weerheijm, J.; Roebroeks, G.; Krabbenborg, D.; Agar Ozbek, A.S.

    2015-01-01

    A special porous concrete has been developed by the Delft University in collaboration with TNO. The concrete has a static compressive strength of 45 MPa. It fragments at impact into small size debris relative to reference concrete. The porous concrete was developed at laboratory scale and tested at

  15. Final Report: Self Consolidating Concrete Construction for Modular Units

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Russell [Georgia Inst. of Technology, Atlanta, GA (United States); Kahn, Lawrence [Georgia Inst. of Technology, Atlanta, GA (United States); Kurtis, Kimberly [Georgia Inst. of Technology, Atlanta, GA (United States); Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Loreto, Giovanni [Georgia Inst. of Technology, Atlanta, GA (United States); Van Wyk, Jurie [Westinghouse Electric Company, Cranberry Township, PA (United States); Canterero-Leal, Carlos [Westinghouse Electric Company, Cranberry Township, PA (United States)

    2016-07-29

    This report outlines the development of a self-consolidating concrete (also termed “self-compacting concrete” or SCC) so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed and validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The self-roughening concrete produced as part of this research was assessed in SC structures at three scales: small-scale shear-friction specimens, mid-scale beams tested in in-plane and out-of-plane bending, and a full-scale validation test using an SC module produced by Westinghouse as part of the Plant Vogtle expansion. The experiments show that the self-roughening concrete can produce a cold-joint surface of 0.25 inches (6 mm) without external vibration during concrete placement. The experiments and subsequent analysis show that the shear friction provisions of ACI 318-14, Section 22.9 can be used to assess the shear capacity of the cold-joints in SC modular construction, and that friction coefficient of 1.35 is appropriate for use with these provisions.

  16. Concrete Hydration Heat Analysis for RCB Basemat Considering Solar Radiation

    International Nuclear Information System (INIS)

    Lee, Seong-Cheol; Son, Yong-Ki; Choi, Seong-Cheol

    2015-01-01

    The NPP especially puts an emphasis on concrete durability for structural integrity. It has led to higher cementitious material contents, lower water-cementitious-material ratios, and deeper cover depth over reinforcing steel. These requirements have resulted in more concrete placements that are subject to high internal temperatures. The problem with high internal temperatures is the increase in the potential for thermal cracking that can decrease concrete's long-term durability and ultimate strength. Thermal cracking negates the benefits of less permeable concrete and deeper cover by providing a direct path for corrosion-causing agents to reach the reinforcing steel. The purpose of this study is to develop how to analyze and estimate accurately concrete hydration heat of the real-scale massive concrete with wide large plane. An analysis method considering concrete placement sequence was studied and solar radiation effects on the real-scale massive concrete with wide large plane were reviewed through the analytical method. In this study, the measured temperatures at the real scale structure and the analysis results of concrete hydration heat were compared. And thermal stress analysis was conducted. Through the analysis, it was found that concrete placement duration, sequence and solar radiation effects should be considered to get the accurate concrete peak temperature, maximum temperature differences and crack index

  17. Large scale model experimental analysis of concrete containment of nuclear power plant strengthened with externally wrapped carbon fiber sheets

    International Nuclear Information System (INIS)

    Yang Tao; Chen Xiaobing; Yue Qingrui

    2005-01-01

    Concrete containment of Nuclear Power Station is the last shield structure in case of nuclear leakage during an accident. The experiment model in this paper is a 1/10 large-scale model of a real-sized prestressed reinforced concrete containment. The model containment was loaded by hydraulic pressure which simulated the design pressure during the accident. Hundreds of sensors and advanced data-collect systems were used in the test. The containment was first loaded to the damage pressure then strengthened with externally wrapping Carbon fiber sheet around the outer surface of containment structure. Experimental results indicate that CFRP system can greatly increase the capacity of concrete containment to endure the inner pressure. CFRP system can also effectively confine the deformation and the cracks caused by loading. (authors)

  18. Large scale sodium interactions. Part 2. Preliminary test results for limestone concrete

    International Nuclear Information System (INIS)

    Smaardyk, J.E.; Sutherland, H.J.; King, D.L.; Dahlgren, D.A.

    1977-01-01

    Any sodium cooled reactor system must consider the interaction of hot sodium with cell liners, and given either a failed liner or a hypothetical core disruptive accident, the interaction of hot sodium with concrete. The data base available for safety assessments involving these interactions is limited, especially for the concrete and failed liner interactions. To better understand what happens when hot sodium comes in contact with concrete, a series of tests is being carried out to investigate sodium-concrete reactions under conditions which are similar to actual reactor accident conditions. Tests cover the cases of sodium spills on bare concrete and on cells with defective steel liners. Specific objectives have been to obtain a complete description of the sodium/concrete interaction including heat balance, gas evolution and flow, movement and heat generation of the reaction zone, reaction product formation, and the layering or movement of the products

  19. Development of realistic concrete models including scaling effects

    International Nuclear Information System (INIS)

    Carpinteri, A.

    1989-09-01

    Progressive cracking in structural elements of concrete is considered. Two simple models are applied, which, even though different, lead to similar predictions for the fracture behaviour. Both Virtual Crack Propagation Model and Cohesive Limit Analysis (Section 2), show a trend towards brittle behaviour and catastrophical events for large structural sizes. A numerical Cohesive Crack Model is proposed (Section 3) to describe strain softening and strain localization in concrete. Such a model is able to predict the size effects of fracture mechanics accurately. Whereas for Mode I, only untieing of the finite element nodes is applied to simulate crack growth, for Mixed Mode a topological variation is required at each step (Section 4). In the case of the four point shear specimen, the load vs. deflection diagrams reveal snap-back instability for large sizes. By increasing the specimen sizes, such instability tends to reproduce the classical LEFM instability. Remarkable size effects are theoretically predicted and experimentally confirmed also for reinforced concrete (Section 5). The brittleness of the flexural members increases by increasing size and/or decreasing steel content. On the basis of these results, the empirical code rules regarding the minimum amount of reinforcement could be considerably revised

  20. Transfer and development length of prestressing tendons in full-scale AASHTO prestressed concrete girders using self-consolidating concrete.

    Science.gov (United States)

    2009-03-01

    Self-consolidating concrete (SCC) is a highly workable concrete that flows through densely reinforced or : complex structural elements under its own weight. The benefits of using SCC include: a) Reducing labor costs : by eliminating the need for mech...

  1. Application of concrete filled steel bearing wall to inner concrete structure fro PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sekimoto, Hisashi; Tanaka, Mamoru; Inoue, Kunio; Fukihara, Masaaki; Akiyama, Hiroshi.

    1992-01-01

    'Concrete filled steel bearing wall', applied to the inner concrete structure for PWR nuclear power plant, was developed for rationalization of construction procedure at site. It was concluded through preliminary studies that this new type of wall, where concrete is placed between steel plates, is best suited for the strength members of the above structure, due to the high strength and ductility of surface steel plates and the confinement effect of filled concrete. To verify the behavior from the elastic range to the inelastic range, the ultimate strength and the failure mechanism, and to clarify experimentally the structural integrity of the inner concrete structure, which was composed of a concrete filled steel bearing wall, against seismic lateral loads, horizontal loading tests using a 1/10th scale model of the inner concrete structure for PWR nuclear power plant were conducted. As a result of the tests, the inner concrete structure composed of a concrete filled steel bearing wall appeared to have a larger load carrying capacity and a higher ductility as compared with that composed of a reinforced concrete wall. (author)

  2. Comparison between theoretical and experimental results of the 1/6 scale concrete model under internal pressure

    International Nuclear Information System (INIS)

    Riviere, J.; Barbe, B.; Millard, A.; Koundy, V.

    1988-01-01

    The prevision of the behavior of the 1/6 scale concrete model under internal pressure was realized by means of two computations, the first one with an infinite soil rigidity, the second one with a soil rigidity equal to 61.26 MPa/m. These two computations, that assumed a perfectly axisymetric structure gave theoretical and experimental results in good agreement, except the raft of which the theoretical uplift was three times higher than the experimental one. The main conclusions of this study are as follow: the soil stiffness has no influence on the ultimate behavior of the model, the dead concrete rigidity decreases the raft uplift in an important way, the model is destroyed because the hoop stress reaches the ultimate strength

  3. Research status and needs for shear tests on large-scale reinforced concrete containment elements

    International Nuclear Information System (INIS)

    Oesterle, R.G.; Russell, H.G.

    1982-01-01

    Reinforced concrete containments at nuclear power plants are designed to resist forces caused by internal pressure, gravity, and severe earthquakes. The size, shape, and possible stress states in containments produce unique problems for design and construction. A lack of experimental data on the capacity of reinforced concrete to transfer shear stresses while subjected to biaxial tension has led to cumbersome if not impractical design criteria. Research programs recently conducted at the Construction Technology Laboratories and at Cornell University indicate that design criteria for tangential, peripheral, and radial shear are conservative. This paper discusses results from recent research and presents tentative changes for shear design provisions of the current United States code for containment structures. Areas where information is still lacking to fully verify new design provisions are discussed. Needs for further experimental research on large-scale specimens to develop economical, practical, and reliable design criteria for resisting shear forces in containment are identified. (orig.)

  4. Behaviour of concrete structures in fire

    Directory of Open Access Journals (Sweden)

    Fletcher Ian A.

    2007-01-01

    Full Text Available This paper provides a "state-of-the-art" review of research into the effects of high temperature on concrete and concrete structures, extending to a range of forms of construction, including novel developments. The nature of concrete-based structures means that they generally perform very well in fire. However, concrete is fundamentally a complex material and its properties can change dramatically when exposed to high temperatures. The principal effects of fire on concrete are loss of compressive strength, and spalling - the forcible ejection of material from the surface of a member. Though a lot of information has been gathered on both phenomena, there remains a need for more systematic studies of the effects of thermal exposures. The response to realistic fires of whole concrete structures presents yet greater challenges due to the interactions of structural elements, the impact of complex small-scale phenomena at full scale, and the spatial and temporal variations in exposures, including the cooling phase of the fire. Progress has been made on modeling the thermomechanical behavior but the treatment of detailed behaviors, including hygral effects and spalling, remains a challenge. Furthermore, there is still a severe lack of data from real structures for validation, though some valuable insights may also be gained from study of the performance of concrete structures in real fires. .

  5. Multi-scale modelling and simulation of the thermo-hydro-mechanical behavior of concrete with explicit representation of cracking

    International Nuclear Information System (INIS)

    Tognevi, Amen

    2012-01-01

    The concrete structures of nuclear power plants can be subjected to moderate thermo-hydric loadings characterized by temperatures of the order of hundred of degrees in service conditions as well as in accidental ones. These loadings can be at the origin of important disorders, in particular cracking which accelerate hydric transfers in the structure. In the framework of the study of durability of these structures, a coupled thermo-hydro-mechanical model denoted THMs has been developed at Laboratoire d'Etude du Comportement des Betons et des Argiles (LECBA) of CEA Saclay in order to perform simulations of the concrete behavior submitted to such loadings. In this work, we focus on the improvement in the model THMs in one hand of the assessment of the mechanical and hydro-mechanical parameters of the unsaturated micro-cracked material and in the other hand of the description of cracking in terms of opening and propagation. The first part is devoted to the development of a model based on a multi-scale description of cement-based materials starting from the scale of the main hydrated products (portlandite, ettringite, C-S-H etc.) to the macroscopic scale of the cracked material. The investigated parameters are obtained at each scale of the description by applying analytical homogenization techniques. The second part concerns a fine numerical description of cracking. To this end, we choose to use combined finite element and discrete element methods. This procedure is presented and illustrated through a series of mechanical tests in order to show the feasibility of the method and to proceed to its validation. Finally, we apply the procedure to a heated wall and the proposed method for estimating the permeability shows the interest to take into account an anisotropic permeability tensor when dealing with mass transfers in cracked concrete structures. (author) [fr

  6. SLAM: a sodium-limestone concrete ablation model

    International Nuclear Information System (INIS)

    Suo-Anttila, A.J.

    1983-12-01

    SLAM is a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer and dehydrated concrete) region, and a wet (hydrated concrete) region. The model includes a solution to the mass, momentum, and energy equations in each region. A chemical kinetics model is included to provide heat sources due to chemical reactions between the sodium and the concrete. Both isolated model as well as integrated whole code evaluations have been made with good results. The chemical kinetics and water migration models were evaluated separately, with good results. Several small and large-scale sodium limestone concrete experiments were simulated with reasonable agreement between SLAM and the experimental results. The SLAM code was applied to investigate the effects of mixing, pool temperature, pool depth and fluidization. All these phenomena were found to be of significance in the predicted response of the sodium concrete interaction. Pool fluidization is predicted to be the most important variable in large scale interactions

  7. Investigation on dynamic performance of concrete column crumb rubber steel and fiber concrete

    Science.gov (United States)

    Siti Nurul Nureda, M. Z.; Mariyana, A. K.; Khiyon, M. Iqbal; Rahman, M. S. Abdul; Nurizaty, Z.

    2017-11-01

    In general the Normal Concrete (NC) are by quasi-brittle failure, where, the nearly complete loss of loading capacity, once failure is initiated especially under dynamic loadings. The significance of this study is to improve the damping properties of concrete structure by utilization of the recycled materials from waste tires to be used in concrete as structural materials that improve seismic performance. In this study, the concrete containing 10% of fine crumb rubber and 1 % volume fraction of steel fiber from waste tires is use to investigate the dynamic performance (natural frequency and damping ratio).A small scale column were fabricated from Treated Crumb Rubber and Steel Fiber Concrete (TCRSFC) and NC were cast and cured for 28 days to investigate the dynamic performance. Based on analysis, dynamic modulus, damping ratio and natural frequency of TCRSFC has improved considerably by 5.18%, 109% and 10.94% when compared with NC. The TCRSFC producing concrete with the desired properties as well as to introduce the huge potential as dynamic resistance structure from severe damage especially prevention on catastrophic failure.

  8. Biodecontamination of concrete

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-01-01

    A novel technology for biologically decontaminating concrete is being jointly developed by scientists at the Idaho National Engineering Laboratory (INEL) and British Nuclear Fuels plc (BNFL). The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of concrete. Most radionuclide contamination of concrete is fixed in the outer few mm of the concrete surface. By capturing and controlling this natural process, a biological method of removing the surface of concrete to depths up to several mm is being developed. Three types of bacteria are known to be important in MID of concrete: nitrifying bacteria that produce nitric acid, sulfur oxidizing bacteria that produce sulfuric acid, and certain heterotrophic bacteria that produce organic acids. An investigation of natural environments demonstrated with scanning electron microscopy the presence of bacteria on concrete surfaces of a variety of structures, such as bridges and dams, where corrosion is evident. Enumeration of sulfur oxidizing and nitrifying bacteria revealed their presence and activity on structures to varying degrees in different environments. Under ideal conditions, Thiobacillus thiooxidans, a sulfur oxidizing bacteria, attached to and colonized the surface of concrete specimens. Over 1mm depth of material from a 10 cm x 10 cm square surface was removed in 68 days in the Thiobacillus treated specimen compared to a sterile control. Laboratory and field demonstrations are currently being conducted using experimental chambers designed to be mounted directly to concrete surfaces where radionuclide contamination exists. Data is being obtained in order to determine actual rates of surface removal and limitations to the system. This information will be used to develop a full scale decontamination technology

  9. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...... of hollow core decks with different surfaces on the bottom are investigated: reference deck made of standard concrete and flat surface, deck with special mortar grooved tiles, deck with flat mortar tiles, deck with grooved mortar and phase change material tiles, deck with flat mortar and phase change...... material tiles. The experimental investigation presented in the paper is performed in the specially designed modified hot box apparatus that allows maintaining periodic steady-state tests with the full-scale concrete deck elements. The presented research investigates if the extended surface area and PCM...

  10. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  11. Small-scale multi-axial hybrid simulation of a shear-critical reinforced concrete frame

    Science.gov (United States)

    Sadeghian, Vahid; Kwon, Oh-Sung; Vecchio, Frank

    2017-10-01

    This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shearcritical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required.

  12. Investigation of radial shear in the wall-base juncture of a 1:4 scale prestressed concrete containment vessel model

    Energy Technology Data Exchange (ETDEWEB)

    Dameron, R.A.; Rashid, Y.R. [ANATECH Corp., San Diego, CA (United States); Luk, V.K.; Hessheimer, M.F. [Sandia National Labs., Albuquerque, NM (United States)

    1998-04-01

    Construction of a prestressed concrete containment vessel (PCCV) model is underway as part of a cooperative containment research program at Sandia National Laboratories. The work is co-sponsored by the Nuclear Power Engineering Corporation (NUPEC) of Japan and US Nuclear Regulatory Commission (NRC). Preliminary analyses of the Sandia 1:4 Scale PCCV Model have determined axisymmetric global behavior and have estimated the potential for failure in several areas, including the wall-base juncture and near penetrations. Though the liner tearing failure mode has been emphasized, the assumption of a liner tearing failure mode is largely based on experience with reinforced concrete containments. For the PCCV, the potential for shear failure at or near the liner tearing pressure may be considerable and requires detailed investigation. This paper examines the behavior of the PCCV in the region most susceptible to a radial shear failure, the wall-basemat juncture region. Prediction of shear failure in concrete structures is a difficult goal, both experimentally and analytically. As a structure begins to deform under an applied system of forces that produce shear, other deformation modes such as bending and tension/compression begin to influence the response. Analytically, difficulties lie in characterizing the decrease in shear stiffness and shear stress and in predicting the associated transfer of stress to reinforcement as cracks become wider and more extensive. This paper examines existing methods for representing concrete shear response and existing criteria for predicting shear failure, and it discusses application of these methods and criteria to the study of the 1:4 scale PCCV.

  13. Investigation of radial shear in the wall-base juncture of a 1:4 scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Luk, V.K.; Hessheimer, M.F.

    1998-04-01

    Construction of a prestressed concrete containment vessel (PCCV) model is underway as part of a cooperative containment research program at Sandia National Laboratories. The work is co-sponsored by the Nuclear Power Engineering Corporation (NUPEC) of Japan and US Nuclear Regulatory Commission (NRC). Preliminary analyses of the Sandia 1:4 Scale PCCV Model have determined axisymmetric global behavior and have estimated the potential for failure in several areas, including the wall-base juncture and near penetrations. Though the liner tearing failure mode has been emphasized, the assumption of a liner tearing failure mode is largely based on experience with reinforced concrete containments. For the PCCV, the potential for shear failure at or near the liner tearing pressure may be considerable and requires detailed investigation. This paper examines the behavior of the PCCV in the region most susceptible to a radial shear failure, the wall-basemat juncture region. Prediction of shear failure in concrete structures is a difficult goal, both experimentally and analytically. As a structure begins to deform under an applied system of forces that produce shear, other deformation modes such as bending and tension/compression begin to influence the response. Analytically, difficulties lie in characterizing the decrease in shear stiffness and shear stress and in predicting the associated transfer of stress to reinforcement as cracks become wider and more extensive. This paper examines existing methods for representing concrete shear response and existing criteria for predicting shear failure, and it discusses application of these methods and criteria to the study of the 1:4 scale PCCV

  14. Posttest analysis of a 1:4-scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Hessheimer, M.F.

    2003-01-01

    The Nuclear Power Engineering Corporation (NUPEC) of Japan and the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, co-sponsored a Cooperative Containment Research Program at Sandia National Laboratories (SNL) in Albuquerque, New Mexico. As part of the program, a prestressed concrete containment vessel (PCCV) model was subjected to a series of overpressurization tests at SNL beginning in July 2000 and culminating in a functional failure mode or Limit State Test (LST) in September 2000 and a Structural Failure Mode Test (SFMT) in November 2001. The PCCV model, uniformly scaled at 1:4, is representative of the containment structure of an actual Pressurized Water Reactor (PWR) plant (OHI-3) in Japan. The objectives of the pressurization tests were to obtain measurement of the structural response to pressure loading beyond design basis accident in order to validate analytical modeling, to find pressure capacity of the model, and to observe its failure mechanisms. This paper compares results of pretest analytical studies of the PCCV model to the PCCV high pressure test measurements and describes results of post-test analytical studies. These analyses have been performed by ANATECH Corp. under contract with Sandia National Laboratories. The post-test analysis represents the third phase of a comprehensive PCCV analysis effort. The first phase consisted of preliminary analyses to determine what finite element models would be necessary for the pretest prediction analyses, and the second phase consisted of the pretest prediction analyses. The principal objectives of the post-test analyses were: (1) to provide insights to improve the analytical methods for predicting the structural response and failure modes of a prestressed concrete containment, and (2) to evaluate by analysis any phenomena or failure mode observed during the test that had not been explicitly predicted by analysis. In addition to summarizing comparisons between measured

  15. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279

  16. Multi-physics and multi-scale deterioration modelling of reinforced concrete part I: Coupling transport and corrosion at the material scale

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2015-01-01

    is fully coupled, i.e. information, such as temperature and moisture distribution, phase assemblage, corrosion current density, damage state of concrete cover, etc., are continuously exchanged between the models. Although not explicitly outlined in this paper, such an analysis may be further integrated...... models are sketched to describe (i) transport of heat and matter in porous media as well as phase assemblage in hardened Portland cement, (ii) corrosion of reinforcement, and (iii) material performance including corrosion-induced damages on the meso and macro scale. The presented modelling framework...

  17. Long-term durability experiments with concrete-based waste packages in simulated repository conditions

    International Nuclear Information System (INIS)

    Ipatti, A.

    1993-03-01

    Two extensive experiments on long-term durability of waste packages in simulated repository conditions are described. The first one is a 'half-scale experiment' comprising radioactive waste product and half-scale concrete containers in site specific groundwater conditions. The second one is 'full-scale experiment' including simulated inactive waste product and full-scale concrete container stored in slowly flowing fresh water. The scope of the experiments is to demonstrate long-term behaviour of the designed waste packages in contact with moderately concrete aggressive groundwater, and to evaluate the possible interactions between the waste product, concrete container and ground water. As the waste packages are made of high-quality concrete, provisions have been made to continue the experiments for several years

  18. The effect of high temperatures on concrete incorporating ultrafine ...

    African Journals Online (AJOL)

    In this work, several concrete formulations have been tested and multi-scale observation of high-temperature behavior of ordinary concrete (compressive strength of 48 MPa) and HPC (compressive strength 75 MPa) were adopted. On the scale of the material, the identification of trends with temperature data such as porosity ...

  19. Precooling of concrete with flake ice

    International Nuclear Information System (INIS)

    Inoue, Katsuhiro; Shigenobu, Manabu; Soejima, Kenji; Noguchi, Hiroshi; Noda, Youichi; Sakaguchi, Tohru.

    1989-01-01

    The buildings in nuclear power stations are the reinforced concrete structures which are constructed with the massive members having much rein forcing bar quantity and relatively high strength due to the requirement of aseismatic capability, shielding and others. Also their scale is large, and in the case of a power station of one million kW class, concrete as much as 300,000 m 3 is used for one plant. Accordingly, at the time of construction, the case of stably supplying the concrete of high quality in large quantity by installing the facilities of manufacturing ready mixed concrete at construction sites is frequent. Moreover, electric power companies carry out thorough quality control to undergo the inspection before use by the Agency of Natural Resources and Energy from the aspects of materials, structures and strength. Since prestressed concrete containment vessels were adopted for No.3 and No.4 plants, the quality of concrete and the facilities for manufacturing ready mixed concrete were examined in detail. The precooling facilities for concrete and the effect of precooling are reported. (Kako, I.)

  20. Full scale model push-off test of reinforced concrete block with 51 mm dia. deformed steel bars

    International Nuclear Information System (INIS)

    Aoyagi, Y.

    1981-01-01

    The conclusions of this study are as follows; (1) The equation previously derived from small scale specimens, to predict the shear strength of push-off specimens including both initially cracked and uncracked, can conservatively estimate the experimental data of full scale specimens to the same extent as small scale ones. (2) The equation previously derived from small scale specimens, to predict the shear strength of initially cracked push-off specimens with reinforcements inclined to the shear plane, agrees reasonably well with the experimental data of full scale speciemens. (3) The concrete strength and yield strength of reinforcement theoretically set the balanced reinforcement ratio of the shear area above which the shear strength of specimens is constant. (4) The theoretical shear strength of push-off specimens overestimates the experimental data by about 25%. (orig./HP)

  1. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  2. Application of the Hybrid Simulation Method for the Full-Scale Precast Reinforced Concrete Shear Wall Structure

    Directory of Open Access Journals (Sweden)

    Zaixian Chen

    2018-02-01

    Full Text Available The hybrid simulation (HS testing method combines physical test and numerical simulation, and provides a viable alternative to evaluate the structural seismic performance. Most studies focused on the accuracy, stability and reliability of the HS method in the small-scale tests. It is a challenge to evaluate the seismic performance of a twelve-story pre-cast reinforced concrete shear-wall structure using this HS method which takes the full-scale bottom three-story structural model as the physical substructure and the elastic non-linear model as the numerical substructure. This paper employs an equivalent force control (EFC method with implicit integration algorithm to deal with the numerical integration of the equation of motion (EOM and the control of the loading device. Because of the arrangement of the test model, an elastic non-linear numerical model is used to simulate the numerical substructure. And non-subdivision strategy for the displacement inflection point of numerical substructure is used to easily realize the simulation of the numerical substructure and thus reduce the measured error. The parameters of the EFC method are calculated basing on analytical and numerical studies and used to the actual full-scale HS test. Finally, the accuracy and feasibility of the EFC-based HS method is verified experimentally through the substructure HS tests of the pre-cast reinforced concrete shear-wall structure model. And the testing results of the descending stage can be conveniently obtained from the EFC-based HS method.

  3. Separate effects testing and analyses to investigate liner tearing of the 1:6-scale reinforced concrete containment building

    International Nuclear Information System (INIS)

    Spletzer, B.L.; Lambert, L.D.; Bergman, V.L.

    1995-06-01

    The overpressurization of a 1:6-scale reinforced concrete containment building demonstrated that liner tearing is a plausible failure mode in such structures under severe accident conditions. A combined experimental and analytical program was developed to determine the important parameters which affect liner tearing and to develop reasonably simple analytical methods for predicting when tearing will occur. Three sets of test specimens were designed to allow individual control over and investigation of the mechanisms believed to be important in causing failure of the liner plate. The series of tests investigated the effect on liner tearing produced by the anchorage system, the loading conditions, and the transition in thickness from the liner to the insert plate. Before testing, the specimens were analyzed using two- and three-dimensional finite element models. Based on the analysis, the failure mode and corresponding load conditions were predicted for each specimen. Test data and post-test examination of test specimens show mixed agreement with the analytical predictions with regard to failure mode and specimen response for most tests. Many similarities were also observed between the response of the liner in the 1:6-scale reinforced concrete containment model and the response of the test specimens. This work illustrates the fact that the failure mechanism of a reinforced concrete containment building can be greatly influenced by details of liner and anchorage system design. Further, it significantly increases the understanding of containment building response under severe conditions

  4. Preliminary analysis of a 1:4 scale prestressed concrete containment vessel model

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Luk, V.K.; Hessheimer, M.F.

    1997-01-01

    Sandia National Laboratories is conducting a research program to investigate the integrity of nuclear containment structures. As part of the program Sandia will construct an instrumented 1:4 scale model of a prestressed concrete containment vessel (PCCV) for pressurized water reactors (PWR), which will be pressure tested up to its ultimate capacity. One of the key program objectives is to develop validated methods to predict the structural performance of containment vessels when subjected to beyond design basis loadings. Analytical prediction of structural performance requires a stepwise, systematic approach that addresses all potential failure modes. The analysis effort includes two and three-dimensional nonlinear finite element analyses of the PCCV test model to evaluate its structural performance under very high internal pressurization. Such analyses have been performed using the nonlinear concrete constitutive model, ANACAP-U, in conjunction with the ABAQUS general purpose finite element code. The analysis effort is carried out in three phases: preliminary analysis; pretest prediction; and post-test data interpretation and analysis evaluation. The preliminary analysis phase serves to provide instrumentation support and identify candidate failure modes. The associated tasks include the preliminary prediction of failure pressure and probable failure locations and the development of models to be used in the detailed failure analyses. This paper describes the modeling approaches and some of the results obtained in the first phase of the analysis effort

  5. PCM Concrete. [Phase Change Materials

    Energy Technology Data Exchange (ETDEWEB)

    Juul Andersen, T. [Danish Technological Institute, Taastrup (Denmark); Poulsen, H.-H. [BASF A/S, Roedekro (Denmark); Passov, F. [Spaencom A/S, Hedehusene (Denmark); Heiselberg, P. [Aalborg Univ..Aalborg (Denmark)

    2013-04-01

    PCM-Concrete was a research and development project launched in 2009 and finished in 2012. The project, which was funded by The Danish National Advanced Technology Foundation, had a total budget of 1.7 million Euros and included 4 partners: Danish Technological Institute (project manager), Aalborg University, BASF A/S and Spaencom A/S. The overall vision of the project was to reduce energy consumption for heating and cooling in buildings by developing high-performance concrete structures microencapsulated Phase Change Materials (PCM). The PCM used in the project was Micronal produced by BASF A/S. Micronal is small capsules with an acrylic shell and inside a wax with a melting point at approx. 23 deg. C equal to a comfortable indoor temperature. During the melting process thermal energy is transferred to chemical reaction (melting/solidification) depending on PCM being heated up or cooled down. Adding Micronal to concrete would theoretically increase the thermal mass of the concrete and improve the diurnal heat capacity which is the amount of energy that can be stored and released during 24 hours. Nevertheless, it is a relatively new technology that has not received much attention, yet. In the PCM-Concrete project 5 main investigations were carried out: 1) Development of concrete mix design with PCM. 2) Investigation of thermal properties of the PCM concrete: thermal conductivity, specific heat capacity, density. 3) Up-scaling the research to industrial production of PCM-concrete structures. 4) Testing energy efficiency in full scale. 5) Confronting aesthetic and acoustic barriers to full exploitation of the potential of PCM-concrete structures. The results from the test program showed: 1) That the diurnal heat storage capacity is higher for all 4 hollow core decks with tiles attached compared to the reference hollow core deck. 2) The hollow core decks with concrete tiles without PCM performs slightly better than the tiles with PCM. 3) That is was impossible to

  6. Monitoring of Concrete Structures Using Ofdr Technique

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  7. Tests and analyses of 1/4-scale upgraded nine-bay reinforced concrete basement models

    International Nuclear Information System (INIS)

    Woodson, S.C.

    1983-01-01

    Two nine-bay prototype structures, a flat plate and two-way slab with beams, were designed in accordance with the 1977 ACI code. A 1/4-scale model of each prototype was constructed, upgraded with timber posts, and statically tested. The development of the timber posts placement scheme was based upon yield-line analyses, punching shear evaluation, and moment-thrust interaction diagrams of the concrete slab sections. The flat plate model and the slab with beams model withstood approximate overpressures of 80 and 40 psi, respectively, indicating that required hardness may be achieved through simple upgrading techniques

  8. Salt-saturated concrete strength and permeability

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hansen, F.D.; Knowles, M.K.

    1996-01-01

    Laboratory-scale experiments applicable to the use of salt-saturated concrete as a seal material for a transuranic waste repository have been completed. Nitrogen gas permeability measurements were made using a flexible-wall permeameter, a confining pressure of 1 MPa, and gas pressure gradients ranging from 0.3 MPa to 0.75 MPa. Results show that salt-saturated concrete has very low intrinsic permeability with values ranging from 9.4 x 10 -22 m 2 to 9.7 x 10 -17 m 2 . Strength and deformation characteristics were investigated under conditions of triaxial compression with confining pressures ranging from 0 to 15 MPa using either axial strain-rate or axial stress-rate control and show that the failure strength of concrete increases with confining pressure which can be adequately described through pressure-sensitive failure criteria. Axial, radial, and volumetric strains were also measured during each test and these data were used to determine elastic properties. Experimental results are applicable in the design and analysis of scale-related functions and apply to other concrete structures subjected to compressive loadings such as dams and prestressed structural members

  9. Concrete Flow in Diaphragm Wall Panels : A Full-Scale In-Situ Test

    NARCIS (Netherlands)

    Van Dalen, J.H.; Bosch, J.W.; Broere, W.

    2015-01-01

    Flow processes, taking place during the concreting of diaphragm wall panels (D-wall panels), are of great importance for the quality of the wall. During this phase, the bentonite, present in the excavated trench, should be completely replaced by concrete in a controlled way. In literature several

  10. Technology for reuse of contaminated concrete constituents

    International Nuclear Information System (INIS)

    Binkhorst, I.P.; Cornelissen, H.A.W.

    1998-01-01

    During decommissioning activities of nuclear installations, large amounts of contaminated concrete will have to be processed. All this concrete has to be treated and stored as radioactive waste, which implies major economical and environmental consequences. It was shown that the contamination is mainly concentrated in the porous cement stone. By separating this cement stone from the clean dense aggregate particles, a considerable volume reduction can be reached. KEMA has developed, designed and constructed a pilot plant scale test installation for separation of aggregate from contaminated concrete. The separation is based on a thermal treatment followed by milling and sieving. The clean aggregate can be re-used in concrete, whereas the (slightly) contaminated cement stone could be upgraded to a binder for concrete used in the nuclear industry. (author)

  11. Neutron activation measurements in research reactor concrete shield

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Bozic, M.

    2001-01-01

    The results of activation measurement inside TRIGA research reactor concrete shielding are given. Samples made of ordinary and barytes concrete together with gold and nickel foils were irradiated in the reactor body. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides in the samples were measured with HPGe detector. The most active longlived radioactive nuclides in ordinary concrete samples were found to be 60 Co and 152 Eu and in barytes concrete samples 60 Co, 152 Eu and 133 Ba. Measured activity density of all nuclides was found to decrease almost linearly with depth in logarithmic scale.(author)

  12. Quantitative studies on impact resistance of reinforced concrete panels with steel liners under impact loading. Part 1: Scaled model impact tests

    International Nuclear Information System (INIS)

    Tsubota, H.; Kasai, Y.; Koshika, N.; Morikawa, H.; Uchida, T.; Ohno, T.; Kogure, K.

    1993-01-01

    In recent years, extensive analytical and experimental studies have been carried out to establish a rational structural design method for nuclear power plants against local damage caused by various external missiles. Through these studies, several techniques for improving die impact resistance of reinforced concrete slabs have been proposed. Of these techniques, attaching a thin steel liner onto the impacted and/or rear face of the slab is considered to be one of the most effective methods. Muto et. al. carried out full-scale impact tests using actual aircraft engines and reported that a thin corrugated steel liner attached to the rear face of a concrete panel has a significant effect in preventing scattering of scabbed concrete debris from the rear face of the target. Based on many experimental and analytical studies, UKAEA reported that a steel liner attached to a reinforced concrete slab improves its perforation and scabbing resistance, and Walter et. al. proposed a formula for predicting the equivalent thickness of a slab with a steel liner attached. The object of this study was to evaluate quantitatively the effect of a steel liner attached to a reinforced concrete slab in preventing local damage caused by rigid missiles. To achieve the object, extensive impact tests were carried out. This paper summarizes the results of these tests

  13. Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete

    Science.gov (United States)

    Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor

    2018-03-01

    High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.

  14. Large scale sodium interactions. Part 3. Chemical phenomena with limestone concrete

    International Nuclear Information System (INIS)

    Sallach, R.A.

    1977-01-01

    The description of the chemical processes and reaction products resulting from the exposure of concrete to molten sodium metal is important for a thorough, realistic assessment of the safety of CRBR-type reactors. Concretes are in general complex heterogenous substances whose ingredients can be derived from many sources. Consequently a wide variety of reaction processes and products might be anticipated. Initial attention has focused on a concrete in which both the aggregate and sandy components are derived from limestone. Presented are the chemical observations and experimental data from tests in which molten sodium metal at approximately 500 0 C is dropped into cold limestone concrete crucibles. Thermocouples immersed in the sodium pool indicate that the reaction proceeds in two stages. In the first stage which lasts 5 to 8 minutes, the temperature of the reacting mass hovers around 500 0 C. This stage is followed by a second stage of longer duration--greater than 100 minutes--where the temperature is 700 to 800 0 C. The main reaction product is a hard, fused, black slag which contains about 3/4 of the sodium in the initial charge. A secondary product is sodium oxide aerosol which accounts for the remaining 1/4 of the charge. It is significant that no free sodium metal is found in the slag; all sodium has completely reacted

  15. Steel-concrete bond model for the simulation of reinforced concrete structures

    International Nuclear Information System (INIS)

    Mang, Chetra

    2015-01-01

    Reinforced concrete structure behavior can be extremely complex in the case of exceeding the cracking threshold. The composite characteristics of reinforced concrete structure should be finely presented especially in the distribution stress zone between steel-concrete at their interface. In order to compute the industrial structures, a perfect relation hypothesis between steel and concrete is supposed in which the complex phenomenon of the two-material relation is not taken into account. On the other hand, this perfect relation is unable to predict the significant disorders, the repartition, and the distribution of the cracks, which is directly linked to the steel. In literature, several numerical methods are proposed in order to finely study the concrete-steel bond behavior, but these methods give many difficulties in computing complex structures in 3D. With the results obtained in the thesis framework of Torre-Casanova (2012), the new concrete-steel bond model has been developed to improve performances (iteration numbers and computational time) and the representation (cyclic behavior) of the initial one. The new model has been verified with analytical solution of steel-concrete tie and validated with the experimental results. The new model is equally tested with the structural scale to compute the shear wall behavior in the French national project (CEOS.fr) under monotonic load. Because of the numerical difficulty in post-processing the crack opening in the complex crack formation, a new crack opening method is also developed. This method consists of using the discontinuity of relative displacement to detect the crack position or using the slip sign change between concrete-steel. The simulation-experiment comparison gives validation of not only the new concrete-steel bond model but also the new crack post-processing method. Finally, the cyclic behavior of the bond law with the non-reduced envelope is adopted and integrated in the new bond model in order to take

  16. Experimental Study on Full-Scale Beams Made by Reinforced Alkali Activated Concrete Undergoing Flexure.

    Science.gov (United States)

    Monfardini, Linda; Minelli, Fausto

    2016-08-30

    Alkali Activated Concrete (AAC) is an alternative kind of concrete that uses fly ash as a total replacement of Portland cement. Fly ash combined with alkaline solution and cured at high temperature reacts to form a binder. Four point bending tests on two full scale beams made with AAC are described in this paper. Companion small material specimens were also casted with the aim of properly characterizing this new tailored material. The beam's length was 5000 mm and the cross section was 200 mm × 300 mm. The AAC consisted of fly ash, water, sand 0-4 mm and coarse aggregate 6-10 mm; and the alkaline solution consisted of sodium hydroxide mixed with sodium silicate. No cement was utilized. The maximum aggregate size was 10 mm; fly ash was type F, containing a maximum calcium content of 2%. After a rest period of two days, the beam was cured at 60 °C for 24 h. Data collected and critically discussed included beam deflection, crack patterns, compressive and flexural strength and elastic modulus. Results show how AAC behavior is comparable with Ordinary Portland Cement (OPC) based materials. Nonlinear numerical analyses are finally reported, promoting a better understanding of the structural response.

  17. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale. In view of the final demolition of the building, foreseen to start in the middle of 2008, a clearance methodology for the concrete from the cells into the Eurochemic building has been developed. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radionuclides. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  18. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  19. How Concrete Is Concrete?

    Science.gov (United States)

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  20. Enhanced Performance of Recycled Aggregate Concrete with Atomic Polymer Technology

    Science.gov (United States)

    2012-06-01

    The atomic polymer technology in form of mesoporous inorganic polymer (MIP) can effectively improve material durability and performance of concrete by dramatically increase inter/intragranular bond strength of concrete at nano-scale. The strategy of ...

  1. Innovative Method for Automatic Shape Generation and 3D Printing of Reduced-Scale Models of Ultra-Thin Concrete Shells

    Directory of Open Access Journals (Sweden)

    Ana Tomé

    2018-02-01

    Full Text Available A research and development project has been conducted aiming to design and produce ultra-thin concrete shells. In this paper, the first part of the project is described, consisting of an innovative method for shape generation and the consequent production of reduced-scale models of the selected geometries. First, the shape generation is explained, consisting of a geometrically nonlinear analysis based on the Finite Element Method (FEM to define the antifunicular of the shell’s deadweight. Next, the scale model production is described, consisting of 3D printing, specifically developed to evaluate the aesthetics and visual impact, as well as to study the aerodynamic behaviour of the concrete shells in a wind tunnel. The goals and constraints of the method are identified and a step-by-step guidelines presented, aiming to be used as a reference in future studies. The printed geometry is validated by high-resolution assessment achieved by photogrammetry. The results are compared with the geometry computed through geometric nonlinear finite-element-based analysis, and no significant differences are recorded. The method is revealed to be an important tool for automatic shape generation and building scale models of shells. The latter enables the performing of wind tunnel tests to obtain pressure coefficients, essential for structural analysis of this type of structures.

  2. Usage of Crushed Concrete Fines in Decorative Concrete

    Science.gov (United States)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of

  3. MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB

    Directory of Open Access Journals (Sweden)

    MD AZREE OTHUMAN MYDIN

    2013-06-01

    Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.

  4. Penetration of molten core materials into basaltic and limestone concrete

    International Nuclear Information System (INIS)

    Sutherland, H.J.

    1978-01-01

    In conjunction with the small-scale, melt-concrete interaction tests being conducted at Sandia Laboratories, an acoustic technique has been used to monitor the penetration of molten core materials into basaltic and limestone concrete. Real time plots of the position of the melt/concrete interface have been obtained, and they illustrate that the initial penetration rate of the melt may be of the order of 80 mm/min. Phenomena deduced by the technique include a non-wetted melt/concrete interface

  5. Test Method for Spalling of Fire Exposed Concrete

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt

    2005-01-01

    A new material test method is presented for determining whether or not an actual concrete may suffer from explosive spalling at a specified moisture level. The method takes into account the effect of stresses from hindered thermal expansion at the fire-exposed surface. Cylinders are used, which...... in many countries serve as standard specimens for testing the compressive strength. Consequently, the method is quick, cheap and easy to use in comparison to the alternative of testing full-scale or semi full-scale structures with correct humidity, load and boundary conditions. A number of concretes have...

