WorldWideScience

Sample records for scaled absorbing boundary

  1. Feynman Integrals with Absorbing Boundaries

    OpenAIRE

    Marchewka, A.; Schuss, Z.

    1997-01-01

    We propose a formulation of an absorbing boundary for a quantum particle. The formulation is based on a Feynman-type integral over trajectories that are confined to the non-absorbing region. Trajectories that reach the absorbing wall are discounted from the population of the surviving trajectories with a certain weighting factor. Under the assumption that absorbed trajectories do not interfere with the surviving trajectories, we obtain a time dependent absorption law. Two examples are worked ...

  2. Quantum walk with one variable absorbing boundary

    International Nuclear Information System (INIS)

    Wang, Feiran; Zhang, Pei; Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli

    2017-01-01

    Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks. - Highlights: • A novel scheme about quantum walk with variable boundary is proposed. • The analytical results of the survival probability from the absorbing boundary. • The behavior of survival probability under different boundary conditions. • The influence of different initial coin states on the survival probability.

  3. Absorbing boundary conditions for Einstein's field equations

    Energy Technology Data Exchange (ETDEWEB)

    Sarbach, Olivier [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio C-3, Cd. Universitaria. C. P. 58040 Morelia, Michoacan (Mexico)

    2007-11-15

    A common approach for the numerical simulation of wave propagation on a spatially unbounded domain is to truncate the domain via an artificial boundary, thus forming a finite computational domain with an outer boundary. Absorbing boundary conditions must then be specified at the boundary such that the resulting initial-boundary value problem is well posed and such that the amount of spurious reflection is minimized. In this article, we review recent results on the construction of absorbing boundary conditions in General Relativity and their application to numerical relativity.

  4. A new approach to implement absorbing boundary condition in biomolecular electrostatics.

    Science.gov (United States)

    Goni, Md Osman

    2013-01-01

    This paper discusses a novel approach to employ the absorbing boundary condition in conjunction with the finite-element method (FEM) in biomolecular electrostatics. The introduction of Bayliss-Turkel absorbing boundary operators in electromagnetic scattering problem has been incorporated by few researchers. However, in the area of biomolecular electrostatics, this boundary condition has not been investigated yet. The objective of this paper is twofold. First, to solve nonlinear Poisson-Boltzmann equation using Newton's method and second, to find an efficient and acceptable solution with minimum number of unknowns. In this work, a Galerkin finite-element formulation is used along with a Bayliss-Turkel absorbing boundary operator that explicitly accounts for the open field problem by mapping the Sommerfeld radiation condition from the far field to near field. While the Bayliss-Turkel condition works well when the artificial boundary is far from the scatterer, an acceptable tolerance of error can be achieved with the second order operator. Numerical results on test case with simple sphere show that the treatment is able to reach the same level of accuracy achieved by the analytical method while using a lower grid density. Bayliss-Turkel absorbing boundary condition (BTABC) combined with the FEM converges to the exact solution of scattering problems to within discretization error.

  5. An effective absorbing layer for the boundary condition in acoustic seismic wave simulation

    Science.gov (United States)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Efficient numerical simulation of seismic wavefields generally involves truncating the Earth model in order to keep computing time and memory requirements down. Absorbing boundary conditions, therefore, are applied to remove the boundary reflections caused by this truncation, thereby allowing for accurate modeling of wavefields. In this paper, we derive an effective absorbing boundary condition for both acoustic and elastic wave simulation, through the simplification of the damping term of the split perfectly matched layer (SPML) boundary condition. This new boundary condition is accurate, cost-effective, and easily implemented, especially for high-performance computing. Stability analysis shows that this boundary condition is effectively as stable as normal (non-absorbing) wave equations for explicit time-stepping finite differences. We found that for full-waveform inversion (FWI), the strengths of the effective absorbing layer—a reduction of the computational and memory cost coupled with a simplistic implementation—significantly outweighs the limitation of incomplete absorption of outgoing waves relative to the SPML. More importantly, we demonstrate that this limitation can easily be overcome through the use of two strategies in FWI, namely variable cell size and model extension thereby fully compensating for the imperfectness of the proposed absorbing boundary condition.

  6. Double absorbing boundaries for finite-difference time-domain electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu

    2016-12-01

    We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.

  7. Application of the extended completeness relation to the absorbing boundary condition

    International Nuclear Information System (INIS)

    Iwasaki, Masataka; Otani, Reiji; Ito, Makoto

    2015-01-01

    The strength function of the linear response by the external field is calculated in the formalism of the absorbing boundary condition (ABC). The dipole excitation of a schematic two-body system is treated in the present study. The extended completeness relation, which is assumed on the analogy of the formulation in the complex scaling method (CSM), is applied to the calculation of the strength function. The calculation of the strength function is successful in the present formalism and hence, the extended completeness relation seems to work well in the ABC formalism. The contributions from the resonance and the non-resonant continuum are also analyzed according to the decomposition of the energy levels in the extended completeness relation. (author)

  8. Implementation of Unsplit Perfectly Matched Layer Absorbing Boundary Condition in 3 Dimensional Finite Difference Time Domain Method

    Directory of Open Access Journals (Sweden)

    B. U. Musa

    2017-04-01

    Full Text Available The C++ programming language was used to implement three-dimensional (3-D finite-difference time-domain (FDTD technique to simulate radiation of high frequency electromagnetic waves in free space. To achieve any meaningful results the computational domain of interest should have to be truncated in some way and this is achieved by applying absorbing boundary conditions. A uniaxial perfectly matched layer (UPML absorbing boundary condition is used in this work. The discretised equations of the UPML in FDTD time stepping scheme were derived and has been successfully implemented using the computer program. Simulation results showed that the UPML behaves as an absorber. This was confirmed by comparing the results with another boundary condition, the Mur ABC.

  9. Study on the millimeter-wave scale absorber based on the Salisbury screen

    Science.gov (United States)

    Yuan, Liming; Dai, Fei; Xu, Yonggang; Zhang, Yuan

    2018-03-01

    In order to solve the problem on the millimeter-wave scale absorber, the Salisbury screen absorber is employed and designed based on the RL. By optimizing parameters including the sheet resistance of the surface resistive layer, the permittivity and the thickness of the grounded dielectric layer, the RL of the Salisbury screen absorber could be identical with that of the theoretical scale absorber. An example is given to verify the effectiveness of the method, where the Salisbury screen absorber is designed by the proposed method and compared with the theoretical scale absorber. Meanwhile, plate models and tri-corner reflector (TCR) models are constructed according to the designed result and their scattering properties are simulated by FEKO. Results reveal that the deviation between the designed Salisbury screen absorber and the theoretical scale absorber falls within the tolerance of radar Cross section (RCS) measurement. The work in this paper has important theoretical and practical significance in electromagnetic measurement of large scale ratio.

  10. Wide band design on the scaled absorbing material filled with flaky CIPs

    Science.gov (United States)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  11. Accurate characterization of 3D diffraction gratings using time domain discontinuous Galerkin method with exact absorbing boundary conditions

    KAUST Repository

    Sirenko, Kostyantyn

    2013-07-01

    Exact absorbing and periodic boundary conditions allow to truncate grating problems\\' infinite physical domains without introducing any errors. This work presents exact absorbing boundary conditions for 3D diffraction gratings and describes their discretization within a high-order time-domain discontinuous Galerkin finite element method (TD-DG-FEM). The error introduced by the boundary condition discretization matches that of the TD-DG-FEM; this results in an optimal solver in terms of accuracy and computation time. Numerical results demonstrate the superiority of this solver over TD-DG-FEM with perfectly matched layers (PML)-based domain truncation. © 2013 IEEE.

  12. A hybrid absorbing boundary condition for frequency-domain finite-difference modelling

    International Nuclear Information System (INIS)

    Ren, Zhiming; Liu, Yang

    2013-01-01

    Liu and Sen (2010 Geophysics 75 A1–6; 2012 Geophys. Prospect. 60 1114–32) proposed an efficient hybrid scheme to significantly absorb boundary reflections for acoustic and elastic wave modelling in the time domain. In this paper, we extend the hybrid absorbing boundary condition (ABC) into the frequency domain and develop specific strategies for regular-grid and staggered-grid modelling, respectively. Numerical modelling tests of acoustic, visco-acoustic, elastic and vertically transversely isotropic (VTI) equations show significant absorptions for frequency-domain modelling. The modelling results of the Marmousi model and the salt model also demonstrate the effectiveness of the hybrid ABC. For elastic modelling, the hybrid Higdon ABC and the hybrid Clayton and Engquist (CE) ABC are implemented, respectively. Numerical simulations show that the hybrid Higdon ABC gets better absorption than the hybrid CE ABC, especially for S-waves. We further compare the hybrid ABC with the classical perfectly matched layer (PML). Results show that the two ABCs cost the same computation time and memory space for the same absorption width. However, the hybrid ABC is more effective than the PML for the same small absorption width and the absorption effects of the two ABCs gradually become similar when the absorption width is increased. (paper)

  13. Moth wing scales slightly increase the absorbance of bat echolocation calls.

    Directory of Open Access Journals (Sweden)

    Jinyao Zeng

    Full Text Available Coevolutionary arms races between predators and prey can lead to a diverse range of foraging and defense strategies, such as countermeasures between nocturnal insects and echolocating bats. Here, we show how the fine structure of wing scales may help moths by slightly increasing sound absorbance at frequencies typically used in bat echolocation. Using four widespread species of moths and butterflies, we found that moth scales are composed of honeycomb-like hollows similar to sound-absorbing material, but these were absent from butterfly scales. Micro-reverberation chamber experiments revealed that moth wings were more absorbent at the frequencies emitted by many echolocating bats (40-60 kHz than butterfly wings. Furthermore, moth wings lost absorbance at these frequencies when scales were removed, which suggests that some moths have evolved stealth tactics to reduce their conspicuousness to echolocating bats. Although the benefits to moths are relatively small in terms of reducing their target strengths, scales may nonetheless confer survival advantages by reducing the detection distances of moths by bats by 5-6%.

  14. Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width.

    Science.gov (United States)

    Learn, R; Feigenbaum, E

    2016-06-01

    Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. The second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

  15. Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis

    Science.gov (United States)

    Rahman, M. A.; Ahmed, U.; Uddin, M. S.

    2013-08-01

    A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement

  16. Performance advantages of CPML over UPML absorbing boundary conditions in FDTD algorithm

    Science.gov (United States)

    Gvozdic, Branko D.; Djurdjevic, Dusan Z.

    2017-01-01

    Implementation of absorbing boundary condition (ABC) has a very important role in simulation performance and accuracy in finite difference time domain (FDTD) method. The perfectly matched layer (PML) is the most efficient type of ABC. The aim of this paper is to give detailed insight in and discussion of boundary conditions and hence to simplify the choice of PML used for termination of computational domain in FDTD method. In particular, we demonstrate that using the convolutional PML (CPML) has significant advantages in terms of implementation in FDTD method and reducing computer resources than using uniaxial PML (UPML). An extensive number of numerical experiments has been performed and results have shown that CPML is more efficient in electromagnetic waves absorption. Numerical code is prepared, several problems are analyzed and relative error is calculated and presented.

  17. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states

    Science.gov (United States)

    de Oliveira, M. M.; da Luz, M. G. E.; Fiore, C. E.

    2015-12-01

    Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.

  18. Frequency domain finite-element and spectral-element acoustic wave modeling using absorbing boundaries and perfectly matched layer

    Science.gov (United States)

    Rahimi Dalkhani, Amin; Javaherian, Abdolrahim; Mahdavi Basir, Hadi

    2018-04-01

    Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.

  19. Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons

    Science.gov (United States)

    Midya, Bikashkali; Konotop, Vladimir V.

    2017-07-01

    We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.

  20. Scaling the heterogeneously heated convective boundary layer

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J.; De Lozar, A.

    2013-12-01

    We have studied the heterogeneously heated convective boundary layer (CBL) by means of large-eddy simulations (LES) and direct numerical simulations (DNS). What makes our study different from previous studies on this subject are our very long simulations in which the system travels through multiple states and that from there we have derived scaling laws. In our setup, a stratified atmosphere is heated from below by square patches with a high surface buoyancy flux, surrounded by regions with no or little flux. By letting a boundary layer grow in time we let the system evolve from the so-called meso-scale to the micro-scale regime. In the former the heterogeneity is large and strong circulations can develop, while in the latter the heterogeneity is small and does no longer influence the boundary layer structure. Within each simulation we can now observe the formation of a peak in kinetic energy, which represents the 'optimal' heterogeneity size in the meso-scale, and the subsequent decay of the peak and the development towards the transition to the micro-scale. We have created a non-dimensional parameter space that describes all properties of this system. By studying the previously described evolution for different combinations of parameters, we have derived three important conclusions. First, there exists a horizontal length scale of the heterogeneity (L) that is a function of the boundary layer height (h) and the Richardson (Ri) number of the inversion at the top of the boundary layer. This relationship has the form L = h Ri^(3/8). Second, this horizontal length scale L allows for expressing the time evolution, and thus the state of the system, as a ratio of this length scale and the distance between two patches Xp. This ratio thus describes to which extent the circulation fills up the space that exists between two patch centers. The timings of the transition from the meso- to the micro-scale collapse under this scaling for all simulations sharing the same flux

  1. Compact high order schemes with gradient-direction derivatives for absorbing boundary conditions

    Science.gov (United States)

    Gordon, Dan; Gordon, Rachel; Turkel, Eli

    2015-09-01

    We consider several compact high order absorbing boundary conditions (ABCs) for the Helmholtz equation in three dimensions. A technique called "the gradient method" (GM) for ABCs is also introduced and combined with the high order ABCs. GM is based on the principle of using directional derivatives in the direction of the wavefront propagation. The new ABCs are used together with the recently introduced compact sixth order finite difference scheme for variable wave numbers. Experiments on problems with known analytic solutions produced very accurate results, demonstrating the efficacy of the high order schemes, particularly when combined with GM. The new ABCs are then applied to the SEG/EAGE Salt model, showing the advantages of the new schemes.

  2. OpenCL-Based FPGA Accelerator for 3D FDTD with Periodic and Absorbing Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Hasitha Muthumala Waidyasooriya

    2017-01-01

    Full Text Available Finite difference time domain (FDTD method is a very poplar way of numerically solving partial differential equations. FDTD has a low operational intensity so that the performances in CPUs and GPUs are often restricted by the memory bandwidth. Recently, deeply pipelined FPGA accelerators have shown a lot of success by exploiting streaming data flows in FDTD computation. In spite of this success, many FPGA accelerators are not suitable for real-world applications that contain complex boundary conditions. Boundary conditions break the regularity of the data flow, so that the performances are significantly reduced. This paper proposes an FPGA accelerator that computes commonly used absorbing and periodic boundary conditions in many 3D FDTD applications. Accelerator is designed using a “C-like” programming language called OpenCL (open computing language. As a result, the proposed accelerator can be customized easily by changing the software code. According to the experimental results, we achieved over 3.3 times and 1.5 times higher processing speed compared to the CPUs and GPUs, respectively. Moreover, the proposed accelerator is more than 14 times faster compared to the recently proposed FPGA accelerators that are capable of handling complex boundary conditions.

  3. Scaling laws for fractional Brownian motion with power-law clock

    International Nuclear Information System (INIS)

    O'Malley, Daniel; Cushman, John H; Johnson, Graham

    2011-01-01

    We study the mean first passage time (MFPT) for fractional Brownian motion (fBm) in a finite interval with absorbing boundaries at each end. Analytical arguments are used to suggest a simple scaling law for the MFPT and numerical experiments are performed to verify its accuracy. The same approach is used to derive a scaling law for fBm with a power-law clock (fBm-plc). The MFPT scaling laws are employed to develop scaling laws for the finite-size Lyapunov exponent (FSLE) of fBm and fBm-plc. We apply these results to diffusion of a large polymer in a region with absorbing boundaries. (letter)

  4. Refinement of the bottom boundary of the INES scale

    International Nuclear Information System (INIS)

    Ferjencik, Milos

    2010-01-01

    No existing edition of the International Nuclear Events Scale (INES) Manual addresses in depth the determination of the bottom boundary of the Scale, although a need for a definition is felt. The article introduces a method for determining the INES bottom boundary applicable to pressurized water reactors. This bottom boundary is put identical with the threshold of degradation of the installation's nuclear safety assurance. A comprehensive flowchart has been developed as the main outcome of the analysis of the nuclear safety assurance violation issue. The use of this flowchart in INES classification to replace the introductory question in the General INES Rating Procedure in the INES Manual is recommended. (orig.)

  5. Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4.

    Science.gov (United States)

    Li, Junwen; Mitzi, David B; Shenoy, Vivek B

    2011-11-22

    We have studied the atomic and electronic structure of Cu(2)ZnSnSe(4) and CuInSe(2) grain boundaries using first-principles calculations. We find that the constituent atoms at the grain boundary in Cu(2)ZnSnSe(4) create localized defect states that promote the recombination of photon-excited electron and hole carriers. In distinct contrast, significantly lower density of defect states is found at the grain boundaries in CuInSe(2), which is consistent with the experimental observation that CuInSe(2) solar cells exhibit high conversion efficiency without the need for deliberate passivation. Our investigations suggest that it is essential to effectively remove these defect states in order to improve the conversion efficiency of solar cells with Cu(2)ZnSnSe(4) as photovoltaic absorber materials. © 2011 American Chemical Society

  6. Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study

    Energy Technology Data Exchange (ETDEWEB)

    Hatami, F.; Feghhi, S.A.H., E-mail: a.feghhi@gmail.com; Arjhangmehr, A., E-mail: ms.arjangmehr@gmail.com; Esfandiarpour, A.

    2016-11-15

    In this paper, we investigate interaction of primary cascades with grain boundaries (GBs) in α-Zr using the atomistic-scale simulations, and intend to study the influence of different GB structures on production and evolution of defects on picosecond timescale. We observe that, contrary to the previous results in cubic metals, GBs in α-Zr are not necessarily biased toward interstitials, and can preferentially absorb vacancies. Further, in terms of energetic and kinetic behavior, we find that GBs act as defect sinks due to the substantial reduction of defect formation energies and migration barriers in close vicinity of the GB center, with either a preference toward interstitials or vacancies which depends on the atomic structure of the boundaries. Finally, using continuous ion bombardment, we investigate the stability of GBs in sever irradiation environment. The results indicate that the sink strength and efficiency of boundaries varies with increasing accumulated defects in GB region. - Highlights: • GBs in hcp Zr are not necessarily biased toward interstitials. • Defect content within bulk depends on PKA energy, PKA distance, and GB texture. • Defect formation energies and diffusion barriers decrease in close vicinity of GBs. • GBs become locally unstable due to absorption of excess defects in ion bombardment.

  7. Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers

    Science.gov (United States)

    Wei, Tie; Maciel, Yvan

    2018-01-01

    This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.

  8. Development of polygon elements based on the scaled boundary finite element method

    International Nuclear Information System (INIS)

    Chiong, Irene; Song Chongmin

    2010-01-01

    We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.

  9. Phase-relationships between scales in the perturbed turbulent boundary layer

    Science.gov (United States)

    Jacobi, I.; McKeon, B. J.

    2017-12-01

    The phase-relationship between large-scale motions and small-scale fluctuations in a non-equilibrium turbulent boundary layer was investigated. A zero-pressure-gradient flat plate turbulent boundary layer was perturbed by a short array of two-dimensional roughness elements, both statically, and under dynamic actuation. Within the compound, dynamic perturbation, the forcing generated a synthetic very-large-scale motion (VLSM) within the flow. The flow was decomposed by phase-locking the flow measurements to the roughness forcing, and the phase-relationship between the synthetic VLSM and remaining fluctuating scales was explored by correlation techniques. The general relationship between large- and small-scale motions in the perturbed flow, without phase-locking, was also examined. The synthetic large scale cohered with smaller scales in the flow via a phase-relationship that is similar to that of natural large scales in an unperturbed flow, but with a much stronger organizing effect. Cospectral techniques were employed to describe the physical implications of the perturbation on the relative orientation of large- and small-scale structures in the flow. The correlation and cospectral techniques provide tools for designing more efficient control strategies that can indirectly control small-scale motions via the large scales.

  10. Hydrogeological boundary settings in SR 97. Uncertainties in regional boundary settings and transfer of boundary conditions to site-scale models

    International Nuclear Information System (INIS)

    Follin, S.

    1999-06-01

    The SR 97 project presents a performance assessment (PA) of the overall safety of a hypothetical deep repository at three sites in Sweden arbitrarily named Aberg, Beberg and Ceberg. One component of this PA assesses the uncertainties in the hydrogeological modelling. This study focuses on uncertainties in boundary settings (size of model domain and boundary conditions) in the regional and site-scale hydrogeological modelling of the three sites used to simulating the possible transport of radionuclides from the emplacement waste packages through the host rock to the accessible environment. Model uncertainties associated with, for instance, parameter heterogeneity and structural interpretations are addressed in other studies. This study concludes that the regional modelling of the SR 97 project addresses uncertainties in the choice of boundary conditions and size of model domain differently at each site, although the overall handling is acceptable and in accordance with common modelling practice. For example, the treatment of uncertainties with regard to the ongoing post-glacial flushing of the Baltic Shield is creditably addressed although not exhaustive from a modelling point of view. A significant contribution of the performed modelling is the study of nested numerical models, i.e., the numerical interplay between regional and site-scale numerical models. In the site-scale modelling great efforts are made to address problems associated with (i) the telescopic mesh refinement (TMR) technique with regard to the stochastic continuum approach, and (ii) the transfer of boundary conditions between variable-density flow systems and flow systems that are constrained to treat uniform density flow. This study concludes that the efforts made to handle these problems are acceptable with regards to the objectives of the SR 97 project

  11. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding.

    Science.gov (United States)

    Pang, Xuming; Wei, Qian; Zhou, Jianxin; Ma, Huiyang

    2018-06-19

    In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.

  12. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xuming Pang

    2018-06-01

    Full Text Available In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.

  13. Scattered-field FDTD and PSTD algorithms with CPML absorbing boundary conditions for light scattering by aerosols

    International Nuclear Information System (INIS)

    Sun, Wenbo; Videen, Gorden; Fu, Qiang; Hu, Yongxiang

    2013-01-01

    As fundamental parameters for polarized-radiative-transfer calculations, the single-scattering phase matrix of irregularly shaped aerosol particles must be accurately modeled. In this study, a scattered-field finite-difference time-domain (FDTD) model and a scattered-field pseudo-spectral time-domain (PSTD) model are developed for light scattering by arbitrarily shaped dielectric aerosols. The convolutional perfectly matched layer (CPML) absorbing boundary condition (ABC) is used to truncate the computational domain. It is found that the PSTD method is generally more accurate than the FDTD in calculation of the single-scattering properties given similar spatial cell sizes. Since the PSTD can use a coarser grid for large particles, it can lower the memory requirement in the calculation. However, the Fourier transformations in the PSTD need significantly more CPU time than simple subtractions in the FDTD, and the fast Fourier transform requires a power of 2 elements in calculations, thus using the PSTD could not significantly reduce the CPU time required in the numerical modeling. Furthermore, because the scattered-field FDTD/PSTD equations include incident-wave source terms, the FDTD/PSTD model allows for the inclusion of an arbitrarily incident wave source, including a plane parallel wave or a Gaussian beam like those emitted by lasers usually used in laboratory particle characterizations, etc. The scattered-field FDTD and PSTD light-scattering models can be used to calculate single-scattering properties of arbitrarily shaped aerosol particles over broad size and wavelength ranges. -- Highlights: • Scattered-field FDTD and PSTD models are developed for light scattering by aerosols. • Convolutional perfectly matched layer absorbing boundary condition is used. • PSTD is generally more accurate than FDTD in calculating single-scattering properties. • Using same spatial resolution, PSTD requires much larger CPU time than FDTD

  14. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  15. PC-version of RAM6-code for calculation of parameters of the effective logarithmic boundary condition at the absorbent rod surface in reactor

    International Nuclear Information System (INIS)

    Le Van Ngoc; Ngo Dang Nhan

    1990-01-01

    The RAM-6 code for calculation of parameters of the effective logarithmic boundary condition at the absorbent rod surface in reactor is suitably modofied to work on IBM PC, the instructions for its usage are presented and capabilities of the personal cpmputer oriented RAM-6 code are demonstrated. (author). 4 refs, 5 tabs, 2 figs

  16. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    B. Arnold; T. Corbet

    2001-12-18

    The purpose of the flow boundary conditions analysis is to provide specified-flux boundary conditions for the saturated zone (SZ) site-scale flow and transport model. This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the SZ site-scale model domain, both as recharge at the upper (water table) boundary and as underflow at the lateral boundaries. The objective is to provide consistency at the boundaries between the SZ site-scale flow model and other groundwater flow models. The scope of this analysis includes extraction of the volumetric groundwater flow rates simulated by the SZ regional-scale flow model to occur at the lateral boundaries of the SZ site-scale flow model and the internal qualification of the regional-scale model for use in this analysis model report (AMR). In addition, the scope includes compilation of information on the recharge boundary condition taken from three sources: (1) distributed recharge as taken from the SZ regional-scale flow model, (2) recharge below the area of the unsaturated zone (UZ) site-scale flow model, and (3) focused recharge along the Fortymile Wash channel.

  17. Acoustic reverse-time migration using GPU card and POSIX thread based on the adaptive optimal finite-difference scheme and the hybrid absorbing boundary condition

    Science.gov (United States)

    Cai, Xiaohui; Liu, Yang; Ren, Zhiming

    2018-06-01

    Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.

  18. Scaling neutron absorbed dose distributions from one medium to another

    International Nuclear Information System (INIS)

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1982-11-01

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone TE-solutions, mineral oil and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. the OAR's measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. It is recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. A table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry

  19. Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies

    Science.gov (United States)

    Kauffmann, Guinevere

    2018-03-01

    The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 Survey imaging data. This galaxy sample covers an effective volume of 2.2 Gpc3. A statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.

  20. Toughening by nano-scaled twin boundaries in nanocrystals

    International Nuclear Information System (INIS)

    Zhou, Haofei; Qu, Shaoxing; Yang, Wei

    2010-01-01

    Joint enhancement on strength and toughness provides a cutting-edge research frontier for metals and alloys. Conventional strengthening methods typically lead to suppressed ductility and fracture toughness. In this study, large-scale atomic simulation on the fracture process is performed featuring nanocrystals embedded with nano-scaled twin boundaries (TBs). Four toughening mechanisms by nano-scaled TBs are identified: (i) crack blunting through dislocation accommodation along the nano-scaled TBs; (ii) crack deflection in a manner of intragranular propagation; (iii) daughter crack formation along the nano-scaled TBs that further enhances the toughness and (iv) curved TB planes owing to an excessive pileup of geometrically necessary dislocations. These toughening mechanisms jointly dictate the mechanical behavior of nano-structured materials, and provide insights into the application of nano-scaled TBs with an aim to simultaneously obtain enhanced strength and toughness. New approaches to introduce these coherent internal defects into the nanostructure of crystalline materials are also proposed

  1. Scanning tunneling spectroscopy on the chalcopyrite solar cell absorber material Cu(In,Ga)Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Moenig, Harry; Saez-Araoz, Rodrigo; Lux-Steiner, Martha [Freie Universitaet Berlin (Germany); Sadewasser, Sascha; Ennaoui, Ahmed; Kaufmann, Christian; Kropp, Timo; Lauermann, Iver; Muenchenberg, Tim; Schock, Hans-Werner; Streicher, Ferdinand [Hahn- Meitner-Institut Berlin (Germany)

    2007-07-01

    Cu(In,Ga)Se{sub 2}-based thin film solar cells have reached efficiencies close to 20%. Nevertheless, little is known about electronic transport and carrier recombination in this material on a microscopic scale. Especially grain boundaries in these polycrystalline materials are considered to play an important role in the performance of these solar cells. We applied scanning tunneling microscopy and spectroscopy to gain more insight in the electronic microstructure of the material. Our results point to lateral electronic inhomogeneities on the absorber surface and to an enhanced density of states at grain boundaries. The influence of charging effects is discussed.

  2. Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion.

    Science.gov (United States)

    Li, Pengfei; Liu, Baoan; Ni, Yizhou; Liew, Kaiyang Kevin; Sze, Jeff; Chen, Shuo; Shen, Sheng

    2015-08-19

    An omnidirectional nanophotonic solar selective absorber is fabricated on a large scale using a template-stripping method. The nanopyramid nickel structure achieves an average absorptance of 95% at a wavelength range below 1.3 μm and a low emittance less than 10% at wavelength >2.5 μm. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structure and transport at grain boundaries in polycrystalline olivine: An atomic-scale perspective

    Science.gov (United States)

    Mantisi, Boris; Sator, Nicolas; Guillot, Bertrand

    2017-12-01

    Structure and transport properties at grain boundaries in polycrystalline olivine have been investigated at the atomic scale by molecular dynamics simulation (MD) using an empirical ionocovalent interaction potential. On the time scale of the simulation (a few tens of nanoseconds for a system size of ∼650,000 atoms) grain boundaries and grain interior were identified by mapping the atomic displacements along the simulation run. In the investigated temperature range (1300-1700 K) the mean thickness of the grain boundary phase is evaluated between 0.5 and 2 nm, a value which depends on temperature and grain size. The structure of the grain boundary phase is found to be disordered (amorphous-like) and is different from the one exhibited by the supercooled liquid. The self-diffusion coefficients of major elements in the intergranular region range from ∼10-13 to 10-10 m2/s between 1300 and 1700 K (with DSigb Kubo relation expressing the viscosity as function of the stress tensor time correlation function. In spite of a slow convergence of the calculation by MD, the grain boundary viscosity was estimated about ∼105 Pa s at 1500 K, a value in agreement with high-temperature viscoelastic relaxation data. An interesting information gained from MD is that sliding at grain boundaries is essentially controlled by the internal friction between the intergranular phase and the grain edges.

  4. Large Scale Skill in Regional Climate Modeling and the Lateral Boundary Condition Scheme

    Science.gov (United States)

    Veljović, K.; Rajković, B.; Mesinger, F.

    2009-04-01

    Several points are made concerning the somewhat controversial issue of regional climate modeling: should a regional climate model (RCM) be expected to maintain the large scale skill of the driver global model that is supplying its lateral boundary condition (LBC)? Given that this is normally desired, is it able to do so without help via the fairly popular large scale nudging? Specifically, without such nudging, will the RCM kinetic energy necessarily decrease with time compared to that of the driver model or analysis data as suggested by a study using the Regional Atmospheric Modeling System (RAMS)? Finally, can the lateral boundary condition scheme make a difference: is the almost universally used but somewhat costly relaxation scheme necessary for a desirable RCM performance? Experiments are made to explore these questions running the Eta model in two versions differing in the lateral boundary scheme used. One of these schemes is the traditional relaxation scheme, and the other the Eta model scheme in which information is used at the outermost boundary only, and not all variables are prescribed at the outflow boundary. Forecast lateral boundary conditions are used, and results are verified against the analyses. Thus, skill of the two RCM forecasts can be and is compared not only against each other but also against that of the driver global forecast. A novel verification method is used in the manner of customary precipitation verification in that forecast spatial wind speed distribution is verified against analyses by calculating bias adjusted equitable threat scores and bias scores for wind speeds greater than chosen wind speed thresholds. In this way, focusing on a high wind speed value in the upper troposphere, verification of large scale features we suggest can be done in a manner that may be more physically meaningful than verifications via spectral decomposition that are a standard RCM verification method. The results we have at this point are somewhat

  5. Relations between overturning length scales at the Spanish planetary boundary layer

    Science.gov (United States)

    López, Pilar; Cano, José L.

    2016-04-01

    We analyze the behavior of the maximum Thorpe displacement (dT)max and the Thorpe scale LTat the atmospheric boundary layer (ABL), extending previous research with new data and improving our studies related to the novel use of the Thorpe method applied to ABL. The maximum Thorpe displacements vary between -900 m and 950 m for the different field campaigns. The maximum Thorpe displacement is always greater under convective conditions than under stable ones, independently of its sign. The Thorpe scale LT ranges between 0.2 m and 680 m for the different data sets which cover different stratified mixing conditions (turbulence shear-driven and convective regions). The Thorpe scale does not exceed several tens of meters under stable and neutral stratification conditions related to instantaneous density gradients. In contrast, under convective conditions, Thorpe scales are relatively large, they exceed hundreds of meters which may be related to convective bursts. We analyze the relation between (dT)max and the Thorpe scale LT and we deduce that they verify a power law. We also deduce that there is a difference in exponents of the power laws for convective conditions and shear-driven conditions. These different power laws could identify overturns created under different mechanisms. References Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M., Infante, C., Buenestado, P., Espinalt, Joergensen, H., Rees, J., Vilà, J., Redondo, J., Cantalapiedra, I. and Conangla, L.: Stable atmospheric boundary-layer experiment in Spain (Sables 98). A report, Boundary-Layer Meteorology, 96, 337-370, 2000. Dillon, T. M.: Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales, J. Geophys. Res., 87(C12), 9601-9613, 1982. Itsweire, E. C.: Measurements of vertical overturns in stably stratified turbulent flow, Phys. Fluids, 27(4), 764-766, 1984. Kitade, Y., Matsuyama, M. and Yoshida, J.: Distribution of overturn induced by internal

  6. Scaling neutron absorbed dose distributions from one medium to another

    International Nuclear Information System (INIS)

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1983-01-01

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone tissue-equivalent (TE) solutions, mineral oil, and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU Report No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. The OARs measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. Therefore, neutron beam CADDs and OARs may be measured in either TE solution (USA practice) or water (European practice), and having determined the respective scaling lengths, all measurements may be scaled from one medium to any other. It is recommended that for general treatment planning purposes, scaling be made to TE muscle with a density of 1.04 g cm -3 , since this value represents muscle and other soft tissues better than TE solution of density 1.07 g cm -3 . For such a transformation, relative measurements made in water are found to require very small corrections. Hence, it is further recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. Finally, a table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry

  7. Time scales of critical events around the Cretaceous-Paleogene boundary.

    Science.gov (United States)

    Renne, Paul R; Deino, Alan L; Hilgen, Frederik J; Kuiper, Klaudia F; Mark, Darren F; Mitchell, William S; Morgan, Leah E; Mundil, Roland; Smit, Jan

    2013-02-08

    Mass extinctions manifest in Earth's geologic record were turning points in biotic evolution. We present (40)Ar/(39)Ar data that establish synchrony between the Cretaceous-Paleogene boundary and associated mass extinctions with the Chicxulub bolide impact to within 32,000 years. Perturbation of the atmospheric carbon cycle at the boundary likely lasted less than 5000 years, exhibiting a recovery time scale two to three orders of magnitude shorter than that of the major ocean basins. Low-diversity mammalian fauna in the western Williston Basin persisted for as little as 20,000 years after the impact. The Chicxulub impact likely triggered a state shift of ecosystems already under near-critical stress.

  8. Constant-scale natural boundary mapping to reveal global and cosmic processes

    CERN Document Server

    Clark, Pamela Elizabeth

    2013-01-01

    Whereas conventional maps can be expressed as outward-expanding formulae with well-defined central features and relatively poorly defined edges, Constant Scale Natural Boundary (CSNB) maps have well-defined boundaries that result from natural processes and thus allow spatial and dynamic relationships to be observed in a new way useful to understanding these processes. CSNB mapping presents a new approach to visualization that produces maps markedly different from those produced by conventional cartographic methods. In this approach, any body can be represented by a 3D coordinate system. For a regular body, with its surface relatively smooth on the scale of its size, locations of features can be represented by definite geographic grid (latitude and longitude) and elevation, or deviation from the triaxial ellipsoid defined surface. A continuous surface on this body can be segmented, its distinctive regional terranes enclosed, and their inter-relationships defined, by using selected morphologically identifiable ...

  9. A Hamiltonian-based derivation of Scaled Boundary Finite Element Method for elasticity problems

    International Nuclear Information System (INIS)

    Hu Zhiqiang; Lin Gao; Wang Yi; Liu Jun

    2010-01-01

    The Scaled Boundary Finite Method (SBFEM) is a semi-analytical solution approach for solving partial differential equation. For problem in elasticity, the governing equations can be obtained by mechanically based formulation, Scaled-boundary-transformation-based formulation and principle of virtual work. The governing equations are described in the frame of Lagrange system and the unknowns are displacements. But in the solution procedure, the auxiliary variables are introduced and the equations are solved in the state space. Based on the observation that the duality system to solve elastic problem proposed by W.X. Zhong is similar to the above solution approach, the discretization of the SBFEM and the duality system are combined to derive the governing equations in the Hamilton system by introducing the dual variables in this paper. The Precise Integration Method (PIM) used in Duality system is also an efficient method for the solution of the governing equations of SBFEM in displacement and boundary stiffness matrix especially for the case which results some numerical difficulties in the usually uses the eigenvalue method. Numerical examples are used to demonstrate the validity and effectiveness of the PIM for solution of boundary static stiffness.

  10. Turbulent Convection Insights from Small-Scale Thermal Forcing with Zero Net Heat Flux at a Horizontal Boundary.

    Science.gov (United States)

    Griffiths, Ross W; Gayen, Bishakhdatta

    2015-11-13

    A large-scale circulation, a turbulent boundary layer, and a turbulent plume are noted features of convection at large Rayleigh numbers under differential heating on a single horizontal boundary. These might be attributed to the forcing, which in all studies has been limited to a unidirectional gradient over the domain scale. We instead apply forcing on a length scale smaller than the domain, and with variation in both horizontal directions. Direct numerical simulations show turbulence throughout the domain, a regime transition to a dominant domain-scale circulation, and a region of logarithmic velocity in the boundary layer, despite zero net heat flux. The results show significant similarities to Rayleigh-Bénard convection, demonstrate the significance of plume merging, support the hypothesis that the key driver of convection is the production of available potential energy without necessarily supplying total potential energy, and imply that contributions to domain-scale circulation in the oceans need not be solely from the large-scale gradients of forcing.

  11. Results of full scale dry injection tests at MSW-incinerators using a new active absorbent

    International Nuclear Information System (INIS)

    Felsvang, K.S.; Helvind, O.

    1991-01-01

    Worldwide incineration of municipal solid waste (MSW) has been utilized to reduce the volume of waste to be disposed of. Increasing environmental concerns over the potential air pollution impacts have led to emission limits for pollutants such as HCl, SO 2 , particulate, and more recently also for mercury and dioxins. For a certain size of incinerators, dry sorbent injection is the preferred technology for air pollution control. This paper describes the development of a new active sorbent, Scansorb, which is particularly suited for use in dry injection processes. The new sorbent is a lime based product with adjustable properties. Scansorb can be produced with a specific surface area of 30 to 100 m 2 /g. Pilot plant development work has shown that a considerable reduction in the absorbent quantity can be achieved when Scansorb is used instead of commercial hydrated lime. Full scale tests performed at four different MSW incinerators have confirmed the viability of the new active absorbent. The full scale tests have demonstrated that more than 50% SO 2 removal can be achieved with Scansorb at quantities much less than with commercial hydrated lime

  12. Fabricating method of hydrogen absorbing alloy for alkali storage battery; Arukari chikudenchiyo suiso kyuzo gokin no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Tadokoro, M.

    1996-03-08

    There are many grain boundaries in spherical hydrogen absorbing alloy particles prepared by rapid solidification methods such as centrifugal spraying method and gas atomizing method, and heterogeneous strains are produced at boundaries. When hydrogen absorbing alloy with large heterogeneous strain is used for preparing electrodes, many cracks are produced in hydrogen absorbing alloy to cause pulverization in the charge and discharge cycles. This invention relates to heat treatment of hydrogen absorbing alloys having spherical shape, cannon ball shape, and egg-like shape prepared by rapid solidification method in moving conditions. By this heat treatment, mutual sintering of hydrogen absorbing alloy particles can be prevented. The methods for moving hydrogen absorbing alloy are vibration or rotation of the heat treatment container in which hydrogen absorbing alloy is held and agitation of hydrogen absorbing alloy powder. Furthermore, mutual sintering of hydrogen absorbing alloy is restricted to reduce homogeneous strain by heat treatment in the range from 700{degree}C to 1,100{degree}C. 3 figs., 6 tabs.

  13. Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers

    Science.gov (United States)

    Flaherty, W.; Austin, J. M.

    2013-10-01

    We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.

  14. Solution matching for a three-point boundary-value problem on atime scale

    Directory of Open Access Journals (Sweden)

    Martin Eggensperger

    2004-07-01

    Full Text Available Let $mathbb{T}$ be a time scale such that $t_1, t_2, t_3 in mathbb{T}$. We show the existence of a unique solution for the three-point boundary value problem $$displaylines{ y^{DeltaDeltaDelta}(t = f(t, y(t, y^Delta(t, y^{DeltaDelta}(t, quad t in [t_1, t_3] cap mathbb{T},cr y(t_1 = y_1, quad y(t_2 = y_2, quad y(t_3 = y_3,. }$$ We do this by matching a solution to the first equation satisfying a two-point boundary conditions on $[t_1, t_2] cap mathbb{T}$ with a solution satisfying a two-point boundary conditions on $[t_2, t_3] cap mathbb{T}$.

  15. Graph Theory-Based Technique for Isolating Corrupted Boundary Conditions in Continental-Scale River Network Hydrodynamic Simulation

    Science.gov (United States)

    Yu, C. W.; Hodges, B. R.; Liu, F.

    2017-12-01

    Development of continental-scale river network models creates challenges where the massive amount of boundary condition data encounters the sensitivity of a dynamic nu- merical model. The topographic data sets used to define the river channel characteristics may include either corrupt data or complex configurations that cause instabilities in a numerical solution of the Saint-Venant equations. For local-scale river models (e.g. HEC- RAS), modelers typically rely on past experience to make ad hoc boundary condition adjustments that ensure a stable solution - the proof of the adjustment is merely the sta- bility of the solution. To date, there do not exist any formal methodologies or automated procedures for a priori detecting/fixing boundary conditions that cause instabilities in a dynamic model. Formal methodologies for data screening and adjustment are a critical need for simulations with a large number of river reaches that draw their boundary con- dition data from a wide variety of sources. At the continental scale, we simply cannot assume that we will have access to river-channel cross-section data that has been ade- quately analyzed and processed. Herein, we argue that problematic boundary condition data for unsteady dynamic modeling can be identified through numerical modeling with the steady-state Saint-Venant equations. The fragility of numerical stability increases with the complexity of branching in river network system and instabilities (even in an unsteady solution) are typically triggered by the nonlinear advection term in Saint-Venant equations. It follows that the behavior of the simpler steady-state equations (which retain the nonlin- ear term) can be used to screen the boundary condition data for problematic regions. In this research, we propose a graph-theory based method to isolate the location of corrupted boundary condition data in a continental-scale river network and demonstrate its utility with a network of O(10^4) elements. Acknowledgement

  16. Saliency Detection via Absorbing Markov Chain With Learnt Transition Probability.

    Science.gov (United States)

    Lihe Zhang; Jianwu Ai; Bowen Jiang; Huchuan Lu; Xiukui Li

    2018-02-01

    In this paper, we propose a bottom-up saliency model based on absorbing Markov chain (AMC). First, a sparsely connected graph is constructed to capture the local context information of each node. All image boundary nodes and other nodes are, respectively, treated as the absorbing nodes and transient nodes in the absorbing Markov chain. Then, the expected number of times from each transient node to all other transient nodes can be used to represent the saliency value of this node. The absorbed time depends on the weights on the path and their spatial coordinates, which are completely encoded in the transition probability matrix. Considering the importance of this matrix, we adopt different hierarchies of deep features extracted from fully convolutional networks and learn a transition probability matrix, which is called learnt transition probability matrix. Although the performance is significantly promoted, salient objects are not uniformly highlighted very well. To solve this problem, an angular embedding technique is investigated to refine the saliency results. Based on pairwise local orderings, which are produced by the saliency maps of AMC and boundary maps, we rearrange the global orderings (saliency value) of all nodes. Extensive experiments demonstrate that the proposed algorithm outperforms the state-of-the-art methods on six publicly available benchmark data sets.

  17. Formulation and numerical implementation of micro-scale boundary conditions for particle aggregates

    NARCIS (Netherlands)

    Liu, J.; Bosco, E.; Suiker, A.S.J.

    2017-01-01

    Novel numerical algorithms are presented for the implementation of micro-scale boundary conditions of particle aggregates modelled with the discrete element method. The algorithms are based on a servo-control methodology, using a feedback principle comparable to that of algorithms commonly applied

  18. A transformation technique to treat strong vibrating absorbers

    International Nuclear Information System (INIS)

    Sahni, D.C.; Garis, N.S.; Pazsit, I.

    1998-06-01

    Calculation of the neutron noise, induced by small amplitude vibrations of a strong absorber, is a difficult task because the traditional linearization technique cannot be applied. Two methods, based on two different representations of the absorber, were developed earlier to solve the problem. In both methods the rod displacements are described by a Taylor expansion, such that the boundary condition needs only to be considered at the surface of a static rod. Only one of the methods is applicable in two dimensions. In this paper an alternative method is developed and used for the solution of the problem. The essence of the method is a variable transformation by which the moving boundary is transformed into a static one without Taylor expansion. The corresponding equations are solved in a linear manner and the solution is transformed back to the original parameter space. The method is equally applicable in one and two dimensions. The solutions are in complete agreement with those of the previous methods

  19. Frequency Tuning of Vibration Absorber Using Topology Optimization

    Science.gov (United States)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  20. Multi-scale friction modeling for sheet metal forming: the boundary lubrication regime

    NARCIS (Netherlands)

    Hol, J.D.; Meinders, Vincent T.; de Rooij, Matthias B.; van den Boogaard, Antonius H.

    2015-01-01

    A physical based friction model is presented to describe friction in full-scale forming simulations. The advanced friction model accounts for the change in surface topography and the evolution of friction in the boundary lubrication regime. The implementation of the friction model in FE software

  1. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation

    KAUST Repository

    Liu, Yang; Sen, Mrinal K.