  6. Innovative technology summary report: Concrete grinder

    International Nuclear Information System (INIS)

    1998-09-01

    The Flex concrete grinder is a lightweight, hand-held concrete and coating removal system used for decontaminating or stripping concrete surfaces. The US Department of Energy has successfully demonstrated it for decontaminating walls and floors for free release surveys prior to demolition work. The grinder is an electric-powered tool with a vacuum port for dust extraction and a diamond grinding wheel. The grinder is suitable for flat or slightly curved surfaces and results in a smooth surface, which makes release surveys more reliable. The grinder is lightweight and produces very little vibration, thus reducing worker fatigue. The grinder is more efficient than traditional baseline, tools at removing contamination from concrete surfaces (more than four times faster than hand-held pneumatic scabbling and scaling tools). Grinder consumables (i.e., replacement diamond grinding wheel) are more expensive than the replacement carbide parts for the scaler and scabbler. However, operating costs are outweighed by the lower purchase price of the grinder (50% of the price of the baseline scaler and 8% of the price of the baseline scabbler). Overall, the concrete grinder is an attractive alternative to traditional scabbling and scaling pneumatic tools. To this end, in July 1998, the outer rod room exposed walls of the Safe Storage Enclosure (SSE), an area measuring approximately 150 m 2 , may be decontaminated with the hand-held grinder. This concrete grinder technology was demonstrated for the first time at the DOE's Hanford Site. Decontamination of a sample room walls was performed at the C Reactor to free release the walls prior to demolition. The demonstration was conducted by onsite D and D workers, who were instructed by the vendor prior to and during the demonstration

  7. Dynamic tensile resistance of concrete-split Hopkinson bar test

    NARCIS (Netherlands)

    Weerheijm, J.; Sharma, A.; Ozbolt, J.

    2013-01-01

    The behavior of concrete structures is strongly influenced by the loading rate. Compared to quasi-static loading, on meso and macro-scale concrete loaded by impact loading acts in a different way. First, there is a strain-rate influence on strength, stiffness, ductility, and, second, there are

  8. Dynamic tensile resistance of concrete - Split hopkinson bar test

    NARCIS (Netherlands)

    Ožbolt, J.; Weerheijm, J.; Sharma, A.

    2013-01-01

    The behavior of concrete structures is strongly influenced by the loading rate. Compared to quasi-static loading, on meso and macro-scale concrete loaded by impact loading acts in a different way. First, there is a strain-rate influence on strength, stiffness, ductility, and, second, there are

  9. Concrete Nanoscience and Nanotechnology: Definitions and Applications

    Science.gov (United States)

    Garboczi, E. J.

    There are many improvements needed in concrete, especially for use in renewal and expansion of the world’s infrastructure. Nanomodification can help solve many of these problems. However, concrete has been slow to catch on to the nanotechnology revolution. There are several reasons for this lag in the nanoscience and nanotechnology of concrete (NNC). First is the lack of a complete basic understanding of chemical and physical mechanisms and structure at the nanometer length scale. Another reason is the lack of a broad understanding of what nanomodification means to concrete, which is a liquid-solid composite. NNC ideas need to profit from, but not be bound by, experience with other materials. As an illustration of these ideas, a specific application will be given of using nano-size molecules in solution to affect the viscosity of the concrete pore solution so that ionic diffusion is slowed. A molecular-based understanding would help move this project towards true nanotechnology. A final section of this paper lists some possibly fruitful focus areas for the nanoscience and nanotechnology of concrete.

  10. Validation of the "Pain Block" concrete ordinal scale for children aged 4 to 7 years.

    Science.gov (United States)

    Jung, Jin Hee; Lee, Jin Hee; Kim, Do Kyun; Jung, Jae Yun; Chang, Ikwan; Kwon, Hyuksool; Shin, Jonghwan; Paek, So Hyun; Oh, Sohee; Kwak, Young Ho

    2018-04-01

    Pain scales using faces are commonly used tools for assessing pain in children capable of communicating. However, some children require other types of pain scales because they have difficulties in understanding faces pain scales. The goal of this study was to develop and validate the "Pain Block" concrete ordinal scale for 4- to 7-year-old children. This was a multicenter prospective observational study in the emergency department. Psychometric properties (convergent validity, discriminative validity, responsivity, and reliability) were compared between the "Pain Block" pain scale and the Faces Pain Scale-Revised (FPS-R) to assess the validity of the "Pain Block" scale. A total of 163 children (mean age, 5.5 years) were included in this study. The correlation coefficient between the FPS-R and the Pain Block scale was 0.82 for all participants which increased with age. Agreement between the 2 pain scales was acceptable, with 95.0% of the values within the predetermined limit. The differences in mean scores between the painful group and nonpainful group were 3.3 (95% confidence interval, 2.6-4.1) and 3.8 (95% confidence interval, 3.1-4.6) for FPR-S and Pain Block, respectively. The pain scores for both pain scales were significantly decreased when analgesics or pain-relieving procedures were administered (difference in Pain Block, 2.4 [1.4-3.3]; and difference in FPS-R, 2.3 [1.3-3.3]). The Pain Block pain scale could be used to assess pain in 4- to 7-year-old children capable of understanding and counting up to the number 5, even if they do not understand the FPS-R pain scale.

  11. Recycled Concrete as Aggregate for Structural Concrete Production

    OpenAIRE

    Mirjana Malešev; Vlastimir Radonjanin; Snežana Marinković

    2010-01-01

    A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC) as a control concrete and two types of concrete made with natural fine and recycle...

  12. The Future Concrete: Self-Compacting Concrete

    OpenAIRE

    Iureş, Liana; Bob, Corneliu

    2010-01-01

    The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  13. Microbial healing of cracks in concrete: a review.

    Science.gov (United States)

    Joshi, Sumit; Goyal, Shweta; Mukherjee, Abhijit; Reddy, M Sudhakara

    2017-11-01

    Concrete is the most widely used construction material of the world and maintaining concrete structures from premature deterioration is proving to be a great challenge. Early age formation of micro-cracking in concrete structure severely affects the serviceability leading to high cost of maintenance. Apart from conventional methods of repairing cracks with sealants or treating the concrete with adhesive chemicals to prevent the cracks from widening, a microbial crack-healing approach has shown promising results. The unique feature of the microbial system is that it enables self-healing of concrete. The effectiveness of microbially induced calcium carbonate precipitation (MICCP) in improving durability of cementitious building materials, restoration of stone monuments and soil bioclogging is discussed. Main emphasis has been laid on the potential of bacteria-based crack repair in concrete structure and the applications of different bacterial treatments to self-healing cracks. Furthermore, recommendations to employ the MICCP technology at commercial scale and reduction in the cost of application are provided in this review.

  14. Initial rheological description of high performance concretes

    Directory of Open Access Journals (Sweden)

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  15. The Future Concrete: Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Liana Iureş

    2010-01-01

    Full Text Available The paper presents the characteristics of the self-compacting concretes, their advantages and disadvantages when they are used in buildings. Due to its properties and composition, the self-compacting concrete is described here as being one of the future friendly enviromental material for buildings. Tests concerning to obtaining a self-compacting concrete, together with the specific fresh concrete properties tests, are described.

  16. Measurements of Accelerator-Produced Leakage Neutron and Photon Transmission through Concrete

    International Nuclear Information System (INIS)

    2002-01-01

    Optimum shielding of the radiation from particle accelerators requires knowledge of the attenuation characteristics of the shielding material. The most common material for shielding this radiation is concrete, which can be made using various materials of different densities as aggregates. These different concrete mixes can have very different attenuation characteristics. Information about the attenuation of leakage photons and neutrons in ordinary and heavy concrete is, however, very limited. To increase our knowledge and understanding of the radiation attenuation in concrete of various compositions, we have performed measurements of the transmission of leakage radiation, photons and neutrons, from a Varian Clinac 2100C medical linear accelerator operating at maximum electron energies of 6 and 18 MeV. We have also calculated, using Monte Carlo techniques, the leakage neutron spectra and its transmission through concrete. The results of these measurements and calculations extend the information currently available for designing shielding for medical electron accelerators. Photon transmission characteristics depend more on the manufacturer of the concrete than on the atomic composition. A possible cause for this effect is a non-uniform distribution of the high-density aggregate, typically iron, in the concrete matrix. Errors in estimated transmission of photons can exceed a factor of three, depending on barrier thickness, if attenuation in high-density concrete is simply scaled from that of normal density concrete. We found that neutron transmission through the high-density concretes can be estimated most reasonably and conservatively by using the linear tenth-value layer of normal concrete if specific values of the tenth-value layer of the high-density concrete are not known. The reason for this is that the neutron transmission depends primarily on the hydrogen content of the concrete, which does not significantly depend on concrete density. Errors of factors of two

  17. Multi-physical and multi-scale deterioration modelling of re-inforced concrete: modelling corrosion-induced concrete damage

    DEFF Research Database (Denmark)

    Michel, Alexander; Lepech, Michael; Stang, Henrik

    2016-01-01

    for the discretization of the concrete domain. To model the expansive nature of solid corrosion products, a thermal analogy is used. The modelling approach further accounts for the penetration of solid corrosion products into the available pore space of the surrounding cementitious materials and non-uniform distribution...

  18. Differential emotional processing in concrete and abstract words.

    Science.gov (United States)

    Yao, Bo; Keitel, Anne; Bruce, Gillian; Scott, Graham G; O'Donnell, Patrick J; Sereno, Sara C

    2018-02-12

    Emotion (positive and negative) words are typically recognized faster than neutral words. Recent research suggests that emotional valence, while often treated as a unitary semantic property, may be differentially represented in concrete and abstract words. Studies that have explicitly examined the interaction of emotion and concreteness, however, have demonstrated inconsistent patterns of results. Moreover, these findings may be limited as certain key lexical variables (e.g., familiarity, age of acquisition) were not taken into account. We investigated the emotion-concreteness interaction in a large-scale, highly controlled lexical decision experiment. A 3 (Emotion: negative, neutral, positive) × 2 (Concreteness: abstract, concrete) design was used, with 45 items per condition and 127 participants. We found a significant interaction between emotion and concreteness. Although positive and negative valenced words were recognized faster than neutral words, this emotion advantage was significantly larger in concrete than in abstract words. We explored potential contributions of participant alexithymia level and item imageability to this interactive pattern. We found that only word imageability significantly modulated the emotion-concreteness interaction. While both concrete and abstract emotion words are advantageously processed relative to comparable neutral words, the mechanisms of this facilitation are paradoxically more dependent on imageability in abstract words. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Concrete road barriers subjected to impact loads: An overview

    Directory of Open Access Journals (Sweden)

    Muhammad Fauzi Bin Mohd. Zain

    Full Text Available Abstract Concrete barriers prevent vehicles from entering the opposite lane and going off the road. An important factor in the design of concrete barriers is impact load, which a vehicle exerts upon collision with a concrete barrier. This study suggests that a height of 813 mm, a base width of 600 mm, and a top width of 240 mm are optimum dimensions for a concrete barrier. These dimensions ensure the stability of concrete barriers during vehicle collisions. An analytical and experimental model is used to analyze the concrete barrier design. The LS-DYNA software is utilized to create the analytical models because it can effectively simulate vehicle impact on concrete barriers. Field tests are conducted with a vehicle, whereas laboratory tests are conducted with machines that simulate collisions. Full-scale tests allow the actual simulation of vehicle collisions with concrete barriers. In the vehicle tests, a collision angle of 25°, collision speeds of 100 km per hour, and a vehicle weighing more than 2 t are considered in the reviewed studies. Laboratory tests are performed to test bridge concrete barriers in static condition.

  20. The tunnel sealing experiment: The construction and performance of full scale clay and concrete bulkheads at elevated pressure and temperature

    International Nuclear Information System (INIS)

    Martino, J.B.; Dixon, D.A.; Vignal, B.; Fujita, T.

    2006-01-01

    Concepts for deep geologic disposal of radioactive waste, as proposed by many international organizations, include bulkheads or plugs in the shaft, or at the entrances to disposal rooms, or both. The seals are primarily to prevent groundwater transport of radioisotopes along underground openings but also provide a measure of security by restricting tunnel access. The safety of the respective disposal systems relies on the combined performance of the natural barriers (host rock) and engineered barriers (the waste form, the waste container, the buffer barrier, the room, tunnel and shaft backfill and sealing materials). To understand the functionality of these systems it is important to study them in whole or in part at full scale. One such study was the Tunnel Sealing Experiment (TSX), a full-scale tunnel seal component study. The TSX showed it is possible to construct tunnel seals that limit axial flow under high hydraulic gradient and elevated temperature. The clay and concrete bulkheads had seepage rates of 1 mL/min and 10 mL/min at ambient temperature. Elevated temperatures caused a further decrease in seepage past the concrete bulkhead to approximately 2-3 mL/min. (author)

  1. TRANSPARENT CONCRETE

    OpenAIRE

    Sandeep Sharma*, Dr. O.P. Reddy

    2017-01-01

    Transparent concrete is the new type of concrete introduced in todays world which carries special property of light transmitting due to presence of light Optical fibres. Which is also known as translucent concrete or light transmitting concrete, it is achieved by replacing coarse aggregates with transparent alternate materials (Optical fibres). The binding material in transparent concrete may be able to transmit light by using clear resins the concrete mix. The concrete used in industry in pr...

  2. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Baumann, S.; Teunckens, L.; Walthery, R.; Lewandowski, P.; Millen, D.

    2002-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale and will continue till the end of 2005. In view of the final demolition of the building, a clearance methodology has to be proposed. Application of the methodology applied for the storage buildings of the pilot project is complicated for several reasons. Although this methodology is not rejected as such, an alternative has been studied thoroughly. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radioactivity. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  3. Freeze-thaw durability of air-entrained concrete.

    Science.gov (United States)

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to "the test method of long-term and durability on ordinary concrete" GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  4. Chloride Transport in Undersea Concrete Tunnel

    Directory of Open Access Journals (Sweden)

    Yuanzhu Zhang

    2016-01-01

    Full Text Available Based on water penetration in unsaturated concrete of underwater tunnel, a diffusion-advection theoretical model of chloride in undersea concrete tunnel was proposed. The basic parameters including porosity, saturated hydraulic conductivity, chloride diffusion coefficient, initial water saturation, and moisture retention function of concrete specimens with two water-binder ratios were determined through lab-scale experiments. The variation of chloride concentration with pressuring time, location, solution concentration, initial saturation, hydraulic pressure, and water-binder ratio was investigated through chloride transport tests under external water pressure. In addition, the change and distribution of chloride concentration of isothermal horizontal flow were numerically analyzed using TOUGH2 software. The results show that chloride transport in unsaturated concrete under external water pressure is a combined effect of diffusion and advection instead of diffusion. Chloride concentration increased with increasing solution concentration for diffusion and increased with an increase in water pressure and a decrease in initial saturation for advection. The dominant driving force converted with time and saturation. When predicting the service life of undersea concrete tunnel, it is suggested that advection is taken into consideration; otherwise the durability tends to be unsafe.

  5. Development of concrete cask storage technology for spent nuclear fuel

    International Nuclear Information System (INIS)

    Saegusa, Toshiari; Shirai, Koji; Takeda, Hirofumi

    2010-01-01

    Need of spent fuel storage in Japan is estimated as 10,000 to 25,000 t by 2050 depending on reprocessing. Concrete cask storage is expected due to its economy and risk hedge for procurement. The CRIEPI executed verification tests using full-scale concrete casks. Heat removal performances in normal and accidental conditions were verified and analytical method for the normal condition was established. Shielding performance focus on radiation streaming through the air outlet was tested and confirmed to meet the design requirements. Structural integrity was verified in terms of fracture toughness of stainless steel canister for the cask of accidental drop tests. Cracking of cylindrical concrete container due to thermal stress was confirmed to maintain its integrity. Seismic tests of concrete cask without tie-down using scale and full-scale model casks were carried out to confirm that the casks do not tip-over and the spent fuel assembly keeps its integrity under severe earthquake conditions. Long-term integrity of concrete cask for 40 to 60 years is required. It was confirmed using a real concrete cask storing real spent fuel for 15 years. Stress corrosion cracking is serious issue for concrete cask storage in the salty air environment. The material factor was improved by using highly corrosion resistant stainless steel. The environmental factor was mitigated by the development of salt reduction technology. Estimate of surface salt concentration as a function of time became possible. Monitoring technology to detect accidental loss of containment of the canister by the stress corrosion cracking was developed. Spent fuel integrity during storage was evaluated in terms of hydrogen movement using spent fuel claddings stored for 20 years. The effect of hydrogen on the integrity of the cladding was found negligible. With these results, information necessary for real service of concrete cask was almost prepared. Remaining subject is to develop more economical and rational

  6. Final Report: Self-Consolidating Concrete Construction for Modular Units

    International Nuclear Information System (INIS)

    Gentry, Russell; Kahn, Lawrence; Kurtis, Kimberly; Petrovic, Bojan; Loreto, Giovanni; Van Wyk, Jurie; Canterero-Leal, Carlos

    2016-01-01

    This report focuses on work completed on DE-NE0000667, Self-Consolidating Concrete for Modular Units, in connection with the Department of Energy Nuclear Energy Enabling Technologies (DOE-NEET) program. This project was completed in the School of Civil and Environmental Engineering at the Georgia Institute of Technology, with Westinghouse Corporation as the industrial partner. The primary objective of this project was to develop self-consolidating concrete (also termed ''self-compacting concrete'' or SCC) mixtures so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed and validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The SCC mixtures developed were able to carry shearing forces across the cold-joint boundaries. This ''self-roughening'' was achieved by adding a tailored fraction of lightweight aggregate (LWA) to the concrete mix, some of which raised to the surface during curing, forming a rough surface on which subsequent concrete placements were made. The self-roughening behavior was validated through three sets of structural tests. Shear friction on small-scale specimens with cold joints was assessed using varying fractions of LWA and with varying amounts of external steel plate reinforcement. The results show that the shear friction coefficient, to be used with the provisions of ACI 318-14, Section 22.9, can be taken as 1.35. Mid-scale beam tests were completed to assess the cold-joint capacity in both in-plane and out-of-plane bending. The results showed that the self-roughened joints performed as well as monolithic joints. The final assessment was a full-scale test using a steel composite module supplied by

  7. Simulation analysis of impact tests of steel plate reinforced concrete and reinforced concrete slabs against aircraft impact and its validation with experimental results

    International Nuclear Information System (INIS)

    Sadiq, Muhammad; Xiu Yun, Zhu; Rong, Pan

    2014-01-01

    Highlights: • Simulation analysis is carried out with two constitutive concrete models. • Winfrith model can better simulate nonlinear response of concrete than CSCM model. • Performance of steel plate concrete is better than reinforced concrete. • Thickness of safety related structures can be reduced by adopting steel plates. • Analysis results, mainly concrete material models should be validated. - Abstract: The steel plate reinforced concrete and reinforced concrete structures are used in nuclear power plants for protection against impact of an aircraft. In order to compare the impact resistance performance of steel plate reinforced concrete and reinforced concrete slabs panels, simulation analysis of 1/7.5 scale model impact tests is carried out by using finite element code ANSYS/LS-DYNA. The damage modes of all finite element models, velocity time history curves of the aircraft engine and damage to aircraft model are compared with the impact test results of steel plate reinforced concrete and reinforced concrete slab panels. The results indicate that finite element simulation results correlate well with the experimental results especially for constitutive winfrith concrete model. Also, the impact resistance performance of steel plate reinforced concrete slab panels is better than reinforced concrete slab panels, particularly the rear face steel plate is very effective in preventing the perforation and scabbing of concrete than conventional reinforced concrete structures. In this way, the thickness of steel plate reinforced concrete structures can be reduced in important structures like nuclear power plants against impact of aircraft. It also demonstrates the methodology to validate the analysis procedure with experimental and analytical studies. It may be effectively employed to predict the precise response of safety related structures against aircraft impact

  8. How Concrete is Concrete

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2010-07-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics

  9. How Concrete is Concrete

    OpenAIRE

    Koeno Gravemeijer

    2010-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two diff...

  10. Effect of insulating concrete forms in concrete compresive strength

    Science.gov (United States)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  11. Dynamic simulation of collisions of heavy high-speed trucks with concrete barriers

    International Nuclear Information System (INIS)

    Itoh, Yoshito; Liu, Chunlu; Kusama, Ryuichi

    2007-01-01

    Real vehicle collision experiments on full-scale road safety barriers are important to determine the outcome of a vehicle versus barrier impact accident. However, such experiments require large investment of time and money. Numerical simulation has therefore been imperative as an alternative method for testing concrete barriers. In this research, spring subgrade models were first developed to simulate the ground boundary of concrete barriers. Both heavy trucks and concrete barriers were modeled using finite element methods (FEM) to simulate dynamic collision performances. Comparison of the results generated from computer simulations and on-site full-scale experiments demonstrated that the developed models could be applied to simulate the collision of heavy trucks with concrete barriers to provide the data to design new road safety barriers and analyze existing ones

  12. Protective design of critical infrastructure with high performance concretes

    International Nuclear Information System (INIS)

    Riedel, W.; Nöldgen, M.; Stolz, A.; Roller, C.

    2012-01-01

    Conclusions: High performance concrete constructions will allow innovative design solutions for critical infrastructures. Validation of engineering methods can reside on large and model scale experiments conducted on conventional concrete structures. New consistent impact experiments show extreme protection potential for UHPC. Modern FEM with concrete models and explicit rebar can model HPC and UHPC penetration resistance. SDOF and TDOF approaches are valuable design tools on local and global level. Combination of at least 2 out of 3 design methods FEM – XDOF- EXP allow reliable prediction and efficient innovative designs

  13. Microconcrete - a reasonably priced method for examining the supporting characteristics of reinforced concrete structures

    International Nuclear Information System (INIS)

    Sautner, M.

    1982-01-01

    Micro-concrete technology was developed during the last few years so that investigations on small micro-concrete models with a length scale of about 1:15 can be carried out similar to large scale experiments on reinforced concrete. In this way, large scale experiments can be supplemented at a reasonable price, cheap data can be obtained for the further development of computer algorithms, the support characteristics studied and the basic dimensions can be worked out. This is important these days, so that on the one hand better use can be made of the material and on the other hand research resources can be saved. (orig.) [de

  14. Self-Placing Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Certain concrete pours have areas where the congestion of reinforcing bars make placement of concrete almost impossible. Using conventional placing and vibration techniques, the resulting concrete can have considerable honeycombing due to the development of voids. Self-placing concrete is a possible solution to the problem. Also known as self-compactable concrete, self-consolidating concrete, flowable concrete, and non-vibration concrete. These concretes eliminate the need for vibration in a ...

  15. Development of Practical Remediation Process for Uranium-Contaminated Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. S.; Kim, W. S.; Kim, G. N.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    A volume reduction of the concrete waste by the appropriate treatment technologies will decrease the amount of waste to be disposed of and result in a reduction of the disposal cost and an enhancement of the efficiency of the disposal site. Our group has developed a 100 drums/year decontamination process and facilities for the decontamination of radioactive concrete. This practical scale process is little known. A practical decontamination process was developed to remove uranium from concrete pieces generated from the decommissioning of a uranium conversion plant. The concrete pieces are divided into two groups: concrete coated with and without epoxy. For the removal of epoxy from the concrete, direct burning by an oil flame is preferable to an electric heating method. The concrete blocks are crushed to below 30 mm and sifted to 1 mm. When the concrete pieces larger than 1 mm are sequentially washed with a clear washing solution and 1.0 M of nitric acid, most of their radioactivity reaches below the limit value of uranium for self-disposal. The concrete pieces smaller than 1 mm are decontaminated in a rotary washing machine by nitric acid, and an electrokinetic equipment is also used if their radioactivity is high.

  16. Development of Practical Remediation Process for Uranium-Contaminated Concrete

    International Nuclear Information System (INIS)

    Kim, S. S.; Kim, W. S.; Kim, G. N.; Moon, J. K.

    2013-01-01

    A volume reduction of the concrete waste by the appropriate treatment technologies will decrease the amount of waste to be disposed of and result in a reduction of the disposal cost and an enhancement of the efficiency of the disposal site. Our group has developed a 100 drums/year decontamination process and facilities for the decontamination of radioactive concrete. This practical scale process is little known. A practical decontamination process was developed to remove uranium from concrete pieces generated from the decommissioning of a uranium conversion plant. The concrete pieces are divided into two groups: concrete coated with and without epoxy. For the removal of epoxy from the concrete, direct burning by an oil flame is preferable to an electric heating method. The concrete blocks are crushed to below 30 mm and sifted to 1 mm. When the concrete pieces larger than 1 mm are sequentially washed with a clear washing solution and 1.0 M of nitric acid, most of their radioactivity reaches below the limit value of uranium for self-disposal. The concrete pieces smaller than 1 mm are decontaminated in a rotary washing machine by nitric acid, and an electrokinetic equipment is also used if their radioactivity is high

  17. Concrete

    DEFF Research Database (Denmark)

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities. Through tangible experiments the project...... specific for this to happen. And the knowledge and intention behind the drawing becomes specialised through the understanding of the fabrication processes and their affect on the materials.The structure Concrete is a result of a multi-angled kerf series in ash wood and a concrete base. The ash wood is cut...... using a 5-axis CNC router with a thin saw blade attached. The programming of the machining results in variations of kerfs that lets the ash wood twist into unique shapes.The shapes of the revolving ash ribbons continue into the concrete creating a cohesive shape. The form for the concrete itself is made...

  18. Build-up Factor Calculation for Ordinary Concrete, Baryte Concrete and Blast-furnace Slugges Concrete as γ Radiation Shielding

    International Nuclear Information System (INIS)

    Isman MT; Elisabeth Supriatni; Tochrul Binowo

    2002-01-01

    Calculation of build up factor ordinary concrete, baryte concrete and blast-furnace sludge concrete have been carried out. The calculations have been carried out by dose rate measurement of Cs 137 source before and after passing through shielding. The investigated variables were concrete type, thickness of concrete and relative possession of concrete. Concrete type variables are ordinary concrete, baryte concrete and blast sludge furnace concrete. The thickness variables were 6, 12, 18, 24, 30 and 36 cm. The relative position variables were dose to the source and close to detector. The result showed that concrete type and position did not have significant effect to build-up factor value, while the concrete thickness (r) and the attenuation coefficient (μ) were influenced to the build-up factor. The higher μr value the higher build-up factor value. (author)

  19. Spalling of concrete subjected to blast loading

    Directory of Open Access Journals (Sweden)

    Foglar M.

    2013-09-01

    Full Text Available This paper presents outcomes of the blast field tests of FRC and reinforced concrete specimens, which were performed in cooperation with the Czech Army corps and Police of the Czech Republic in the military training area Boletice. The numerical evaluation of the experiments focused on the spalling of concrete subjected to blast loading started after the first set of the tests, took almost 3 years and required further small-scale experiments performed in the labs of the Czech Technical University.

  20. NANOMODIFIED CONCRETE

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available One of the main directions in construction material science is the development of  next generation concrete that is ultra-dense, high-strength, ultra-porous, high heat efficient, extra corrosion-resistant. Selection of such direction is caused by extreme operational impacts on the concrete, namely: continuously increasing load on the concrete and various dynamics of such loads; the necessity in operation of concrete products in a wide temperature range and their exposure to various chemical and physical effects.The next generation concrete represents high-tech concrete mixtures with additives that takes on and retain the required properties when hardening and being used under any operational conditions. A differential characteristic of the next generation concrete is its complexity that presumes usage of various mineral dispersed components, two- and three fractional fine and coarse aggregates, complex chemical additives, combinations of polymer and iron reinforcement.Design strength and performance properties level of the next generation concrete is achieved by high-quality selection of the composition, proper selection of manufacturing techniques, concrete curing, bringing the quality of concrete items to the required level of technical condition during the operational phase. However, directed formation of its structure is necessary in order to obtain high-tech concrete.Along with the traditional methods for regulation of the next generation concrete structure, modification of concrete while using silica nanoparticles is also considered as a perspective one because the concrete patterning occurs due to introduction of a binder in a mineral matrix. Due to this it is possible to obtain nano-modified materials with completely new properties.The main problem with the creation of nano-modified concrete is a uniform distribution of nano-materials in the volume of the cement matrix which is particularly important in the cases of adding a modifier in

  1. Comparison of pre-test analyses with the Sizewell-B 1:10 scale prestressed concrete containment test

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Parks, M.B.

    1991-01-01

    This paper describes pretest analyses of a one-tenth scale model of the 'Sizewell-B' prestressed concrete containment building. The work was performed by ANATECH Research Corp. under contract with Sandia National Laboratories (SNL). Hydraulic testing of the model was conducted in the United Kingdom by the Central Electricity Generating Board (CEGB). In order to further their understanding of containment behavior, the USNRC, through an agreement with the United Kingdom Atomic Energy Authority (UKAEA), also participated in the test program with SNL serving as their technical agent. The analyses that were conducted included two global axisymmetric models with 'bonded' and 'unbonded' analytical treatment of meridional tendons, a 3D quarter model of the structure, an axisymmetric representation of the equipment hatch region, and local plane stress and r-θ models of a buttress. Results of these analyses are described and compared with the results of the test. A global hoop failure at midheight of the cylinder and a shear/bending type failure at the base of the cylinder wall were both found to have roughly equal probability of occurrence; however, the shear failure mode had higher uncertainty associated with it. Consequently, significant effort was dedicated to improving the modeling capability for concrete shear behavior. This work is also described briefly. (author)

  2. Comparison of pre-test analyses with the Sizewell-B 1:10 scale prestressed concrete containment test

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Parks, M.B.

    1991-01-01

    This paper describes pretest analyses of a one-tenth scale model of the Sizewell-B prestressed concrete containment building. The work was performed by ANATECH Research Corp. under contract with Sandia National Laboratories (SNL). Hydraulic testing of the model was conducted in the United Kingdom by the Central Electricity Generating Board (CEGB). In order to further their understanding of containment behavior, the USNRC, through an agreement with the United Kingdom Atomic Energy Authority (UKAEA), also participated in the test program with SNL serving as their technical agent. The analyses that were conducted included two global axisymmetric models with ''bonded'' and ''unbonded'' analytical treatment of meridional tendons, a 3D quarter model of the structure, an axisymmetric representation of the equipment hatch region, and local plan stress and r-θ models of a buttress. Results of these analyses are described and compared with the results of the test. A global hoop failure at midheight of the cylinder and a shear/bending type failure at the base of the cylinder wall were both found to have roughly equal probability of occurrence; however, the shear failure mode had higher uncertainty associated with it. Consequently, significant effort was dedicated to improving the modeling capability for concrete shear behavior. This work is also described briefly. 5 refs., 7 figs

  3. Activation of TRIGA Mark II research reactor concrete shield

    International Nuclear Information System (INIS)

    Zagar, Tomaz; Ravnik, Matjaz; Bozic, Matjaz

    2002-01-01

    To determine neutron activation inside the TRIGA research reactor concrete body a special sample-holder for irradiation inside horizontal channel was developed and tested. In the sample-holder various samples can be irradiated at different concrete shielding depths. In this paper the description of the sample-holder, experiment conditions and results of long-lived activation measurements are given. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides in the samples were measured with HPGe detector. The most active long-lived radioactive nuclides in ordinary concrete samples were found to be 60 Co and 152 Eu and in barytes concrete samples 60 Co, 152 Eu and 133 Ba. Measured activity density of all nuclides was found to decrease almost linearly with depth in logarithmic scale. (author)

  4. A numerical analysis method on thermal and shrinkage stress of concrete

    International Nuclear Information System (INIS)

    Takiguchi, Katsuki; Hotta, Hisato

    1991-01-01

    Thermal stress often causes cracks in large scale concrete such as that for dam construction. The drying shrinkage of concrete causes cracks in concrete structures. These thermal stress and drying shrinkage stress may be the main reasons cracks occur in concrete, however there is few research which dealt with both stresses together. The problems on the thermal stress and the drying shrinkage are not independent, and should be dealt with together, because both temperature and water content of concrete affect hydration reaction, and the degree of hydration determines all the characteristics of concrete at early age. In this study, the degree of hydration is formulated experimentally, and a numerical stress analysis method taking the hydration reaction in consideration is presented. The formulation of the rate of hydration reaction, the method of analyzing thermal and drying shrinkage stresses, the analytical results for a concrete column and the influence that continuous load exerted to the tensile strength of concrete are reported. The relatively high stress nearly equal to the tensile strength of concrete arises near the surface. (K.I.)

  5. Flow conditions of fresh mortar and concrete in different pipes

    International Nuclear Information System (INIS)

    Jacobsen, Stefan; Haugan, Lars; Hammer, Tor Arne; Kalogiannidis, Evangelos

    2009-01-01

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  6. Final Report: Self-Consolidating Concrete Construction for Modular Units

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Russell [Georgia Inst. of Technology, Atlanta, GA (United States); Kahn, Lawrence [Georgia Inst. of Technology, Atlanta, GA (United States); Kurtis, Kimberly [Georgia Inst. of Technology, Atlanta, GA (United States); Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Loreto, Giovanni [Georgia Inst. of Technology, Atlanta, GA (United States); Van Wyk, Jurie [Westinghouse Inc., Cranberry Township, PA (United States); Canterero-Leal, Carlos [Westinghouse Inc., Cranberry Township, PA (United States)

    2016-07-29

    This report focuses on work completed on DE-NE0000667, Self-Consolidating Concrete for Modular Units, in connection with the Department of Energy Nuclear Energy Enabling Technologies (DOE-NEET) program. This project was completed in the School of Civil and Environmental Engineering at the Georgia Institute of Technology, with Westinghouse Corporation as the industrial partner. The primary objective of this project was to develop self-consolidating concrete (also termed “self-compacting concrete” or SCC) mixtures so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed and validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The SCC mixtures developed were able to carry shearing forces across the cold-joint boundaries. This “self-roughening” was achieved by adding a tailored fraction of lightweight aggregate (LWA) to the concrete mix, some of which raised to the surface during curing, forming a rough surface on which subsequent concrete placements were made. The self-roughening behavior was validated through three sets of structural tests. Shear friction on small-scale specimens with cold joints was assessed using varying fractions of LWA and with varying amounts of external steel plate reinforcement. The results show that the shear friction coefficient, to be used with the provisions of ACI 318-14, Section 22.9, can be taken as 1.35. Mid-scale beam tests were completed to assess the cold-joint capacity in both in-plane and out-of-plane bending. The results showed that the self-roughened joints performed as well as monolithic joints. The final assessment was a full-scale test using a steel composite module supplied by Westinghouse and similar in construction to

  7. THE EFFECT OF HIGH TEMPERATURES ON CONCRETE INCORPORATING ULTRAFINE SILICA AND POLYPROPYLENE FIBERS

    Directory of Open Access Journals (Sweden)

    M. Benkaddour

    2016-05-01

    Full Text Available In recent years, lots of studies have attempted to examine the possible causes for the thermal instability of ordinary concrete and high performance. However, we still do not know the exact terms of phenomena taking place during exposure to high temperature and the technological solutions that exist (polypropylene fibres, thermal reported are not always well controlled.In this work, several concrete formulations have been tested and multi-scale observation of high-temperature behavior of ordinary concrete (compressive strength of 48 MPa and HPC (compressive strength 75 MPa were adopted. On the scale of the material, the identification of trends with temperature data such as porosity and particularly the mechanical properties allow us to better understand the behaviour of concrete at high temperature differential thermal analysis have been also made.

  8. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  9. How Concrete is Concrete?

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2011-01-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics.Key words:  Conceret Learning Materials, School Math, Common Sense, Scaffolding, Communication DOI: http://dx.doi.org/10.22342/jme.2.1.780.1-14

  10. Properties of high-workability concrete with recycled concrete aggregate

    OpenAIRE

    Safiuddin,; Alengaram,Ubagaram Johnson; Salam,Abdus; Jumaat,Mohd Zamin; Jaafar,Fahrol Fadhli; Saad,Hawa Binti

    2011-01-01

    This study presents the effects of recycled concrete aggregate (RCA) on the key fresh and hardened properties of concrete. RCA was used to produce high-workability concrete substituting 0-100% natural coarse aggregate (NCA) by weight. The slump and slump flow of fresh concretes were determined to ensure high workability. In addition, the compressive, flexural and splitting tensile strengths, modulus of elasticity, and permeable voids of hardened concretes were determined. The test results rev...

  11. Shear strength of palm oil clinker concrete beams

    International Nuclear Information System (INIS)

    Mohammed, Bashar S.; Foo, W.L.; Hossain, K.M.A.; Abdullahi, M.

    2013-01-01

    Highlights: ► Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. ► The palm oil clinker concrete can be classified as lightweight concrete. ► Full scale reinforced palm oil clinker concrete beams without shear reinforcement were tested. ► The CSA based design equation can be used for the prediction of shear capacity with a limit. - Abstract: This paper presents experimental results on the shear behavior of reinforced concrete beams made of palm oil clinker concrete (POCC). Palm oil clinker (POC) is a by-product of palm oil industry and its utilization in concrete production not only solves the problem of disposing this solid waste but also helps to conserve natural resources. Seven reinforced POCC beams without shear reinforcement were fabricated and their shear behavior was tested. POCC has been classified as a lightweight structural concrete with air dry density less than 1850 kg/m 3 and a 28-day compressive strength more than 20 MPa. The experimental variables which have been considered in this study were the POCC compressive strength, shear span–depth ratio (a/d) and the ratio of tensile reinforcement (ρ). The results show that the failure mode of the reinforced POCC beam is similar to that of conventional reinforced concrete beam. In addition, the shear equation of the Canadian Standard Association (CSA) can be used in designing reinforced POCC beam with ρ ⩾ 1. However, a 0.5 safety factor should be included in the formula for ρ < 1

  12. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly.......Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  13. COMPARATIVE STUDY OF GLASS FIBRE CONCRETE AND NORMAL CONCRETE

    OpenAIRE

    Mr.Yogesh S.Lanjewar*

    2018-01-01

    Concrete is basically the most important material concerning with the construction and infrastructural procedures, for which it should be of good strength and durability. Many researches are being conducted to make concrete more sustainable and of more strength and durability. Therefore keeping this in mind i have chosen to do the comparative study regarding the strength of normal concrete with the glass fibre added concrete using mix design procedure as per IS 10262-2009 for concrete. As w...

  14. Study of technological features of tubular compressed concrete members in concreting

    Directory of Open Access Journals (Sweden)

    Voskobiinyk Olena

    2017-01-01

    Full Text Available The technological features of core concreting were analyzed as the main factor in ensuring of strength and reliability of compressed concrete-filled steel tubular (CFST members. We have conducted the analysis of existing concreting methods of CFST members. In this respect, the most dangerous types of possible technological defects of concrete core of CFST members are inhomogeneity along the height, voids, caverns, and concrete “weak spots”. The authors considered the influence of such technological factors of concreting: placeability, time, concrete mixture compaction method, concreting height on the concrete core strength of CFST members. Based on the experimental studies conducted we suggested the regression correlations for determining the concrete strength of CFST members of different length depending on the movability of concrete mixture and a time for its compaction. The authors performed the correlation analysis of technological factors of concreting on the strength of the concrete core. We carried out the comparison of data on the concrete core strength of CFST members, that were determined by non-destructive methods (sclerometer test results, ultrasonic method and direct compression strength tests. We experimentally proved that using movable mixtures with the slump of about 4 – 9 cm the overall variation coefficient of concrete core strength of CFST members along the height reaches nearly 13%. Based on the experimental studies conducted we suggested the guidelines on optimal regimes of concrete compaction during manufacturing CFST members at a construction site environment.

  15. Properties of concretes produced with waste concrete aggregate

    International Nuclear Information System (INIS)

    Topcu, Ilker Bekir; Sengel, Selim

    2004-01-01

    An environmentally friendly approach to the disposal of waste materials, a difficult issue to cope with in today's world, would only be possible through a useful recycling process. For this reason, we suggest that clearing the debris from destroyed buildings in such a way as to obtain waste concrete aggregates (WCA) to be reused in concrete production could well be a partial solution to environmental pollution. For this study, the physical and mechanical properties along with their freeze-thaw durability of concrete produced with WCAs were investigated and test results presented. While experimenting with fresh and hardened concrete, mixtures containing recycled concrete aggregates in amounts of 30%, 50%, 70%, and 100% were prepared. Afterward, these mixtures underwent freeze-thaw cycles. As a result, we found out that C16-quality concrete could be produced using less then 30% C14-quality WCA. Moreover, it was observed that the unit weight, workability, and durability of the concretes produced through WCA decreased in inverse proportion to their endurance for freeze-thaw cycle

  16. Multi-scale approach of the mechanical behaviour of reinforced concrete structures - Application to nuclear plant containment buildings

    International Nuclear Information System (INIS)

    David, M.

    2012-01-01

    This thesis develops a multi-scale strategy to describe the mechanical behaviour of steel reinforcements and prestressing tendons in a reinforced concrete structure. This strategy is declined in several steps, which allow gradual integration of new physical phenomena. The first asymptotic model represents the effective elastic behaviour of heterogeneities periodically distributed on a surface. It combines an elastic interface behaviour and a membrane behaviour. A second asymptotic model then focuses on the behaviour of rigid fibers distributed on a surface, which may slide with respect to the surrounding volume. These models induce less stress concentrations than the usual truss models. They are implemented in the finite element code Code-Aster, and validated with respect to reference three-dimensional simulations. Their interaction with a macroscopic crack is studied. Finally, this strategy allows the modeling of experimental tests carried out on a portion of a containment building in real scale. (author)

  17. A method for three-dimensional structural analysis of reinforced concrete containment

    International Nuclear Information System (INIS)

    Kulak, R.F.; Fiala, C.

    1989-01-01

    A finite element method designed to assist reactor safety analysts in the three-dimensional numerical simulation of reinforced concrete containments to normal and off-normal mechanical loadings is presented. The development of a lined reinforced concrete plate element is described in detail, and the implementation of an empirical transverse shear failure criteria is discussed. The method is applied to the analysis of a 1/6th scale reinforced concrete containment model subjected to static internal pressurization. 11 refs., 14 figs., 1 tab

  18. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research...... in concrete hinges was more common different designs were proposed for the geometry and reinforcement. Previous research focused on fatigue, multi-axial stresses around the hinge throat, and the relation between rotation- and moment. But many different test-setups were proposed by different researchers...

  19. Significance of tests and properties of concrete and concrete-making materials

    CERN Document Server

    Pielert, James H

    2006-01-01

    Reflects a decade of technological changes in concrete industry! The newest edition of this popular ASTM publication reflects the latest technology in concrete and concrete-making materials. Six sections cover: (1) General information on the nature of concrete, sampling, variability, and testing laboratories. A new chapter deals with modeling cement and concrete properties. (2) Properties of freshly mixed concrete. (3) Properties of hardened concrete. (4) Concrete aggregates—this section has been revised and the chapters are presented in the order that most concerns concrete users: grading, density, soundness, degradation resistance, petrographic examination, reactivity, and thermal properties. (5) Materials other than aggregates—the chapter on curing materials now reflects the current technology of materials applied to new concrete surfaces. The chapter on mineral admixtures has been separated into two chapters: supplementary cementitious materials and ground slag. (6) Specialized concretes—contains a ...

  20. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  1. Study on Performance of Steel Fiber Concrete Bridge Pier Specimens under Horizontal Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Baiben Chen

    2017-01-01

    Full Text Available Because of that steel fiber can effectively prevent the extension and development of small cracks in the concrete, steel fiber reinforced concrete has good toughness and tensile strength. In the application of building materials, steel fiber reinforced concrete is an ideal elastic-plastic material. For the seismic performance, it has advantages. In order to analyze the seismic performance of steel fiber reinforced concrete, 4 piers of the scale model test under horizontal cyclic loading were done. The results showed that failure mode of steel fiber reinforced concrete is better than that of ordinary concrete, and has a large yield moment under the external loads.