    2010-01-01

    We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.

  2. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation

    KAUST Repository

    Liu, Yang

    2010-03-01

    We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.

  3. Groundwater flow analysis on local scale. Setting boundary conditions for groundwater flow analysis on site scale model in step 1

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment at several spatial scales. The RHS project is a local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The surface-based Investigation Phase of the MIU project is a site scale study for understanding the groundwater flow system immediately surrounding the MIU construction site. The MIU project is being conducted using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow analysis of the local scale were carried out in order to set boundary conditions of the site scale model based on the data obtained from surface-based investigations in Step 1 in site scale of the MIU project. As a result of the study, head distribution to set boundary conditions for groundwater flow analysis on the site scale model could be obtained. (author)

  4. Thermal Shielding Effects of a Damaged Shock Absorber and an Intact Shock Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, K. Y.; Seo, C. S.; Seo, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    In order to safely transport the radioactive waste arising from the hot test of an ACP(Advanced Spent Fuel Conditioning Process) a shipping package is required. Therefore, KAERI is developing a shipping package to transport the radioactive waste arising from the ACPF during a hot test. The regulatory requirements for a Type B package are specified in the Korea Most Act 2009-37, IAEA Safety Standard Series No. TS-R-1, and US 10 CFR Part. These regulatory guidelines classify the hot cell cask as a Type B package, and state that the Type B package for transporting radioactive materials should be able to withstand a test sequence consisting of a 9 m drop onto an unyielding surface, a 1 m drop onto a puncture bar, and a 30 minute fully engulfing fire. Greiner et al. investigated the thermal protection provided by shock absorbers by using the CAFE computer code. To evaluate the thermal shielding effect of the shock absorber, the thermal test was performed by using a 1/2 scale model with a shock absorber which was damaged by both a 9 m drop test and a 1 m puncture test. For the purpose of comparison, the thermal test was also carried out by using a 1/2 scale model with the intact shock absorber

  5. Scaling of localization length of a quasi 1D system with longitudinal boundary roughness

    International Nuclear Information System (INIS)

    Abhijit Kar Gupta; Sen, A.K.

    1994-08-01

    We introduce irregularities on one of the longitudinal boundaries of a quasi 1D strip which has no bulk disorder. We calculate the localization length of such a system within the scope of tight-binding formalism and see how it behaves with the roughness introduced on the boundary and with the strip-width. We find that localization length scales with a composite one parameter. (author). 6 refs, 4 figs

  6. Bench Scale Process for Low Cost CO2 Capture Using a Phase-Changing Absorbent: Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Westendorf, Tiffany [GE Global Research, Niskayuna, New York (United States); Buddle, Stanlee [GE Global Research, Niskayuna, New York (United States); Caraher, Joel [GE Global Research, Niskayuna, New York (United States); Chen, Wei [GE Global Research, Niskayuna, New York (United States); Doherty, Mark [GE Global Research, Niskayuna, New York (United States); Farnum, Rachel [GE Global Research, Niskayuna, New York (United States); Giammattei, Mark [GE Global Research, Niskayuna, New York (United States); Hancu, Dan [GE Global Research, Niskayuna, New York (United States); Miebach, Barbara [GE Global Research, Niskayuna, New York (United States); Perry, Robert [GE Global Research, Niskayuna, New York (United States); Rubinsztajn, Gosia; Spiry, Irina; Wilson, Paul; Wood, Benjamin

    2017-05-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants. The U.S. Department of Energy’s goal for Transformational Carbon Capture Technologies is the development of technologies available for demonstration by 2025 that can capture 90% of emitted CO2 with at least 95% CO2 purity for less than $40/tonne of CO2 captured. In the first budget period of the project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance. In the second budget period of the project, individual bench-scale unit operations were tested to determine the performance of each of each unit. Solids production was demonstrated in dry simulated flue gas across a wide range of absorber operating conditions, with single stage CO2 conversion rates up to 75mol%. Desorber operation was demonstrated in batch mode, resulting in desorption performance consistent with the equilibrium isotherms for GAP-0/CO2 reaction. Important risks associated with gas humidity impact on solids consistency and desorber temperature impact on thermal degradation were explored, and adjustments to the bench-scale process were made to address those effects. Corrosion experiments were conducted to support selection of suitable materials of construction for the major

  7. Simulation and scaling for natural convection flow in a cavity with isothermal boundaries

    International Nuclear Information System (INIS)

    Jiracheewanun, S.; Armfield, S.W.; McBain, G.D.; Behnia, M.

    2005-01-01

    A numerical study of the transient two-dimensional natural convection flow within a differentially heated square cavity with iso-flux side walls and adiabatic top and bottom boundaries is presented. The governing equations are discretized using a non-staggered mesh and solved using a non-iterative fractional-step pressure correction method which provides second-order accuracy in both time and space. Results are obtained with the iso-flux boundary condition for Ra = 5.8 x 10 9 and Pr = 7.5. The results show that the transient flow features obtained for the iso-flux cavity are similar to the flow features for the isothermal case. However, the fully developed flow features of the iso-flux cavity are very different from the isothermal case. The scalings for the fully developed iso-flux boundary condition flow have been found to be different to those of the isothermal boundary condition flow. (authors)

  8. Groundwater flow simulation on local scale. Setting boundary conditions of groundwater flow simulation on site scale model in the step 4

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Ohyama, Takuya

    2007-03-01

    Japan Atomic Energy Agency has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological at several spatial scales. The RHS project is a Local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The Surface-based Investigation Phase of the MIU project is a Site scale study for understanding the deep geological environment immediately surrounding the MIU construction site using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow simulation on Local scale were carried out in order to set boundary conditions of the Site scale model based on the data obtained from surface-based investigations in the Step4 in Site scale of the MIU project. As a result of the study, boundary conditions for groundwater flow simulation on the Site scale model of the Step4 could be obtained. (author)

  9. Influence of absorbers on the reactivity of the reactor; Odredjivanje uticaja apsorbera na reaktivnost reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Martinc, R [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Influence of absorbers on the reactivity of the reactor was calculated by two-group diffusion theory applying corrections for boundary conditions derived from the transport theory because diffusion theory in not applicable in the vicinity of boundary surfaces especially in case of strong absorbers. This report shows the calculations of central absorber efficiency in the core with and without reflector, and efficiency of the group of absorbers randomly placed in the core. Approximation method for determining the efficiency of the absorber is described as well as numerical verification of results. Effective absorber dimensions and the influence of gaps on the reactor dimensions are shown. [Serbo-Croat] Uticaj apsorbera na reaktivnost reaktora racunat je primenom difuzione dvogrupne teorije uz korekcije kod primene granicnih uslova koje daje transportna teorija za efektivne dimenzije apsorbera posto difuziona teorija ne moze da primeni u blizini granicnih povrsina posebno kod jakih apsorbera. U ovom izvestaju dati su proracuni efektivnosti centralnog apsorbera u reflektovanom u nereflektovanom reaktoru, efektivnosti grupe proizvoljno ubacenih apsorbera. Dat je i prikaz aproksimativne metode za odredjivanje efektivnosti apsorbera kao i numericka provera rezultata. Prikazane su efektivne dimenzije apsorbera kao i uticaj supljina na kriticne dimenzije reaktora.

  10. Asymmetric Lévy flights in the presence of absorbing boundaries

    International Nuclear Information System (INIS)

    De Mulatier, Clélia; Rosso, Alberto; Schehr, Grégory

    2013-01-01

    We consider a one-dimensional asymmetric random walk whose jumps are identical, independent and drawn from a distribution ϕ(η) displaying asymmetric power-law tails (i.e. ϕ(η) ∼ c/η α+1 for large positive jumps and ϕ(η) ∼ c/(γ|η| α+1 ) for large negative jumps, with 0 n , converges to an asymmetric Lévy stable law of stability index α and skewness parameter β = (γ − 1)/(γ + 1). In particular, the right tail of this PDF decays as c n/x n 1+α . Much less is known when the walker is confined, or partially confined, in a region of the space. In this paper we first study the case of a walker constrained to move on the positive semi-axis and absorbed once it changes sign. In this case, the persistence exponent θ + , which characterizes the algebraic large time decay of the survival probability, can be computed exactly and we show that, if θ + + )x n 1+α . This last result can be generalized in higher dimensions such as a two-dimensional random walker performing Lévy stable jumps and confined in a wedge with absorbing walls. Our results are corroborated by precise numerical simulations. (paper)

  11. An FDTD method with FFT-accelerated exact absorbing boundary conditions

    KAUST Repository

    Sirenko, Kostyantyn

    2011-07-01

    An accurate and efficient finite-difference time-domain (FDTD) method for analyzing axially symmetric structures is presented. The method achieves its accuracy and efficiency using exact absorbing conditions (EACs) for terminating the computation domain and a blocked-FFT based scheme for accelerating the computation of the temporal convolutions present in non-local EACs. The method is shown to be especially useful in characterization of long-duration resonant wave interactions. © 2011 IEEE.

  12. An optimized absorbing potential for ultrafast, strong-field problems

    Science.gov (United States)

    Yu, Youliang; Esry, B. D.

    2018-05-01

    Theoretical treatments of strong-field physics have long relied on the numerical solution of the time-dependent Schrödinger equation. The most effective such treatments utilize a discrete spatial representation—a grid. Since most strong-field observables relate to the continuum portion of the wave function, the boundaries of the grid—which act as hard walls and thus cause reflection—can substantially impact the observables. Special care thus needs to be taken. While there exist a number of attempts to solve this problem—e.g., complex absorbing potentials and masking functions, exterior complex scaling, and coordinate scaling—none of them are completely satisfactory. The first of these is arguably the most popular, but it consumes a substantial fraction of the computing resources in any given calculation. Worse, this fraction grows with the dimensionality of the problem. In addition, no systematic way to design such a potential has been used in the strong-field community. In this work, we address these issues and find a much better solution. By comparing with previous widely used absorbing potentials, we find a factor of 3–4 reduction in the absorption range, given the same level of absorption over a specified energy interval.

  13. Solution of moving boundary problems with implicit boundary condition

    International Nuclear Information System (INIS)

    Moyano, E.A.

    1990-01-01

    An algorithm that solves numerically a model for studying one dimensional moving boundary problems, with implicit boundary condition, is described. Landau's transformation is used, in order to work with a fixed number of nodes at each instant. Then, it is necessary to deal with a parabolic partial differential equation, whose diffusive and convective terms have variable coefficients. The partial differential equation is implicitly discretized, using Laasonen's scheme, always stable, instead of employing Crank-Nicholson sheme, as it has been done by Ferris and Hill. Fixed time and space steps (Δt, Δξ) are used, and the iteration is made with variable positions of the interface, i.e. varying δs until a boundary condition is satisfied. The model has the same features of the oxygen diffusion in absorbing tissue. It would be capable of estimating time variant radiation treatments of cancerous tumors. (Author) [es

  14. Research on a Small Signal Stability Region Boundary Model of the Interconnected Power System with Large-Scale Wind Power

    Directory of Open Access Journals (Sweden)

    Wenying Liu

    2015-03-01

    Full Text Available For the interconnected power system with large-scale wind power, the problem of the small signal stability has become the bottleneck of restricting the sending-out of wind power as well as the security and stability of the whole power system. Around this issue, this paper establishes a small signal stability region boundary model of the interconnected power system with large-scale wind power based on catastrophe theory, providing a new method for analyzing the small signal stability. Firstly, we analyzed the typical characteristics and the mathematic model of the interconnected power system with wind power and pointed out that conventional methods can’t directly identify the topological properties of small signal stability region boundaries. For this problem, adopting catastrophe theory, we established a small signal stability region boundary model of the interconnected power system with large-scale wind power in two-dimensional power injection space and extended it to multiple dimensions to obtain the boundary model in multidimensional power injection space. Thirdly, we analyzed qualitatively the topological property’s changes of the small signal stability region boundary caused by large-scale wind power integration. Finally, we built simulation models by DIgSILENT/PowerFactory software and the final simulation results verified the correctness and effectiveness of the proposed model.

  15. A randomised controlled trial of absorbable versus non-absorbable sutures for skin closure after open carpal tunnel release.

    LENUS (Irish Health Repository)

    Theopold, C

    2012-05-01

    We compared the aesthetic outcome of scars after closure of open carpal tunnel incisions with either absorbable 4-0 Vicryl Rapide or non-absorbable 4-0 Novafil. Patients were recruited in a randomized controlled trial and scars were scored at 6 weeks using a modified Patient and Observer Scar Assessment Scale. Scores demonstrated differences only for pain, vascularity and cross-hatching between both groups, though none of these were statistically significant. The dissolving and falling out of Vicryl Rapide was significantly more comfortable than removal of 4-0 Novafil sutures, assessed on a numerical analogue scale. There was no difference in infection rate between both study groups, supporting overall the use of Vicryl Rapide for the closure of palmar hand incisions, in light of the convenience and cost savings associated with absorbable sutures.

  16. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    Science.gov (United States)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.

  17. Boundary layers and scaling relations in natural thermal convection

    Science.gov (United States)

    Shishkina, Olga; Lohse, Detlef; Grossmann, Siegfried

    2017-11-01

    We analyse the boundary layer (BL) equations in natural thermal convection, which includes vertical convection (VC), where the fluid is confined between two differently heated vertical walls, horizontal convection (HC), where the fluid is heated at one part of the bottom plate and cooled at some other part, and Rayleigh-Benard convection (RBC). For BL dominated regimes we derive the scaling relations of the Nusselt and Reynolds numbers (Nu, Re) with the Rayleigh and Prandtl numbers (Ra, Pr). For VC the scaling relations are obtained directly from the BL equations, while for HC they are derived by applying the Grossmann-Lohse theory to the case of VC. In particular, for RBC with large Pr we derive Nu Pr0Ra1/3 and Re Pr-1Ra2/3. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  18. Groundwater flow analysis on local scale. Setting boundary conditions of groundwater flow analysis on site scale model in the former part of the step 3

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu

    2005-07-01

    Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment at several spatial scales. The RHS project is a local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The Surface-based Investigation Phase of the MIU project is a mainly site scale study for understanding the deep geological environment immediately surrounding the MIU construction site using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow analysis on the Local scale were carried out in order to set boundary conditions of the site scale model based on the data obtained from surface-based investigations in the former part of the Step 3 in site scale of the MIU project. As a result of the study, the uncertainty of hydrogeological model of the local scale and boundary conditions for the site scale model is decreased as stepwise investigation, and boundary conditions for groundwater flow analysis on the site scale model for the former part of the Step 3 could be obtained. (author)

  19. Boundary Observability and Stabilization for Westervelt Type Wave Equations without Interior Damping

    International Nuclear Information System (INIS)

    Kaltenbacher, Barbara

    2010-01-01

    In this paper we show boundary observability and boundary stabilizability by linear feedbacks for a class of nonlinear wave equations including the undamped Westervelt model used in nonlinear acoustics. We prove local existence for undamped generalized Westervelt equations with homogeneous Dirichlet boundary conditions as well as global existence and exponential decay with absorbing type boundary conditions.

  20. Numerical simulation of small-scale mixing processes in the upper ocean and atmospheric boundary layer

    International Nuclear Information System (INIS)

    Druzhinin, O; Troitskaya, Yu; Zilitinkevich, S

    2016-01-01

    The processes of turbulent mixing and momentum and heat exchange occur in the upper ocean at depths up to several dozens of meters and in the atmospheric boundary layer within interval of millimeters to dozens of meters and can not be resolved by known large- scale climate models. Thus small-scale processes need to be parameterized with respect to large scale fields. This parameterization involves the so-called bulk coefficients which relate turbulent fluxes with large-scale fields gradients. The bulk coefficients are dependent on the properties of the small-scale mixing processes which are affected by the upper-ocean stratification and characteristics of surface and internal waves. These dependencies are not well understood at present and need to be clarified. We employ Direct Numerical Simulation (DNS) as a research tool which resolves all relevant flow scales and does not require closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes simulations (LES and RANS). Thus DNS provides a solid ground for correct parameterization of small-scale mixing processes and also can be used for improving LES and RANS closure models. In particular, we discuss the problems of the interaction between small-scale turbulence and internal gravity waves propagating in the pycnocline in the upper ocean as well as the impact of surface waves on the properties of atmospheric boundary layer over wavy water surface. (paper)

  1. Critical deflagration waves leading to detonation onset under different boundary conditions

    International Nuclear Information System (INIS)

    Lin Wei; Zhou Jin; Lin Zhi-Yong; Fan Xiao-Hua

    2015-01-01

    High-speed turbulent critical deflagration waves before detonation onset in H 2 –air mixture propagated into a square cross section channel, which was assembled of optional rigid rough, rigid smooth, or flexible walls. The corresponding propagation characteristic and the influence of the wall boundaries on the propagation were investigated via high-speed shadowgraph and a high-frequency pressure sampling system. As a comprehensive supplement to the different walls effect investigation, the effect of porous absorbing walls on the detonation propagation was also investigated via smoke foils and the high-frequency pressure sampling system. Results are as follows. In the critical deflagration stage, the leading shock and the closely following turbulent flame front travel at a speed of nearly half the CJ detonation velocity. In the preheated zone, a zonary flame arises from the overlapping part of the boundary layer and the pressure waves, and then merges into the mainstream flame. Among these wall boundary conditions, the rigid rough wall plays a most positive role in the formation of the zonary flame and thus accelerates the transition of the deflagration to detonation (DDT), which is due to the boost of the boundary layer growth and the pressure wave reflection. Even though the flexible wall is not conducive to the pressure wave reflection, it brings out a faster boundary layer growth, which plays a more significant role in the zonary flame formation. Additionally, the porous absorbing wall absorbs the transverse wave and yields detonation decay and velocity deficit. After the absorbing wall, below some low initial pressure conditions, no re-initiation occurs and the deflagration propagates in critical deflagration for a relatively long distance. (paper)

  2. Measured Boundary Layer Transition and Rotor Hover Performance at Model Scale

    Science.gov (United States)

    Overmeyer, Austin D.; Martin, Preston B.

    2017-01-01

    An experiment involving a Mach-scaled, 11:08 f t: diameter rotor was performed in hover during the summer of 2016 at NASA Langley Research Center. The experiment investigated the hover performance as a function of the laminar to turbulent transition state of the boundary layer, including both natural and fixed transition cases. The boundary layer transition locations were measured on both the upper and lower aerodynamic surfaces simultaneously. The measurements were enabled by recent advances in infrared sensor sensitivity and stability. The infrared thermography measurement technique was enhanced by a paintable blade surface heater, as well as a new high-sensitivity long wave infrared camera. The measured transition locations showed extensive amounts, x=c>0:90, of laminar flow on the lower surface at moderate to high thrust (CT=s > 0:068) for the full blade radius. The upper surface showed large amounts, x=c > 0:50, of laminar flow at the blade tip for low thrust (CT=s boundary layer transition models in CFD and rotor design tools. The data is expected to be used as part of the AIAA Rotorcraft SimulationWorking Group

  3. Characterization of the Boundary Layer on Full-Scale Bluefin Tuna

    Science.gov (United States)

    Amaral, Brian; Cipolla, Kimberly; Henoch, Charles

    2014-11-01

    The physics that enable tuna to cross large expanses of ocean while feeding and avoiding predators is not presently understood, and could involve complex control of turbulent boundary layer transition and drag reduction. Typical swimming speeds of Bluefin tuna are 1-2 m/s, but can be higher during strong accelerations. The goal of this work is to experimentally determine the approximate lateral location at which transition to turbulence occurs on the tuna for various speeds. The question is whether laminar flow or an advanced propulsion mechanism (or both) allows them to swim at high speeds. Uncertainties include the surface roughness of the skin, local favorable and adverse pressure gradients, and discontinuities such as the open mouth or juncture at the fins. Historically, much of the fluid mechanics work in the area of fish locomotion has focused on vortex shedding issues rather than the boundary layer. Here, the focus is obtaining information on the boundary layer characteristics of a rigid tuna model. A full scale model of a Pacific Bluefin tuna was fabricated using a mold made from an actual deceased tuna, preserving the surface features and details of the appendages. The model was instrumented with 32 wall pressure sensors and experiments performed in a tow tank. Results from flow visualization, drag and wall pressure measurements over a range of speeds and varying angles of attack will be presented.

  4. From Planetary Boundaries to national fair shares of the global safe operating space - How can the scales be bridged?

    Science.gov (United States)

    Häyhä, Tiina; Cornell, Sarah; Lucas, Paul; van Vuuren, Detlef; Hoff, Holger

    2016-04-01

    The planetary boundaries framework proposes precautionary quantitative global limits to the anthropogenic perturbation of crucial Earth system processes. In this way, it marks out a planetary 'safe operating space' for human activities. However, decisions regarding resource use and emissions are mostly made at much smaller scales, mostly by (sub-)national and regional governments, businesses, and other local actors. To operationalize the planetary boundaries, they need to be translated into and aligned with targets that are relevant at these smaller scales. In this paper, we develop a framework that addresses the three dimension of bridging across scales: biophysical, socio-economic and ethical, to provide a consistent universally applicable approach for translating the planetary boundaries into national level context-specific and fair shares of the safe operating space. We discuss our findings in the context of previous studies and their implications for future analyses and policymaking. In this way, we help link the planetary boundaries framework to widely- applied operational and policy concepts for more robust strong sustainability decision-making.

  5. Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary

    NARCIS (Netherlands)

    Hilgen, F.J.

    1991-01-01

    The early Pleistocene to late Pliocene astronormcally calibrated time scale of Shackleton et al. [1] and Hllgen [2] is extended to the Mlocene/Pllocene boundary This is done by correlating the detailed record of CaCO 3 cycles in the Trubl and the lower part of the overlying Narbone Formation

  6. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  7. Scale-invariant solutions to partial differential equations of fractional order with a moving boundary condition

    International Nuclear Information System (INIS)

    Li Xicheng; Xu Mingyu; Wang Shaowei

    2008-01-01

    In this paper, we give similarity solutions of partial differential equations of fractional order with a moving boundary condition. The solutions are given in terms of a generalized Wright function. The time-fractional Caputo derivative and two types of space-fractional derivatives are considered. The scale-invariant variable and the form of the solution of the moving boundary are obtained by the Lie group analysis. A comparison between the solutions corresponding to two types of fractional derivative is also given

  8. Oxygen Permeability and Grain-Boundary Diffusion Applied to Alumina Scales

    Science.gov (United States)

    Smialek, James L.; Jacobson, Nathan S.; Gleeson, Brian; Hovis, David B.; Heuer, Arthur H.

    2013-01-01

    High-temperature oxygen permeability measurements had determined grain-boundary diffusivities (deltaD(sub gb)) in bulk polycrystalline alumina (Wada, Matsudaira, and Kitaoka). They predict that oxygen deltaD(sub gb,O) varies with oxygen pressure as P(O2)(sup -1/6) at low pressure whereas aluminum deltaD(sub gb),Al varies with P(O2)(sup +3/16) at high pressure. These relations were used to evaluate alumina scale growth in terms of diffusivity and grain size. A modified Wagner treatment for dominant inward oxygen growth produces the concise solution: ?(sub i) = k(sub p,i)×G(sub i) = 12 deltaD(sub gb,O,int), where ?(sub i) is a constant and k(sub p,i) and G(sub i) refer to instantaneous values of the scale parabolic growth constant and grain size, respectively. A commercial FeCrAl(Zr) alloy was oxidized at 1100 to 1400 degC to determine k(sub p,i), interfacial grain size, ?, and thus deltaD(sub gb,O,int). The deltaD(sub gb,O,int) values predicted from oxidation at (375 kJ/mole) were about 20 times less than those obtained above (at 298 kJ/mole), but closer than extrapolations from high-temperature bulk measurements. The experimental oxidation results agree with similar FeCrAl(X) studies, especially where both k(sub p,i) and G(sub i) were characterized. This complete approach accounts for temperature-sensitive oxidation effects of grain enlargement, equilibrium interface pressure variation, and grain-boundary diffusivity.

  9. Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser

    International Nuclear Information System (INIS)

    Lin, Y-H; Lin, G-R

    2012-01-01

    The free-standing graphite nano-particle located between two FC/APC fiber connectors is employed as the saturable absorber to passively mode-lock the ring-type Erbium-doped fiber laser (EDFL). The host-solvent-free graphite nano-particles with sizes of 300 – 500 nm induce a comparable modulation depth of 54%. The interlayer-spacing and lattice fluctuations of polished graphite nano-particles are observed from the weak 2D band of Raman spectrum and the azimuth angle shift of –0.32 ° of {002}-orientation dependent X-ray diffraction peak. The graphite nano-particles mode-locked EDFL generates a 1.67-ps pulsewidth at linearly dispersion-compensated regime with a repetition rate of 9.1 MHz. The time-bandwidth product of 0.325 obtained under a total intra-cavity group-delay-dispersion of –0.017 ps 2 is nearly transform-limited. The extremely high stability of the nano-scale graphite saturable absorber during mode-locking is observed at an intra-cavity optical energy density of 7.54 mJ/cm 2 . This can be attributed to its relatively high damage threshold (one order of magnitude higher than the graphene) on handling the optical energy density inside the EDFL cavity. The graphite nano-particle with reduced size and sufficient coverage ratio can compete with other fast saturable absorbers such as carbon nanotube or graphene to passively mode-lock fiber lasers with decreased insertion loss and lasing threshold

  10. Oxalic acid as a liquid dosimeter for absorbed dose measurement in large-scale of sample solution

    International Nuclear Information System (INIS)

    Biramontri, S.; Dechburam, S.; Vitittheeranon, A.; Wanitsuksombut, W.; Thongmitr, W.

    1999-01-01

    This study shows the feasibility for, applying 2.5 mM aqueous oxalic acid solution using spectrophotometric analysis method for absorbed dose measurement from 1 to 10 kGy in a large-scale of sample solution. The optimum wavelength of 220 nm was selected. The stability of the response of the dosimeter over 25 days was better than 1 % for unirradiated and ± 2% for irradiated solution. The reproducibility in the same batch was within 1%. The variation of the dosimeter response between batches was also studied. (author)

  11. The influence of a scaled boundary response on integral system transient behavior

    International Nuclear Information System (INIS)

    Dimenna, R.A.; Kullberg, C.M.

    1989-01-01

    Scaling relationships associated with the thermal-hydraulic response of a closed-loop system are applied to a calculational assessment of a feed-and-bleed recovery in a nuclear reactor integral effects test. The analysis demonstrates both the influence of scale on the system response and the ability of the thermal-hydraulics code to represent those effects. The qualitative response of the fluid is shown to be coupled to the behavior of the bounding walls through the energy equation. The results of the analysis described in this paper influence the determination of computer code applicability. The sensitivity of the code response to scaling variations introduced in the analysis is found to be appropriate with respect to scaling criteria determined from the scaling literature. Differences in the system response associated with different scaling criteria are found to be plausible and easily explained using well-known principles of heat transfer. Therefore, it is concluded that RELAP5/MOD2 can adequately represent the scaled effects of heat transfer boundary conditions of the thermal-hydraulic calculations through the mechanism of communicating walls. The results of the analysis also serve to clarify certain aspects of experiment and facility design

  12. The kinetic boundary layer around an absorbing sphere and the growth of small droplets

    International Nuclear Information System (INIS)

    Widder, M.E.; Titulaer, U.M.

    1989-01-01

    Deviations from the classical Smoluchowski expression for the growth rate of a droplet in a supersaturated vapor can be expected when the droplet radius is not large compared to the mean free path of a vapor molecule. The growth rate then depends significantly on the structure of the kinetic boundary layer around a sphere. The authors consider this kinetic boundary layer for a dilute system of Brownian particles. For this system a large class of boundary layer problems for a planar wall have been solved. They show how the spherical boundary layer can be treated by a perturbation expansion in the reciprocal droplet radius. In each order one has to solve a finite number of planar boundary layer problems. The first two corrections to the planar problem are calculated explicitly. For radii down to about two velocity persistence lengths (the analog of the mean free path for a Brownian particle) the successive approximations for the growth rate agree to within a few percent. A reasonable estimate of the growth rate for all radii can be obtained by extrapolating toward the exactly known value at zero radius. Kinetic boundary layer effects increase the time needed for growth from 0 to 10 (or 2 1/2) velocity persistence lengths by roughly 35% (or 175%)

  13. Second-order wave diffraction by a circular cylinder using scaled boundary finite element method

    International Nuclear Information System (INIS)

    Song, H; Tao, L

    2010-01-01

    The scaled boundary finite element method (SBFEM) has achieved remarkable success in structural mechanics and fluid mechanics, combing the advantage of both FEM and BEM. Most of the previous works focus on linear problems, in which superposition principle is applicable. However, many physical problems in the real world are nonlinear and are described by nonlinear equations, challenging the application of the existing SBFEM model. A popular idea to solve a nonlinear problem is decomposing the nonlinear equation to a number of linear equations, and then solves them individually. In this paper, second-order wave diffraction by a circular cylinder is solved by SBFEM. By splitting the forcing term into two parts, the physical problem is described as two second-order boundary-value problems with different asymptotic behaviour at infinity. Expressing the velocity potentials as a series of depth-eigenfunctions, both of the 3D boundary-value problems are decomposed to a number of 2D boundary-value sub-problems, which are solved semi-analytically by SBFEM. Only the cylinder boundary is discretised with 1D curved finite-elements on the circumference of the cylinder, while the radial differential equation is solved completely analytically. The method can be extended to solve more complex wave-structure interaction problems resulting in direct engineering applications.

  14. Persistent multi-scale fluctuations shift European hydroclimate to its millennial boundaries.

    Science.gov (United States)

    Markonis, Y; Hanel, M; Máca, P; Kyselý, J; Cook, E R

    2018-05-02

    In recent years, there has been growing concern about the effect of global warming on water resources, especially at regional and continental scales. The last IPCC report on extremes states that there is medium confidence about an increase on European drought frequency during twentieth century. Here we use the Old World Drought Atlas palaeoclimatic reconstruction to show that when Europe's hydroclimate is examined under a millennial, multi-scale perspective, a significant decrease in dryness can be observed since 1920 over most of central and northern Europe. On the contrary, in the south, drying conditions have prevailed, creating an intense north-to-south dipole. In both cases, hydroclimatic conditions have shifted to, and in some regions exceeded, their millennial boundaries, remaining at these extreme levels for the longest period of the 1000-year-long record.

  15. A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales

    International Nuclear Information System (INIS)

    Atzberger, Paul J.; Kramer, Peter R.; Peskin, Charles S.

    2007-01-01

    In modeling many biological systems, it is important to take into account flexible structures which interact with a fluid. At the length scale of cells and cell organelles, thermal fluctuations of the aqueous environment become significant. In this work, it is shown how the immersed boundary method of [C.S. Peskin, The immersed boundary method, Acta Num. 11 (2002) 1-39.] for modeling flexible structures immersed in a fluid can be extended to include thermal fluctuations. A stochastic numerical method is proposed which deals with stiffness in the system of equations by handling systematically the statistical contributions of the fastest dynamics of the fluid and immersed structures over long time steps. An important feature of the numerical method is that time steps can be taken in which the degrees of freedom of the fluid are completely underresolved, partially resolved, or fully resolved while retaining a good level of accuracy. Error estimates in each of these regimes are given for the method. A number of theoretical and numerical checks are furthermore performed to assess its physical fidelity. For a conservative force, the method is found to simulate particles with the correct Boltzmann equilibrium statistics. It is shown in three dimensions that the diffusion of immersed particles simulated with the method has the correct scaling in the physical parameters. The method is also shown to reproduce a well-known hydrodynamic effect of a Brownian particle in which the velocity autocorrelation function exhibits an algebraic (τ -3/2 ) decay for long times [B.J. Alder, T.E. Wainwright, Decay of the Velocity Autocorrelation Function, Phys. Rev. A 1(1) (1970) 18-21]. A few preliminary results are presented for more complex systems which demonstrate some potential application areas of the method. Specifically, we present simulations of osmotic effects of molecular dimers, worm-like chain polymer knots, and a basic model of a molecular motor immersed in fluid subject to a

  16. Unequilibrium kinetic of collisionless boundary layers in binary plasmas

    International Nuclear Information System (INIS)

    Kotelnikov, V.A.; Nikolaev, F.A.; Cherepanov, V.V.

    1985-01-01

    Relaxation processes of kinetic nonequilibrium collisionless boundary layers near spherical charged full absorbing surfaces in binary low-temperature plasmas are investigated. The effect of magnetic field on relaxation processes was neglected. The dynamics of components of the ionized gas was treated near the boundary layer. The potential distribution and the space dependence of concentration were calculated numerically. These results agree well with the experimental data. (D.Gy.)

  17. Assessment of a PML Boundary Condition for Simulating an MRI Radio Frequency Coil

    Directory of Open Access Journals (Sweden)

    Yunsuo Duan

    2008-01-01

    Full Text Available Computational methods such as the finite difference time domain (FDTD play an important role in simulating radiofrequency (RF coils used in magnetic resonance imaging (MRI. The choice of absorbing boundary conditions affects the final outcome of such studies. We have used FDTD to assess the Berenger's perfectly matched layer (PML as an absorbing boundary condition for computation of the resonance patterns and electromagnetic fields of RF coils. We first experimentally constructed a high-pass birdcage head coil, measured its resonance pattern, and used it to acquire proton (1H phantom MRI images. We then computed the resonance pattern and B1 field of the coil using FDTD with a PML as an absorbing boundary condition. We assessed the accuracy and efficiency of PML by adjusting the parameters of the PML and comparing the calculated results with measured ones. The optimal PML parameters that produce accurate (comparable to the experimental findings FDTD calculations are then provided for the birdcage head coil operating at 127.72 MHz, the Larmor frequency of 1H at 3 Tesla (T.

  18. Minnesota County Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....

  19. Trapping of diffusing particles by striped cylindrical surfaces. Boundary homogenization approach

    Science.gov (United States)

    Dagdug, Leonardo; Berezhkovskii, Alexander M.; Skvortsov, Alexei T.

    2015-01-01

    We study trapping of diffusing particles by a cylindrical surface formed by rolling a flat surface, containing alternating absorbing and reflecting stripes, into a tube. For an arbitrary stripe orientation with respect to the tube axis, this problem is intractable analytically because it requires dealing with non-uniform boundary conditions. To bypass this difficulty, we use a boundary homogenization approach which replaces non-uniform boundary conditions on the tube wall by an effective uniform partially absorbing boundary condition with properly chosen effective trapping rate. We demonstrate that the exact solution for the effective trapping rate, known for a flat, striped surface, works very well when this surface is rolled into a cylindrical tube. This is shown for both internal and external problems, where the particles diffuse inside and outside the striped tube, at three orientations of the stripe direction with respect to the tube axis: (a) perpendicular to the axis, (b) parallel to the axis, and (c) at the angle of π/4 to the axis. PMID:26093574

  20. Second-mode control in hypersonic boundary layers over assigned complex wall impedance

    Science.gov (United States)

    Sousa, Victor; Patel, Danish; Chapelier, Jean-Baptiste; Scalo, Carlo

    2017-11-01

    The durability and aerodynamic performance of hypersonic vehicles greatly relies on the ability to delay transition to turbulence. Passive aerodynamic flow control devices such as porous acoustic absorbers are a very attractive means to damp ultrasonic second-mode waves, which govern transition in hypersonic boundary layers under idealized flow conditions (smooth walls, slender geometries, small angles of attack). The talk will discuss numerical simulations modeling such absorbers via the time-domain impedance boundary condition (TD-IBC) approach by Scalo et al. in a hypersonic boundary layer flow over a 7-degree wedge at freestream Mach numbers M∞ = 7.3 and Reynolds numbers Rem = 1.46 .106 . A three-parameter impedance model tuned to the second-mode waves is tested first with varying resistance, R, and damping ratio, ζ, revealing complete mode attenuation for R workers at DLR-Göttingen.

  1. Effect of grain boundary phase on the magnetization reversal process of nanocrystalline magnet using large-scale micromagnetic simulation

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2018-05-01

    Full Text Available We investigated the effects of grain boundary phases on magnetization reversal in permanent magnets by performing large-scale micromagnetic simulations based on Landau–Lifshitz–Gilbert equation under a periodic boundary. We considered planar grain boundary phases parallel and perpendicular to an easy axis of the permanent magnet and assumed the saturation magnetization and exchange stiffness constant of the grain boundary phase to be 10% and 1%, respectively, for Nd2Fe14B grains. The grain boundary phase parallel to the easy axis effectively inhibits propagation of magnetization reversal. In contrast, the domain wall moves across the grain boundary perpendicular to the easy axis. These properties of the domain wall motion are explained by dipole interaction, which stabilizes the antiparallel magnetic configuration in the direction perpendicular to the magnetization orientation. On the other hand, the magnetization is aligned in the same direction by the dipole interaction parallel to the magnetization orientation. This anisotropy of the effect of the grain boundary phase shows that improvement of the grain boundary phase perpendicular to the easy axis effectively enhances the coercivity of permanent magnets.

  2. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equation...

  3. Cross-scale modelling of transpiration from stomata via the leaf boundary layer

    Science.gov (United States)

    Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart

    2014-01-01

    Background and Aims Leaf transpiration is a key parameter for understanding land surface–climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2–5 %). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. Methods An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10−5–10−1 m), which implies explicitly modelling individual stomata. Key Results BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100 %). Nevertheless, these conventional BLCs (CR of 100 %), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. Conclusions The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be

  4. Regional climate modeling: Should one attempt improving on the large scales? Lateral boundary condition scheme: Any impact?

    Energy Technology Data Exchange (ETDEWEB)

    Veljovic, Katarina; Rajkovic, Borivoj [Belgrade Univ. (RS). Inst. of Meteorology; Fennessy, Michael J.; Altshuler, Eric L. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Mesinger, Fedor [Maryland Univ., College Park (United States). Earth System Science Interdisciplinary Center; Serbian Academy of Science and Arts, Belgrade (RS)

    2010-06-15

    A considerable number of authors presented experiments in which degradation of large scale circulation occurred in regional climate integrations when large-scale nudging was not used (e.g., von Storch et al., 2000; Biner et al., 2000; Rockel et al., 2008; Sanchez-Gomez et al., 2008; Alexandru et al., 2009; among others). We here show an earlier 9-member ensemble result of the June-August precipitation difference over the contiguous United States between the ''flood year'' of 1993 and the ''drought year'' of 1988, in which the Eta model nested in the COLA AGCM gave a rather accurate depiction of the analyzed difference, even though the driver AGCM failed in doing so to the extent of having a minimum in the area where the maximum ought to be. It is suggested that this could hardly have been possible without an RCM's improvement in the large scales of the driver AGCM. We further revisit the issue by comparing the large scale skill of the Eta RCM against that of a global ECMWF 32-day ensemble forecast used as its driver. Another issue we are looking into is that of the lateral boundary condition (LBC) scheme. The question we ask is whether the almost universally used but somewhat costly relaxation scheme is necessary for a desirable RCM performance? We address this by running the Eta in two versions differing in the lateral boundary scheme used. One of these is the traditional relaxation scheme and the other is the Eta model scheme in which information is used at the outermost boundary only and not all variables are prescribed at the outflow boundary. The skills of these two sets of RCM forecasts are compared against each other and also against that of their driver. A novelty in our experiments is the verification used. In order to test the large scale skill we are looking at the forecast position accuracy of the strongest winds at the jet stream level, which we have taken as 250 hPa. We do this by calculating bias adjusted

  5. The atomic-scale origins of grain boundary superconducting properties

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Chisholm, M.F.; Buban, J.; Browning, N.D.; Prouteau, C.; Univ. of Illinois, Chicago, IL; Nellist, P.D.

    1998-02-01

    Due to the extremely short coherence lengths of the high-T c superconductors, defects such as grain boundaries are obvious barriers to the flow of supercurrent. Within a few months of the discovery of these materials, it was shown how the critical current dropped four orders of magnitude as the grain boundary misorientation increased from zero to 45 degree. Even today, there is no quantitative understanding of this behavior. A qualitative understanding is however possible through atomic resolution Z-contrast imaging on YBa 2 Cu 3 O 7-δ and SrTiO 3 bicrystal grain boundaries, combined with bond-valence-sum analysis. The Z-contrast image of a YBa 2 Cu 3 O 7-δ low angle grain boundary shows the same kind of reconstructed dislocation cores as seen in SrTiO 3 , containing reconstructions on both the Cu and Y/Ba sublattices. An image of an asymmetric 30 degree boundary in YBa 2 Cu 3 O 7-δ shows the same units and unit sequence as expected for SrTiO 3 . YBa 2 Cu 3 O 7-δ boundaries are wavy because of their non-equilibrium growth process, and therefore mostly asymmetric in nature, although small segments have the symmetric structure. It seems reasonable to assume that boundaries of other angles will also have similar structures in these two materials

  6. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara

    Directory of Open Access Journals (Sweden)

    J. H. Marsham

    2008-12-01

    Full Text Available Observations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations induced mesoscale circulations. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Residual Layer (SRL. Mesoscale variations in winds are also shown to affect dust loadings in the boundary layer.

    Using the aircraft observations and data from the COSMO model, a region of local dust uplift, with strong along-track winds, was identified in one low-level flight. Large eddy model (LEM simulations based on this location showed linearly organised boundary-layer convection. Calculating dust uplift rates from the LEM wind field showed that the boundary-layer convection increased uplift by approximately 30%, compared with the uplift rate calculated neglecting the convection. The modelled effects of boundary-layer convection on uplift are shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur.

    Both the coupling of albedo features to the atmosphere on the mesoscale, and the enhancement of dust uplift by boundary-layer convection are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parametrise.

  7. Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer

    Science.gov (United States)

    Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo

    2017-11-01

    Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.

  8. Management accounting as the inter-organisational boundary

    DEFF Research Database (Denmark)

    Jakobsen, Morten

    2010-01-01

    Purpose - The literature on managing inter-organisational relationships typically suggests managing these relationships based on the formalised exchange of information across the organisational boundary with due respect to trust build-up through successive interactions. This article argues...... that a focus on trust reduces the flexibility and accessibility of resources and hence ruins the advantages of inter-organisational relationships. The article focuses on power as a means for absorbing uncertainty when managing inter-organisational relationships. Methodology - The article is based on findings...... from a case study of inter-organisational relationships. Governmentality is used as a framework for analysing the practise of managing inter-organisational relationships. Findings - A number of representations are employed along the boundary between the case study parties and thereby the boundary...

  9. RACORO continental boundary layer cloud investigations: 1. Case study development and ensemble large-scale forcings

    Science.gov (United States)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  10. RACORO Continental Boundary Layer Cloud Investigations: 1. Case Study Development and Ensemble Large-Scale Forcings

    Science.gov (United States)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; hide

    2015-01-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, kappa, are derived from observations to be approximately 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary

  11. Understanding and predicting the behaviour of silver base neutron absorbers under irradiations; Comprehension et prediction du comportement sous irradiation neutronique d`alliages absorbants a base d`argent

    Energy Technology Data Exchange (ETDEWEB)

    Desgranges, C

    1998-12-31

    The effect of neutron irradiation induced transmutations on the swelling of AgInCd (AIC) alloys used as neutron absorber in the control rods of Pressurized Water Reactors has been studied both experimentally and theoretically. Effective atomic volumes have been determined in synthetic AgCdInSn alloys with various compositions and containing fcc and hc phases, representative of irradiated AIC (Sn is a transmutation product). Swelling is shown to result first from the transmutation of Ag into Cd and of In into Sn, both with larger effective volume than the mother atom, and second from grain boundaries precipitation of s still less dense hc phase when solid solubility of transmuted products is exceeded. For both fcc and hc phases, we have determined profiles at the temperatures in the vicinity of the operating temperature. Unusual characteristics of second phase growth at grain boundaries induced by transmutations are identified on a simple binary alloy model: kinetics is controlled by irradiation temperature which scales diffusivities and flux which scales transmutation rates, as well as by the grain size in the underlying matrix. To address the AgInCdSn alloys, a novel technique is proposed to model diffusion in multicomponent alloys. It is based on a linearization of a simple atomistic model. With a single set of parameters, for each phase, our model well reproduces our interdiffusion measurements in quaternary alloys as well as existing interdiffusion experiments in binary alloys. Finally this diffusion model implemented with a moving interface algorithm is used to model the growth of the second phase induced by transmutation in the AIC under irradiation. (authors) 74 refs.

  12. Minnesota County Boundaries - lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography lines....

  13. The Development of Two Composite Energy Absorbers for Use in a Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full-Scale Crash Test

    Science.gov (United States)

    Littell, Justin D.; Jackson, Karen E.; Annett, Martin S.; Seal, Michael D.; Fasanella, Edwin L.

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  14. Evaluation of planetary boundary layer schemes in meso-scale simulations above the North and Baltic Sea

    Science.gov (United States)

    Wurps, Hauke; Tambke, Jens; Steinfeld, Gerald; von Bremen, Lueder

    2014-05-01

    The development and design of wind energy converters for offshore wind farms require profound knowledge of the wind profile in the lower atmosphere. Especially an accurate and reliable estimation of turbulence, shear and veer are necessary for the prediction of energy production and loads. Currently existing wind energy turbines in the North Sea have hub heights of around 90 m and upper tip heights around 150 m, which is already higher than the highest measurement masts (e.g. FINO1: 103 m). The next generation of wind turbines will clearly outrange these altitudes, so the interest is to examine the atmosphere's properties above the North Sea up to 300 m. Therefore, besides the Prandtl layer also the Ekman layer has to be taken into account, which implies that changes of the wind direction with height become more relevant. For this investigation we use the Weather Research and Forecasting Model (WRF), a meso-scale numerical weather prediction system. In this study we compare different planetary boundary layer (PBL) schemes (MYJ, MYNN, QNSE) with the same high quality input from ECMWF used as boundary conditions (ERA-Interim). It was found in previous studies that the quality of the boundary conditions is crucially important for the accuracy of comparisons between different PBL schemes. This is due to the fact that the major source of meso-scale simulation errors is introduced by the driving boundary conditions and not by the different schemes of the meso-scale model itself. Hence, small differences in results from different PBL schemes can be distorted arbitrarily by coarse input data. For instance, ERA-Interim data leads to meso-scale RMSE values of 1.4 m/s at 100 m height above sea surface with mean wind speeds around 10 m/s, whereas other Reanalysis products lead to RMSEs larger than 2 m/s. Second, we compare our simulations to operational NWP results from the COSMO model (run by the DWD). In addition to the wind profile, also the turbulent kinetic energy (TKE

  15. Length and time scales of the near-surface axial velocity in a high Reynolds number turbulent boundary layer

    International Nuclear Information System (INIS)

    Metzger, M.