  2. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  3. SOCON: a computer model for analyzing the behavior of sodium-concrete reactions

    International Nuclear Information System (INIS)

    Nguyen, D.G.; Muhlestein, L.D.

    1985-03-01

    Guided by experimental evidence available to date, ranging from basic laboratory studies to large scale tests, a mechanistic computer model (the SOCON model) has been developed to analyze the behavior of SOdium-CONcrete reactions. The model accounts for the thermal, chemical and mechanical phenomena which interact to determine the consequences of the reactions. Reaction limiting mechanisms could be any process which reduces water release and sodium transport to fresh concrete; the buildup of the inert reaction product layer would increase the resistance to sodium transport; water dry-out would decrease the bubble agitation transport mechanism. However, stress-induced failure of concrete, such as spalling, crushing and cracking, and a massive release of gaseous products (hydrogen, water vapor and CO 2 ) would increase the transport of sodium to the reaction zone. The results of SOCON calculations are in excellent agreement with measurements obtained from large-scale sodium-limestone concrete reaction tests of duration up to 100 hours conducted at the Hanford Engineering Development Laboratory. 8 refs., 7 figs

  4. Immobilisation of active concrete debris using soluble sodium silicates

    International Nuclear Information System (INIS)

    Field, S.N.; Jull, S.P.

    1991-01-01

    Demolition of concrete biological shields will generate large quantities of active demolition debris. The size distribution of such concrete may range from pieces of size less than one tonne down to dust. Handling and disposal methods for this material are still the subject of current research. Although the literature indicates that the mechanisms of silicate/concrete interaction are not well understood, successful setting of the smaller size fraction of concrete demolition debris can be achieved at laboratory scale. Hardened properties of the set slurry are also acceptable. A study of the full scale process has resulted in an outline design for a suitable on-site plant. Estimated capital costs of the equipment are of the order of pounds 1.1M. The project has shown that the material of less than 5mm particle size can be set by this technique. Whilst this meets the original objectives of immobilising dust, it had been hoped that the 10mm size material, (which will require removal from the larger debris before grouting can take place) could also be disposed of by the slurry setting technique. Co-disposal of slurry and large active items in the same container is unlikely to be worthwhile. 14 tabs., 5 figs., 30 refs

  5. Concrete-Filled Steel Tube Arch Bridges in China

    Directory of Open Access Journals (Sweden)

    Jielian Zheng

    2018-02-01

    Full Text Available In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key construction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world’s longest CFST arch bridge—the First Hejiang Yangtze River Bridge. The main construction technologies of reinforced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges—the Guangxi Yongning Yong River Bridge and the Yunnan–Guangxi Railway Nanpan River Bridge—is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges. Keywords: Concrete-filled steel tube (CFST arch bridge, Steel-reinforced concrete arch bridge, Cable-stayed fastening-hanging cantilever assembly, Vacuum-assisted pouring in-tube concrete, Adjusting load by stay cables

  6. Inelastic analysis of prestressed concrete secondary containments

    International Nuclear Information System (INIS)

    Murray, D.W.; Chitnuyanondh, L.; Wong, C.; Rijub-Agha, K.Y.

    1978-07-01

    An elastic-plastic constitutive model for the simulation of stress-strain response of concrete under any biaxial combination of compressive and/or tensile stresses is developed. An effective tensile stress-strain curve is obtained indirectly from experimental results of a test on a large scale prestressed concrete wall segment. These concrete properties are then utilized in predicting the response of a second test and the results compared with the experiment. Modificications to the BOSOR5 program, in order to incorporate the new constitutive relation into it, are described. Techniques of modelling structures in order to perform inelastic analysis of thin shell axisymmetric prestressed concrete secondary containments are investigated. The results of inelastic BOSOR5 analyses of two different models of the University of Alberta Test Structure are presented. The predicted deterioration of the structure and the limit states associated with its behaviour are determined and discussed. It is concluded that the technique is a practical one which can be used for the inelastic analysis of Gentilly-type containment structures. (author)

  7. Freeze-Thaw Durability of Air-Entrained Concrete

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2013-01-01

    Full Text Available One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles. The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss and internal crack growth (characterized by the loss of dynamic modulus of elasticity. The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  8. Numerical investigation of the bearing capacity of transversely prestressed concrete deck slabs

    NARCIS (Netherlands)

    Amir, S.; Van der Veen, C.; Walraven, J.C.; De Boer, A.

    2014-01-01

    The research subject of this paper is the bearing capacity of transversely prestressed concrete bridge decks between concrete girders under concentrated loads. Experiments on a 1:2 scale model of this bridge were carried out in the laboratory and a 3D nonlinear finite element model was developed in

  9. Creep and creep recovery of concrete subjected to triaxial compressive stresses at elevated temperature

    International Nuclear Information System (INIS)

    Ohnuma, Hiroshi; Abe, Hirotoshi

    1979-01-01

    In order to design rationally the vessels made of prestressed concrete for nuclear power stations and to improve the accuracy of high temperature creep analysis, the Central Research Institute of Electric Power Industry had carried out the proving experiments with scale models. In order to improve the accuracy of analysis, it is important to grasp the creep behavior of the concrete subjected to triaxial compressive stresses at high temperature as the basic property of concrete, because actual prestressed concrete vessels are in such conditions. In this paper, the triaxial compression creep test at 60 deg. C using the concrete specimens with same mixing ratio as the scale models is reported. The compressive strength of the concrete at the age of 28 days was 406 kg/cm 2 , and the age of the concrete at the time of loading was 63 days. Creep and creep recovery were measured for 5 months and 2 months, respectively. The creep of concrete due to uniaxial compression increased with temperature rise, and the creep strain at 60 deg. C was 2.54 times as much as that at 20 deg. C. The effective Poisson's ratio in triaxial compression creep was 0.15 on the average, based on the creep strain due to uniaxial compression at 60 deg. C. The creep recovery rate in high temperature, triaxial compression creep was 33% on the average. (Kako, I.)

  10. Mesoscale simulation of concrete spall failure

    Science.gov (United States)

    Knell, S.; Sauer, M.; Millon, O.; Riedel, W.

    2012-05-01

    Although intensively studied, it is still being debated which physical mechanisms are responsible for the increase of dynamic strength and fracture energy of concrete observed at high loading rates, and to what extent structural inertia forces on different scales contribute to the observation. We present a new approach for the three dimensional mesoscale modelling of dynamic damage and cracking in concrete. Concrete is approximated as a composite of spherical elastic aggregates of mm to cm size embedded in an elastic cement stone matrix. Cracking within the matrix and at aggregate interfaces in the μm range are modelled with adaptively inserted—initially rigid—cohesive interface elements. The model is applied to analyse the dynamic tensile failure observed in Hopkinson-Bar spallation experiments with strain rates up to 100/s. The influence of the key mesoscale failure parameters of strength, fracture energy and relative weakening of the ITZ on macromechanic strength, momentum and energy conservation is numerically investigated.

  11. Fibre Concrete 2017

    Science.gov (United States)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  12. Seismic Material Properties of Reinforced Concrete and Steel Casing Composite Concrete in Elevated Pile-Group Foundation

    Directory of Open Access Journals (Sweden)

    Zhou Mi

    2015-09-01

    Full Text Available The paper focuses on the material mechanics properties of reinforced concrete and steel casing composite concrete under pseudo-static loads and their application in structure. Although elevated pile-group foundation is widely used in bridge, port and ocean engineering, the seismic performance of this type of foundation still need further study. Four scale-specimens of the elevated pile-group foundation were manufactured by these two kinds of concrete and seismic performance characteristic of each specimen were compared. Meanwhile, the special soil box was designed and built to consider soil-pile-superstructure interaction. According to the test result, the peak strength of strengthening specimens is about 1.77 times of the others and the ultimate displacement is 1.66 times of the RC specimens. Additionally, the dissipated hysteric energy capability of strengthening specimens is more than 2.15 times of the others as the equivalent viscous damping ratio is reduced by 50%. The pinching effect of first two specimens is more obvious than latter two specimens and the hysteretic loops of reinforced specimens are more plumpness. The pseudo-static tests also provided the data to quantitatively assessment the positive effect of steel casing composite concrete in aseismatic design of bridge.

  13. Concrete laying laboratory

    International Nuclear Information System (INIS)

    Bastlova, K.

    1986-01-01

    The task of the concrete laying laboratory established within a special department for quality control and assurance at the Dukovany nuclear power plant, is to check the composition of concrete mixes produced by the central concrete production plant on the site, and the shipment, laying and processing of concrete. The composition is given of special barite and serpentinite concretes designed for biological shields. The system of checks and of filing the results is briefly described. Esperience is summed up from the operation of the concrete laying laboratory, and conclusions are formulated which should be observed on similar large construction sites. They include the precise definition of the designer's requirements for the quality of concrete, the surface finish of concrete surfaces, the method of concreting specific structures around bushings, increased density reinforcements and various technological elements, and requirements for shipment to poorly accessible or remote places. As for the equipment of the laboratory, it should be completed with an instrument for the analysis of fresh concrete mixes, a large capacity drying kiln, etc. (Z.M.)

  14. Novel shear capacity testing of ASR damaged full scale concrete bridge

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Hansen, Søren Gustenhoff; Barbosa, Ricardo Antonio

    2014-01-01

    A large number of concrete bridges in Denmark have to undergo wide-ranging maintenance work to prevent deterioration due to aggressive Alkali Silica Reaction (ASR). This destructive mechanism results in extensive cracking which is believed to affect the load carrying capacity of the structure...

  15. Multi-physical and multi-scale deterioration modelling of reinforced concrete part II: Coupling corrosion and damage at the structural scale

    DEFF Research Database (Denmark)

    Lepech, Michael; Rao, Anirudh; Kiremidjian, Anne

    2015-01-01

    Deterioration of reinforced concrete infrastructure such as bridges, tunnels, and buildings represents one of the major challenges currently facing developed countries. This deterioration leads to economic costs for maintenance and replacement, environmental impacts such increased global warming...... potential as a result of cement production and traffic emissions, and social costs related to traffic congestion and human health concerns. While engineering tools and methods for structural modelling and design of new reinforced concrete infrastructure are mature, the methods and tools for modelling...

  16. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    Science.gov (United States)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  17. Pervious Concrete

    OpenAIRE

    Torsvik, Øyvind André Hoff

    2012-01-01

    Pervious concrete is a material with a high degree of permeability but generally low strength. The material is primarily used for paving applications but has shown promise in many other areas of usage. This thesis investigates the properties of pervious concrete using normal Norwegian aggregates and practices. An overview of important factors when it comes to designing and producing pervious concrete is the result of this investigation. Several experiments have been performed in the concrete ...

  18. Sustainable Concrete Technology

    Directory of Open Access Journals (Sweden)

    Sim J.

    2015-12-01

    Full Text Available The growing concern over global warming and significant ecological changes requires sustainable development in all fields of science and technology. Concrete not only consumes huge amount of energy and natural sources, but also emits large amount of CO2, mainly due to the production of cement. It is evident that such large amount of concrete production has put significant impact on the energy, resource, environment, and ecology of the society. Hence, how to develop the concrete technology in a sustainable way has become a significant issue. In this paper, some of Korean researches for sustainable development of concrete are presented. These are sustainable strengthening for deteriorated concrete structure, sustainable reinforcement of new concrete structure, sustainable concrete using recycled aggregate and supplementary cementing materials and finally application of each technique to precast concrete.

  19. Design and testing of tubular polymeric capsules for self-healing of concrete

    Science.gov (United States)

    Araújo, M.; Van Tittelboom, K.; Feiteira, J.; Gruyaert, E.; Chatrabhuti, S.; Raquez, J.-M.; Šavija, B.; Alderete, N.; Schlangen, E.; De Belie, N.

    2017-10-01

    Polymeric healing agents have proven their efficiency to heal cracks in concrete in an autonomous way. However, the bottleneck for valorisation of self-healing concrete with polymeric healing agents is their encapsulation. In the present work, the suitability of polymeric materials such as poly(methyl methacrylate) (PMMA), polystyrene (PS) and poly(lactic acid) (PLA) as carriers for healing agents in self-healing concrete has been evaluated. The durability of the polymeric capsules in different environments (demineralized water, salt water and simulated concrete pore solution) and their compatibility with various healing agents have been assessed. Next, a numerical model was used to simulate capsule rupture when intersected by a crack in concrete and validated experimentally. Finally, two real-scale self-healing concrete beams were made, containing the selected polymeric capsules (with the best properties regarding resistance to concrete mixing and breakage upon crack formation) or glass capsules and a reference beam without capsules. The self-healing efficiency was determined after crack creation by 3-point-bending tests.

  20. Properties of concrete containing foamed concrete block waste as fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Budiea, A. M. A.; Zaidan, A. L. F.; Rasid, M. H.; Hazimmah, D. S.

    2017-11-01

    Environmental degradation due to excessive sand mining dumping at certain places and disposal of foamed concrete block waste from lightweight concrete producing industry are issues that should be resolved for a better and cleaner environment of the community. Thus, the main intention of this study is to investigate the potential of foamed concrete block waste as partial sand replacement in concrete production. The foamed concrete waste (FCW) used in this research that were supplied by a local lightweight concrete producing industry. The workability and compressive strength of concrete containing various percentage of foamed concrete waste as partial sand replacement has been investigated. Prior to the use, the foamed concrete waste were crushed to produce finer particles. Six concrete mixes containing various content of crushed foamed concrete waste that are 0%, 10%, 20%, 30%, 40% and 50% were used in this experimental work. Then the prepared specimens were placed in water curing until the testing age. Compressive strength test and flexural strength tests were conducted at 7, 14 and 28 days. The result shows that integration of crushed foamed concrete waste as partial sand replacement in concrete reduces the mix workability. It is interesting to note that both compressive strength and flexural strength of concrete improves when 30% crushed foamed concrete waste is added as partial sand replacement.

  1. Separate effects testing to investigate liner tearing of the 1:6-scale reinforced concrete containment building

    International Nuclear Information System (INIS)

    Spletzer, B.L.; Lambert, L.D.

    1993-01-01

    The US Nuclear Regulatory Commission (NRC) is investigating the performance of containments subject to severe accidents. This work is being performed by Sandia National Laboratories (SNL). In 1987, a 1:6-scale Reinforced Concrete Containment (RCC) model was tested to failure. The failure mode was a liner tear. As a result, a separate effects test program has been conducted to investigate liner tearing. This paper discusses the design of test specimens and the results of the testing. The post-test examination of the 1:6-scale RCC model revealed that the large tear was not an isolated event. Other small tears in similar locations were also discovered. All tears occurred near the insert-to-liner transition which is also the region of closest stud spacing. Also, all tears propagated vertically, in response to the hoop strain. Finally, all tears were adjacent to a row of studs. The tears point to a mechanism which could involve the liner/insert transition, the liner anchorage, and the material properties. The separate effects tests investigated these effects. The program included the design of three types of specimens with each simulating some features of the 1:6-scale RCC model. The specimens were instrumented using strain gages and photoelastic materials

  2. Recycled construction and demolition concrete waste as aggregate for structural concrete

    Directory of Open Access Journals (Sweden)

    Ashraf M. Wagih

    2013-12-01

    Full Text Available In major Egyptian cities there is a surge in construction and demolition waste (CDW quantities causing an adverse effect on the environment. The use of such waste as recycled aggregate in concrete can be useful for both environmental and economical aspects in the construction industry. This study discusses the possibility to replace natural coarse aggregate (NA with recycled concrete aggregate (RCA in structural concrete. An investigation into the properties of RCA is made using crushing and grading of concrete rubble collected from different demolition sites and landfill locations around Cairo. Aggregates used in the study were: natural sand, dolomite and crushed concretes obtained from different sources. A total of 50 concrete mixes forming eight groups were cast. Groups were designed to study the effect of recycled coarse aggregates quality/content, cement dosage, use of superplasticizer and silica fume. Tests were carried out for: compressive strength, splitting strength and elastic modulus. The results showed that the concrete rubble could be transformed into useful recycled aggregate and used in concrete production with properties suitable for most structural concrete applications in Egypt. A significant reduction in the properties of recycled aggregate concrete (RAC made of 100% RCA was seen when compared to natural aggregate concrete (NAC, while the properties of RAC made of a blend of 75% NA and 25% RCA showed no significant change in concrete properties.

  3. Incorporation of Savannah River Plant radioactive waste into concrete

    International Nuclear Information System (INIS)

    Stone, J.A.

    1975-01-01

    Results are reported of a laboratory-scale experimental program at the Savannah River Laboratory to gain information on the fixation of high-level radioactive wastes in concrete. Two concrete formulations, a High-Alumina Cement and a Portland Pozzalanic cement, were selected on the bases of leachability and compressive strength for the fixation of non-radioactive simulated wastes. Therefore, these two cements were selected for current studies for the fixation of actual Savannah River Plant high-level wastes. (U.S.)

  4. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  5. A review on the suitability of rubberized concrete for concrete bridge decks

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Radziah Abdullah, Siti; Anting Guntor, Nickholas; Syazani Leman, Alif

    2017-11-01

    Road authorities manage a large population of ageing bridges, a substantial number of which fail to meet the current requirements either due to deterioration and other structural deficiencies or as a result of the escalating demands imposed by increased traffic. This problem is related to the dynamic load from vehicles. This problem can be solved by producing a type of concrete that can reduce the amplitude of oscillation or vibration such as rubberized concrete. Green construction has been a very important aspect in concrete production field in the last decade. One of the most problematic waste materials is scrap tires. The use of scrap tires in civil engineering is increasing by producing rubberized concrete. Rubberized concrete is a type of concrete that is mixed with rubber. The purpose of this review is to justify the suitability of rubberized concrete for concrete bridge decks. Several parameters named physical, chemical and mechanical properties were measured to ensure the suitability of rubberized concrete for concrete bridge decks. Rubberized concrete has similar workability to normal concrete. The rubber reduced the density and compressive strength of the concrete while increased the flexural strength, water absorption and damping ratio. The used of rubber in concrete beyond 20% is not recommended due to decreasing in compressive strength. Rubberized concrete recommended to be used in circumstances where vibration damping was required such as in bridge construction as shock-wave absorber.

  6. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    Science.gov (United States)

    Peyvandi, Amirpasha

    of exposure to chloride solutions, pointing at the benefits of nanoplatelets towards enhancement of concrete resistance to chloride ion diffusion. It was also found that the intensity of Thaumasite, a key species marking sulfate attack on cement hydrates, was lowered with the addition of graphite nanoplatelets in concrete exposed to sulfate solutions. Experimental evaluations were conducted on scaled-up production of concrete nanocomposite in precast concrete plants. Full-scale reinforced concrete pipes and beams were produced using concrete nanocomposites. Durability and structural tests indicated that the use of graphite nanoplatelets, alone or in combination with synthetic (PVA) fibers, produced significant gains in the durability characteristics, and also benefited the structural performance of precast reinforced concrete products. The material and scaled-up structural investigations conducted in the project concluded that lower-cost graphite nanomaterials (e.g., graphite nanoplatelets) offer significant potentials as multi-functional additives capable of enhancing the barrier, durability and mechanical performance of concrete materials. The benefits of graphite nanomaterials tend to be more pronounced in higher-performance concrete materials.

  7. Thermal effects in concrete containment analysis

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.; Marchertas, A.H.

    1988-01-01

    Analyses of the thermo-mechanical response of the 1:6-scale reinforced concrete containment are presented. Three temperature- pressure scenarios are analyzed to complete loss of the pressure integrity. These results are compared to the analysis of pressure alone, to assess the importance of thermal effects. 19 refs., 9 figs., 8 tabs

  8. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Kamal, S.M.

    1994-01-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concrete shielding. Multiattribute utility theory is selected to accommodate decision maker's preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Illmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy weight heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Illmenite Serpentine concrete. (Author)

  9. Towards Better Understanding of Concrete Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2013-01-01

    Full Text Available The effect of using recycled concrete aggregates (RCA on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.

  10. Stripping demolition of reinforced concrete by electric heating method

    International Nuclear Information System (INIS)

    Nakagawa, Wahei; Nishita, Kiwamu; Kasai, Yoshio

    1993-01-01

    The present paper describes the procedures and results of a series of experiments the authors conducted to verify the efficiency of the electric heating method, previously proposed for so-called stripping demolition by applying electric current through reinforcing bars. In this method, a low voltage high current is run from one end to the other of a reinforcing bar or bars existing in a concrete structure, inducing intense heat in the bar(s) which in its turn brings about cracks in the surrounding concrete mass, facilitating secondary demolition by hammer picks or other means. The experiments were performed on full-scale biological shield wall mock-ups of a BWR and a small reactor. The results of the experiments are summarized as follows. (1) When electric current is applied through reinforcing bars, the bond between concrete and bars is loosened, and cracks start from one bar and progress toward other bars. Under appropriate conditions, the cracks in concrete run from the contact surface at one bar all the way to its the contact surface on another bar. (2) Cracks appear and grow only between two electrodes between which current is applied, not extending out of the area thus defined. (3) The concrete in the region closer to a current-bearing bar is intensely heated, whereas the concrete far from the bars remains nearly unheated. (4) Concrete walls after electric heating of bars disintegrates, if demolished with hammers, with the covering concrete are removed from the remaining portion of the structure together with heated bars, in shapes of flakes. (5) The reinforced concrete collapses in massive pieces of concrete, without generating much dust as is the case with the demolition of a concrete structure not heated by electricity. Results of the experiments show that the electric heating method is worth applying also to the demolition of nuclear power plants where concrete in the radioactivated surface region of shield walls needs to be stripped off in flakes

  11. Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition

    Science.gov (United States)

    Chowdhury, Ershad Ullah

    In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over

  12. Experimental verification of creep analyses for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Abe, H.; Ohnuma, H.

    1977-01-01

    The authors proposed a new method of creep analysis based on the theory of strain hardening, which assumes that accumulated creep at a given time influences the creep after that. This method was applied to calculate step-by-step the behaviors of uniaxial creep of concrete under variable temperatures and stresses, creep in reinforced concrete specimens and the behaviors of prestressed concrete beams under themal gradients. The experimental and calculated results agreed fairly well. Further, this method was incorporated in the finite element creep analysis for the prestressed concrete hollow cylinder and the full scale model. The calculated strain changes with time pursued closely those obtained by experiments. The above led to the conclusion that from the viewpoint of both accuracy and computation time the strain hardening method proposed by the authors may be judged advantageous for practical usages

  13. Evaluation of recycled concrete as aggregate in new concrete pavements.

    Science.gov (United States)

    2014-04-01

    This study evaluated the use of recycled concrete as coarse aggregate in new concrete pavements. : Recycled concrete aggregate (RCA) produced from demolished pavements in three geographically dispersed locations in Washington state were used to perfo...

  14. Acoustic emission diagnosis of concrete-piles damaged by earthquakes

    International Nuclear Information System (INIS)

    Shiotami, Tomoki; Sakaino, Norio; Ohtsu, Masayasu; Shigeishi, Mitsuhiro

    1997-01-01

    Earthquakes often impose unexpected damage on structures. Concerning the soundness of the structure, the upper portion is easily estimated by visual observation, while the lower portion located in deep underground is difficult to be estimated. Thus there exist few effective methods to investigate underground structures. In this paper, a new inspection technique for damage evaluation of concrete-piles utilizing acoustic emission (AE) is proposed, and is verified by a series of experiments. Firstly, such basic characteristics as the attenuation and effective wave-guides for detecting AE underground, are examined through laboratory tests. Secondary, fracture tests of full-scale prefabricated concrete piles are conducted, and the characteristics of the AE are examined. Finally, actual concrete-piles attacked by the 1995 Great Hanshin Earthquake are investigated. Results confirm that the estimated damages by the proposed method are in good agreement with actual damaged locations. Thus, the method is very effective for the diagnosis of the concrete-piles.

  15. Nondestructive test for estimating strength of concrete in structure

    International Nuclear Information System (INIS)

    Nozaki, Yoshitsugu; Soshiroda, Tomozo

    1997-01-01

    Evaluation of the quality of concrete in structures, especially strength estimation is said to be one of the most important problem and needed to establish test method especial tv for non-destructive method in situ. The paper describes the nondestructive test to estimate strength of concrete. From experimental study using full scale model wall, strength estimating equations are proposed by ultra-sonic pulse velocity, rebound hardness of Schmidt hammer and combined with two methods. From statistical study of the results of experiments, errors of estimated strength by the proposed equations are suggested. The validity of the equations are verified by investigation for existing reinforced concrete buildings aged 20 - 50 years. And it was found from the statistical study that the strength estimating equations need to be corrected in applying to tons aged concrete, and correction factor to those squat ions were suggested. Furthermore the corrected proposed equations were verified by applying to buildings investigated the other case.

  16. Digital laminography assessment of the damage in concrete exposed to freezing temperatures

    KAUST Repository

    Wakimoto, Kentaro

    2008-10-01

    The research explores the possibility of using digital laminography as a non-destructive inspection X-ray method to image the damage existing in concrete exposed to low temperatures. Freezing-thawing and scaling tests were performed and digital laminography was used to determine the degree of damage existing inside the concrete samples. First, digital laminography was performed on the concrete sample and then a visual inspection was done by slicing the sample after it was vacuum-impregnated with epoxy in order to compare the differences in crack width. © 2008 Elsevier Ltd. All rights reserved.

  17. Digital laminography assessment of the damage in concrete exposed to freezing temperatures

    KAUST Repository

    Wakimoto, Kentaro; Blunt, Joshua; Carlos, Cruz; Monteiro, Paulo J.M.; Ostertag, Claudia P.; Albert, Richard

    2008-01-01

    The research explores the possibility of using digital laminography as a non-destructive inspection X-ray method to image the damage existing in concrete exposed to low temperatures. Freezing-thawing and scaling tests were performed and digital laminography was used to determine the degree of damage existing inside the concrete samples. First, digital laminography was performed on the concrete sample and then a visual inspection was done by slicing the sample after it was vacuum-impregnated with epoxy in order to compare the differences in crack width. © 2008 Elsevier Ltd. All rights reserved.

  18. Automatic dam concrete placing system; Dam concrete dasetsu sagyo no jidoka system

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Y; Hori, Y; Nakayama, T; Yoshihara, K; Hironaka, T [Okumura Corp., Osaka (Japan)

    1994-11-15

    An automatic concrete placing system was developed for concrete dam construction. This system consists of the following five subsystems: a wireless data transmission system, an automatic dam concrete mixing system, a consistency determination system, an automatic dam concrete loading and transporting system, and a remote concrete bucket opening and closing system. The system includes the following features: mixing amount by mixing ratio and mixing intervals can be instructed from a concrete placing site by using a wireless handy terminal; concrete is mixed automatically in a batcher plant; a transfer car is started, and concrete is charged into a bucket automatically; the mixed concrete is determined of its properties automatically; labor cost can be reduced, the work efficiency improved, and the safety enhanced; and the system introduction has resulted in unattended operation from the aggregate draw-out to a bunker line, manpower saving of five persons, and reduction in cycle time by 10%. 11 figs., 2 tabs.

  19. Recycled concrete aggregate in portland cement concrete.

    Science.gov (United States)

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  20. Analysis of Possibilities for Using Recycled Concrete Aggregate in Concrete Pavement

    OpenAIRE

    R. Pernicova; D. Dobias

    2016-01-01

    The present article describes the limits of using recycled concrete aggregate (denoted as RCA) in the top layer of concrete roads. The main aim of this work is to investigate the possibility of reuse of recycled aggregates obtained by crushing the old concrete roads as a building material in the new top layers of concrete pavements. The paper is based on gathering the current knowledge about how to use recycled concrete aggregate, suitability, and modification of the properties and its standa...

  1. Ground penetrating radar utilization in exploring inadequate concrete covers in a new bridge deck

    Directory of Open Access Journals (Sweden)

    Md. Istiaque Hasan

    2014-01-01

    Full Text Available The reinforced concrete cast in place four span deck of a concrete bridge near Roanoke, Texas, was recently completed. Due to possible construction errors, it was suspected that the concrete covers in the deck did not conform to drawings and specifications. A full scale non-destructive evaluation of the concrete covers was carried out using ground penetrating radar (GPR equipment. Cover values were determined from the radargram generated from the scan. The estimated covers were plotted on contour maps. Migration data can substitute the drilling based ground truth data without compromising the concrete cover estimations, except for areas with very high cover values. Areas with high water content may result in inaccurate concrete dielectric constants. Based on the results, significant retrofitting of the bridge deck, such as additional overlay, was recommended.

  2. Fiber-concrete insulating element for front elevations. Fiberbetonbaaret isoleringselement til facader

    Energy Technology Data Exchange (ETDEWEB)

    Strabo, F; Damsgaard Olsen, A

    1985-01-01

    Laboratory and full-scale experiments with insulating elements consisting of polystyrene/rockwool, fiber concrete, binder, and brick shells are performed. Laboratory experiments of 4 different binders are carried out. It is found that ''TI'' binding mortar and ''Sika flex 11FC'' binder are the best. The full-scale experiments are performed with 6 different elements that are put onto an eastern aspect. The elements that are ventilated by outdoor air beneath the fiber concrete seem to be the best as regards moisture. All 6 elements did not show any signs of decomposition during the experimental period from October 1984 to May 1985. (LN). EFP-84. 11 refs.

  3. Use of fiber reinforced concrete for concrete pavement slab replacement.

    Science.gov (United States)

    2014-03-01

    Unlike ordinary concrete pavement, replacement concrete slabs need to be open to traffic within 24 hours (sooner in : some cases). Thus, high early-strength concrete is used; however, it frequently cracks prematurely as a result of high : heat of hyd...

  4. Development of Tensile Softening Model for Plain Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Song, Y.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    Large-scale direct tensile softenng tests using plate concrete specimens(4000, 5000psi) with notch were performed under uniaxial stress. There were presented the basic physical properties and the complete load-CMOD(Crack Mouth Opening Displacement) curves for them And them the fracture energy was evaluated using the complete load-CMOD curves respectively, and there was presents optimal tensile softening model which is modified by a little revision of an existing one. Therefore, here provided the real verification data through the tests for developing other nonlinear concrete finite element models. (author). 32 refs., 38 figs., 4 tabs.

  5. A multifunctional design approach for sustainable concrete : with application to concrete mass products

    NARCIS (Netherlands)

    Hüsken, G.

    2010-01-01

    This thesis provides a multifunctional design approach for sustainable concrete, particularly earth-moist concrete (EMC), with application to concrete mass products. EMC is a concrete with low water content and stiff consistency that is used for the production of concrete mass products, such as

  6. Application of dynamic relaxation and finite elements methods for the structural analysis of a scale model of a prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Tamura, Masaru

    1979-01-01

    A stress and strain analysis was made of a scale model of a Prestressed Concrete Pressure Vessel for a Boiling Water Reactor. The aim of this work was to obtain an experimental verification of the calculation method actually used at IPEN. The 1/10 scale model was built and tested at the Instituto Sperimentale Modelli e Structture, ISMES, Italy. The dynamic relaxation program PV2-A and the finite element programs , FEAST-1 have been used. A comparative analysis of the final results was made. A preliminary analysis was made for a simplified monocavity model now under development at IPEN with the object of confirming the data and the calculation method used. (author)

  7. The influence of recycled concrete aggregates in pervious concrete

    Directory of Open Access Journals (Sweden)

    L. M. TAVARES

    Full Text Available The expansion of urban areas under constant changes in the hydrological cycle directly affects the drainage of rainwater. The problems of urban drainage become major engineering problems to be solved in order to avoid negative consequences for local populations. Another urban problem is the excessive production of construction and demolition waste (CDW, in which , even with a increasingly policy of waste management , have been an end up being thrown in inappropriate disposal sites. Alternatively aiming to a minimization of the problems presented, we propose the study of permeable concrete using recycled concrete aggregate. In this study, there were evaluated the performance of concrete by means of permeability, consistency, strength, and interface conditions of the materials . Satisfactory relationships of resistance/permeability of concrete with recycled aggregate in relation to the concrete with natural aggregates was obtained, showing their best potential.

  8. Numerical homogenization of concrete microstructures without explicit meshes

    International Nuclear Information System (INIS)

    Sanahuja, Julien; Toulemonde, Charles

    2011-01-01

    Life management of electric hydro or nuclear power plants requires to estimate long-term concrete properties on facilities, for obvious safety and serviceability reasons. Decades-old structures are foreseen to be operational for several more decades. As a large number of different concrete formulations are found in EDF facilities, empirical models based on many experiments cannot be an option for a large fleet of power plant buildings. To build predictive models, homogenization techniques offer an appealing alternative. To properly upscale creep, especially at long term, a rather precise description of the microstructure is required. However, the complexity of the morphology of concrete poses several challenges. In particular, concrete is formulated to maximize the packing density of the granular skeleton, leading to aggregates spanning several length scales with small inter particle spacings. Thus, explicit meshing of realistic concrete microstructures is either out of reach of current meshing algorithms or would produce a number of degrees of freedom far higher than the current generic FEM codes capabilities. This paper proposes a method to deal with complex matrix-inclusions microstructures such as the ones encountered at the mortar or concrete scales, without explicitly meshing them. The microstructure is superimposed to an independent mesh, which is a regular Cartesian grid. This inevitably yields so called 'gray elements', spanning across multiple phases. As the reliability of the estimate of the effective properties highly depends on the behavior affected to these gray elements, special attention is paid to them. As far as the question of the solvers is concerned, generic FEM codes are found to lack efficiency: they cannot reach high enough levels of discretization with classical free meshes, and they do not take advantage of the regular structure of the mesh. Thus, a specific finite differences/finite volumes solver has been developed. At first, generic off

  9. Development of a pilot size of electrochemical flushing equipment for radioactive soil and concrete

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Moon, Jei Kwon; Choi, Wang Kyu; Yang, Byeong Il; Shon, Jong Sik; Hong, Dae Seok

    2010-01-01

    A pilot size of electrochemical flushing equipment will be manufactured suitable to the contamination characteristics of radioactive soil and concrete stored in KAERI radioactive waste storage. An optimal reagent and an optimal decontamination conditions should be decided through many experiments. - Contamination characterises analysis of TRIGA radioactive soil and concrete - Manufacture of pilot-scale electrochemical flushing equipment - Manufacture and improvement of suitable electrochemical flushing equipment for contamination characteristics in pilot size - Decontamination experiments of electrochemical flushing equipment in a pilot scale

  10. New Findings in Hydrogen Sulfide Related Corrosion of Concrete Sewers

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Jensen, Henriette Stokbro; Hvitved-Jacobsen, Thorkild

    2009-01-01

    This paper summarizes major findings of a long-term study of hydrogen sulfide gas (H2S) adsorption and oxidation on concrete and plastic sewer pipe surfaces. The processes have been studied using a pilot-scale setup designed to replicate conditions in a gravity sewer located downstream of a force...... main. H2S related concrete corrosion and odor is often observed at such locations. The experiments showed that the rate of H2S oxidation was significantly faster on concrete pipe surfaces than on plastic pipe surfaces. Steady state calculations based on the kinetic data demonstrated that the gas phase...... H2S concentration in concrete sewers would typically amount to a few percent of the equilibrium concentration calculated from Henrys law. In plastic pipe sewers, significantly higher concentrations were predicted because of the slower adsorption and oxidation kinetics on these surfaces. Finally...

  11. Development of Vegetation-Pervious Concrete in Grid Beam System for Soil Slope Protection

    Science.gov (United States)

    Bao, Xiaohua; Liao, Wenyu; Dong, Zhijun; Wang, Shanyong; Tang, Waiching

    2017-01-01

    One of the most efficient and environmentally friendly methods for preventing a landslide on a slope is to vegetate it. Vegetation-pervious concretes have a promising potential for soil protection. In this study, the vegetation-pervious concrete with low alkalinity was developed and studied. Combined with a grid beam structure system, the stability and strength between the vegetation-pervious concrete and base soil are believed to be enhanced effectively. For improving plant adaptability, the alkalinity of concrete can be decreased innovatively by adding a self-designed admixture into the cement paste. The effects of the admixture content on alkalinity and compressive strength of the hardened pervious concrete were investigated using X-ray diffraction (XRD) and compression test, respectively. Meanwhile, the permeability of the vegetation-pervious concrete was studied as well. Through comparing with ordinary pervious concrete, the effect of low alkaline pervious concrete on vegetation growth was investigated in a small-scale field for ten weeks. The test results indicated that the alkalinity of the cement samples decreased with the increase of admixture content, and the vegetation grew successfully on previous concrete. By increasing the admixture content to approximately 3.6%, the compressive strength of pervious concrete was more than 25 MPa. PMID:28772454

  12. Influence of Concrete Properties on Molten Core-Concrete Interaction: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Jin-yang Jiang

    2016-01-01

    Full Text Available In a severe nuclear power plant accident, the molten core can be released into the reactor pit and interact with sacrificial concrete. In this paper, a simulation study is presented that aims to address the influence of sacrificial concrete properties on molten core-concrete interaction (MCCI. In particular, based on the MELCOR Code, the ferrosiliceous concrete used in European Pressurized Water Reactor (EPR is taken into account with respect to the different ablation enthalpy and Fe2O3 and H2O contents. Results indicate that the concrete ablation rate as well as the hydrogen generation rate depends much on the concrete ablation enthalpy and Fe2O3 and H2O contents. In practice, the ablation enthalpy of sacrificial concrete is the higher the better, while the Fe2O3 and H2O content of sacrificial concrete is the lower the better.

  13. Preliminary Study on Evaluation of Impact Resistance Performance of Fiber Reinforced Concrete Walls

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Lee, Yun Seok; Kim, Young Jin; Jeon, Se Jin

    2012-01-01

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments studies are actively in progress. For the safety assessment of nuclear power plants against large civil aircraft crash, it is practically impossible to conduct full-scale experiments. Therefore, analysis using general purpose numerical analysis program accompanied by scale model experiments and element experiments has been adopted for the safety assessment. The safety of nuclear power plants against large civil aircraft crash is able to be accomplished by enhancement of the impact resistance performance, such as increasing the wall thickness, increasing the strength of concrete and using the fiber reinforced concrete which is able to be acquired by relatively simple process of adding fibers to a concrete mix without significant change of design and construction. A research for the enhancement of impact resistance performance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application rate, is in progress. In this study, before the safety assessment of nuclear power plants against large civil aircraft crash, we assess the impact resistance performance of concrete wall depending upon type of fibers and impact velocity of objects

  14. Preliminary Study on Evaluation of Impact Resistance Performance of Fiber Reinforced Concrete Walls

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Byeong Moo; Lee, Yun Seok; Kim, Young Jin [Daewoo E and C Co. Ltd., Suwon (Korea, Republic of); Jeon, Se Jin [Ajou University, Suwon (Korea, Republic of)

    2012-05-15

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments studies are actively in progress. For the safety assessment of nuclear power plants against large civil aircraft crash, it is practically impossible to conduct full-scale experiments. Therefore, analysis using general purpose numerical analysis program accompanied by scale model experiments and element experiments has been adopted for the safety assessment. The safety of nuclear power plants against large civil aircraft crash is able to be accomplished by enhancement of the impact resistance performance, such as increasing the wall thickness, increasing the strength of concrete and using the fiber reinforced concrete which is able to be acquired by relatively simple process of adding fibers to a concrete mix without significant change of design and construction. A research for the enhancement of impact resistance performance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application rate, is in progress. In this study, before the safety assessment of nuclear power plants against large civil aircraft crash, we assess the impact resistance performance of concrete wall depending upon type of fibers and impact velocity of objects

  15. Experimental Study on Modification of Concrete with Asphalt Admixture

    Science.gov (United States)

    Bołtryk, Michał; Małaszkiewicz, Dorota; Pawluczuk, Edyta

    2017-10-01

    Durability of engineering structures made of cement concrete with high compressive strength is a very vital issue, especially when they are exposed to different aggressive environments and dynamic loads. Concrete resistance to weathering actions and chemical attack can be improved by combined chemical and mechanical modification of concrete microstructure. Asphalt admixture in the form of asphalt paste (AP) was used for chemical modification of cement composite microstructure. Concrete structure was formed using special technology of compaction. A stand for vibro-vibropressing with regulated vibrator force and pressing force was developed. The following properties of the modified concrete were tested: compressive strength, water absorption, freeze-thaw resistance, scaling resistance in the presence of de-icing agents, chloride migration, resistance to CO2 and corrosion in aggressive solutions. Corrosion resistance was tested alternately in 1.8% solutions of NH4Cl, MgSO4, (NH2)2CO and CaCl2, which were altered every 7 days; the experiment lasted 9.5 months. Optimum compaction parameters in semi-industrial conditions were determined: ratio between piston stress (Qp ) and external top vibrator force (Po ) in the range 0.4÷-0.5 external top vibrator force 4 kN. High strength concretes with compressive strength fcm = 60÷70 MPa, very low water absorption (barrier formed in pores of cement hydrates against dioxide and chloride ions. Concrete specimens containing AP 4% c.m. and consolidated by vibro-vibropressing method proved to be practically resistant to highly corrosive environment. Vibro-vibropressing compaction technology of concrete modified with AP can be applied in prefabrication plants to produce elements for road, bridge and hydraulic engineering constructions.

  16. Review of concrete properties for prestressed concrete pressure vesssels

    International Nuclear Information System (INIS)

    Nanstad, R.K.

    1976-10-01

    The desire for increasing power output along with safety requirements has resulted in consideration of the prestressed concrete pressure vessel (PCPV) for most current nuclear reactor systems, as well as for the very-high-temperature reactor for process heat and as primary pressure vessels for coal conversion systems. Results are presented of a literature review to ascertain current knowledge regarding plain concrete properties under conditions imposed by a mass concrete structure such as PCRV. The effects of high temperature on such properties as strength, elasticity, and creep are discussed, as well as changes in thermal properties, multiaxial behavior, and the mechanisms thought to be responsible for the observed behavior. In addition, the effects of radiation and moisture migration are discussed. It is concluded that testing results found in the technical literature show much disagreement as to the effects of temperature on concrete properties. The variations in concrete mixtures, curing and testing procedures, age at loading, and moisture conditions during exposure and testing are some of the reasons for such disagreement. Test results must be limited, in most cases, to the materials and conditions of a given test rather than applied to such a general class of materials such as concrete. It is also concluded that sustained exposure of normal concretes to current PCRV operating conditions will not result in any significant loss of properties. However, lack of knowledge regarding effects of temperatures exceeding 100 0 C (212 0 F), moisture migration, and multiaxial behavior precludes a statement advocating operation beyond current design limits. The report includes recommendations for future research on concrete for PCPVs

  17. A new technology for air-entrainment of concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Hasholt, Marianne Tange; Jensen, Ole Mejlhede

    2008-01-01

    This paper describes a new technology for air-entrainment of concrete. The technology is based on the addition of dry superabsorbent polymers (SAP) to the concrete. A large amount of small internal water reservoirs are formed during mixing when SAP absorbs water and swells. The internal water......-entrainment include stability of the air void system and improved control of both the amount of added air and the air void size. The new technology based on SAP has been tested in freeze-thaw experiments, where the amount of surface scaling was measured. The results clearly show that SAP is beneficial for frost...... reservoirs are distributed throughout the concrete. During the hydration process the cement paste imbibes water from the water-filled SAP voids. Thereby the water-filled SAP voids turn into partly air-filled voids. The advantages of the SAP-based technology compared to traditional chemical air...

  18. Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations.

    Science.gov (United States)

    Mesbahi, Asghar; Ghiasi, Hosein

    2018-06-01

    The shielding properties of ordinary concrete doped with some micro and nano scaled materials were studied in the current study. Narrow beam geometry was simulated using MCNPX Monte Carlo code and the mass attenuation coefficient of ordinary concrete doped with PbO 2 , Fe 2 O 3 , WO 3 and H 4 B (Boronium) in both nano and micro scales was calculated for photon and neutron beams. Mono-energetic beams of neutrons (100-3000 keV) and photons (142-1250 keV) were used for calculations. The concrete doped with nano-sized particles showed higher neutron removal cross section (7%) and photon attenuation coefficient (8%) relative to micro-particles. Application of nano-sized material in the composition of new concretes for dual protection against neutrons and photons are recommended. For further studies, the calculation of attenuation coefficients of these nano-concretes against higher energies of neutrons and photons and different particles are suggested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Mechanical properties of cement concrete composites containing nano-metakaolin

    Science.gov (United States)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  20. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  1. Structural behavior of lightweight bamboo reinforced concrete slab with EPS infill panel

    Science.gov (United States)

    Wibowo, Ari; Wijatmiko, Indradi; Nainggolan, Christin Remayanti

    2017-09-01

    Eco-friendly, green, and natural materials have become increasingly important issues in supporting sustainable development, for the substitution of nonrenewable materials such as steel. Bamboo has been considered in many studies to replace steel in reinforced concrete elements. Further investigation has been carried out to obtain lightweight and eco-friendly reinforced concrete slabs by using bamboo bars as reinforcement and recycled materials such as EPS (expanded polystyrene) as infill panel. The flexural loading test on full scale one-way slabs test has been conducted. The results showed that the flexural strength of specimens decreased marginally of about 6% but with the weight advantage of 27% less compared with those of steel rebar reinforced concrete slab with the same dimension. Two type shear-connectors comprising of concrete and bamboo studs were also investigated which showed that the bamboo stud provided better ductility compared to that of slab with concrete as shear connector. Overall, the reinforced concrete slab with bamboo reinforcement and EPS infill panel showed reasonably good performance compared to slabs with steel rebar.

  2. Cask for concrete shells transportation

    International Nuclear Information System (INIS)

    Labergri, F.

    2001-01-01

    Nowadays, nuclear plant radioactive waste are conditioned in situ into concrete shells. Most of them enter in the industrial waste category defined by the regulations of radioactive material transportation. However, the content of a few ones exceeds the limits set for low specific activity substances. Thus, these shells must be transported into type B packagings. To this end, Robatel has undertaken, for EDF (Electricite de France), the development of a container, named ROBATEL TM R68, for further licensing. The particularity of this packaging is that the lid must have a wide opening to allow the usual handling operations of the concrete shells. This leads to a non-conventional conception, and makes the package more vulnerable to drop test solicitations. In order to define a minimal drop test program on a reduced scale model, we use a simple method to find the most damageable drop angle. (author)

  3. Round-robin pretest analyses of a 1:6-scale reinforced concrete containment model subject to static internal pressurization

    International Nuclear Information System (INIS)

    Clauss, D.B.

    1987-05-01

    Analyses of a 1:6-scale reinforced concrete containment model that will be tested to failure at Sandia National Laboratories in the spring of 1987 were conducted by the following organizations in the United States and Europe: Sandia National Laboratories (USA), Argonne National Laboratory (USA), Electric Power Research Institute (USA), Commissariat a L'Energie Atomique (France), HM Nuclear Installations Inspectorate (UK), Comitato Nazionale per la ricerca e per lo sviluppo dell'Energia Nucleare e delle Energie Alternative (Italy), UK Atomic Energy Authority, Safety and Reliability Directorate (UK), Gesellschaft fuer Reaktorsicherheit (FRG), Brookhaven National Laboratory (USA), and Central Electricity Generating Board (UK). Each organization was supplied with a standard information package, which included construction drawings and actual material properties for most of the materials used in the model. Each organization worked independently using their own analytical methods. This report includes descriptions of the various analytical approaches and pretest predictions submitted by each organization. Significant milestones that occur with increasing pressure, such as damage to the concrete (cracking and crushing) and yielding of the steel components, and the failure pressure (capacity) and failure mechanism are described. Analytical predictions for pressure histories of strain in the liner and rebar and displacements are compared at locations where experimental results will be available after the test. Thus, these predictions can be compared to one another and to experimental results after the test

  4. Evaluation of calculational and material models for concrete containment structures

    International Nuclear Information System (INIS)

    Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.

    1984-01-01

    A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measured strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given. (orig.)

  5. Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls

    Science.gov (United States)

    Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu

    2017-10-01

    In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.

  6. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements

    Science.gov (United States)

    Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei

    2016-01-01

    This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention. PMID:28773517

  7. Severe ASR damaged concrete bridges

    DEFF Research Database (Denmark)

    Antonio Barbosa, Ricardo; Gustenhoff Hansen, Søren

    2015-01-01

    Technical University of Denmark (DTU) and University of Southern Denmark (SDU) have conducted several full-scale experiments with severe ASR deteriorated bridges. This paper presents few and preliminary results from both the shear tests and the measuring of the material properties. The shear test...... show that the shear capacity is almost unaffected of ASR despite significant reduction in compressive concrete strength. Furthermore, measurements show a significant tensile reinforcement strain developed due to ASR expansion....

  8. Characteristics of mechanical and rheological properties of concrete under heating conditions up to 200°C

    Directory of Open Access Journals (Sweden)

    Korsun V.

    2013-09-01

    Full Text Available The results of experimental research of high up to 200°C temperature influence and scale effect on temperature and shrinkage strain, creep and characteristics of strength and strain properties of high-strength modified fine and heavy concretes under axial compression are presented in the article. The practical way of accounting of the influence of the scale effect on design variables of shrinkage strain and concrete creep is proposed.

  9. Flexural Behavior of Corroded Reinforced Recycled Aggregate Concrete Beams

    Directory of Open Access Journals (Sweden)

    Taoping Ye

    2018-01-01

    Full Text Available Recycling concrete not only reduces the use of virgin aggregate but also decreases the pressure on landfills. As a result, recycled coarse aggregate (RCA is extensively recommended for new construction projects. However, the flexural behavior of corroded reinforced recycled aggregate concrete (RAC beams is uncertain. The experimental research presented in this paper was performed to investigate the flexural behavior of corroded reinforced RAC beams compared to that of corroded reinforced natural aggregate concrete (NAC beams and consequently explore the possibility of using RAC beams in corrosive environments. Four different percentages of RCA in total mass of coarse aggregate in concrete mixtures (0%, 33%, 66%, and 100% and two different concrete strengths (C30, C60 were the governing parameters. The electrochemical method was adopted to accelerate steel corrosion. Full-scale tests were performed on eight simply supported beams until the failure load was reached. Comparison of load-deflection behavior, crack patterns, failure modes, ductility, and ultimate flexural capacity of corroded reinforced NAC and RAC beams was made based on the experimental results obtained. The comparison results show that the flexural behavior of corroded reinforced RAC beams with an appropriate percentage of RCA is satisfactory compared to the behavior of NAC beams.

  10. Design, Analysis And Realization Of Topology Optimized Concrete Structures

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Dombernowsky, Per

    2012-01-01

    This paper proposes the application of topology optimisation as a constitutive design tool for design and form-finding of architectural concrete structures, and realisation of these designs using large scale CNCmilling of polystyrene form-work for in situ casting....

  11. The use of a concrete additive to eliminate returned concrete waste volumes

    Directory of Open Access Journals (Sweden)

    Bester Johannes

    2017-01-01

    Full Text Available This paper investigates the effects of the use of a recently developed two-component powdered product made from polymers and inorganic compounds that can be mechanically mixed into returned fresh ready-mix concrete to allow for the separation of the concrete into fine and coarse aggregates. This allows for the re-use of the returned concrete as aggregates in the manufacturing of new concrete. The returned concrete waste can therefore be eliminated, thus reducing virgin aggregate usage, as well as reducing the environmental impact of returned concrete. In this study, the treated recycled fresh concrete was separated into fine and coarse aggregates, and then used at replacement levels of 0%, 25%, 50%, 75% and 100%. The effect of the product on the material classification, and on important fresh and hardened properties of the concrete for the above-mentioned replacement values was tested. For the fine aggregate, the results indicate minimal changes in both the fresh and hardened properties. For the coarse aggregate, the results show a marked improvement of flexural strength with an increase in replacement value when coarse aggregates are used. Very high replacement levels may be used with very little effect on the quality of the new concrete.

  12. Concrete Fibrations

    OpenAIRE

    Pagnan, Ruggero

    2017-01-01

    As far as we know, no notion of concrete fibration is available. We provide one such notion in adherence to the foundational attitude that characterizes the adoption of the fibrational perspective in approaching fundamental subjects in category theory and discuss it in connection with the notion of concrete category and the notions of locally small and small fibrations. We also discuss the appropriateness of our notion of concrete fibration for fibrations of small maps, which is relevant to a...

  13. Realisation of complex precast concrete structures through the integration of algorithmic design and novel fabrication techniques

    DEFF Research Database (Denmark)

    Larsen, Niels Martin; Egholm Pedersen, Ole; Pigram, Dave

    2012-01-01

    This paper describes a novel method for constructing complex concrete structures from small-scale individualized elements. The method was developed through the investigation of laser cutting, folding and concrete casting in PETG plastic sheets and funicular grid shell simulations as a generator o...

  14. Revision of 'JASS 5N reinforced concrete work for nuclear power facilities'

    International Nuclear Information System (INIS)

    Masuda, Yoshihiro; Kitagawa, Takashi

    2013-01-01

    'JASS 5N, Reinforced Concrete Work at Nuclear Power Plants,' is part of the 'Japanese Architectural Standard Specification and Its Interpretation' established by the Architectural Institute of Japan. It is the stipulation to establish the standards for the implementation of reinforced concrete work and quality control for the major buildings of nuclear power plants, and to ensure the safety related to the construction work. The original specification was established in 1985, and its third revised edition was published in February 2013. This 2013 edition is composed of 15 sections and four items of appendices. This paper introduces the major revisions of each section, and explains the newly added section 'Section 14: Small-scale Reinforced Concrete Work.' In addition, this paper describes the newly added 'Appendix: Quality Standards for Heavy Mortal (tentative draft),' and the minor change that part of the appendix related to reinforced concrete was taken into the interpretation of 'Section 10: Reinforced Concrete Work.' (O.A.)

  15. Study of Strain-Stress Behavior of Non-Pressure Reinforced Concrete Pipes Used in Road Building

    Science.gov (United States)

    Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.

    2017-11-01

    The article contains the results of the full-scale tests performed for special road products - large-diameter non-pressure concrete pipes reinforced with a single space cylindrical frame manufactured with the technology of high-frequency vertical vibration molding with an immediate demolding. The authors studied the change in the strain-stress behavior of reinforced concrete pipes for underground pipeline laying depending on their laying depth in the trench and the transport load considering the properties of the surrounding ground mass. The strain-stress behavior of the reinforced concrete pipes was evaluated using the strain-gauge method based on the application of active resistance strain gauges. Based on the completed research, the authors made a conclusion on the applicability of a single space frame for reinforcement of large-diameter non-pressure concrete pipes instead of a double frame which allows one to significantly reduce the metal consumption for the production of one item. As a result of the full-scale tests of reinforced concrete pipes manufactured by vertical vibration molding, the authors obtained new data on the deformation of a pipeline cross-section depending on the placement of the transport load with regard to the axis.

  16. Spall Strength Measurements of Concrete for Varying Aggregate Sizes

    International Nuclear Information System (INIS)

    Chhabildas, Lalit C.; Kipp, Marlin E.; Reinhart, William D.; Wilson, Leonard T.

    1999-01-01

    Controlled impact experiments have been performed to determine the spall strength of four different concrete compositions. The four concrete compositions are identified as, 'SAC-5, CSPC', (''3/4'') large, and (''3/8'') small, Aggregate. They differ primarily in aggregate size but with average densities varying by less than five percent. Wave profiles from sixteen experiments, with shock amplitudes of 0.07 to 0.55 GPa, concentrate primarily within the elastic regime. Free-surface particle velocity measurements indicate consistent pullback signals in the release profiles, denoting average span strength of approximately 40 MPa. It is the purpose of this paper to present spall measurements under uniaxial strain loading. Notwithstanding considerable wave structure that is a unique characteristic to the heterogeneous nature of the scaled concrete, the spall amplitudes appear reproducible and consistent over the pressure range reported in this study

  17. Maintenance and preservation of concrete structures. Report 3: Abrasion-erosion resistance of concrete

    Science.gov (United States)

    Liu, T. C.

    1980-07-01

    This report describes a laboratory test program on abrasion-erosion resistance of concrete, including the development of a new underwater abrasion-erosion test method. This program was designed to evaluate the relative abrasion-erosion resistance of various materials considered for use in the repair of erosion-damaged concrete structures. The test program encompassed three concrete types (conventional concrete, fiber-reinforced concrete, and polymer concrete); seven aggregate types (limestone, chert, trap rock, quartzite, granite, siliceous gravel, and slag); three principal water-cement rations (0.72, 0.54, and 0.40); and six types of surface treatment (vacuum, polyurethane coating, acrylic mortar coating, epoxy mortar coating, furan resin mortar coating, and iron aggregate topping). A total of 114 specimens made from 41 batches of concrete was tested. Based on the test data obtained, a comprehensive evaluation of the effects of various parameters on the abrasion-erosion resistance of concrete was presented. Materials suitable for use in the repair of erosion-damaged concrete structures were recommended. Additional work to correlate the reported findings with field performance was formulated.

  18. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  19. Concrete quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Holz, N. [Harza Engineering Company, Chicago, IL (United States)

    2000-08-01

    This short article reports on progress at the world's largest civil construction project, namely China's Three Gorges hydro project. Work goes on around the clock to put in place nearly 28 M m{sup 3} of concrete. At every stage of the work there is strong emphasis on quality assurance (QA) and concrete is no exception. The US company Harza Engineering has been providing QA since the mid-1980s and concrete QA has been based on international standards. Harza personnel work in the field with supervisors developing educational tools for supervising concrete construction and quality, as well as providing training courses in concrete technology. Some details on flood control, capacity, water quality and environmental aspects are given..

  20. Concrete and criticality

    International Nuclear Information System (INIS)

    Carter, R.D.

    1978-01-01

    Concrete is a widely used structural material which occurs frequently in systems requiring criticality analyses. Ordinarily, we give little thought to what its actual composition is (as compared to reference compositions), yet in criticality safety, differences in composition can cause large changes in k-effective and it may not be easy to predict in which direction the change will occur. Concrete composition is quite variable with differences in the aggregate used in the concrete in various parts of the country providing relative large differences in k-effective. The water content of concrete can also strongly affect the reactivity of a system in which it acts as a reflector or is interspersed between fissile units. Because concrete is so common and is often (but not always) a better reflector than water, one must know the concrete compositions or be prepared to use a ''worst case'' composition. It may be a problem, however, to determine just what is the worst case. At the Hanford Plant, the aggregate normally used is basalt, which gives a composition very low in carbon as opposed to those areas (e.g., Oak Ridge) where the use of limestone aggregate will result in concrete with a high carbon content. The data presented show some of the effects found in situations using ''Hanford'' concrete, but similar effects might be found with other compositions. In some cases, the use of concrete may be incidental to the effects shown. While the numbers shown are those for actual systems, the primary intent is to alert the reader that these effects can occur. In applying this information, the analyst should use material specific to the systems being analyzed

  1. Concrete and prestressing process, container made with this concrete

    International Nuclear Information System (INIS)

    Gerard, M.

    1992-01-01

    Shape memory alloy fibers or heat shrinking fibers are encapsulated in a standard concrete. Prestressed concrete is obtained by heat treatment. Application is made to the fabrication of radioactive waste containers

  2. Let’s Get Concrete!

    DEFF Research Database (Denmark)

    Jones, Candace; Boxenbaum, Eva

    whereas in the United States market and professional logics interacted: manufacturers cooperated to create standards for concrete and appealed to architects as consumers. Our findings also illuminate that concrete was legitimated initially by imitation of stone, but this strategy soon de......-legitimated not only concrete but also stone. Concrete was perceived as merely imitative and thus inauthentic. For concrete to become a legitimate and widely adopted material, architects had to theorize concrete as unique material with distinctive aesthetic possibilities, which led to new kinds of buildings and new...... architectural styles. Our study illuminates the key role that materials and aesthetics played within architects’ professional logic and shaped processes of institutional change....

  3. The results of the CCI-3 reactor material experiment investigating 2-D core-concrete interaction and debris coolability with a siliceous concrete crucible

    International Nuclear Information System (INIS)

    Farmer, M.T.; Basu, S.

    2006-01-01

    The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program is conducting reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue, and to address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants and provide the technical basis for better containment designs for future plants. Despite years of international research, there are remaining uncertainties in the models that evaluate the lateral vs. axial power split during core-concrete interaction because of a lack of truly two-dimensional experiment data. As a result, there are differences in the 2-D cavity erosion predicted by codes such as MELCOR, WECHSL, and COSACO. In the continuing effort to bridge this data gap, the third in a series of large scale Core-Concrete Interaction experiments (CCI-3) has been conducted as part of the MCCI program. This test involved the interaction of a 375 kg core-oxide melt within a two-dimensional siliceous concrete crucible. The initial phase of the test was conducted under dry conditions. After a predetermined ablation depth was reached, the cavity was flooded to obtain data on the coolability of a core melt after core-concrete interaction has progressed for some time. This paper provides a summary description of the test facility and an overview of test results

  4. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Pt. 1

    International Nuclear Information System (INIS)

    Sugano, T.; Tsubota, H.; Kasai, Y.; Koshika, N.; Ohnuma, H.; Von Riesemann, W.A.; Bickel, D.C.; Parks, M.B.

    1993-01-01

    Structural damage induced by an aircraft crashing into a reinforced concrete structure includes local damage caused by the deformable engines, and global damage caused by the entire aircraft. Local damage to the target may consist of spalling of concrete from its front face together with missile penetration into it, scabbing of concrete from its rear face, and perforation of missile through it. Until now, local damage to concrete structures has been mainly evaluated by rigid missile impact tests. Past research work regarding local damage caused by impact of deformable missiles has been limited. This paper presents the results of a series of impact tests of small-, intermediate-, and full-scale engine models into reinforced concrete panels. The purpose of the tests was to determine the local damage to a reinforced concrete structure caused by the impact of a deformable aircraft engine. (orig.)

  5. Ultrafine particles in concrete: Influence of ultrafine particles on concrete properties and application to concrete mix design

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten

    2010-07-01

    In this work, the influence of ultrafine particles on concrete properties was investigated. In the context of this work, ultrafine particles (reactive and inert materials) are particles finer than cement. Due to the development of effective superplasticizers, the incorporation of ultrafine particles in concrete is nowadays possible. Different minerals, usually considered inert, were tested. These minerals were also used in combination with reactive silica fume. The modified Andreassen model was used to optimise the particle size distribution and thus the packing density of the complete mix composition. Heat of hydration, compressive strength, shrinkage, frost resistance and the microstructure were investigated.The influence of different ultrafine inert materials on the cement hydration was investigated. The results show that most of the minerals have an accelerating effect. They provide nucleation sites for hydration products and contribute in that way to a faster dissolution of cement grains. Minerals containing calcium were found to influence the early stage of hydration as well. These minerals shortened the dormant period of the cement hydration, the effect is known from limestone filler in self-compacting concrete. In a first test series on concrete, different ultrafine inert particles were used to replace cement. That was done in several ways; with constant water content or constant w/c. The results from this test series show that the best effect is achieved when cement is replaced by suitable ultrafines while the w/c is kept constant. In doing so, the compressive strength can be increased and shrinkage can be reduced. The microstructure is improved and becomes denser with improved packing at microlevel. Efficiency factors (k values) for the ultrafine inert materials were calculated from the compressive strength results. The k values are strongly dependent on the mode of cement replacement, fineness and type of the replacement material and curing time. Drying

  6. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  7. Concrete portable handbook

    CERN Document Server

    Woodson, R Dodge

    2011-01-01

    Whether or not, you are on the job site or back in the office, this book will help you to avoid mistakes, code violations, and wasted time and money. The book's four part treatment begins with constituent materials followed by self contained parts on Concrete Properties, Processes, and Concrete Repair and Rehabilitation. Designed to be an ""all in one"" reference, the author includes a wealth information for the most popular types of testing. This includes: Analysis of Fresh Concrete; Testing Machines; Accelerated Testing Methods; Analysis of Hardened Concrete and Mortar; Core Sampl

  8. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  9. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    Science.gov (United States)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the

  10. Behaviour of a pre-stressed concrete pressure-vessel subjected to a high temperature gradient

    International Nuclear Information System (INIS)

    Dubois, F.

    1965-01-01

    After a review of the problems presented by pressure-vessels for atomic reactors (shape of the vessel, pressures, openings, foundations, etc.) the advantages of pre-stressed concrete vessels with respect to steel ones are given. The use of pre-stressed concrete vessels however presents many difficulties connected with the properties of concrete. Thus, because of the absence of an exact knowledge of the material, it is necessary to place a sealed layer of steel against the concrete, to have a thermal insulator or a cooling circuit for limiting the deformations and stresses, etc. It follows that the study of the behaviour of pre-stressed concrete and of the vessel subjected- to a high temperature gradient can yield useful information. A one-tenth scale model of a pre-stressed concrete cylindrical vessel without any side openings and without a base has been built. Before giving a description of the tests the authors consider some theoretical aspects concerning 'scale model-actual structure' similitude conditions and the calculation of the thermal and mechanical effects. The pre-stressed concrete model was heated internally by a 'pyrotenax' element and cooled externally by a very strong air current. The concrete was pre-stressed using horizontal and vertical cables held at 80 kg/cm 2 ; the thermal gradient was 160 deg. C. During the various tests, measurements were made of the overall and local deformations, the changes in water content, the elasticity modulus, the stress and creep of the cables and the depths of the cracks. The overall deformations observed are in line with thermal deformation theories and the creep of the cables attained 20 to 30 per cent according to their position relative to the internal surface. The dynamic elasticity modulus decreased by half but the concrete keeps its good mechanical properties. Finally, cracks 8 to 12 cm deep and 2 to 3 mms wide appeared in that part of the concrete which was not pre-stressed. The results obtained make it

  11. Strength Gain Properties up to five-year age of high-strength mass concrete

    International Nuclear Information System (INIS)

    Mitarai, Y.; Shigenobu, M.; Hiramine, T.; Inoue, K.; Nakane, S.; Ohike, T.

    1991-01-01

    Genkai No.3 plant of Kyushu Electric Power Co., Inc. presently under construction is a PWR type nuclear power plant with 1180 MW power output, and a prestressed concrete containment vessel (PCCV) was adopted for the reactor. The concrete used for the construction of the PCCV is the mass concrete with the wall thickness of 1.3 m in the general parts of the cylinder, and about 2 m at buttresses. It is the high strength concrete of the specified strength 420 kgf/cm 2 . As the preliminary study for the construction using such high strength mass concrete, the examination was carried out on the strength gain property of structural concrete using full scale simulated members. The various problems in the quality control were contemplated based on the results of the examination, and were reflected to actual construction, designating 13 weeks as the age for strength control, in order to build the concrete structures with high reliability. In this report, the outline of the study on the strength gain up to 5 year age carried out in the preliminary study is discussed. The experimental method, the method of evaluating structural strength, the mixing proportion of concrete and the results are reported. (K.I.)

  12. Evaluation of concrete as a matrix for solidification of Savannah River Plant waste

    International Nuclear Information System (INIS)

    Stone, J.A.

    1977-06-01

    The properties of concrete as a matrix for solidification of Savannah River Plant (SRP) high-level radioactive wastes were studied. In an experimental, laboratory-scale program, concrete specimens were prepared and evaluated with both simulated and actual SRP waste sludges. Properties of concrete were found adequate for fixation of SRP wastes. Procedures were developed for preparation of simulated sludges and concrete-sludge castings. Effects of cement type, simulated sludge type, sludge loading, and water content on concrete formulations were tested in a factorial experiment. Compressive strength, leachability of strontium and plutonium, thermal stability, and radiation stability were measured for each formulation. From these studies, high-alumina cement and a portland-pozzolanic cement were selected for additional tests. Incorporation of cesium-loaded zeolite into cement-sludge mixtures had no adverse effects on mechanical or chemical properties of waste forms. Effects of heating concrete-sludge castings were investigated; thermal conductivity and DTA-TGA-EGA data are reported. Formulations of actual SRP waste sludges in concrete were prepared and tested for compressive strength; for leachability of 90 Sr, 137 Cs, and alpha emitters; and for long-term thermal stability. The radioactive sludges were generally similar in behavior to simulated sludges in concrete. 37 tables, 34 figures

  13. Numerical Study Of The Effects Of Preloading, Axial Loading And Concrete Shrinkage On Reinforced Concrete Elements Strengthened By Concrete Layers And Jackets

    International Nuclear Information System (INIS)

    Lampropoulos, A. P.; Dritsos, S. E.

    2008-01-01

    In this study, the technique of seismic strengthening existing reinforced concrete columns and beams using additional concrete layers and jackets is examined. The finite element method and the finite element program ATENA is used in this investigation. When a reinforced jacket or layer is being constructed around a column it is already preloaded due to existing service loads. This effect has been examined for different values of the axial load normalized to the strengthened column. The techniques of strengthening with a concrete jacket or a reinforced concrete layer on the compressive side of the column are examined. Another phenomenon that is examined in this study is the shrinkage of the new concrete of an additional layer used to strengthen an existing member. For this investigation, a simply supported beam with an additional reinforced concrete layer on the tensile side is examined. The results demonstrate that the effect of preloading is important when a reinforced concrete layer is being used with shear connectors between the old and the new reinforcement. It was also found that the shrinkage of the new concrete reduces the strength of the strengthened beam and induces an initial sliding between the old and the new concrete

  14. Offshore concrete structures

    International Nuclear Information System (INIS)

    Lamas Pardo, M.; Carral Couce, L. M.

    2011-01-01

    In the offshore industry there are two possible materials for the construction of the hull of a structure; the steel and concrete, with the first one widely used until now, as in the rest of the shiphuidling industry of merchant ships, warships, etc. Materials such as aluminum, GRP or timber areused in small units with lengths lower than 100 m, and in less adverse conditions than in the offshore industry. Nevertheless, some ships/barges have been built of concrete in the past, but have been rather isolated cases which have not changed the practice in the industry. In the First and Second World War were built by the scarcity of materials, while the series of barges by Alfred A. Yee was a rare exception. Other units were also made in concrete, but almost anecdotal. Still, the behaviour of these concrete structures, especially in terms of maintenance, has been excellent. Therefore, the fact that the concrete has not had an adequate reception so far in shipbuilding, does not mean that in will not be the material best suited for the offshore industry in the future. The extra displacement and associated fuel costs in concrete ships have been found prohibitive in the past. But the loss of mobility of a concrete hull in relation to a steel hull can be perfectly offset by the advantages offered by the concrete, as the shipping and offshore industry have very different priorities. One of the main differences in these priorities is in terms of maintenance and resistance to fatigue, precisely where the concrete performs better. ships can easily be dry docked for maintenance and repair, while in the offshore platforms these works have to be done in situ so maintenance and fatigue are crucial to them. Besides these, the concrete has other advantages according to findings of several studies. And although they are interested in the conclusions that the makes as they came from people in the concrete industry, the fact that in recent years concrete offshore unit shave been built

  15. Self-compacting concrete (SCC)

    DEFF Research Database (Denmark)

    Geiker, Mette Rica

    2008-01-01

    In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...

  16. Photocatalyticpaving concrete

    Directory of Open Access Journals (Sweden)

    Lyapidevskaya Ol'ga Borisovna

    2014-02-01

    Full Text Available Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in the paper according to the US Environmental Protection Agency materials. As an alternative, one can use cement-concrete pavement, which is in many ways more efficient than the bituminous concrete. It is proposed to enhance environmental performance of the cement-concrete pavement via usage of photocatalysis. The mechanism of different photocatalytic reactions is described in the paper, namely heterogeneous and homogeneous photocatalysis, photo-induces, photoactivated catalysis and catalytical photoreactions. It is pro-posed to use heterogeneous photocatalysis with titanium dioxide as a photocatalyst. The mechanism of photo oxidation of air contaminants, with the usage of titanium dioxide is2described. The paper sets problems, connected with the sensibilization of TiOto thevisible light (it is proposed to use titanium dioxide, doped with the atoms of certain elements to increase its sensibility to the visible light and with the development of a new photocatalytic paving concrete, which will meet the requirements, specified for paving in the climatic and traffic conditions of the Russian Federation.

  17. Fibre-concrete container

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the fibre-concrete container for radioactive wastes is described. The fibre container is made of fibre-concrete that contains cement, aggregate, sand, filter, flame-silica, super-plastificator, water and scattered metal fibres. The fibre-concrete container has a dice shape with outer dimension 1.7 x 1.7 x 1.7 m. It is mounted of a container body, a container cover and two caps. Total weight of container is 4,240 kg, maximum weight of loaded container do not must exceed 15,000 kg. The physical and mechanical properties of the fibre-concrete container are described in detail. The fibre-concrete container manufactured for storing of low and intermediate radioactive wastes. A fibre-concrete container utilization to store of radioactive wastes solves these problems: increase of stability of stored packages of radioactive waste; watertightness within 300 years at least; static stability of bearing space; better utilization of bearing spaces; insulation of radioactive waste in a case of seismic and geological event; increase of fire resistance; and transport of radioactive waste

  18. Numerical simulation of tornado-borne missile impact on reinforced concrete targets

    International Nuclear Information System (INIS)

    Tu, D.K.; Larder, R.

    1979-02-01

    This study is a continuation of the Lawrence Livermore Laboratory (LLL) effort to evaluate the applicability of using the finite element procedure to numerically simulate the impact of tornado-borne missiles on reinforced concrete targets. The objective of this study is to assess the back-face scab threshold of a reinforced concrete target impacted by deformable and nondeformable missiles. Several simulations were run using slug and pipe-type impacting missiles. The numerical results were compared with full-scale experimental field tests

  19. Very heavy iron-punching concretes

    International Nuclear Information System (INIS)

    Dubois, F.

    1966-01-01

    The present report deals with all the heavy iron-punching concretes, metallic wastes produced by the transformation industry. After a detailed description of the physical properties of metallic aggregates, a classification of heavy mortars is given, into three main categories: steel-shot grouts d = 5,3 - 6; steel-shot grouts mixed with a mineral d = 3,7 - 4,2; injection heavy grouts d = 3,5 - 4. The following chapter describes iron-punching concretes the most used in the atomic industry: iron-punching concretes mixed with cast-iron - iron-punching concretes mixed with magnetite; iron-punching concretes mixed with barite; iron-punching concretes mixed with limonite; iron-punching concretes mixed with boron. The compositions of these concretes are given together with their physical and mechanical characteristics. Numerous diagrams make it possible to find rapidly the proportions of the constituents of these concretes as a function of the required density. Technical advice and specifications are given in an appendix together with a bibliography of these heavy concretes. (author) [fr

  20. Production of environmentally friendly aerated concrete with required construction and operational properties

    Directory of Open Access Journals (Sweden)

    Tkach Evgeniya

    2018-01-01

    Full Text Available The purpose of these studies is to justify the feasibility of recycling different types of industrial waste instead of conventional expensive raw materials in production of environmentally friendly aerated concrete with required construction and operational properties. The impact of wastes from various industries on the environmental condition of affected areas, as well as the results of their environmental assessment were analyzed to determine whether these wastes could be used in production of high-performance building materials. The assessment of industrial wastes in aerated concrete production suggests that industrial wastes of hazard class IV can be recycled to produce aerated concrete. An environmentally friendly method for large-scale waste recycling, including a two-step environmentally sustainable mechanism, was developed. The basic quality indicators of the modified aerated concrete proved that the environmental safety could be enhanced by strengthening the structure, increasing its uniformity and improving thermal insulation properties. The modified non-autoclaved aerated concrete products with improved physical and operational properties were developed. They have the following properties: density – D700; class of concrete – B3.5; thermal transmittance coefficient – 0.143 W/(m·°C; frost resistance – F75.

  1. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers.

    Science.gov (United States)

    Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jiménez, José Ramón; Ledesma, Enrique F

    2016-02-08

    This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP's effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production.

  2. Impact of recycled gravel obtained from low or medium concrete grade on concrete properties

    Directory of Open Access Journals (Sweden)

    Yasser Abdelghany Fawzy

    2018-04-01

    Full Text Available This paper investigates the effect of recycled gravel obtained from low (Gl or medium (Gm concrete grade on fresh property of concrete (slump, mechanical properties (compressive-splitting tensile strength and mass transport properties (ISAT-sorptivity of concrete containing dolomite as a natural coarse aggregate. Concrete specimens were prepared with cement, water, sand and dolomite admixed with recycled gravel. The percentage of recycled gravel/dolomite was 0:100, 25:75, 50:50 and 75:25 at w/c = 0.50, 0.55 and 0.60. The effect of silica fume and bonding admixture at w/c = 0.55 on concrete properties were also considered. The results indicated that, increasing the percentage of recycled gravel/dolomite led to decreasing the slump. All mechanical properties of concrete discussed were inversely affected by increasing percentage of recycled gravel/dolomite from low and medium concrete. Adding 10% SF or bonding admixture increased the mechanical properties of concrete. Mass transport properties of concrete (ISAT-sorptivity were enhanced by decreasing the percentage of recycled gravel/dolomite. The optimum percentage of recycled gravel/dolomite = 25%. Keywords: Recycled gravel, Concrete, Silica fume, Compressive strength, Mass transport

  3. Long-term effects of waste solutions on concrete and reinforcing steel

    International Nuclear Information System (INIS)

    Daniel, J.I.; Stark, D.C.; Kaar, P.H.

    1982-04-01

    This report has been prepared for the In Situ Waste Disposal Program Tank Assessment Task (WG-11) as part of an investigation to evaluate the long-term performance of waste storage tanks at the Hanford Site. This report, prepared by the Portland Cement Association, presents the results of four years of concrete degradation studies which exposed concrete and reinforcing steel, under load and at 180 0 F, to simulated double-shell slurry, simulated salt cake solution, and a control solution. Exposure length varied from 3 months to 36 months. In all cases, examination of the concrete and reinforcing steel at the end of the exposure indicated there was no attack, i.e., no evidence of rusting, cracking, disruption of mill scale or loss of strength

  4. Theoretical Investigations on the Structural Behavior of Biaxial Hollow Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Nazar Kamel Ali Oukaili

    2015-06-01

    Full Text Available This paper presents a numerical analysis using ANSYS finite element program to simulate the reinforced concrete slabs with spherical voids. Six full-scale one way bubbled slabs of (3000mm length with rectangular cross-sectional area of (460mm width and (150mm depth are tested as simply supported under two-concentrated load. The results of the finite element model are presented and compared with the experimental data of the tested slabs. Material nonlinearities due to cracking and crushing of concrete and yielding of reinforcement are considered. The general behavior of the finite element models represented by the load-deflection curves at midspan, crack pattern, ultimate load, load-concrete strain curves and failure modes shows good agreement with the experimental data.

  5. Concrete containment vessels (CCV) for nuclear power plants, (1)

    International Nuclear Information System (INIS)

    Ibe, Yukimi; Kitajima, Masatake

    1977-01-01

    Containment vessels (CV) and the construction of concrete containment vessels (CCV) for nuclear power plants are described generally, and their use and techniques in foreign countries are illustrated, in connection with the introduction of CCV to Japanese nuclear power plants. The introduction deals with the construction plan of Japanese nuclear power plants, and with the difficulties in the steel CV for large scale construction. The investigations, tests and researches are not yet sufficient. The prompt establishment of safety supported by technical criteria, analytical methods and experiments is desired. The second part deals with the consideration for aseismatic design, construction, function and characteristics of CCV. The classification and currently employed CCV, which is mainly reinforced concrete containment vessels (RCCV), are described, and the typical CCV employed for BWR is illustrated. Further, the typical arrangement of reinforcing steels at the cylindrical portion and the dome portion of RCCV is illustrated. The third part deals with the present state of CCV abroad. A prestressed concrete containment vessel (PCCV) of Turkey Point power plant is illustrated as a typical example of CCV. The tests reported in the international meeting for the design, construction and operation of concrete pressure vessels and concrete containment vessels at York University in England in 1975 are reviewed. Typical examples of the design conditions, the size and form, and the construction procedure for PCCV and RCCV abroad are reviewed. (Iwakiri, K.)

  6. DYNAPCON: a computer code for dynamic analysis of prestressed concrete structures

    International Nuclear Information System (INIS)

    Marchertas, A.H.

    1982-09-01

    A finite element computer code for the transient analysis of prestressed concrete reactor vessels (PCRVs) for LMFBR containment is described. The method assumes rotational symmetry of the structure. Time integration is by an explicit method. The quasistatic prestressing operation of the PCRV model is performed by a dynamic relaxation technique. The material model accounts for the crushing and tensile cracking in arbitrary direction in concrete and the elastic-plastic behavior of reinforcing steel. The variation of the concrete tensile cracking and compressive crushing limits with strain rate is taken into account. Relative slip is permitted between the concrete and tendons. Several example solutions are presented and compared with experimental results. These sample problems range from simply supported beams to small scale models of PCRV's. It is shown that the analytical methods correlate quite well with experimental results, although in the vicinity of the failure load the response of the models tend to be quite sensitive to input parameters

  7. Concrete construction engineering handbook

    CERN Document Server

    Nawy, Edward G

    2008-01-01

    Provides coverage of concrete construction engineering and technology. This work features discussions focusing on: the advances in engineered concrete materials; reinforced concrete construction; specialized construction techniques; and, design recommendations for high performance.

  8. Infiltration properties of covering soil into the void of buried concrete waste due to fluctuation of ground water level and its prevention

    International Nuclear Information System (INIS)

    Takatsu, Tadashi; Tadano, Hideki; Abe, Satoshi; Imai, Jun; Yanagisawa, Eiji; Mitachi, Toshiyuki

    1999-01-01

    Low level radioactive concrete waste will be produced in future by breaking up the nuclear facilities, and the waste will be disposed in shallow depth of ground. In order to prepare for those situation, it is needed to clarify the infiltration properties of the covering soil into the void of buried concrete waste due to the fluctuation of ground water level and to develop the prevention methods against the infiltration of the covering soil. In this study, full-scale concrete structure specimens were broken up, and were compacted in large scale testing boxes and a series tests changing water level up and down in the concrete waste and covering soil were performed. From the test results, it was found that the appropriate filter installed between the covering soil and the concrete waste, enable us to prevent the infiltration of covering soil into the void of concrete waste. (author)

  9. Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete

    Science.gov (United States)

    Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.

    2018-03-01

    This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.

  10. A model to predict moisture conditions in concrete reactor containments

    International Nuclear Information System (INIS)

    Ahs, M.; Nilsson, L.O.; Poyet, S.; L'Hostis, V.

    2015-01-01

    Moisture has an impact in many of the degradation mechanisms that appear in the structures of a nuclear power plant. Moisture conditions in a reactor containment wall have been simulated by using a hygro-thermal model of drying concrete. Methods to estimate the temperature dependency of the sorption isotherms and moisture transport properties is suggested and applied in the model. This temperature dependency is included as there is a temperature gradient present through the containment wall. The hygro-thermal model was applied on a full scale 3D model of a real reactor containment building and the concrete relative humidity has been computed at 4 different moments: 1, 10, 20 and 30 years. The results show that the major part of the concrete is not dried at all even after 30 years of operation. It is also clear that the temperature distribution inside the whole concrete volume is affected by the variable boundary conditions. It was concluded that the suggested hygro-thermal model was appropriate to use as a method to estimate the existing conditions in a PWR reactor containment wall

  11. Physical Characteristics of Laboratory Tested Concrete as a Substituion of Gravel on Normal Concrete

    Science.gov (United States)

    Butar-butar, Ronald; Suhairiani; Wijaya, Kinanti; Sebayang, Nono

    2018-03-01

    Concrete technology is highly potential in the field of construction for structural and non-structural construction. The amount uses of this concrete material raise the problem of solid waste in the form of concrete remaining test results in the laboratory. This waste is usually just discarded and not economically valuable. In solving the problem, this experiment was made new materials by using recycle material in the form of recycled aggregate which aims to find out the strength characteristics of the used concrete as a gravel substitution material on the normal concrete and obtain the value of the substitution composition of gravel and used concrete that can achieve the strength of concrete according to the standard. Testing of concrete characteristic is one of the requirements before starting the concrete mixture. This test using SNI method (Indonesian National Standard) with variation of comparison (used concrete : gravel) were 15: 85%, 25: 75%, 35:65%, 50:50 %, 75: 25%. The results of physical tests obtained the mud content value of the mixture gravel and used concrete is 0.03 larger than the standard of SNI 03-4142-1996 that is equal to 1.03%. so the need watering or soaking before use. The water content test results show an increase in the water content value if the composition of the used concrete increases. While the specific gravity value for variation 15: 85% until 35: 65% fulfilled the requirements of SNI 03-1969-1990. the other variasion show the specifics gravity value included on the type of light materials.

  12. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  13. Durability of lightweight concrete : Phase I : concrete temperature study.

    Science.gov (United States)

    1968-08-01

    This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...

  14. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate

    Science.gov (United States)

    Zheng, Chaocan; Lou, Cong; Du, Geng; Li, Xiaozhen; Liu, Zhiwu; Li, Liqin

    2018-06-01

    This paper presents an experimental investigation on the effect of the replacement of natural coarse aggregate (NCA) with either recycled concrete aggregate (RCA) or recycled clay brick aggregate (RBA) on the compressive strengths of the hardened concrete. Two grades (C25 and C50) of concrete were investigated, which were achieved by using different water-to-cement ratios. In each grade concrete five different replacement rates, 0%, 25%, 50%, 75% and 100% were considered. In order to improve the performance of the recycled aggregates in the concrete mixes, the RCA and RBA were carefully sieved by using the optimal degradation. In this way the largest reduction in the 28-day compressive strength was found to be only 7.2% and 9.6% for C25 and C50 recycled concrete when the NCA was replaced 100% by RCA, and 11% and 13% for C25 and C50 recycled concrete when the NCA was replaced 100% by RBA. In general, the concrete with RCA has better performance than the concrete with RBA. The comparison of the present experimental results with those reported in literature for hardened concrete with either RCA or RBA demonstrates the effectiveness in improving the compressive strength by using the optimal gradation of recycled aggregates.