    2006-01-01

    Reynolds number effects on relevant length and time scales in the near-wall region of a canonical turbulent boundary layer are investigated. Well resolved measurements in the atmospheric surface layer are compared with existing laboratory data to give a composite Reynolds number range spanning over three orders of magnitude. In the field experiments, a vertical rake of twenty single element hot-wires was used to measure the axial velocity, u, characteristics in the lower log layer region of the atmospheric surface layer that flows over Utah's western desert. Only data acquired under conditions of near-neutral thermal stability are analyzed. The shape of the power spectra of u as a function of distance from the wall, y, and Reynolds number is investigated, with emphasis on the appropriate scaling parameters valid across different wavenumber, k, bands. In particular, distance from the wall is found to scale the region of the u spectra around ky = 1. The presence of a k -1 slope in the spectra is also found to correlate with the Reynolds number dependence in the peak of the root mean square u profile. In addition, Reynolds number trends in the profiles of the Taylor microscales, which represent intermediate length and time scales in the boundary layer, are shown to deviate from classical scaling

  16. Time integrated spectroscopy of turbid media based on the microscopic beer-lambert law: application to small-size phantoms having different boundary conditions.

    Science.gov (United States)

    Zhang, H; Urakami, T; Tsuchiya, Y; Lu, Z; Hiruma, T

    1999-01-01

    Continued work on time-integrated spectroscopy (TIS) is presented to quantify absorber concentrations in turbid media. We investigated the applicability of the TIS method to small-size media that have different boundary conditions by measuring two 20×20×50 mm3 cuboid liquid tissue-like phantoms at various absorption levels (absorption coefficients of the phantom from 2.5×10-3 to 4.4×10-2 mm-1 at 782 nm and from 3.1×10-3 to 2.7×10-2 mm-1 at 831 nm). The scattering and absorbing solution was filled into ordinary and black-anodized aluminum containers to provide different boundary conditions. By means of a single equation, the absorber concentrations have been recovered within errors of a few percent in both cases. This demonstrates that the TIS method can quantify absorbers in small-size media having different boundary conditions. © 1999 Society of Photo-Optical Instrumentation Engineers.

  17. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  18. Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jinda; Hart, Adam G.; Li, Yong-qing, E-mail: liy@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353 (United States)

    2015-04-27

    We demonstrate optical pulling of single light-absorbing particles and smut spores in air over a meter-scale distance using a single collimated laser beam based on negative photophoretic force. The micron-sized particles are pulled towards the light source at a constant speed of 1–10 cm/s in the optical pulling pipeline while undergoing transverse rotation at 0.2–10 kHz. The pulled particles can be manipulated and precisely positioned on the entrance window with an accuracy of ∼20 μm, and their chemical compositions can be characterized with micro-Raman spectroscopy.

  19. Understanding and predicting the behaviour of silver base neutron absorbers under irradiations

    International Nuclear Information System (INIS)

    Desgranges, C.

    1998-01-01

    The effect of neutron irradiation induced transmutations on the swelling of AgInCd (AIC) alloys used as neutron absorber in the control rods of Pressurized Water Reactors has been studied both experimentally and theoretically. Effective atomic volumes have been determined in synthetic AgCdInSn alloys with various compositions and containing fcc and hc phases, representative of irradiated AIC (Sn is a transmutation product). Swelling is shown to result first from the transmutation of Ag into Cd and of In into Sn, both with larger effective volume than the mother atom, and second from grain boundaries precipitation of s still less dense hc phase when solid solubility of transmuted products is exceeded. For both fcc and hc phases, we have determined profiles at the temperatures in the vicinity of the operating temperature. Unusual characteristics of second phase growth at grain boundaries induced by transmutations are identified on a simple binary alloy model: kinetics is controlled by irradiation temperature which scales diffusivities and flux which scales transmutation rates, as well as by the grain size in the underlying matrix. To address the AgInCdSn alloys, a novel technique is proposed to model diffusion in multicomponent alloys. It is based on a linearization of a simple atomistic model. With a single set of parameters, for each phase, our model well reproduces our interdiffusion measurements in quaternary alloys as well as existing interdiffusion experiments in binary alloys. Finally this diffusion model implemented with a moving interface algorithm is used to model the growth of the second phase induced by transmutation in the AIC under irradiation. (authors)

  20. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    Science.gov (United States)

    2016-12-16

    behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat-plate boundary layer to a Rankine...example, consume an enormous amount of energy due to friction, many works have been directed to the suppression of transitional boundary layer disturbances...decrease of the enormous amount of energy consumed by airplanes during flight, moreover flight costs and aerodynamic noise could be reduced and number

  1. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  2. Dynamic analytical and experimental research of shock absorber to safeguard the nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Dundulis, Gintautas, E-mail: gintas@mail.lei.lt [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); Grybenas, Albertas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); Karalevicius, Renatas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); Makarevicius, Vidas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); Rimkevicius, Sigitas; Uspuras, Eugenijus [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos str. 3, LT-44403 Kaunas (Lithuania)

    2013-07-15

    Highlights: • Plastical deformation of the shock absorber. • Dynamic testing of the scaled shock absorber. • Dynamic simulation of the shock absorber using finite element method. • Strain-rate evaluation in dynamic analysis. • Variation of displacement, acceleration and velocity during dynamic impact. -- Abstract: The Ignalina Nuclear Power Plant (NPP) has two RBMK-1500 graphite moderated boiling water multi-channel reactors. The Ignalina NPP Unit 1 was shut down at the end of 2004 while Unit 2 has been in operation for over 5 years. After shutdown at the Unit 1 remained spent fuel assemblies with low burn-up depth. In order to reuse these assemblies in the reactor of Unit 2 a special set of equipment was developed. One of the most important items of this set is a container, which is used for the transportation of spent fuel assemblies between the reactors of Unit 1 and Unit 2. A special shock absorber was designed to avoid failure of fuel assemblies in case of hypothetical spent fuel assemblies drop accident during uploading/unloading of spent fuel assemblies to/from container. This shock absorber was examined using scaled experiments and finite element analysis. Static and dynamic investigations of the shock absorber were performed for the estimation and optimization of its geometrical parameters. The objective of this work is the estimation whether the proposed design of shock absorber can fulfil the stopping function of the spent fuel assemblies and is capable to withstand the dynamics load. Experimental testing of scaled shock absorber models and dynamic analytical investigations using the finite element code ABAQUS/Explicit were performed. The simulation model was verified by comparing the experimental and simulation results and it was concluded that the shock absorber is capable to withstand the dynamic load, i.e. successful force suppression function in case of accident.

  3. The growth of the tearing mode - Boundary and scaling effects

    Science.gov (United States)

    Steinolfson, R. S.; Van Hoven, G.

    1983-01-01

    A numerical model of resistive magnetic tearing is developed in order to verify and relate the results of the principal approximations used in analytic analyses and to investigate the solutions and their growth-rate scalings over a large range of primary parameters which include parametric values applicable to the solar atmosphere. The computations cover the linear behavior for a variety of boundary conditions, emphasizing effects which differentiate magnetic tearing in astrophysical situations from that in laboratory devices. Eigenfunction profiles for long and short wavelengths are computed and the applicability of the 'constant psi' approximation is investigated. The growth rate is computed for values of the magnetic Reynolds number up to a trillion and of the dimensionless wavelength parameter down to 0.001. The analysis predicts significant effects due to differing values of the magnetic Reynolds number.

  4. Adaptive Scaling of Cluster Boundaries for Large-Scale Social Media Data Clustering.

    Science.gov (United States)

    Meng, Lei; Tan, Ah-Hwee; Wunsch, Donald C

    2016-12-01

    The large scale and complex nature of social media data raises the need to scale clustering techniques to big data and make them capable of automatically identifying data clusters with few empirical settings. In this paper, we present our investigation and three algorithms based on the fuzzy adaptive resonance theory (Fuzzy ART) that have linear computational complexity, use a single parameter, i.e., the vigilance parameter to identify data clusters, and are robust to modest parameter settings. The contribution of this paper lies in two aspects. First, we theoretically demonstrate how complement coding, commonly known as a normalization method, changes the clustering mechanism of Fuzzy ART, and discover the vigilance region (VR) that essentially determines how a cluster in the Fuzzy ART system recognizes similar patterns in the feature space. The VR gives an intrinsic interpretation of the clustering mechanism and limitations of Fuzzy ART. Second, we introduce the idea of allowing different clusters in the Fuzzy ART system to have different vigilance levels in order to meet the diverse nature of the pattern distribution of social media data. To this end, we propose three vigilance adaptation methods, namely, the activation maximization (AM) rule, the confliction minimization (CM) rule, and the hybrid integration (HI) rule. With an initial vigilance value, the resulting clustering algorithms, namely, the AM-ART, CM-ART, and HI-ART, can automatically adapt the vigilance values of all clusters during the learning epochs in order to produce better cluster boundaries. Experiments on four social media data sets show that AM-ART, CM-ART, and HI-ART are more robust than Fuzzy ART to the initial vigilance value, and they usually achieve better or comparable performance and much faster speed than the state-of-the-art clustering algorithms that also do not require a predefined number of clusters.

  5. Phonon interference control of atomic-scale metamirrors, meta-absorbers, and heat transfer through crystal interfaces

    Science.gov (United States)

    Kosevich, Yu. A.; Potyomina, L. G.; Darinskii, A. N.; Strelnikov, I. A.

    2018-03-01

    The paper theoretically studies the possibility of using the effects of phonon interference between paths through different interatomic bonds for the control of phonon heat transfer through internal crystal interfaces and for the design of phonon metamirrors and meta-absorbers. These metamirrors and meta-absorbers are considered to be defect nanolayers of atomic-scale thicknesses embedded in a crystal. Several analytically solvable three-dimensional lattice-dynamics models of the phonon metamirrors and meta-absorbers at the internal crystal planes are described. It is shown that due to destructive interference in the two or more phonon paths, the internal crystal planes, fully or partially filled with weakly bound or heavy-isotope defect atoms, can completely reflect or completely absorb phonons at the transmission antiresonances, whose wavelengths are larger than the effective thickness of the metamirror or meta-absorber. Due to cooperative superradiant effect, the spectral widths of the two-path interference antiresonances for the plane waves are given by the square of partial filling fraction in the defect crystal plane. Our analysis reveals that the presence of two or more phonon paths plays the dominant role in the emergence of the transmission antiresonances in phonon scattering at the defect crystal planes and in reduction of the thermal interface conductance in comparison with the Fano-resonance concept. We study analytically phonon transmission through internal crystal plane in a model cubic lattice of Si-like atoms, partially filled with Ge-like defect atoms. Such a plane can serve as interference phonon metamirror with the transmission antiresonances in the vicinities of eigenmode frequencies of Ge-like defect atoms in the terahertz frequency range. We predict the extraordinary phonon transmission induced by the two-path constructive interference of the lattice waves in resonance with the vibrations of rare host atoms, periodically distributed in the

  6. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.

    Science.gov (United States)

    Yang, Jubiao; Yu, Feimi; Krane, Michael; Zhang, Lucy T

    2018-01-01

    In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate that proper boundary conditions are not only necessary to capture correct wave propagations in a flow field, but also its interacted solid behavior and responses. While most research on the topics of the non-reflective boundary conditions are focused on fluids, little effort has been done in a fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The performance of the PML boundary condition is evaluated and compared to reference solutions with a variety of benchmark test cases including known and expected solutions of aeroacoustic wave propagation as well as vortex shedding and advection. The application of the PML in numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy and necessity of such boundary treatment in order to capture the correct solid deformation and flow field without the requirement of a significantly large computational domain.

  7. Ni-Al Alloys as Alternative EUV Mask Absorber

    Directory of Open Access Journals (Sweden)

    Vu Luong

    2018-03-01

    Full Text Available Extreme ultraviolet (EUV lithography is being industrialized as the next candidate printing technique for high-volume manufacturing of scaled down integrated circuits. At mask level, the combination of EUV light at oblique incidence, absorber thickness, and non-uniform mirror reflectance through incidence angle, creates photomask-induced imaging aberrations, known as mask 3D (M3D effects. A possible mitigation for the M3D effects in the EUV binary intensity mask (BIM, is to use mask absorber materials with high extinction coefficient κ and refractive coefficient n close to unity. We propose nickel aluminide alloys as a candidate BIM absorber material, and characterize them versus a set of specifications that a novel EUV mask absorber must meet. The nickel aluminide samples have reduced crystallinity as compared to metallic nickel, and form a passivating surface oxide layer in neutral solutions. Composition and density profile are investigated to estimate the optical constants, which are then validated with EUV reflectometry. An oxidation-induced Al L2 absorption edge shift is observed, which significantly impacts the value of n at 13.5 nm wavelength and moves it closer to unity. The measured optical constants are incorporated in an accurate mask model for rigorous simulations. The M3D imaging impact of the nickel aluminide alloy mask absorbers, which predict significant M3D reduction in comparison to reference absorber materials. In this paper, we present an extensive experimental methodology flow to evaluate candidate mask absorber materials.

  8. Space, Scale and Languages: Identity Construction of Cross-Boundary Students in a Multilingual University in Hong Kong

    Science.gov (United States)

    Gu, Mingyue Michelle; Tong, Ho Kin

    2012-01-01

    Drawing on the notions of scale and space, this paper investigates identity construction among a group of mainland Chinese cross-boundary students by analysing their language choices and linguistic practices in a multilingual university in Hong Kong. The research illustrates how movement across spaces by these students produces varying index…

  9. Necessary and Sufficient Conditions for the Existence of Positive Solution for Singular Boundary Value Problems on Time Scales

    Directory of Open Access Journals (Sweden)

    Zhang Xuemei

    2009-01-01

    Full Text Available By constructing available upper and lower solutions and combining the Schauder's fixed point theorem with maximum principle, this paper establishes sufficient and necessary conditions to guarantee the existence of as well as positive solutions for a class of singular boundary value problems on time scales. The results significantly extend and improve many known results for both the continuous case and more general time scales. We illustrate our results by one example.

  10. Absorber Model: the Halo-like model for the Lyman-α forest

    Science.gov (United States)

    Iršič, Vid; McQuinn, Matthew

    2018-04-01

    We present a semi-analytic model for the Lyman-α forest that is inspired by the Halo Model. This model is built on the absorption line decomposition of the forest. Flux correlations are decomposed into those within each absorption line (the 1-absorber term) and those between separate lines (the 2-absorber term), treating the lines as biased tracers of the underlying matter fluctuations. While the nonlinear exponential mapping between optical depth and flux requires an infinite series of moments to calculate any statistic, we show that this series can be re-summed (truncating at the desired order in the linear matter overdensity). We focus on the z=2–3 line-of-sight power spectrum. Our model finds that 1-absorber term dominates the power on all scales, with most of its contribution coming from H I columns of 1014–1015 cm‑2, while the smaller 2-absorber contribution comes from lower columns that trace overdensities of a few. The prominence of the 1-absorber correlations indicates that the line-of-sight power spectrum is shaped principally by the lines' number densities and their absorption profiles, with correlations between lines contributing to a lesser extent. We present intuitive formulae for the effective optical depth as well as the large-scale limits of 1-absorber and 2-absorber terms, which simplify to integrals over the H I column density distribution with different equivalent-width weightings. With minimalist models for the bias of absorption systems and their peculiar velocity broadening, our model predicts values for the density bias and velocity gradient bias that are consistent with those found in simulations.

  11. Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering

    KAUST Repository

    AbdulJabbar, Mustafa Abdulmajeed

    2018-03-27

    Algorithmic and architecture-oriented optimizations are essential for achieving performance worthy of anticipated energy-austere exascale systems. In this paper, we present an extreme scale FMM-accelerated boundary integral equation solver for wave scattering, which uses FMM as a matrix-vector multiplication inside the GMRES iterative method. Our FMM Helmholtz kernels treat nontrivial singular and near-field integration points. We implement highly optimized kernels for both shared and distributed memory, targeting emerging Intel extreme performance HPC architectures. We extract the potential thread- and data-level parallelism of the key Helmholtz kernels of FMM. Our application code is well optimized to exploit the AVX-512 SIMD units of Intel Skylake and Knights Landing architectures. We provide different performance models for tuning the task-based tree traversal implementation of FMM, and develop optimal architecture-specific and algorithm aware partitioning, load balancing, and communication reducing mechanisms to scale up to 6,144 compute nodes of a Cray XC40 with 196,608 hardware cores. With shared memory optimizations, we achieve roughly 77% of peak single precision floating point performance of a 56-core Skylake processor, and on average 60% of peak single precision floating point performance of a 72-core KNL. These numbers represent nearly 5.4x and 10x speedup on Skylake and KNL, respectively, compared to the baseline scalar code. With distributed memory optimizations, on the other hand, we report near-optimal efficiency in the weak scalability study with respect to both the logarithmic communication complexity as well as the theoretical scaling complexity of FMM. In addition, we exhibit up to 85% efficiency in strong scaling. We compute in excess of 2 billion DoF on the full-scale of the Cray XC40 supercomputer.

  12. Trickle-down boundary conditions in aeolian dune-field pattern formation

    Science.gov (United States)

    Ewing, R. C.; Kocurek, G.

    2015-12-01

    One the one hand, wind-blown dune-field patterns emerge within the overarching boundary conditions of climate, tectonics and eustasy implying the presence of these signals in the aeolian geomorphic and stratigraphic record. On the other hand, dune-field patterns are a poster-child of self-organization, in which autogenic processes give rise to patterned landscapes despite remarkable differences in the geologic setting (i.e., Earth, Mars and Titan). How important are climate, tectonics and eustasy in aeolian dune field pattern formation? Here we develop the hypothesis that, in terms of pattern development, dune fields evolve largely independent of the direct influence of 'system-scale' boundary conditions, such as climate, tectonics and eustasy. Rather, these boundary conditions set the stage for smaller-scale, faster-evolving 'event-scale' boundary conditions. This 'trickle-down' effect, in which system-scale boundary conditions indirectly influence the event scale boundary conditions provides the uniqueness and richness of dune-field patterned landscapes. The trickle-down effect means that the architecture of the stratigraphic record of dune-field pattern formation archives boundary conditions, which are spatially and temporally removed from the overarching geologic setting. In contrast, the presence of an aeolian stratigraphic record itself, reflects changes in system-scale boundary conditions that drive accumulation and preservation of aeolian strata.

  13. Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating

    OpenAIRE

    Liu, Zhaohui; Tao, Rui; Ban, Guodong; Luo, Ping

    2018-01-01

    The radar absorbing coating was prepared with short carbon fiber asabsorbent and waterborne polyurethane (WPU) as matrix resin. The coating’s absorbing property was tested with vectornetwork analyzer, using aramid honeycomb as air layer which was matched withcarbon fiber coating. The results demonstrate that the single-layered carbonfiber absorbing coating presented relatively poor absorbing property when thelayer was thin, and the performance was slightly improved after the matched airlayer ...

  14. The Okhotsk Plate and the Eurasia-North America plate boundary zone.

    Science.gov (United States)

    Hindle, David; Mackey, Kevin

    2014-05-01

    The Eurasia-North America plate boundary zone transitions from spreading at rates of ~ 25mm/yr in the North Atlantic, to compression at rates of ~ 5mm/yr in the region of the Okhotsk plate. Because the pole of rotation between Eurasia and North America lies more or less on their mutual boundary, there is a linear change in rate along the boundary, and regions near the euler pole are subject to extremely low deformation rates. The Okhotsk - Eurasia - North America triple junction lies slightly south of the rotation pole, placing the Okhotsk plate entirely in a weakly contractional setting. Regions near the triple junction absorb 1mm/yr contraction. Further south, towards the shoreline of the Okhotsk sea, up to 5 mm/yr contraction may be absorbed within the plate. How shortening is accommodated across the boundary remains an open question. One possibility is wholesale extrusion of the entire Okhotsk plate (or possibly its northwestern corner) along two plate boundary strike slip faults (Eurasia-Okhostk and North America Okhotsk). The problem with this model is that the seismic record does not presently clearly support it, with the largest events distributed both within the plate interior and on its boundaries. This may suggest that instead, the Okhotsk plate, and particularly its north-western end, consists of a series of smaller blocks which shuffle against each other, partially accommodating extrusion, but also permitting some internal deformation and change of shape of the Okhotsk plate itself. We present analyses of the very sparse seismic record from the region, as well as geometric-kinematic, tectonic models of the possible deformation of northwest Okhotsk to try to better understand the different probabilities of how this slowly deforming plate boundary zone is behaving.

  15. Subgrid-scale turbulence in shock-boundary layer flows

    Science.gov (United States)

    Jammalamadaka, Avinash; Jaberi, Farhad

    2015-04-01

    Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

  16. The use of staggered scheme and an absorbing buffer zone for computational aeroacoustics

    Science.gov (United States)

    Nark, Douglas M.

    1995-01-01

    Various problems from those proposed for the Computational Aeroacoustics (CAA) workshop were studied using second and fourth order staggered spatial discretizations in conjunction with fourth order Runge-Kutta time integration. In addition, an absorbing buffer zone was used at the outflow boundaries. Promising results were obtained and provide a basis for application of these techniques to a wider variety of problems.

  17. Investigation of a Shock Absorber for Safeguard of Fuel Assemblies Failure

    International Nuclear Information System (INIS)

    Karalevicius, Renatas; Dundulis, Gintautas; Rimkevicius, Sigitas; Uspuras, Eugenijus

    2006-01-01

    The Ignalina NPP has two reactors. The Unit 1 was shut down, therefore the special equipment was designed for transportation of the fuel from Unit 1 to Unit 2. The fuel-loaded basket can drop during transportation. The special shock absorber was designed in order to avoid failure of fuel assemblies during transportation. In case of drop of fuel loaded basket, the failure of fuel assemblies can occur. This shock absorber was studied by scaled experiments at Lithuanian Energy Institute. Static and dynamic investigations of shock absorber are presented in this paper, including dependency of axial force versus axial compression. The finite element codes BRIGADE/Plus and ABAQUS/Explicit were used for analysis. Static simulation was used to optimize the dimensions of shock absorber. Dynamic analysis shows that shock absorber is capable to withstand the dynamic load for successful force suppression function in case of an accident. (authors)

  18. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    Lafferty, R.H.; Smiley, S.H.; Radimer, K.J.

    1976-01-01

    A method is described for recovering UF 6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  19. Scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted cylindrical element

    Science.gov (United States)

    Tang, Zhanqi; Jiang, Nan

    2018-05-01

    This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.

  20. Correlations in the three-dimensional Lyman-alpha forest contaminated by high column density absorbers

    Science.gov (United States)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-05-01

    Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.

  1. Large scale structures in a turbulent boundary layer and their imprint on wall shear stress

    Science.gov (United States)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2015-11-01

    Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  2. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    Directory of Open Access Journals (Sweden)

    S. Haapanala

    2007-01-01

    Full Text Available Boundary layer concentrations of several volatile organic compounds (VOC were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 μg m−2 h−1, α-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene.

  3. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    Science.gov (United States)

    Haapanala, S.; Rinne, J.; Hakola, H.; Hellén, H.; Laakso, L.; Lihavainen, H.; Janson, R.; O'Dowd, C.; Kulmala, M.

    2007-04-01

    Boundary layer concentrations of several volatile organic compounds (VOC) were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 μg m-2 h-1, α-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene.

  4. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    Science.gov (United States)

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  5. Time-reversed absorbing condition: application to inverse problems

    International Nuclear Information System (INIS)

    Assous, F; Kray, M; Nataf, F; Turkel, E

    2011-01-01

    The aim of this paper is to introduce time-reversed absorbing conditions in time-reversal methods. They enable one to 'recreate the past' without knowing the source which has emitted the signals that are back-propagated. We present two applications in inverse problems: the reduction of the size of the computational domain and the determination, from boundary measurements, of the location and volume of an unknown inclusion. The method does not rely on any a priori knowledge of the physical properties of the inclusion. Numerical tests with the wave and Helmholtz equations illustrate the efficiency of the method. This technique is fairly insensitive to noise in the data

  6. Development of CIGS2 solar cells with lower absorber thickness

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S.; Dhere, Neelkanth G. [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Rd., Cocoa, FL 32922 (United States); Moutinho, Helio [National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO 80401 (United States)

    2009-09-15

    The availability and cost of materials, especially of indium can be a limiting factor as chalcopyrite based thin-film solar cells advance in their commercialization. The required amounts of metals can be lowered by using thinner films. When the thickness of the film decreases, there is possibility of remaining only in the small grain region because the coalescence of grains does not have an opportunity to enhance the grain size to the maximum. Solar cell performance in smaller grain chalcopyrite absorber deteriorates due to larger fraction of grain boundaries. Efforts are being made to reduce the thickness while maintaining the comparable performance. This work presents a study of preparation, morphology and other material properties of CIGS2 absorber layers with decreasing thicknesses up to 1.2 {mu}m and its correlation with the device performance. Encouraging results were obtained demonstrating that reasonable solar cell efficiencies (>10%) can be achieved even for thinner CIGS2 thin-film solar cells. (author)

  7. The Effects of Land Surface Heating And Roughness Elements on the Structure and Scaling Laws of Atmospheric Boundary Layer Turbulence

    Science.gov (United States)

    Ghannam, Khaled

    The atmospheric boundary-layer is the lowest 500-2000 m of the Earth's atmosphere where much of human life and ecosystem services reside. This layer responds to land surface (e.g. buoyancy and roughness elements) and slowly evolving free tropospheric (e.g. temperature and humidity lapse rates) conditions that arguably mediate and modulate biosphere-atmosphere interactions. Such response often results in spatially- and temporally-rich turbulence scales that continue to be the subject of inquiry given their significance to a plethora of applications in environmental sciences and engineering. The work here addresses key aspects of boundary layer turbulence with a focus on the role of roughness elements (vegetation canopies) and buoyancy (surface heating) in modifying the well-studied picture of shear-dominated wall-bounded turbulence. A combination of laboratory channel experiments, field experiments, and numerical simulations are used to explore three distinct aspects of boundary layer turbulence. These are: • The concept of ergodicity in turbulence statistics within canopies: It has been long-recognized that homogeneous and stationary turbulence is ergodic, but less is known about the effects of inhomogeneity introduced by the presence of canopies on the turbulence statistics. A high resolution (temporal and spatial) flume experiment is used here to test the convergence of the time statistics of turbulent scalar concentrations to their ensemble (spatio-temporal) counterpart. The findings indicate that within-canopy scalar statistics have a tendency to be ergodic, mostly in shallow layers (close to canopy top) where the sweeping flow events appear to randomize the statistics. Deeper layers within the canopy are dominated by low-dimensional (quasi-deterministic) von Karman vortices that tend to break ergodicity. • Scaling laws of turbulent velocity spectra and structure functions in near-surface atmospheric turbulence: the existence of a logarithmic scaling in the

  8. Necessary and Sufficient Conditions for the Existence of Positive Solution for Singular Boundary Value Problems on Time Scales

    Directory of Open Access Journals (Sweden)

    Meiqiang Feng

    2009-01-01

    Full Text Available By constructing available upper and lower solutions and combining the Schauder's fixed point theorem with maximum principle, this paper establishes sufficient and necessary conditions to guarantee the existence of Cld[0,1]𝕋 as well as CldΔ[0,1]𝕋 positive solutions for a class of singular boundary value problems on time scales. The results significantly extend and improve many known results for both the continuous case and more general time scales. We illustrate our results by one example.

  9. Atomic-scale studies on the effect of boundary coherency on stability in twinned Cu

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Rongmei; Han, Ke, E-mail: han@magnet.fsu.edu; Su, Yi-Feng; Salters, Vincent J. [National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310 (United States)

    2014-01-06

    The stored energy and hardness of nanotwinned (NT) Cu are related to interaction between dislocations and (111)-twin boundaries (TBs) studied at atomic scales by high-angle annular dark-field scanning transmission electron microscope. Lack of mobile dislocations at coherent TBs (CTBs) provides as-deposited NT Cu a rare combination of stability and hardness. The introduction of numerous incoherent TBs (ITBs) reduces both the stability and hardness. While storing more energy in their ITBs than in the CTBs, deformed NT Cu also exhibits high dislocation density and TB mobility and therefore has increased the driving force for recovery, coarsening, and recrystallization.

  10. Atomic-scale studies on the effect of boundary coherency on stability in twinned Cu

    Science.gov (United States)

    Niu, Rongmei; Han, Ke; Su, Yi-Feng; Salters, Vincent J.

    2014-01-01

    The stored energy and hardness of nanotwinned (NT) Cu are related to interaction between dislocations and {111}-twin boundaries (TBs) studied at atomic scales by high-angle annular dark-field scanning transmission electron microscope. Lack of mobile dislocations at coherent TBs (CTBs) provides as-deposited NT Cu a rare combination of stability and hardness. The introduction of numerous incoherent TBs (ITBs) reduces both the stability and hardness. While storing more energy in their ITBs than in the CTBs, deformed NT Cu also exhibits high dislocation density and TB mobility and therefore has increased the driving force for recovery, coarsening, and recrystallization.

  11. Local Food Movements and the Politics of Boundary-Making

    DEFF Research Database (Denmark)

    Müller, Anders Riel

    This paper proposes an analytical framework for comparative studies of local food movements in Scandinavia and East Asia. The framework takes it point of departure in studying local food movements as engaging in political struggles over defining scales. The framework draws on political and economic...... geography theories that argue that scales such as local, regional, national, and global as socially constructed and relational to other scales that compete for dominance. The second part of this analytical framework will discuss scales as socio-political processes of boundary-making i.e. what aspects become...... included in defining a certain scale and what aspects are regarded as external to, or irrelevant, in defining the boundaries of scale. I argue that boundaries can be both material and symbolic/affective that connects the politics of scale to political struggles over society, the environment...

  12. Boundary conditions for plasma fluid models at the magnetic presheath entrance

    International Nuclear Information System (INIS)

    Loizu, J.; Ricci, P.; Halpern, F. D.; Jolliet, S.

    2012-01-01

    The proper boundary conditions at the magnetic presheath entrance for plasma fluid turbulence models based on the drift approximation are derived, focusing on a weakly collisional plasma sheath with T i ≪T e and a magnetic field oblique to a totally absorbing wall. First, the location of the magnetic presheath entrance is rigorously derived. Then boundary conditions at the magnetic presheath entrance are analytically deduced for v ||i , v ||e , n, φ, T e , and for the vorticity ω=∇ ⊥ 2 φ. The effects of E × B and diamagnetic drifts on the boundary conditions are also investigated. Kinetic simulations are performed that confirm the analytical results. Finally, the new set of boundary conditions is implemented in a three-dimensional global fluid code for the simulation of plasma turbulence and, as an example, the results of a tokamak scrape-off layer simulation are discussed. The framework presented can be generalized to obtain boundary conditions at the magnetic presheath entrance in more complex scenarios.

  13. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  14. Parametrization of complex absorbing potentials for time-dependent quantum dynamics

    International Nuclear Information System (INIS)

    Vibok, A.; Balint-Kurti, G.G.

    1992-01-01

    Five different forms of complex absorbing potentials are examined and compared. Such potentials are needed to absorb wavepackets near the edges of grids in time-dependent quantum dynamical calculations. The extent to which the different potentials transmit or reflect an incident wavepacket is quantified, and optimal potential parameters to minimize both the reflection and transmission for each type of potential are derived. A rigorously derived scaling procedure, which permits the derivation of optimal potential parameters for use with any chosen mass or kinetic energy from those optimized for different conditions, is described. Tables are also presented which permit the immediate selection of the parameters for an absorbing potential of a particular form so as to allow a preselected (very small) degree of transmitted plus reflected probability to be attained. It is always desirable to devote a minimal region to the absorbing potential, while at the same time effectively absorbing all of the wavepacket and neither transmitting nor reflecting any of it. The tables presented here enable the use to easily select the potential parameters he will require to attain these goals. 23 refs., 7 figs., 4 tabs

  15. Characterization of grain boundaries in Cu(In,Ga)Se{sub 2} by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Torsten; Cojocaru-Miredin, Oana; Choi, Pyuck-Pa; Raabe, Dierk [Max-Planck Institute for Iron Research GmbH, Duesseldorf (Germany); Wuerz, Roland [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2012-07-01

    Solar cells based on the compound semiconductor Cu(In,Ga)Se{sub 2} (CIGS) as absorber material exhibit the highest efficiency among all thin-film solar cells. This is surprising high in view of the polycrystalline defect-rich structure of the CIGS absorber films. The high efficiency has been commonly ascribed to the diffusion of alkali metal atoms from the soda-lime glass substrate into the CIGS layer, which can render the grain boundaries (GB) electrically inactive. However, the exact mechanisms of how these impurities enhance the cell efficiency are yet to be clarified. As a step towards a better understanding of CIGS solar cells, we have analyzed the composition of solar-grade CIGS layers at the atomic-scale by using pulsed laser Atom Probe Tomography (APT). To perform APT analyses on selected GBs site-specific sample preparation was carried out using the Focused Ion Beam lift-out technique. In addition, Electron Back Scattered Diffraction was performed to characterize the structure and misorientation of selected GBs. Using APT, segregation of impurities at the GBs was directly observed. APT data of various types of GBs are presented and discussed with respect to the possible effects on the cell efficiency.

  16. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  17. Utilizing the meso-scale grain boundary stress to estimate the onset of delamination in 2099-T861 aluminium–lithium

    International Nuclear Information System (INIS)

    McDonald, Russell J; Beaudoin, Armand J

    2010-01-01

    Aluminium–lithium alloys provide a lower density and higher stiffness alternative to other high strength aluminium alloys. However, many Al–Li alloys exhibit a non-traditional failure mechanism called delamination, which refers to the failure of the elongated grain boundary interface. In this investigation, delaminations were observed after cyclic deformation of both uniaxial and torsion experiments. A cyclically stable rate-independent crystal plasticity framework with kinematic hardening was developed to address many experimental trends of stabilized cyclic plasticity. Utilizing this framework, meso-scale grain boundary interface stresses were estimated with uniform deformation and bi-crystal models. These models are computationally amenable to investigate both orientation dependence and the statistical nature of the grain boundary stresses for a given bulk texture and nominal loading. A coupled shear-normal Findley-based damage parameter was formulated to quantitatively characterize the nucleation of delamination consistently with experimental trends

  18. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  19. Realizing high-performance metamaterial absorber based on the localized surface plasmon resonance in the terahertz regime

    Science.gov (United States)

    Yunfeng, Lin; Xiaoqi, Hu; Lin, Hu

    2018-04-01

    A composite structure design metamaterial absorber is designed and simulated. The proposed composite structure consists of a double-hole sub-structure and a double-metallic particle sub-structure. The damping constant of bulk gold layer is optimized to eliminate the adverse effects of the grain boundary and the surface scattering of thin films on the absorption property. Two absorption peaks (A1 = 58%, A2 = 23%) are achieved based on the localized surface plasmon (LSP) modes resonance. Moreover, the plasmonic hybridization phenomenon between LSP modes is found, which leads to the absorption enhancement between two absorption peaks. The proposed metamaterial absorber holds the property of wide-angle incidence.

  20. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  1. A model of anelastic relaxation associated with polygonization boundary

    International Nuclear Information System (INIS)

    Yan, S.C.

    1990-01-01

    A model of anelastic relaxation associated with polygonization boundary is proposed in order to explain internal friction peaks and other experimental phenomena observed recently. The model, which is referred to as vacancy-thermal jog model, shows that under conditions of high temperature and low applied stress with lower frequencies of vibration, thermal jog pairs are generated on dislocation segments of the boundaries. These jogs are in saturation with vacancies in the vicinity of them, and the vacancy current due to the concentration gradient of vacancy drifts among the boundaries. As a result, a diffusional creep is produced and a part of energy is dissipated. For vacancy drift, it is required that the thermal jogs emit (absorb) vacancies, which brings climbing bow of segments into operation, and another part of energy is dissipated so that there are two parts of energy dissipated in the strain process connected with polygonization boundary. Based on this point of view, the mathematical expressions of internal friction and modulus defect associated with polygonization boundary were subsequently derived and found to be in satisfactory agreement with experiments. (author). 13 refs, 6 figs

  2. High spatial resolution measurements of large-scale three-dimensional structures in a turbulent boundary layer

    Science.gov (United States)

    Atkinson, Callum; Buchmann, Nicolas; Kuehn, Matthias; Soria, Julio

    2011-11-01

    Large-scale three-dimensional (3D) structures in a turbulent boundary layer at Reθ = 2000 are examined via the streamwise extrapolation of time-resolved stereo particle image velocimetry (SPIV) measurements in a wall-normal spanwise plane using Taylor's hypothesis. Two overlapping SPIV systems are used to provide a field of view similar to that of direct numerical simulations (DNS) on the order of 50 δ × 1 . 5 δ × 3 . 0 δ in the streamwise, wall-normal and spanwise directions, respectively, with an interrogation window size of 40+ ×20+ ×60+ wall units. Velocity power spectra are compared with DNS to examine the effective resolution of these measurements and two-point correlations are performed to investigate the integral length scales associated with coherent velocity and vorticity fluctuations. Individual coherent structures are detected to provide statistics on the 3D size, spacing, and angular orientation of large-scale structures, as well as their contribution to the total turbulent kinetic energy and Reynolds shear stress. The support of the ARC through Discovery (and LIEF) grants is gratefully acknowledged.

  3. Boundary operators in effective string theory

    Energy Technology Data Exchange (ETDEWEB)

    Hellerman, Simeon [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Swanson, Ian [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2017-04-13

    Various universal features of relativistic rotating strings depend on the organization of allowed local operators on the worldsheet. In this paper, we study the set of Neumann boundary operators in effective string theory, which are relevant for the controlled study of open relativistic strings with freely moving endpoints. Relativistic open strings are thought to encode the dynamics of confined quark-antiquark pairs in gauge theories in the planar approximation. Neumann boundary operators can be organized by their behavior under scaling of the target space coordinates X{sup μ}, and the set of allowed X-scaling exponents is bounded above by +1/2 and unbounded below. Negative contributions to X-scalings come from powers of a single invariant, or “dressing' operator, which is bilinear in the embedding coordinates. In particular, we show that all Neumann boundary operators are dressed by quarter-integer powers of this invariant, and we demonstrate how this rule arises from various ways of regulating the short-distance singularities of the effective theory.

  4. Quantifying the relationship between the plasmapause and the inner boundary of small-scale field-aligned currents, as deduced from Swarm observations

    Science.gov (United States)

    Heilig, Balázs; Lühr, Hermann

    2018-04-01

    This paper presents a statistical study of the equatorward boundary of small-scale field-aligned currents (SSFACs) and investigates the relation between this boundary and the plasmapause (PP). The PP data used for validation were derived from in situ electron density observations of NASA's Van Allen Probes. We confirmed the findings of a previous study by the same authors obtained from the observations of the CHAMP satellite SSFAC and the NASA IMAGE satellite PP detections, namely that the two boundaries respond similarly to changes in geomagnetic activity, and they are closely located in the near midnight MLT sector, suggesting a dynamic linkage. Dayside PP correlates with the delayed time history of the SSFAC boundary. We interpreted this behaviour as a direct consequence of co-rotation: the new PP, formed on the night side, propagates to the dayside by rotating with Earth. This finding paves the way toward an efficient PP monitoring tool based on an SSFAC index derived from vector magnetic field observations at low-Earth orbit.

  5. An ultra-high frequency boundary layer Doppler/interferometric profiler

    International Nuclear Information System (INIS)

    Van Baelen, J.S.

    1994-01-01

    The planetary boundary layer (PBL) is that portion of the earth's atmosphere that is directly influenced by the earth's surface. The PBL can be vigorously turbulent and range in depth from a few hundred meters to a few kilometers. Solar energy is primarily absorbed at the earth's surface and transmitted to the free atmosphere through boundary-layer processes. An accurate portrayal of these transfers within the PBL is crucial to understand and predict many atmospheric processes from pollutant dispersion to numerical weather prediction and numerical simulations of climate change. This paper describes and discusses wind profiling techniques, focusing on the newly developed radio acoustic sounding system (RASS), and reviews past efforts to measure flux within the PBL. A new UHF wind profiling radar, the UHF Doppler/Interferometric Boundary Layer Radar, for accurately measuring both mean and flux quantities, as well as wind divergence and acoustic wave propagation, is outlined

  6. Effect of the bio-absorbent on the microwave absorption property of the flaky CIPs/rubber absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; Xu, Yonggang, E-mail: xuyonggang221@163.com; Cai, Jun; Yuan, Liming; Zhang, Deyuan

    2015-09-01

    Microwave absorbing composites filled with flaky carbonyl iron particles (CIPs) and the bio-absorbent were prepared by using a two-roll mixer and a vulcanizing machine. The electromagnetic (EM) parameters were measured by a vector network analyzer and the reflection loss (RL) was measured by the arch method in the frequency range of 1–4 GHz. The uniform dispersion of the absorbents was verified by comparing the calculated RL with the measured one. The results confirm that as the bio-absorbent was added, the permittivity was increased due to the volume content of absorbents, and the permeability was enlarged owing to the volume content of CIPs and interactions between the two absorbents. The composite filled with bio-absorbents achieved an excellent absorption property at a thickness of 1 mm (minimum RL reaches −7.8 dB), and as the RL was less than −10 dB the absorption band was widest (2.1–3.8 GHz) at a thickness of 2 mm. Therefore, the bio-absorbent is a promising additive candidate on fabricating microwave absorbing composites with a thinner thickness and wider absorption band. - Graphical abstract: Morphology of composites filled with flaky CIPs and the bio-absorbent. The enhancement of bio-absorbent on the electromagnetic absorption property of composites filled with flaky carbonyl iron particles (CIPs) is attributed to the interaction of the two absorbents. The volume content of the FCMPs with the larger shape CIPs play an important role in this effects, the composites filled with irons and bio-absorbents can achieve wider-band and thinner-thickness absorbing materials. - Highlights: • Absorbers filled with bio-absorbents and CIPs was fabricated. • Bio-absorbents enhanced the permittivity and permeability of the composites. • The absorbent interactions play a key role in the enhancement mechanism. • Bio-absorbents enhanced the composite RL in 1–4 GHz.

  7. On the perturbative calculation of the vibration noise by strong absorbers

    International Nuclear Information System (INIS)

    Pazsit, I.; Karlsson, J.

    1997-01-01

    In two previous papers the neutron noise, induced by small vibrations of a strong absorber, was treated (Pazsit 1984, 1988). In these, two different rod models and corresponding different linearization procedures were used. The first, called the Feinberg-Galanin-Williams (FGW) model, uses a δ-function approximation of both the static and the vibrating rod. This model corresponds to preserving the static boundary condition (logarithmic derivative) at the surface of the moving rod. The second, a perturbative approach called the ε/d model, starts with a finite absorber and represents the vibration by two stationary absorbing layers with strengths fluctuating in opposite phase. It was found that these two models lead to differing results, indicating a contradiction. In this paper we show that the reason for this contradiction is that the previous results based on the ε/d model are in error. The error is due to the fact that the effect of the static rod was neglected in the Green's function. The correct ε/d result is calculated here in both one and two dimensions and is shown to be equivalent to the FGW results. This serves also as a confirmation of the two-dimensional FGW result which had earlier been derived only by heuristic arguments. (Author)

  8. Effects of oxygen stoichiometry on the scaling behaviors of YBa2Cu3Ox grain boundary weak-links

    International Nuclear Information System (INIS)

    Wu, K.H.; Fu, C.M.; Jeng, W.J.

    1994-01-01

    The effects of oxygen stoichiometry on the transport properties of the pulsed laser deposited YBa 2 Cu 3 O x bicrystalline grain boundary weak-link junctions were studied. It is found that not only the cross boundary resistive transition foot structure can be manipulated repeatedly with oxygen annealling processes but the junction behaviors are also altered in accordance. In the fully oxygenated state i.e. with x=7.0 in YBa 2 Cu 3 O x stoichiometry, the junction critical current exhibits a power of 2 scaling behavior with temperature. In contrast, when annealed in the conditions of oxygen-deficient state (e.g. with x=6.9 in YBa 2 Cu 3 O x stoichiometry) the junction critical current switches to a linear temperature dependence behavior. The results are tentatively attributed to the modification of the structure in the boundary area upon oxygen annealing, which, in turn, will affect the effective dimension of the geometrically constrained weak-link bridges. The detailed discussion on the responsible physical mechanisms as well as the implications of the present results on device applications will be given

  9. Selective solar absorber coating research at the CSIR (South Africa)

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2011-05-01

    Full Text Available A sol-gel technique has been established at a laboratory scale for low cost production of high efficient selective solar absorbers comprising a composite material of nano-structured carbon in a nickel oxide matrix. In order for these materials...

  10. Electrostatic interactions in finite systems treated with periodic boundary conditions: application to linear-scaling density functional theory.

    Science.gov (United States)

    Hine, Nicholas D M; Dziedzic, Jacek; Haynes, Peter D; Skylaris, Chris-Kriton

    2011-11-28

    We present a comparison of methods for treating the electrostatic interactions of finite, isolated systems within periodic boundary conditions (PBCs), within density functional theory (DFT), with particular emphasis on linear-scaling (LS) DFT. Often, PBCs are not physically realistic but are an unavoidable consequence of the choice of basis set and the efficacy of using Fourier transforms to compute the Hartree potential. In such cases the effects of PBCs on the calculations need to be avoided, so that the results obtained represent the open rather than the periodic boundary. The very large systems encountered in LS-DFT make the demands of the supercell approximation for isolated systems more difficult to manage, and we show cases where the open boundary (infinite cell) result cannot be obtained from extrapolation of calculations from periodic cells of increasing size. We discuss, implement, and test three very different approaches for overcoming or circumventing the effects of PBCs: truncation of the Coulomb interaction combined with padding of the simulation cell, approaches based on the minimum image convention, and the explicit use of open boundary conditions (OBCs). We have implemented these approaches in the ONETEP LS-DFT program and applied them to a range of systems, including a polar nanorod and a protein. We compare their accuracy, complexity, and rate of convergence with simulation cell size. We demonstrate that corrective approaches within PBCs can achieve the OBC result more efficiently and accurately than pure OBC approaches.

  11. A coupled FE and scaled boundary FE-approach for the earthquake response analysis of arch dam-reservoir-foundation system

    International Nuclear Information System (INIS)

    Wang Yi; Lin Gao; Hu Zhiqiang

    2010-01-01

    For efficient and accurate modelling of arch dam-reservoir-foundation system a coupled Finite Element method (FEM) and Scaled Boundary Finite Element method (SBFEM) is developed. Both the dam-foundation interaction and the dam-reservoir interaction including the effect of reservoir boundary absorption are taken into account. The arch dam is modelled by FEM, while the reservoir domain and the unbounded foundation are modelled by SBFEM. In order to make comparison with the results available in the literature, the Morrow Point arch dam is selected for numerical analysis. The analyses are carried out in the frequency domain, and then the time-domain response of the dam-reservoir-foundation system is obtained by Inverse Fourier Transform.

  12. Multiple Positive Solutions of a Nonlinear Four-Point Singular Boundary Value Problem with a p-Laplacian Operator on Time Scales

    Directory of Open Access Journals (Sweden)

    Shihuang Hong

    2009-01-01

    Full Text Available We present sufficient conditions for the existence of at least twin or triple positive solutions of a nonlinear four-point singular boundary value problem with a p-Laplacian dynamic equation on a time scale. Our results are obtained via some new multiple fixed point theorems.

  13. Absorbant materials

    International Nuclear Information System (INIS)

    Quetier, Monique.

    1978-11-01

    Absorbants play a very important part in the nuclear industry. They serve for the control, shut-down and neutron shielding of reactors and increase the capacity of spent fuel storage pools and of special transport containers. This paper surveys the usual absorbant materials, means of obtainment, their essential characteristics relating to their use and their behaviour under neutron irradiation [fr

  14. Thermal boundary conditions for electrons in a weakly ionized gas near a catalytic wall

    International Nuclear Information System (INIS)

    Chekmarev, I.

    1981-01-01

    A technique of matched asymptotic expansions is used to examine the derivation of hydrodynamic transport equations for the external region of a weakly ionized multitemperature gas near an absorbing and conducting wall. An approximate moment solution is constructed for the Knudsen boundary layer. The conditions for the matching of the external and internal expansions lead to a new form of the hydrodynamic boundary conditions, from which the singular behavior of the energy equation for electrons near the wall has been eliminated

  15. Combined conduction and radiation in a two-layer planar medium with flux boundary condition

    International Nuclear Information System (INIS)

    Ho, C.H.; Ozisik, M.N.

    1987-01-01

    The interaction of conduction and radiation is investigated under both transient and steady-state conditions for an absorbing, emitting, and isotropically scattering two-layer slab having opaque coverings at both boundaries. The slab is subjected to an externally applied constant heat flux at one boundary surface and dissipates heat by radiation into external ambients from both boundary surfaces. An analytic approach is applied to solve the radiation part of the problem, and a finite-difference scheme is used to solve the conduction part. The effects of the conduction-to-radiation parameter, the single scattering albedo, the optical thickness, and the surface emissivity on the temperature distribution are examined

  16. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  17. Bristled shark skin: a microgeometry for boundary layer control?

    International Nuclear Information System (INIS)

    Lang, A W; Hidalgo, P; Westcott, M; Motta, P

    2008-01-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry

  18. Direct observation of nanometer-scale amorphous layers and oxide crystallites at grain boundaries in polycrystalline Sr1−xKxFe2As2 superconductors

    KAUST Repository

    Wang, Lei

    2011-06-01

    We report here an atomic resolution study of the structure and composition of the grain boundaries in polycrystallineSr0.6K0.4Fe2As2superconductor. A large fraction of grain boundaries contain amorphous layers larger than the coherence length, while some others contain nanometer-scale crystallites sandwiched in between amorphous layers. We also find that there is significant oxygen enrichment at the grain boundaries. Such results explain the relatively low transport critical current density (Jc) of polycrystalline samples with respect to that of bicrystal films.

  19. Microwave absorptions of ultrathin conductive films and designs of frequency-independent ultrathin absorbers

    International Nuclear Information System (INIS)

    Li, Sucheng; Anwar, Shahzad; Lu, Weixin; Hang, Zhi Hong; Hou, Bo; Shen, Mingrong; Wang, Chin-Hua

    2014-01-01

    We study the absorption properties of ultrathin conductive films in the microwave regime, and find a moderate absorption effect which gives rise to maximal absorbance 50% if the sheet (square) resistance of the film meets an impedance matching condition. The maximal absorption exhibits a frequency-independent feature and takes place on an extremely subwavelength scale, the film thickness. As a realistic instance, ∼5 nm thick Au film is predicted to achieve the optimal absorption. In addition, a methodology based on metallic mesh structure is proposed to design the frequency-independent ultrathin absorbers. We perform a design of such absorbers with 50% absorption, which is verified by numerical simulations

  20. Advances in absorbed dose measurement standards at the australian radiation laboratory

    International Nuclear Information System (INIS)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N.

    1996-01-01

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within ± 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry

  1. Advances in absorbed dose measurement standards at the australian radiation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N. [Australian Radiation Laboratory, Yallambie, VIC (Australia)

    1996-12-31

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within {+-} 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry.

  2. Conformal boundary loop models

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Saleur, Hubert

    2008-01-01

    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling

  3. Design and proof of concept of an innovative very high temperature ceramic solar absorber

    Science.gov (United States)

    Leray, Cédric; Ferriere, Alain; Toutant, Adrien; Olalde, Gabriel; Peroy, Jean-Yves; Chéreau, Patrick; Ferrato, Marc

    2017-06-01

    Hybrid solar gas-turbine (HSGT) is an attractive technology to foster market penetration of CSP. HSGT offers some major advantages like for example high solar-to-electric conversion efficiency, reduced water requirement and low capital cost. A very high temperature solar receiver is needed when elevated solar share is claimed. A few research works, as reported by Karni et al. [8] and by Buck et al. [1], have been dedicated to solar receiver technologies able to deliver pressurized air at temperature above 750°C. The present work focuses on research aiming at developing an efficient and reliable solar absorber able to provide pressurized air at temperature up to 1000°C and more. A surface absorber technology is selected and a modular design of receiver is proposed in which each absorber module is made of BOOSTEC® SiC ceramic (silicon carbide) as bulk material with straight air channels inside. Early stage experimental works done at CNRS/PROMES on lab-scale absorbers showed that the thermo-mechanical behavior of this material is a critical issue, resulting in elevated probability of failure under severe conditions like large temperature gradient or steep variation of solar flux density in situations of cloud covering. This paper reports on recent progress made at CNRS/PROMES to address this critical issue. The design of the absorber has been revised and optimized according to thermo-mechanical numerical simulations, and an experimental proof of concept has been done on a pilot-scale absorber module at Themis solar tower facility.

  4. Rotor blade boundary layer measurement hardware feasibility demonstration

    Science.gov (United States)

    Clark, D. R.; Lawton, T. D.

    1972-01-01

    A traverse mechanism which allows the measurement of the three dimensional boundary layers on a helicopter rotor blade has been built and tested on a full scale rotor to full scale conditions producing centrifugal accelerations in excess of 400 g and Mach numbers of 0.6 and above. Boundary layer velocity profiles have been measured over a range of rotor speeds and blade collective pitch angles. A pressure scanning switch and transducer were also tested on the full scale rotor and found to be insensitive to centrifugal effects within the normal main rotor operating range. The demonstration of the capability to measure boundary layer behavior on helicopter rotor blades represents the first step toward obtaining, in the rotating system, data of a quality comparable to that already existing for flows in the fixed system.

  5. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  6. Transient, Small-Scale Field-Aligned Currents in the Plasma Sheet Boundary Layer During Storm Time Substorms

    Science.gov (United States)

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.; hide

    2016-01-01

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  7. Spatio-temporal characteristics of large scale motions in a turbulent boundary layer from direct wall shear stress measurement

    Science.gov (United States)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2016-11-01

    Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  8. An Experimental Study into the Scaling of an Unswept-Sharp-Fin-Generated Shock/Turbulent Boundary Layer Interaction.

    Science.gov (United States)

    1983-01-01

    Influence Scaling of 2D and 3D Shock/Turbulent ioundary Layer Interactions at Compression Corners." AIM Paper 81-334, January 1981. 5. Kubota, H...generating 3D shock wave/boundary layer interactions 2 Unswept sharp fin interaction and coordinate system 3 Cobra probe measurements of Peake (4) at Mach 4...were made by two Druck 50 PSI transducers, each in- stalled in a computer-controlled 48-port Model 48J4 Scani- valve and referenced to vacuum. A 250

  9. Attractor of Beam Equation with Structural Damping under Nonlinear Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Danxia Wang

    2015-01-01

    Full Text Available Simultaneously, considering the viscous effect of material, damping of medium, and rotational inertia, we study a kind of more general Kirchhoff-type extensible beam equation utt-uxxtt+uxxxx-σ(∫0l‍(ux2dxuxx-ϕ(∫0l‍(ux2dxuxxt=q(x, in  [0,L]×R+ with the structural damping and the rotational inertia term. Little attention is paid to the longtime behavior of the beam equation under nonlinear boundary conditions. In this paper, under nonlinear boundary conditions, we prove not only the existence and uniqueness of global solutions by prior estimates combined with some inequality skills, but also the existence of a global attractor by the existence of an absorbing set and asymptotic compactness of corresponding solution semigroup. In addition, the same results also can be proved under the other nonlinear boundary conditions.

  10. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer

    International Nuclear Information System (INIS)

    Jian, Han; Nan, Jiang

    2008-01-01

    Experimental measurement of hypersonic boundary layer stability and transition on a sharp cone with a half angle of 5° is carried out at free-coming stream Mach number 6 in a hypersonic wind tunnel. Mean and fluctuation surface-thermal-flux characteristics of the hypersonic boundary layer flow are measured by Pt-thin-film thermocouple temperature sensors installed at 28 stations on the cone surface along longitudinal direction. At hypersonic speeds, the dominant flow instabilities demonstrate that the growth rate of the second mode tends to exceed that of the low-frequency mode. Wavelet-based cross-spectrum technique is introduced to obtain the multi-scale cross-spectral characteristics of the fluctuating signals in the frequency range of the second mode. Nonlinear interactions both of the second mode disturbance and the first mode disturbance are demonstrated to be dominant instabilities in the initial stage of laminar-turbulence transition for hypersonic shear flow. (fundamental areas of phenomenology (including applications))

  11. Evaluation of the Autoparametric Pendulum Vibration Absorber for a Duffing System

    Directory of Open Access Journals (Sweden)

    Benjamın Vazquez-Gonzalez

    2008-01-01

    Full Text Available In this work we study the frequency and dynamic response of a damped Duffing system attached to a parametrically excited pendulum vibration absorber. The multiple scales method is applied to get the autoparametric resonance conditions and the results are compared with a similar application of a pendulum absorber for a linear primary system. The approximate frequency analysis reveals that the nonlinear dynamics of the externally excited system are suppressed by the pendulum absorber and, under this condition, the primary Duffing system yields a time response almost equivalent to that obtained for a linear primary system, although the absorber frequency response is drastically modified and affected by the cubic stiffness, thus modifying the jumps defined by the fixed points. In the absorber frequency response can be appreciated a good absorption capability for certain ranges of nonlinear stiffness and the internal coupling is maintained by the existing damping between the pendulum and the primary system. Moreover, the stability of the coupled system is also affected by some extra fixed points introduced by the cubic stiffness, which is illustrated with several amplitude-force responses. Some numerical simulations of the approximate frequency responses and dynamic behavior are performed to show the steady-state and transient responses.

  12. Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys

    Science.gov (United States)

    Li, Hui; Xia, Shuang; Liu, Wenqing; Liu, Tingguang; Zhou, Bangxin

    2013-08-01

    Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni-Cr-Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni-Cr-Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni-Cr-Fe alloys were carried out based on the experimental results. The impurity and solute atoms segregate inhomogeneously in the same grain boundary both in 304 SS and Alloy 690. The grain boundary segregation tendencies (Sav) are B (11.8 ± 1.4) > P (5.4 ± 1.4) > N (4.7 ± 0.3) > C (3.7 ± 0.4) in 304 SS, and B (6.9 ± 0.9) > C (6.7 ± 0.4) > Si (1.5 ± 0.2) in Alloy 690. Cr atoms may co-segregate with C atoms at grain boundaries before carbide nucleation at the grain boundaries both in 304 SS and Alloy 690. Ni atoms generally deplete at grain boundary both in 304 SS and Alloy 690. The literature shows that the Ni atoms may co-segregate with P atoms at grain boundaries [28], but the P atoms segregation do not leads to Ni segregation in the current study. In the current study, Fe atoms may segregate or deplete at grain boundary in Alloy 690. But Fe atoms generally deplete at grain boundary in 304 SS. B atoms have the strongest grain boundary segregation tendency both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of B in 304 SS is higher than in Alloy 690. C atoms are easy to segregate at grain boundaries both in 304 SS and Alloy 690. The grain boundary segregation

  13. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  14. Reflection measurements of microwave absorbers

    Science.gov (United States)

    Baker, Dirk E.; van der Neut, Cornelis A.

    1988-12-01

    A swept-frequency interferometer is described for making rapid, real-time assessments of localized inhomogeneities in planar microwave absorber panels. An aperture-matched exponential horn is used to reduce residual reflections in the system to about -37 dB. This residual reflection is adequate for making comparative measurements on planar absorber panels whose reflectivities usually fall in the -15 to -25 dB range. Reflectivity measurements on a variety of planar absorber panels show that multilayer Jaumann absorbers have the greatest inhomogeneity, while honeycomb absorbers generally have excellent homogeneity within a sheet and from sheet to sheet. The test setup is also used to measure the center frequencies of resonant absorbers. With directional couplers and aperture-matched exponential horns, the technique can be easily applied in the standard 2 to 40 GHz waveguide bands.

  15. WARM GAS IN THE VIRGO CLUSTER. I. DISTRIBUTION OF Lyα ABSORBERS

    International Nuclear Information System (INIS)

    Yoon, Joo Heon; Putman, Mary E.; Bryan, Greg L.; Thom, Christopher; Chen, Hsiao-Wen

    2012-01-01

    The first systematic study of the warm gas (T = 10 4–5 K) distribution across a galaxy cluster is presented using multiple background QSOs in and around the Virgo Cluster. We detect 25 Lyα absorbers (N HI = 10 13.1–15.4 cm –2 ) in the Virgo velocity range toward 9 of 12 QSO sightlines observed with the Cosmic Origin Spectrograph, with a cluster impact parameter range of 0.36-1.65 Mpc (0.23-1.05 R vir ). Including 18 Lyα absorbers previously detected by STIS or GHRS toward 7 of 11 background QSOs in and around the Virgo Cluster, we establish a sample of 43 absorbers toward a total of 23 background probes for studying the incidence of Lyα absorbers in and around the Virgo Cluster. With these absorbers, we find (1) warm gas is predominantly in the outskirts of the cluster and avoids the X-ray-detected hot intracluster medium (ICM). Also, Lyα absorption strength increases with cluster impact parameter. (2) Lyα-absorbing warm gas traces cold H I-emitting gas in the substructures of the Virgo Cluster. (3) Including the absorbers associated with the surrounding substructures, the warm gas covering fraction (100% for N HI > 10 13.1 cm –2 ) is in agreement with cosmological simulations. We speculate that the observed warm gas is part of large-scale gas flows feeding the cluster both in the ICM and galaxies.

  16. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  17. Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale

    Science.gov (United States)

    Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm

    2016-11-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.

  18. PWR burnable absorber evaluation

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Weader, R.J.; Malone, J.P.

    1995-01-01

    The purpose of the study was to evaluate the relative neurotic efficiency and fuel cycle cost benefits of PWR burnable absorbers. Establishment of reference low-leakage equilibrium in-core fuel management plans for 12-, 18- and 24-month cycles. Review of the fuel management impact of the integral fuel burnable absorber (IFBA), erbium and gadolinium. Calculation of the U 3 O 8 , UF 6 , SWU, fuel fabrication, and burnable absorber requirements for the defined fuel management plans. Estimation of fuel cycle costs of each fuel management plan at spot market and long-term market fuel prices. Estimation of the comparative savings of the different burnable absorbers in dollar equivalent per kgU of fabricated fuel. (author)

  19. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  20. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  1. Vertical Sampling Scales for Atmospheric Boundary Layer Measurements from Small Unmanned Aircraft Systems (sUAS

    Directory of Open Access Journals (Sweden)

    Benjamin L. Hemingway

    2017-09-01

    Full Text Available The lowest portion of the Earth’s atmosphere, known as the atmospheric boundary layer (ABL, plays an important role in the formation of weather events. Simple meteorological measurements collected from within the ABL, such as temperature, pressure, humidity, and wind velocity, are key to understanding the exchange of energy within this region, but conventional surveillance techniques such as towers, radar, weather balloons, and satellites do not provide adequate spatial and/or temporal coverage for monitoring weather events. Small unmanned aircraft, or aerial, systems (sUAS provide a versatile, dynamic platform for atmospheric sensing that can provide higher spatio-temporal sampling frequencies than available through most satellite sensing methods. They are also able to sense portions of the atmosphere that cannot be measured from ground-based radar, weather stations, or weather balloons and have the potential to fill gaps in atmospheric sampling. However, research on the vertical sampling scales for collecting atmospheric measurements from sUAS and the variabilities of these scales across atmospheric phenomena (e.g., temperature and humidity is needed. The objective of this study is to use variogram analysis, a common geostatistical technique, to determine optimal spatial sampling scales for two atmospheric variables (temperature and relative humidity captured from sUAS. Results show that vertical sampling scales of approximately 3 m for temperature and 1.5–2 m for relative humidity were sufficient to capture the spatial structure of these phenomena under the conditions tested. Future work is needed to model these scales across the entire ABL as well as under variable conditions.

  2. Three dimensional grain boundary modeling in polycrystalline plasticity

    Science.gov (United States)

    Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman

    2018-05-01

    At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.

  3. PN solutions of radiative heat transfer in a slab with reflective boundaries

    International Nuclear Information System (INIS)

    Atalay, M.A.

    2006-01-01

    The spherical harmonics method is used to obtain solution for the radiative heat transfer equation for a slab with reflective boundaries. An absorbing, emitting, non-isothermal, gray medium is considered with linearly anisotropic scattering. Under the condition of the thermal equilibrium, the slab boundaries are subjected to specular and diffuse reflection. The analytical form of solutions is obtained for both conservative and non-conservative cases. The accuracy of the method was verified by benchmark comparisons against the solutions of an earlier work performed by the normal-mode expansion technique. The present predictions of heat flux were found to be in good agreement with the benchmark data. a

  4. Atomic-scale processes revealing dynamic twin boundary strengthening mechanisms in face-centered cubic materials

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.

    2012-01-01

    We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.

  5. A parametric study of adverse pressure gradient turbulent boundary layers

    International Nuclear Information System (INIS)

    Monty, J.P.; Harun, Z.; Marusic, I.

    2011-01-01

    There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.

  6. Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Stefano Serafin

    2018-03-01

    Full Text Available The exchange of heat, momentum, and mass in the atmosphere over mountainous terrain is controlled by synoptic-scale dynamics, thermally driven mesoscale circulations, and turbulence. This article reviews the key challenges relevant to the understanding of exchange processes in the mountain boundary layer and outlines possible research priorities for the future. The review describes the limitations of the experimental study of turbulent exchange over complex terrain, the impact of slope and valley breezes on the structure of the convective boundary layer, and the role of intermittent mixing and wave–turbulence interaction in the stable boundary layer. The interplay between exchange processes at different spatial scales is discussed in depth, emphasizing the role of elevated and ground-based stable layers in controlling multi-scale interactions in the atmosphere over and near mountains. Implications of the current understanding of exchange processes over mountains towards the improvement of numerical weather prediction and climate models are discussed, considering in particular the representation of surface boundary conditions, the parameterization of sub-grid-scale exchange, and the development of stochastic perturbation schemes.

  7. Grain-boundary microchemistry and intergranular cracking of irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Kassner, T.F.

    1993-01-01

    Constant-extension-rate tensile tests and grain-boundary analysis by Auger electron spectroscopy were conducted on high and commercial-purity (HP and CP) Type 304 stainless steel (SS) specimens from irradiated boiling-water reactor (BWR) components to identify the mechanisms of irradiation-assisted stress corrosion cracking (IASCC). Contrary to previous beliefs, susceptibility to intergranular fracture could not be correlated with radiation-induced segregation of impurities such as Si, P, C, or S, but a correlation was obtained with grain-boundary Cr concentration, indicating a role for Cr depletion. Detailed analysis of grain-boundary chemistry was conducted on BWR neutron absorber tubes that were fabricated from two similar heats of HP Type 304 SS of virtually identical bulk chemical composition but exhibiting a significant difference in susceptibility to IASCC after irradiation to ∼2 x 10 21 n/cm 2 (E > 1 MeV). Grain-boundary concentrations of Cr Ni, Si, P, S, and C of the cracking-resistant and -susceptible HP heats were virtually identical. However, grain boundaries of the cracking-resistant material contained less N and more B and Li than those of the cracking-susceptible material. This observation indicates that, besides the deleterious effect of grain-boundary Cr depletion, a synergism between grain-boundary segregation of N and B and transmutation to H and Li plays an important role in IASCC

  8. Grain-size distributions and grain boundaries of chalcopyrite-type thin films

    International Nuclear Information System (INIS)

    Abou-Ras, D.; Schorr, S.; Schock, H.W.

    2007-01-01

    CuInSe 2 , CuGaSe 2 , Cu(In,Ga)Se 2 and CuInS 2 thin-film solar absorbers in completed solar cells were studied in cross section by means of electronbackscatter diffraction. From the data acquired, grain-size distributions were extracted, and also the most frequent grain boundaries were determined. The grain-size distributions of all chalcopyrite-type thin films studied can be described well by lognormal distribution functions. The most frequent grainboundary types in these thin films are 60 - left angle 221 right angle tet and 71 - left angle 110 right angle tet (near) Σ3 twin boundaries. These results can be related directly to the importance of {112} tet planes during the topotactical growth of chalcopyrite-type thin films. Based on energetic considerations, it is assumed that the most frequent twin boundaries exhibit a 180 - left angle 221 right angle tet constellation. (orig.)

  9. One-dimensional quantum walk with a moving boundary

    International Nuclear Information System (INIS)

    Kwek, Leong Chuan; Setiawan

    2011-01-01

    Quantum walks are interesting models with potential applications to quantum algorithms and physical processes such as photosynthesis. In this paper, we study two models of one-dimensional quantum walks, namely, quantum walks with a moving absorbing wall and quantum walks with one stationary and one moving absorbing wall. For the former, we calculate numerically the survival probability, the rate of change of average position, and the rate of change of standard deviation of the particle's position in the long time limit for different wall velocities. Moreover, we also study the asymptotic behavior and the dependence of the survival probability on the initial particle's state. While for the latter, we compute the absorption probability of the right stationary wall for different velocities and initial positions of the left wall boundary. The results for these two models are compared with those obtained for the classical model. The difference between the results obtained for the quantum and classical models can be attributed to the difference in the probability distributions.

  10. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  11. Simulating faults and plate boundaries with a transversely isotropic plasticity model

    Science.gov (United States)

    Sharples, W.; Moresi, L. N.; Velic, M.; Jadamec, M. A.; May, D. A.

    2016-03-01

    In mantle convection simulations, dynamically evolving plate boundaries have, for the most part, been represented using an visco-plastic flow law. These systems develop fine-scale, localized, weak shear band structures which are reminiscent of faults but it is a significant challenge to resolve the large- and the emergent, small-scale-behavior. We address this issue of resolution by taking into account the observation that a rock element with embedded, planar, failure surfaces responds as a non-linear, transversely isotropic material with a weak orientation defined by the plane of the failure surface. This approach partly accounts for the large-scale behavior of fine-scale systems of shear bands which we are not in a position to resolve explicitly. We evaluate the capacity of this continuum approach to model plate boundaries, specifically in the context of subduction models where the plate boundary interface has often been represented as a planar discontinuity. We show that the inclusion of the transversely isotropic plasticity model for the plate boundary promotes asymmetric subduction from initiation. A realistic evolution of the plate boundary interface and associated stresses is crucial to understanding inter-plate coupling, convergent margin driven topography, and earthquakes.

  12. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation

    Science.gov (United States)

    Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong

    2016-11-01

    This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.

  13. Influence of different boundary conditions on analysis of SSI

    International Nuclear Information System (INIS)

    Wang Jiachun

    2005-01-01

    In the discussions of structural response to earthquakes, it has been assumed that the foundation medium is very stiff and that the seismic motions applied at the structure support points are the same as the free-field earthquake motions at those locations; in other words, the effects of soil structure interaction (SSI) have been neglected. However, its effects can be significant when the structure supported on a soft soil. Structures on the ground are affected by ground motion when there is seismic loading. The inability of the foundation to resist to deformation of soil would cause huge damages on the structures. The different codes and boundary conditions affect on analysis results of SSI. A comparison of the reactor buildings response as predicted by CLASSI and FLUSH shows substantial differences. To absorb, rather than reflect, the outwardly radiated energy, transmitting boundary conditions and soil structure interface should be taken into consideration in analysis of SSI. The paper discusses influence of several different boundary conditions on analysis of SSI. (author)

  14. Experiments with Point Absorber Type Wave Energy Converters in a Large-Scale Wave Basin

    DEFF Research Database (Denmark)

    Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim

    2014-01-01

    climate at an installation site, as well as on the overall power absorption of the WEC array. Experiments have been performed in the Shallow Water Wave Basin of DHI (Denmark) to study such "WEC array effects". Large arrays of up to 25 heaving point absorber type WECs have been tested for a range...

  15. Transformation method for the MIRD absorbed fractions as applied to various physiques

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi

    1978-01-01

    This study concerns with the transformation method of the MIRD absorbed fraction (AF) to the AF corresponding to an individual having the dimensions different from those of the MIRD standard man. The absorbed dose of a target organ T from a source organs S, received by the administration of a radiopharmaceutical agent is expressed with the equilibrium absorbed dose constant, the cumulative activity in the S, and the specific absorbed fraction (SAF). It is dealt only with how the MIRD SAF data can be modified for estimating individual SAF values. The SAF for individuals is given for penetrating and non-penetrating radiations. In case of the penetrating radiation, the SAF is given from the corresponding MIRD SAF by using a transformation coefficient for the MIRD SAF, when the MIRD standard man is transfigured to a corresponding phantom of an individual by the scale factors selected separately for the head section, trunk section and leg section of the MIRD standard man. The obtained results were compared with the ORNL results, and showed good agreement. (Kato, T.)

  16. Convection Cells in the Atmospheric Boundary Layer

    Science.gov (United States)

    Fodor, Katherine; Mellado, Juan-Pedro

    2017-04-01

    In dry, shear-free convective boundary layers (CBLs), the turbulent flow of air is known to organise itself on large scales into coherent, cellular patterns, or superstructures, consisting of fast, narrow updraughts and slow, wide downdraughts which together form circulations. Superstructures act as transport mechanisms from the surface to the top of the boundary layer and vice-versa, as opposed to small-scale turbulence, which only modifies conditions locally. This suggests that a thorough investigation into superstructure properties may help us better understand transport across the atmospheric boundary layer as a whole. Whilst their existence has been noted, detailed studies into superstructures in the CBL have been scarce. By applying methods which are known to successfully isolate similar large-scale patterns in turbulent Rayleigh-Bénard convection, we can assess the efficacy of those detection techniques in the CBL. In addition, through non-dimensional analysis, we can systematically compare superstructures in various convective regimes. We use direct numerical simulation of four different cases for intercomparison: Rayleigh-Bénard convection (steady), Rayleigh-Bénard convection with an adiabatic top lid (quasi-steady), a stably-stratified CBL (quasi-steady) and a neutrally-stratified CBL (unsteady). The first two are non-penetrative and the latter two penetrative. We find that although superstructures clearly emerge from the time-mean flow in the non-penetrative cases, they become obscured by temporal averaging in the CBL. This is because a rigid lid acts to direct the flow into counter-rotating circulation cells whose axis of rotation remains stationary, whereas a boundary layer that grows in time and is able to entrain fluid from above causes the circulations to not only grow in vertical extent, but also to move horizontally and merge with neighbouring circulations. Spatial filtering is a useful comparative technique as it can be performed on boundary

  17. Boundary crossover in semi-infinite non-equilibrium growth processes

    International Nuclear Information System (INIS)

    Allegra, Nicolas; Fortin, Jean-Yves; Henkel, Malte

    2014-01-01

    The growth of stochastic interfaces in the vicinity of a boundary and the non-trivial crossover towards the behaviour deep in the bulk are analysed. The causal interactions of the interface with the boundary lead to a roughness larger near to the boundary than deep in the bulk. This is exemplified in the semi-infinite Edwards–Wilkinson model in one dimension, from both its exact solution and numerical simulations, as well as from simulations on the semi-infinite one-dimensional Kardar–Parisi–Zhang model. The non-stationary scaling of interface heights and widths is analysed and a universal scaling form for the local height profile is proposed. (paper)

  18. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    Science.gov (United States)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2012-04-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  19. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hee Dong; Han, Seul Gi; Lee, Sang Dong; Kim, Ki Hong; Ryu, Eag Hyang; Park, Hwa Gyu [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2014-10-15

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al{sup 27}, C{sup 12}, B{sup 11}, B{sup 10} and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B{sup 10} content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B{sup 10} content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B{sup 10} content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B{sup 10} content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 10{sup 10} order, however, usual neutron flux from spent fuel is 10{sup 8} order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B{sup 10} content is little decreased, so, initial neutron absorbing ability could be kept continuously.

  20. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  1. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooher, G.I.

    1979-01-01

    A neutron absorbing article, in flat plate form and suitable for use in a storage rack for spent fuel, includes boron carbide particles, diluent particles and a solid, irreversibly cured phenolic polymer cured to a continuous matrix binding the boron carbide and diluent particles. The total conent of boron carbide and diluent particles is a major proportion of the article and the content of cured phenolic polymer present is a minor proportion. By regulation of the ratio of boron carbide particles to diluent particles, normally within the range of 1:9 and 9:1 and preferably within the range of 1:5 to 5:1, the neutron absorbing activity of the product may be controlled, which facilitates the manufacture of articles of particular absorbing activities best suitable for specific applications

  2. The Effect of Aerosol on Gravity Wave Characteristics above the Boundary Layer over a Tropical Location

    Science.gov (United States)

    Rakshit, G.; Jana, S.; Maitra, A.

    2017-12-01

    The perturbations of temperature profile over a location give an estimate of the potential energy of gravity waves propagating through the atmosphere. Disturbances in the lower atmosphere due to tropical deep convection, orographic effects and various atmospheric disturbances generates of gravity waves. The present study investigates the gravity wave energy estimated from fluctuations in temperature profiles over the tropical location Kolkata (22°34' N, 88°22' E). Gravity waves are most intense during the pre-monsoon period (March-June) at the present location, the potential energy having high values above the boundary layer (2-4 km) as observed from radiosonde profiles. An increase in temperature perturbation, due to high ambient temperature in the presence of heat absorbing aerosols, causes an enhancement in potential energy. As the present study location is an urban metropolitan city experiencing high level of pollution, pollutant aerosols can go much above the normal boundary layer during daytime due to convection causing an extended boundary layer. The Aerosol Index (AAI) obtained from Global Ozone Monitoring Experiment-2 (GOME-2) on MetOp-A platform at 340 nm and 380 nm confirms the presence of absorbing aerosol particles over the present location. The Hysplit back trajectory analysis shows that the aerosol particles at those heights are of local origin and are responsible for depleting liquid water content due to cloud burning. The aerosol extinction coefficient obtained from CALIPSO data exhibits an increasing trend during 2006-2016 accompanied by a similar pattern of gravity wave energy. Thus the absorbing aerosols have a significant role in increasing the potential energy of gravity wave at an urban location in the tropical region.

  3. Atomic scale study of grain boundary segregation before carbide nucleation in Ni–Cr–Fe Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui, E-mail: huili@shu.edu.cn [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Institute of Materials, Shanghai University, Shanghai 200072 (China); Xia, Shuang [Institute of Materials, Shanghai University, Shanghai 200072 (China); Liu, Wenqing [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Liu, Tingguang; Zhou, Bangxin [Institute of Materials, Shanghai University, Shanghai 200072 (China)

    2013-08-15

    Highlights: • Impurities segregated at grain boundaries were observed by atom probe tomography. • The comparison of segregation features in two Ni–Cr–Fe alloys was studied by APT. • C and Cr atoms co-segregated at grain boundaries before carbide precipitation. -- Abstract: Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni–Cr–Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni–Cr–Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni–Cr–Fe alloys were carried out based on the experimental results.

  4. Implementation of a boundary element method to solve for the near field effects of an array of WECs

    Science.gov (United States)

    Oskamp, J. A.; Ozkan-Haller, H. T.

    2010-12-01

    When Wave Energy Converters (WECs) are installed, they affect the shoreline wave climate by removing some of the wave energy which would have reached the shore. Before large WEC projects are launched, it is important to understand the potential coastal impacts of these installations. The high cost associated with ocean scale testing invites the use of hydrodynamic models to play a major role in estimating these effects. In this study, a wave structure interaction program (WAMIT) is used to model an array of WECs. The program predicts the wave field throughout the array using a boundary element method to solve the potential flow fluid problem, taking into account the incident waves, the power dissipated, and the way each WEC moves and interacts with the others. This model is appropriate for a small domain near the WEC array in order to resolve the details in the interactions, but not extending to the coastline (where the far-field effects must be assessed). To propagate these effects to the coastline, the waves leaving this small domain will be used as boundary conditions for a larger model domain which will assess the shoreline effects caused by the array. The immediate work is concerned with setting up the WAMIT model for a small array of point absorbers. A 1:33 scale lab test is planned and will provide data to validate the WAMIT model on this small domain before it is nested with the larger domain to estimate shoreline effects.

  5. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Jagiello, J.; Lipinska, L. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2015-04-07

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (F{sub rep}) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest F{sub rep} was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PM fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.

  6. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    Science.gov (United States)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  7. Squeezing of open boundaries by Maxwell-consistent real coordinate transformation

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry

    2006-01-01

    To emulate open boundaries within a finite computational domain, real-function coordinate transformation consistent with generally covariant Maxwell equations is proposed. The mapping-realized with arctangent function here-has a transparent geometric meaning of pure squeezing of coordinates, does...... not introduce artificially lossy layers (or "lossy coordinates") to absorb outgoing radiation, nor lead to spurious non-Maxwellian fields. In finite-difference frequency-domain calculations on staggered grid, clear superiority over perfectly matched layers is demonstrated by the proposed technique, at a lower...

  8. HESS Opinions: A planetary boundary on freshwater use is misleading

    Science.gov (United States)

    Heistermann, Maik

    2017-07-01

    In 2009, a group of prominent Earth scientists introduced the planetary boundaries (PB) framework: they suggested nine global control variables, and defined corresponding thresholds which, if crossed, could generate unacceptable environmental change. The concept builds on systems theory, and views Earth as a complex adaptive system in which anthropogenic disturbances may trigger non-linear, abrupt, and irreversible changes at the global scale, and push the Earth system outside the stable environmental state of the Holocene. While the idea has been remarkably successful in both science and policy circles, it has also raised fundamental concerns, as the majority of suggested processes and their corresponding planetary boundaries do not operate at the global scale, and thus apparently lack the potential to trigger abrupt planetary changes. This paper picks up the debate with specific regard to the planetary boundary on global freshwater use. While the bio-physical impacts of excessive water consumption are typically confined to the river basin scale, the PB proponents argue that water-induced environmental disasters could build up to planetary-scale feedbacks and system failures. So far, however, no evidence has been presented to corroborate that hypothesis. Furthermore, no coherent approach has been presented to what extent a planetary threshold value could reflect the risk of regional environmental disaster. To be sure, the PB framework was revised in 2015, extending the planetary freshwater boundary with a set of basin-level boundaries inferred from environmental water flow assumptions. Yet, no new evidence was presented, either with respect to the ability of those basin-level boundaries to reflect the risk of regional regime shifts or with respect to a potential mechanism linking river basins to the planetary scale. So while the idea of a planetary boundary on freshwater use appears intriguing, the line of arguments presented so far remains speculative and

  9. Siegmund duality with applications to the neutral Moran model conditioned on never being absorbed

    International Nuclear Information System (INIS)

    Huillet, Thierry

    2010-01-01

    We first consider the classical neutral Moran model with two alleles whose fate is either to become extinct or to reach fixation. We study an ergodic version of the Moran model obtained by conditioning it to never hit the boundaries, making use of a Doob transform. We call it the recurrent Moran model. We show that the Siegmund dual of the recurrent Moran process exists and is a substochastic birth and death chain. Conditioning this process to exit in its natural absorbing state, we construct a process with a unique absorbing state which is intertwined to the original recurrent Moran process. The time needed for the intertwined process to first hit its absorbing state is related to the time needed to reach stationarity for the recurrent Moran process. Using spectral information on the intertwined chain, we extract limiting information on this first hitting time that shows that there is no abrupt relaxation to equilibrium for the recurrent Moran chain. This makes use of the relation between duality and intertwining and strong stationary times. Other related transition times of the recurrent Moran chain are also briefly investigated, namely the first return time to the ground state and the expected time needed to move from one end to the other end of the state space.

  10. A multi-scale modeling of surface effect via the modified boundary Cauchy-Born model

    Energy Technology Data Exchange (ETDEWEB)

    Khoei, A.R., E-mail: arkhoei@sharif.edu; Aramoon, A.

    2012-10-01

    In this paper, a new multi-scale approach is presented based on the modified boundary Cauchy-Born (MBCB) technique to model the surface effects of nano-structures. The salient point of the MBCB model is the definition of radial quadrature used in the surface elements which is an indicator of material behavior. The characteristics of quadrature are derived by interpolating data from atoms laid in a circular support around the quadrature, in a least-square scene. The total-Lagrangian formulation is derived for the equivalent continua by employing the Cauchy-Born hypothesis for calculating the strain energy density function of the continua. The numerical results of the proposed method are compared with direct atomistic and finite element simulation results to indicate that the proposed technique provides promising results for modeling surface effects of nano-structures. - Highlights: Black-Right-Pointing-Pointer A multi-scale approach is presented to model the surface effects in nano-structures. Black-Right-Pointing-Pointer The total-Lagrangian formulation is derived by employing the Cauchy-Born hypothesis. Black-Right-Pointing-Pointer The radial quadrature is used to model the material behavior in surface elements. Black-Right-Pointing-Pointer The quadrature characteristics are derived using the data at the atomistic level.

  11. Dynamics of Coronal Hole Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, A. K.; Zurbuchen, T. H. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Antiochos, S. K.; DeVore, C. R. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wyper, P. F. [Universities Space Research Association, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2017-03-10

    Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.

  12. Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectrics

    Directory of Open Access Journals (Sweden)

    Han Li

    2017-12-01

    Full Text Available Thermoelectric semiconductors based on CoSb3 hold the best promise for recovering industrial or automotive waste heat because of their high efficiency and relatively abundant, lead-free constituent elements. However, higher efficiency is needed before thermoelectrics reach economic viability for widespread use. In this study, n-type InxCeyCo4Sb12+z skutterudites with high thermoelectric performance are produced by combining several phonon scattering mechanisms in a panoscopic synthesis. Using melt spinning followed by spark plasma sintering (MS-SPS, bulk InxCeyCo4Sb12+z alloys are formed with grain boundaries decorated with nano-phase of InSb. The skutterudite matrix has grains on a scale of 100–200 nm and the InSb nano-phase with a typical size of 5–15 nm is evenly dispersed at the grain boundaries of the skutterudite matrix. Coupled with the presence of defects on the Sb sublattice, this multi-scale nanometer structure is exceptionally effective in scattering phonons and, therefore, InxCeyCo4Sb12/InSb nano-composites have very low lattice thermal conductivity and high zT values reaching in excess of 1.5 at 800 K.

  13. A Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer

    Science.gov (United States)

    Parsakhoo, Zahra; Shao, Yaping

    2017-04-01

    Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).

  14. Comments on deriving the equilibrium height of the stable boundary layer

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2007-01-01

    Recently, the equilibrium height of the stable boundary layer received much attention in a series of papers by Zilitinkevich and co-workers. In these studies the stable boundary-layer height is derived in terms of inverse interpolation of different boundary-layer height scales, each representing a

  15. A suitable boundary condition for bounded plasma simulation without sheath resolution

    International Nuclear Information System (INIS)

    Parker, S.E.; Procassini, R.J.; Birdsall, C.K.; Cohen, B.I.

    1993-01-01

    We have developed a technique that allows for a sheath boundary layer without having to resolve the inherently small space and time scales of the sheath region. We refer to this technique as the logical sheath boundary condition. This boundary condition, when incorporated into a direct-implicit particle code, permits large space- and time-scale simulations of bounded systems, which would otherwise be impractical on current supercomputers. The lack of resolution of the collector sheath potential drop obtained from conventional implicit simulations at moderate values of ω pe Δt and Δz/λ De provides the motivation for the development of the logical sheath boundary condition. The algorithm for use of the logical sheath boundary condition in a particle simulation is presented. Results from simulations which use the logical sheath boundary condition are shown to compare reasonably well with those from an analytic theory and simulations in which the sheath is resolved

  16. Radiation sterilization of absorbent cotton and of absorbent gauze

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari; Oka, Mitsuru; Kaneko, Akira; Ishiwata, Hiroshi.

    1986-01-01

    The bioburden of absorbent cotton and of absorbent gauze and their physical and chemical characteristics after irradiation are investigated. The survey conducted on contaminants of 1890 cotton samples from 53 lots and 805 gauze samples from 56 lots showed maximum numbers of microbes per g of the cotton and gauze were 859 (an average of 21.4) and 777 (an average of 42.2), respectively. Isolation and microbiological and biochemical tests of representative microbes indicated that all of them, except one, were bacilli. The sterilization dose at 10 -6 of sterlity assurance level was found to be 2.0 Mrad when irradiated the spores loaded on paper strips and examined populations having graded D values from 0.10 to 0.28 Mrad. The sterilization dose would be about 1.5 Mrad if subjected the average numbers of contaminants observed in this study to irradiation. No significant differences were found between the irradiated samples and control up to 2 Mrad in tensile strength, change of color, absorbency, sedimentation rate, soluble substances, and pH of solutions used for immersion and other tests conventionally used. These results indicate that these products can be sterilized by irradiation. (author)

  17. Optimum Design of a Nonlinear Vibration Absorber Coupled to a Resonant Oscillator: A Case Study

    Directory of Open Access Journals (Sweden)

    H. F. Abundis-Fong

    2018-01-01

    Full Text Available This paper presents the optimal design of a passive autoparametric cantilever beam vibration absorber for a linear mass-spring-damper system subject to harmonic external force. The design of the autoparametric vibration absorber is obtained by using an approximation of the nonlinear frequency response function, computed via the multiple scales method. Based on the solution given by the perturbation method mentioned above, a static optimization problem is formulated in order to determine the optimum parameters (mass and length of the nonlinear absorber which minimizes the steady state amplitude of the primary mass under resonant conditions; then, a PZT actuator is cemented to the base of the beam, so the nonlinear absorber is made active, thus enabling the possibility of controlling the effective stiffness associated with the passive absorber and, as a consequence, the implementation of an active vibration control scheme able to preserve, as possible, the autoparametric interaction as well as to compensate varying excitation frequencies and parametric uncertainty. Finally, some simulations and experimental results are included to validate and illustrate the dynamic performance of the overall system.

  18. Polarization reversal of electron cyclotron wave due to radial boundary condition

    International Nuclear Information System (INIS)

    Takahashi, K.; Kaneko, T.; Hatakeyama, R.

    2004-01-01

    The electron cyclotron wave is an important plasma wave in the fields of basic plasma physics and nuclear fusion. Propagation and absorption of electromagnetic waves with electron cyclotron resonance (ECR) frequency are experimentally and theoretically investigated for the case of inhomogeneously magnetized plasma column with peripheral vacuum layer, when a left-hand polarized wave (LHPW) is selectively launched. The polarization reversal from the LHPW to the right-hand polarized wave is found to occur near the ECR point. As a result, it is clarified that the LHPW, which has been considered not to be absorbed at the ECR point, is absorbed near the ECR point. The phenomena can be explained by taking into account the effects of the radial boundary conditions. In addition, it is found that the polarization reversal point can be adjusted by the external parameters, for example, plasma radius. (authors)

  19. Preparation of Active Absorbent for Flue Gas Desulfurization From Coal Bottom Ash: Effect of Absorbent Preparation Variables

    Directory of Open Access Journals (Sweden)

    Chang Chin Li, Lee Keat Teong, Subhash Bhatia and Abdul Rahman Mohamed

    2012-08-01

    Full Text Available An active absorbent for flue gas desulfurization was prepared from coal bottom ash, calcium oxide (CaO and calcium sulfate by hydro-thermal process. The absorbent was examined for its micro-structural properties. The experiments conducted were based on Design Of Experiments (DOE according to 23 factorial design. The effect of various absorbent preparation variables such as ratio of CaO to bottom ash (A, hydration temperature (B and hydration period (C towards the BET (Brunauer-Emmett-Teller specific surface area of the absorbent were studied. At a CaO to bottom ash ratio = 2, hydration temperature = 200 ?C and hydration period = 10 hrs, absorbent with a surface area of 90.1 m2/g was obtained. Based on the analysis of the factorial design, it was concluded that factor A and C as well as the interaction of factors ABC and BC are the significant factors that effect the BET surface area of the absorbent. A linear mathematical model that describes the relation between the independent variables and interaction between variables towards the BET specific surface area of the absorbent was also developed. Analysis of variance (ANOVA showed that the model was significant at 1% level.Key Words: Absorbent, Bottom Ash, Design Of Experiments, Desulfurization, Surface Area.