  15. Material properties characterization - concrete

    International Nuclear Information System (INIS)

    England, G.L.; MacLeod, J.S.

    1978-01-01

    A review is presented of the six contributions in the SMiRT 4 conference to Session H5 on structural analysis of prestressed concrete reactor pressure vessels. These relate to short term stress-strain aspects of concrete loaded beyond the linear range in uniaxial and biaxial stress fields, to some time and temperature dependent properties of concrete at working stress levels, and to a programme of strain-gauge testing for the assessment of concrete properties. From the information discussed, it is clear that there are difficulties in determining material properties for concrete, and these are summarised. (UK)

  16. SIMULATION MODELS OF RESISTANCE TO CONCRETE MOVEMENT IN THE CONCRETE CONVEYING PIPE OF THE AUTOCONCRETE PUMP

    OpenAIRE

    Anofriev, P. G.

    2015-01-01

    Purpose. In modern construction the placing of concrete is often performed using distribution equipment of concrete pumps. Increase of productivity and quality of this construction work requires improvement of both concrete pumps and their tooling. The concrete pumps tooling consists of standardized concrete conveying pipes and connector bends radius of up to 2 m. A promising direction of tooling improvement is the reduce of resistance to movement of the concrete in the concrete conveying pip...

  17. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  18. A historical examination of concrete

    International Nuclear Information System (INIS)

    Mallinson, L.G.; Li Davies, I.

    1987-01-01

    The requirement that concrete in radioactive waste repositories be stable physically and chemically for very long times has initiated studies of ancient and old concretes. This report is a contribution to this effort. After a description of the history of cement and concrete, the published literature relating to the analysis of old and ancient concrete is reviewed. A series of samples spanning the history of concrete has been obtained; a variety of physical and chemical techniques have been employed to characterize these samples. Reasons for survival of ancient concretes, and for durability of early, reinforced concretes are identified. Recommendations for further studies are given. 132 refs

  19. The Results of the CCI-3 Reactor Material Experiment Investigating 2-D Core-Concrete Interaction and Debris Coolability with a Siliceous Concrete Crucible

    International Nuclear Information System (INIS)

    Farmer, M.T.; Lomperski, S.; Basu, S.

    2006-01-01

    The OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program conducted reactor materials experiments and associated analysis to achieve the following two objectives: 1) resolve the ex-vessel debris coolability issue, and 2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs of future plants. With respect to the second objective, there are remaining uncertainties in the models that evaluate the lateral vs. axial power split during core-concrete interaction because of a lack of truly two-dimensional experiment data. As a result, there are differences in the 2-D cavity erosion profiles predicted by codes such as WECHSL, COSACO, TOLBIAC, MEDICIS, and MELCOR. In the continuing effort to bridge this data gap, the third in a series of large scale Core-Concrete Interaction experiments (CCI-3) has been conducted as part of the MCCI program. This test investigated the long-term interaction of a 375 kg core-oxide melt within a two-dimensional siliceous concrete crucible. The initial phase of the test was conducted under dry conditions. After a predetermined time interval, the cavity was flooded with water to obtain data on the coolability of a core melt after core-concrete interaction has progressed for some time. This paper provides a description of the facility and an overview of results from this test. (authors)

  20. Concrete radiation shielding

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1989-01-01

    The increased use of nuclear energy has given rise to a growth in the amount of artificially produced radiation and radioactive materials. The design and construction of shielding to protect people, equipment and structures from the effects of radiation has never been more important. Experience has shown that concrete is an effective, versatile and economical material for the construction of radiation shielding. This book provides information on the principles governing the interaction of radiation with matter and on relevant nuclear physics to give the engineer an understanding of the design and construction of concrete shielding. It covers the physical, mechanical and nuclear properties of concrete; the effects of elevated temperatures and possible damage to concrete due to radiation; basic procedures for the design of concrete radiation shields and finally the special problems associated with their construction and cost. Although written primarily for engineers concerned with the design and construction of concrete shielding, the book also reviews the widely scattered data and information available on this subject and should therefore be of interest to students and those wishing to research further in this field. (author)

  1. Radiation shielding concrete

    International Nuclear Information System (INIS)

    Kunishima, Shigeru.

    1990-01-01

    The radiation shielding concretes comprise water, cement, fine aggregates consisting of serpentines and blown mist slags, coarse aggregates consisting of serpentines and kneading materials. Since serpentines containing a relatively great amount of water of crystallization in rocks as coarse aggregates and fine aggregates, the hydrogen content in the radiation shielding concretes is increased and the neutron shielding effect is improved. In addition, since serpentines are added as the fine aggregates and blown mists slags of a great specific gravity are used, the specific gravity of the shielding concretes is increased to improve the γ-ray shielding effect. Further, by the use of the kneading material having a water reducing effect and fluidizing effect, and by the bearing effect of the spherical blown mist slags used as the fine aggregates, concrete fluidity can be increased. Accordingly, workability of the radiation shielding concretes can be improved. (T.M.)

  2. Reinforced concrete bridges: effects due to corrosion and concrete young modulus variation

    Directory of Open Access Journals (Sweden)

    P. T. C. Mendes

    Full Text Available Most of the Brazilian bridges of federal road network are made of reinforced concrete and are more than 30 years old, with little information about the mechanical properties of their constitutive materials. Along the service life of these bridges much modification occurred on vehicles load and geometry and in design standard. Many of them show signs of concrete and steel deterioration and their stability conditions are unknown. With the aim of contributing to the structural evaluation of reinforced concrete bridges it was decided to analyze the stresses in reinforced concrete bridge sections to verify the effects due to reinforcement corrosion and variation of the concrete Young modulus on the stress distribution regarding several load patterns and cracking effects in a representative bridge of the Brazilian road network with different longitudinal reinforcement taxes and two concrete Young modulus, Ec and 0.5Ec, and with different percentage of reinforcement corrosion. The analysis considered two finite element models: frame and shell elements as well as solid elements. The results indicate that these variation effects are more significant in reinforcement bars than in concrete.

  3. An historical examination of concrete

    International Nuclear Information System (INIS)

    Mallinson, L.G.

    1986-03-01

    The requirement that concrete in nuclear waste repositories be stable physically and chemically for hundreds, if not thousands, of years has initiated studies of ancient and old concretes. The history of cement and concrete is described. The oldest know concrete, from Yugoslavia, is ca. 7,500 years old. Concrete was used in many ancient civilisations, including those of Egypt, Greece and Rome. Ancient concretes were usually based upon lime, but sometimes gypsum was used. Pure lime concretes hardened by atomospheric carbonation but the Ancients, in particular the Romans, also employed hydraulic limes and discovered pozzolanas to make superior concretes which, upon hardening, contained complex cementitious hydrates including calcium-silicate-hydrate (CSH), the principal binding element in Portland cement concrete. Portland cement was not invented until 1824 or later and consists principally of calcium silicates formed by clinkerisation of a mixture of limestone and clay in carefully measured proportions. The cement sets hydraulically to form, principally, calcium hydroxide and CSH, the latter being an amorphous or semi-amorphous substance of variable composition. The published literature relating to the analysis of old and ancient cements and concretes is reviewed. A suite of samples spanning the history of concrete has been obtained. A variety of physical and chemical techniques have been employed to characterise these samples. (author)

  4. Probabilistic Design and Management of Sustainable Concrete Infrastructure Using Multi-Physics Service Life Models

    DEFF Research Database (Denmark)

    Lepech, Michael; Geiker, Mette; Michel, Alexander

    This paper looks to address the grand challenge of integrating construction materials engineering research within a multi-scale, inter-disciplinary research and management framework for sustainable concrete infrastructure. The ultimate goal is to drive sustainability-focused innovation and adoption...... cycles in the broader architecture, engineering, construction (AEC) industry. Specifically, a probabilistic design framework for sustainable concrete infrastructure and a multi-physics service life model for reinforced concrete are presented as important points of integration for innovation between...... design, consists of concrete service life models and life cycle assessment (LCA) models. Both types of models (service life and LCA) are formulated stochastically so that the service life and time(s) to repair, as well as total sustainability impact, are described by a probability distribution. A central...

  5. Novel approach to make concrete structures self-healing using porous network concrete

    NARCIS (Netherlands)

    Sangadji, S.; Schlangen, E.

    2012-01-01

    Many researchers proposed self healing mechanism using hollow fibres and or microcapsule containing a modifying agent dispersed in the concrete to prolong its service life and make it more durable. A novel self healing concrete concept is proposed in this paper by using porous network concrete

  6. Measurements of the tensile and compressive properties of micro-concrete used in the Winfrith missile impact experiments

    International Nuclear Information System (INIS)

    Wilson, P.A.

    1982-10-01

    Tests to determine the tensile and compressive properties of a micro-concrete mix are described. The material is a nominally 40MPa ultimate compressive strength concrete used in impact tests with scale models in the prediction of responses in prototype concrete structures. Compressive tests were intended to give complete stress-strain relationships beyond initial failure. Tensile properties were measured by the Brazilian splitting technique and direct tension dog-bone specimens for comparison reasons. (U.K.)

  7. Cracking in concrete-debonding length at the concrete/steel interface

    OpenAIRE

    Kjeldby, Liv Brox

    2016-01-01

    Investigation of the debonding length at the concrete/steel interface have been investigated based on different types of cracks in concrete. Different methods for investigation have been used in the laboratory.

  8. Concrete

    OpenAIRE

    Kruse Aagaard, Anders

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  9. Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement

    Science.gov (United States)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Sumandi, Khairul Azwa Syafiq Mohd; Mazenan, Puteri Natasya

    2017-10-01

    Many construction and development activities today consume large amounts of concrete. The amount of construction waste is also increasing because of the demolition process. Much of this waste can be recycled to produce new products and increase the sustainability of construction projects. As recyclable construction wastes, concrete and ceramic can replace the natural aggregate in concrete because of their hard and strong physical properties. This research used 25%, 35%, and 45% recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate in producing concrete. Several tests, such as concrete cube compression and splitting tensile tests, were also performed to determine and compare the mechanical properties of the recycled concrete with those of the normal concrete that contains 100% natural aggregate. The concrete containing 35% RCA and 35% ceramic waste showed the best properties compared with the normal concrete.

  10. Soft projectile impacts analysis on thin reinforced concrete slabs: Tests, modelling and simulations

    International Nuclear Information System (INIS)

    Pontiroli, C.; Rouquand, A.; Daudeville, L.; Baroth, J.

    2012-01-01

    Numerical simulations of reinforced concrete structures subjected to high velocity impacts and explosions remain a difficult task today. For 10 years and more now, the CEA-Gramat has maintained a continuous research effort with the help of different French universities in order to overcome encountered difficulties in modelling the behaviour of concrete structures under severe loading. To get more data on aircraft impact problems and then validate numerical models, soft projectile impacts tests at small scale on thin reinforced concrete slabs has been carried out at CEA-Gramat. Numerical simulations of these tests have been carried out and compared with experimental results to validate our numerical approach. (authors)

  11. Effects on concrete from borated water and boric compounds cast into the concrete

    International Nuclear Information System (INIS)

    Fagerlund, Goeran

    2010-06-01

    A study has been made of the effects on concrete of its exposure to external water containing boric acid, and the effects on concrete of boric compounds cast into the concrete during its manufacture. According to information in literature boric acid is a weak Lewis acid that has no effect on concrete. Reaction between calcium hydroxide existing in concrete and boric acid might occur at the concrete surface. The reaction product formed (calcium-metaboritehexahydrate) has lower solubility than calcium hydroxide itself. Therefore, the reaction is reasonably harmless. Accelerated and non-accelerated test methods exist by which quantitative information on the effect of boric acid can be obtained. The test principles are described. Boron-containing compounds might be mixed into concrete in order to increase its resistance to neutron radiation. Pure boron minerals, as well as boron-containing residual materials from processing of natural boron minerals, might be used. Concrete might be affected with regard to the following properties: - Workability of the fresh concrete; - Stiffening and hardening of the concrete; - Strength (compression, tension); - Deformation (E-modulus, creep); - Durability (chemical, steel corrosion. Information in literature indicates that the hardening process might be severely affected also when rather small amounts of certain boron-containing materials are used. The effect seems to be small, or none, however, if materials with low solubility are used. The effect on workability seems to be marginal. Test methods exist by which it is practical possible to develop acceptable concrete recipes. The effects on mechanical properties are not well clarified by research. However, effects seem to be small when boron materials with low solubility are used. In one study, in which part of the cement was replaced by a boron containing colemanite waste, it was found that the E-modulus was very much reduced. The significance of this result is unclear. The

  12. Electrokinetic decontamination of concrete

    International Nuclear Information System (INIS)

    Lomasney, H.L.; SenGupta, A.K.; Yachmenev, V.

    1996-01-01

    ELECTROSORB Electrokinetic Extraction Technology, developed by ISOTRON Corp., offers a cost-effective approach to treating contaminated concrete. Heavy metals/radionuclides trapped in concrete can be extracted using this process if they are chemically solubilized; solubilizers used are citric acid alone and a mixture of citric and nitric acids. A DC electric field is applied across the contaminated concrete to electrokinetically transport the solubilized contaminants from the concrete pores to a collector on the concrete surface. The collector is an extraction pad laid on the surface. The pad provides confinement for a planar electrode and solubilizer solution; it is operated under a vacuum to hold the pad against the concrete surface. Operation requires little attendance, reducing the workers' health hazards. The process incorporates a mechanism for recycling the solubilizer solution. A field demonstration of the process took place in Building 21 of DOE's Mound facility in Miamisburg, OH, over 12 days in June 1996. The thorium species present in this building's concrete floors included ThO 2 and thorium oxalate. The nitric acid was found to facilitate Th extraction

  13. Feasibility study of a concrete plug made of low pH concrete

    Energy Technology Data Exchange (ETDEWEB)

    Dahlstroem, Lars-Olof; Magnusson, Jonas (NCC Engineering (Sweden)); Gueorguiev, Ginko; Johansson, Morgan (Reinertsen Sverige AB, Goeteborg (Sweden))

    2009-09-15

    In this report a concrete plug, used as a barrier between the deposition tunnels and the access tunnel, is investigated. The objectives of the work is to see whether it is possible to use low pH concrete for the plug and whether it can be designed without using reinforcement. The requirements set on the plug are that the water leakage through it should be small enough and that the concrete stresses are limited to a value valid for the concrete used. A modified geometry of the plug is proposed, which makes it possible to use it as a general solution in all deposition tunnels. Material properties of a low pH concrete (B200) determined by CBI have been used. Loads considered in the study is the pressure from water and swelling, the temperature change in the rock and plug due to heat development from nuclear fuel stored in nearby copper canisters, pre-stressing in the plug due to cooling during construction and the shrinkage of concrete in the plug. Two-dimensional, axis-symmetric finite element analyses, assuming linear elastic material behaviour in rock and concrete where contact friction between concrete and rock is taken into consideration, have been used to study the structural response of the plug. A total of 48 main load combinations, consisting of 8 different load scenarios and 6 material combinations, have been used. It is found that the concrete plug will not remain uncracked when subjected to the loads studied but that it, nevertheless, is possible to achieve an unreinforced concrete plug that satisfies the requirements set up. The minimum size of the concrete compressed zone will be 0.5 m, resulting in a water leakage through the plug determined to be lower than the requirement of 0.01 l/min set up in this study. Further, the maximum compressive stresses of interest are 33 MPa and the maximum displacement in the plug is about 3 mm, which are deemed to be satisfactorily. Consequently, it is concluded that it seems possible to use low pH concrete for the plug

  14. Modified pavement cement concrete

    Science.gov (United States)

    Botsman, L. N.; Ageeva, M. S.; Botsman, A. N.; Shapovalov, S. M.

    2018-03-01

    The paper suggests design principles of pavement cement concrete, which covers optimization of compositions and structures at the stage of mixture components selection due to the use of plasticizing agents and air-retaining substances that increase the viability of a concrete mixture. It also demonstrates advisability of using plasticizing agents together with air-retaining substances when developing pavement concrete compositions, which provides for the improvement of physical and mechanical properties of concrete and the reduction of cement binding agent consumption thus preserving strength indicators. The paper shows dependences of the main physical-mechanical parameters of concrete on cement consumption, a type and amount of additives.

  15. Imbalance between abstract and concrete repetitive thinking modes in schizophrenia.

    Science.gov (United States)

    Maurage, Pierre; Philippot, Pierre; Grynberg, Delphine; Leleux, Dominique; Delatte, Benoît; Mangelinckx, Camille; Belge, Jan-Baptist; Constant, Eric

    2017-10-01

    Repetitive thoughts can be divided in two modes: abstract/analytic (decontextualized and dysfunctional) and concrete/experiential (problem-focused and adaptive). They constitute a transdiagnostic process involved in many psychopathological states but have received little attention in schizophrenia, as earlier studies only indexed increased ruminations (related to dysfunctional repetitive thoughts) without jointly exploring both modes. This study explored the two repetitive thinking modes, beyond ruminations, to determine their imbalance in schizophrenia. Thirty stabilized patients with schizophrenia and 30 matched controls completed the Repetitive Response Scale and the Mini Cambridge-Exeter Repetitive Thought Scale, both measuring repetitive thinking modes. Complementary measures related to schizophrenic symptomatology, depression and anxiety were also conducted. Compared to controls, patients with schizophrenia presented an imbalance between repetitive thinking modes, with increased abstract/analytic and reduced concrete/experiential thoughts, even after controlling for comorbidities. Schizophrenia is associated with stronger dysfunctional repetitive thoughts (i.e. abstract thinking) and impaired ability to efficiently use repetitive thinking for current problem-solving (i.e. concrete thinking). This imbalance confirms the double-faced nature of repetitive thinking modes, whose influence on schizophrenia's symptomatology should be further investigated. The present results also claim for evaluating these processes in clinical settings and for rehabilitating the balance between opposite repetitive thinking modes. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Lunar concrete for construction

    Science.gov (United States)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  17. Constitutive Behavior of Reinforced Concrete Membrane Elements under Tri-directional Shear

    Science.gov (United States)

    Labib, Moheb

    The two-dimensional behavior of typical reinforced concrete (RC) structures has been extensively studied in the past several decades by investigating the constitutive behavior of full-scale reinforced concrete elements subjected to a bi-axial state of stress. In order to understand the true behavior of many large complex structures, the goal of this investigation is to develop new constitutive relationships for RC elements subjected to tri-directional shear stresses. Recently, additional out-of-plane jacks were installed on the panel tester at University of Houston so that concrete elements could be subjected to tri-directional shear stresses. This upgrade makes the panel tester the only one of its kind in the US that is capable of applying such combinations of stresses on full-scale reinforced concrete elements. This dissertation presents the details of the mounting and installation of the additional hydraulic jacks on the universal panel tester. The experimental program includes a series of seven reinforced concrete elements subjected to different combinations of in-plane and out-of-plane shear stresses. Increasing the applied out-of-plane shear stresses reduced the membrane shear strength of the elements. The effect of applying out-of-plane shear stresses on the in-plane shear strength was represented by modifying the softening coefficient in the compression stress strain curve of concrete struts. The modified model was able to capture the behavior and the ultimate capacity of the tested elements. The effect of the in-plane shear reinforcement ratio on the interaction between in-plane and out-of-plane shear stresses was evaluated. The model was implemented in the Finite Element package FEAP and was used to predict the ultimate capacity of many structures subjected to a combination of in-plane and out-of-plane shear stresses. The results of the analytical model were used to develop simplified design equations for members subjected to bi-directional shear loads

  18. Tension tests of concrete containment wall elements

    International Nuclear Information System (INIS)

    Schultz, D.M.; Julien, J.T.; Russel, H.G.

    1984-01-01

    Tension tests of concrete containment wall elements were conducted as part of a three-phase research program sponsored by the Electric Power Research Institute (EPRI). The objective of the EPRI experimental/analytical program is twofold. The first objective is to provide the utility industry with a test-verified analytical method for making realistic estimates of actual capacities of reinforced and prestressed concrete containments under internal over-pressurization from postulated degraded core accidents. The second objective is to determine qualitative and quantitative leak rate characteristics of typical containment cross-sections with and without penetrations. This paper covers the experimental portion to the EPRI program. The testing program for Phase 1 included eight large-scale specimens representing elements from the wall of a containment. Each specimen was 60-in (1525-mm) square, 24-in (610-mm) thick, and had full-size reinforcing bars. Six specimens were representative of prototypical reinforced concrete containment designs. The remaining two specimens represented prototypical prestressed containment designs. Various reinforcement configurations and loading arrangements resulted in data that permit comparisons of the effects of controlled variables on cracking and subsequent concrete/reinforcement/liner interaction in containment elements. Subtle differences, due to variations in reinforcement patterns and load applications among the eight specimens, are being used to benchmark the codes being developed in the analytical portion of the EPRI program. Phases 2 and 3 of the test program will examine leak rate characteristics and failure mechanisms at penetrations and structural discontinuities. (orig.)

  19. Fine-grained semantic categorization across the abstract and concrete domains.

    Directory of Open Access Journals (Sweden)

    Marta Ghio

    Full Text Available A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. Theoretical advances, particularly within the area of embodied cognition, have more recently put forward the idea that distributed neural representations tied to the kinds of experience maintained with the concepts' referents might distinguish conceptual meanings with a high degree of specificity, including those within the abstract domain. Here we report the results of two psycholinguistic rating studies incorporating such theoretical advances with two main objectives: first, to provide empirical evidence of fine-grained distinctions within both the abstract and the concrete semantic domains with respect to relevant psycholinguistic dimensions; second, to develop a carefully controlled linguistic stimulus set that may be used for auditory as well as visual neuroimaging studies focusing on the parametrization of the semantic space beyond the abstract-concrete dichotomy. Ninety-six participants rated a set of 210 sentences across pre-selected concrete (mouth, hand, or leg action-related and abstract (mental state-, emotion-, mathematics-related categories, with respect either to different semantic domain-related scales (rating study 1, or to concreteness, familiarity, and context availability (rating study 2. Inferential statistics and correspondence analyses highlighted distinguishing semantic and psycholinguistic traits for each of the pre-selected categories, indicating that a simple abstract-concrete dichotomy is not sufficient to account for the entire semantic variability within either domains.

  20. Performance of rice husk ash produced using a new technology as a mineral admixture in concrete

    International Nuclear Information System (INIS)

    Nehdi, M.; Duquette, J.; El Damatty, A.

    2003-01-01

    This article investigates the use of a new technique for the controlled combustion of Egyptian rice husk to mitigate the environmental concerns associated with its uncontrolled burning and provide a supplementary cementing material for the local construction industry. The reactor used provides efficient combustion of rice husk in a short residency time via the suspension of processed particles by jets of a process air stream that is forced though stationary angled blades at high velocity. Investigations on the rice husk ash (RHA) thus produced included oxide analysis, X-ray diffraction, carbon content, grindability, water demand, pozzolanic activity index, surface area, and particle size distribution measurements. In addition, concrete mixtures incorporating various proportions of silica fume (SF) and Egyptian RHA (EG-RHA) produced at different combustion temperatures were made and compared. The workability, superplasticizer and air-entraining admixture requirements, and compressive strength at various ages of these concrete mixtures were evaluated, and their resistance to rapid chloride penetrability and deicing salt surface scaling were examined. Test results indicate that contrary to RHA produced using existing technology, the superplasticizer and air-entraining agent requirements did not increase drastically when the RHA developed in this study was used. Compressive strengths achieved by concrete mixtures incorporating the new RHA exceeded those of concretes containing similar proportions of SF. The resistance to surface scaling of RHA concrete was better than that of concrete containing similar proportions of SF. While the chloride penetrability was substantially decreased by RHA, it remained slightly higher than that achieved by SF concrete

  1. Surface treatment systems for concrete in marine environment: Effect of concrete cover thickness

    Directory of Open Access Journals (Sweden)

    Marcelo Henrique Farias de Medeiros

    Full Text Available Abstract There are some ways to extend the service life of a reinforced concrete structure. This paper focuses on the extension of the service life by treating the surface of reinforced concrete, specifically on the effect of the concrete cover thickness on the surface treatment system efficacy. Thus, chloride migration tests were performed and diffusion chloride coefficients were calculated. The service life of each case (treated or non-treated concrete was estimated using these data and Fick's second law of diffusion. Results indicated that the thicker the concrete cover is, the greater the efficacy of the concrete surface treatment system will be. The dissemination of this information is important, since it is almost intuitive to think that the effect of a surface treatment system depends only on itself and this study shows the opposite.

  2. Testing of plain and fibrous concrete single cavity prestressed concrete reactor vessel models

    International Nuclear Information System (INIS)

    Oland, C.B.

    1985-01-01

    Two single-cavity prestressed concrete reactor vessel (PCRV) models were fabricated and tested to failure to demonstrate the structural response and ultimate pressure capacity of models cast from high-strength concretes. Concretes with design compressive strengths in excess of 70 MPa (10,000 psi) were developed for this investigation. One model was cast from plain concrete and failed in shear at the head region. The second model was cast from fiber reinforced concrete and failed by rupturing the circumferential prestressing at the sidewall of the structure. The tests also demonstrated the capabilities of the liner system to maintain a leak-tight pressure boundary. 3 refs., 4 figs

  3. Evaluation of curing compound application time on concrete surface durability.

    Science.gov (United States)

    2015-03-01

    The effect of curing compound application time after concrete finishing was examined in the study. Times of 30 minutes, 2 hours and 4 hours were considered and repeatability was evaluated with comparisons to a Phase I portion of the study. Scaling re...

  4. Concrete-Design

    Directory of Open Access Journals (Sweden)

    Leczovics Péter

    2014-12-01

    Full Text Available Present paper introduces a new interpretation of concrete, demonstrating some extreme possibilities of this rigid material such as a design element. In the first part a brief overview of the previous achievements are shown. The second part of this paper focuses on the relationship between concrete and fashion.

  5. A four-scale homogenization analysis of creep of a nuclear containment structure

    Energy Technology Data Exchange (ETDEWEB)

    Tran, A.B. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME UMR 8208 CNRS, 5 bd Descartes, F-77454 Marne-la-Vallée (France); EDF R and D – Département MMC Site des Renardières – Avenue des Renardières - Ecuelles, 77818 Moret sur Loing Cedex (France); Department of Applied Informatics in Construction, National University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung District, Hanoi (Viet Nam); Yvonnet, J., E-mail: julien.yvonnet@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME UMR 8208 CNRS, 5 bd Descartes, F-77454 Marne-la-Vallée (France); He, Q.-C. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME UMR 8208 CNRS, 5 bd Descartes, F-77454 Marne-la-Vallée (France); Toulemonde, C.; Sanahuja, J. [EDF R and D – Département MMC Site des Renardières – Avenue des Renardières - Ecuelles, 77818 Moret sur Loing Cedex (France)

    2013-12-15

    A four-scale approach is proposed to predict the creep behavior of a concrete structure. The behavior of concrete is modeled through a numerical multiscale methodology, by successively homogenizing the viscoelastic behavior at different scales, starting from the cement paste. The homogenization is carried out by numerically constructing an effective relaxation tensor at each scale. In this framework, the impact of modifying the microstructural parameters can be directly observed on the structure response, like the interaction of the creep of concrete with the prestressing tendons network, and the effects of an internal pressure which might occur during a nuclear accident.

  6. A four-scale homogenization analysis of creep of a nuclear containment structure

    International Nuclear Information System (INIS)

    Tran, A.B.; Yvonnet, J.; He, Q.-C.; Toulemonde, C.; Sanahuja, J.

    2013-01-01

    A four-scale approach is proposed to predict the creep behavior of a concrete structure. The behavior of concrete is modeled through a numerical multiscale methodology, by successively homogenizing the viscoelastic behavior at different scales, starting from the cement paste. The homogenization is carried out by numerically constructing an effective relaxation tensor at each scale. In this framework, the impact of modifying the microstructural parameters can be directly observed on the structure response, like the interaction of the creep of concrete with the prestressing tendons network, and the effects of an internal pressure which might occur during a nuclear accident

  7. Research on working property and early age mechanical property of self-compacting concrete used in steel-concrete structure

    International Nuclear Information System (INIS)

    Zhao Yongguang

    2013-01-01

    Background: Self-compacting concrete that has good working property is the prerequisite of steel-concrete structure. The early age mechanical property of self-compacting concrete is the important parameter when design steel-concrete structure. Purpose: This paper attempts to research the working property and early age mechanical property of self-compacting concrete. Methods: Test is used to research the working property and early age mechanical property of self-compacting concrete. Results: Self-compacting concrete that could meet the requirement of steel-concrete structure has been mixed and parameters of early age mechanical property of self-compacting concrete which is necessary for design of steel-concrete structure have been presented. Conclusions: Base on the results, this paper can guide the construction of self-compacting concrete in steel-concrete structure and the design and construction of steel-concrete structure. (author)

  8. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Winkel, B.V.

    1995-01-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in 2 mix and a 4.5 kip/in 2 mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in 2 . In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F

  9. Effect of concrete strength gradation to the compressive strength of graded concrete, a numerical approach

    Science.gov (United States)

    Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa

    2017-09-01

    Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.

  10. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  11. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  12. Performance of Waterless Concrete

    Science.gov (United States)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  13. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  14. The suitability of concrete using recycled aggregates (RAs) for high-performance concrete (HPC)

    OpenAIRE

    Torgal, Fernando Pacheco; Ding, Y.; Miraldo, Sérgio; Abdollahnejad, Zahra; Labrincha, J. A.

    2013-01-01

    Most studies related to concrete made with recycled aggregates (RA) use uncontaminated aggregates produced in the laboratory, revealing the potential to re-use as much as 100%. However, industrially produced RA contain a certain level of impurities that can be deleterious for Portland cement concrete, thus making it difficult for the concrete industry to use such investigations unless uncontaminated RA are used. This chapter reviews current knowledge on concrete made with RA, with a focus on ...

  15. Bayesian decision and mixture models for AE monitoring of steel-concrete composite shear walls

    Science.gov (United States)

    Farhidzadeh, Alireza; Epackachi, Siamak; Salamone, Salvatore; Whittaker, Andrew S.

    2015-11-01

    This paper presents an approach based on an acoustic emission technique for the health monitoring of steel-concrete (SC) composite shear walls. SC composite walls consist of plain (unreinforced) concrete sandwiched between steel faceplates. Although the use of SC system construction has been studied extensively for nearly 20 years, little-to-no attention has been devoted to the development of structural health monitoring techniques for the inspection of damage of the concrete behind the steel plates. In this work an unsupervised pattern recognition algorithm based on probability theory is proposed to assess the soundness of the concrete infill, and eventually provide a diagnosis of the SC wall’s health. The approach is validated through an experimental study on a large-scale SC shear wall subjected to a displacement controlled reversed cyclic loading.

  16. Retrofitting of Reinforced Concrete Beams using Reactive Powder Concrete (RPC)

    Science.gov (United States)

    Karthik, S.; Sundaravadivelu, Karthik

    2017-07-01

    Strengthening of existing damaged structures is one of the leading studies in civil engineering. The purpose of retrofitting is to structurally treat the member with an aim to restore the structure to its original strength. The focus of this project is to study the behaviour of damaged Reinforced Concrete beam retrofitted with Reactive Powder Concrete (RPC) Overlay. Reinforced concrete beams of length 1200 mm, width 100 mm and depth 200 mm were casted with M30 grade of concrete in the laboratory and cured for 28 days. One beam is taken as control and are tested under two point loading to find out ultimate load. Remaining beams are subjected to 90 % ultimate load of control beams. The partially damaged beams are retrofitted with Reactive Powder Concrete Overlay at the full tension face of the beam and side overlay depends upon the respectable retrofitting techniques with 10 mm and 20 mm thick layer to find optimum. Materials like steel fibres are added to enhance the ductility by eliminating coarse particle for homogeneity of the structure. Finally, the modes of failure for retrofitted beams are analysed experimentally under two point loading & compared the results with Control beam.

  17. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    Science.gov (United States)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  18. Earthquake Response of Reinforced Concrete Building Retrofitted with Geopolymer Concrete and X-shaped Metallic Damper

    Science.gov (United States)

    Madheswaran, C. K.; Prakash vel, J.; Sathishkumar, K.; Rao, G. V. Rama

    2017-06-01

    A three-storey half scale reinforced concrete (RC) building is fixed with X-shaped metallic damper at the ground floor level, is designed and fabricated to study its seismic response characteristics. Experimental studies are carried out using the (4 m × 4 m) tri-axial shake-table facility to evaluate the seismic response of a retrofitted RC building with open ground storey (OGS) structure using yielding type X-shaped metallic dampers (also called as Added Damping and Stiffness-ADAS elements) and repairing the damaged ground storey columns using geopolymer concrete composites. This elasto-plastic device is normally incorporated within the frame structure between adjacent floors through chevron bracing, so that they efficiently enhance the overall energy dissipation ability of the seismically deficient frame structure under earthquake loading. Free vibration tests on RC building without and with yielding type X-shaped metallic damper is carried out. The natural frequencies and mode shapes of RC building without and with yielding type X-shaped metallic damper are determined. The retrofitted reinforced concrete building is subjected to earthquake excitations and the response from the structure is recorded. This work discusses the preparation of test specimen, experimental set-up, instrumentation, method of testing of RC building and the response of the structure. The metallic damper reduces the time period of the structure and displacement demands on the OGS columns of the structure. Nonlinear time history analysis is performed using structural analysis package, SAP2000.

  19. Manufacture and quality control of concrete for Ikata Nuclear Power Station, Shikoku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Tada, Akiomi; Kitada, Takao

    1989-01-01

    Ikata Nuclear Power Station, only one nuclear power station in Shikoku, is located at the root of Sada Peninsula on Seto Inland sea side. At present, No.1 and No.2 plants of 566 MW each are in commercial operation, and on the east side, No.3 plant is under construction. No.3 plant is a PWR type plant of 890 MWe output, and the start of commercial operation is scheduled in March, 1995. In the construction of No.3 plant, the concrete used for civil engineering and building works is about 430,000 m 3 , and for the improvement of the quality control of concrete, the pursuit of economic efficiency, the fostering of concrete technology of employee and the coprosperity with local industries, the facilities for manufacturing concrete were constructed within the premise of the power station. The amount of use of concrete and respective materials classified by respective fiscal years, and the amount of manufacture of concrete that determines the scale of the concrete plant are shown. As to the construction of the concrete plant, the foundation work was started in March, 1987, and the machine foundation and building works were started in May, 1987. The acceptance was completed on August 17, 1987. The facilities of manufacturing concrete, the manufacture of concrete, and the quality control of materials and concrete are reported. (author)

  20. The characterization of cement waste form for final disposal of decommissioning concrete wastes

    International Nuclear Information System (INIS)

    Lee, Yoon-ji; Lee, Ki-Won; Min, Byung-Youn; Hwang, Doo-Seong; Moon, Jei-Kwon

    2015-01-01

    Highlights: • Decommissioning concrete waste recycling and disposal. • Compressive strength of cement waste form. • Characteristic of thermal resistance and leaching of cement waste form. - Abstract: In Korea, the decontamination and decommissioning of KRR-1, 2 at KAERI have been under way. The decommissioning of the KRR-2 was finished completely by 2011, whereas the decommissioning of KRR-1 is currently underway. A large quantity of slightly contaminated concrete waste has been generated from the decommissioning projects. The concrete wastes, 83ea of 200 L drums, and 41ea of 4 m 3 containers, were generated in the decommissioning projects. The conditioning of concrete waste is needed for final disposal. Concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled with a void space after concrete rubble pre-placement into 200 L drums. Thus, this research developed an optimizing mixing ratio of concrete waste, water, and cement, and evaluated the characteristics of a cement waste form to meet the requirements specified in the disposal site specific waste acceptance criteria. The results obtained from a compressive strength test, leaching test, and thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested as an optimized mixing ratio of 75:15:10. In addition, the compressive strength of the cement waste form was satisfied, including a fine powder up to a maximum of 40 wt% in concrete debris waste of about 75%. According to the scale-up test, the mixing ratio of concrete waste, water, and cement is 75:10:15, which meets the satisfied compressive strength because of an increase in the particle size in the waste

  1. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  2. INVESTIGATION ON THE RESPONSE OF SEGMENTED CONCRETE TARGETS TO PROJECTILE IMPACTS

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Paul M.; Cargile, James D.; Kistler, Bruce L.; La Saponara, Valeria

    2009-07-19

    The study of penetrator performance without free-surface effects can require prohibitively large monolithic targets. One alternative to monolithic targets is to use segmented targets made by stacking multiple concrete slabs in series. This paper presents an experimental investigation on the performance of segmented concrete targets. Six experiments were carried out on available small scale segmented and monolithic targets using instrumented projectiles. In all but one experiment using stacked slabs, the gap between slabs remained open. In the final experiment design, grout was inserted between the slabs, and this modification produced a target response that more closely represents that of the monolithic target. The results from this study suggest that further research on segmented targets is justified, to explore in more detail the response of segmented targets and the results of large scale tests when using segmented targets versus monolithic targets.

  3. Metrology Needs for Predicting Concrete Pumpability

    Directory of Open Access Journals (Sweden)

    Myoungsung Choi

    2015-01-01

    Full Text Available With the increasing use of pumping to place concrete, the development and refinement of the industry practice to ensure successful concrete pumping are becoming important needs for the concrete construction industry. To date, research on concrete pumping has been largely limited to a few theses and research papers. The major obstacle to conduct research on concrete pumping is that it requires heavy equipment and large amounts of materials. Thus, developing realistic and simple measurement techniques and prediction tools is a financial and logistical challenge that is out of reach for small research labs and many private companies in the concrete construction industry. Moreover, because concrete pumping involves the flow of a complex fluid under pressure in a pipe, predicting its flow necessitates detailed knowledge of the rheological properties of concrete, which requires new measurement science. This paper summarizes the technical challenges associated with concrete pumping and the development in concrete pumping that have been published in the technical literature and identifies future research needed for the industry to develop best practices for ensuring successful concrete pumping in the field.

  4. Experimental Investigation of Properties of Foam Concrete for Industrial Floors in Testing Field

    Science.gov (United States)

    Vlcek, Jozef; Drusa, Marian; Scherfel, Walter; Sedlar, Bronislav

    2017-12-01

    Foam concrete (FC), as a mixture of cement, water, additives and technical foam, is well known for more than 30 years. It is building material with good mechanical properties, low thermal conductivity, simple and even high technological treatment. Foam concrete contains closed void pores, what allows achieving low bulk density and spare of raw materials. Thanks to its properties, it is usable as a replacement of conventional subbase layers of the industrial floors, the transport areas or as a part of the foundation structures of the buildings. Paper presents the preparation of the testing field (physical model) which was created for experimental investigation of the foam concrete subbase layer of the industrial floor in a real scale.

  5. Experimental study of sodium fires on concrete based on the sodium-concrete reaction and its consequences: study of the behavior of various concretes under metallic sheaths

    International Nuclear Information System (INIS)

    Berlin; Colome, J.; Malet, J.C.

    The problem created by the violent reaction between hot sodium and concrete has only recently been recognized. Its importance was evidenced during experiments in which the sodium-barium oxide concrete reactions led to violent explosions. SESR approached this question during its experimental programs Cassandre and Lucifer. The Cassandre 01 experiment demonstrated the sodium-ordinary concrete reaction, where sodium was burned directly in a concrete vat. The consequences of this fire, pulverization of sodium particles, explosions and deterioration of the concrete led to consideration of protecting the concrete. Among possible shieldings sheath metal appeared to be the safest solution. The Cassandre 08, Lucifer 01 and Lucifer 04 experiments were used to study the behavior of various qualities of concrete protected from fire by a metal wall. The results show that a metal cladding efficiently protects concrete from sodium leaks

  6. Experimental investigation of photocatalytic effects of concrete in air purification adopting entire concrete waste reuse model.

    Science.gov (United States)

    Xu, Yidong; Chen, Wei; Jin, Ruoyu; Shen, Jiansheng; Smallbone, Kirsty; Yan, Chunyang; Hu, Lei

    2018-07-05

    This research investigated the capacities of recycled aggregate concrete adopting entire concrete waste reuse model in degrading NO 2. Two major issues within environmental sustainability were addressed: concrete waste reuse rate and mitigation of hazards substances in the polluted air. The study consisted of two stages: identification of proper replacement rates of recycled concrete wastes in new concrete mixture design, and the evaluation of photocatalytic performance of recycled aggregate concrete in degrading NO 2 . It was found that replacement rates up to 3%, 30%, and 50% for recycled power, recycled fine aggregate, and recycled coarse aggregate respectively could be applied in concrete mixture design without deteriorating concrete strength. Recycled aggregates contained both positive attributes ("internal curing") and negative effects (e.g., lower hardness) to concrete properties. It was found that 30%-50% of natural coarse aggregate replaced by recycled coarse aggregates coated with TiO 2 would significantly improve the photocatalytic performance of concrete measured by degradation rate of NO 2 . Micro-structures of recycled aggregates observed under microscope indicated that soaking recycled aggregates in TiO 2 solution resulted in whiskers that filled the porosity within recycled aggregates which enhanced concrete strength. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Behaviour of Nano Silica in Tension Zone of High Performance Concrete Beams

    Science.gov (United States)

    Jaishankar, P.; Vivek, D.

    2017-07-01

    High performance concrete (HPC) is similar to High strength concrete (HSC).It is because of lowering of water to cement ratio, which is needed to attain high strength and generally improves other properties. This concrete contains one or more cementitious materials such as fly ash, Silica fume or ground granulated blast furnace slag and usually a super plasticizer. The term ‘high performance’ is somewhat different because the essential feature of this concrete is that it’s ingredients and proportions are specifically chosen so as to have particularly appropriate properties for the expected use of the structure such as high strength and low permeability. Usage of nano scale properties such as Nano SiO2 can result in dramatically improved properties from conventional grain size materials of same chemical composition. This project is more interested in evaluate the behaviour of nano silica in concrete for 5%, 10%, and 15% volume fraction of cement. Flexural test for beams were conducted with two point loads, at different percentage as mentioned above. From results interpolated, Nano silica with higher order replacement gives optimized results compared to control specimens.

  8. Electrokenitic Corrosion Treatment of Concrete

    Science.gov (United States)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  9. Electrokinetic Strength Enhancement of Concrete

    Science.gov (United States)

    Cardenas, Henry E. (Inventor)

    2016-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  10. Assessment of mass fraction and melting temperature for the application of limestone concrete and siliceous concrete to nuclear reactor basemat considering molten core-concrete interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jae; Kim, Do Gyeum [Korea Institute of Civil Engineering and Building Technology, Goyang (Korea, Republic of); Cho, Jae Leon [Korea Hydro and Nuclear Power Co., Ulsan (Korea, Republic of); Yoon, Eui Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Myung Suk [Korea Hydro and Nuclear Power Co., Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies the mass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The H2O content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of CO2 necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

  11. Probabilistic design of fibre concrete structures

    Science.gov (United States)

    Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.

    2017-09-01

    Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented

  12. Behaviour of concrete nuclear containment structures upto ultimate failure with special reference to MAPP-1 containment

    International Nuclear Information System (INIS)

    Appa Rao, T.V.S.R.