  20. Multi-scale model analysis of boundary layer ozone over East Asia

    Directory of Open Access Journals (Sweden)

    M. Lin

    2009-05-01

    Full Text Available This study employs the regional Community Multiscale Air Quality (CMAQ model to examine seasonal and diurnal variations of boundary layer ozone (O3 over East Asia. We evaluate the response of model simulations of boundary layer O3 to the choice of chemical mechanisms, meteorological fields, boundary conditions, and model resolutions. Data obtained from surface stations, aircraft measurements, and satellites are used to advance understanding of O3 chemistry and mechanisms over East Asia and evaluate how well the model represents the observed features. Satellite measurements and model simulations of summertime rainfall are used to assess the impact of the Asian monsoon on O3 production. Our results suggest that summertime O3 over Central Eastern China is highly sensitive to cloud cover and monsoonal rainfall over this region. Thus, accurate simulation of the East Asia summer monsoon is critical to model analysis of atmospheric chemistry over China. Examination of hourly summertime O3 mixing ratios from sites in Japan confirms the important role of diurnal boundary layer fluctuations in controlling ground-level O3. By comparing five different model configurations with observations at six sites, the specific mechanisms responsible for model behavior are identified and discussed. In particular, vertical mixing, urban chemistry, and dry deposition depending on boundary layer height strongly affect model ability to capture observed behavior. Central Eastern China appears to be the most sensitive region in our study to the choice of chemical mechanisms. Evaluation with TRACE-P aircraft measurements reveals that neither the CB4 nor the SAPRC99 mechanisms consistently capture observed behavior of key photochemical oxidants in springtime. However, our analysis finds that SAPRC99 performs somewhat better in simulating mixing ratios of H2O2 (hydrogen peroxide

  1. Spatially resolved mapping of electrical conductivity across individual domain (grain) boundaries in graphene.

    Science.gov (United States)

    Clark, Kendal W; Zhang, X-G; Vlassiouk, Ivan V; He, Guowei; Feenstra, Randall M; Li, An-Ping

    2013-09-24

    All large-scale graphene films contain extended topological defects dividing graphene into domains or grains. Here, we spatially map electronic transport near specific domain and grain boundaries in both epitaxial graphene grown on SiC and CVD graphene on Cu subsequently transferred to a SiO2 substrate, with one-to-one correspondence to boundary structures. Boundaries coinciding with the substrate step on SiC exhibit a significant potential barrier for electron transport of epitaxial graphene due to the reduced charge transfer from the substrate near the step edge. Moreover, monolayer-bilayer boundaries exhibit a high resistance that can change depending on the height of substrate step coinciding at the boundary. In CVD graphene, the resistance of a grain boundary changes with the width of the disordered transition region between adjacent grains. A quantitative modeling of boundary resistance reveals the increased electron Fermi wave vector within the boundary region, possibly due to boundary induced charge density variation. Understanding how resistance change with domain (grain) boundary structure in graphene is a crucial first step for controlled engineering of defects in large-scale graphene films.

  2. RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds

    Science.gov (United States)

    Vogelmann, Andrew M.; McFarquhar, Greg M.; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, Graham; Long, Charles N.; Jonsson, Haflidi H.; Bucholtz, Anthony; Collins, Don R.; hide

    2012-01-01

    Small boundary-layer clouds are ubiquitous over many parts of the globe and strongly influence the Earths radiative energy balance. However, our understanding of these clouds is insufficient to solve pressing scientific problems. For example, cloud feedback represents the largest uncertainty amongst all climate feedbacks in general circulation models (GCM). Several issues complicate understanding boundary-layer clouds and simulating them in GCMs. The high spatial variability of boundary-layer clouds poses an enormous computational challenge, since their horizontal dimensions and internal variability occur at spatial scales much finer than the computational grids used in GCMs. Aerosol-cloud interactions further complicate boundary-layer cloud measurement and simulation. Additionally, aerosols influence processes such as precipitation and cloud lifetime. An added complication is that at small scales (order meters to 10s of meters) distinguishing cloud from aerosol is increasingly difficult, due to the effects of aerosol humidification, cloud fragments and photon scattering between clouds.

  3. Atomic investigation of alloying Cr, Ti, Y additions in a grain boundary of vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengbo, E-mail: zhangpb@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Li, Xiaojie; Zhao, Jijun [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Zheng, Pengfei; Chen, Jiming [Southwestern Institute of Physics, Chengdu 610041 (China)

    2016-01-15

    The effect of alloying additions (Cr, Ti and Y) in a vanadium (V) ∑3 (111) grain boundary (GB) is investigated by first-principles calculations. To determine site preference and segregation properties of Cr, Ti and Y in the GB and bulk, we calculate the formation energies and segregation energies for different interstitial and substitutional sites. Cr/Ti/Y atom prefers to segregate to the substitutional sites of the GB from bulk environment, whereas Cr segregation to GB is very weak. Based on the Rice and Wang's model, Cr acts as the GB cohesion, while Ti and Y are strong embrittlers. The analysis of atomic and electronic structures provides a reasonable expansion for the embrittlement behavior. Moreover, the effect of Cr, Ti and Y in the GB on solution of interstitial impurities C, N, O, H, and He are determined. The results show that Cr restrains solution of these impurities in the GB, while Ti tends to form Ti–N complex by absorbing N impurities and Y can absorbs O and He impurities. The present calculations are helpful for understanding the behavior of alloying Cr, Ti, Y additions at the grain boundary of vanadium.

  4. A discontinuous galerkin time domain-boundary integral method for analyzing transient electromagnetic scattering

    KAUST Repository

    Li, Ping

    2014-07-01

    This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.

  5. Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers

    Science.gov (United States)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  6. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1983-01-01

    A neutron-absorber body for use in burnable poison rods in a nuclear reactor. The body is composed of a matrix of Al 2 O 3 containing B 4 C, the neutron absorber. Areas of high density polycrystalline Al 2 O 3 particles are predominantly encircled by pores in some of which there are B 4 C particles. This body is produced by initially spray drying a slurry of A1 2 O 3 powder to which a binder has been added. The powder of agglomerated spheres of the A1 2 O 3 with the binder are dry mixed with B 4 C powder. The mixed powder is formed into a green body by isostatic pressure and the green body is sintered. The sintered body is processed to form the neutron-absorber body. In this case the B 4 C particles are separate from the spheres resulting from the spray drying instead of being embedded in the sphere

  7. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  8. Incorporation of exact boundary conditions into a discontinuous galerkin finite element method for accurately solving 2d time-dependent maxwell equations

    KAUST Repository

    Sirenko, Kostyantyn; Liu, Meilin; Bagci, Hakan

    2013-01-01

    A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing

  9. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  10. Interplanetary sector boundaries 1971--1973

    International Nuclear Information System (INIS)

    Klein, L.; Burlaga, L.F.

    1980-01-01

    Eighteen interplanetary sector boundary crossings observed at 1 AU during the period January 1971 to January 1974 by the magnetometer on the Imp 6 spacecraft was discussed. The events were examined on many different time scales ranging from days on either side of the boundary to high-resolution measurements of 12.5 vectors per second. Two categories of boundaries were found, one group being relatively thin (averaging approx. =10 4 km) and the other being thick (averaging approx. =10 6 km). In many cases the field vector rotated in a plane from polarity to the other. Only two of the transitions were null sheets. Using the minimum variance analysis to determine the normals to the plane of rotationa and assuming that this is the same as the normal to the sector boundary surface, it was found that the normals were close to ( 0 ) the ecliptic plane. The high inclination of the sector boundary surfaces during 1971--1973 verifies a published prediction and may be related to the presence of large equatorial coronal holes at this time. An analysis of tangential discontinuities contained in 4-day periods about our events showed that their orientations were generally not related to the orientations of the sector boundary surface, but rather their characteristics were about the same as those for discontinuities outside the sector boundaries. Magnetic holes were found in thick sector boundaries, at a rate about 3 times that elsewhere. The holes were especially prevalent near stream interfaces, suggesting that they might be related to the convergence and/or slip of adjacent solar wind streams

  11. Role of residual layer and large-scale phenomena on the evolution of the boundary layer

    NARCIS (Netherlands)

    Blay, E.; Pino, D.; Vilà-Guerau de Arellano, J.; Boer, van de A.; Coster, de O.; Faloona, I.; Garrouste, O.; Hartogensis, O.K.

    2012-01-01

    Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed.

  12. Boundary condition histograms for modulated phases

    International Nuclear Information System (INIS)

    Benakli, M.; Gabay, M.; Saslow, W.M.

    1997-11-01

    Boundary conditions strongly affect the results of numerical computations for finite size inhomogeneous or incommensurate structures. We present a method which allows to deal with this problem, both for ground state and for critical properties: it combines fluctuating boundary conditions and specific histogram techniques. Our approach concerns classical as well as quantum systems. In particular, current-current correlation functions, which probe large scale coherence of the states, can be accurately evaluated. We illustrate our method on a frustrated two dimensional XY model. (author)

  13. Twin Positive Solutions of a Nonlinear m-Point Boundary Value Problem for Third-Order p-Laplacian Dynamic Equations on Time Scales

    Directory of Open Access Journals (Sweden)

    Wei Han

    2008-01-01

    Full Text Available Several existence theorems of twin positive solutions are established for a nonlinear m-point boundary value problem of third-order p-Laplacian dynamic equations on time scales by using a fixed point theorem. We present two theorems and four corollaries which generalize the results of related literature. As an application, an example to demonstrate our results is given. The obtained conditions are different from some known results.

  14. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  15. The Bottom Boundary Layer

    Science.gov (United States)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  16. Radioactive iodine absorbing properties of tetrathiafulvalene

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tomiyasu; Nakamura, Asao (Ajinomoto Co. Inc., Kawasaki, Kanagawa (Japan). Central Research Labs.); Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake

    1989-05-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and /sup 125/I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author).

  17. Radioactive iodine absorbing properties of tetrathiafulvalene

    International Nuclear Information System (INIS)

    Ito, Tomiyasu; Nakamura, Asao; Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake.

    1989-01-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and 125 I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author)

  18. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooker, G.I.

    1981-01-01

    A neutron-absorbing article suitable for use in spent fuel racks is described. It comprises boron carbide particles, diluent particles, and a phenolic polymer cured to a continuous matrix. The diluent may be silicon carbide, graphite, amorphous carbon, alumina, or silica. The combined boron carbide-diluent phase contains no more than 2 percent B 2 O 3 , and the neutron-absorbing article contains from 20 to 40 percent phenol resin. The ratio of boron carbide to diluent particles is in the range 1:9 to 9:1

  19. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  20. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Muhunthan, N.; Singh, Om Pal [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India); Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N., E-mail: singhvn@nplindia.org [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India)

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  1. Time scales of critical events around the Cretaceous-Paleogene boundary

    NARCIS (Netherlands)

    Renne, P.R.; Deino, A.L.; Hilgen, F.J.; Kuiper, K.F.; Mark, D.F.; Mitchell III, W.S.; Morgan, L.; Mundil, R.; Smit, J.

    2013-01-01

    Mass extinctions manifest in Earth's geologic record were turning points in biotic evolution. We present 40Ar/39Ar data that establish synchrony between the Cretaceous-Paleogene boundary and associated mass extinctions with the Chicxulub bolide impact to within 32,000 years. Perturbation of the

  2. Open boundary condition, Wilson flow and the scalar glueball mass

    International Nuclear Information System (INIS)

    Chowdhury, Abhishek; Harindranath, A.; Maiti, Jyotirmoy

    2014-01-01

    A major problem with periodic boundary condition on the gauge fields used in current lattice gauge theory simulations is the trapping of topological charge in a particular sector as the continuum limit is approached. To overcome this problem open boundary condition in the temporal direction has been proposed recently. One may ask whether open boundary condition can reproduce the observables calculated with periodic boundary condition. In this work we find that the extracted lowest glueball mass using open and periodic boundary conditions at the same lattice volume and lattice spacing agree for the range of lattice scales explored in the range 3 GeV≤(1/a)≤5 GeV. The problem of trapping is overcome to a large extent with open boundary and we are able to extract the glueball mass at even larger lattice scale ≈ 5.7 GeV. To smoothen the gauge fields we have used recently proposed Wilson flow which, compared to HYP smearing, exhibits better systematics in the extraction of glueball mass. The extracted glueball mass shows remarkable insensitivity to the lattice spacings in the range explored in this work, 3 GeV≤(1/a)≤5.7 GeV.

  3. Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow

    Science.gov (United States)

    Yang, X. I. A.; Marusic, I.; Meneveau, C.

    2016-06-01

    Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2 uz(x ) uz(x +r ) >, new logarithmic laws in two-point statistics such as uz4(x ) > 1 /2, 1/3, etc. can be derived using the HRAP formalism. Supporting empirical evidence for the logarithmic scaling in such statistics is found from the Melbourne High Reynolds Number Boundary Layer Wind Tunnel measurements. We also show that, at high Reynolds numbers, the above mentioned new logarithmic laws can be derived by assuming the arrival of an attached eddy at a generic point in the flow field to be a Poisson process [Woodcock and Marusic, Phys. Fluids 27, 015104 (2015), 10.1063/1.4905301]. Taken together, the results provide new evidence supporting the essential ingredients of the attached eddy hypothesis to describe streamwise velocity fluctuations of large, momentum transporting eddies in wall-bounded turbulence, while observed deviations suggest the need for further extensions of the

  4. Turbulent Helicity in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chkhetiani, Otto G.; Kurgansky, Michael V.; Vazaeva, Natalia V.

    2018-05-01

    We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654-671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl's jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.

  5. Scaling of Polymer Degradation Rate within a High-Reynolds-Number Turbulent Boundary Layer

    Science.gov (United States)

    Elbing, Brian; Solomon, Michael; Perlin, Marc; Dowling, David; Ceccio, Steven

    2009-11-01

    An experiment conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model produced the first quantitative measurements of polymer molecular weight within a turbulent boundary layer. Testing was conducted at speeds to 20 m/s and downstream distance based Reynolds numbers to 220 million. These results showed that the rate of polymer degradation by scission of the polymer chains increases with increased speed, downstream distance and surface roughness. With the surface fully rough at 20 m/s there was no measureable level of drag reduction at the first measurement location (0.56 m downstream of injection). These results are scaled with the assumption that the rate of degradation is dependent on the polymer residence time in the flow and the local shear rate. A successful collapse of the data within the measurement uncertainty was achieved over a range of flow speed (6.6 to 20 m/s), surface roughness (smooth and fully rough) and downstream distance from injection (0.56 to 9.28 m).

  6. Low Absorbance Measurements

    Science.gov (United States)

    Harris, T. D.; Williams, A. M.

    1983-10-01

    The application of low absorption measurements to dilute solute determination requires specific instrumental characteristics. The use of laser intracavity absorption and thermal lens calorimetry to measure concentration is shown. The specific operating parameters that determine sensitivity are delineated along with the limits different measurement strategies impose. Finally areas of improvement in components that would result in improve sensitivity, accuracy, and reliability are discussed. During the past decade, a large number of methods have been developed for measuring the light absorbed by transparent materials. These include measurements on gases, liquids, and solids. The activity has been prompted by a variety of applications and a similar variety of disciplines. In Table 1 some representative examples of these methods is shown along with their published detection limits.1 It is clear that extraordinarily small absorbances can be measured. Most of the methods can be conveniently divided into two groups. These groups are those that measure the transmission of the sample and those that measure the light absorbed by the sample. The light absorbed methods are calorimetric in character. The advantages and disadvantages of each method varies depending on the principal application for which they were developed. The most prevalent motivation has been to characterize the bulk optical properties of transparent materials. Two examples are the development of extremely transparent glasses for use as fiber optic materials and the development of substrates for high power laser operation.

  7. Competing boundary interactions in a Josephson junction network with an impurity

    International Nuclear Information System (INIS)

    Giuliano, Domenico; Sodano, Pasquale

    2010-01-01

    We analyze a perturbation of the boundary Sine-Gordon model where two boundary terms of different periodicities and scaling dimensions are coupled to a Kondo-like spin degree of freedom. We show that, by pertinently engineering the coupling with the spin degree of freedom, a competition between the two boundary interactions may be induced, and that this gives rise to nonperturbative phenomena, such as the emergence of novel quantum phases: indeed, we demonstrate that the strongly coupled fixed point may become unstable as a result of the 'deconfinement' of a new set of phase-slip operators - the short instantons - associated with the less relevant boundary operator. We point out that a Josephson junction network with a pertinent impurity located at its center provides a physical realization of this boundary double Sine-Gordon model. For this Josephson junction network, we prove that the competition between the two boundary interactions stabilizes a robust finite coupling fixed point and, at a pertinent scale, allows for the onset of 4e superconductivity.

  8. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  9. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1990-10-01

    The selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts. 3 refs., 3 figs

  10. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Grusell, Erik

    2015-01-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  11. Effect of pyrophyllite filler treatment toward water absorbance rate of SAPC and its application test

    International Nuclear Information System (INIS)

    Jadigia Ginting

    2015-01-01

    An optimization treatment to pyrophyllite filler has been done to synthesis super absorbent polymers composite (SAPC) with copolymerization of acrylic. Pyrophyllite is one of a silicate mineral with chemical formula Al 2 Si 4 O 10 (OH) 2 having a reactive functional group -OH that easily making a bonding and therefore it is suitable for water absorbance materials. The pyrophyllite were studied as its weight composition and its powder-size in the SAPC preparation. To obtain the fine-size, the filler pyrophyllite were milled with high energy mechanical milling (HEMM) into divers hours of milling. The syntheses were carried out by using the settle method from Chemicals Engineering group of ITB Bandung. The samples of SAPC-prflt were then characterized with fourier-transform infra red spectroscopy (FTIR), Xray diffraction (XRD) and scanning electron microscopy(SEM). Effect of filler treatment toward water absorbance rate is the SAPC-prflt with 0.5 gr filler having the highest gradient absorbance 1,610; SAPC prflt which milled for 9 hours has gradient absorbance 1,526; SAPC-prflt after hot water test at 40°C has gradient absorbence 2,241 and SAPC-prflt as pampers test has the gradient absorbance 1,607. XRD data analysis showed a broad peak 2 θ at scale 5 w which correspond to the micrographs picture of the sample which has 0.5 gr filler pyrophyllite and sample after milled for 9 hours, that proposed increase the sample strength and stability which induce the increasing of its water absorbance.

  12. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    The existence of ionized X-ray absorbing layers of gas along the line of sight to the nuclei of Seyfert galaxies is a well established observational fact. This material is systematically outflowing and shows a large range in parameters. However, its actual nature and dynamics are still not clear. In order to gain insights into these important issues we performed a literature search for papers reporting the parameters of the soft X-ray warm absorbers (WAs) in 35 type 1 Seyferts and compared their properties to those of the ultra-fast outflows (UFOs) detected in the same sample. The fraction of sources with WAs is >60 per cent, consistent with previous studies. The fraction of sources with UFOs is >34 per cent, >67 per cent of which also show WAs. The large dynamic range obtained when considering all the absorbers together, spanning several orders of magnitude in ionization, column, velocity and distance allows us, for the first time, to investigate general relations among them. In particular, we find significant correlations indicating that the closer the absorber is to the central black hole, the higher the ionization, column, outflow velocity and consequently the mechanical power. In all the cases, the absorbers continuously populate the whole parameter space, with the WAs and the UFOs lying always at the two ends of the distribution. These evidence strongly suggest that these absorbers, often considered of different types, could actually represent parts of a single large-scale stratified outflow observed at different locations from the black hole. The UFOs are likely launched from the inner accretion disc and the WAs at larger distances, such as the outer disc and/or torus. We argue that the observed parameters and correlations are, to date, consistent with both radiation pressure through Compton scattering and magnetohydrodynamic processes contributing to the outflow acceleration, the latter playing a major role. Most of the absorbers, especially the UFOs, show

  13. A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems

    International Nuclear Information System (INIS)

    Yoon, Sang-Hee; Park, Sungmin

    2011-01-01

    A woodpecker is known to drum the hard woody surface of a tree at a rate of 18 to 22 times per second with a deceleration of 1200 g, yet with no sign of blackout or brain damage. As a model in nature, a woodpecker is studied to find clues to develop a shock-absorbing system for micromachined devices. Its advanced shock-absorbing mechanism, which cannot be explained merely by allometric scaling, is analyzed in terms of endoskeletal structures. In this analysis, the head structures (beak, hyoid, spongy bone, and skull bone with cerebrospinal fluid) of the golden-fronted woodpecker, Melanerpes aurifrons, are explored with x-ray computed tomography images, and their shock-absorbing mechanism is analyzed with a mechanical vibration model and an empirical method. Based on these analyses, a new shock-absorbing system is designed to protect commercial micromachined devices from unwanted high-g and high-frequency mechanical excitations. The new shock-absorbing system consists of close-packed microglasses within two metal enclosures and a viscoelastic layer fastened by steel bolts, which are biologically inspired from a spongy bone contained within a skull bone encompassed with the hyoid of a woodpecker. In the experimental characterizations using a 60 mm smoothbore air-gun, this bio-inspired shock-absorbing system shows a failure rate of 0.7% for the commercial micromachined devices at 60 000 g, whereas a conventional hard-resin method yields a failure rate of 26.4%, thus verifying remarkable improvement in the g-force tolerance of the commercial micromachined devices.

  14. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al 2 O 3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B 4 C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  15. Absorbing multicultural states in the Axelrod model

    Science.gov (United States)

    Vazquez, Federico; Redner, Sidney

    2005-03-01

    We determine the ultimate fate of a limit of the Axelrod model that consists of a population of leftists, centrists, and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (similarly for a centrist and a rightist), but leftists and rightists do not interact. This interaction is applied repeatedly until the system can no longer evolve. The constraint between extremists can lead to a frustrated final state where the system consists of only leftists and rightists. In the mean field limit, we can view the evolution of the system as the motion of a random walk in the 3-dimensional space whose coordinates correspond to the density of each species. We find the exact final state probabilities and the time to reach consensus by solving for the first-passage probability of the random walk to the corresponding absorbing boundaries. The extension to a larger number of states will be discussed. This approach is a first step towards the analytic solution of Axelrod-like models.

  16. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  17. Toroidal current asymmetry and boundary conditions in disruptions

    Science.gov (United States)

    Strauss, Henry

    2014-10-01

    It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the plasma current. The toroidal current asymmetry ΔIϕ is proportional to the vertical current moment ΔMIZ , with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was claimed that this could only be explained by Hiro current. It is shown that instead it is essentially a kinematic effect produced by the VDE displacement of a 3D magnetic perturbation. This is verified by M3D simulations. The simulation results do not require penetration of plasma into the boundary, as in the Hiro current model. It is shown that the normal velocity perpendicular to the magnetic field vanishes at the wall, in the small Larmor radius limit of electromagnetic sheath boundary conditions. Plasma is absorbed into the wall only via the parallel velocity, which is small, penetrates only an infinitesimal distance into the wall, and does not affect forces exerted by the plasma on the wall. Supported by USDOE and ITER.

  18. Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries.

    Science.gov (United States)

    Shafiey, Hassan; Gan, Xinjun; Waxman, David

    2017-11-01

    To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.

  19. Defects and boundary layers in non-Euclidean plates

    International Nuclear Information System (INIS)

    Gemmer, J A; Venkataramani, S C

    2012-01-01

    We investigate the behaviour of non-Euclidean plates with constant negative Gaussian curvature using the Föppl–von Kármán reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. In particular we show that are only two types of global minimizers—deformations that remain flat and saddle shaped deformations with isolated regions of stretching near the edge of the annulus. We also show that there exist local minimizers with a periodic profile that have additional boundary layers near their lines of inflection. These additional boundary layers are a new phenomenon in thin elastic sheets and are necessary to regularize jump discontinuities in the azimuthal curvature across lines of inflection. We rigorously derive scaling laws for the width of these boundary layers as a function of the thickness of the sheet. (paper)

  20. Dynamic testing of airplane shock-absorbing struts

    Science.gov (United States)

    Langer, P; Thome, W

    1932-01-01

    Measurement of perpendicular impacts of a landing gear with different shock-absorbing struts against the drum testing stand. Tests were made with pneumatic shock absorbers having various degrees of damping, liquid shock absorbers, steel-spring shock absorbers and rigid struts. Falling tests and rolling tests. Maximum impact and gradual reduction of the impacts in number and time in the falling tests. Maximum impact and number of weaker impacts in rolling tests.

  1. Liquid absorber experiments in ZED-2

    International Nuclear Information System (INIS)

    McDonnell, F.N.

    1975-07-01

    A set of liquid absorber experiments was performed in ZED-2 to provide data with which to test the adequacy of calculational methods for zone controller and refuelling studies associated with advanced reactor concepts. The absorber consisted of a full length aluminum tube, containing either i)H 2 O, ii)H 2 O + boron (2.5 mg/ml) or iii)H 2 O + boron (8.0 mg/ml). The tube was suspended vertically at interstitial or in-channel locations. A U-tube absorber was also simulated using two absorber tubes with appropriate spacers. Experiments were carried out at two different square lattice pitches, 22.86 and 27.94 cm. Measurements were made of the reactivity effects of the absorbers and, in some cases, of the detailed flux distribution near the perturbation. The results from one calculational method, the source-sink approach, were compared with the data from selected experiments. (author)

  2. A chiral microwave absorbing absorbent of Fe–CoNiP coated on spirulina

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: xuyonggang221@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yuan, Liming [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Zhang, Deyuan [School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 (China)

    2015-11-15

    A chiral bio-absorbent of Fe–CoNiP coated on the spirulina was fabricated by the electroless and chemical vapor decomposition. The scanning electron microscopy (SEM) was used to evaluate the spirulina cells particle morphology. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The permittivity and permeability was measured by a vector network analyzer in frequency 8–18 GHz, and the reflection loss (RL) was calculated. The results showed the carbonyl iron particles (CIPs) and CoNiP were bonded to the spirulina surface, the permittivity and permeability could be enlarged as Fe films coated on the particles compared with the CoNiP spirulina, it was attributed to the excellent electromagnetic property of CIPs. The chiral Fe–CoNiP composites had a better absorbing property at 8–18 GHz than the CoNiP spirulina composite, the RL was −16.26 dB at 10.48 GHz, the absorbing band was 9.5–11.5 GHz of RL less than −10 dB, which indicated the Fe–CoNiP spirulina could be an effective absorbent used in 8–18 GHz. - Highlights: • Absorbers filled with Fe–CoNiP coating on the spirulina were fabricated. • The permittivity and permeability increased as CIPs coated. • The Fe material enhanced the electromagnetic property. • The spirulina coated Fe–CoNiP was effective in 8–18 GHz.

  3. Absorber rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    Acher, H.

    1985-01-01

    The invention concerns a further addition to the invention of DE 33 42 830 A1. The free contact of the hollow piston with the nut due to hydraulic pressure is replaced by a hydraulic or spring attachment. The pressure system required to produce the hydraulic pressure is therefore omitted, and the electrical power required for driving the pump or the mass flow is also omitted. The absorber rod slotted along its longitudinal axis is replaced by an absorber rod, in the longitudinal axis of which a hollow piston is connected together with the absorber rod. This makes the absorber rod more stable, and assembly is simplified. (orig./HP) [de

  4. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    Science.gov (United States)

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  5. Spark formation as a moving boundary process

    Science.gov (United States)

    Ebert, Ute

    2006-03-01

    The growth process of spark channels recently becomes accessible through complementary methods. First, I will review experiments with nanosecond photographic resolution and with fast and well defined power supplies that appropriately resolve the dynamics of electric breakdown [1]. Second, I will discuss the elementary physical processes as well as present computations of spark growth and branching with adaptive grid refinement [2]. These computations resolve three well separated scales of the process that emerge dynamically. Third, this scale separation motivates a hierarchy of models on different length scales. In particular, I will discuss a moving boundary approximation for the ionization fronts that generate the conducting channel. The resulting moving boundary problem shows strong similarities with classical viscous fingering. For viscous fingering, it is known that the simplest model forms unphysical cusps within finite time that are suppressed by a regularizing condition on the moving boundary. For ionization fronts, we derive a new condition on the moving boundary of mixed Dirichlet-Neumann type (φ=ɛnφ) that indeed regularizes all structures investigated so far. In particular, we present compact analytical solutions with regularization, both for uniformly translating shapes and for their linear perturbations [3]. These solutions are so simple that they may acquire a paradigmatic role in the future. Within linear perturbation theory, they explicitly show the convective stabilization of a curved front while planar fronts are linearly unstable against perturbations of arbitrary wave length. [1] T.M.P. Briels, E.M. van Veldhuizen, U. Ebert, TU Eindhoven. [2] C. Montijn, J. Wackers, W. Hundsdorfer, U. Ebert, CWI Amsterdam. [3] B. Meulenbroek, U. Ebert, L. Schäfer, Phys. Rev. Lett. 95, 195004 (2005).

  6. Comparison of the standards for absorbed dose to water of the ARPANSA and the BIPM for 60Co γ radiation

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Burns, D.T.; Boas, J.F.; Huntley, R.B.; Wise, K.N.

    2000-10-01

    A comparison of the standards for absorbed dose to water of the Australian Radiation Protection and Nuclear Safety Agency and of the Bureau International des Poids et Mesures (BIPM) has been carried out in 60 Co gamma radiation. The Australian standard is based on a graphite calorimeter and the subsequent conversion from absorbed dose to graphite to absorbed dose to water using the photon fluence scaling theorem. The BIPM standard is ionometric using a graphite-walled cavity ionization chamber. The comparison result is 1.0024 (standard uncertainty 0.0029). (authors)

  7. Planetary boundaries: exploring the safe operating space for humanity

    Science.gov (United States)

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  8. Crossing Science-Policy-Societal Boundaries to Reduce Scientific and Institutional Uncertainty in Small-Scale Fisheries

    Science.gov (United States)

    Sutton, Abigail M.; Rudd, Murray A.

    2016-10-01

    The governance of small-scale fisheries (SSF) is challenging due to the uncertainty, complexity, and interconnectedness of social, political, ecological, and economical processes. Conventional SSF management has focused on a centralized and top-down approach. A major criticism of conventional management is the over-reliance on `expert science' to guide decision-making and poor consideration of fishers' contextually rich knowledge. That is thought to exacerbate the already low governance potential of SSF. Integrating scientific knowledge with fishers' knowledge is increasingly popular and is often assumed to help reduce levels of biophysical and institutional uncertainties. Many projects aimed at encouraging knowledge integration have, however, been unsuccessful. Our objective in this research was to assess factors that influence knowledge integration and the uptake of integrated knowledge into policy-making. We report results from 54 semi-structured interviews with SSF researchers and practitioners from around the globe. Our analysis is framed in terms of scientific credibility, societal legitimacy, and policy saliency, and we discuss cases that have been partially or fully successful in reducing uncertainty via push-and-pull-oriented boundary crossing initiatives. Our findings suggest that two important factors affect the science-policy-societal boundary: a lack of consensus among stakeholders about what constitutes credible knowledge and institutional uncertainty resulting from shifting policies and leadership change. A lack of training for scientific leaders and an apparent `shelf-life' for community organizations highlight the importance of ongoing institutional support for knowledge integration projects. Institutional support may be enhanced through such investments, such as capacity building and specialized platforms for knowledge integration.

  9. Crossing Science-Policy-Societal Boundaries to Reduce Scientific and Institutional Uncertainty in Small-Scale Fisheries.

    Science.gov (United States)

    Sutton, Abigail M; Rudd, Murray A

    2016-10-01

    The governance of small-scale fisheries (SSF) is challenging due to the uncertainty, complexity, and interconnectedness of social, political, ecological, and economical processes. Conventional SSF management has focused on a centralized and top-down approach. A major criticism of conventional management is the over-reliance on 'expert science' to guide decision-making and poor consideration of fishers' contextually rich knowledge. That is thought to exacerbate the already low governance potential of SSF. Integrating scientific knowledge with fishers' knowledge is increasingly popular and is often assumed to help reduce levels of biophysical and institutional uncertainties. Many projects aimed at encouraging knowledge integration have, however, been unsuccessful. Our objective in this research was to assess factors that influence knowledge integration and the uptake of integrated knowledge into policy-making. We report results from 54 semi-structured interviews with SSF researchers and practitioners from around the globe. Our analysis is framed in terms of scientific credibility, societal legitimacy, and policy saliency, and we discuss cases that have been partially or fully successful in reducing uncertainty via push-and-pull-oriented boundary crossing initiatives. Our findings suggest that two important factors affect the science-policy-societal boundary: a lack of consensus among stakeholders about what constitutes credible knowledge and institutional uncertainty resulting from shifting policies and leadership change. A lack of training for scientific leaders and an apparent 'shelf-life' for community organizations highlight the importance of ongoing institutional support for knowledge integration projects. Institutional support may be enhanced through such investments, such as capacity building and specialized platforms for knowledge integration.

  10. Impacts of different characterizations of large-scale background on simulated regional-scale ozone over the continental United States

    Science.gov (United States)

    Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.

    2018-03-01

    This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields

  11. Exploring the planetary boundary for chemical pollution

    DEFF Research Database (Denmark)

    Diamond, Miriam L.; de Wit, Cynthia A.; Molander, Sverker

    2015-01-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience...... of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales......, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient...

  12. The curved kinetic boundary layer of active matter.

    Science.gov (United States)

    Yan, Wen; Brady, John F

    2018-01-03

    A body submerged in active matter feels the swim pressure through a kinetic accumulation boundary layer on its surface. The boundary layer results from a balance between translational diffusion and advective swimming and occurs on the microscopic length scale . Here , D T is the Brownian translational diffusivity, τ R is the reorientation time and l = U 0 τ R is the swimmer's run length, with U 0 the swim speed [Yan and Brady, J. Fluid. Mech., 2015, 785, R1]. In this work we analyze the swim pressure on arbitrary shaped bodies by including the effect of local shape curvature in the kinetic boundary layer. When δ ≪ L and l ≪ L, where L is the body size, the leading order effects of curvature on the swim pressure are found analytically to scale as J S λδ 2 /L, where J S is twice the (non-dimensional) mean curvature. Particle-tracking simulations and direct solutions to the Smoluchowski equation governing the probability distribution of the active particles show that λδ 2 /L is a universal scaling parameter not limited to the regime δ, l ≪ L. The net force exerted on the body by the swimmers is found to scale as F net /(n ∞ k s T s L 2 ) = f(λδ 2 /L), where f(x) is a dimensionless function that is quadratic when x ≪ 1 and linear when x ∼ 1. Here, k s T s = ζU 0 2 τ R /6 defines the 'activity' of the swimmers, with ζ the drag coefficient, and n ∞ is the uniform number density of swimmers far from the body. We discuss the connection of this boundary layer to continuum mechanical descriptions of active matter and briefly present how to include hydrodynamics into this purely kinetic study.

  13. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  14. Heritage and scale: settings, boundaries and relations

    DEFF Research Database (Denmark)

    Harvey, David

    2015-01-01

    of individuals and communities, towns and cities, regions, nations, continents or globally – becomes ever more important. Partly reflecting this crisis of the national container, researchers have sought opportunities both through processes of ‘downscaling’, towards community, family and even personal forms...... relations. This paper examines how heritage is produced and practised, consumed and experienced, managed and deployed at a variety of scales, exploring how notions of scale, territory and boundedness have a profound effect on the heritage process. Drawing on the work of Doreen Massey and others, the paper...

  15. Variational multiscale enrichment method with mixed boundary conditions for elasto-viscoplastic problems

    Science.gov (United States)

    Zhang, Shuhai; Oskay, Caglar

    2015-04-01

    This manuscript presents the formulation and implementation of the variational multiscale enrichment (VME) method for the analysis of elasto-viscoplastic problems. VME is a global-local approach that allows accurate fine scale representation at small subdomains, where important physical phenomena are likely to occur. The response within far-fields is idealized using a coarse scale representation. The fine scale representation not only approximates the coarse grid residual, but also accounts for the material heterogeneity. A one-parameter family of mixed boundary conditions that range from Dirichlet to Neumann is employed to study the effect of the choice of the boundary conditions at the fine scale on accuracy. The inelastic material behavior is modeled using Perzyna type viscoplasticity coupled with flow stress evolution idealized by the Johnson-Cook model. Numerical verifications are performed to assess the performance of the proposed approach against the direct finite element simulations. The results of verification studies demonstrate that VME with proper boundary conditions accurately model the inelastic response accounting for material heterogeneity.

  16. Absorber materials in CANDU PHWR's

    International Nuclear Information System (INIS)

    Price, E.G.; Boss, C.R.; Novak, W.Z.; Fong, R.W.L.

    1995-03-01

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in a relatively benign environment of low pressure, low temperature heavy water between neighbouring rows of columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a designed back-fit resolved the problem. (author). 3 refs., 1

  17. TPX/TFTR Neutral Beam energy absorbers

    International Nuclear Information System (INIS)

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-01-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET

  18. Two-dimensional QR-coded metamaterial absorber

    Science.gov (United States)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zhang, Jieqiu; Qu, Shaobo

    2016-01-01

    In this paper, the design of metamaterial absorbers is proposed based on QR coding and topology optimization. Such absorbers look like QR codes and can be recognized by decoding softwares as well as mobile phones. To verify the design, two lightweight wideband absorbers are designed, which can achieve wideband absorption above 90 % in 6.68-19.30 and 7.00-19.70 GHz, respectively. More importantly, polarization-independent absorption over 90 % can be maintained under incident angle within 55°. The QR code absorber not only can achieve wideband absorption, but also can carry information such as texts and Web sites. They are of important values in applications such identification and electromagnetic protection.

  19. Effects of oxygen stoichiometry on the scaling behaviors of YBa{sub 2}Cu{sub 3}O{sub x} grain boundary weak-links

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.H.; Fu, C.M.; Jeng, W.J. [National Chiao-Tung Univ., Taiwan (China)] [and others

    1994-12-31

    The effects of oxygen stoichiometry on the transport properties of the pulsed laser deposited YBa{sub 2}Cu{sub 3}O{sub x} bicrystalline grain boundary weak-link junctions were studied. It is found that not only the cross boundary resistive transition foot structure can be manipulated repeatedly with oxygen annealling processes but the junction behaviors are also altered in accordance. In the fully oxygenated state i.e. with x=7.0 in YBa{sub 2}Cu{sub 3}O{sub x} stoichiometry, the junction critical current exhibits a power of 2 scaling behavior with temperature. In contrast, when annealed in the conditions of oxygen-deficient state (e.g. with x=6.9 in YBa{sub 2}Cu{sub 3}O{sub x} stoichiometry) the junction critical current switches to a linear temperature dependence behavior. The results are tentatively attributed to the modification of the structure in the boundary area upon oxygen annealing, which, in turn, will affect the effective dimension of the geometrically constrained weak-link bridges. The detailed discussion on the responsible physical mechanisms as well as the implications of the present results on device applications will be given.

  20. Estimation of Absorbed Dose in Occlusal Radiography

    International Nuclear Information System (INIS)

    Yoo, Young Ah; Choi, Karp Shick; Lee, Sang Han

    1990-01-01

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  1. Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Fairall, C.W.; Larsen, Søren Ejling

    1984-01-01

    A model of downward aerosol panicle flux characterized by dry deposition velocity, Vd, due to Slinn and Slinn (1980) is generalized to the case of nonzero surface concentration (absorbing surface with a surface source). A more general expression for the flux at some reference height is developed ...... produced as droplets at the surface and ‘continental’ background aerosols brought into the boundary layer at the top by entrainment and gravitational settling. Estimates of Si are provided....

  2. Inkjet Printing and Ebeam Sintering Approach to Fabrication of GHz Meta material Absorber

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, Y. J.; Lee, Y. P.; Park, I. S.; Kang, J. H.; Lim, Jongwoo; Kim, Jonghee; Kim, Hyotae

    2013-01-01

    Metamaterial absorber structure of GHz range is fabricated by inkjet printing and e-beam sintering. The inkjet printing is of interest, which give the easier and quicker way to fabricate large scale metamaterials than the approaches by the lithographic process, Furthermore it is more suitable to make flexible electronics, which has yet been great technologic trend. Usual post process of inkjet printing is the sintering to ensure solvent-free from the printed pattern and to its better conductivity comparable to the ordinary vacuum deposition process. E-beam irradiation sintering of the pattern is promising because it is inherently local and low temperature process. The main procedure of metamaterials fabrication is printing a resonator structure with lossy metal such as Ag or Au. We designed two types of Ag based multiband absorber which are double and quadruple bands. Those adsorber patterns are printed on polyimide substrate with commercially available Ag ink (DGP 40LT-15C, 25C). The absorbance performance of fabricated metamaterials is characterized by Hewlett-Packard E836B network analyzer in microwave anechoic chamber. The conductivity enhancement after e-beam or other sintering process is checked by measuring sheet resistance. The absorbance of the fabricated metamaterial is measured around 60% for the types designed. The absorbance is not high enough to practical use, which is attributed to low conductivity of the printed pattern. The spectrum shows, however, quite interesting large broadness, which come in the interval between each pack absorbance, witch needs further study. Though the extent of its effectiveness of inkjet printing in metamaterials needs more experimental studies, the demonstrated capability of quick and large area fabrication to flexible substrate is excellent

  3. Photoelectron antibunching and absorber theory

    International Nuclear Information System (INIS)

    Pegg, D.T.

    1980-01-01

    The recently detected photoelectron antibunching effect is considered to be evidence for the quantised electromagnetic field, i.e. for the existence of photons. Direct-action quantum absorber theory, on the other hand, has been developed on the basis that the quantised field is illusory, with quantisation being required only for atoms. In this paper it is shown that photoelectron antibunching is readily explicable in terms of absorber theory and in fact is directly attributable to the quantum nature of the emitting and detecting atoms alone. The physical nature of the reduction of the wavepacket associated with the detection process is briefly discussed in terms of absorber theory. (author)

  4. Benthic boundary layer modelling studies

    International Nuclear Information System (INIS)

    Richards, K.J.

    1984-01-01

    A numerical model has been developed to study the factors which control the height of the benthic boundary layer in the deep ocean and the dispersion of a tracer within and directly above the layer. This report covers tracer clouds of horizontal scales of 10 to 100 km. The dispersion of a tracer has been studied in two ways. Firstly, a number of particles have been introduced into the flow. The trajectories of these particles provide information on dispersion rates. For flow conditions similar to those observed in the abyssal N.E. Atlantic the diffusivity of a tracer was found to be 5 x 10 6 cm 2 s -1 for a tracer within the boundary layer and 8 x 10 6 cm 2 s -1 for a tracer above the boundary layer. The results are in accord with estimates made from current meter measurements. The second method of studying dispersion was to calculate the evolution of individual tracer clouds. Clouds within and above the benthic boundary layer often show quite different behaviour from each other although the general structure of the clouds in the two regions were found to have no significant differences. (author)

  5. Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams

    Science.gov (United States)

    Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping

    2018-06-01

    A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).

  6. Self Absorbed Fraction for Electrons and Beta Particles in Small Spherical Volumes

    International Nuclear Information System (INIS)

    Grosev, D.

    2003-01-01

    Absorbed fraction and target organ mass are important parameters of internal dosimetry calculations that define the geometry of the system. Standard MIRD (Medical Internal Radiation Dosimetry) formalism assumes that the absorbed fraction for non-penetrating radiations (e.g., electrons, beta particles) is 1. This may not be correct in cases where dimensions of organs/tissues are comparable with the ranges of electrons/beta particles. Such is the case for example in radiodine ablation of thyroid remnant tissue. In this work the self-absorbed fraction (source and target volumes are the same) for monoenergetic electrons and beta particles is calculated for small spherical volumes of various sizes and unit density. Absorbed fraction can be expressed as an integral of the product of two quantities: (a) Scaled beta dose point kernel (mean absorbed dose rate per activity of the point source in infinite homogenous medium), F β ; (b) special geometrical reduction factor (GRF). F β is calculated using EGS4 Monte Carlo (MC) code for transport of electrons and photons. MC source code calculates the deposition of energy inside concentric spherical shells around the isotropic point source of electrons/beta particles in infinite medium (water). Shell thickness was δr=0.02·X 90 , where X 90 represents the radius of the sphere inside which 90% of the source energy is absorbed. Number of concentric spherical shells was 100, 10000 electron histories were started in each program run, and 10 runs were repeated for statistical reason. Numerical integration of the product of F β , calculated by MC program, and GRF for sphere was done using Simpson method. Absorbed fractions were calculated for spheres with mass from 0.01-20 g (r = 0.13 - 1.68 cm). Results are given for monoenergetic electrons with kinetic energy T=0.2, 0.4, 1.0 MeV, and for three beta emitters 1 31I , 3 2P , 9 0Y . For quantitative dosimetric protocols in radioiodine ablation therapy, results for 1 31I are of

  7. Temperature dependence of grain boundary free energy and elastic constants

    International Nuclear Information System (INIS)

    Foiles, Stephen M.

    2010-01-01

    This work explores the suggestion that the temperature dependence of the grain boundary free energy can be estimated from the temperature dependence of the elastic constants. The temperature-dependent elastic constants and free energy of a symmetric Σ79 tilt boundary are computed for an embedded atom method model of Ni. The grain boundary free energy scales with the product of the shear modulus times the lattice constant for temperatures up to about 0.75 the melting temperature.

  8. An omnidirectional electromagnetic absorber made of metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng

    2010-01-01

    In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.

  9. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  10. Casimir densities for a boundary in Robertson-Walker spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Saharian, A.A., E-mail: saharian@ictp.i [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, 0025 Yerevan (Armenia); Setare, M.R., E-mail: rezakord@ipm.i [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of)

    2010-04-12

    For scalar and electromagnetic fields we evaluate the vacuum expectation value of the energy-momentum tensor induced by a curved boundary in the Robertson-Walker spacetime with negative spatial curvature. In order to generate the vacuum densities we use the conformal relation between the Robertson-Walker and Rindler spacetimes and the corresponding results for a plate moving by uniform proper acceleration through the Fulling-Rindler vacuum. For the general case of the scale factor the vacuum energy-momentum tensor is presented as the sum of the boundary free and boundary induced parts.

  11. Casimir densities for a boundary in Robertson-Walker spacetime

    International Nuclear Information System (INIS)

    Saharian, A.A.; Setare, M.R.

    2010-01-01

    For scalar and electromagnetic fields we evaluate the vacuum expectation value of the energy-momentum tensor induced by a curved boundary in the Robertson-Walker spacetime with negative spatial curvature. In order to generate the vacuum densities we use the conformal relation between the Robertson-Walker and Rindler spacetimes and the corresponding results for a plate moving by uniform proper acceleration through the Fulling-Rindler vacuum. For the general case of the scale factor the vacuum energy-momentum tensor is presented as the sum of the boundary free and boundary induced parts.

  12. Calculation of accurate albedo boundary conditions for three-dimensional nodal diffusion codes by the method of characteristics

    International Nuclear Information System (INIS)

    Petkov, Petko T.

    2000-01-01

    Most of the few-group three-dimensional nodal diffusion codes used for neutronics calculations of the WWER reactors use albedo type boundary conditions on the core-reflector boundary. The conventional albedo are group-to-group reflection probabilities, defined on each outer node face. The method of characteristics is used to calculate accurate albedo by the following procedure. A many-group two-dimensional heterogeneous core-reflector problem, including a sufficient part of the core and detailed description of the adjacent reflector, is solved first. From this solution the angular flux on the core-reflector boundary is calculated in all groups for all traced neutron directions. Accurate boundary conditions can be calculated for the radial, top and bottom reflectors as well as for the absorber part of the WWER-440 reactor control assemblies. The algorithm can be used to estimate also albedo, coupling outer node faces on the radial reflector in the axial direction. Numerical results for the WWER-440 reactor are presented. (Authors)

  13. Static analytical and experimental research of shock absorber to safeguard the nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Dundulis, Gintautas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania)], E-mail: gintas@mail.lei.lt; Grybenas, Albertas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania); Karalevicius, Renatas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania); Makarevicius, Vidas [Laboratory of Materials Research and Testing, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania); Rimkevicius, Sigitas; Uspuras, Eugenijus [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, Breslaujos Street 3, LT-44403 Kaunas (Lithuania)

    2009-01-15

    The Ignalina Nuclear Power Plant (NPP) has two RBMK-1500 graphite-moderated boiling water multi-channel reactors. The Ignalina NPP Unit 1 was shutdown at the end of 2004, while Unit 2 is foreseen to be shutdown at the end of 2009. At the Ignalina NPP Unit 1 remains approximately 1000 spent fuel assemblies with low burn-up depth. A special set of equipment was developed to reuse these assemblies in the reactor of Unit 2. One of most important items of this set is a container, which is used for the transportation of spent fuel assemblies between the reactors of Unit 1 and Unit 2. A special shock absorber was designed to avoid failure of fuel assemblies in case of hypothetical spent fuel assemblies drop accident during uploading/unloading of spent fuel assemblies to/from container. This shock absorber was examined by using scaled experiments. The objective of this article is the estimation whether the proposed design of shock absorber fulfils the function of the absorber and the optimization of its geometrical parameters using the results of the performed investigations. Static analytical and experimental investigations are presented in the article. The finite element code BRIGADE/Plus was used for the analytical analysis. The calculation model was verified by comparing the experimental investigation and simulation results for further employment of this finite element model in the development of an optimum design of shock absorber. Static simulation was used to perform primary optimization of design and dimension of the shock absorber.

  14. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  15. Preparation of super absorbent by irradiation polymerization

    International Nuclear Information System (INIS)

    Hua Fengjun; Tan Chunhong; Qian Mengping

    1995-01-01

    A kind of absorbent is prepared by gamma-rays irradiated by reversed-phase suspension polymerization. Drying particles have 1400 (g/g) absorbency in de-ionic water. Effects of reactive conditions, e.g.: dose-rate, dose, monomer concentration, degree of monomer neutralization and crosslinking agents on absorbency in de-ionic water are discussed. The cause of absorbing de-ionic water by polymer is related to its network structure and ionic equilibrium in particle. Accordingly, a suit reactive condition is chosen for preparation of hydro gel spheres

  16. COMPARISON OF ABSORBABLE EXTRA LONG TERM POLY HYDROXY BUTYRATE SUTURE VS NON ABSORBABLE (POLYPROPYLENE SUTURE FOR ABDOMINAL WALL CLOSURE

    Directory of Open Access Journals (Sweden)

    Mallikarjun

    2015-07-01

    Full Text Available PURPOSE: The aim of study is to compare Continuous technique with non - absorbable sutures, Interrupted technique with non - absorbable sutures and Continuous technique with slowly absorbable sutures Focusing mainly on incidence of incisional hernias, burst abdomen, wound infections, chronic wound pain, suture sinus, stitch granuloma, time for rectus closure. METHODOLOGY : Study was conducted for a period of one year on 271 randomized patients with primary elective midline laparotomy in our hospital . patients are divided into group I includes 102 patients with continuous technique using non absorbable polypropylene, group II includes 91 patients with interrupted technique using non absorbable polypropylene and group III includes 78 patients with continuous slowly absorbable polyhydroxybutyrate. RESULTS: No significant difference observed in incidence of wound infections and burst abdomen in all the 3 groups but relatively higher incidence of wound infections in noted our hospital. Incidence of stich granuloma suture sinus and chronic wound pain is more with interrupted technique than continuous technique and are more with non - absor bable suture material. CONCLUSION: Incidence of incisional hernias, suture complications like suture sinus, stitch granuloma can be more effectively reduced with slowly absorbable continuous sutures.

  17. Ramp injector scale effects on supersonic combustion

    Science.gov (United States)

    Trebs, Adam

    The combustion field downstream of a 10 degree compression ramp injector has been studied experimentally using wall static pressure measurement, OH-PLIF, and 2 kHz intensified video filtered for OH emission at 320 nm. Nominal test section entrance conditions were Mach 2, 131 kPa static pressure, and 756K stagnation temperature. The experiment was equipped with a variable length inlet duct that facilitated varying the boundary layer development length while the injector shock structure in relation to the combustor geometry remained nearly fixed. As the boundary within an engine varies with flight condition and does not scale linearly with the physical scale of the engine, the boundary layer scale relative to mixing structures of the engine becomes relevant to the problem of engine scaling and general engine performance. By varying the boundary layer thickness from 40% of the ramp height to 150% of the ramp height, changes in the combustion flowfield downstream of the injector could be diagnosed. It was found that flame shape changed, the persistence of the vortex cores was reduced, and combustion efficiency rose as the incident boundary layer grew.

  18. Probability distribution of magnetization in the one-dimensional Ising model: effects of boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Antal, T [Physics Department, Simon Fraser University, Burnaby, BC V5A 1S6 (Canada); Droz, M [Departement de Physique Theorique, Universite de Geneve, CH 1211 Geneva 4 (Switzerland); Racz, Z [Institute for Theoretical Physics, Eoetvoes University, 1117 Budapest, Pazmany setany 1/a (Hungary)

    2004-02-06

    Finite-size scaling functions are investigated both for the mean-square magnetization fluctuations and for the probability distribution of the magnetization in the one-dimensional Ising model. The scaling functions are evaluated in the limit of the temperature going to zero (T {yields} 0), the size of the system going to infinity (N {yields} {infinity}) while N[1 - tanh(J/k{sub B}T)] is kept finite (J being the nearest neighbour coupling). Exact calculations using various boundary conditions (periodic, antiperiodic, free, block) demonstrate explicitly how the scaling functions depend on the boundary conditions. We also show that the block (small part of a large system) magnetization distribution results are identical to those obtained for free boundary conditions.

  19. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  20. 21 CFR 880.5300 - Medical absorbent fiber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical absorbent fiber. 880.5300 Section 880.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5300 Medical absorbent fiber. (a) Identification. A medical absorbent fiber is a device...

  1. Solvable Model for Dynamic Mass Transport in Disordered Geophysical Media

    KAUST Repository

    Marder, M.; Eftekhari, Behzad; Patzek, Tadeusz

    2018-01-01

    We present an analytically solvable model for transport in geophysical materials on large length and time scales. It describes the flow of gas to a complicated absorbing boundary over long periods of time. We find a solution to this model using Green's function techniques, and apply the solution to three absorbing networks of increasing complexity.

  2. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon

  3. High-efficiency ventilated metamaterial absorber at low frequency

    Science.gov (United States)

    Wu, Xiaoxiao; Au-Yeung, Ka Yan; Li, Xin; Roberts, Robert Christopher; Tian, Jingxuan; Hu, Chuandeng; Huang, Yingzhou; Wang, Shuxia; Yang, Zhiyu; Wen, Weijia

    2018-03-01

    We demonstrate a ventilated metamaterial absorber operating at low frequency (90%) has been achieved in both simulations and experiments. This high-efficiency absorption under the ventilation condition originates from the weak coupling of two identical split tube resonators constituting the absorber, which leads to the hybridization of the degenerate eigenmodes and breaks the absorption upper limit of 50% for conventional transmissive symmetric acoustic absorbers. The absorber can also be extended to an array and work in free space. The absorber should have potential applications in acoustic engineering where both noise reduction and ventilation are required.

  4. Scaling of Metabolic Scaling within Physical Limits

    Directory of Open Access Journals (Sweden)

    Douglas S. Glazier

    2014-10-01

    Full Text Available Both the slope and elevation of scaling relationships between log metabolic rate and log body size vary taxonomically and in relation to physiological or developmental state, ecological lifestyle and environmental conditions. Here I discuss how the recently proposed metabolic-level boundaries hypothesis (MLBH provides a useful conceptual framework for explaining and predicting much, but not all of this variation. This hypothesis is based on three major assumptions: (1 various processes related to body volume and surface area exert state-dependent effects on the scaling slope for metabolic rate in relation to body mass; (2 the elevation and slope of metabolic scaling relationships are linked; and (3 both intrinsic (anatomical, biochemical and physiological and extrinsic (ecological factors can affect metabolic scaling. According to the MLBH, the diversity of metabolic scaling relationships occurs within physical boundary limits related to body volume and surface area. Within these limits, specific metabolic scaling slopes can be predicted from the metabolic level (or scaling elevation of a species or group of species. In essence, metabolic scaling itself scales with metabolic level, which is in turn contingent on various intrinsic and extrinsic conditions operating in physiological or evolutionary time. The MLBH represents a “meta-mechanism” or collection of multiple, specific mechanisms that have contingent, state-dependent effects. As such, the MLBH is Darwinian in approach (the theory of natural selection is also meta-mechanistic, in contrast to currently influential metabolic scaling theory that is Newtonian in approach (i.e., based on unitary deterministic laws. Furthermore, the MLBH can be viewed as part of a more general theory that includes other mechanisms that may also affect metabolic scaling.

  5. On (m, n)-absorbing ideals of commutative rings

    Indian Academy of Sciences (India)

    with respect to various ring theoretic constructions and study (m, n)-absorbing ideals in several commutative rings. For example, in a Bézout ring or a Boolean ring, an ideal is an (m, n)-absorbing ideal if and only if it is an n-absorbing ideal, and in an almost. Dedekind domain every (m, n)-absorbing ideal is a product of at ...

  6. Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification.

    Science.gov (United States)

    Nie, Chuanxiong; Peng, Zihang; Yang, Ye; Cheng, Chong; Ma, Lang; Zhao, Changsheng

    2016-11-15

    Developing robust and recyclable absorbents for water purification is of great demand to control water pollution and to provide sustainable water resources. Herein, for the first time, we reported the fabrication of Kevlar nanofiber (KNF) based composite particles for water purification. Both the KNF and KNF-carbon nanotube composite particles can be produced in large-scale by automatic injection of casting solution into ethanol. The resulted nanofibrous particles showed high adsorption capacities towards various pollutants, including metal ions, phenylic compounds and various dyes. Meanwhile, the adsorption process towards dyes was found to fit well with the pseudo-second-order model, while the adsorption speed was controlled by intraparticle diffusion. Furthermore, the adsorption capacities of the nanofibrous particles could be easily recovered by washing with ethanol. In general, the KNF based particles integrate the advantages of easy production, robust and effective adsorption performances, as well as good recyclability, which can be used as robust absorbents to remove toxic molecules and forward the application of absorbents in water purification. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Linear segmentation algorithm for detecting layer boundary with lidar.

    Science.gov (United States)

    Mao, Feiyue; Gong, Wei; Logan, Timothy

    2013-11-04

    The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections.

  8. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  9. First order augmentation to tensor voting for boundary inference and multiscale analysis in 3D.

    Science.gov (United States)

    Tong, Wai-Shun; Tang, Chi-Keung; Mordohai, Philippos; Medioni, Gérard

    2004-05-01

    Most computer vision applications require the reliable detection of boundaries. In the presence of outliers, missing data, orientation discontinuities, and occlusion, this problem is particularly challenging. We propose to address it by complementing the tensor voting framework, which was limited to second order properties, with first order representation and voting. First order voting fields and a mechanism to vote for 3D surface and volume boundaries and curve endpoints in 3D are defined. Boundary inference is also useful for a second difficult problem in grouping, namely, automatic scale selection. We propose an algorithm that automatically infers the smallest scale that can preserve the finest details. Our algorithm then proceeds with progressively larger scales to ensure continuity where it has not been achieved. Therefore, the proposed approach does not oversmooth features or delay the handling of boundaries and discontinuities until model misfit occurs. The interaction of smooth features, boundaries, and outliers is accommodated by the unified representation, making possible the perceptual organization of data in curves, surfaces, volumes, and their boundaries simultaneously. We present results on a variety of data sets to show the efficacy of the improved formalism.

  10. Drag reduction mechanism by microbubble injection within a channel boundary layer

    International Nuclear Information System (INIS)

    Ling Zhen; Hassan, Y.

    2005-01-01

    In this study, the drag reduction due to microbubble injection in the boundary layer of a fully developed turbulent channel flow was investigated. Particle Image Velocimetry (PIV) techniques were taken. The effects of the presence of microbubbles in the boundary layer were assessed. A drag reduction of 38.4% was obtained with void fraction of 4.9%. The algorithms of wavelet auto-correlation maps were applied to the PIV velocity field measurement. Modifications in the wavelet auto-correlation maps due to the presence of microbubbles were studied and compared in three-dimensions. By using 3-D plotting routines and the wavelet auto-correlation maps, it can be deduced from this study that the microbubble injection within the boundary layer increases the turbulent energy of the streamwise velocity components of the large scale (large eddy size, low frequency) range and decreases the energy of the small scale (small eddy size, high frequency) range. The wavelet auto-correlation maps of the normal velocities indicate that the microbubble presence decrease the turbulent energy of normal velocity components for both the large scale (large eddy size, low frequency) and the small scale (small eddy size, high frequency) ranges. (authors)

  11. Solvable Model for Dynamic Mass Transport in Disordered Geophysical Media

    KAUST Repository

    Marder, M.

    2018-03-29

    We present an analytically solvable model for transport in geophysical materials on large length and time scales. It describes the flow of gas to a complicated absorbing boundary over long periods of time. We find a solution to this model using Green\\'s function techniques, and apply the solution to three absorbing networks of increasing complexity.

  12. Rough-wall turbulent boundary layers with constant skin friction

    KAUST Repository

    Sridhar, A.

    2017-03-28

    A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows for which all terms of the von Kármán integral relation, including the ratio of outer velocity to friction velocity U+∞≡U∞/uτ , are streamwise constant. For Rex assumed large, use is made of a simple log-wake model of the local turbulent mean-velocity profile that contains a standard mean-velocity correction for the asymptotic fully rough regime and with assumed constant parameter values. It is then shown that, for a general power-law external velocity variation U∞∼xm , all measures of the boundary-layer thickness must be proportional to x and that the surface sand-grain roughness scale variation must be the linear form ks(x)=αx , where x is the distance from the boundary layer of zero thickness and α is a dimensionless constant. This is shown to give a two-parameter (m,α) family of solutions, for which U+∞ (or equivalently Cf ) and boundary-layer thicknesses can be simply calculated. These correspond to perfectly self-similar boundary-layer growth in the streamwise direction with similarity variable z/(αx) , where z is the wall-normal coordinate. Results from this model over a range of α are discussed for several cases, including the zero-pressure-gradient ( m=0 ) and sink-flow ( m=−1 ) boundary layers. Trends observed in the model are supported by wall-modelled large-eddy simulation of the zero-pressure-gradient case for Rex in the range 108−1010 and for four values of α . Linear streamwise growth of the displacement, momentum and nominal boundary-layer thicknesses is confirmed, while, for each α , the mean-velocity profiles and streamwise turbulent variances are found to collapse reasonably well onto z/(αx) . For given α , calculations of U+∞ obtained from large-eddy simulations are streamwise

  13. Performance evaluation of CFRP-rubber shock absorbers

    Science.gov (United States)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  14. Performance evaluation of CFRP-rubber shock absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lamanna, Giuseppe, E-mail: giuseppe.lamanna@unina2.it; Sepe, Raffaele, E-mail: giuseppe.lamanna@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, via Roma, 29 - 81031 Aversa (Italy)

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  15. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  16. Atomic-scale investigations of grain boundary segregation in astrology with a three dimensional atom-probe

    Energy Technology Data Exchange (ETDEWEB)

    Blavette, D. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut Universitaire de France (France); Letellier, L. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Duval, P. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Guttmann, M. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut de Recherches de la Siderurgie Francaise (IRSID), 57 - Maizieres-les-Metz (France)

    1996-08-01

    Both conventional and 3D atom-probes were applied to the investigation of grain-boundary (GB) segregation phenomena in two-phase nickel base superalloys Astroloy. 3D images as provided by the tomographic atom-probe reveal the presence of a strong segregation of both boron and molybdenum at grain-boundaries. Slight carbon enrichment is also detected. Considerable chromium segregation is exhibited at {gamma}`-{gamma}` grain-boundaries. All these segregants are distributed in a continuous manner along the boundary over a width close to 0.5 nm. Experiments show that segregation occurs during cooling and more probably between 1000 C and 800 C. Boron and molybdenum GB enrichments are interpreted as due to an equilibrium type-segregation while chromium segregation is thought to be induced by {gamma}` precipitation at GB`s and stabilised by the presence of boron. No segregation of zirconium is detected. (orig.)

  17. Precision test method by x-ray absorbent clay

    International Nuclear Information System (INIS)

    Nakadai, Toru; Matsukawa, Hideyuki; Sekita, Jun-ichiro; Murakoshi, Atsushi.

    1982-01-01

    In X-ray penetration photography of such as welds with reinforcing metal and castings of complex shape, the X-ray absorbent clay developed to eliminate various disadvantages of the conventional absorbents was further studied for better application. The results of the usage are as follows. Because the X-ray absorbent is clay, it is flexible in form, and gives good adhesion to test objects. In the welds and castings mentioned, it is effective for reducing the scattered ray, accordingly, it results in superior images. The following matters are described: contrast in radiographs, the required conditions for X-ray absorbents in general, the properties of the absorbent (absorption coefficient, consistency, density), improvement in radiographs by means of the X-ray absorbent clay (wall thickness compensation, masking, the application together with narrow-field irradiation photography). (Mori, K.)

  18. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  19. Slip systems, dislocation boundaries and lattice rotations in deformed metals

    DEFF Research Database (Denmark)

    Winther, Grethe

    2009-01-01

    Metals are polycrystals and consist of grains, which are subdivided on a finer scale upon plastic deformation due to formation of dislocation boundaries. The crystallographic alignment of planar dislocation boundaries in face centred cubic metals, like aluminium and copper, deformed to moderate...... of the mechanical anisotropy of rolled sheets. The rotation of the crystallographic lattice in each grain during deformation also exhibits grain orientation dependence, originating from the slip systems. A combined analysis of dislocation boundaries and lattice rotations concludes that the two phenomena are coupled...

  20. Energy Absorbing Effectiveness – Different Approaches

    Directory of Open Access Journals (Sweden)

    Kotełko Maria

    2018-03-01

    Full Text Available In the paper the study of different crashworthiness indicators used to evaluate energy absorbing effectiveness of thin-walled energy absorbers is presented. Several different indicators are used to assess an effectiveness of two types of absorbing structures, namely thin-walled prismatic column with flaws and thin-walled prismatic frustum (hollow or foam filled in both cases subjected to axial compressive impact load. The indicators are calculated for different materials and different geometrical parameters. The problem of selection of the most appropriate and general indicators is discussed.

  1. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...

  2. Microwave absorbing property of a hybrid absorbent with carbonyl irons coating on the graphite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: xuyonggang221@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yan, Zhenqiang; Zhang, Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2015-11-30

    Graphical abstract: The absorbing property could be enhanced as the CIPs coated on the graphite. - Highlights: • Absorbers filled with CIPs coating on the graphite was fabricated. • The permittivity and permeability increased as CIPs coated. • The CIP materials enhanced the electromagnetic property. • The graphite coated CIPs were effective in 2–18 GHz. - Abstract: The hybrid absorbent filled with carbonyl iron particles (CIPs) coating on the graphite was prepared using a chemical vapor decomposition (CVD) process. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz. The results showed that α-Fe appeared in the super-lattice diffraction peaks in XRD graph. The composites added CIPs coating on the graphite had a higher permittivity and imaginary permeability due to the superior microwave dielectric loss and magnetic loss of the CIPs. The reflection loss (RL) result showed that composites filled with 5 vol% Fe-graphite had an excellent absorbing property in the 2–18 GHz, the minimum RL was −25.14 dB at 6 mm and −26.52 dB at 8 mm, respectively.

  3. Adjustable Shock Absorbers

    OpenAIRE

    Adamiec, Radek

    2012-01-01

    Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...

  4. Altered Ecological Flows Blur Boundaries in Urbanizing Watersheds

    Directory of Open Access Journals (Sweden)

    Todd R. Lookingbill

    2009-12-01

    Full Text Available The relevance of the boundary concept to ecological processes has been recently questioned. Humans in the post-industrial era have created novel lateral transport fluxes that have not been sufficiently considered in watershed studies. We describe patterns of land-use change within the Potomac River basin and demonstrate how these changes have blurred traditional ecosystem boundaries by increasing the movement of people, materials, and energy into and within the basin. We argue that this expansion of ecological commerce requires new science, monitoring, and management strategies focused on large rivers and suggest that traditional geopolitical and economic boundaries for environmental decision making be appropriately revised. Effective mitigation of the consequences of blurred boundaries will benefit from a broad-scale, interdisciplinary framework that can track and explicitly account for ecological fluxes of water, energy, materials, and organisms across human-dominated landscapes.

  5. Slow and Fast Light in an Electro-Absorber

    DEFF Research Database (Denmark)

    Öhman, Filip; Bermejo Ramirez, Andres; Sales, Salvador

    2006-01-01

    We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated.......We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated....

  6. 21 CFR 880.2740 - Surgical sponge scale.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical sponge scale. 880.2740 Section 880.2740... Devices § 880.2740 Surgical sponge scale. (a) Identification. A surgical sponge scale is a nonelectrically powered device used to weigh surgical sponges that have been used to absorb blood during surgery so that...

  7. Defensible Spaces in Philadelphia: Exploring Neighborhood Boundaries Through Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Rory Kramer

    2017-02-01

    Full Text Available Few spatial scales are as important to individual outcomes as the neighborhood. However, it is nearly impossible to define neighborhoods in a generalizable way. This article proposes that by shifting the focus to measuring neighborhood boundaries rather than neighborhoods, scholars can avoid the problem of the indefinable neighborhood and better approach questions of what predicts racial segregation across areas. By quantifying an externality space theory of neighborhood boundaries, this article introduces a novel form of spatial analysis to test where potential physical markers of neighborhood boundaries (major roads, rivers, railroads, and the like are associated with persistent racial boundaries between 1990 and 2010. Using Philadelphia as a case study, the paper identifies neighborhoods with persistent racial boundaries. It theorizes that local histories of white reactions to black in-migration explain which boundaries persistently resisted racial turnover, unlike the majority of Philadelphia’s neighborhoods, and that those racial boundaries shape the location, progress, and reaction to new residential development in those neighborhoods.

  8. Thermally Resilient, Broadband Optical Absorber from UV to IR Derived from Carbon Nanostructures

    Science.gov (United States)

    Kaul, Anupama B.; Coles, James B.

    2012-01-01

    electric field inherent in a plasma yields vertically aligned CNTs at small length scales (less than 10 m), which still exhibit broadband, and high-efficiency optical absorption characteristics from the ultraviolet (UV) to IR. A thin and yet highly absorbing coating is extremely valuable for detector applications for radiometry in order to enhance sensitivity. A plasma-based process also increases the potential of forming the optical absorbers at lower synthesis temperatures in the future, increasing the prospects of integrating the absorbers with flexible substrates for low-cost solar cell applications, for example.

  9. Characterization of the Cloud-Topped Boundary Layer at the Synoptic Scale Using AVHRR Observations during the SEMAPHORE Experiment.

    Science.gov (United States)

    Mathieu, A.; Sèze, G.; Lahellec, A.; Guerin, C.; Weill, A.

    2003-12-01

    Satellite platforms NOAA-11 and -12 Advanced Very High Resolution Radiometer (AVHRR) data are used during the daytime to study large sheets of stratocumulus over the North Atlantic Ocean. The application concerns an anticyclonic period of the Structure des Echanges Mer Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherché Expérimentale (SEMAPHORE) campaign (10 17 November 1993). In the region of interest, the satellite images are recorded under large solar zenith angles. Extending the SEMAPHORE area, a region of about 3000 × 3000 km2 is studied to characterize the atmospheric boundary layer. A statistical cloud classification method is applied to discriminate for low-level and optically thick clouds. For AVHRR pixels covered with thick clouds, brightness temperatures are used to evaluate the boundary layer cloud-top temperature (CTT). The objective is to obtain accurate CTT maps for evaluation of a global model. In this application, the full-resolution fields are reduced to match model grid size. An estimate of overall temperature uncertainty associated with each grid point is also derived, which incorporates subgrid variability of the fields and quality of the temperature retrieval. Results are compared with the SEMAPHORE campaign measurements. A comparison with “DX” products obtained with the same dataset, but at lower resolution, is also presented. The authors claim that such instantaneous CTT maps could be as intensively used as classical SST maps, and both could be efficiently complemented with gridpoint error-bar maps. They may be used for multiple applications: (i) to provide a means to improve numerical weather prediction and climatological reanalyses, (ii) to represent a boundary layer global characterization to analyze the synoptic situation of field experiments, and (iii) to allow validation and to test development of large-scale and mesoscale models.

  10. Three Types of Earth's Inner Core Boundary

    Science.gov (United States)

    Tian, D.; Wen, L.

    2017-12-01

    The Earth's inner core boundary (ICB) is the site where the liquid outer core solidifies and the solid inner core grows. Thus, the fine-scale structure of the ICB is important for our understanding of the thermo-compositional state of the Earth's core. In this study, we collect a large set of seismic records with high-quality pre-critical PKiKP and PcP phase pairs, recorded by two dense seismic arrays, Hi-net in Japan and USArray in US. This dataset samples the ICB regions beneath East Asia, Mexico and the Bering Sea. We use differential travel times, amplitude ratios and waveform differences between PKiKP and PcP phases to constrain fine-scale structure of the ICB. The sampled ICB can be grouped into three types based on their seismic characteristics: (1) a simple ICB with a flat and sharp boundary, (2) a bumpy ICB with topographic height changes of 10 km, and (3) a localized mushy ICB with laterally varying thicknesses of 4-8 km. The laterally varying fine-scale structure of the ICB indicates existence of complex small-scale forces at the surface and a laterally varying solidification process of the inner core due to lateral variation of thermo-compositional condition near the ICB.

  11. Performance of an absorbing concentrating solar collectors

    International Nuclear Information System (INIS)

    Imadojemu, H.

    1990-01-01

    This paper reports on a comparison of the efficiency of an absorbing fluid parabolic trough concentrating solar collector and a traditional concentrating collector that was made. In the absorbing fluid collector, black liquid flows through a glass tube absorber while the same black liquid flows through a selective black coated copper tube absorber while the same black fluid flows through a selective black coated copper tube absorber in the traditional collector. After a careful study of the properties of available black liquids, a mixture of water and black ink was chosen as the black absorbing medium or transfer fluid. In the black liquid glass collector there is a slightly improved efficiency based on beam radiation as a result of the direct absorption process and an increase in the effective transmittance absorptance. At worst the efficiency of this collector equals that of the traditional concentrating collector when the efficiency is based on total radiation. The collector's reflecting surfaces were made of aluminum sheet, parabolic line focus and with cylindrical receivers. The ease of manufacture and reduced cost per unit energy collected, in addition to the clean and pollution free mode of energy conversion, makes it very attractive

  12. ABSORBENCY CHARACTERISTICS OF PESHTAMALS: TRADITIONAL TURKISH WOVEN CLOTHES

    Directory of Open Access Journals (Sweden)

    KESKIN Reyhan

    2014-05-01

    Full Text Available Absorbency of textiles is defined as the ability of taking in a fluid in the manner of a sponge. Absorbency is required for comfort properties in so me clothes such as sportswear and underwear clothing, for drying properties in napkins, towels and bathrobes, for health concerns in some medical textiles such as bandages, gauze and absorbent cotton, and for cleaning properties in washclothes and mops. In this study five different fabric samples (three woven 100% cotton fabrics A, B and P respectively at plain, twill, and peshtamal weaving patterns and two 100% cotton terry towels T1 and T2 were tested. The absorbency properties of the samples were evaluated according to the droplet test, sinking time test and wicking height tests (pottasium chromate test. Peshtamal samples showed better absorbency results than plain and twill weaves and lower but close results to towel samples according to the droplet test, sinking time test and wicking height tests. The absorbency properties of peshtamals showed results close to towel samples. The void content of peshtamals is higher than plain and twill samples but closer and lower than towel samples. The good absorbency results of peshtamals might be due to the void content of peshtamals which is higher than plain and twill samples but closer and lower than towel samples. Peshtamals which are good in absorbency and light in weight might be used widespreadly in daily life for their high absorbency, and on travel for weight saving purposes.

  13. Multi-scale Modelling of Segmentation

    DEFF Research Database (Denmark)

    Hartmann, Martin; Lartillot, Olivier; Toiviainen, Petri

    2016-01-01

    pieces. In a second experiment on non-real-time segmentation, musicians indicated boundaries and their strength for six examples. Kernel density estimation was used to develop multi-scale segmentation models. Contrary to previous research, no relationship was found between boundary strength and boundary......While listening to music, people often unwittingly break down musical pieces into constituent chunks such as verses and choruses. Music segmentation studies have suggested that some consensus regarding boundary perception exists, despite individual differences. However, neither the effects...

  14. Optimal Focusing and Scaling Law for Uniform Photo-Polymerization in a Thick Medium Using a Focused UV Laser

    Directory of Open Access Journals (Sweden)

    Jui-Teng Lin

    2014-02-01

    Full Text Available We present a modeling study of photoinitiated polymerization in a thick polymer-absorbing medium using a focused UV laser. Transient profiles of the initiator concentration at various focusing conditions are analyzed to define the polymerization boundary. Furthermore, we demonstrate the optimal focusing conditions that yield more uniform polymerization over a larger volume than the collimated or non-optimal cases. Too much focusing with the focal length f < f* (an optimal focal length yields a fast process; however, it provides a smaller polymerization volume at a given time than in the optimal focusing case. Finally, a scaling law is derived and shows that f* is inverse proportional to the product of the extinction coefficient and the initiator initial concentration. The scaling law provides useful guidance for the prediction of optimal conditions for photoinitiated polymerization under a focused UV laser irradiation. The focusing technique also provides a novel and unique means for obtaining uniform photo-polymerization within a limited irradiation time.

  15. Comments on liquid hydrogen absorbers for MICE

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    This report describes the heat transfer problems associated with a liquid hydrogen absorber for the MICE experiment. This report describes a technique for modeling heat transfer from the outside world, to the absorber case and in its vacuum vessel, to the hydrogen and then into helium gas at 14 K. Also presented are the equation for free convection cooling of the liquid hydrogen in the absorber

  16. New Theories on Boundary Layer Transition and Turbulence Formation

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2012-01-01

    Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.

  17. Boundary Layer of Photon Absorption Applied to Heterogeneous Photocatalytic Solar Flat Plate Reactor Design

    Directory of Open Access Journals (Sweden)

    Héctor L. Otálvaro-Marín

    2014-01-01

    Full Text Available This study provides information to design heterogeneous photocatalytic solar reactors with flat plate geometry used in treatment of effluents and conversion of biomass to hydrogen. The concept of boundary layer of photon absorption taking into account the efficient absorption of radiant energy was introduced; this concept can be understood as the reactor thickness measured from the irradiated surface where 99% of total energy is absorbed. Its thickness and the volumetric rate of photons absorption (VRPA were used as design parameters to determine (i reactor thickness, (ii maximum absorbed radiant energy, and (iii the optimal catalyst concentration. Six different commercial brands of titanium dioxide were studied: Evonik-Degussa P-25, Aldrich, Merck, Hombikat, Fluka, and Fisher. The local volumetric rate of photon absorption (LVRPA inside the reactor was described using six-flux absorption-scattering model (SFM applied to solar radiation. The radiation field and the boundary layer thickness of photon absorption were simulated with absorption and dispersion effects of catalysts in water at different catalyst loadings. The relationship between catalyst loading and reactor thickness that maximizes the absorption of radiant energy was obtained for each catalyst by apparent optical thickness. The optimum concentration of photocatalyst Degussa P-25 was 0.2 g/l in 0.86 cm of thickness, and for photocatalyst Aldrich it was 0.3 g/l in 0.80 cm of thickness.

  18. Beta limitation of matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    Lehnert, B.

    1987-08-01

    A model has earlier been proposed for a boundary layer which separates a cloud of matter from one of antimatter in a magnetized ambiplasma. In this model steady pressure equilibrium ceases to exist when a certain beta limit is exceeded. The latter is defined as the ratio between the ambiplasma and magnetic field pressures which balance each other in the boundary layer. Thus, at an increasing density, the high-energy particles created by annihilation within the layer are 'pumped up' to a pressure which cannot be balanced by a given magnetic field. The boundary layer then 'disrupts'. The critical beta limit thus obtained falls within the observed parameter ranges of galaxies and other large cosmical objects. Provided that the considered matter-antimatter balance holds true, this limit is thus expected to impose certain existence conditions on matter-antimatter boundary layers. Such a limitation may apply to certain cosmical objects and cosmological models. The maximum time scale for the corresponding disruption development has been estimated to be in the range from about 10 -4 to 10 2 seconds for boundary layers at ambiplasma particle densities in the range from 10 4 to 10 -2 m -3 , respectively. (author)

  19. Granular Gases: Probing the Boundaries of Hydrodynamics

    International Nuclear Information System (INIS)

    Goldhirsch, I.

    1999-01-01

    The dissipative nature of the particle interactions in granular systems renders granular gases mesoscopic and bearing some similarities to regular gases in the ''continuum transition regime'' where shear rates and/or thermal gradients are very large). The following properties of granular gases support the above claim: (i). Mean free times are of the same order as macroscopic time scales (inverse shear rates); (ii). Mean free paths can be macroscopic and comparable to the system's dimensions; (iii). Typical flows are supersonic; (iv). Shear rates are typically ''large''; (v). Stress fields are scale (resolution) dependent; (vi). Burnett and super-Burnett corrections to both the constitutive relations and the boundary conditions are of importance; (vii). Single particle distribution functions can be far from Gaussian. It is concluded that while hydrodynamic descriptions of granular gases are relevant, they are probing the boundaries of applicability of hydrodynamics and perhaps slightly beyond

  20. Color-SIFT model: a robust and an accurate shot boundary detection algorithm

    Science.gov (United States)

    Sharmila Kumari, M.; Shekar, B. H.

    2010-02-01

    In this paper, a new technique called color-SIFT model is devised for shot boundary detection. Unlike scale invariant feature transform model that uses only grayscale information and misses important visual information regarding color, here we have adopted different color planes to extract keypoints which are subsequently used to detect shot boundaries. The basic SIFT model has four stages namely scale-space peak selection, keypoint localization, orientation assignment and keypoint descriptor and all these four stages were employed to extract key descriptors in each color plane. The proposed model works on three different color planes and a fusion has been made to take a decision on number of keypoint matches for shot boundary identification and hence is different from the color global scale invariant feature transform that works on quantized images. In addition, the proposed algorithm possess invariance to linear transformation and robust to occlusion and noisy environment. Experiments have been conducted on the standard TRECVID video database to reveal the performance of the proposed model.

  1. Evolution of the lower planetary boundary layer over strongly contrasting surfaces

    International Nuclear Information System (INIS)

    Coulter, R.L.; Gao, W.; Martin, T.J.; Shannon, J.D.; Doran, J.C.; Hubbe, J.M.; Shaw, W.M.

    1992-01-01

    In a multilaboratory field study held near Boardman in northeastern Oregon in June 1991, various properties of the surface and lower atmospheric boundary layer over heavily irrigated cropland and adjacent desert steppe were investigated in the initial campaign of the Atmospheric Radiation Measurement (ARM) program. The locale was selected because its disparate characteristics over various spatial scales stress the ability of general circulation models (GCMS) to describe lower boundary conditions, particularly across the discontinuity between desert (in which turbulent flux of heat must be primarily as sensible heat) and large irrigated tracts (in which turbulent flux of latent heat should be the larger term). This campaign of ARM seeks to increase knowledge in three critical areas: (1) determination of the relationships between surface heat fluxes measured over multiple scales and the controlling surface parameters within each scale, (2) integration of local and nearly local heat flux estimates to produce estimates appropriate for GCM grid cells of 100-200 km horizontal dimension, and (3) characterization of the growth and development of the atmospheric boundary layer near transitions between surfaces with strongly contrasting moisture availabilities

  2. Method of absorbance correction in a spectroscopic heating value sensor

    Science.gov (United States)

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  3. Impurity production and transport in the boundary layer of tokamaks

    International Nuclear Information System (INIS)

    McCracken, G.M.

    1987-01-01

    The processes by which impurities are produced and enter the discharge are discussed. Emphasis is placed on sputtering at the limiter and an analytical global model is described which incorporates the self-stabilizing effects whch control the edge temperature. Predictions of the scaling of edge temperature and of total radiated power are compared with experimental data from JET and other tokamaks operating with limiters. Under many conditions the scaling of the edge conditions and of the radiated power is accurately predicted. Impurity transport in the boundary and the question of how to control the boundary layer is then discussed. The example of the Impurity Control Limiter on DITE is described. (author)

  4. Adaptive inertial shock-absorber

    International Nuclear Information System (INIS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-01-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated. (paper)

  5. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  6. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  7. Absorbed dose calculation of the energy deposition close to bone, lung and soft tissue interfaces in molecular radiotherapy

    International Nuclear Information System (INIS)

    Fernandez, M.; Lassman, M.

    2015-01-01

    Full text of publication follows. Aim: for voxel-based dosimetry in molecular radiotherapy (MRT) based on tabulated voxel S-values these values are usually obtained only for soft tissue. In order to study the changes in the dose deposition patterns at interfaces between different materials we have performed Monte Carlo simulations. Methods: the deposited energy patterns were obtained using the Monte-Carlo radiation code MCNPX v2.7 for Lu 177 (medium-energy) and Y 90 (high-energy). The following interfaces were studied: soft tissue-bone and soft tissue-lungs. For this purpose a volume of soft tissue homogeneously filled with Lu 177 or Y 90 was simulated at the interface to 3 different volumes containing no activity: soft tissue, lungs and bone. The emission was considered to be isotropic. The dimensions were chosen to ensure that the energy deposited by all generated particles was scored. The materials were defined as recommended by ICPR46; the decay schemes of Eckerman and Endo were used. With these data the absorbed dose patterns normalized to the maximum absorbed dose in the source region (soft tissue) were calculated. Results: the absorbed dose fractions in the boundary with soft tissue, bone and lungs are 50%, 47% and 57%, respectively, for Lu 177 and 50%, 47% and 51% for Y 90 . The distances to the interface at which the absorbed fractions are at 0.1% are 1.0, 0.6 and 3.0 mm for Lu 177 and 7.0, 4.0 and 24 mm for Y 90 , for soft tissue, bone and lungs respectively. Conclusions: in MRT, the changes in the absorbed doses at interfaces between soft tissue and bone/lungs need to be considered for isotopes emitting high energy particles. (authors)

  8. Absorbent material for type a radioactive materials packaging containing liquids

    International Nuclear Information System (INIS)

    Saunders, G.A.

    1989-11-01

    The application of absorbent materials to the packaging and transport of liquid radioactive materials in Type A packages has not been reported in the literature. However, a significant body of research exists on absorbent materials for personal hygiene products such as diapers. Absorption capacity is dependent on both the absorbent material and the liquid being absorbed. Theoretical principles for capillary absorption in both the horizontal and the vertical plane indicate that small contact angle between the absorbent fibre and the liquid, and a small inter-fibre pore size are important. Some fluid parameters such as viscosity affect the rate of absorption but not the final absorption capacity. There appears to be little comparability between results obtained for the same absorbent and fluid using different test procedures. Test samples of materials from several classes of potential absorbents have been evaluated in this study, and shown to have a wide range of absorbent capacities. Foams, natural fibres, artificial fibres and granular materials are all potentially useful absorbents, with capacities ranging from as little as 0.86 to as much as 40.6 grams of distilled water per gram of absorbent. Two experimental procedures for evaluating the absorbent capacity of these materials have been detailed in this report, and found suitable for evaluating granular, fibrous or foam materials. Compression of the absorbent material reduces its capacity, but parameters such as relative humidity, pH, temperature, and viscosity appear to have little significant influence on capacity. When the materials were loaded to 50% of their one-minute absorbency, subsequent loss of the absorbed liquid was generally minimal. All of the absorbent materials rapidly lost their absorbed water through evaporation within twenty-four hours in still air at 21 degrees C and 50% relative humidity

  9. Grain-boundary unzipping by oxidation in polycrystalline graphene

    Science.gov (United States)

    Alexandre, Simone; Lucio, Aline; Nunes, Ricardo

    2011-03-01

    The need for large-scale production of graphene will inevitably lead to synthesis of the polycrystalline material [1,2]. Understanding the chemical, mechanical, and electronic properties of grain boundaries in graphene polycrystals will be crucial for the development of graphene-based electronics. Oxidation of this material has been suggested to lead to graphene ribbons, by the oxygen-driven unzipping mechanism. A cooperative-strain mechanism, based on the formation of epoxy groups along lines of parallel bonds in the hexagons of graphene's honeycomb lattice, was proposed to explain the unzipping effect in bulk graphene In this work we employ ab initio calculations to study the oxidation of polycrystalline graphene by chemisorption of oxygen at the grain boundaries. Our results indicate that oxygen tends to segregate at the boundaries, and that the unzipping mechanism is also operative along the grain boundaries, despite the lack of the parallel bonds due to the presence of fivefold and sevenfold carbon rings along the boundary core. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.

  10. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  11. Reducing Error Bars through the Intercalibration of Radioisotopic and Astrochronologic Time Scales for the Cenomanian/Turonian Boundary Interval, Western Interior Basin, USA

    Science.gov (United States)

    Meyers, S. R.; Siewert, S. E.; Singer, B. S.; Sageman, B. B.; Condon, D. J.; Obradovich, J. D.; Jicha, B.; Sawyer, D. A.

    2010-12-01

    We develop a new intercalibrated astrochronologic and radioisotopic time scale for the Cenomanian/Turonian (C/T) boundary interval near the GSSP in Colorado, where orbitally-influenced rhythmic strata host bentonites that contain sanidine and zircon suitable for 40Ar/39Ar and U-Pb dating. This provides a rare opportunity to directly intercalibrate two independent radioisotopic chronometers against an astrochronologic age model. We present paired 40Ar/39Ar and U-Pb ages from four bentonites spanning the Vascoceras diartianum to Pseudaspidoceras flexuosum biozones, utilizing both newly collected material and legacy sanidine samples of Obradovich (1993). Full 2σ uncertainties (decay constant, standard age, analytical sources) for the 40Ar/39Ar ages, using a weighted mean of 33-103 concordant age determinations and an age of 28.201 Ma for Fish Canyon sanidine (FCs), range from ±0.15 to 0.19 Ma, with ages from 93.67 to 94.43 Ma. The traditional FCs age of 28.02 Ma yields ages from 93.04 to 93.78 Ma with full uncertainties of ±1.58 Ma. Using the ET535 tracer, single zircon CA-TIMS 206Pb/238U ages determined from each bentonite record a range of ages (up to 2.1 Ma), however, in three of the four bentonites the youngest single crystal ages are statistically indistinguishable from the 40Ar/39Ar ages calculated relative to 28.201 Ma FCs, supporting this calibration. Using the new radioisotopic data and published astrochronology (Sageman et al., 2006) we develop an integrated C/T boundary time scale using a Bayesian statistical approach that builds upon the strength of each geochronologic method. Whereas the radioisotopic data provide an age with a well-defined uncertainty for each bentonite, the orbital time scale yields a more highly resolved estimate of the duration between stratigraphic horizons, including the radioisotopically dated beds. The Bayesian algorithm yields a C/T time scale that is statistically compatible with the astrochronologic and radioisotopic data

  12. Adsorption of CO on, and S poisoning of, a perfect Ni(111) single crystal and a Ni(111) crystal with small angle boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, G A; Freeman, G B; Chao, J L.R.