    1975-01-01

    Theoretical and experimental methods for investigating the behaviour of concrete secondary containment structures subjected to loads upto their ultimate failure have been discussed in the paper. Need for inelastic nonlinear analysis of containments has been emphasized. Different contitutive models of concrete that can be employed in the nonlinear analysis of concrete structures were briefly reviewed. Based on the experimental results obtained in a 1:12 scale model test conducted at the Structural Engineering Research (Regional) Centre, Madras, behaviour of the MAPP-1 containment to internal pressure loading upto its ultimate failure has been discussed. (author)

  13. HTGR Base Technology Program. Task 2: concrete properties in nuclear environment. A review of concrete material systems for application to prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Naus, D.J.

    1981-05-01

    Prestressed concrete pressure vessels (PCPVs) are designed to serve as primary pressure containment structures. The safety of these structures depends on a correct assessment of the loadings and proper design of the vessels to accept these loadings. Proper vessel design requires a knowledge of the component (material) properties. Because concrete is one of the primary constituents of PCPVs, knowledge of its behavior is required to produce optimum PCPV designs. Concrete material systems are reviewed with respect to constituents, mix design, placing, curing, and strength evaluations, and typical concrete property data are presented. Effects of extreme loadings (elevated temperature, multiaxial, irradiation) on concrete behavior are described. Finally, specialty concrete material systems (high strength, fibrous, polymer, lightweight, refractory) are reviewed. 235 references

  14. Comparison on Heat of Hydration between Current Concrete for NPP and High Fluidity Concrete including Pozzolan Powders

    International Nuclear Information System (INIS)

    Noh, Jea Myoung; Cho, Myung Sug

    2010-01-01

    Nuclear power plant (NPP) concrete structures are exposed to many construction factors that lower the quality of concrete due to densely packed reinforcements and heat of hydration since they are mostly constructed with mass concrete. The concrete currently being used in Korean NPPs is mixed with Type I cement and fly ash. However, there is a demand to improve the performance of concrete with reduced heat of hydration and superior constructability. Many advantages such as improving workability and durability of concrete and decreasing heat of hydration are introduced by replacing cement with pozzolan binders. Therefore, the manufacturing possibility of high fluidity concrete should be investigated through applying multi-component powders blended with pozzolan binders to the concrete structure of NPPs, while the researches on properties, characteristic of hydration, durability and long-term behavior of high fluidity concrete using multi-component cement should be carried out. High fluidity concrete which is made using portland cement and pozzlonan powders such as fly ash and blast furnace slag has better properties on heat of hydration than the concrete currently in use for NPPs

  15. Shrinkage stress in concrete under dry-wet cycles: an example with concrete column

    Science.gov (United States)

    Gao, Yuan; Zhang, Jun; Luosun, Yiming

    2014-02-01

    This paper focuses on the simulation of shrinkage stress in concrete structures under dry-wet environments. In the modeling, an integrative model for autogenous and drying shrinkage predictions of concrete under dry-wet cycles is introduced first. Second, a model taking both cement hydration and moisture diffusion into account synchronously is used to calculate the distribution of interior humidity in concrete. Using the above two models, the distributions of shrinkage strain and stress in concrete columns made by normal and high strength concrete respectively under dry-wet cycles are calculated. The model results show that shrinkage gradient along the radial direction of the column from the center to outer surface increases with age as the outer circumference suffers to dry. The maximum and minimum shrinkage occur at the outer surface and the center of the column, respectively, under drying condition. As wetting starts, the shrinkage strain decreases with increase of interior humidity. The closer to the wetting face, the higher the humidity and the lower the shrinkage strain, as well as the lower the shrinkage stress. As results of the dry-wet cycles acting on the outer circumference of the column, cyclic stress status is developed within the area close to the outer surface of the column. The depth of the influencing zone of dry-wet cyclic action is influenced by concrete strength and dry-wet regime. For low strength concrete, relatively deeper influencing zone is expected compared with that of high strength concrete. The models are verified by concrete-steel composite ring tests and a good agreement between model and test results is found.

  16. Mixed materials for concrete. Concrete yo konwazai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kono, K [Tokushima Univ., Tokushima (Japan). Faculty of Engineering

    1994-07-05

    The materials except cement, water and aggregate added into the cement paste, mortar or concrete before the execution of smashing are called mixed materials. The mixed materials are indispensable to the concrete for improving the quality of the fresh concrete as well as the hardened concrete; providing the characteristics suitable for the operation; and increasing the economy. In this paper, the main mixed materials including fly ash, which is the by-product in coal thermoelectric power station; silica fume; micropowder of slag in blast furnace; expansive materials and so on are described summarily. Especially, silica fume is the by-product, which are the super micro-powders with the average size around 0.1 micrometer, collected by the dust-collector from the waste gas generated during the manufacture in the electric furnace of ferrosilicon, which is an alloy iron, or silicon metal used as the deacidificating and desulfurizing agents in the steel production. But the most part thereof is depended on the import since the domestic output is low. 38 refs., 19 figs., 6 tabs.

  17. Electrokinetic decontamination of concrete. Final report, August 3, 1993 - September 15, 1996

    International Nuclear Information System (INIS)

    1998-01-01

    The ELECTROSORB reg-sign open-quotes Cclose quotes process is an electrokinetic process for decontaminating concrete. ELECTROSORB reg-sign open-quotes Cclose quotes uses a carpet-like extraction pad which is placed on the contaminated concrete surface. An electrolyte solution is circulated from a supporting module. This module keeps the electrolyte solution clean. The work is advancing through the engineering development stage with steady progress toward a full scale demonstration unit which will be ready for incorporation in the DOE Large Scale Demonstration Program by Summer 1997. A demonstration was carried out at the Mound Facility in Miamisburg, Ohio, in June 1996. Third party verification by EG ampersand G verified the effectiveness of the process. Results of this work and the development work that proceeded are described herein

  18. Optimum concrete compression strength using bio-enzyme

    OpenAIRE

    Bagio Tony Hartono; Basoeki Makno; Tistogondo Julistyana; Pradana Sofyan Ali

    2017-01-01

    To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the con...

  19. Towards practical multiscale approach for analysis of reinforced concrete structures

    Science.gov (United States)

    Moyeda, Arturo; Fish, Jacob

    2017-12-01

    We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.

  20. Digital Image Correlation of Concrete Slab at University of Tennessee, Knoxville

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pham, Binh T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kyle, Neal [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Some degradation mechanisms of concrete manifest themselves via swelling or by other shape deformation of the concrete. Specifically, degradation of concrete structure damaged by ASR is viewed as one of the dominant factors impacting the structural integrity of aging nuclear power plants. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. Number of nondestructive examination techniques (i.e., thermography, digital image correlation, mechanical deformation measurements, nonlinear impact resonance (DIC) acoustic spectroscopy, and vibro-acoustic modulation) is used to detect the damage caused by ASR. DIC techniques have been increasing in popularity, especially in micro- and nano-scale mechanical testing applications due to its relative ease of implementation and use. Advances in computer technology and digital cameras help this method moving forward. To ensure the best outcome of the DIC system, important factors in the experiment are identified. They include standoff distance, speckle size, speckle pattern, and durable paint. These optimal experimental options are selected basing on a thorough investigation. The resulting DIC deformation map indicates that this technique can be used to generate data related to degradation assessment of concrete structure damaged by the impact of ASR.

  1. Digital Image Correlation of Concrete Slab at University of Tennessee, Knoxville

    International Nuclear Information System (INIS)

    Mahadevan, Sankaran; Agarwal, Vivek; Pham, Binh T.; Kyle, Neal

    2016-01-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Some degradation mechanisms of concrete manifest themselves via swelling or by other shape deformation of the concrete. Specifically, degradation of concrete structure damaged by ASR is viewed as one of the dominant factors impacting the structural integrity of aging nuclear power plants. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. Number of nondestructive examination techniques (i.e., thermography, digital image correlation, mechanical deformation measurements, nonlinear impact resonance (DIC) acoustic spectroscopy, and vibro-acoustic modulation) is used to detect the damage caused by ASR. DIC techniques have been increasing in popularity, especially in micro- and nano-scale mechanical testing applications due to its relative ease of implementation and use. Advances in computer technology and digital cameras help this method moving forward. To ensure the best outcome of the DIC system, important factors in the experiment are identified. They include standoff distance, speckle size, speckle pattern, and durable paint. These optimal experimental options are selected basing on a thorough investigation. The resulting DIC deformation map indicates that this technique can be used to generate data related to degradation assessment of concrete structure damaged by the impact of ASR.

  2. Early Property Development in Concrete

    DEFF Research Database (Denmark)

    Normann, Gitte; Munch-Petersen, Christian

    The Freiesleben Maturity function is widely used for planning of execution. We tested if for concrete with and without fly ash. The test showed surprisingly that the maturity function in general is not valid. We found that curing at high temperature gave a significant decrease in strength. Fly ash...... appears to reduce this decrease somewhat. We also examined the resistance against chloride penetration for the different concrete types. The resistance was reduced at high temperatures for concrete without fly ash. For concrete with fly ash, it was the opposite; concrete with fly ash obtained higher...

  3. Estimating Durability of Reinforced Concrete

    Science.gov (United States)

    Varlamov, A. A.; Shapovalov, E. L.; Gavrilov, V. B.

    2017-11-01

    In this article we propose to use the methods of fracture mechanics to evaluate concrete durability. To evaluate concrete crack resistance characteristics of concrete directly in the structure in order to implement the methods of fracture mechanics, we have developed special methods. Various experimental studies have been carried out to determine the crack resistance characteristics and the concrete modulus of elasticity during its operating. A comparison was carried out for the results obtained with the use of the proposed methods and those obtained with the standard methods for determining the concrete crack resistance characteristics.

  4. Radiometric assessment of quality of concrete mix with respect to hardened concrete strength

    International Nuclear Information System (INIS)

    Czechowski, J.

    1983-01-01

    The experiments have confirmed the relationship between the intensity of backscattered gamma radiation and the density of fresh concrete, and also between the flow of backscattered fast neutrons and the water content. From the said two parameters it is possible to derive the compression strength of concrete over the determined period of mix hardening, e.g., after 28 days. For a certain composition of concrete it is possible to derive empirical relations between the intensity of backscattered gamma radiation and neutrons and concrete strength after hardening and to construct suitable nomograms. (Ha)

  5. Durability assessment of recycled concrete aggregates for use in new concrete.

    Science.gov (United States)

    2012-06-01

    The primary goal of this research project was to investigate the long-term durability of concrete incorporating : recycled concrete aggregate (RCA) through accelerated laboratory testing. Overall it was found that modifications to : standard aggregat...

  6. Study of behavior of concrete and cement based composite materials exposed to high temperatures

    OpenAIRE

    Bodnárová, L.; Horák, D.; Válek, J.; Hela, R.; Sitek, L. (Libor)

    2013-01-01

    The paper describes possibilities of observation of behaviour of concrete and cement based composite material exposed to high temperatures. Nowadays, for large-scale tests of behaviour of concrete exposed to high temperatures, testing devices of certified fire testing stations in the Czech Republic and surrounding states are used. These tests are quite expensive. For experimental verification of smaller test specimens, a testing device was built at the Technical University in Brno, wher...

  7. Shrinkage Reducing Admixture for Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Concrete shrinkage cracking is a common problem in all types of concrete structures, especially for structures and environments where the cracks are prevalent and the repercussions are most severe. A liquid shrinkage reducing admixture for concrete, developed by GRACE Construction Products and ARCO Chemical Company, that reduces significantly the shrinkage during concrete drying and potentially reduces overall cracking over time.

  8. Assessment of Mass Fraction and Melting Temperature for the Application of Limestone Concrete and Siliceous Concrete to Nuclear Reactor Basemat Considering Molten Core–Concrete Interaction

    Directory of Open Access Journals (Sweden)

    Hojae Lee

    2016-04-01

    Full Text Available Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies the mass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The H2O content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of CO2 necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core–concrete interaction analysis.

  9. Prediction of Chloride Diffusion in Concrete Structure Using Meshless Methods

    Directory of Open Access Journals (Sweden)

    Ling Yao

    2016-01-01

    Full Text Available Degradation of RC structures due to chloride penetration followed by reinforcement corrosion is a serious problem in civil engineering. The numerical simulation methods at present mainly involve finite element methods (FEM, which are based on mesh generation. In this study, element-free Galerkin (EFG and meshless weighted least squares (MWLS methods are used to solve the problem of simulation of chloride diffusion in concrete. The range of a scaling parameter is presented using numerical examples based on meshless methods. One- and two-dimensional numerical examples validated the effectiveness and accuracy of the two meshless methods by comparing results obtained by MWLS with results computed by EFG and FEM and results calculated by an analytical method. A good agreement is obtained among MWLS and EFG numerical simulations and the experimental data obtained from an existing marine concrete structure. These results indicate that MWLS and EFG are reliable meshless methods that can be used for the prediction of chloride ingress in concrete structures.

  10. Variable Geometry Casting of Concrete Elements Using Pin-Type Tooling

    DEFF Research Database (Denmark)

    Pedersen, Troels Holm; Lenau, Torben Anker

    2010-01-01

    for aircrafts, trains and cranial prostheses. The present project focuses on VGM for free form concrete facade elements, which in contrast to previous VGM projects uses a liquid raw material and involves the use of only a small amount of force. Method of Approach: The present VGM process is based on the so...... interpolating layer. Castings with concrete and plaster are made on an elastic membrane that is sucked towards the pins using a vacuum. The shape of the cast elements and the mould surface have been measured and compared. Results: The RPT test mould can produce a large variety of free-form geometric shapes...... principle can be used for making scale models of a range of free-form cast concrete façade elements. It is possible almost to remove the imprints from the pins by using the right interpolators, but the dimples could also be a visually attractive characteristic of the process that could be valued...

  11. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete

    International Nuclear Information System (INIS)

    Blunt, J.; Jen, G.; Ostertag, C.P.

    2015-01-01

    Highlights: • Reinforced concrete beams were subjected to cyclic flexural loading. • Hybrid fiber reinforced composites were effective in reducing corrosion rates. • Crack resistance due to fibers increased corrosion resistance of steel rebar. • Galvanic corrosion measurements underestimated corrosion rates. • Polarization resistance measurements predicted mass loss more accurately. - Abstract: Service loads well below the yield strength of steel reinforcing bars lead to cracking of reinforced concrete. This paper investigates whether the crack resistance of Hybrid Fiber Reinforced Concrete (HyFRC) reduces the corrosion rate of steel reinforcing bars in concrete after cyclic flexural loading. The reinforcing bars were extracted to examine their surface for corrosion and compare microcell and macrocell corrosion mass loss estimates against direct gravimetric measurements. A delay in corrosion initiation and lower active corrosion rates were observed in the HyFRC beam specimens when compared to reinforced specimens containing plain concrete matrices cycled at the same flexural load

  12. Cracking control in mass concrete for three gorges dam; Sankyo damu ni okeru masu konkurito no hibiware yokusei

    Energy Technology Data Exchange (ETDEWEB)

    Chu, CHuanying

    1999-09-10

    The provisional cofferdam work of the mainstream of Three Gorges Dam project was successfully finished on November 8, 1997. Now, the work enters its second stage, and the placing of large-scale concrete was started. The total quantity of concrete used in this project reaches 15.00 million m{sup 3}. Inhibition of dam concrete cracking is an important subject. In order to manufacture concrete with good crack-resistance, cements, fly ashes, aggregates and blending agents are strictly selected; and hydration-generating heat is reduced by means of strict temperature control, precooling of aggregates, reduction of placing temperature and concrete temperature in mixers, and the like. As a consequence of maintaining the highest temperature value in concrete blocks to be lower than a predetermined value, harmful cracks can be prevented from occurring when the temperature in the dam lowers. (NEDO)

  13. Development of high performance and low radio activation concrete material for concrete cask

    International Nuclear Information System (INIS)

    Shirai, Koji; Sonobe, Ryoji

    2005-01-01

    For the realization of the long-term storage of the nuclear spent fuel with the concrete cask technology, a low radio activation high performance concrete was developed, which contains extremely small quantity of Eu and Co and assures enough heat-resistance and durability for degradation. Firstly, the activation analysis was performed to estimate the allowable content limit of their quantities according to the rules issued by Japanese government for determining the classification of the radioactive waste. Secondly, various candidate materials were sampled and irradiated to find out the activation level. As a result, as the optimum concrete mix, the combination of limestone and white fused alumina aggregates with fry-ash was chosen. Moreover, the basic characteristics of the candidate concrete (workability, strength under high temperature, heat conductivity and so on) were evaluated, and the thermal cracking test was executed with hollow cylinders. Finally, the developed concrete material seems to be suitable for the long-term use of concrete cask considering the low activation, high heat resistance and durability during storage. (author)

  14. concrete5 cookbook

    CERN Document Server

    Strack, David

    2013-01-01

    The Cookbook-style recipes allow you to go both directly to your topic of interest or follow topics throughout a chapter to gain in-depth knowledge. This practical Cookbook will cater to the needs of both intermediate and advanced concrete5 developers.This book is geared towards intermediate to advanced PHP developers who would like to learn more about the concrete5 content management system. Developers already familiar with concrete5 will learn new time-saving tricks and will find the book to be a great reference tool.

  15. Retrieval Contexts and the Concreteness Effect: Dissociations in Memory of Concrete and Abstract Words

    NARCIS (Netherlands)

    ter Doest, L.; Semin, G.R.

    2005-01-01

    Decades of research on the concreteness effect, namely better memory for concrete as compared with abstract words, suggest it is a fairly robust phenomenon. Nevertheless, little attention has been given to limiting retrieval contexts. Two experiments evaluated intentional memory for concrete and

  16. NANOMATERIALS AND NANOTECHNOLOGIES IN THE PRESENT-DAY CONCRETE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Bazhenov Yuriy Mikhaylovich

    2012-12-01

    Full Text Available Advancements in the field of nanotechnologies have converted the concrete into a high-tech material; its structure may be "tailored" to specific functional criteria, including strength, durability, and reduced environmental impacts. This feature will help keep the concrete as the main structural material in the foreseeable future. Nanotechnologies are still on the way from the pool of basic sciences to industrial enterprises. Today full-scale practical application of nanotechnologies in the construction industry is extremely limited for the reason of high costs of their implementation. However, the strongest potential of nanotechnologies is concentrated in the improvement of the properties of conventional materials and processes. Recent progress of nanotechnologies prompts us that many of the problems that are now considered as fantastic will be successfully resolved in the coming decade. Portland cement is one of the most widely used materials; it has a huge though underexplored potential. A better understanding and precise identification of the engineering properties of the complex structure of cement materials in the nanoscale science will give way to a new generation of concrete.

  17. Copolymer natural latex in concrete: Dynamic evaluation through energy dissipation of polymer modified concrete

    Science.gov (United States)

    Andayani, Sih Wuri; Suratman, Rochim; Imran, Iswandi; Mardiyati

    2018-05-01

    Portland cement concrete have been used in construction due to its strength and ecomical value. But it has some limitations, such low flexural strength, low tensile strength, low chemical resistant and etc. Due to its limitations in flexural and tensile strength, Portland cement concrete more susceptible by seismic force. There are some methods for improving its limitations. Polymer addition into concrete mixture could be one of solution for improving the flexural and tensile strength, in aiming to get erthquake resistant properties. Also, the eartquake resistant could be achieved by improving energy dissipation capacity. In this research, the earthquake resistant evalution was approached from dynamic evaluation through energy dissipation capacity, after polymer addition as concrete additives. The polymers were natural latex (Indonesian naural resource) grafted with styrene and methacrylate, forming copolymer - natural latex methacrylate (KOLAM) and copolymer - natural latex styrene (KOLAS). They were added into concrete mixture resulting polymer modified concrete. The composition of polymer are 1%, 5% and 10% weight/weight of cement. The higher capacity of energy dissipation will give more capability in either absorbing or dissipating energy, and it was predicted would give better earthquake resistant.. The use of KOLAM gave better performance than KOLAS in energy dissipation capacity. It gave about 46% for addition of 1% w/w compared to Portland cement concrete. But for addition 5% w/w and 10% w/w, they gave about 7% and 5% higher energy dissipation capacity. The KOLAM addition into concrete mixture would reduce the maximum impact load with maximumabout 35% impact load reducing after 1% w/w addition. The higher concentration of KOLAM in concrete mixture, lower reducing of impact load, they were about 4% and 3% for KOLAM 5% and 10%. For KOLAS addition in any compositions, there were no positive trend either in energy dissipation capacity or impact load properties

  18. Utilization of Swedish fly ash from bio fuel fired power plants as a filler material in concrete; Anvaendning av svenska flygaskor som fillermaterial i betong

    Energy Technology Data Exchange (ETDEWEB)

    Sundblom, Hillevi [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2006-03-15

    The tested Swedish fly ashes (FA) (FA from bio combustion) in this project proved to have good filler qualities such as improving the stability and the rheological behavior of the concrete. One of tested FA could directly replace the compared limestone filler in the concrete recipes in booth laboratory investigation and in full-scale demonstration. The other FA demanded more water. The recipes were modified in the laboratory investigation to get a functional recipe for full-scale demonstration. The process to investigate the Swedish FA has been following (this project is one part of several investigation): Basic characterization; Characterization as a filler material; Full-scale demonstration; Certification, regularly quality assurance; Continuous use of Swedish FA in the Swedish Concrete Industry. Three representatives Swedish FA have been investigated in step 1-3 according to the process above. There were two FA in a full-scale demonstration a FA from bio fuel/paper sludge fired circulated fluidized bed boiler (at a paper mill) and a FA from a peat fired pulverized boiler. The test made was basic chemical and physical characterization, investigation as a filler material and strength development of a crushed aggregate self-compacting concrete in laboratory and in a full-scale demonstration. The conclusion were following: FA from the paper mill CFB boiler changes in strength development depending on the combustion temperature. It seems the reason is in the way CaO is distribute into different chemical compounds. Higher compressive strength with higher free CaO (analyzed in XRD) Higher content of reactive SiO{sub 2} and free lime in the CFB FA comparing with the PF FA. The soundness of the FA have been tested in early research projects. The sieves curves demonstrated that the FA from the CFB boiler coarser than the other FA tested and the limestone filler compared. The coarser grain fraction could explain why the FA demanded more water in the laboratory and full-scale

  19. A study on the effects of seawater on the durable life of concrete structures(I)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan; Chang, Bong Seok; Chang, Seung Yeob; Cheon, Se Jin; Cheong, Sang Hwa; Yu, Yeong; Shin, Yong Seok; Shin, Myeong Su; Hyeong, Sang Su [Seoul Nationl Univ., Seoul (Korea, Republic of)

    1998-06-15

    Recently, large scale concrete structures such as Nuclear Power Plants and offshore structures are actively being built in this country. These structures are subject to heavy attack due to seawater environment. A reasonable consideration for corrosion has not been paid to the structures in the past decades due to insufficient research data and guidelines. The durability os emerging as one of the most important factors in the design and construction of concrete structures. The purpose of the present study is, therefore, to explore the corrosion mechanism and penetration mechanism of chloride ion, and to establish the evaluation procedure of durability life of concrete structures. A comprehensive experimental program has been set up and severe the types and amount of cement and mineral admixtures. The test results on the corrosion and strength characteristics of various concrete with be reported in the second-year report since the corrosion tests need long time. The results can be used in the design and construction of concrete structures in the future.

  20. Laboratory evaluation of recycled concrete as aggregate in new concrete pavements.

    Science.gov (United States)

    2014-09-01

    The Washington State Department of Transportation (WSDOT) has initiated a research project to investigate the use of recycled concrete as : aggregates (RCA) in Portland (hydraulic) cement concrete pavements (PCCP). The planned source for the RCA in t...

  1. Volume reduction of radioactive concrete waste generated from KRR-2 and UCP

    International Nuclear Information System (INIS)

    Min, B. Y.; Choi, W. K.; Park, J. W.; Lee, K. W.

    2009-01-01

    the aggregates in the volume reduction point of view using an activated heavy weight concrete taken from KRR-2 and a uranium contaminated light weight concrete from a UCP using a lab scale pilot plant. To minimize the volume of the radioactive cement paste, the fine powder wastes were immobilized

  2. The construction features of the deformation and force model of concrete and reinforced concrete resistance

    Directory of Open Access Journals (Sweden)

    Romashko Vasyl

    2017-01-01

    Full Text Available The main features of the deformation and force model of deformation of reinforced concrete elements and structures based on generalized diagrams of their state are considered in the article. Particular attention is focused on the basic methodological problems and shortcomings of modern "deformation" models. It is shown that in the most cases these problems can be solved by the generalized diagrams of reinforced concrete elements and structures real state. Thanks to these diagrams, the developed method: provides a single methodological approach to the calculation of reinforced concrete elements and structures normal sections for limit states; allows to reveal the internal static indeterminacy of heterogeneously deformable elements and structures in their ultimate limit state calculation; justifies the application of the basic and derived criteria of reinforced concrete elements and structures bearing capacity exhaustion; retains the essence of the physical processes of concrete and reinforced concrete structures deformation. The defining positions of the generalized (universal methodology for calculating reinforced concrete elements and structures are stated.

  3. Influence of bagasse ash and recycled concrete aggregate on hardened properties of high-strength concrete

    Directory of Open Access Journals (Sweden)

    P. Rattanachu

    2018-04-01

    Full Text Available This research aimed to use of bagasse ash as a cement replacement in high-strength recycled aggregate concrete (HS-RAC. Crushed limestone was replaced with 100% recycled concrete aggregate (RCA and the ground bagasse ash (GBA was used to partially replace ordinary Portland cement (OPC at 20, 35 and 50%wt of binder to cast HS-RAC. The results indicated that the replacing of crushed limestone with RCA had a negative impact on the properties of the concrete. Increasing the amount of GBA in HS-RAC resulted in a decrease in density and an increase in the volume of permeable pore space. The concrete mixtures prepared with 20%wt GBA replacement of OPC promoted greater the compressive strength than the conventional concrete (CT concrete at 90 days or more. HS-RAC with GBA (up to 50% was more durable in terms of chloride ion penetration resistance, although it had lower compressive strength than the CT concrete.

  4. concrete5 for developers

    CERN Document Server

    Uzayr, Sufyan bin

    2014-01-01

    Whether you have had some previous experience with concrete5 or are entirely new to it, this book will help you understand all that you need to know in order to get started with concrete5 development. A background in PHP is required; some knowledge of HTML/CSS is needed in order to fully grasp the concepts underlying concrete5 theme development.

  5. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  6. Characterisation and management of concrete grinding residuals.

    Science.gov (United States)

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  7. Optimum concrete compression strength using bio-enzyme

    Directory of Open Access Journals (Sweden)

    Bagio Tony Hartono

    2017-01-01

    Full Text Available To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the concrete. Concrete with bio-enzyme 200 ml/m3, 400 ml/m3, 600 ml/m3, 800 ml/m3, 1000 ml/m3 and normal concrete. Refer to the crushing test result, its tends to the mathematical model using 4th degree polynomial regression (least quartic, as represent on the attached data series, which is for the design mix fc′ = 25 MPa generate optimum value for 33,98 MPa, on the bio-additive dosage of 509 ml bio enzymes.

  8. Thermal treatment of recycled concrete aggegate for general use in concrete. A preliminary study

    NARCIS (Netherlands)

    Larbi, J.A.; Heijnen, W.M.M.; Brouwer, J.P.; Mulder, E.

    2000-01-01

    In this paper, the results of a preliminary laboratory study to assess the effectiveness of thermally treating recycled concrete aggregate for genera) use in concrete are presented. The samples used for the study consisted of sieved fractions of crushed concrete that were subjected to various

  9. Utilization of recycled concrete aggregates in structural concrete by applying a fraction partitioning model

    NARCIS (Netherlands)

    Wouw, van de P.M.F.; Doudart de la Grée, G.C.H.; Florea, M.V.A.; Brouwers, H.J.H.; Bilek, V.; Kersner, Z.

    2014-01-01

    The recycling of concrete waste into new structural concrete reduces the utilization of raw materials, decreases transport and production energy cost, and saves the use of limited landfill space. Currently, recycling involves the use of recycled concrete aggregates (RCA) as road base material or in

  10. Monolithic Concrete vs Precast Concrete for the Construction of Bridge by Th Cantilever Method

    Directory of Open Access Journals (Sweden)

    Morlova Dumitru Daniel

    2015-07-01

    Full Text Available In the article "Monolithic Concrete vs Precast Concrete for the Construction of Bridges by the Cantilever Method", there are approached a number of issues that come out in the design and execution of prestressed concrete bridge structures using the cantilever method.

  11. Beam Shear Design According to Eurocode 2 - Limitations for the Concrete Strut Inclinations

    DEFF Research Database (Denmark)

    Hagsten, Lars German; Hestbech, Lars; Fisker, Jakob

    2011-01-01

    and are presented. These beams are all designed to fail in shear and the shear reinforcement is designed for different values of the concrete strut inclinations (cot θ varies from 1.5 to 3.4). These tests indicate a clear connection between the values of the concrete strut inclinations and crack width in the SLS......The beam shear design method adopted in Eurocode 2 is based on a lower bound plastic solution. This method is combined with limitations on the concrete strut inclination, θ. These limitations are introduced to ensure acceptable crack width in the SLS. 7 full scale beams have been tested....... In cases where larger crack widths (w > 0.4 mm) can be accepted, larger values of the concrete strut inclinations can be chosen. This will lead to less shear reinforcements. The results are also compared with analytical analysis based on energy methods. At the SLS the beams are expected to be cracked...

  12. Qualification of a truly distributed fiber optic technique for strain and temperature measurements in concrete structures

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-04-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μ strain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades, either embedded in the concrete or attached to the surface of the structure. They must ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Based on the European guide FD CEN/TR 14748 "Non-destructive testing - Methodology for qualification of non-destructive tests", a qualification method was developed. Tests were carried out using various sensing cables embedded in the volume or fixed to the surface of plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument, while mechanical solicitations were imposed to the concrete element. Preliminary experiments seem very promising since measurements performed with distributed sensing systems are found comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  13. Placement of mass concrete for cast-in-place concrete piling : the effects of heat of hydration of mass concrete for cast-in-place piles.

    Science.gov (United States)

    2008-12-01

    This report describes models, ABAQUS and Schmidt, to predict the peak temperature in the center of cast-in-place concrete piling. Five concrete piles with varying diameters and made up of concrete mixes with different percentage of fly ash are used. ...

  14. TEXTILE TECHNOLOGIES IN CONCRETE ENVIRONMENTS."

    OpenAIRE

    Morrow, Ruth; Belford, Patricia

    2007-01-01

    Girli Concrete is a cross disciplinary funded research project based in the University of Ulster involving a textile designer/ researcher, an architect/ academic and a concrete manufacturing firm.Girli Concrete brings together concrete and textile technologies, testing ideas ofconcrete as textile and textile as structure. It challenges the perception of textiles as only the ‘dressing’ to structure and instead integrates textile technologies into the products of building products. Girli Concre...

  15. An energy approach study of the penetration of concrete by rigid missiles

    International Nuclear Information System (INIS)

    Guirgis, Sameh; Guirguis, Ehab

    2009-01-01

    This paper presents an energy approach for investigating the penetration of concrete by rigid missiles and the associated phenomena. However, the principal assumptions made here must be validated experimentally before giving the proposed subject further considerations. In the following, a new measure for concrete resistance to penetration by hard missiles is presented. The suggested term for this measure is 'the Volumetric Crushing Energy Density' of concrete which can be described as the energy required for converting a unit volume of concrete to separate particles under compressive loading so that the particles of the crushed volume meet certain gradation criteria. Using this quantity, an explanation of the scale effect is postulated. Moreover, a dimensionless semi-analytical formula for the penetration depth of a rigid missile in a concrete target is proposed which includes a large number of the variables of the problem. The formula assumes that the penetration incident may include several successive phases where the set of variables that governs the impact is different during each phase, and the variables that characterize the impact during each phase correlate in a different manner as well. Furthermore, many of the penetration depth formulae available in the literature are rewritten according to the formula proposed here where the concrete penetration resistance of any incident is estimated by modifying the resistance of 'reference impact incidents.' The rewritten formulae show the wide variation of the values of concrete resistance which are implicitly included in the original formulae. Finally, the proposed formula is applied using data of penetration experiments presented by Forrestal et al. [Forrestal, M.J., Altman, B.S., Cargile, J.D., Hanchak, S.J., 1994. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. Int. J. Impact Eng. 15(4), 395-405; Forrestal, M.J., Frew, D.J., Hickerson, J.P., Rohwer, T.A., 2003

  16. Nonlinear analysis of pre-stressed concrete containment vessel (PCCV) using the damage plasticity model

    Energy Technology Data Exchange (ETDEWEB)

    Shokoohfar, Ahmad; Rahai, Alireza, E-mail: rahai@aut.ac.ir

    2016-03-15

    Highlights: • This paper describes nonlinear analyses of a 1:4 scale model of a (PCCV). • Coupled temp-disp. analysis and concrete damage plasticity are considered. • Temperature has limited effects on correct failure mode estimation. • Higher pre-stressing forces have limited effects on ultimate radial displacements. • Anchorage details of liner plates leads to prediction of correct failure mode. - Abstract: This paper describes the nonlinear analyses of a 1:4 scale model of a pre-stressed concrete containment vessel (PCCV). The analyses are performed under pressure and high temperature effects with considering anchorage details of liner plate. The temperature-time history of the model test is considered as an input boundary condition in the coupled temp-displacement analysis. The constitutive model developed by Chang and Mander (1994) is adopted in the model as the basis for the concrete stress–strain relation. To trace the crack pattern of the PCCV concrete faces, the concrete damage plasticity model is applied. This study includes the results of the thermal and mechanical behaviors of the PCCV subject to temperature loading and internal pressure at the same time. The test results are compared with the analysis results. The analysis results show that the temperature has little impact on the ultimate pressure capacity of the PCCV. To simulate the exact failure mode of the PCCV, the anchorage details of the liner plates around openings should be maintained in the analytical models. Also the failure mode of the PCCV structure hasn’t influenced by hoop tendons pre-stressing force variations.

  17. Fracture Mechanics of Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, Jens Peder

    Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high-strength......Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high......-strength concrete. Chapter 2 A description of the factors which influence the strength and cracking of concrete and high strength concrete is made. Then basic linear fracture mechanics is outlined followed by a description and evaluation of the models used to describe concrete fracture in tension. The chapter ends...... and the goveming equations are explicit and simple. These properties of the model make it a very powerful tool, which is applicable for the designing engineer. The method is also extended to reinforced concrete, where the results look very promising. The large experimental investigation on high-strength concrete...

  18. Monitoring water loss form fresh concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2006-01-01

    Desiccation of concrete before or during setting may lead to detrimental plastic shrinkage cracking in the concrete surface zone. Cracking due to plastic shrinkage is a major technological problem for any concrete, however, modern high-performance concretes are especially susceptible to this...... determination of the evaporation loss from hardening concrete and thus better possibility for preventing curing problems, including detrimental crack damage due to plastic shrinkage....

  19. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    Directory of Open Access Journals (Sweden)

    Francisco Carrión

    2014-01-01

    Full Text Available Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate, and waste aggregates (basalt and limestone coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%, and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  20. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    Science.gov (United States)

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  1. Sound Absorption and Friction Properties of Nano-Lotus Leaf Coated Concrete for Rigid Pavement

    Directory of Open Access Journals (Sweden)

    Marcelo GONZALEZ

    2016-09-01

    Full Text Available This paper presents the feasibility of superhydrophobic films to create the nano-lotus leaf effect on concrete surface and their influence on sound absorption and friction properties of concrete for application in rigid pavements. The study involved an evaluation of nanomaterials at the laboratory scale to analyze the effects of microtexture modification on the friction and sound absorption of concrete pavement. A number of laboratory specimens were produced by applying different amounts of nano-lotus leaf coating on the top of the textured concrete surface. The British pendulum test was used to measure the friction number, and an impedance tube was used to determine the sound absorption coefficient. Laboratory results indicate that nano-lotus leaf coated concrete can maintain the required friction property for rigid pavement, but may not increase the noise absorption. Further research must be carried out to determine possible benefit of the lotus leaf effect for reducing hydroplaning, particularly during heavy rainfall.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.7638

  2. Nuclear Power Plant Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Prabir [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  3. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  4. Monitoring device for reinforced concrete

    International Nuclear Information System (INIS)

    Matsuzaki, Tetsuo; Saito, Koichi; Furukawa, Hideyasu.

    1994-01-01

    A reactor container made of reinforced concretes is monitored for the temperature at each of portions upon placing concretes under construction of a plant, upon pressure-proof test and during plant operation. That is, optical fibers are uniformly laid spirally throughout the inside of the concretes. Pulses are injected from one end of the optical fibers, and the temperature at a reflection point can be measured by measuring specific rays (Raman scattering rays) among lights reflected after a predetermined period of time. According to the present invention, measurement for an optional position within a range where one fiber cable is laid can be conducted. Accordingly, it is possible to conduct temperature control upon concrete placing and apply temperature compensation for the measurement for stresses of the concretes and the reinforcing steels upon container pressure-proof. Further, during plant operation, if the temperature of the concretes rises due to thermal conduction of the temperature in the container, integrity of the concretes can be ensured by a countermeasures such as air conditioning. (I.S.)

  5. Total Strain FE Model for Reinforced Concrete Floors on Piles

    NARCIS (Netherlands)

    Hofmeyer, H.; Bos, van den A.A.

    2008-01-01

    A finite element (FE) model using a total strain material model has been developed to predict the behavior of warehouse reinforced concrete floors on piles. The material model (not the FE model itself) was calibrated to material tests. The FE model for the floor structure was checked with full-scale

  6. The Shrinkage Cracking Behavior in Reinforced Reactive Powder Concrete Walls

    Directory of Open Access Journals (Sweden)

    Samir A. Al-Mashhadi

    2017-07-01

    Full Text Available In this study, the reduced scale wall models were used (they are believed to resemble as much as possible the field conditions to study the shrinkage behavior of reactive powder concrete (RPC base restrained walls. Six base restrained RPC walls were casted in different length/height ratios of two ratios of steel fiber by volume in Summer. These walls were restrained by reinforced concrete bases to provide the continuous base restraint to the walls. The mechanical properties of reactive powder concrete investigated were; compressive strength between (75.3 – 140.1 MPa, splitting tensile strength between (5.7 – 13.9 MPa, flexural tensile strength (7.7 – 24.5 MPa, and static modulus of elasticity (32.7 – 47.1GPa. Based on the observations of this work, it was found that the cracks did not develop in the reduced scale of the reactive powder concrete (RPC walls restrained from movement at their bases for different L/H ratios (2, 5, and 10 and for two ratio of steel fiber (1% & 2% during 90 days period of drying conditions. Moreover, the shrinkage values increase toward the edges. Based on the results of this work, the increase in the maximum shrinkage values of walls with 1% steel fiber were (29%, 28%, 28% of the maximum shrinkage values of walls with 2% steel fiber of length/height ratios of (2, 5, and 10 respectively. The experimental observation in beam specimens showed that the free shrinkage, tensile strain capacity and elastic tensile strain capacity (at date of cracking of beams with 1% steel fiber were higher than the beams with 2% steel fiber by about (24%, (45% and (42% respectively

  7. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact. Pt.2: Simulation analysis of scale model impact tests

    International Nuclear Information System (INIS)

    Jun Mizuno; Norihide Koshika; Hiroshi Morikawa; Kentaro Wakimoto; Ryusuke Fukuda

    2005-01-01

    Steel plate reinforced concrete (SC) structure is one in which the rebars of conventional reinforced concrete (RC) structures are replaced with external steel plates attached to inner concrete with headed studs. SC structures are considered to be more effective than RC structures against aircraft impact, so their application to outer walls and roofs of risk-sensitive structures such as nuclear-related structures is expected to mitigate damage to critical components. The objective of this study was to investigate the fracture behavior and perforation thickness of SC panels against aircraft impact through impact tests and simulation analyses. Objectives of this paper are to analytically investigate the protection performance of SC panels against aircraft model impact through simulation analyses of 1/7.5 scale aircraft model impact tests presented in Part 1 of this study using a discrete element method (DEM), and to examine the applicability and validity of the DEM. Simulation analyses by a finite element method (FEM) were also performed to evaluate its applicability. The fracture process and damage to the SC test panels as well as the aircraft models are closely simulated by the discrete element analyses. The various impact responses and failure mechanisms, such as deceleration curves of projectile, velocity of debris from rear face and deformation mode of SC panels, are also simulated closely by the DEM analyses. The results of analyses confirm the shock-proof performance of SC panels against aircraft impact, and the applicability and validity of DEM for evaluating the complex phenomena of an aircraft impact against an SC panel. The finite element analysis closely simulates the deformation of the SC test panel and strains of rear steel plate where the global bending deformation mode is dominant. (authors)

  8. Experimental determination of damping factors for walls of masonry and reinforced concrete

    International Nuclear Information System (INIS)

    Buttman, P.

    1983-01-01

    'Damping' is a fundamental parameter for the determination of the internal force with a given acceleration response spectrum when designing and dimensioning masonry and reinforced concrete walls for the loading case earthquake. The actual dampings of masonry and reinforced concrete walls are determined on a scale of 1:1 by means of a horizontal excitation at a chosen test setup. The test specimen have the dimensions b/h/d=100/200/11,5 cm and 24 cm. The horizontal and sinusoidal excitation of the test specimen is effected by a dynamic oscillating excitation with a maximum power of 20 kN. The evaluation of the measurements shows that the assumed damping values of 4% for the operating basis earthquake are realistic. In case of amplitudes corresponding to the loadings of the safe shutdown earthquake, however, dampings of 11% for reinforced concrete walls and of 24% for masonry walls were determined. This real damping behavior of reinforced concrete and masonry walls was documented by means of measurements, films and pictures. (orig.)

  9. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.

    1977-01-01

    Reinforced and prestressed concrete containments for reactors have been developed in order to avoid the difficulties of welding of steel containments encountered as their capacities have become large: growing thickness of steel shells gave rise to the requirement of stress relief at the construction sites. However, these concrete vessels also seem to face another difficulty: the lack of shearing resistance capacity. In order to improve the shearing resistance capacity of the containment vessel, while avoiding the difficulty of welding, a new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented. The results of model tests in 1:30 scale are also reported. (Auth.)

  10. Sustainable monitoring of concrete structures : strength and durability performance of polymer-modified self-sensing concrete

    OpenAIRE

    Torgal, Fernando Pacheco; Gonzalez, J.; Jalali, Said

    2012-01-01

    Concrete structures all over the world are reaching the end of their service life sooner than expected. This is due to the fact that ordinary Portland cement-based concrete deteriorates under environmental actions and also that structural inspections and conservation actions are expensive. Besides, as they consume energy and non-renewable resources, they have negative environmental impacts. Self-sensing concrete provides an alternative way of monitoring concrete-reinforced structures...