    1980-01-01

    A Ni(111) crystal with small angle boundaries was used to examine the adsorption of CO. The adsorption of CO on a perfect Ni(111) single crystal was used for reference. Auger spectra show that the boundary lines on the sample surface provide favorable sites for the adsorbed CO to dissociate at temperatures as low as 25/sup 0/C. The post-dissociation carbon appears mostly in the form of a nickel carbide on the surface. After heating the crystal to 850/sup 0/C, sulfur diffused to the surface and blocked the surface adsorption sites uniformly. The boundary-enhanced dissociation of absorbed CO is no longer observed after the diffusion of sulfur to the crystal surface. AES depth profiling of sulfur concentration at different positions on the crystal with respect to the boundary lines show no evidence that the boundary lines provide an enhanced path for sulfur diffusion. 7 figures.

  13. Use of the perfect electric conductor boundary conditions to discretize a diffractor in FDTD/PML environment

    OpenAIRE

    Calderón-Ramón, C.; Gómez-Aguilar, J. F.; Rodríguez-Achach, M.; Morales- Mendoza, L. J.; Laguna-Camacho, J. R.; Benavides-Cruz, M.; Cruz-Orduna, M. I.; González-Lee, M.; Pérez-Meana, H.; Enciso-Aguilar, M.; Chávez-Pérez, R.; Martínez-García, H.

    2015-01-01

    In this paper we present a computational electromagnetic simulation of a multiform diffractor placed at the center of an antenna array. Our approach is to solve Maxwell's differential equations with a discrete space-time formulation, using the Finite Difference Time Domain (FDTD) method. The Perfectly Matched Layers (PML) method is used as an absorbing boundary condition, to prevent further spread of the electromagnetic wave to the outside of the calculation region. The Perfect Electric Condu...

  14. Equilibrium structure of the plasma sheet boundary layer-lobe interface

    Science.gov (United States)

    Romero, H.; Ganguli, G.; Palmadesso, P.; Dusenbery, P. B.

    1990-01-01

    Observations are presented which show that plasma parameters vary on a scale length smaller than the ion gyroradius at the interface between the plasma sheet boundary layer and the lobe. The Vlasov equation is used to investigate the properties of such a boundary layer. The existence, at the interface, of a density gradient whose scale length is smaller than the ion gyroradius implies that an electrostatic potential is established in order to maintain quasi-neutrality. Strongly sheared (scale lengths smaller than the ion gyroradius) perpendicular and parallel (to the ambient magnetic field) electron flows develop whose peak velocities are on the order of the electron thermal speed and which carry a net current. The free energy of the sheared flows can give rise to a broadband spectrum of electrostatic instabilities starting near the electron plasma frequency and extending below the lower hybrid frequency.

  15. Effects of microstructures and creep conditions on the fractal dimension of grain boundary fracture in high-temperature creep of heat-resistant alloys

    International Nuclear Information System (INIS)

    Tanaka, Manabu

    1993-01-01

    The effects of microstructural aspects, such as grain size and grain boundary configuration, and creep conditions on the fractal dimension of the grain boundary fracture were examined using several heat-resistant alloys, principally in an analysis scale range between one grain boundary length and specimen size. Grain boundary fracture surface profiles in the heat-resistant alloys exhibited a fractal nature in the scale range between one grain boundary length and specimen size as well as in the scale range below one grain boundary length. The fractal dimension of the grain boundary fracture slightly increased with decreasing grain size and was generally a little larger in the specimens with serrated grain boundaries than in those with straight grain boundaries. The fractal dimension of the grain boundary and the number of grain boundary microcracks which affected the grain boundary fracture patterns were a little larger in the specimen with the smaller grain size, and were also larger in the specimen with serrated grain boundaries. The fractal dimension of the grain boundary fracture increased with decreasing creep stress in the temperature range from 973 to 1422 K in these alloys, since more grain boundary microcracks existed in the specimens ruptured under the lower stresses at the higher temperatures. (orig.) [de

  16. A shock absorber model for structure-borne noise analyses

    Science.gov (United States)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  17. Collisional boundary layer analysis for neoclassical toroidal plasma viscosity in tokamaks

    International Nuclear Information System (INIS)

    Shaing, K. C.; Cahyna, P.; Becoulet, M.; Park, J.-K.; Sabbagh, S. A.; Chu, M. S.

    2008-01-01

    It is demonstrated that the pitch angle integrals in the transport fluxes in the ν regime calculated in K. C. Shang [Phys. Plasmas 10, 1443 (2003)] are divergent as the trapped-circulating boundary is approached. Here, ν is the collision frequency. The origin of this divergence results from the logarithmic dependence in the bounce averaged radial drift velocity. A collisional boundary layer analysis is developed to remove the singularity. The resultant pitch angle integrals now include not only the original physics of the ν regime but also the boundary layer physics. The transport fluxes, caused by the particles inside the boundary layer, scale as √(ν)

  18. On the growth of Al2O3 scales

    International Nuclear Information System (INIS)

    Heuer, A.H.; Nakagawa, T.; Azar, M.Z.; Hovis, D.B.; Smialek, J.L.; Gleeson, B.; Hine, N.D.M.; Guhl, H.; Lee, H.-S.; Tangney, P.; Foulkes, W.M.C.; Finnis, M.W.

    2013-01-01

    Understanding the growth of Al 2 O 3 scales requires knowledge of the details of the chemical reactions at the scale–gas and scale–metal interfaces, which in turn requires specifying how the creation/annihilation of O and Al vacancies occurs at these interfaces. The availability of the necessary electrons and holes to allow for such creation/annihilation is a crucial aspect of the scaling reaction. The electronic band structure of polycrystalline Al 2 O 3 thus plays a decisive role in scale formation and is considered in detail, including the implications of a density functional theory (DFT) calculation of the band structure of a Σ7 {45 ¯ 10} bicrystal boundary, for which the atomic structure of the boundary was known from an independent DFT energy-minimization calculation and comparisons with an atomic-resolution transmission electron micrograph of the same boundary. DFT calculations of the formation energy of O and Al vacancies in bulk Al 2 O 3 in various charge states as a function of the Fermi energy suggested that electronic conduction in Al 2 O 3 scales most likely involves excitation of both electrons and holes, which are localized on singly charged O vacancies, V O · and doubly charged Al vacancies, V Al ″ , respectively. We also consider the variation of the Fermi level across the scale and bending (“tilting”) of the conduction band minimum and valence band maximum due to the electric field developed during the scaling reaction. The band structure calculations suggest a new mechanism for the “reactive element” effect—a consequence of segregation of Y, Hf, etc., to grain boundaries in Al 2 O 3 scales, which results in improved oxidation resistance—namely, that the effect is due to the modification of the near-band edge grain-boundary defect states rather than any blocking of diffusion pathways, as previously postulated. Secondly, Al 2 O 3 scale formation is dominated by grain boundary as opposed to lattice diffusion, and there is

  19. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method

    Directory of Open Access Journals (Sweden)

    Chien-Chen Diao

    2014-01-01

    Full Text Available In this study, a new thin-film deposition process, spray coating method (SPM, was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method.

  20. Study on turbulent characteristics and transition behavior of combined-convection boundary layer

    International Nuclear Information System (INIS)

    Hattori, Yasuo

    2001-01-01

    The stabilizing mechanism of the turbulent combined-convection boundary layer along an isothermally-heated flat plate in air aided by a weak freestream are investigated experimentally and theoretically. The turbulent statistics of the combined-convection boundary layer measured with hot- and cold wires at different Grashof numbers indicates that with an increase in the freestream velocity, a similar change in the turbulent quantities appears independently of local Grashof number. Then based on the such experimental results, it is verified that the laminarization of the boundary layer due to an increase in freestream velocity arises at Grx / Rex 6 . Then, through the experiments with a particle image velocimetry (PIV), the spatio-temporal structure of the turbulent combined-convection boundary layer is investigated. For instantaneous velocity vectors obtained with PIV, large-scale fluid motions, which play a predominant role in the generation of turbulence, are frequently observed in the outer layer, while quasi-coherent structures do not exist in the near-wall region. Thus, it is revealed that increasing freestream restricts large-scale fluid motions in the outer layer, and consequently the generation of turbulence is suppressed and the boundary layer becomes laminar. (author)

  1. Application of Time-Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation.

    Science.gov (United States)

    El-Ganaini, W A A; El-Gohary, H A

    2014-08-01

    In this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steady-state solution at the selected worst resonance case is investigated applying Runge-Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work.

  2. Structure of the low-latitude boundary layer

    International Nuclear Information System (INIS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B.U.O.; Bame, S.J.; Forbes, T.G.; Hones, E.W. Jr.; Russell, C.T.

    1981-01-01

    Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the Los Alamos Scientific Laboratory/Max-Planck-Institut, Institut fuer Extraterrestrische Physik, fast plasma analyzer on board the Isee 1 and 2 spacecraft, have revealed a complex quasi-periodic structure of some of the observed boundary layers: cool tailward streaming boundary layer plasma is seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over 1 hour or more. One such crossing, at 0800 hours local time and 40 0 northern GSM latitude, is examined in detail, including a quantitative comparison of the boundary layer entry and exit times of the two spacecraft. The data are found to be compatible with a boundary layer that is always attached to the magnetopause but where the layer thickness has a large-scale spatial modulation pattern which travels tailward past the spacecraft. Included are periods when the thickness is essentially zero and others when it is of the order of 1 R/sub E/. The duration of these periods is highly variable but is typically in the range of 2--5 min, corresponding to a distance along the magnetopause of the order of 3--8 R/sub E/. The observed boundary layer features include a steep density gradient at the magnetopause, with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer. It also appears that the purely magnetospheric plasma is ocassionally separated from the boundary layer by a halo region in which the plasma density is somewhat higher, and the temperature somewhat lower, than in the magnetosphere. A tentative model is proposed

  3. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations

    Science.gov (United States)

    van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.

    2018-02-01

    We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

  4. Cost-Based Design and Selection of Point Absorber Devices for the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Vincenzo Piscopo

    2018-04-01

    Full Text Available Sea wave energy is one of the most promising renewable sources, even if relevant technology is not mature enough for the global energy market and is not yet competitive if compared with solar, wind and tidal current devices. Particularly, among the variety of wave energy converters developed in the last decade, heaving point absorbers represent one of the most feasible and studied technologies, as shown by the small-scale testing and full-scale prototypes, deployed in the last years throughout the world. Nevertheless, the need for further reduction of the energy production costs requires a specialized design of wave energy converters, accounting for the restraints provided by the power take-off unit and the device operational profile. Hence, actual analysis focuses on a new cost-based design procedure for heaving point absorbers. The device is equipped with a floating buoy with an optional fully submerged mass connected, by means of a tensioned line, to the power take-off unit. It consists of a permanent magnet linear generator, lying on the seabed and equipped with a gravity-based foundation. The proposed procedure is applied to several candidate deployment sites located in the Mediterranean Sea; the incidence of the power take-off restraint and the converter operational profile is fully investigated and some recommendations for preliminary design of wave energy converter devices are provided. Current results show that there is wide scope to make the wave energy sector more competitive on the international market, by properly selecting the main design parameters of point absorbers, on the basis of met-ocean conditions at the deployment site.

  5. The Cooling of a Liquid Absorber using a Small Cooler

    International Nuclear Information System (INIS)

    Baynham, D.E.; Bradshaw, T.W.; Green, M.A.; Ishimoto, S.; Liggins, N.

    2005-01-01

    This report discusses the use of small cryogenic coolers for cooling the Muon Ionization Cooling Experiment (MICE) liquid cryogen absorbers. Since the absorber must be able contain liquid helium as well liquid hydrogen, the characteristics of the available 4.2 K coolers are used here. The issues associated with connecting two-stage coolers to liquid absorbers are discussed. The projected heat flows into an absorber and the cool-down of the absorbers using the cooler are presented. The warm-up of the absorber is discussed. Special hydrogen safety issues that may result from the use of a cooler on the absorbers are also discussed

  6. Homogenized boundary conditions and resonance effects in Faraday cages

    OpenAIRE

    Hewett, DP; Hewitt, IJ

    2016-01-01

    We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage e ect'). Taking the limit as the number of wires in the cage tends to in nity we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an e ective cage boundary. We show how the resulting models depend on key cage parameters such as the...

  7. Design and development of radiation absorber for sighting beam line

    International Nuclear Information System (INIS)

    Sridhar, R.; Shukla, S.K.

    2005-01-01

    During the commissioning of Indus-2 , it is necessary to view the synchrotron radiation that will be emanating from the dipole exit ports. The 10 0 beam line from dipole 11 was earmarked for sighting beam line. The synchrotron radiation power density would be around 340 watts on the photon absorber inside the radiation absorber module, at the specified beam power of Indus-2. The beam striking on this photon absorber produces x-rays and Bremsstrahlung radiation. These are to be stopped and absorbed by radiation absorber. The photon absorber and the radiation absorber are integrated in a single vacuum chamber and actuated by a pneumatic cylinder connected using a bellow. Radiation absorber was needed to isolate the diagnostic components and to protect them from radiation a well as heat when they were not in use. The paper describes the design, calculation and development of the dynamic photon cum radiation absorber. The ultimate vacuum performance is also described. (author)

  8. Thin absorbers for large-area soft X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Rocks, L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: rocks@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Brekosky, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sivananthan, S. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Zhao, J. [University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2006-04-15

    The X-ray Quantum Calorimeter (XQC) sounding rocket experiment utilizes a microcalorimeter array for observing the diffuse soft X-ray background. Observations of such low surface-brightness targets require a large-area detector. We will be using an array of large absorbers. Good absorbers must rapidly and completely thermalize photons, have small heat capacity for high stopping efficiency and have good lateral thermal transport. For observing the soft X-ray background (energies <1 keV), the volume and heat capacity of absorber material can be kept to a minimum by making the absorbers only as thick as needed for high quantum efficiency at these low energies. These thin, large-area absorbers are not self-supporting and have poor lateral heat transport. Depositing the absorber material on a Si substrate provides support and improves lateral thermal conduction. We present heat capacity results for thin HgTe and thin Bi, each on Si substrates. We also describe the HgTe absorber fabrication.

  9. Small-Scale Renewable Energy Converters for Battery Charging

    Directory of Open Access Journals (Sweden)

    Mohd Nasir Ayob

    2018-03-01

    Full Text Available This paper presents two wave energy concepts for small-scale electricity generation. In the presented case, these concepts are installed on the buoy of a heaving, point-absorbing wave energy converter (WEC for large scale electricity production. In the studied WEC, developed by Uppsala University, small-scale electricity generation in the buoy is needed to power a tidal compensating system designed to increase the performance of the WEC in areas with high tides. The two considered and modeled concepts are an oscillating water column (OWC and a heaving point absorber. The results indicate that the OWC is too small for the task and does not produce enough energy. On the other hand, the results show that a hybrid system composed of a small heaving point absorber combined with a solar energy system would be able to provide a requested minimum power of around 37.7 W on average year around. The WEC and solar panel complement each other, as the WEC produces enough energy by itself during wintertime (but not in the summer, while the solar panel produces enough energy in the summer (but not in the winter.

  10. Absorbed dose by a CMOS in radiotherapy

    International Nuclear Information System (INIS)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L. C.

    2011-10-01

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  11. Pollutant Dispersion in Boundary Layers Exposed to Rural-to-Urban Transitions: Varying the Spanwise Length Scale of the Roughness

    Science.gov (United States)

    Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.

    2017-05-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10 h was used as the approaching flow, and a line source of passive tracer was placed 2 h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.

  12. A new method to infer vegetation boundary movement from 'snapshot' data

    NARCIS (Netherlands)

    Eppinga, M.B.; Pucko, C.A.; Baudena, M.; Beckage, B.; Molofsky, J.

    2012-01-01

    Global change may induce shifts in plant community distributions at multiple spatial scales. At the ecosystem scale, such shifts may result in movement of ecotones or vegetation boundaries. Most indicators for ecosystem change require timeseries data, but here a new method is proposed enabling

  13. Air box shock absorber for a nuclear reactor

    International Nuclear Information System (INIS)

    Pradhan, A.V.; George, J.A.

    1977-01-01

    Disclosed is an air box type shock absorber primarily for use in an ice condenser compartment of a nuclear reactor. The shock absorber includes a back plate member and sheet metal top, bottom, and front members. The front member is prefolded, and controlled clearances are provided among the members for predetermined escape of air under impact and compression. Prefolded internal sheet metal stiffeners also absorb a portion of the kinetic energy imparted to the shock absorber, and limit rebound. An external restraining rod guided by restraining straps insures that the sheet metal front member compresses inward upon impact. 6 claims, 11 figures

  14. Absorber element for fast breeder reactor

    International Nuclear Information System (INIS)

    Verset, L.

    1987-01-01

    This absorber element is characterized by a new head which avoids an accident disconnection of the mobil absorber. This head is made by a superior piece which can take shore up an adjusting ring on an adjusting bearing on the inferior piece. The intermediate piece is catched at the superior piece by a link of chain [fr

  15. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  16. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  17. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  18. Performance of a new carbon dioxide absorbent, Yabashi lime® as compared to conventional carbon dioxide absorbent during sevoflurane anesthesia in dogs.

    Science.gov (United States)

    Kondoh, Kei; Atiba, Ayman; Nagase, Kiyoshi; Ogawa, Shizuko; Miwa, Takashi; Katsumata, Teruya; Ueno, Hiroshi; Uzuka, Yuji

    2015-08-01

    In the present study, we compare a new carbon dioxide (CO2) absorbent, Yabashi lime(®) with a conventional CO2 absorbent, Sodasorb(®) as a control CO2 absorbent for Compound A (CA) and Carbon monoxide (CO) productions. Four dogs were anesthetized with sevoflurane. Each dog was anesthetized with four preparations, Yabashi lime(®) with high or low-flow rate of oxygen and control CO2 absorbent with high or low-flow rate. CA and CO concentrations in the anesthetic circuit, canister temperature and carbooxyhemoglobin (COHb) concentration in the blood were measured. Yabashi lime(®) did not produce CA. Control CO2 absorbent generated CA, and its concentration was significantly higher in low-flow rate than a high-flow rate. CO was generated only in low-flow rate groups, but there was no significance between Yabashi lime(®) groups and control CO2 absorbent groups. However, the CO concentration in the circuit could not be detected (≤5ppm), and no change was found in COHb level. Canister temperature was significantly higher in low-flow rate groups than high-flow rate groups. Furthermore, in low-flow rate groups, the lower layer of canister temperature in control CO2 absorbent group was significantly higher than Yabashi lime(®) group. CA and CO productions are thought to be related to the composition of CO2 absorbent, flow rate and canister temperature. Though CO concentration is equal, it might be safer to use Yabashi lime(®) with sevoflurane anesthesia in dogs than conventional CO2 absorbent at the point of CA production.

  19. Homogenization of the stochastic Navier–Stokes equation with a stochastic slip boundary condition

    KAUST Repository

    Bessaih, Hakima

    2015-11-02

    The two-dimensional Navier–Stokes equation in a perforated domain with a dynamical slip boundary condition is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the holes. We consider a scaling (ᵋ for the viscosity and 1 for the density) that will lead to a time-dependent limit problem. However, the noncritical scaling (ᵋ, β > 1) is considered in front of the nonlinear term. The homogenized system in the limit is obtained as a Darcy’s law with memory with two permeabilities and an extra term that is due to the stochastic perturbation on the boundary of the holes. The nonhomogeneity on the boundary contains a stochastic part that yields in the limit an additional term in the Darcy’s law. We use the two-scale convergence method after extending the solution with 0 inside the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. Due to the stochastic integral, the pressure that appears in the variational formulation does not have enough regularity in time. This fact made us rely only on the variational formulation for the passage to the limit on the solution. We obtain a variational formulation for the limit that is solution of a Stokes system with two pressures. This two-scale limit gives rise to three cell problems, two of them give the permeabilities while the third one gives an extra term in the Darcy’s law due to the stochastic perturbation on the boundary of the holes.

  20. Long time scale simulation of a grain boundary in copper

    DEFF Research Database (Denmark)

    Pedersen, A.; Henkelman, G.; Schiøtz, Jakob

    2009-01-01

    A general, twisted and tilted, grain boundary in copper has been simulated using the adaptive kinetic Monte Carlo method to study the atomistic structure of the non-crystalline region and the mechanism of annealing events that occur at low temperature. The simulated time interval spanned 67 mu s...... was also observed. In the final low-energy configurations, the thickness of the region separating the crystalline grains corresponds to just one atomic layer, in good agreement with reported experimental observations. The simulated system consists of 1307 atoms and atomic interactions were described using...

  1. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R. [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); Li, Chen [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Poplawsky, Jonathan [The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Zhiwei [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Moseley, John; Guthrey, Harvey; Moutinho, Helio; Al-Jassim, Mowafak M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  2. Stochastic Theory of Turbulence Mixing by Finite Eddies in the Turbulent Boundary Layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing is treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic hypothesis. The theory simplifies for mixing by exchange (strong-eddies) and is then applied to the boundary layer (involving scaling). This maps boundary layer turbulence onto

  3. Validation of farm-scale methane emissions using nocturnal boundary layer budgets

    Directory of Open Access Journals (Sweden)

    J. Stieger

    2015-12-01

    Full Text Available This study provides the first experimental validation of Swiss agricultural methane emission estimates at the farm scale. We measured CH4 concentrations at a Swiss farmstead during two intensive field campaigns in August 2011 and July 2012 to (1 quantify the source strength of livestock methane emissions using a tethered balloon system and (2 to validate inventory emission estimates via nocturnal boundary layer (NBL budgets. Field measurements were performed at a distance of 150 m from the nearest farm buildings with a tethered balloon system in combination with gradient measurements at eight heights on a 10 m tower to better resolve the near-surface concentrations. Vertical profiles of air temperature, relative humidity, CH4 concentration, wind speed, and wind direction showed that the NBL was strongly influenced by local transport processes and by the valley wind system. Methane concentrations showed a pronounced time course, with highest concentrations in the second half of the night. NBL budget flux estimates were obtained via a time–space kriging approach. Main uncertainties of NBL budget flux estimates were associated with nonstationary atmospheric conditions and the estimate of the inversion height zi (top of volume integration. The mean NBL budget fluxes of 1.60 ± 0.31 μg CH4 m-2 s-1 (1.40 ± 0.50 and 1.66 ± 0.20 μg CH4 m-2 s-1 in 2011 and 2012 respectively were in good agreement with local inventory estimates based on current livestock number and default emission factors, with 1.29 ± 0.47 and 1.74 ± 0.63 μg CH4 m-2 s-1 for 2011 and 2012 respectively. This indicates that emission factors used for the national inventory reports are adequate, and we conclude that the NBL budget approach is a useful tool to validate emission inventory estimates.

  4. Validation of farm-scale methane emissions using nocturnal boundary layer budgets

    Science.gov (United States)

    Stieger, J.; Bamberger, I.; Buchmann, N.; Eugster, W.

    2015-12-01

    This study provides the first experimental validation of Swiss agricultural methane emission estimates at the farm scale. We measured CH4 concentrations at a Swiss farmstead during two intensive field campaigns in August 2011 and July 2012 to (1) quantify the source strength of livestock methane emissions using a tethered balloon system and (2) to validate inventory emission estimates via nocturnal boundary layer (NBL) budgets. Field measurements were performed at a distance of 150 m from the nearest farm buildings with a tethered balloon system in combination with gradient measurements at eight heights on a 10 m tower to better resolve the near-surface concentrations. Vertical profiles of air temperature, relative humidity, CH4 concentration, wind speed, and wind direction showed that the NBL was strongly influenced by local transport processes and by the valley wind system. Methane concentrations showed a pronounced time course, with highest concentrations in the second half of the night. NBL budget flux estimates were obtained via a time-space kriging approach. Main uncertainties of NBL budget flux estimates were associated with nonstationary atmospheric conditions and the estimate of the inversion height zi (top of volume integration). The mean NBL budget fluxes of 1.60 ± 0.31 μg CH4 m-2 s-1 (1.40 ± 0.50 and 1.66 ± 0.20 μg CH4 m-2 s-1 in 2011 and 2012 respectively) were in good agreement with local inventory estimates based on current livestock number and default emission factors, with 1.29 ± 0.47 and 1.74 ± 0.63 μg CH4 m-2 s-1 for 2011 and 2012 respectively. This indicates that emission factors used for the national inventory reports are adequate, and we conclude that the NBL budget approach is a useful tool to validate emission inventory estimates.

  5. Structural evolution of a deformed Σ=9 (122) grain boundary in silicon. A high resolution electron microscopy study

    International Nuclear Information System (INIS)

    Putaux, Jean-Luc

    1991-01-01

    This research thesis addresses the study by high resolution electron microscopy of the evolution of a silicon bi-crystal under deformation at different temperatures. The author notably studied the structural evolution of the boundary as well as that of grains at the vicinity of the boundary. Two observation scales have been used: the evolution of sub-structures of dislocations induced by deformation in grains and in boundary, and the structure of all defects at an atomic scale. After a presentation of experimental tools (the necessary perfect quality of the electronic optics is outlined), the author recalls some descriptive aspects of grain boundaries (geometric network concepts to describe coinciding networks, concepts of delimiting boundaries and of structural unit to describe grain boundary atomic structure), recalls the characteristics of the studied bi-crystal, and the conditions under which it is deformed. He presents the structures of all perfectly coinciding boundaries, describes defects obtained by deformation at the vicinity of the boundary, describes the entry of dissociated dislocations into the boundaries, and discusses the characterization of boundary dislocations (the notion of Burgers vector is put into question again), and the atomic mechanism of displacement of dislocations in boundaries [fr

  6. Slovenian-Croatian boundary: backgrounds of boundary-making and boundary-breaking in Istria regarding the contemporary boundary dispute

    Directory of Open Access Journals (Sweden)

    Damir Josipovič

    2012-06-01

    Full Text Available Boundary-making in Istria is an old undertaking. It has actually never ceasesed, not even today. Istrian peninsula has thus undergone substantial boundary shifts during the last couple of centuries (especially after the Venetian demise in 1797. But Istria carries its worldwide fame also due to one of probably the harshest disputes on the post-war European grounds – the Trieste territory dispute. In author's perspective, this dispute is one of the four main corner-stones of the current Slovenian-Croatian boundary dispute. The remaining three include the Kozler's boundary around Dragonja (Rokava River, the ungraspable notions of Austrian censuses in Istria, and the narratives of partisan settlements on military jurisdiction. However, there are other very important aspects which significantly shaped the development of the dispute, but we will focus at assessing the importance of the aforementioned ones. In this sense, the analysis of the effects of the outcome of the Trieste dispute and its implications to the contemporary interstate dispute is set forth. By unveiling its material and consequently its psychological effects upon the contemporary bilateral relations, its analyses simultaneously reveals backgrounds of never answered question, why Kozler's proposed linguistic boundary around Dragonja (Rokava River turned out to become a boundary of national character. Though nowadays disputed, there is absolutely no chance for both involved parties to substantially draw away from once decisively drawn line of a layman. Despite the fierce battle of words in Slovenian public media on whether should the interstate boundary be placed on Mirna (Quieto or Dragonja Rivers, it will be argued here that the actual choice of the Valley of Dragonja as a boundary is by all means Slovenian. The arguments are based on extensive analyses of cartographic materials, relevant literature, documents, and statistical data.

  7. Slovenian-Croatian boundary: backgrounds of boundary-making and boundary-breaking in Istria regarding the contemporary boundary dispute

    Directory of Open Access Journals (Sweden)

    Damir Josipovič

    2012-01-01

    Full Text Available Boundary-making in Istria is an old undertaking. It has actually never ceasesed, not even today. Istrian peninsula has thus undergone substantial boundary shifts during the last couple of centuries (especially after the Venetian demise in 1797. But Istria carries its worldwide fame also due to one of probably the harshest disputes on the post-war European grounds – the Trieste territory dispute. In author's perspective, this dispute is one of the four main corner-stones of the current Slovenian-Croatian boundary dispute. The remaining three include the Kozler's boundary around Dragonja (Rokava River, the ungraspable notions of Austrian censuses in Istria, and the narratives of partisan settlements on military jurisdiction. However, there are other very important aspects which significantly shaped the development of the dispute, but we will focus at assessing the importance of the aforementioned ones. In this sense, the analysis of the effects of the outcome of the Trieste dispute and its implications to the contemporary interstate dispute is set forth. By unveiling its material and consequently its psychological effects upon the contemporary bilateral relations, its analyses simultaneously reveals backgrounds of never answered question, why Kozler's proposed linguistic boundary around Dragonja (Rokava River turned out to become a boundary of national character. Though nowadays disputed, there is absolutely no chance for both involved parties to substantially draw away from once decisively drawn line of a layman. Despite the fierce battle of words in Slovenian public media on whether should the interstate boundary be placed on Mirna (Quieto or Dragonja Rivers, it will be argued here that the actual choice of the Valley of Dragonja as a boundary is by all means Slovenian. The arguments are based on extensive analyses of cartographic materials, relevant literature, documents, and statistical data.

  8. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over four flux towers in the United States

    Science.gov (United States)

    Xueri Dang; Chun-Ta Lai; David Y. Hollinger; Andrew J. Schauer; Jingfeng Xiao; J. William Munger; Clenton Owensby; James R. Ehleringer

    2011-01-01

    We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling...

  9. Radar absorbing properties of carbon nanotubes/polymer ...

    Indian Academy of Sciences (India)

    This research is devoted to the study of radar absorbing properties of the composites, based on the epoxy binder and ... Radar absorbing materials; carbon nanotubes; nanocomposites; reflection loss. 1. ..... So, for example, the papers of [3–5 ...

  10. Measuring neuronal avalanches in disordered systems with absorbing states

    Science.gov (United States)

    Girardi-Schappo, M.; Tragtenberg, M. H. R.

    2018-04-01

    Power-law-shaped avalanche-size distributions are widely used to probe for critical behavior in many different systems, particularly in neural networks. The definition of avalanche is ambiguous. Usually, theoretical avalanches are defined as the activity between a stimulus and the relaxation to an inactive absorbing state. On the other hand, experimental neuronal avalanches are defined by the activity between consecutive silent states. We claim that the latter definition may be extended to some theoretical models to characterize their power-law avalanches and critical behavior. We study a system in which the separation of driving and relaxation time scales emerges from its structure. We apply both definitions of avalanche to our model. Both yield power-law-distributed avalanches that scale with system size in the critical point as expected. Nevertheless, we find restricted power-law-distributed avalanches outside of the critical region within the experimental procedure, which is not expected by the standard theoretical definition. We remark that these results are dependent on the model details.

  11. GEOMETRICAL OPTIMIZATION OF VEHICLE SHOCK ABSORBERS WITH MR FLUID

    OpenAIRE

    ENGIN, Tahsin; PARLAK, Zekeriya; ŞAHIN, Ismail; ÇALLI, Ismail

    2016-01-01

    Magnetorheological (MR) shock absorber have received remarkable attention in the last decade due to being a potential technology to conduct semi-active control in structures and mechanical systems in order to effectively suppress vibration. To develop performance of MR shock absorbers, optimal design of the dampers should be considered. The present study deals with optimal geometrical modeling of a MR shock absorber. Optimal design of the present shock absorber was carried out by using Taguch...

  12. Progress on the MICE Liquid Absorber Cooling and Cryogenic Distribution System

    International Nuclear Information System (INIS)

    Green, M.A.; Baynham, E.; Bradshaw, T.; Drumm, P.; Ivanyushenkov, Y.; Ishimoto, S.; Cummings, M.A.C.; Lau, W.W.; Yang, S.Q.

    2005-01-01

    This report describes the progress made on the design of the cryogenic cooling system for the liquid absorber for the international Muon Ionization Cooling Experiment (MICE). The absorber consists of a 20.7-liter vessel that contains liquid hydrogen (1.48 kg at 20.3 K) or liquid helium (2.59 kg at 4.2 K). The liquid cryogen vessel is located within the warm bore of the focusing magnet for the MICE. The purpose of the magnet is to provide a low beam beta region within the absorber. For safety reasons, the vacuum vessel for the hydrogen absorber is separated from the vacuum vessel for the superconducting magnet and the vacuum that surrounds the RF cavities or the detector. The absorber thin windows separate the liquid in the absorber from the absorber vacuum. The absorber vacuum vessel also has thin windows that separate the absorber vacuum space from adjacent vacuum spaces. Because the muon beam in MICE is of low intensity, there is no beam heating in the absorber. The absorber can use a single 4 K cooler to cool either liquid helium or liquid hydrogen within the absorber

  13. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  14. Preparation and characterization of water-absorbing composite ...

    African Journals Online (AJOL)

    The present work introduces a novel method for the formation of water absorbing composite membrane. The prepared composite is based on chitosan, carboxymethyl cellulose (CMC), and Montmorillonite. Prepared composite membrane exhibits high water absorbing and holding capacity with increasing clay content.

  15. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances.

    Science.gov (United States)

    Ghedini, Giulia; Russell, Bayden D; Connell, Sean D

    2015-02-01

    Disturbance often results in small changes in community structure, but the probability of transitioning to contrasting states increases when multiple disturbances combine. Nevertheless, we have limited insights into the mechanisms that stabilise communities, particularly how perturbations can be absorbed without restructuring (i.e. resistance). Here, we expand the concept of compensatory dynamics to include countervailing mechanisms that absorb disturbances through trophic interactions. By definition, 'compensation' occurs if a specific disturbance stimulates a proportional countervailing response that eliminates its otherwise unchecked effect. We show that the compounding effects of disturbances from local to global scales (i.e. local canopy-loss, eutrophication, ocean acidification) increasingly promote the expansion of weedy species, but that this response is countered by a proportional increase in grazing. Finally, we explore the relatively unrecognised role of compensatory effects, which are likely to maintain the resistance of communities to disturbance more deeply than current thinking allows. © 2015 John Wiley & Sons Ltd/CNRS.

  16. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan; Pullin, D. I.; Samtaney, Ravi

    2015-01-01

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used

  17. Experiments on a smooth wall hypersonic boundary layer at Mach 6

    Science.gov (United States)

    Neeb, Dominik; Saile, Dominik; Gülhan, Ali

    2018-04-01

    The turbulent boundary layer along the surface of high-speed vehicles drives shear stress and heat flux. Although essential to the vehicle design, the understanding of compressible turbulent boundary layers at high Mach numbers is limited due to the lack of available data. This is particularly true if the surface is rough, which is typically the case for all technical surfaces. To validate a methodological approach, as initial step, smooth wall experiments were performed. A hypersonic turbulent boundary layer at Ma = 6 (Ma_e=5.4) along a 7{}° sharp cone model at low Reynolds numbers Re_{θ } ≈ 3000 was characterized. The mean velocities in the boundary layer were acquired by means of Pitot pressure and particle image velocimetry (PIV) measurements. Furthermore, the PIV data were used to extract turbulent intensities along the profile. The mean velocities in the boundary layer agree with numerical data, independent of the measurement technique. Based on the profile data, three different approaches to extract the skin friction velocity were applied and show favorable comparison to literature and numerical data. The extracted values were used for inner and outer scaling of the van Driest transformed velocity profiles which are in good agreement to incompressible theoretical data. Morkovin scaled turbulent intensities show ambiguous results compared to literature data which may be influenced by inflow turbulence level, particle lag and other measurement uncertainties.

  18. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  19. Dynamics, thermodynamics, radiation, and cloudiness associated with cumulus-topped marine boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, Virendra P. [Argonne National Lab. (ANL), Argonne, IL (United States); Miller, Mark [Rutgers Univ., New Brunswick, NJ (United States)

    2016-11-01

    The overall goal of this project was to improve the understanding of marine boundary clouds by using data collected at the Atmospheric Radiation Measurement (ARM) sites, so that they can be better represented in global climate models (GCMs). Marine boundary clouds are observed regularly over the tropical and subtropical oceans. They are an important element of the Earth’s climate system because they have substantial impact on the radiation budget together with the boundary layer moisture, and energy transports. These clouds also have an impact on large-scale precipitation features like the Inter Tropical Convergence Zone (ITCZ). Because these clouds occur at temporal and spatial scales much smaller than those relevant to GCMs, their effects and the associated processes need to be parameterized in GCM simulations aimed at predicting future climate and energy needs. Specifically, this project’s objectives were to (1) characterize the surface turbulent fluxes, boundary layer thermodynamics, radiation field, and cloudiness associated with cumulus-topped marine boundary layers; (2) explore the similarities and differences in cloudiness and boundary layer conditions observed in the tropical and trade-wind regions; and (3) understand similarities and differences by using a simple bulk boundary layer model. In addition to working toward achieving the project’s three objectives, we also worked on understanding the role played by different forcing mechanisms in maintaining turbulence within cloud-topped boundary layers We focused our research on stratocumulus clouds during the first phase of the project, and cumulus clouds during the rest of the project. Below is a brief description of manuscripts published in peer-reviewed journals that describe results from our analyses.

  20. Direct simulation of flat-plate boundary layer with mild free-stream turbulence

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz

    2014-11-01

    Spatially evolving direct numerical simulation of the flat-plate boundary layer has been performed. The momentum thickness Reynolds number develops from 80 to 3000 with a free-stream turbulence intensity decaying from 3 percent to 0.8 percent. Predicted skin-friction is in agreement with the Blasius solution prior to breakdown, follows the well-known T3A bypass transition data during transition, and agrees with the Erm and Joubert Melbourne wind-tunnel data after the completion of transition. We introduce the concept of bypass transition in the narrow sense. Streaks, although present, do not appear to be dynamically important during the present bypass transition as they occur downstream of infant turbulent spots. For the turbulent boundary layer, viscous scaling collapses the rate of dissipation profiles in the logarithmic region at different Reynolds numbers. The ratio of Taylor microscale and the Kolmogorov length scale is nearly constant over a large portion of the outer layer. The ratio of large-eddy characteristic length and the boundary layer thickness scales very well with Reynolds number. The turbulent boundary layer is also statistically analyzed using frequency spectra, conditional-sampling, and two-point correlations. Near momentum thickness Reynolds number of 2900, three layers of coherent vortices are observed: the upper and lower layers are distinct hairpin forests of large and small sizes respectively; the middle layer consists of mostly fragmented hairpin elements.

  1. Natural Scales in Geographical Patterns

    Science.gov (United States)

    Menezes, Telmo; Roth, Camille

    2017-04-01

    Human mobility is known to be distributed across several orders of magnitude of physical distances, which makes it generally difficult to endogenously find or define typical and meaningful scales. Relevant analyses, from movements to geographical partitions, seem to be relative to some ad-hoc scale, or no scale at all. Relying on geotagged data collected from photo-sharing social media, we apply community detection to movement networks constrained by increasing percentiles of the distance distribution. Using a simple parameter-free discontinuity detection algorithm, we discover clear phase transitions in the community partition space. The detection of these phases constitutes the first objective method of characterising endogenous, natural scales of human movement. Our study covers nine regions, ranging from cities to countries of various sizes and a transnational area. For all regions, the number of natural scales is remarkably low (2 or 3). Further, our results hint at scale-related behaviours rather than scale-related users. The partitions of the natural scales allow us to draw discrete multi-scale geographical boundaries, potentially capable of providing key insights in fields such as epidemiology or cultural contagion where the introduction of spatial boundaries is pivotal.

  2. Effects of Cadastral Boundaries in Agricultural Land on Runoff Generation

    Science.gov (United States)

    Kumar, P.; Tripathi, S.

    2011-12-01

    The Gangetic Plain is among the most fertile and highly cultivated regions of the world. It supports a large agrarian population that is rapidly growing since the Green Revolution of 1960s. With increasing population, the average farm size is decreasing. Consequently, the density of cadastral boundaries, which are used for separating individual farm holdings, is increasing. The cadastral boundaries in the Gangetic Plains are typically 25 to 30 cm high and 30 to 60 cm wide. These boundaries segment the flat topography of the region, creating small artificial water storages, the effect of which on the hydrology of the region is not extensively investigated. The objective of this research is to develop a laboratory scale physical model for understanding the effect of cadastral boundaries and resulting artificial storages on runoff generation. Experiments were performed in a hydrological apparatus equipped for simulating rainfall-runoff processes under control conditions. The experiments were carried out for watersheds with no cadastral boundaries, and with cadastral boundaries of varying dimensions and densities. Changes in the observed runoff were used to develop a mathematical model for explaining and predicting the impact of cadastral boundaries on the hydrology of the Gangetic Plains.

  3. Preparation and characterization of water-absorbing composite ...

    African Journals Online (AJOL)

    ABCO

    2012-08-16

    Aug 16, 2012 ... The present work introduces a novel method for the formation of water absorbing composite membrane. The prepared composite is based on chitosan, carboxymethyl cellulose (CMC), and. Montmorillonite. Prepared composite membrane exhibits high water absorbing and holding capacity with increasing ...

  4. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  5. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  6. Experiments in a boundary layer subjected to free stream turbulence. Part 1: Boundary layer structure and receptivity

    International Nuclear Information System (INIS)

    Westin, K.J.A.; Boiko, A.V.; Klingmann, B.G.B.; Kozlov, V.V.; Alfredsson, P.H.

    1993-12-01

    The modification of the mean and fluctuating characteristics of a flat plate boundary layer subjected to nearly isotropic free stream turbulence (FST) is studied experimentally using hot-wire anemometry. The study is focussed on the region upstream of the transition onset, where the fluctuations inside the boundary layer are dominated by elongated flow structures which grow downstream both in amplitude and length. Their downstream development and scaling is investigated, and the results are compared to those obtained by previous authors. This allows some conclusions about the parameters which are relevant for the modelling of the transition process. The mechanisms underlying the transition process and the relative importance of the Tollmien-Schlichting wave instability in this flow are treated in an accompanying paper. 25 refs

  7. Shock absorber system for nuclear reactor ice condenser compartment

    International Nuclear Information System (INIS)

    Meier, J.F.; Rudd, G.E.; Pradhan, A.V.; George, J.A.; Lippincott, H.W.; Sutherland, J.D.

    1979-01-01

    A shock absorber system was designed to absorb the energy imparted to doors in a nuclear reactor ice condenser compartment as they swing rapidly to an open position. Each shock absorber which is installed on a wall adjacent to each door is large and must absorb up to about 40,000 foot pounds of energy. The basic shock absorber component comprises foam enclosed in a synthetic fabric bag having a volume about twice the foam volume. A stainless steel knitted mesh bag of the same volume as the fabric bag, contains the fabric bag and its enclosed foam. To protect the foam and bags during construction activities at the reactor site and from the shearing action of the doors, a protective sheet metal cover is installed over the shock absorber ends and the surface to be contacted by the moving door. With the above shock absorber mounted on a wall behind each door, as the door is forcibly opened by steam pressure and air resulting from a pipe break in the reactor compartment, it swings at a high velocity into contact with the shock absorber, crushes the foam and forces it into the fabric bag excess material thus containing the foam fragmented particles, and minimizes build-up of pressure in the bag as a result of the applied compressive force

  8. Pool fire upon a balsa-filled shock absorber

    International Nuclear Information System (INIS)

    Fry, C.J.

    1990-07-01

    When performing a safety assessment of a transport flask with balsa-filled shock absorbers it is important to know how the shock absorbers, which may have the outer skin punctured by an impact, will perform in a fire. A 30 minute pool test, which satisfied all the requirements of a thermal test under the IAEA regulations, was carried out upon a small, balsa-filled shock absorber. The outer steel shell was partly cut away exposing the wood to the fire and the air. The balsa wood prevented 90% of the heat from the fire from being transferred through the shock absorber, even though the balsa was only 133 mm thick. The maximum heat flux through to the inside of the shock absorber due to the burning of the balsa wood was relatively low, 2.8 kW/m 2 , and occurred 2 to 3 hours after the end of the pool fire. (author)

  9. Dike-induced contraction along oceanic and continental divergent plate boundaries

    KAUST Repository

    Trippanera, D.

    2014-10-28

    The axis of divergent plate boundaries shows extension fractures and normal faults at the surface. Here we present evidence of contraction along the axis of the oceanic ridge of Iceland and the continental Main Ethiopian Rift. Contraction is found at the base of the tilted hanging wall of dilational normal faults, balancing part of their extension. Our experiments suggest that these structures result from dike emplacement. Multiple dike injection induces subsidence above and uplift to the sides of the dikes; the transition in between is accommodated by reverse faults and subsequent peripheral inward dipping normal faults. Our results suggest that contraction is a direct product of magma emplacement along divergent plate boundaries, at various scales, marking a precise evolutionary stage and initiating part of the extensional structures (extension fractures and normal faults). Key Points Contraction along divergent plate boundaries results from dike emplacementContraction generates extensional structures along divergent plate boundariesSurface deformation along divergent plate boundaries may be magma induced

  10. Dike-induced contraction along oceanic and continental divergent plate boundaries

    KAUST Repository

    Trippanera, D.; Acocella, V.; Ruch, Joel

    2014-01-01

    The axis of divergent plate boundaries shows extension fractures and normal faults at the surface. Here we present evidence of contraction along the axis of the oceanic ridge of Iceland and the continental Main Ethiopian Rift. Contraction is found at the base of the tilted hanging wall of dilational normal faults, balancing part of their extension. Our experiments suggest that these structures result from dike emplacement. Multiple dike injection induces subsidence above and uplift to the sides of the dikes; the transition in between is accommodated by reverse faults and subsequent peripheral inward dipping normal faults. Our results suggest that contraction is a direct product of magma emplacement along divergent plate boundaries, at various scales, marking a precise evolutionary stage and initiating part of the extensional structures (extension fractures and normal faults). Key Points Contraction along divergent plate boundaries results from dike emplacementContraction generates extensional structures along divergent plate boundariesSurface deformation along divergent plate boundaries may be magma induced

  11. Rigorous homogenization of a Stokes-Nernst-Planck-Poisson problem for various boundary conditions

    NARCIS (Netherlands)

    Ray, N.; Muntean, A.; Knabner, P.