  11. Influence of limestone waste as partial replacement material for sand and marble powder in concrete properties

    Directory of Open Access Journals (Sweden)

    Omar M. Omar

    2012-12-01

    Full Text Available Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. Limestone waste is obtained as a by-product during the production of aggregates through the crushing process of rocks in rubble crusher units. Using quarry waste as a substitute of sand in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of river and mining sands. This paper reports the experimental study undertaken to investigate the influence of partial replacement of sand with limestone waste (LSW, with marble powder (M.P as an additive on the concrete properties. The replacement proportion of sand with limestone waste, 25%, 50%, and 75% were practiced in the concrete mixes except in the concrete mix. Besides, proportions of 5%, 10% and 15% marble powder were practiced in the concrete mixes. The effects of limestone waste as fine aggregate on several fresh and hardened properties of the concretes were investigated. The investigation included testing of compressive strength, indirect tensile strength, flexural strength, modulus of elasticity, and permeability. It was found that limestone waste as fine aggregate enhanced the slump test of the fresh concretes. But the unit weight concretes were not affected. However, the good performance was observed when limestone waste as fine aggregate was used in presence of marble powder.

  12. SU-E-T-271: Direct Measurement of Tenth Value Layer Thicknesses for High Density Concretes with a Clinical Machine

    Energy Technology Data Exchange (ETDEWEB)

    Tanny, S; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States); Harrell, D; Noller, J [Shielding Construction Solutions, Inc, Tuscon, AZ (United States); Chopra, M [Unviersal Minerals International, Inc, Tuscon, AZ (United States)

    2015-06-15

    Purpose: Use of high density concrete for radiation shielding is increasing, trading cost for space savings associated with the reduced tenth value layer (TVL). Precise information on the attenuation properties of high-density concretes is not readily present in the literature. A simple approximation is to scale the TVLs from NCRP 151 according relative increase in density. Here we present measured TVLs for heavy concretes of various densities using a built-in shielding test port. Methods: Concrete densities tested range from 2.35 g cc{sup −1} (147 pcf) to 5.6 g cc{sup −1} (350 pcf). Measurements were taken using 6MV, 6FFF, and 10FFF on a Varian Truebeam linear accelerator. Field sizes of 4x4, 9x9 and 30x30 cm{sup 2} were measured. A PTW 31013 Farmer chamber with a buildup cap was positioned 5.5 m from isocenter along the beam CAX. Concrete thicknesses were incremented in 5 cm intervals. Comparison TVLs were determined by scaling the NCRP 151 TVLs by the density ratio between the sample and standard density. Results: The trend from the first to equilibrium TVL was an increase in thickness, compared with MC modeling, which predicted a decrease. Measured TVLs for 6 MV were reduced by as much as 8.9 cm for TVL{sub 1} and 3.4 cm for TVL{sub E} compared to values scaled from NCRP 151. There was 1–3 mm difference in TVL between measurements done at 4x4 versus 30x30 cm{sup 2}. TVL{sub 1} for 6FFF was 1.1 cm smaller than TVL{sub 1} for 6MV, but TVL{sub E} was consistent to within 4 mm. TVL{sub 1} and TVL{sub E} for 10FFF were reduced by 8.8 and 3.7 cm from scaled NCRP values, respectively. Conclusions: We have measured the TVL thicknesses for various concretes. Simple density scaling of the values in NCRP 151 is a conservatively safe approximation, but actual TVLs may be reduced enough to eliminate some of the expense of installation. Daniel Harrell and Jim Noller are employees of Shielding Construction Solutions, Inc, the shielding construction company that built

  13. SU-E-T-271: Direct Measurement of Tenth Value Layer Thicknesses for High Density Concretes with a Clinical Machine

    International Nuclear Information System (INIS)

    Tanny, S; Parsai, E; Harrell, D; Noller, J; Chopra, M

    2015-01-01

    Purpose: Use of high density concrete for radiation shielding is increasing, trading cost for space savings associated with the reduced tenth value layer (TVL). Precise information on the attenuation properties of high-density concretes is not readily present in the literature. A simple approximation is to scale the TVLs from NCRP 151 according relative increase in density. Here we present measured TVLs for heavy concretes of various densities using a built-in shielding test port. Methods: Concrete densities tested range from 2.35 g cc −1 (147 pcf) to 5.6 g cc −1 (350 pcf). Measurements were taken using 6MV, 6FFF, and 10FFF on a Varian Truebeam linear accelerator. Field sizes of 4x4, 9x9 and 30x30 cm 2 were measured. A PTW 31013 Farmer chamber with a buildup cap was positioned 5.5 m from isocenter along the beam CAX. Concrete thicknesses were incremented in 5 cm intervals. Comparison TVLs were determined by scaling the NCRP 151 TVLs by the density ratio between the sample and standard density. Results: The trend from the first to equilibrium TVL was an increase in thickness, compared with MC modeling, which predicted a decrease. Measured TVLs for 6 MV were reduced by as much as 8.9 cm for TVL 1 and 3.4 cm for TVL E compared to values scaled from NCRP 151. There was 1–3 mm difference in TVL between measurements done at 4x4 versus 30x30 cm 2 . TVL 1 for 6FFF was 1.1 cm smaller than TVL 1 for 6MV, but TVL E was consistent to within 4 mm. TVL 1 and TVL E for 10FFF were reduced by 8.8 and 3.7 cm from scaled NCRP values, respectively. Conclusions: We have measured the TVL thicknesses for various concretes. Simple density scaling of the values in NCRP 151 is a conservatively safe approximation, but actual TVLs may be reduced enough to eliminate some of the expense of installation. Daniel Harrell and Jim Noller are employees of Shielding Construction Solutions, Inc, the shielding construction company that built the vault discussed in this abstract. Manjit Chopra is

  14. Concreting organization during Chernobylsk NPP construction

    International Nuclear Information System (INIS)

    Lysyuk, R.I.; Kareva, A.P.

    1984-01-01

    Conreting organization during the Chernobylsk NPP construction is described. Processes of extra heavy concrete production and placement, which specific mass constitutes 4t/m 3 at the age of 28 days wiath metallic aggregates and 3.3-3.5 t/m 3 at the same age without aggregates, are considered in short. Basic characteristics of this concrete are presented. At the 4th power unit labour contents for construction works were a 1.5 times lower as compared to the 3rd power unit erection. This progress was achieved by round-the-clock operation of the concrete plant with the 800 m 3 /day output and also by utilization of special equipment for mechanized concrete placement: concrete pumps, automatic concrete mixer, manipulators and concrete pipelines

  15. A study on sodium-concrete reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Heum; Min, Byong Hun [Suwon University, Suwon (Korea, Republic of)

    1997-07-01

    A small sodium-concrete reaction facility was designed, manufactured and installed. this facility has been operated under inert gas(N{sub 2}) with different experimental variables such as sodium injection temperature, injection amount of sodium, aging period of concrete, sodium reservoir temperature. As a result, it was found that sodium injection temperature and injected amount of sodium has little effect on sodium-concrete reaction. However, sodium reservoir temperature and aging period of concrete has relatively high impact on sodium-concrete reaction. Sodium-concrete reaction model has also been developed and compared with experimental results. (Author) 51 refs., 16 tabs., 64 figs.

  16. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat....... Codes for designing prefabricated reinforced components of aircrete structures have adopted these recently developed approaches.......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  17. Effect of Aggregate Mineralogy and Concrete Microstructure on Thermal Expansion and Strength Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Jinwoo An

    2017-12-01

    Full Text Available Aggregate type and mineralogy are critical factors that influence the engineering properties of concrete. Temperature variations result in internal volume changes could potentially cause a network of micro-cracks leading to a reduction in the concrete’s compressive strength. The study specifically studied the effect of the type and mineralogy of fine and coarse aggregates in the normal strength concrete properties. As performance measures, the coefficient of thermal expansion (CTE and compressive strength were tested with concrete specimens containing different types of fine aggregates (manufactured and natural sands and coarse aggregates (dolomite and granite. Petrographic examinations were then performed to determine the mineralogical characteristics of the aggregate and to examine the aggregate and concrete microstructure. The test results indicate the concrete CTE increases with the silicon (Si volume content in the aggregate. For the concrete specimens with higher CTE, the micro-crack density in the interfacial transition zone (ITZ tended to be higher. The width of ITZ in one of the concrete specimens with a high CTE displayed the widest core ITZ (approx. 11 µm while the concrete specimens with a low CTE showed the narrowest core ITZ (approx. 3.5 µm. This was attributed to early-age thermal cracking. Specimens with higher CTE are more susceptible to thermal stress.

  18. Ultra-High-Performance Concrete And Advanced Manufacturing Methods For Modular Construction

    Energy Technology Data Exchange (ETDEWEB)

    Sawab, Jamshaid [Univ. of Houston, Houston, TX (United States); Lim, Ing [Univ. of Houston, Houston, TX (United States); Mo, Yi-Lung [Univ. of Houston, Houston, TX (United States); Li, Mo [Univ. of Houston, Houston, TX (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guimaraes, Maria [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2016-04-13

    Small modular reactors (SMR) allow for less onsite construction, increase nuclear material security, and provide a flexible and cost-effective energy alternative. SMR can be factory-built as modular components, and shipped to desired locations for fast assembly. This project successfully developed a new class of ultra-high performance concrete (UHPC), which features a compressive strength greater than 22 ksi (150 MPa) without special treatment and self-consolidating characteristics desired for SMR modular construction. With an ultra-high strength and dense microstructure, it will facilitate rapid construction of steel plate-concrete (SC) beams and walls with thinner and lighter modules, and can withstand harsh environments and mechanical loads anticipated during the service life of nuclear power plants. In addition, the self-consolidating characteristics are crucial for the fast construction and assembly of SC modules with reduced labor costs and improved quality. Following the UHPC material development, the capacity of producing self-consolidating UHPC in mass quantities was investigated and compared to accepted self-consolidating concrete standards. With slightly adjusted mixing procedure using large-scale gravity-based mixers (compared with small-scale force-based mixer), the self-consolidating UHPC has been successfully processed at six cubic yards; the product met both minimum compressive strength requirements and self-consolidating concrete standards. Steel plate-UHPC beams (15 ft. long, 12 in. wide and 16 in. deep) and wall panels (40 in. X 40 in. X 3 in.) were then constructed using the self-consolidating UHPC without any external vibration. Quality control guidelines for producing UHPC in large scale were developed. When the concrete is replaced by UHPC in a steel plate concrete (SC) beam, it is critical to evaluate its structural behavior with both flexure and shear-governed failure modes. In recent years, SC has been widely used for buildings and nuclear

  19. Mobile concrete solidification systems for power reactor waste

    International Nuclear Information System (INIS)

    Tchemitcheff, E.; Bordas, Y.

    1990-01-01

    In late 1988 SGN received an order from Electricite de France (EDF) for the construction of a mobile concrete solidification system to process secondary system resins generated by the P'4 and N4 series PWR power plants in France. This order was placed in view of SGN's experience with low- and medium-level radioactive waste treatment and conditioning over a period of almost 20 years. In addition to the construction of fixed waste processing facilities using more conventional technologies, SGN has been involved in application of the mobile system concept to the bituminization process in the United States, which led to the construction and commissioning of two transportable systems in collaboration with its American licensee US Ecology. It has also conducted large-scale R ampersand D on LLW/MLW concrete solidification, particularly for ion exchange resins. 5 figs

  20. Energy Optimized Configuration of Concrete Element with PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew

    fulfillment of the new requirements regarding the new energy frames. The concept presented and developed in the thesis focuses on the energy optimization and potential of the new product that could utilize the high thermal energy storage (TES) and thermally activated building system (TABS). The work...... investigates the potential of combining the microencapsulated phase change material (PCM) in the hollow core concrete deck element in order to increase the dynamic heat storage capacity of the internal envelope of the multi-storey buildings. Moreover, the study investigates the cooling capacity and performance...... of the concrete deck with PCM and integrated TABS and highlights limitations and challenges of the new technology. Results from the full-scale investigation of dynamic heat storage capacity of decks indicated that there is no substantial difference between decks with extended heat transfer surface and one...

  1. Constitutive model for reinforced concrete

    NARCIS (Netherlands)

    Feenstra, P.H.; Borst, de R.

    1995-01-01

    A numerical model is proposed for reinforced-concrete behavior that combines the commonly accepted ideas from modeling plain concrete, reinforcement, and interaction behavior in a consistent manner. The behavior of plain concrete is govern by fracture-energy-level-based formulation both in tension

  2. Applications of Foamed Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Sari Kamarul Aini

    2017-01-01

    Full Text Available Application of foamed concrete is increasing at present due to high demand on foamed concrete structures with good mechanical and physical properties. This paper discusses on the use of basic raw materials, their characteristics, production process, and their application in foamed lightweight concrete with densities between 300 kg/m3 and 1800 kg/m3. It also discusses the factors that influence the strengths and weaknesses of foamed concrete based on studies that were conducted previously.

  3. Betonreparationers holdbarhed (Durability of Concrete Repairs)

    DEFF Research Database (Denmark)

    Brimnes, Eydbjørn; Dali, Bogi í; Larsen, Erik Stoklund

    1999-01-01

    Concrete repairs on 11 pillars on bridges built in the sixties and repaired 8 to 9 years ago have been examined. Especially the chloride penetration in the repair concrete have been measured. Chloride penetration in the repair concrete is much lower than in the original concrete....

  4. Concrete longevity overview

    International Nuclear Information System (INIS)

    Chang, W.; Morreale, B.

    1991-01-01

    A number of compact host states and unaffiliated states are currently selecting appropriate disposal technology and construction materials for their planned low-level radioactive waste (LLW) disposal facilities. Concrete is one of the candidate materials under consideration for the construction of LLW disposal facilities because of its strength, durability, abundant availability, and relatively low cost. The LLW disposal facilities must maintain intruder barrier integrity for up to 500 years, without active maintenance after the first 100 years. The ability of concrete to survive for such a long time as a construction material is a critical issue. This report provides a basic understanding of the composition and workings of concrete as a structural material in LLW disposal facilities and a description of degradation factors and state-of-the-art mitigative measures available to preserve the durability and longevity of concrete. Neither the paper nor the report is intended to be a design guidance document, and neither addresses using cement as a waste solidification agent. 5 refs., 1 tab

  5. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; Ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Operational features of decorative concrete

    Science.gov (United States)

    Bazhenova, Olga; Kotelnikov, Maxim

    2018-03-01

    This article deals with the questions of creation and use of decorative and finishing concrete and mortar. It has been revealed that the most effective artificial rock-imitating stone materials are those made of decorative concrete with the opened internal structure of material. At the same time it is important that the particles of decorative aggregate should be distributed evenly in the concrete volume. It can be reached only at a continuous grain-size analysis of the aggregate from the given rock. The article tackles the necessity of natural stone materials imitation for the cement stone color to correspond to the color of the rock. The possibility of creation of the decorative concrete imitating rocks in the high-speed turbulent mixer is considered. Dependences of durability and frost resistance of the studied concrete on the pore size and character and also parameters characterizing crack resistance of concrete are received.

  7. Viscosities of corium-concrete mixtures

    International Nuclear Information System (INIS)

    Seiler, J.M.; Ganzhorn, J.

    1997-01-01

    Severe accidents on nuclear reactors involve many situations such as pools of molten core material, melt spreading, melt/concrete interactions, etc. The word 'corium' designates mixtures of materials issued from the molten core at high temperature; these mixtures involve mainly: UO2, ZrO2, Zr and, in small amounts, Ni, Cr, Ag, In, Cd. These materials, when flowing out of the reactor vessel, may interact with the concrete of the reactor building thus introducing decomposition products of concrete into the original mixture. These decomposition products are mainly: SiO 2 , FeO, MgO, CaO and Al 2 O 3 in different amounts depending on the nature of the concrete being considered. Siliceous concrete is rich in SiO 2 , limestone concrete contains both SiO 2 and CaO. Liquidus temperatures of such mixtures are generally obove 2300 K whereas solidus temperatures are ∝1400 K. (orig.)

  8. POROUS STRUCTURE OF ROAD CONCRETE

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available Having a great number of concrete structure classifications it is recommended to specify the following three principal types: microstructure – cement stone structure; mesostructure – structure of cement-sand mortar in concrete; macrostucture – two-component system that consists of mortar and coarse aggregate. Every mentioned-above structure has its own specific features which are related to the conditions of their formation. Thus, microstructure of cement stone can be characterized by such structural components as crystal intergrowth, tobermorite gel, incompletely hydrated cement grains and porous space. The most important technological factors that influence on formation of cement stone microstructure are chemical and mineralogical cement composition, its grinding fineness, water-cement ratio and curing condition. Specific cement stone microstructure is formed due to interrelation of these factors. Cement stone is a capillary-porous body that consists of various solid phases represented predominantly by sub-microcrystals of colloidal dispersion. The sub-microcrystals are able adsorptively, osmotically and structurally to withhold (to bind some amount of moisture. Protection of road concrete as a capillary-porous body is considered as one of the topical issues. The problem is solved with the help of primary and secondary protection methods. Methods of primary protection are used at the stage of designing, preparation and placing of concrete. Methods of secondary protection are applied at the operational stage of road concrete pavement. The paper considers structures of concrete solid phase and characteristics of its porous space. Causes of pore initiation, their shapes, dimensions and arrangement in the concrete are presented in the paper. The highest hazard for road concrete lies in penetration of aggressive liquid in it and moisture transfer in the cured concrete. Water permeability of concrete characterizes its filtration factor which

  9. Anchorage in concrete construction

    CERN Document Server

    Eligehausen, Rolf; Silva, John F

    2013-01-01

    A comprehensive treatment of current fastening technology using inserts (anchor channels, headed stud), anchors (metal expansion anchor, undercut anchor, bonded anchor, concrete screw and plastic anchor) as well as power actuated fasteners in concrete. It describes in detail the fastening elements as well as their effects and load-bearing capacities in cracked and non-cracked concrete. It further focuses on corrosion behaviour, fire resistance and characteristics with earthquakes and shocks. It finishes off with the design of fastenings according to the European Technical Approval Guideline (ETAG 001), the Final Draft of the CEN Technical Specification 'Design of fastenings for use in concrete' and the American Standards ACI 318-05, Appendix D and ACI 349-01, Appendix B.

  10. Concrete containment tests: Phase 2, Structural elements with liner plates: Interim report

    International Nuclear Information System (INIS)

    Hanson, N.W.; Roller, J.J.; Schultz, D.M.; Julien, J.T.; Weinmann, T.L.

    1987-08-01

    The tests described in this report are part of Phase 2 of the Electric Power Research Institute (EPRI) program. The overall objective of the EPRI program is to provide a test-verified analytical method of estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The Phase 2 testing included seven large-scale specimens representing structural elements from reinforced and prestressed concrete reactor containment buildings. Six of the seven test specimens were square wall elements. Of these six specimens, four were used for biaxial tension tests to determine strength, deformation, and leak-rate characteristics of full-scale wall elements representing prestressed concrete containment design. The remaining two square wall elements were used for thermal buckling tests to determine whether buckling of the steel liner plate would occur between anchorages when subjected to a sudden extreme temperature differential. The last of the seven test specimens for Phase 2 represented the region where the wall and the basemat intersect in a prestressed concrete containment building. A multi-directional loading scheme was used to produce high bending moments and shear in the wall/basemat junction region. The objective of this test was to determine if there is potential for liner plate tearing in the junction region. Results presented include observed behavior and extensive measurements of deformations and strains as a function of applied load. The data are being used to confirm analytical models for predicting strength and deformation of containment structures in a separate parallel analytical investigation sponsored by EPRI

  11. Contribution of mesoscopic modeling for flows prediction in cracked concrete buildings in condition of severe accident

    International Nuclear Information System (INIS)

    Nguyen, T.D.

    2010-01-01

    This Ph.D. thesis aims at characterising and modeling the mechanical behavior of concrete at the mesoscopic scale. The more general scope of this study is the development of mesoscopic model for concrete; this model is to represent the concrete as a heterogeneous medium, taking into account the difference between aggregate and cement paste respecting the grading curve, the model parameters describe the mechanical and thermal behavior of cement paste and aggregates. We are interested in understanding the concrete behaviour, considered one structure. A program of random granular structure valid in 2D and 3D has been developed. This program is interfaced with the Finite Element code CAST3M in order to compute the numerical simulations. A method for numerical representation of the inclusions of concrete was also developed and validated by projection of the geometry on the shape functions, thus eliminating the problems of meshing that made the representation of all aggregates skeleton almost impossible, particularly in 3D. Firstly, the model is studied in two-dimensional and three-dimensional in order to optimize the geometrical model of the inner structure of concrete in terms of the meshing strategy and the smallest size of the aggregate to be taken into account. The results of the 2D and 3D model are analyzed and compared in the case of uniaxial tension and uniaxial compression. The model used is an isotropic unilateral damage model from Fichant [Fichant et al., 1999]. The model allows to simulate both the macroscopic behavior but also with the local studies of the distribution of crack and crack opening. The model shows interesting results on the transition from diffuse to localized damage and is able to reproduce dilatancy in compression. Finally, the mesoscopic model is applied to three simulations: the calculation of the permeability of cracked concrete; the simulation of the hydration of concrete at early age and finally the scale effect illustrated by bending

  12. Sodium concrete reaction - Structural considerations

    International Nuclear Information System (INIS)

    Ferskakis, G.N.

    1984-01-01

    An overview of the sodium concrete reaction phenomenon, with emphasis on structural considerations, is presented. Available test results for limestone, basalt, and magnetite concrete with various test article configurations are reviewed. Generally, tests indicate reaction is self limiting before all sodium is used. Uncertainties, however, concerning the mechanism for penetration of sodium into concrete have resulted in different theories about a reaction model. Structural behavior may be significant in the progression of the reaction due to thermal-structuralchemical interactions involving tensile cracking, compressive crushing, or general deterioration of concrete and the exposure of fresh concrete surfaces to react with sodium. Structural behavior of test articles and potential factors that could enhance the progression of the reaction are discussed

  13. The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment

    Directory of Open Access Journals (Sweden)

    Guangming Jiang

    2017-04-01

    Full Text Available Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11–10 (pristine concrete to pH 2–4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H2S levels in the sewer gas phase, although CO2, organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching.

  14. Durability of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1996-01-01

    The planned research will indicate, whether fibre reinforced concrete has better or worse durability than normal concrete. Durability specimens will be measured on cracked as well as uncracked specimens. Also the pore structure in the concrete will be characterized.Keywords: Fibre reinforced...... concrete, durability, pore structure, mechanical load...

  15. Nondestructive analysis of alkali-silica reaction damage in concrete slabs using shear waves

    Science.gov (United States)

    Khazanovich, Lev; Freeseman, Katelyn; Salles, Lucio; Clayton, Dwight

    2018-04-01

    Alkali-silica reaction (ASR) is the chemical reaction that occurs in concrete. It is caused by the interaction of alkalis in Portland cement and silica in aggregates and results in microcracks within the material. This type of damage has been the focus of nondestructive evaluation efforts in recent history, but no work was done on in-situ structures or large-scale samples. To address these limitations, an ultrasonic linear array device, MIRA, was utilized for this research. An experimental investigation was performed on four slabs with various levels of alkali-silica reaction at the Electric Power Research Institute (EPRI) [1]. One-period impulses with a target of 50kHz center frequency were selected in this study. We propose the use of the Hilbert Transform Indicator (HTI) for quantification of ASR damage [2]. A higher HTI value would be indicative of damaged concrete, while a low value represents sound concrete. In general, values below 90 are regarded as an indicator of sound concrete while values above 100 indicate the presence of damage [3]. The ability of the HTI values to distinguish between areas of damaged concrete was evident via the production of color intensity maps. The maps show that the control specimen, was in good condition, while other slabs exhibited higher levels of damage as indicated by the HTI values. It should be noted that extreme damage conditions were not present in any of the slabs. Evaluation of migration-based reconstructions can give a qualitative characterization of large scale or excessive subsurface damage. However, for detection of stochastic damage mechanisms such as freeze-thaw damage, evaluation of the individual time-history data can provide additional information. A comparison of the spatially diverse measurements on several concrete slabs with varying freeze-thaw damage levels is given in this study. Signal characterization scans of different levels of freeze-thaw damage at various transducer spacing is investigated. The

  16. Separation of contaminated concrete

    International Nuclear Information System (INIS)

    Bakiewicz, J.L.; Reymer, A.P.S.

    1990-01-01

    Separating the contaminated parts from the non-contaminated parts from decommissioned nuclear facilities may strongly reduce the amount of contaminated concrete. The reduction in volume of the radioactive contaminated concrete is dependent on how much cementstone is in the concrete. This research program shows that the radioactive contamination is mostly in the cementstone. However the choice that the cementstone parts, (or better said the radioactive parts) are smaller than 1 mm may not always be true. Normally the cementstone takes about 30% of the total concrete volume. A separation procedure composed by a combination of milling and thermal shock has been assessed. Both the cold and hot thermal shock in combination with milling are not able to separate the cementstone from the larger aggregates completely. However, the cementstone from the concrete with a low nominal grain size seems to be almost completely removed by the combination cold thermal shock/milling, while the cementstone from the concrete with a high nominal grain size seems to be almost completely removed by the combination hot thermal shock/milling. After both methods a layer of cementstone was still visible on the aggregates. Washing followed by a nitric acid treatment removed each 2 wt% of cementstone

  17. Bond behavior of self compacting concrete

    Directory of Open Access Journals (Sweden)

    Ponmalar S.

    2018-03-01

    Full Text Available The success of an optimum design lies in the effective load transfer done by the bond forces at the steel-concrete interface. Self Compacting Concrete, is a new innovative concrete capable of filling intrinsic reinforcement and gets compacted by itself, without the need of external mechanical vibration. For this reason, it is replacing the conventional vibrated concrete in the construction industry. The present paper outlays the materials and methods adopted for attaining the self compacting concrete and describes about the bond behavior of this concrete. The bond stress-slip curve is similar in the bottom bars for both SCC and normal concrete whereas a higher bond stress and stiffness is experienced in the top and middle bars, for SCC compared to normal concrete. Also the interfacial properties revealed that the elastic modulus and micro-strength of interfacial transition zone [ITZ] were better on the both top and bottom side of horizontal steel bar in the SCC mixes than in normal vibrated concrete. The local bond strength of top bars for SCC is about 20% less than that for NC. For the bottom bars, however, the results were almost the same.

  18. Bond behavior of self compacting concrete

    Science.gov (United States)

    Ponmalar, S.

    2018-03-01

    The success of an optimum design lies in the effective load transfer done by the bond forces at the steel-concrete interface. Self Compacting Concrete, is a new innovative concrete capable of filling intrinsic reinforcement and gets compacted by itself, without the need of external mechanical vibration. For this reason, it is replacing the conventional vibrated concrete in the construction industry. The present paper outlays the materials and methods adopted for attaining the self compacting concrete and describes about the bond behavior of this concrete. The bond stress-slip curve is similar in the bottom bars for both SCC and normal concrete whereas a higher bond stress and stiffness is experienced in the top and middle bars, for SCC compared to normal concrete. Also the interfacial properties revealed that the elastic modulus and micro-strength of interfacial transition zone [ITZ] were better on the both top and bottom side of horizontal steel bar in the SCC mixes than in normal vibrated concrete. The local bond strength of top bars for SCC is about 20% less than that for NC. For the bottom bars, however, the results were almost the same.

  19. Mimicking Bone Healing Process to Self Repair Concrete Structure Novel Approach Using Porous Network Concrete

    NARCIS (Netherlands)

    Sangadji, S.; Schlangen, H.E.J.G.

    2013-01-01

    To repair concrete cracks in difficult or dangerous conditions such as underground structures or hazardous liquid containers, self healing mechanism is a promising alternative method. This research aims to imitate the bone self healing process by putting porous concrete internally in the concrete

  20. Experimental and numerical modeling of chloride diffusivity in hardened cement concrete considering the aggregate shapes and exposure-duration effects

    Directory of Open Access Journals (Sweden)

    Wu Jie

    Full Text Available This paper presents an experimental and numerical model describing the effects of the aggregate shapes and exposure duration of chloride diffusion into cement-based materials. A simple chloride diffusion test was performed on a concrete specimen composed of a mixture of cement mortar with crushed granites and round gravels. A simulation was done and the numerical model developed was applied to the matrix at the meso-scale level and the chloride diffusivity was investigated at 30, 60, and 90 days. The experimental and simulation results showed that the aggregate shape and the exposure duration of chloride diffusing into concrete are of high significance. It was indicated that the model with crushed granite presents a good resistance against chloride ingress, while the model with rounded gravels shows some sensitivity to the chloride penetration. It was also found out that when the time dependence of the diffusion coefficient is not taken into account, the diffusion rate will be overestimated. The meso-scale model developed in this study also provides a new method applied in the analysis of the chloride and water transport that causes damage to concrete considering the particle inclusion and the diffusion duration. Keywords: Meso-scale modeling, Chloride diffusivity, Concrete, Effects of aggregates shape and exposure duration, FEM

  1. Rotational Capacity of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Henriksen, M. S.; Brincker, Rune

    1995-01-01

    programme where 120 reinforced concrete beams, 54 plain concrete beams and 324 concrete cylinders are tested. For the reinforced concrete beams four different parar meters are varied. The slenderness is 6, 12 and 18, the beam depth is 100 mm, 200 mm and 400 mm giving nine different geometries, five...

  2. Structural Concrete, Science into Practice

    NARCIS (Netherlands)

    Bruggeling, A.S.G.

    1987-01-01

    There is a need for a more rational and unified approach to all types of concrete structure, reinforced of prestressed. The first chapter explains in a historical review why the approach of reinforced concrete and that of prestressed concrete have hitherto been very different. In outlining the

  3. Documentation for Calculations of Standard Fire Resistance of Slabs and Walls of Concrete with Expanded Clay Aggregate

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    A number of full-scale tests are made in order to document calculation methods for fire-exposed slabs and walls derived during a previous project on fire exposed light-weight aggregate concrete constructions. The calculation methods are derived, and thus have a logical connection with the calcula......A number of full-scale tests are made in order to document calculation methods for fire-exposed slabs and walls derived during a previous project on fire exposed light-weight aggregate concrete constructions. The calculation methods are derived, and thus have a logical connection...... with the calculation methods used for other load cases. In addition the methods are shown to be valid for heavy concrete constructions by cooperation with tests for beams and columns, and a few slabs and walls. The two test series phase 1 and 2 of this report can therefore be seen as a necessary supplement to show...... that the methods are applicable for slabs and walls of light weight aggregate concrete. It is shown that the temperatures for standard fire exposed cross sections can be calculated, that the ultimate moment capacity can be calculated for slabs, and that the anchorage capacity and the shear tension capacity can...

  4. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology

    Directory of Open Access Journals (Sweden)

    Fengchen Chen

    2018-01-01

    Full Text Available A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting.

  5. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology.

    Science.gov (United States)

    Chen, Fengchen; Su, Xin; Ye, Qing; Fu, Jianfeng

    2018-01-01

    A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting.

  6. Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading

    Science.gov (United States)

    Ranjbaran, Fariman; Rezayfar, Omid; Mirzababai, Rahmatollah

    2018-03-01

    An experimental study has been conducted to study the cyclic behavior of reinforced concrete beams in which steel fibers were added to the concrete mix. Seven similar geometrically specimens in full scale were studied under four- point bending test in the form of slow cyclic loading. One sample as a control specimen was made without steel fibers or 0% volume fraction (vf) and six other samples with 1, 2 and 4% vf of steel fibers in twin models. The maximum and ultimate resistance, ductility, degradation of loading and unloading stiffness, absorption and dissipation of energy and equivalent viscous damping were studied in this investigation and the effect of steel fibers on the cyclic behavior was compared with each other. Generally, the addition of steel fibers up to a certain limit value (vf = 2%) improves the cyclic behavior of reinforced concrete beams and results in the increase of maximum strength and ultimate displacement.

  7. Time-dependent behavior of concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Tanabe, Tada-aki

    1992-01-01

    This paper is a condensed version of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The paper discusses the recent research of time-dependent behavior of concrete in the past few years. 6 refs

  8. Runoff of pyrethroid insecticides from concrete surfaces following simulated and natural rainfalls.

    Science.gov (United States)

    Jiang, Weiying; Haver, Darren; Rust, Michael; Gan, Jay

    2012-03-01

    Intensive residential use of insecticides has resulted in their ubiquitous presence as contaminants in urban surface streams. For pest eradication, urban hard surfaces such as concrete are often directly treated with pesticides, and wind/water can also carry pesticides onto hard surfaces from surrounding areas. This study expanded on previous bench-scale studies by considering pesticide runoff caused by irrigation under dry weather conditions and rain during the wet season, and evaluated the effects of pesticide residence time on concrete, single versus recurring precipitations, precipitation intensity, and concrete surface conditions, on pesticide transferability to runoff water. Runoff from concrete 1 d after pesticide treatment contained high levels of bifenthrin (82 μg/L) and permethrin (5143 μg/L for cis and 5518 μg/L for trans), indicating the importance of preventing water contact on concrete after pesticide treatments. Although the runoff transferability quickly decreased as the pesticide residence time on concrete increased, detectable residues were still found in runoff water after 3 months (89 d) exposure to hot and dry summer conditions. ANOVA analysis showed that precipitation intensities and concrete surface conditions (i.e., acid wash, silicone seal, stamping, and addition of microsilica) did not significantly affect the pesticide transferability to runoff. For concrete slabs subjected to natural rainfalls during the winter wet season, pesticide levels in the runoff decreased as the time interval between pesticide application and the rain event increased. However, bifenthrin and permethrin were still detected at 0.15-0.17 and 0.75-1.15 μg/L in the rain runoff after 7 months (221 d) from the initial treatment. In addition, pesticide concentrations showed no decrease between the two rainfall events, suggesting that concrete surfaces contaminated by pesticides may act as a reservoir for pesticide residues, leading to sustained urban runoff

  9. Modelling and simulation of concrete leaching under outdoor exposure conditions

    International Nuclear Information System (INIS)

    Schiopu, Nicoleta; Tiruta-Barna, Ligia; Jayr, Emmanuel; Mehu, Jacques; Moszkowicz, Pierre

    2009-01-01

    Recently, a demand regarding the assessment of release of dangerous substances from construction products was raised by European Commission which has issued the Mandate M/366 addressed to CEN. This action is in relation with the Essential Requirement No. 3 'Hygiene, Health and Environment' of the Construction Products Directive (89/106/EC). The potential hazard for environment and health may arise in different life cycle stages of a construction product. During the service life stage, the release of substances due to contact with the rain water is the main potential hazard source, as a consequence of the leaching phenomenon. The objective of this paper is to present the development of a coupled chemical-transport model for the case of a concrete based construction product, i.e. concrete paving slabs, exposed to rain water under outdoor exposure conditions. The development of the model is based on an iterative process of comparing the experimental results with the simulated results up to an acceptable fit. The experiments were conducted at laboratory scale (equilibrium and dynamic leaching tests) and field scale. The product was exposed for one year in two types of leaching scenarios under outdoor conditions, 'runoff' and 'stagnation', and the element release was monitored. The model was calibrated using the experimental data obtained at laboratory scale and validated against measured field data, by taking into account the specific rain water balance and the atmospheric CO 2 uptake as input parameters. The numerical tool used in order to model and simulate the leaching behaviour was PHREEQC, coupled with the Lawrence Livermore National Laboratory (LLNL) thermodynamic data base. The simulation results are satisfying and the paper demonstrates the feasibility of the modelling approach for the leaching behaviour assessment of concrete type construction materials

  10. Photocatalyticpaving concrete

    OpenAIRE

    Lyapidevskaya Ol'ga Borisovna; Fraynt Mikhail Aleksandrovich

    2014-01-01

    Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year) and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in t...

  11. Test of workability of concrete for PCCV

    International Nuclear Information System (INIS)

    Fujii, Tadayoshi; Nagase, Tetsuo; Yoshimori, Yoshinari

    1987-01-01

    The construction of the prestressed concrete containment vessel (PCCV) for Tsuruga No.2 plant of Japan Atomic Power Co. is the first case in Japan, and since the concrete having high strength and low slump is placed, the test of concrete placing by taking out a part of a full size test wall and the test of workability regarding the vibration compacting of concrete using a vibrator were carried out beforehand, and the results were reflected to the actual construction works. In this report, the workability test on the concrete is described. As difficulty is expected in the actual placing of the concrete having high strength and low slump, for the purpose of confirming the property of placing of the concrete in the cylindrical wall, and obtaining the basic data for the management of the actual concrete works and the quality control, the concrete placing test was carried out. At the time of concrete placing, the compacting of concrete is important, therefore, the basic data on the effect that the type, diameter, vibrating time and vibration propagation range of vibrators exert on the compacting of concrete were obtained, and reflected to the actual compacting. The purpose, testing method, results and the reflection to the actual works of these tests are reported. (Kako, I.)

  12. Phase 2 microwave concrete decontamination results

    International Nuclear Information System (INIS)

    White, T.L.; Foster, D. Jr.; Wilson, C.T.; Schaich, C.R.

    1995-01-01

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm 2 /s and 4.9 cm 3 /S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard

  13. Crack analysis of multicavity prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Gallix, R.; Liu, T.C.; Lu, S.C.H.

    1975-01-01

    A new method to perform the crack analysis of non-axisymmetric, multicavity prestressed concrete reactor vessels (PCRV's) subjected to hypothetical overpressure by using an axisymmetric two-dimensional finite element computer code is presented. Concrete, steel liner, bonded reinforcing steel and prestressing steel elements are modeled. The limiting tensile strain criterion is adopted for concrete cracking. The steel elements are assumed to be elastic/perfectly plastic. Von Mises yield criterion and Prandtl-Reuss flow equations define the behavior of the liner in the range of plastic deformations. An orthotropic stress-strain constitutive law is utilized for cracked concrete elements. To account for the presence of penetrations and secondary cavities in the PCRV, a modified finite element model based on the concept of effective moduli is adopted. The pressure in these cavities is simulated by equivalent axisymmetric pressure distributions. In the analysis, the pressure is applied incrementally. For a given pressure, the displacements, strains, and stresses are computed. The state of strains or stresses is then examined against the cracking or yield criteria. If cracking or yield is indicated, the stiffness and load matrices for the cracked and yielding elements are recomputed and a new equilibrium is sought. This procedure is repeated until the desired convergence of the solution is achieved. The validity of the adopted approach utilizing the two-dimensional finite element method for overpressure analyses of non-axisymmetric PCRV's is demonstrated through comparisons with two multicavity PCRV scale models. A reliable and conservative estimate of PCRV behavior under overpressure is obtained

  14. Experimental exploration of metal cable as reinforcement in 3D printed concrete

    NARCIS (Netherlands)

    Bos, F.P.; Ahmed, Z.Y.; Jutinov, E.R.; Salet, T.A.M.

    2017-01-01

    The Material Deposition Method (MDM) is enjoying increasing attention as an additive method to create concrete mortar structures characterised by a high degree of form-freedom, a lack of geometrical repetition, and automated construction. Several small-scale structures have been realised around the

  15. Investigation of molten corium-concrete interaction phenomena and aerosol release

    International Nuclear Information System (INIS)

    Spencer, B.W.; Thompson, D.H.; Armstrong, D.R.; Fink, J.K.; Gunther, W.H.; Kilsdonk, D.J.; Sehgal, B.R.

    1987-01-01

    The Electric Power Research Institute is sponsoring a program of laboratory investigations at Argonne National Laboratory to study the interaction between molten core materials and reactor concrete basemats during postulated severe reactor accidents, with particular emphasis on measurements of the magnitude and chemical species present in the aerosol releases. The approach in this program is to sustain internal heat generation in reactor-material corium using direct electrical heating and to develop test operating and diagnostics capabilities with a series of small- and intermediate-scale scoping tests followed by fully instrumented large-scale testing. Real reactor materials (UO 2 , ZrO 2 , oxides of stainless steel, plus metallics) are used, with small amounts of La 2 O 3 , BaO, and SrO added to simulate nonvolatile fission products. In intermediate-scale scoping tests completed to date, corium inventories of up to 29 kg have been heated with power inputs in excess of 1 kW/kg melt. The measured concrete ablation rates have ranged from 0.9 to 3.9 mm/minute. Aerosol samples have been examined using a scanning electron microscope and show submicron particles, 2-6 micrometer spheres, and agglomerates that range from a few micrometers to string 13 micrometers in length

  16. Ultrasonic measurements of undamaged concrete layer thickness in a deteriorated concrete structure

    NARCIS (Netherlands)

    Demcenko, A.; Visser, Roy; Akkerman, Remko

    2016-01-01

    Ultrasonic wave propagation in deteriorated concrete structures was studied numerically and experimentally. Ultrasonic single-side access immersion pulse-echo and diffuse field measurements were performed in deteriorated concrete structures at 0.5 MHz center frequency. Numerically and experimentally

  17. Elevated temperature effects on concrete properties

    International Nuclear Information System (INIS)

    Grant, P.R.; Gruber, R.S.; Van Katwijk, C.

    1993-08-01

    The design of facilities to process or store radioactive wastes presents many challenging engineering problems. Such facilities must not only provide for safe storage of radioactive wastes but they must also be able to maintain confinement of these materials during and after natural phenomena events. Heat generated by the radioactive decay of the wastes will cause the temperature of the concrete containment structure to increase to a magnitude higher than that found in conventional structures. These elevated temperatures will cause strength-related concrete properties to degrade over time. For concrete temperatures less than 150 degree F, no reduction in strength is taken and the provisions of ACI 349, which states that higher temperatures are allowed if tests are provided to evaluate the reduction in concrete strength properties, apply. Methods proposed in a Pacific Northwest Laboratory (PNL) report, Modeling of Time-Variant Concrete Properties at Elevated Temperatures, can be used to evaluate the effects of elevated temperatures on concrete properties. Using these modified concrete properties the capacity of a concrete structure, subjected to elevated temperatures, to resist natural phenomena hazards can be determined

  18. A study on the effects of seawater on the durable life of concrete structures(II)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan; Jang, Bong Suk; Jang, Seung Yeop; Jeon, Se Jin; Yu, Yeong; Park, Dae Gyun; Hyeong, Sang Soo [Seoul National Univ., Seoul (Korea, Republic of)

    1999-02-15

    Recently, large scale concrete structures such as nuclear power plants and offshore structures are actively being built in this country. These structures are subject to heavy attack due to seawater environment. A reasonable consideration for corrosion has not been paid to the structures in the past decades due to insufficient research data and guidelines. The durability is emerging as one of the most important factors. In the design and construction of concrete structures. The purpose of the present study is, therefore, to explore the corrosion mechanism and penetration mechanism of chloride ion, and to establish the evaluation procedure of durability life of concrete structures. In this study, the chloride ion concentration of seawater around our country have been analyzed and the deterioration mechanism of concrete structures have been also analyzed. The penetration mechanism of seawater into the concrete has been also studied. To this end, a comprehensive experimental program has been setup. The major test variables include the type of cement and the type of mineral admixture. The strength test as well as corrosion test have been conducted to explore the effects of chloride ion penetration on the properties of concrete. The corrosion mechanism and the penetration of chloride ion into concrete structures have been studied. These results will allow the estimation of durable life of concrete structures in nuclear power plants. The experimental results and the developed theory in the present study can be efficiently used to analyze the chloride ion penetration and to estimate the durability of concrete structures In nuclear power plants. The present study may also provide strong basis to evaluate the remaining service life of concrete structures in nuclear power plants.

  19. Biaxial Stress Tests of Plain Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Cho, M.S.; Song, Y.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2001-07-01

    Containment concrete specimens(4000, 5000psi) were tested under biaxial stress and presented basic physical properties and biaxial failure envelops for the concrete specimens. Failure behaviors of concrete under biaxial stress were assessed with stress-strain responses and failure modes. Here provided real test data to develop nonlinear finite element concrete models. (author). 15 refs., 46 figs., 4 tabs.

  20. Analyses and testing of model prestressed concrete reactor vessels with built-in planes of weakness

    International Nuclear Information System (INIS)

    Dawson, P.; Paton, A.A.; Fleischer, C.C.

    1990-01-01

    This paper describes the design, construction, analyses and testing of two small scale, single cavity prestressed concrete reactor vessel models, one without planes of weakness and one with planes of weakness immediately behind the cavity liner. This work was carried out to extend a previous study which had suggested the likely feasibility of constructing regions of prestressed concrete reactor vessels and biological shields, which become activated, using easily removable blocks, separated by a suitable membrane. The paper describes the results obtained and concludes that the planes of weakness concept could offer a means of facilitating the dismantling of activated regions of prestressed concrete reactor vessels, biological shields and similar types of structure. (author)

  1. Concrete density estimation by rebound hammer method

    International Nuclear Information System (INIS)

    Ismail, Mohamad Pauzi bin; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri; Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin; Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin

    2016-01-01

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite

  2. The influence of loading on the corrosion of steel in cracked ordinary Portland cement and high performance concretes

    Science.gov (United States)

    Jaffer, Shahzma Jafferali

    was a minor effect of the type of loading on rebar corrosion within the period of the project. These measurements also highlighted the problems associated with corrosion measurements, for example, identifying the actual corroding area and the influence of the length of rebar. The numbers of cracks and crack-widths in each beam were measured after the beam's initial exposure to salt solution and, again, after the final corrosion measurements. HPC beams had more cracks than the OPCC. Also, final measurements illustrated increased crack-widths in dynamically loaded beams, regardless of the concrete type. The cracks in both statically and dynamically loaded OPCC and HPC beams bifurcated at the rebar level and propagated parallel to the rebar. This project also examined the extent of corrosion on the rebars and the distribution of corrosion products in the concrete and on the concrete walls of the cracks. Corrosion occurred only at cracks in the concrete and was spread over a larger area on the rebars in HPC than those in OPCC. The damage due to corrosion was superficial in HPC and crater-like in OPCC. Regardless of the concrete type, there was a larger distribution of corrosion products on the crack walls of the dynamically loaded beams. Corrosion products diffused into the cement paste and the paste-aggregate interface in OPCC but remained in the crack in HPC. The most voluminous corrosion product identified was ferric hydroxide. Elemental analysis of mill-scale on rebar which was not embedded in concrete or exposed to chlorides was compared to that of the bars that had been embedded in uncontaminated concrete and in cracked concrete exposed to chlorides. In uncontaminated concrete, mill-scale absorbed calcium and silicon. At a crack, a layer, composed of a mixture of cement paste and corrosion products, developed between the mill-scale and the substrate steel. Based on the results, it was concluded that (i) corrosion occurred on the rebar only at cracks in the concrete

  3. Durable fiber reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Corinaldesi, V.; Moriconi, G.

    2004-01-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture

  4. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  5. A study on the modeling of molten corium-concrete interaction

    International Nuclear Information System (INIS)

    Park, Soo Yong

    1994-02-01

    The phenomenon known as molten corium concrete interaction (MCCI) has been recognized as important aspects of severe reactor accidents. The potential hazard of a MCCI is the threat to the integrity of the containment building due to the possibility of a basemat melt through, containment overpressurization by noncondensible gases, or oxidation of combustible gases. Over the past several years, a large experimental and analytical effort has been under taken in corium-concrete interaction phenomena by several organization. The purpose of this paper is to investigate the previous analytical results and computer programs, and finally to establish a new stand alone model which can predict the corium-concrete interaction. A model to predict the behavior of molten corium-concrete interaction in the reactor cavity during vessel ruptured accidents is established. Gas film model, gas bubble model, slag model and periodic contact model are employed as a major heat transfer model between corium and concrete. Solidified debris crust is considered at the boundary of molten corium. Upon the experimental observations, no layer stratification is assumed due to the strong dispersion of the metallic melt in the oxidic phase. With the assumption of temperature profile within the corium pool and crust, the temperature distribution of concrete is found by explicit solution of heat conduction equation. The sideward heat transfer rate can be obtained by considering multiplication factor to the downward heat transfer rate. The multiplication factor is treated as a user input because of its large uncertainty. Comparisons are made with two large scale experiments, SURC-2 and BETA V3.3. There is a reasonable agreement in the corium temperature, erosion depth and gas generation between the experimental data and the predicted results with periodic contact model given the uncertainties in the input data or the measurement. The gas bubble model has the highest heat transfer coefficient, and the

  6. Another Concrete In the Wall

    OpenAIRE

    Meric, Asli Duru

    2015-01-01

    concrete has a memory. It stores the construction sequences. It shows what it is made of and how it is made. The texture of the formwork, the color difference of the pours, and the shadows of the metal ties combine to layer the beauty of concrete. The aim of this study is to explore the instruments of a concrete surface in order to enhance this multi-sensory experience. This study began with the design of a concrete wall and evolved into the design of a single-family home. MARCH

  7. Influence of processing factors over concrete strength.

    Science.gov (United States)

    Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.

    2018-03-01

    Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.

  8. Self-healing of polymer modified concrete

    Directory of Open Access Journals (Sweden)

    Abd_Elmoaty M. Abd_Elmoaty

    2011-06-01

    Full Text Available Self healing phenomenon of concrete has been observed in traditional, fibrous, self compacting concrete. This phenomenon occurred mainly due to the presence of unhydrated cement particles in the presence of water. Mechanism of polymer in concrete depends on creating a layer and net of polymer around cement particles which enhances the properties of polymer modified concrete. This mechanism may affect the self healing of this type of concrete. This work aims to study the presence of the self healing phenomenon in polymer modified concrete and the related parameters. An experimental investigation on self healing of polymer modified concrete was undertaken. In this research work, effect of polymer type, polymer dose, cement content, cement type, w/cm ratio and age of damage were studied. The healing process extended up to 60 days. Ultrasonic pulse velocity measurements were used to evaluate the healing process. Results indicated that, the self healing phenomenon existed in polymer modified concrete as in traditional concrete. The increase of polymer dose increases the healing degree at the same healing time. This increase depends on polymer type. Also, the decrease of w/cm ratio reduces the self healing degree while the use of Type V Portland cement improves the self healing process compared with Type I Portland cement. Cement content has an insignificant effect on healing process for both concrete with and without polymer. In addition, the increase of damage age decreases the efficiency of self healing process.

  9. Concrete spaller. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The US Department of Energy (DOE) has numerous buildings and facilities that have become contaminated through operation of nuclear reactors, fuel fabrication processes, and research laboratory operations. These buildings and facilities, often constructed of concrete, need to be decontaminated before they can be safely decommissioned or demolished. Pacific Northwest National Laboratory's concrete spaller is a hand-held tool that can be used for decontaminating flat or slightly curved concrete surfaces, obtaining concrete samples, and in-depth removal from cracks in concrete. The concrete spaller includes a 9-ton hydraulic cylinder and spalling bit. It runs from a hydraulic pump that expands the spaller in pre-drilled holes in the concrete. The result is removal of concrete chunks that fall into the attached metal shroud. The concrete spaller is more efficient than traditional tools such as hand-held pneumatic scabblers and scalers. For example, the spaller is capable of spalling 1.3 m 3 /hr (0.23 ft 2 /min), compared to 1.1 m 2 /hr (0.20 ft 2 /min), for the baseline scabbler and scaler demonstrated at 3-mm (1/8-in.) depth. The spaller is also capable of removing concrete at a greater depth than traditional tools. Operating cost of the spaller ($128/m 2 or $11.93/ft 2 [optimum conditions]) is less than the baseline tools: scaler ($155/m 2 or $14.40/ft 2 ) and scabbler ($156/m 2 or $14.53/ft 2 )

  10. Material test of concrete for PCCV

    International Nuclear Information System (INIS)

    Okada, Katsuya; Kamiyama, Yukio; Iwasawa, Jiro.

    1987-01-01

    The concrete used for the prestressed concrete containment vessel (PCCV) for Tsuruga No.2 plant of Japan Atomic Power Co. has the design standard strength as high as 420 kg/cm 2 , but for the purpose of preventing the cracking due to hydration heat at the time of concrete hardening, the medium heat cement mixed with flyash was adopted. The example of using the cement of this kind for high strength concrete has been few, and the data on its various properties have been scarce. First, the various mixing proportion for the high strength concrete using the medium heat cement mixed with flyash was experimented, and the basic mixing proportion for satisfying the design standard strength 420 kg/cm 2 was determined. Next, about this basic mixing proportion, the tests on the crrep characteristics and the thermal characteristics required for the design of PCCVs were carried out. In this report, the results of these tests on the concrete are described. By combining the concrete materials available in Tsuruga district, the test on unsolidified concrete and hardened concrete was carried out. The experimental method and the results are reported. Uniaxial compression creep test was carried out on the concrete having the selected mixing proportion to evaluate the propriety of the design creep factor. In the test of the thermal characteristics, the heat conductivity, heat diffusivity, linear thermal expansion and specific heat were measured. (Kako, I.)

  11. Performance of "Waterless Concrete"

    Science.gov (United States)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  12. Nuclear radiation and the properties of concrete

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1983-08-01

    Concrete is used for structures in which the concrete is exposed to nuclear radiation. Exposure to nuclear radiation may affect the properties of concrete. The report mentions the types of nuclear radiation while radiation damage in concrete is discussed. Attention is also given to the effects of neutron and gamma radiation on compressive and tensile strength of concrete. Finally radiation shielding, the attenuation of nuclear radiation and the value of concrete as a shielding material is discussed

  13. Prediction of concrete strength in massive structures

    International Nuclear Information System (INIS)

    Sakamoto, T.; Makino, H.; Nakane, S.; Kawaguchi, T.; Ohike, T.

    1989-01-01

    Reinforced concrete structures of a nuclear power plant are mostly of mass concrete with cross-sectional dimensions larger than 1.0 m. The temperature of concrete inside after placement rises due to heat of hydration of cement. It is well known that concrete strengths of mass concrete structure subjected to such temperature hysteresis are generally not equal to strengths of cylinders subjected to standard curing. In order to construct a mass concrete structure of high reliability in which the specified concrete strength is satisfied by the specified age, it is necessary to have a thorough understanding of the strength gain property of concrete in the structure and its relationships with the water-cement ratio of the mix, strength of standard-cured cylinders and the internal temperature hysteresis. This report describes the result of studies on methods of controlling concrete strength in actual construction projects

  14. Damage Model of Reinforced Concrete Members under Cyclic Loading

    Science.gov (United States)

    Wei, Bo Chen; Zhang, Jing Shu; Zhang, Yin Hua; Zhou, Jia Lai

    2018-06-01

    Based on the Kumar damage model, a new damage model for reinforced concrete members is established in this paper. According to the damage characteristics of reinforced concrete members subjected to cyclic loading, four judgment conditions for determining the rationality of damage models are put forward. An ideal damage index (D) is supposed to vary within a scale of zero (no damage) to one (collapse). D should be a monotone increasing function which tends to increase in the case of the same displacement amplitude. As for members under large displacement amplitude loading, the growth rate of D should be greater than that of D under small amplitude displacement loading. Subsequently, the Park-Ang damage model, the Niu-Ren damage model, the Lu-Wang damage model and the proposed damage model are analyzed for 30 experimental reinforced concrete members, including slabs, walls, beams and columns. The results show that current damage models do not fully matches the reasonable judgment conditions, but the proposed damage model does. Therefore, a conclusion can be drawn that the proposed damage model can be used for evaluating and predicting damage performance of RC members under cyclic loading.

  15. Concrete structures protection, repair and rehabilitation

    CERN Document Server

    Woodson, R Dodge

    2009-01-01

    The success of a repair or rehabilitation project depends on the specific plans designed for it. Concrete Structures: Protection, Repair and Rehabilitation provides guidance on evaluating the condition of the concrete in a structure, relating the condition of the concrete to the underlying cause or causes of that condition, selecting an appropriate repair material and method for any deficiency found, and using the selected materials and methods to repair or rehabilitate the structure. Guidance is also provided for engineers focused on maintaining concrete and preparing concrete investigation r

  16. Ultrasonic imaging in concrete

    International Nuclear Information System (INIS)

    Ribay, G.; Paris, O.; Rambach, J.M.

    2009-01-01

    The third and final protection barrier confining nuclear reactors is usually a concrete containment structure. Monitoring the structural integrity of these barriers is critical in ensuring the safety of nuclear power plants. The Institute for Radiological Protection and Nuclear Safety (IRSN) in France in collaboration with the French Atomic commission (CEA/LIST) has developed an ultrasonic phased-array technique capable of inspecting thick concrete walls. The non-destructive method is dedicated to detect cracks and bulk defects. Given the thickness of the structure (1.2 m) undergoing inspection and the heterogeneity of the concrete, the optimal frequency lies in the 50-300 kHz range. At these frequencies, the ultrasonic beam profiles are widespread (non-directive) with poor signal-to-noise ratio. Previous studies have shown the potential of using phased-array techniques (i.e., beam focusing and beam steering) in order to improve detection resolution and sizing accuracy. In this paper we present experimental studies performed with array up to 16 transducers working at 200 kHz. Experiments are carried out on representative concrete blocks containing artificial defects. One is a reinforced mock-up representative of the first reinforcing mesh of wall containment. Experimental results show that in spite of the reinforcement, artificial defects deep as half a meter can be detected. Reconstructed images resulting from phased array acquisitions on an artificial crack embedded in a concrete block are also presented and discussed. The presented method allows detecting oriented defects in concrete with improved signal to noise ratio and sensibility. A simulation model of the interaction of ultrasound with a heterogeneous medium like concrete is briefly commented. (authors)

  17. Activation experiment for concrete blocks using thermal neutrons

    Science.gov (United States)

    Okuno, Koichi; Tanaka, Seiichiro

    2017-09-01

    Activation experiments for ordinary concrete, colemanite-peridotite concrete, B4C-loaded concrete, and limestone concrete are carried out using thermal neutrons. The results reveal that the effective dose for gamma rays from activated nuclides of colemanite-peridotite concrete is lower than that for the other types of concrete. Therefore, colemanite-peridotite concrete is useful for reducing radiation exposure for workers.

  18. PZT-Based Detection of Compactness of Concrete in Concrete Filled Steel Tube Using Time Reversal Method

    Directory of Open Access Journals (Sweden)

    Shi Yan

    2014-01-01

    Full Text Available A smart aggregate-based approach is proposed for the concrete compactness detection of concrete filled steel tube (CFST columns. The piezoceramic-based smart aggregates (SAs were embedded in the predetermined locations prior to the casting of concrete columns to establish a wave-based smart sensing system for the concrete compactness detection purpose. To evaluate the efficiency of the developed approach, six specimens of the CFST columns with the rectangular cross-section were produced by placing some artificial defects during casting of concrete for simulating various uncompacted voids such as cavities, cracks, and debond. During the test, the time reversal technology was applied to rebuild the received signals and launch the reversed signals again by SAs, to overcome the issue of the lack of the prototype. Based on the proposed nonprototype, two indices of time reversibility (TR and symmetry (SYM were applied to relatively evaluate the level of concrete compactness in the range of the two SAs. The experimental results show that the developed method can effectively detect the compactness of concrete in CFST columns.

  19. Physical Model Method for Seismic Study of Concrete Dams

    Directory of Open Access Journals (Sweden)

    Bogdan Roşca

    2008-01-01

    Full Text Available The study of the dynamic behaviour of concrete dams by means of the physical model method is very useful to understand the failure mechanism of these structures to action of the strong earthquakes. Physical model method consists in two main processes. Firstly, a study model must be designed by a physical modeling process using the dynamic modeling theory. The result is a equations system of dimensioning the physical model. After the construction and instrumentation of the scale physical model a structural analysis based on experimental means is performed. The experimental results are gathered and are available to be analysed. Depending on the aim of the research may be designed an elastic or a failure physical model. The requirements for the elastic model construction are easier to accomplish in contrast with those required for a failure model, but the obtained results provide narrow information. In order to study the behaviour of concrete dams to strong seismic action is required the employment of failure physical models able to simulate accurately the possible opening of joint, sliding between concrete blocks and the cracking of concrete. The design relations for both elastic and failure physical models are based on dimensional analysis and consist of similitude relations among the physical quantities involved in the phenomenon. The using of physical models of great or medium dimensions as well as its instrumentation creates great advantages, but this operation involves a large amount of financial, logistic and time resources.

  20. Summary of Self-compacting Concrete Workability

    OpenAIRE

    GUO Gui-xiang; Duan Hong-jun

    2015-01-01

    On the basis of a large number of domestic and foreign literature, situation and development of self-compacting concrete is introduced. Summary of the compacting theory of self-compacting concrete. And some of the factors affecting the workability of self-compacting concrete were discussed and summarized to a certain extent. Aims to further promote the application and research of self-compacting concrete

  1. Experimental Study on the Hygrothermal Behavior of a Coated Sprayed Hemp Concrete Wall

    Directory of Open Access Journals (Sweden)

    Anthony Magueresse

    2013-01-01

    Full Text Available Hemp concrete is a sustainable lightweight concrete that became popular in the field of building construction because of its thermal and environmental properties. However; available experimental data on its hygrothermal behavior are rather scarce in the literature. This paper describes the design of a large-scale experiment developed to investigate the hygrothermal behavior of hemp concrete cast around a timber frame through a spraying process; and then coated with lime-based plaster. The equipment is composed of two climatic chambers surrounding the tested wall. The experiment consists of maintaining the indoor climate at constant values and applying incremental steps of temperature; relative humidity or vapor pressure in the outdoor chamber. Temperature and relative humidity of the room air and on various depths inside the wall are continuously registered during the experiments and evaporation phenomena are observed. The influence of the plaster on the hygrothermal behavior of hemp concrete is investigated. Moreover; a comparison of experimental temperatures with numerical results obtained from a purely conductive thermal model is proposed. Comparing the model with the measured data gave satisfactory agreement.

  2. A mathematical model of the behaviour of concrete backfill in an underground radioactive-waste repository

    International Nuclear Information System (INIS)

    Mistry, N.S.; Carlton, D.; Storer, G.

    1992-01-01

    This report concerns the mathematical modelling by the finite element method of the behaviour of concrete, one of the candidate materials for use in the backfilling and scaling of underground repositories for radioactive waste. In order to act as an assured physical barrier to ground water migration in the vicinity of the waste packages, a concrete backfill must remain intact and free from cracks. One of the risk periods during which mass concrete is susceptible to cracking is during the early days after casting when concrete undergoes rapid changes in internal temperatures and mechanical properties, including, most obviously, strength. Existing commercially available finite element codes do not have a model for concrete that can adequately represent these early age characteristics. The present study, therefore, is predominantly concerned with the development of a mathematical model for use within the ADINA finite element code to predict the time-dependent performance of concrete as a backfilling and sealing material. The evaluation of creep and shrinkage strains is based on the CEB-FIP Model Code together with Illston's approach to delayed and transitional thermal strains. The finite element material model developed is general and could be applied to various types of structure and loading. The model accounts for the ageing of concrete, multi-axial creep and creep recovery, the effect of external environmental humidity and changing internal temperatures. 32 refs., 31 figs., 1 tab

  3. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling

    International Nuclear Information System (INIS)

    Ferretti, D.; Michelini, E.; Rosati, G.

    2015-01-01

    The paper aims to investigate and model cracking development in beams and deep-beams made of autoclaved aerated concrete (AAC). Fracture mechanics of AAC has been first studied by performing three-point bending tests on beams, similar to those commonly used for ordinary concrete elements. In some of these tests, crack growth has been also monitored by using ESPI laser technique. In this way, it has been possible to calibrate the main parameters of a proper cohesive law by means of extended finite element inverse analysis. Subsequently, cracking tests have been also performed on deep-beams, whose behavior is more representative of full scale walls. To validate the proposed cohesive law, deep-beam experimental behavior has been finally simulated through XFEM

  4. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, D., E-mail: daniele.ferretti@unipr.it [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, P.co Area delle Scienze 181/A, 43124 Parma (Italy); Michelini, E. [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, P.co Area delle Scienze 181/A, 43124 Parma (Italy); Rosati, G. [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2015-01-15

    The paper aims to investigate and model cracking development in beams and deep-beams made of autoclaved aerated concrete (AAC). Fracture mechanics of AAC has been first studied by performing three-point bending tests on beams, similar to those commonly used for ordinary concrete elements. In some of these tests, crack growth has been also monitored by using ESPI laser technique. In this way, it has been possible to calibrate the main parameters of a proper cohesive law by means of extended finite element inverse analysis. Subsequently, cracking tests have been also performed on deep-beams, whose behavior is more representative of full scale walls. To validate the proposed cohesive law, deep-beam experimental behavior has been finally simulated through XFEM.

  5. The characteristics of ultra-high performance concrete and cracking behavior of reinforced concrete tensile specimens

    Directory of Open Access Journals (Sweden)

    H.A. Rahdar

    2016-09-01

    Full Text Available The tensile behavior of concrete depends on some factors such as member dimensions, reinforcement ratio, diameter of rebar, strength and elasticity modulus of material. In this research the experimental method is used to examine the characteristics and the behavior of ultra-high performance concrete on the tensile behavior of concrete members reinforced by steel rebar. The results show that increasing the rebar cover on diameter rebar ratio (C/d increases the initial stiffening before the cracking stage in concrete. Also, by increasing of reinforcement ratio the cracking space decreased.

  6. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    OpenAIRE

    Carrión, F.; Montalban Domingo, Maria Laura; Real Herráiz, Julia Irene; Real, T.

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate) and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strenght, flexural strength, modulus of elasticity,...

  7. Compressive strength improvement for recycled concrete aggregate

    Directory of Open Access Journals (Sweden)

    Mohammed Dhiyaa

    2018-01-01

    Full Text Available Increasing amount of construction waste and, concrete remnants, in particular pose a serious problem. Concrete waste exist in large amounts, do not decay and need long time for disintegration. Therefore, in this work old demolished concrete is crashed and recycled to produce recycled concrete aggregate which can be reused in new concrete production. The effect of using recycled aggregate on concrete compressive strength has been experimentally investigated; silica fume admixture also is used to improve recycled concrete aggregate compressive strength. The main parameters in this study are recycled aggregate and silica fume admixture. The percent of recycled aggregate ranged from (0-100 %. While the silica fume ranged from (0-10 %. The experimental results show that the average concrete compressive strength decreases from 30.85 MPa to 17.58 MPa when the recycled aggregate percentage increased from 0% to 100%. While, when silica fume is used the concrete compressive strength increase again to 29.2 MPa for samples with 100% of recycled aggregate.

  8. Concrete Waste Recycling Process for High Quality Aggregate

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-01

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  9. A new ductile moment-resisting connection for precast concrete frames in seismic regions: An experimental investigation

    OpenAIRE

    Parastesh, H.; Hajirasouliha, I.; Ramezani, R.

    2014-01-01

    A new ductile moment-resisting beam–column connection is developed for precast reinforced concrete (RC) frames in high seismic zones. The proposed connection provides good structural integrity in the connections and can reduce construction time by eliminating the need for formworks and welding, and minimizing cast-in-place concrete volume. A series of cyclic loading tests were carried out on six full-scale interior and exterior precast connections and two monolithic connections, all designed ...

  10. Research on Durability of Recycled Ceramic Powder Concrete

    Science.gov (United States)

    Chen, M. C.; Fang, W.; Xu, K. C.; Xie, L.

    2017-06-01

    Ceramic was ground into powder with 325 mesh and used to prepare for concrete. Basic mechanical properties, carbonation and chloride ion penetration of the concrete tests were conducted. In addition, 6-hour electric fluxes of recycled ceramic powder concrete were measured under loading. The results showed that the age strength of ceramics powder concrete is higher than that of the ordinary concrete and the fly ash concrete. The ceramic powder used as admixture would reduce the strength of concrete under no consideration of its impact factor; under consideration of the impact factor for ceramic powder as admixture, the carbonation resistance of ceramic powder concrete was significantly improved, and the 28 day carbonation depth of the ceramic powder concrete was only 31.5% of ordinary concrete. The anti-chloride-permeability of recycled ceramic powder concrete was excellent.

  11. Classification of building systems for concrete 3D printing

    OpenAIRE

    DUBALLET , Romain; BAVEREL , Olivier; Dirrenberger , Justin

    2017-01-01

    In the present paper, a study is conducted on building systems associated with concrete extrusion-based additive manufacturing techniques. Specific parameters are highlighted - concerning scale, environment, support, and assembly strategies - and a classification method is introduced. The objective is to explicitly characterise construction systems based on such printing processes. A cartography of the different approaches and subsequent robotic complexity is proposed. The state of the art ga...

  12. Concrete structures vulnerability under impact: characterization, modeling, and validation - Concrete slabs vulnerability under impact: characterization, modeling, and validation

    International Nuclear Information System (INIS)

    Xuan Dung Vu

    2013-01-01

    Concrete is a material whose behavior is complex, especially in cases of extreme loads. The objective of this thesis is to carry out an experimental characterization of the behavior of concrete under impact-generated stresses (confined compression and dynamic traction) and to develop a robust numerical tool to reliably model this behavior. In the experimental part, we have studied concrete samples from the VTT center (Technical Research Center of Finland). At first, quasi-static triaxial compressions with the confinement varies from 0 MPa (unconfined compression test) to 600 MPa were realized. The stiffness of the concrete increases with confinement pressure because of the reduction of porosity. Therefore, the maximum shear strength of the concrete is increased. The presence of water plays an important role when the degree of saturation is high and the concrete is subjected to high confinement pressure. Beyond a certain level of confinement pressure, the maximum shear strength of concrete decreases with increasing water content. The effect of water also influences the volumetric behavior of concrete. When all free pores are closed as a result of compaction, the low compressibility of the water prevents the deformation of the concrete, whereby the wet concrete is less deformed than the dry concrete for the same mean stress. The second part of the experimental program concerns dynamic tensile tests at different loading velocities, and different moisture conditions of concrete. The results show that the tensile strength of concrete C50 may increase up to 5 times compared to its static strength for a strain rate of about 100 s -1 . In the numerical part, we are interested in improving an existing constitutive coupled model of concrete behavior called PRM (Pontiroli-Rouquand-Mazars) to predict the concrete behavior under impact. This model is based on a coupling between a damage model which is able to describe the degradation mechanisms and cracking of the concrete at

  13. Fiber reinforced concrete: an advanced technology for LL/ML radwaste conditioning and disposal

    International Nuclear Information System (INIS)

    Tchemitcheff, E.; Verdier, A.

    1993-01-01

    Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber concrete containers satisfy all French safety requirements relating to waste immobilization and disposal, and have been certified by Andra, the national radioactive waste management agency. The fiber concrete containers have been fabricated on a production scale since July 1990 by Sogefibre. (author). 3 refs., 5 figs., 7 tabs

  14. Elastic-plastic constitutive modeling of concrete

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1983-03-01

    The need to understand concrete behavior under high temperatures in the nuclear industry has become rather accute. For this purpose, a constitutive model of concrete especially developed for this severe environment is indispensable. This report reviews the presently available constitutive models of concrete at standard-temperature conditions and considers their advantages and drawbacks. A rather simple but effective approach is selected to treat concrete behavior at high temperatures. Special emphasis is devoted to the modeling of concrete up to and including failure. The derived constitutive model is checked with biaxial and triaxial benchmark experimental results. Very good agreement is obtained

  15. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  16. Modeling and conduct of turbine missile concrete impact experiments

    International Nuclear Information System (INIS)

    Woodfin, R.L.

    1981-01-01

    The overall objective of the subject experiments was to provide full scale data on the response of reinforced concrete containment walls to impact and penetration by postulated turbine-produced missiles. These data can be used to validate analytical or scale modeling methods and to assess the applicability of current design formulas to penetration by large, irregularly shaped missiles. These data and results will be used in providing more realistic estimates of turbine missile damage probability in nuclear power plants with a non-peninsula arrangement. This paper describes the derivation of the test matrix and the method of conducting the experiments. (orig./HP)

  17. Concrete pavement joint deterioration.

    Science.gov (United States)

    2015-12-01

    Concrete pavements are an important part of our national infrastructure. In recent years the relatively small number of reported joints deteriorating prematurely in concrete pavements around Indiana has increased. Changes over the past 45 years in IN...

  18. Concrete durability

    OpenAIRE

    Gaspar Tébar, Demetrio

    1991-01-01

    The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of rese...

  19. Novel techniques for concrete curing

    DEFF Research Database (Denmark)

    Kovler, Konstantin; Jensen, Ole Mejlhede

    2005-01-01

    It is known that some high-strength/high-performance concretes (HSC/HPC) are prone to cracking at an early age unless special precautions are taken. The paper deals with the methods of curing as one of the main strategies to ensure good performance of concrete. Curing by both external (conventional......) and internal methods is reviewed and analyzed, among other methods of mitigating shrinkage and cracking of concrete. The focus is on the mitigation of autogenous shrinkage of low water to binder ratio (w/b) concrete by means of internal curing. The concepts of internal curing are based on using lightweight...... aggregate, superabsorbent polymers or water-soluble chemicals, which reduce water evaporation (so called "internal sealing"). These concepts have been intensively researched in the 90s, but still are not widespread among contractors and concrete suppliers. The differences between conventional methods...

  20. Reviewing the Carbonation Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    S P Singh

    2016-07-01

    Full Text Available The paper reviews the studies on one of the important durability properties of concrete i.e. Carbonation. One of the main causes of deterioration of concrete is carbonation, which occurs when carbon dioxide (CO2 penetrates the concrete’s porous system to create an environment with lower pH around the reinforcement in which corrosion can proceed. Carbonation is a major cause of degradation of concrete structures leading to expensive maintenance and conservation operations. Herein, the importance, process and effect of various parameters such as water/cement ratio, water/binder ratio, curing conditions, concrete cover, super plasticizers, type of aggregates, grade of concrete, porosity, contaminants, compaction, gas permeability, supplementary cementitious materials (SCMs/ admixtures on the carbonation of concrete has been reviewed. Various methods for estimating the carbonation depth are also reported briefly

  1. Progress of admixtures and quality of concrete. 2. ; Approaches to ultra-high-strength concrete. Konwa zairyo no shinpo to concrete no hinshitsu. 2. ; Chokokyodo concrete eno approach

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T. (Shimizu Construction Co. Ltd., Tokyo (Japan)); Abe, M. (Building Research Institute, Tsukuba (Japan))

    1994-02-15

    Ultra-high-strength concrete of 600 kgf/cm[sup 2] or more is reviewed. MDF (macro defect free) cement, spheroidal cement and mechanically stabilized cement have been developed for ultra-high-strength concrete, however, in general, DSP (densified system containing homogeneously arranged ultra-fine particles) technique is now usual in which a water-cement ratio is reduced by use of advanced air entraining and water reducing agents and cured concrete is densified by use of ultra-fine particles as admixture. Four kinds of substances such as naphthalene system and polycarboxylic acid system are used as air entraining and water reducing agents, and silica fume is used as ultra-fine particle admixture which can be effectively replaced with blast furnace slag or fly ash. Various use examples of ultra-high-strength concrete such as an ocean platform are found in the world, however, only some examples such as a PC truss bridge and the main tower of a PC cable stayed bridge in Japan. 22 refs., 10 figs., 2 tabs.

  2. RESTORING A DAMAGED 16-YEAR -OLD INSULATING POLYMER CONCRETE DIKE OVERLAY: REPAIR MATERIALS AND TECHNOLOGIES.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    The objective of this program was to design and formulate organic polymer-based material systems suitable for repairing and restoring the overlay panels of insulating lightweight polymer concrete (ILPC) from the concrete floor and slope wall of a dike at KeySpan liquefied natural gas (LNG) facility in Greenpoint, Brooklyn, NY, just over sixteen years ago. It also included undertaking a small-scale field demonstration to ensure that the commercial repairing technologies were applicable to the designed and formulated materials.

  3. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    Science.gov (United States)

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  5. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  6. The size effect in corrosion greatly influences the predicted life span of concrete infrastructures.

    Science.gov (United States)

    Angst, Ueli M; Elsener, Bernhard

    2017-08-01

    Forecasting the life of concrete infrastructures in corrosive environments presents a long-standing and socially relevant challenge in science and engineering. Chloride-induced corrosion of reinforcing steel in concrete is the main cause for premature degradation of concrete infrastructures worldwide. Since the middle of the past century, this challenge has been tackled by using a conceptual approach relying on a threshold chloride concentration for corrosion initiation ( C crit ). All state-of-the-art models for forecasting chloride-induced steel corrosion in concrete are based on this concept. We present an experiment that shows that C crit depends strongly on the exposed steel surface area. The smaller the tested specimen is, the higher and the more variable C crit becomes. This size effect in the ability of reinforced concrete to withstand corrosion can be explained by the local conditions at the steel-concrete interface, which exhibit pronounced spatial variability. The size effect has major implications for the future use of the common concept of C crit . It questions the applicability of laboratory results to engineering structures and the reproducibility of typically small-scale laboratory testing. Finally, we show that the weakest link theory is suitable to transform C crit from small to large dimensions, which lays the basis for taking the size effect into account in the science and engineering of forecasting the durability of infrastructures.

  7. Studies of historic concrete

    International Nuclear Information System (INIS)

    Jull, S.P.; Lees, T.P.

    1990-01-01

    Underground concrete repositories for nuclear waste will have to maintain their integrity for hundreds of years. This study examines ancient concretes and assesses the suitability of equivalent modern materials for underground storage. Thirty four ancient samples have been obtained from Great Britain, Austria and Italy. One 19th century sample was also collected. The samples were examined using a variety of analytical techniques (including scanning electron microscopy, optical microscopy, chemical analysis and pH determination). The samples were also subjected to a range of physical tests. Most of the samples examined were very weak and porous although they had retained full structural integrity. With the exception of the 19th century sample, none of the concretes had maintained pH alkaline enough to immobilize radionuclides. Hydrated calcium silicates have been detected in some samples which are similar to those observed in modern Portland cement concretes. These stable cementitious species have endured for almost two thousand years. All the ancient concretes and mortars examined contained natural pozzolanic material or crushed burnt clay. This may have had some effect on the reduction in alkalinity although the main reason was full carbonation of calcium hydroxide

  8. Effect of shear span, concrete strength and strrup spacing on behavior of pre-stressed concrete beams

    International Nuclear Information System (INIS)

    Ahmad, S.; Bukhari, I.A.

    2007-01-01

    The shear strength of pre-stressed concrete beams is one of the most important factors to be considered in their design. The available data on shear behavior of pre-tensioned prestressed concrete beams is very limited. In this experimental study, pre-tensioned prestressed concrete I-beams are fabricated with normal and high- strength concretes, varying stirrup spacing and shear span-to-depth ratios. 1Wenty one I-beam specimens that are 300 mm deep and 3745-4960mm long are tested up to failure while deflections, cracking pattern, cracking and failure loads were recorded. The research results are compared with ACI 318-02 and Structure Analysis Program, Response 2000. It was observed that with the decrease in concrete strength, failure mode of prestressed concrete beams changes from flexure shear to web shear cracking for values of shear span-to-depth ratio less than 4.75. Increase in stirrup spacing decreased the effectiveness of stirrups in transmitting shear across crack as a result of which failure mode is changed to web shear cracking especially for beams with lower values of shear span-to-depth ratios. ACI code underestimates the shear carrying capacity of prestressed concrete beams with lower values of shear span- to-depth ratios. Response 2000 can be used more effectively in predicting shear behavior of normal strength prestressed concrete beams. (author)

  9. Laterally Loaded Partially Prestressed Concrete Piles

    Science.gov (United States)

    1989-09-01

    of an extensive test program onl laterali y ioadeu. partially pr- estressed concrete fender piles. The study Included service load range as well ats...12,000-psi design strength). Configura- tion G utilized 14 r:- estress strand, in an unsymmetric pattern. To provide a uniform concrete prestress of 540...sudden loss in load carrying capacity directly related to the loss of concrete area. The compression concrete fractured longitudinally and along the

  10. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  11. Porous Concrete and Its Application

    Directory of Open Access Journals (Sweden)

    V. V. Opekunov

    2005-01-01

    Full Text Available Some aspects of resource saving problem in the process of mass construction and operation of heated construction installations are considered in the paper. A special attention is paid to necessary application of porous concrete products in the process of the housing construction. The preference is given to the products made of autoclave cellular concrete and cement hydrophobisized cement perlite concrete.

  12. Drying of Concrete

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Geiker, Mette Rica; Nygaard, Peter Vagn

    2002-01-01

    Estimated and measured relative humidity (RH) change during drying are compared for two concretes, 1: w/c=0.46 and 2: w/(c+0.5fa+2sf)=0.50. The estimations were undertaken by means of the Swedish program TorkaS 1.0. Measurements were performed by RH-sensors type Humi-Guard. Drying of 150 mm thick...... samples from sides at 60% RH and 22 °C took place from 4 to 56 days after casting. At the end of the drying period the measured RH was about 4% lower than the estimated RH at 1/5th depth from the exposed surface for both concretes. In the middle of the samples, the measured RH of concretes 1 and 2 were 2...

  13. Microwave processing of cement and concrete materials – towards an industrial reality?

    International Nuclear Information System (INIS)

    Buttress, Adam; Jones, Aled; Kingman, Sam

    2015-01-01

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination

  14. Concrete = aggregate, cement, water?

    International Nuclear Information System (INIS)

    Jelinek, J.

    1990-01-01

    Concrete for the Temelin nuclear power plant is produced to about 70 different formulae. For quality production, homogeneous properties of aggregates, accurate proportioning devices, technological discipline and systematic inspections and tests should be assured. The results are reported of measuring compression strength after 28 days for different concrete samples. The results of such tests allow reducing the proportion of cement, which brings about considerable savings. Reduction in cement quantities can also be achieved by adding ash to the concrete mixes. Ligoplast, a plasticizer addition is used for improving workability. (M.D). 8 figs

  15. EFFECT OF HCL CONCENTRATION ON NORMAL CONCRETE AND ADMIXTURED CONCRETE MADE WITH AND WITHOUT MANUFACTURED SAND

    OpenAIRE

    K. Pradeep*, K. Ramudu

    2017-01-01

    Concrete is considered to be the most widely used and versatile material of construction all over the world. One of the important ingredients of conventional concrete is natural sand or river sand, which is on the verge of exhausting due to abundant usage. In India, the conventional concrete is produced by using natural sand obtained from riverbeds as fine aggregate. However, due to the increased use of concrete in almost all types of construction works, the demand of natural or river sand ha...

  16. Concrete aggregate durability study.

    Science.gov (United States)

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  17. Modelling of stiffness and damping change in reinforced concrete structures under seismic actions

    International Nuclear Information System (INIS)

    Koenig, G.; Oetes, A.

    1985-01-01

    Restoring force and energy dissipation properties of ductile reinforced concrete structures during seismic excitation are investigated. Interpreting the results of earthquake simulation experiments with large scale reinforced concrete structural members mainly subjected to cyclic bending the various types of the force-deflection response and energy dissipation capability will be identified. Two alternative concepts are suggested for modelling: A rigorous model which considers the numerous deformation and dissipation mechanisms using a step by step algorithm for analysis and a simplified practical model which employs a modified spectrum analysis technique and a simple updating procedure for changing stiffness and damping properties of the members. (orig.)

  18. Testing the durability of concrete with neutron radiography

    International Nuclear Information System (INIS)

    Beer, F.C. de; Le Roux, J.J.; Kearsley, E.P.

    2005-01-01

    The ability of concrete to withstand the penetration of liquid and oxygen can be described as the durability of concrete. The durability of concrete, can in turn, be quantified by certain characteristics of the concrete such as the porosity, sorptivity and permeability. The quantification of neutron radiography images of concrete structures and, therefore, the determination of concrete characteristics validate conventional measurements. This study compares the neutron radiography capability to obtain quantitative data for porosity and sorptivity in concrete to laboratory or conventional measurements. The effects that water to cement ratio and curing time have on the durability of concrete are investigated

  19. Concrete waste reduction of 50%

    International Nuclear Information System (INIS)

    Vos, R.M. de; Van der Wagt, K.M.; Van der Kruk, E.; Meeussen, H.W.

    2016-01-01

    During decommissioning quite a volume of concrete waste is produced. The degree of activation of the waste can range from clearly activated material to slightly activated or contaminated concrete. The degree of activation influences the applicable waste management processes that can be applied. The subsequent waste management processes can be identified for concrete waste are; disposal, segregation, re-use, conditional release and release. With each of these steps, the footprint of radioactive decommissioning waste is reduced. Future developments for concrete waste reduction can be achieved by applying smart materials in new build facilities (i.e. fast decaying materials). NRG (Nuclear Research and consultancy Group) has investigated distinctive waste management processes to reduce the foot-print of concrete waste streams resulting from decommissioning. We have investigated which processes can be applied in the Netherlands, both under current legislation and with small changes in legislation. We have also investigated the separation process in more detail. Pilot tests with a newly patented process have been started in 2015. We expect that our separation methods will reduce the footprint reduction of concrete waste by approximately 50% due to release or re-use in the nuclear sector or in the conventional industry. (authors)

  20. Damage detection monitoring applications in self-healing concrete structures using embedded piezoelectric transducers and recovery

    International Nuclear Information System (INIS)

    Karaiskos, G; Tsangouri, E; Aggelis, D G; Van Hemelrijck, D; Deraemaeker, A

    2015-01-01

    The ageing, operational and ambient loadings have a great impact in the operational and maintenance cost of concrete structures. Their service life prolongation is of utmost importance and this can be efficiently achieved by using reliable and low-cost monitoring and self-healing techniques. In the present study, the ultrasonic pulse velocity (UPV) method using embedded small-size and low-cost piezoelectric PZT (lead zirconate titanate) ceramic transducers in concrete with self-healing properties is implemented for monitoring not only the setting and hardening phases of concrete since casting time, but also for the detection of damage initiation, propagation and recovery of integrity after healing. A couple of small-scale notched unreinforced concrete beams are subjected to mode-I fracture through three-point bending tests. After a 24-hour healing agent curing period, the beams are reloaded using the same loading scenario. The results demonstrate the excellent performance of the proposed monitoring technique during the hydration, damage generation and recovery periods. (paper)