    2011-01-01

    We perform the periodic homogenization (i. e. e ¿ 0) of the non-stationary Stokes-Nernst-Planck-Poisson system using two-scale convergence, where e is a suitable scale parameter. The objective is to investigate the influence of different boundary conditions and variable choices of scaling in e of

  12. Technology for Boundaries

    DEFF Research Database (Denmark)

    Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina

    2003-01-01

    .After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies......This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries...... seem a core issue when dealing with technology for boundaries....

  13. A multicenter randomized controlled trial comparing absorbable barbed sutures versus conventional absorbable sutures for dermal closure in open surgical procedures.

    Science.gov (United States)

    Rubin, J Peter; Hunstad, Joseph P; Polynice, Alain; Gusenoff, Jeffrey A; Schoeller, Thomas; Dunn, Raymond; Walgenbach, Klaus J; Hansen, Juliana E

    2014-02-01

    Barbed sutures were developed to reduce operative time and improve security of wound closure. The authors compare absorbable barbed sutures (V-Loc, Covidien, Mansfield, Massachusetts) with conventional (smooth) absorbable sutures for soft tissue approximation. A prospective multicenter randomized study comparing barbed sutures with smooth sutures was undertaken between August 13, 2009, and January 31, 2010, in 241 patients undergoing abdominoplasty, mastopexy, and reduction mammaplasty. Each patient received barbed sutures on 1 side of the body, with deep dermal sutures eliminated or reduced. Smooth sutures with deep dermal and subcuticular closure were used on the other side as a control. The primary endpoint was dermal closure time. Safety was assessed through adverse event reporting through a 12-week follow-up. A total of 229 patients were ultimately treated (115 with slow-absorbing polymer and 114 with rapid-absorbing polymer). Mean dermal closure time was significantly quicker with the barbed suture compared with the smooth suture (12.0 vs 19.2 minutes; P<.001), primarily due to the need for fewer deep dermal sutures. The rapid-absorbing barbed suture showed a complication profile equivalent to the smooth suture, while the slow-absorbing barbed suture had a higher incidence of minor suture extrusion. Barbed sutures enabled faster dermal closure quicker than smooth sutures, with a comparable complication profile. 1.

  14. Identifying the perfect absorption of metamaterial absorbers

    Science.gov (United States)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  15. Application of a transitional boundary-layer theory in the low hypersonic Mach number regime

    Science.gov (United States)

    Shamroth, S. J.; Mcdonald, H.

    1975-01-01

    An investigation is made to assess the capability of a finite-difference boundary-layer procedure to predict the mean profile development across a transition from laminar to turbulent flow in the low hypersonic Mach-number regime. The boundary-layer procedure uses an integral form of the turbulence kinetic-energy equation to govern the development of the Reynolds apparent shear stress. The present investigation shows the ability of this procedure to predict Stanton number, velocity profiles, and density profiles through the transition region and, in addition, to predict the effect of wall cooling and Mach number on transition Reynolds number. The contribution of the pressure-dilatation term to the energy balance is examined and it is suggested that transition can be initiated by the direct absorption of acoustic energy even if only a small amount (1 per cent) of the incident acoustic energy is absorbed.

  16. A wideband absorber for television studios

    Science.gov (United States)

    Baird, M. D. M.

    The acoustic treatment in BBC television has taken various forms to date, all of which have been relatively expensive, some of which provide inadequate absorption. An investigation has been conducted into the possibilities of producing a new type of wideband absorber which would be more economic, also taking installation time into account, than earlier designs. This Report describes the absorption coefficient measurements made on various combinations of materials, from which a wideband sound absorber has been developed. The absorber works efficiently between 50 Hz and 10 kHz, is simple and easy to construct using readily available materials, and is fire resistant. The design lends itself, if necessary, to on-site fine tuning, and savings in the region of 50 percent can be achieved in terms of cost and space with respect to previous designs.

  17. A POPULATION OF WEAK METAL-LINE ABSORBERS SURROUNDING THE MILKY WAY

    International Nuclear Information System (INIS)

    Richter, Philipp; Charlton, Jane C.; Fangano, Alessio P. M.; Bekhti, Nadya Ben; Masiero, Joseph R.

    2009-01-01

    We report on the detection of a population of weak metal-line absorbers in the halo or nearby intergalactic environment of the Milky Way. Using high-resolution ultraviolet absorption-line spectra of bright quasars (QSO) obtained with the Space Telescope Imaging Spectrograph (STIS), along six sight lines we have observed unsaturated, narrow absorption in O I and Si II, together with mildly saturated C II absorption at high radial velocities (|v LSR | = 100-320 km s -1 ). The measured O I column densities lie in the range N(O I) 14 cm -2 implying that these structures represent Lyman limit Systems and sub-Lyman limit System with H I column densities between 10 16 and 3 x 10 18 cm -2 , thus below the detection limits of current 21 cm all-sky surveys of high-velocity clouds (HVCs). The absorbers apparently are not directly associated with any of the large high column density HVC complexes, but rather represent isolated, partly neutral gas clumps embedded in a more tenuous, ionized gaseous medium situated in the halo or nearby intergalactic environment of the Galaxy. Photoionization modeling of the observed low ion ratios suggests typical hydrogen volume densities of n H > 0.02 cm -3 and characteristic thicknesses of a several parsec down to subparsec scales. For three absorbers, metallicities are constrained in the range of 0.1-1.0 solar, implying that these gaseous structures may have multiple origins inside and outside the Milky Way. Using supplementary optical absorption-line data, we find for two other absorbers Ca II/O I column-density ratios that correspond to solar Ca/O abundance ratios. This finding indicates that these clouds do not contain significant amounts of dust. This population of low column density gas clumps in the circumgalactic environment of the Milky Way is indicative of the various processes that contribute to the circulation of neutral gas in the extended halos of spiral galaxies. These processes include the accretion of gas from the

  18. Absorbed dose in CT. Comparison by CT dose index

    International Nuclear Information System (INIS)

    Yamamoto, Kenji; Akazawa, Hiroshi; Andou, Takashi

    2002-01-01

    Few reports have discussed the absorbed dose on CT units with increased scanning capacity even with the current widespread adoption of multi-slice CT units. To compare and investigate the dose indexes among CT units, we measured the absorbed dose on CT units operating in Nagano Prefecture Japan. The measurements showed proportionality between phantom absorbed dose and the exposured mAs values in conventional scanning operation. Further, the measurements showed that the absorbed dose in the center of the phantom differed by about 2.1-fold between the highest and lowest levels on individual CT units. Within a single company, multi-slice CT units of the same company gave absorbed doses of about 1.3 to 1.5 times those of conventional single-slice CT units under the same exposured conditions of conventional scanning. When the scanning pitch was reduced in helical scanning, the absorbed dose at the center of the phantom increased. (author)

  19. Rough-wall turbulent boundary layers with constant skin friction

    KAUST Repository

    Sridhar, A.; Pullin, D. I.; Cheng, W.

    2017-01-01

    A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows

  20. Incorporation of exact boundary conditions into a discontinuous galerkin finite element method for accurately solving 2d time-dependent maxwell equations

    KAUST Repository

    Sirenko, Kostyantyn

    2013-01-01

    A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.

  1. Model-based estimation with boundary side information or boundary regularization

    International Nuclear Information System (INIS)

    Chiao, P.C.; Rogers, W.L.; Fessler, J.A.; Clinthorne, N.H.; Hero, A.O.

    1994-01-01

    The authors have previously developed a model-based strategy for joint estimation of myocardial perfusion and boundaries using ECT (Emission Computed Tomography). The authors have also reported difficulties with boundary estimation in low contrast and low count rate situations. In this paper, the authors propose using boundary side information (obtainable from high resolution MRI and CT images) or boundary regularization to improve both perfusion and boundary estimation in these situations. To fuse boundary side information into the emission measurements, the authors formulate a joint log-likelihood function to include auxiliary boundary measurements as well as ECT projection measurements. In addition, the authors introduce registration parameters to align auxiliary boundary measurements with ECT measurements and jointly estimate these parameters with other parameters of interest from the composite measurements. In simulated PET O-15 water myocardial perfusion studies using a simplified model, the authors show that the joint estimation improves perfusion estimation performance and gives boundary alignment accuracy of <0.5 mm even at 0.2 million counts. The authors implement boundary regularization through formulating a penalized log-likelihood function. The authors also demonstrate in simulations that simultaneous regularization of the epicardial boundary and myocardial thickness gives comparable perfusion estimation accuracy with the use of boundary side information

  2. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  3. Evaluating cloud processes in large-scale models: Of idealized case studies, parameterization testbeds and single-column modelling on climate time-scales

    Science.gov (United States)

    Neggers, Roel

    2016-04-01

    Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach

  4. 21 CFR 880.6025 - Absorbent tipped applicator.

    Science.gov (United States)

    2010-04-01

    ... stick. The device is used to apply medications to, or to take specimens from, a patient. (b...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6025 Absorbent tipped applicator. (a) Identification. An absorbent tipped applicator is a...

  5. Wideband aural acoustic absorbance predicts conductive hearing loss in children.

    Science.gov (United States)

    Keefe, Douglas H; Sanford, Chris A; Ellison, John C; Fitzpatrick, Denis F; Gorga, Michael P

    2012-12-01

    This study tested the hypothesis that wideband aural absorbance predicts conductive hearing loss (CHL) in children medically classified as having otitis media with effusion. Absorbance was measured in the ear canal over frequencies from 0.25 to 8 kHz at ambient pressure or as a swept tympanogram. CHL was defined using criterion air-bone gaps of 20, 25, and 30 dB at octaves from 0.25 to 4 kHz. A likelihood-ratio predictor of CHL was constructed across frequency for ambient absorbance, and across frequency and pressure for absorbance tympanometry. Performance was evaluated at individual frequencies and for any frequency at which a CHL was present. Absorbance and conventional 0.226-kHz tympanograms were measured in children of age three to eight years with CHL and with normal hearing. Absorbance was smaller at frequencies above 0.7 kHz in the CHL group than the control group. Based on the area under the receiver operating characteristic curve, wideband absorbance in ambient and tympanometric tests were significantly better predictors of CHL than tympanometric width, the best 0.226-kHz predictor. Accuracies of ambient and tympanometric wideband absorbance did not differ. Absorbance accurately predicted CHL in children and was more accurate than conventional 0.226-kHz tympanometry.

  6. The internal boundary layer — A review

    Science.gov (United States)

    Garratt, J. R.

    1990-03-01

    A review is given of relevant work on the internal boundary layer (IBL) associated with: (i) Small-scale flow in neutral conditions across an abrupt change in surface roughness, (ii) Small-scale flow in non-neutral conditions across an abrupt change in surface roughness, temperature or heat/moisture flux, (iii) Mesoscale flow, with emphasis on flow across the coastline for both convective and stably stratified conditions. The major theme in all cases is on the downstream, modified profile form (wind and temperature), and on the growth relations for IBL depth.

  7. Proposal concerning the absorbed dose conversion factor

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, A [National Inst. of Radiological Sciences, Chiba (Japan)

    1978-03-01

    New definitions of the absorbed dose conversion factors Csub(lambda) and Csub(E) are proposed. The absorbed dose in water is given by the product of absorbed dose conversion factor, exposure calibration factor, ionisation chamber reading, cap displacement correction factor and perturbation correction factor. At exposure calibration the material of the build-up cap must be the same as that of the chamber wall. An ionisation chamber of which the wall material is water-equivalent or air-equivalent may be used. In the latter case the wall must be thin. For these two cases absorbed dose conversion factors are introduced and it is recommended that either of the two sets should be adopted. Furthermore, if the chamber wall is neither water- nor air-equivalent, the factor by which these currently defined values should be multiplied is also given: again the wall must be thin. The ICRU definitions of Csub(lambda) and Csub(E) are inconsistent, as recently pointed out, while the definitions presented here are consistent.

  8. Role of Grain Boundaries under Long-Time Radiation

    Science.gov (United States)

    Zhu, Yichao; Luo, Jing; Guo, Xu; Xiang, Yang; Chapman, Stephen Jonathan

    2018-06-01

    Materials containing a high proportion of grain boundaries offer significant potential for the development of radiation-resistant structural materials. However, a proper understanding of the connection between the radiation-induced microstructural behavior of a grain boundary and its impact at long natural time scales is still missing. In this Letter, point defect absorption at interfaces is summarized by a jump Robin-type condition at a coarse-grained level, wherein the role of interface microstructure is effectively taken into account. Then a concise formula linking the sink strength of a polycrystalline aggregate with its grain size is introduced and is well compared with experimental observation. Based on the derived model, a coarse-grained formulation incorporating the coupled evolution of grain boundaries and point defects is proposed, so as to underpin the study of long-time morphological evolution of grains induced by irradiation. Our simulation results suggest that the presence of point defect sources within a grain further accelerates its shrinking process, and radiation tends to trigger the extension of twin boundary sections.

  9. The low-latitude boundary layer at mid-altitiudes: Relation to large-scale Birkeland currents

    International Nuclear Information System (INIS)

    Woch, J.; Yamauchi, M.; Lundin, R.; Potemra, T.A.; Zanetti, L.J.

    1993-01-01

    In this work the authors seek to test a projected relationship between the low latitude boundary layer (LLBL) and field aligned currents (FAC), or Birkeland currents. They use the procedure developed by Woch and Lundin for identifying LLBL boundaries. They look for correlations between properties of the FAC and properties of the LLBL. Their results show that in most cases the FAC observed are totally inside the region which exhibits LLBL plasma precipitation. The authors argue that within the biases to their data because of its source, and relative sensitivities, their conclusions support earlier work which argues for the LLBL acting as a source region for FAC features

  10. Microbubble drag reduction in liquid turbulent boundary layers

    International Nuclear Information System (INIS)

    Merkle, C.L.; Deutsch, S.

    1992-01-01

    The interactions between a dense cloud of small bubbles and a liquid turbulent boundary layer are reviewed on the basis of available experimental observations to understand and quantify their capability for reducing skin friction. Gas bubbles are generally introduced into the boundary layer by injection through a porous surface or by electrolysis. After injection, the bubbles stay near the wall in boundary-layer-like fashion giving rise to strong gradients in both velocity and gas concentration. In general, the magnitude of the skin friction reduction increases as the volume of bubbles in the boundary layer is increased until a maximum skin friction reduction of typically 80-90% of the undisturbed skin friction level is reached. The volumetric gas flow required for this maximum is nominally equal to the volume flow of the liquid in the boundary layer. Bubble size estimates indicate that in most microbubble experiments the bubbles have been intermediate in size between the inner and outer scales of the undisturbed boundary layer. Additional studies with other nondimensional bubble sizes would be useful. However, the bubble size is most likely controlled by the injection process, and considerably different conditions would be required to change this ratio appreciably. The trajectories of the bubble clouds are primarily determined by the random effects of turbulence and bubble-bubble interactions. The effects of buoyancy represent a weaker effect. The trajectories are unlike the deterministic trajectory of an individual bubble in a time-averaged boundary layer. Bubbles are most effective in high speed boundary layers and, for the bubble sizes tested to date, produce an effect that persists for some on hundred boundary layer thicknesses. Modeling suggests that microbubbles reduce skin friction by increasing the turbulence Reynolds number in the buffer layer in a manner similar to polymers

  11. Carrier Transport, Recombination, and the Effects of Grain Boundaries in Polycrystalline Cadmium Telluride Thin Films for Photovoltaics

    Science.gov (United States)

    Tuteja, Mohit

    Cadmium Telluride (CdTe), a chalcogenide semiconductor, is currently used as the absorber layer in one of the highest efficiency thin film solar cell technologies. Current efficiency records are over 22%. In 2011, CdTe solar cells accounted for 8% of all solar cells installed. This is because, in part, CdTe has a low degradation rate, high optical absorption coefficient, and high tolerance to intrinsic defects. Solar cells based on polycrystalline CdTe exhibit a higher short-circuit current, fill factor, and power conversion efficiency than their single crystal counterparts. This is despite the fact that polycrystalline CdTe devices exhibit lower open-circuit voltages. This is contrary to the observation for silicon and III-V semiconductors, where material defects cause a dramatic drop in device performance. For example, grain boundaries in covalently-bonded semiconductors (a) act as carrier recombination centers, and (b) lead to localized energy states, causing carrier trapping. Despite significant research to date, the mechanism responsible for the superior current collection properties of polycrystalline CdTe solar cells has not been conclusively answered. This dissertation focuses on the macro-scale electronic band structure, and micro scale electronic properties of grains and grain boundaries in device-grade CdTe thin films to answer this open question. My research utilized a variety of experimental techniques. Samples were obtained from leading groups fabricating the material and devices. A CdCl 2 anneal is commonly performed as part of this fabrication and its effects were also investigated. Photoluminescence (PL) spectroscopy was employed to study the band structure and defect states in CdTe polycrystals. Cadmium vacancy- and chlorine-related states lead to carrier recombination, as in CdTe films grown by other methods. Comparing polycrystalline and single crystal CdTe, showed that the key to explaining the improved performance of polycrystalline CdTe does

  12. The entropic boundary law in BF theory

    Science.gov (United States)

    Livine, Etera R.; Terno, Daniel R.

    2009-01-01

    We compute the entropy of a closed bounded region of space for pure 3d Riemannian gravity formulated as a topological BF theory for the gauge group SU(2) and show its holographic behavior. More precisely, we consider a fixed graph embedded in space and study the flat connection spin network state without and with particle-like topological defects. We regularize and compute exactly the entanglement for a bipartite splitting of the graph and show it scales at leading order with the number of vertices on the boundary (or equivalently with the number of loops crossing the boundary). More generally these results apply to BF theory with any compact gauge group in any space-time dimension.

  13. Science at the interface : grain boundaries in nanocrystalline metals.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Mark Andrew; Follstaedt, David Martin; Knapp, James Arthur; Brewer, Luke N.; Holm, Elizabeth Ann; Foiles, Stephen Martin; Hattar, Khalid M.; Clark, Blythe B.; Olmsted, David L.; Medlin, Douglas L.

    2009-09-01

    Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.

  14. Simulation of Wind turbines in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    as well as turbulent inflow condition. For generating turbulent inflow, a model is used in which a turbulent plane is introduced in the domain and convected in each time step, using Taylor's frozen hypothesis. The results of different simulations are analysed and compared in terms of mean values...... the computational costs scale rapidly with Reynolds number and domain size[1]. An approach to overcome these deficiencies is to use a wall modeling near the walls and then use a coarser grid at the first grid level above the ground. This could be performed by using simplified Navier-Stokes equations in the boundary...... condition is used in the bottom, a symmetry boundary on the top and periodic boundaries on the sides as well as inlet and outlet boundaries. For the temperature, a fixed value of 285 K is applied from the ground up to a height of 1 km and the temperature increases linearly with the rate of 3.5 degrees per...

  15. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    Science.gov (United States)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  16. The MuCool/MICE LH2 Absorber Program

    International Nuclear Information System (INIS)

    Cummings, Mary Anne

    2004-01-01

    Hydrogen absorber R and D for the MuCool Collaboration is actively pushing ahead on two parallel and complementary fronts. The continuing LH2 engineering and technical developments by the MuCool group, conducted by ICAR institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University in cooperation with Fermilab, are summarized here, including plans for the first tests of an absorber prototype from Osaka University and KEK cooled by internal convection at the newly constructed FNAL MuCool Test Area (MTA). Designs for the high-power test of another absorber prototype (employing external heat exchange) are complete and the system will be installed by summer 2004. A convection-cooled absorber design is being developed for the approved MICE cooling demonstration at Rutherford Appleton Laboratory

  17. [Study on absorbing volatile oil with mesoporous carbon].

    Science.gov (United States)

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.

  18. How grain boundaries affect the efficiency of poly-CdTe solar-cells: A fundamental atomic-scale study of grain boundary dislocation cores using CdTe bi-crystal thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Klie, Robert [Univ. of Illinois, Chicago, IL (United States)

    2016-10-25

    It is now widely accepted that grain boundaries in poly-crystalline CdTe thin film devices have a detrimental effect on the minority carrier lifetimes, the open circuit voltage and therefore the overall solar-cell performance. The goal of this project was to develop a fundamental understanding of the role of grain boundaries in CdTe on the carrier life-time, open-circuit voltage, Voc, and the diffusion of impurities. To achieve this goal, i) CdTe bi-crystals were fabricated with various misorientation angels, ii) the atomic- and electronic structures of the grain boundaries were characterized using scanning transmission electron microscopy (STEM), and iii) first-principles density functional theory modeling was performed on the structures determined by STEM to predict the grain boundary potential. The transport properties and minority carrier lifetimes of the bi-crystal grain boundaries were measured using a variety of approaches, including TRPL, and provided feedback to the characterization and modeling effort about the effectiveness of the proposed models.

  19. From boundaries to boundary work: middle managers creating inter-organizational change.

    Science.gov (United States)

    Oldenhof, Lieke; Stoopendaal, Annemiek; Putters, Kim

    2016-11-21

    Purpose In healthcare, organizational boundaries are often viewed as barriers to change. The purpose of this paper is to show how middle managers create inter-organizational change by doing boundary work: the dual act of redrawing boundaries and coordinating work in new ways. Design/methodology/approach Theoretically, the paper draws on the concept of boundary work from Science and Technology Studies. Empirically, the paper is based on an ethnographic investigation of middle managers that participate in a Dutch reform program across health, social care, and housing. Findings The findings show how middle managers create a sense of urgency for inter-organizational change by emphasizing "fragmented" service provision due to professional, sectoral, financial, and geographical boundaries. Rather than eradicating these boundaries, middle managers change the status quo gradually by redrawing composite boundaries. They use boundary objects and a boundary-transcending vocabulary emphasizing the need for societal gains that go beyond production targets of individual organizations. As a result, work is coordinated in new ways in neighborhood teams and professional expertise is being reconfigured. Research limitations/implications Since boundary workers create incremental change, it is necessary to follow their work for a longer period to assess whether boundary work contributes to paradigm change. Practical implications Organizations should pay attention to conditions for boundary work, such as legitimacy of boundary workers and the availability of boundary spaces that function as communities of practice. Originality/value By shifting the focus from boundaries to boundary work, this paper gives valuable insights into "how" boundaries are redrawn and embodied in objects and language.

  20. Diesel NO{sub x} reduction by plasma-regenerated absorbent beds

    Science.gov (United States)

    Wallman, P.H.; Vogtlin, G.E.

    1998-02-10

    Reduction of NO{sub x} from diesel engine exhaust by use of plasma-regenerated absorbent beds is described. This involves a process for the reduction of NO{sub x} and particulates from diesel engines by first absorbing NO{sub x} onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO{sub x} followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO{sub x} absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO{sub x} absorption properties up to temperatures around 400 C which is in the area of diesel engine exhaust temperatures. 1 fig.

  1. Analysis of absorbing times of quantum walks

    International Nuclear Information System (INIS)

    Yamasaki, Tomohiro; Kobayashi, Hirotada; Imai, Hiroshi

    2003-01-01

    Quantum walks are expected to provide useful algorithmic tools for quantum computation. This paper introduces absorbing probability and time of quantum walks and gives both numerical simulation results and theoretical analyses on Hadamard walks on the line and symmetric walks on the hypercube from the viewpoint of absorbing probability and time

  2. Boundaries in ground beetle (Coleoptera: Carabidae) and environmental variables at the edges of forest patches with residential developments.

    Science.gov (United States)

    Davis, Doreen E; Gagné, Sara A

    2018-01-01

    Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k -means clustering. Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or environmental condition. We

  3. Boundaries in ground beetle (Coleoptera: Carabidae and environmental variables at the edges of forest patches with residential developments

    Directory of Open Access Journals (Sweden)

    Doreen E. Davis

    2018-01-01

    Full Text Available Background Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. Methods We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k-means clustering. Results Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of

  4. Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

    Science.gov (United States)

    Brown, Ari-David; Bandler, Simon; Brekosky, Regis; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Fred; Sadleir, Jack; Iyomoto, Naoko; Kelley, Richard; Kilbourne, Caroline; hide

    2007-01-01

    Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.

  5. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  6. Spatially resolved photoluminescence and AFM measurements on Cu(In,Ga)Se{sub 2}-based thin film absorbers prepared with different throughput speeds

    Energy Technology Data Exchange (ETDEWEB)

    Meessen, Max; Neumann, Oliver; Heise, Stephan J.; Brueggemann, Rudolf; Bauer, Gottfried H. [Institut fuer Physik, Carl von Ossietzky Universitaet Oldenburg (Germany); Witte, Wolfram; Hariskos, Dimitrios [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2011-07-01

    We study the behavior and interdependence of quantities such as photoluminescence (PL) yield, quasi-Fermi level splitting and AFM-determined surface roughness on CIGS thin-film absorbers with different thicknesses between 0.25 and 3 {mu}m achieved by varying the throughput speed in an in-line physical vapor deposition (PVD) process. These quantities are studied on the macroscopic as well as on the microscopic scale with a resolution of approximately 1 {mu}m. It is shown that the structural sizes of the inhomogeneities of the absorber layer itself and its lateral photoluminescence properties decrease with decreasing absorber thickness. These results are compared to those on samples thinned by bromine-methanol etching. Furthermore, we show that varying the thickness of the CdS buffer layer on top of the absorber influences surface recombination and thereby PL yield and quasi-Fermi level splitting. A decrease in surface recombination at higher buffer thicknesses has to be weighed against the increase in absorption in the buffer layer, which in turn decreases carrier generation in the absorber layer.

  7. Black Carbon Absorption at the Global Scale Is Affected by Particle-Scale Diversity in Composition

    Science.gov (United States)

    Fierce, Laura; Bond, Tami C.; Bauer, Susanne E.; Mena, Francisco; Riemer, Nicole

    2016-01-01

    Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (E(sub abs)) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find E(sub abs) = 1 - 1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models.

  8. A tunable hybrid metamaterial absorber based on vanadium oxide films

    International Nuclear Information System (INIS)

    Wen Qiye; Zhang Huaiwu; Yang Qinghui; Long Yang; Jing Yulan; Lin Yuan; Chen Zhi; Zhang Peixin

    2012-01-01

    A tunable hybrid metamaterial absorber (MA) in the microwave band was designed, fabricated and characterized. The hybrid MA was realized by incorporating a VO 2 film into the conventional resonant MA. By thermally triggering the insulator-metal phase transition of the VO 2 film, the impedance match condition was broken and a deep amplitude modulation of about 63.3% to the electromagnetic wave absorption was achieved. A moderate blue-shift of the resonance frequency was observed which is promising for practical applications. This VO 2 -based MA exhibits many advantages such as strong tunability, frequency agility, simple fabrication and ease of scaling to the terahertz band. (paper)

  9. Structure measurements in a synthetic turbulent boundary layer

    Science.gov (United States)

    Arakeri, Jaywant H.

    1987-09-01

    Extensive hot-wire measurements have been made to determine the structure of the large eddy in a synthejc turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five [...] long in the streamwise direction and about one [...] apart in the spanwise direction, where [...] is the mean boundary-layer thickness. The sense of the primary pair is such as to pump fluid away from the wall in the region between the vortices. A secondary pair of counter-rotating streamwise vortices, having a sense opposite to that of the primary pair, is observed outside of and slightly downstream from the primary vortices. Both pairs of vortices extend across the full thickness of the boundary layer and are inclined at a shallow angle to the surface of the flat plate. The data show that the mean vorticity vectors are not tangential to the large-eddy vortices. In fact, the streamwise and normal vorticity components that signal the presence of the eddy are of the same order of magnitude. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal vorticity in the outer

  10. Fiat or bona fide boundary--a matter of granular perspective.

    Directory of Open Access Journals (Sweden)

    Lars Vogt

    Full Text Available Distinguishing bona fide (i.e. natural and fiat (i.e. artificial physical boundaries plays a key role for distinguishing natural from artificial material entities and is thus relevant to any scientific formal foundational top-level ontology, as for instance the Basic Formal Ontology (BFO. In BFO, the distinction is essential for demarcating two foundational categories of material entity: object and fiat object part. The commonly used basis for demarcating bona fide from fiat boundary refers to two criteria: (i intrinsic qualities of the boundary bearers (i.e. spatial/physical discontinuity, qualitative heterogeneity and (ii mind-independent existence of the boundary. The resulting distinction of bona fide and fiat boundaries is considered to be categorial and exhaustive.By Referring to various examples from biology, we demonstrate that the hitherto used distinction of boundaries is not categorial: (i spatial/physical discontinuity is a matter of scale and the differentiation of bona fide and fiat boundaries is thus granularity-dependent, and (ii this differentiation is not absolute, but comes in degrees. By reducing the demarcation criteria to mind-independence and by also considering dispositions and historical relations of the bearers of boundaries, instead of only considering their spatio-structural properties, we demonstrate with various examples that spatio-structurally fiat boundaries can nevertheless be mind-independent and in this sense bona fide.We argue that the ontological status of a given boundary is perspective-dependent and that the strictly spatio-structural demarcation criteria follow a static perspective that is ignorant of causality and the dynamics of reality. Based on a distinction of several ontologically independent perspectives, we suggest different types of boundaries and corresponding material entities, including boundaries based on function (locomotion, physiology, ecology, development, reproduction and common history

  11. A Comparative Experimental Study of Fixed Temperature and Fixed Heat Flux Boundary Conditions in Turbulent Thermal Convection

    Science.gov (United States)

    Huang, Shi-Di; Wang, Fei; Xi, Heng-Dong; Xia, Ke-Qing

    2014-11-01

    We report an experimental study of the influences of thermal boundary condition in turbulent thermal convection. Two configurations were examined: one was fixed heat flux at the bottom boundary and fixed temperature at the top (HC cells); the other was fixed temperature at both boundaries (CC cells). It is found that the flow strength in the CC cells is on average 9% larger than that in the HC ones, which could be understood as change in plume emission ability under different boundary conditions. It is further found, rather surprisingly, that flow reversals of the large-scale circulation occur more frequently in the CC cell, despite a stronger large-scale flow and more uniform temperature distribution over the boundaries. These findings provide new insights into turbulent thermal convection and should stimulate further studies, especially experimental ones. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK 403712.

  12. Boundaries of dreams, boundaries of dreamers: thin and thick boundaries as a new personality measure.

    Science.gov (United States)

    Hartmann, E

    1989-11-01

    Previous work by the author and his collaborators on frequent nightmare sufferers demonstrated that these people had striking personality characteristics which could be called "thin boundaries" in a number of different senses. In order to measure thin and thick boundaries, a 145-item questionnaire, the Boundary Questionnaire, has been developed which has now been taken by over 1,000 persons. Preliminary results are presented indicating that, as predicted a priori, several new groups of nightmare sufferers and groups of art students scored usually "thin," whereas a group of naval officers had usually "thick" boundaries. Overall, thinness on the Boundary Questionnaire correlated highly positively (r = .40) with frequency of dream recall and also significantly (r = .16) with length of sleep.

  13. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  14. Absorbed dose rate meter for β-ray

    International Nuclear Information System (INIS)

    Bingo, K.

    1977-01-01

    The absorbed dose of β-ray depends on the energy of β-rays and the epidermal thickness of tissue in interest. In order to measure the absorbed dose rate at the interested tissue directly, the ratio of counting rate to absorbed dose should be constant independent of β-ray energy. In this purpose, a thin plastic scintillator was used as a detector with a single channel analyzer. The pulse height distribution, obtained using the scintillator whose thickness is less than the range of β-rays, shows a peak at a particular pulse height depending on the thickness of scintillator used. This means an increase of the number of pulses at lower pulse height. The lower level of discrimination and window width of the single channel analyzer are chosen according to the epidermal thickness of the tissue. In the experiment, scintillators of 0.5, 1, 2, 3, 5 and 10 mm thick were tested. It was found that desirable pulse height distribution, to obtain a constant dose sensitivity, could be obtained using the 2 mm thick scintillator. The sensitivity of the absorbed dose rate meter is constant within +-15% for β-ray with maximum energy from 0.4 to 3.5 MeV, when the absorbed dose rate for skin (epidermal thickness 7mg/cm 2 ) is measured. In order to measure the dose rate for a hand (epithermal thickness 40mg/cm 2 ) the lower level of discrimination is changed to be higher and at the same time the window width is also changed. Combining these techniques, one can get an absorbed dose rate meter for the tissue dose of various thickness, which has the constant dose sensitivity within +-15% for β-rays with maximum energy from 0.4 to 3.5 MeV

  15. An Absorbing Look at Terry-Cloth Towels

    Science.gov (United States)

    Moyer, Richard; Everett, Susan

    2010-01-01

    This article describes a lesson where students explore the absorbency of several towels with different weaves and weights. The lesson follows the 5E learning-cycle model and incorporates engineering in the sense of product testing with a focus on the relationship between the weave of a towel and its absorbency. The National Science Education…

  16. A Wedge Absorber Experiment at MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.

    2017-05-01

    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders, as well as configurations for low-energy muon sources. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  17. UV-absorbing compounds in subarctic herbarium bryophytes

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland)]. E-mail: satu.huttunen@oulu.fi; Lappalainen, N.M. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland); Turunen, J. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland)

    2005-01-01

    The UV-B-absorbing compounds of herbarium specimens of 10 subarctic bryophyte species collected during the years 1926-1996 and available at the Botanical Museum, University of Oulu, were studied. We studied whether herbarium specimens reflect changes in the past radiation climate through their methanol-extractable compounds. The order of gametophytes based on the average amount of total compounds (sum of A{sub 280-320nm}) per mass from the lowest to the highest was Polytrichum commune, Pleurozium schreberi, Hylocomium splendens, Sphagnum angustifolium, Dicranum scoparium, Funaria hygrometrica, Sphagnum fuscum, Sphagnum warnstorfii, Sphagnum capillifolium and Polytrichastrum alpinum, and the amount of UV-B-absorbing compounds per specific surface area correlated with the summertime daily global radiation and latitude. P. alpinum, F. hygrometrica and three Sphagnum species seem to be good indicators for further studies. The amount of UV-B-absorbing compounds revealed no significant trends from the 1920s till the 1990s, with the exception of S. capillifolium, which showed a significant decreasing trend. - UV-B-absorbing compounds in subarctic herbarium bryophytes indicate the radiation climate of the collecting site and time.

  18. UV-absorbing compounds in subarctic herbarium bryophytes

    International Nuclear Information System (INIS)

    Huttunen, S.; Lappalainen, N.M.; Turunen, J.

    2005-01-01

    The UV-B-absorbing compounds of herbarium specimens of 10 subarctic bryophyte species collected during the years 1926-1996 and available at the Botanical Museum, University of Oulu, were studied. We studied whether herbarium specimens reflect changes in the past radiation climate through their methanol-extractable compounds. The order of gametophytes based on the average amount of total compounds (sum of A 280-320nm ) per mass from the lowest to the highest was Polytrichum commune, Pleurozium schreberi, Hylocomium splendens, Sphagnum angustifolium, Dicranum scoparium, Funaria hygrometrica, Sphagnum fuscum, Sphagnum warnstorfii, Sphagnum capillifolium and Polytrichastrum alpinum, and the amount of UV-B-absorbing compounds per specific surface area correlated with the summertime daily global radiation and latitude. P. alpinum, F. hygrometrica and three Sphagnum species seem to be good indicators for further studies. The amount of UV-B-absorbing compounds revealed no significant trends from the 1920s till the 1990s, with the exception of S. capillifolium, which showed a significant decreasing trend. - UV-B-absorbing compounds in subarctic herbarium bryophytes indicate the radiation climate of the collecting site and time

  19. Effect of reactor finiteness on the boundary condition at the surface of a booster section

    International Nuclear Information System (INIS)

    Wassef, W.A.

    1982-01-01

    Effect of reactor finiteness on the boundary condition at the surface of an absorbing booster embedded in the reactor core is studied and formulated. The model used in these calculations depends on the Pl-Transport coupling technique. This method takes into consideration the rigorous neutron transport behavior inside the booster medium, while the Pl-approximation in the bulk of the scattering medium surrounding the booster which can be considered infinite in most practical applications. The neutron flux gradient parallel to the surface of the booster is considered. The geometrical configuration of the reactor core cross section is circular or rectangular. Finiteness of the reactor is introduced in the general formulation through its dimensions or buckling. Extensive numerical results are given to demonstrate the dependence of the boundary condition at the surface of the booster section on the reactor finiteness and the different physical parameters

  20. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    Science.gov (United States)

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  1. The Atmospheric Boundary Layer

    Science.gov (United States)

    Garratt, J. R.

    1994-05-01

    A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.

  2. Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces

    Science.gov (United States)

    Yang, Xiang I. A.; Meneveau, Charles

    2016-01-01

    The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling-recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.

  3. Effect of inclusions' distribution on microwave absorbing properties of composites

    International Nuclear Information System (INIS)

    Qin, Siliang; Wang, Qingguo; Qu, Zhaoming

    2013-01-01

    Effect of inclusions' spatial distributions on the permeability and permittivity of composites is studied using the generalized Maxwell-Garnett equations. The result indicates that inclusions' orientation distribution can increase the longitudinal electromagnetic parameters. For inclusions' random and orientation distribution, single and three-layer absorbers are designed and optimized using genetic algorithm. The result shows that under a given absorbing requirement, absorber with inclusions' orientation distribution is lighter and thinner than absorber with inclusions' random distribution.

  4. Actual behaviour of a ball vibration absorber

    Czech Academy of Sciences Publication Activity Database

    Pirner, Miroš

    2002-01-01

    Roč. 90, č. 8 (2002), s. 987-1005 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GV103/96/K034 Institutional support: RVO:68378297 Keywords : TV towers * wind-excited vibrations * vibration absorbers * pendulum absorber Subject RIV: JM - Building Engineering Impact factor: 0.513, year: 2002 http://www.sciencedirect.com/science/article/pii/S0167610502002155#

  5. Physically absorbable reagents-collectors in elementary flotation

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Kondrat' ev; I.G. Bochkarev [Russian Academy of Sciences, Novosibirsk (Russian Federation). Institute of Mining

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  6. Absorber transmissivities in 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ballet, O.

    1985-01-01

    Some useful relations are derived for the polarization dependent optical index of 57 Fe Moessbauer absorbers. Real rotation matrices are extensively used and, besides wave-direction dependence, their properties simplify also the treatment of texture and f-anisotropy. The derivation of absorber transmissivities from the optical index is discussed with a special emphasis on line overlapping. (Auth.)

  7. The disconnection mechanism of coupled migration and shear at grain boundaries

    International Nuclear Information System (INIS)

    Khater, H.A.; Serra, A.; Pond, R.C.; Hirth, J.P.

    2012-01-01

    The mechanism of coupled migration and shear is studied in a range of [0 0 0 1] tilt boundaries in hexagonal close-packed metal using atomic-scale computer simulation. Symmetrical tilt boundaries spanning the low- and high-angle regimes and comprising regular arrays of grain boundary dislocations are simulated. For each misorientation, θ, the perfect boundary (pristine) is investigated as well as one containing a disconnection. Both types of structures are subjected to incremental applied strains to determine the stress that produces coupled migration and shear. The stress for motion in the pristine case, entailing nucleation, is higher than the Peierls stress for motion when disconnections are present. We conclude that the applied stresses in our simulations exert a Peach–Koehler force on pre-existing disconnections, thereby providing a feasible mechanism with a well-defined driving force that produces coupled migration and shear. This mechanism is feasible for the lower-angle boundaries studied, and facile for the high-angle cases.

  8. Inferring absorbing organic carbon content from AERONET data

    Science.gov (United States)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called "brown carbon") and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light-absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South America and Africa are relatively high (about 15-20 mg m-2 during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 mg m-2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  9. Analysis of periodically patterned metallic nanostructures for infrared absorber

    Science.gov (United States)

    Peng, Sha; Yuan, Ying; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    With rapid advancement of infrared detecting technology in both military and civil domains, the photo-electronic performances of near-infrared detectors have been widely concerned. Currently, near-infrared detectors demonstrate some problems such as low sensitivity, low detectivity, and relatively small array scale. The current studies show that surface plasmons (SPs) stimulated over the surface of metallic nanostructures by incident light can be used to break the diffraction limit and thus concentrate light into sub-wavelength scale, so as to indicate a method to develop a new type of infrared absorber or detector with very large array. In this paper, we present the design and characterization of periodically patterned metallic nanostructures that combine nanometer thickness aluminum film with silicon wafer. Numerical computations show that there are some valleys caused by surface plasmons in the reflection spectrum in the infrared region, and both red shift and blue shift of the reflection spectrum were observed through changing the nanostructural parameters such as angle α and diameters D. Moreover, the strong E-field intensity is located at the sharp corner of the nano-structures.

  10. BAT AGN Spectroscopic Survey. VIII. Type 1 AGN with Massive Absorbing Columns

    Science.gov (United States)

    Shimizu, T. Taro; Davies, Richard I.; Koss, Michael; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Schawinski, Kevin; Trakhtenbrot, Benny; Burtscher, Leonard; Genzel, Reinhard; Lin, Ming-yi; Lutz, Dieter; Rosario, David; Sturm, Eckhard; Tacconi, Linda

    2018-04-01

    We explore the relationship between X-ray absorption and optical obscuration within the BAT AGN Spectroscopic Survey (BASS), which has been collecting and analyzing the optical and X-ray spectra for 641 hard X-ray selected (E > 14 keV) active galactic nuclei (AGNs). We use the deviation from a linear broad Hα-to-X-ray relationship as an estimate of the maximum optical obscuration toward the broad line region (BLR) and compare the A V to the hydrogen column densities ({N}{{H}}) found through systematic modeling of their X-ray spectra. We find that the inferred columns implied by A V toward the BLR are often orders of magnitude less than the columns measured toward the X-ray emitting region, indicating a small-scale origin for the X-ray absorbing gas. After removing 30% of Sy 1.9s that potentially have been misclassified due to outflows, we find that 86% (164/190) of the Type 1 population (Sy 1–1.9) are X-ray unabsorbed as expected based on a single obscuring structure. However, 14% (26/190), of which 70% (18/26) are classified as Sy 1.9, are X-ray absorbed, suggesting that the BLR itself is providing extra obscuration toward the X-ray corona. The fraction of X-ray absorbed Type 1 AGNs remains relatively constant with AGN luminosity and Eddington ratio, indicating a stable BLR covering fraction.

  11. A Stretchable Electromagnetic Absorber Fabricated Using Screen Printing Technology.

    Science.gov (United States)

    Jeong, Heijun; Lim, Sungjoon

    2017-05-21

    A stretchable electromagnetic absorber fabricated using screen printing technology is proposed in this paper. We used a polydimethylsiloxane (PDMS) substrate to fabricate the stretchable absorber since PDMS exhibits good dielectric properties, flexibility, and restoring capabilities. DuPont PE872 (DuPont, Wilmington, CT, USA), a stretchable silver conductive ink, was used for the screen printing technique. The reflection coefficient of the absorber was measured using a vector network analyzer and a waveguide. The proposed absorber was designed as a rectangular patch unit cell, wherein the top of the unit cell acted as the patch and the bottom formed the ground. The size of the patch was 8 mm × 7 mm. The prototype of the absorber consisted of two unit cells such that it fits into the WR-90 waveguide (dimensions: 22.86 mm × 10.16 mm) for experimental measurement. Before stretching the absorber, the resonant frequency was 11 GHz. When stretched along the x -direction, the resonant frequency shifted by 0.1 GHz, from 11 to 10.9 GHz, demonstrating 99% absorption. Furthermore, when stretched along the y -direction, the resonant frequency shifted by 0.6 GHz, from 11 to 10.4 GHz, demonstrating 99% absorption.

  12. Energy deposition studies for the LBNE beam absorber

    International Nuclear Information System (INIS)

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options. (authors)

  13. Micro-Scale Thermoacoustics

    Science.gov (United States)

    Offner, Avshalom; Ramon, Guy Z.

    2016-11-01

    Thermoacoustic phenomena - conversion of heat to acoustic oscillations - may be harnessed for construction of reliable, practically maintenance-free engines and heat pumps. Specifically, miniaturization of thermoacoustic devices holds great promise for cooling of micro-electronic components. However, as devices size is pushed down to micro-meter scale it is expected that non-negligible slip effects will exist at the solid-fluid interface. Accordingly, new theoretical models for thermoacoustic engines and heat pumps were derived, accounting for a slip boundary condition. These models are essential for the design process of micro-scale thermoacoustic devices that will operate under ultrasonic frequencies. Stability curves for engines - representing the onset of self-sustained oscillations - were calculated with both no-slip and slip boundary conditions, revealing improvement in the performance of engines with slip at the resonance frequency range applicable for micro-scale devices. Maximum achievable temperature differences curves for thermoacoustic heat pumps were calculated, revealing the negative effect of slip on the ability to pump heat up a temperature gradient. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).

  14. Solar-absorbing metamaterial microencapsulation of phase change materials for thermo-regulating textiles

    Directory of Open Access Journals (Sweden)

    William Tong

    2015-04-01

    Full Text Available This paper presents a novel concept for designing solar-absorbing metamaterial microcapsules of phase change materials (PCMs integrated with thermo-regulating smart textiles intended for coats or garments, especially for wear in space or cold weather on earth. The metamaterial is a periodically nanostructured metal-dielectric-metal thin film and can acquire surface plasmons to trap or absorb solar energy at subwavelength scales. This kind of metamaterial microencapsulation is not only able to take advantage of latent heat that can be stored or released from the PCMs over a tunable temperature range, but also has other advantages over conventional polymer microencapsulation of PCMs, such as enhanced thermal conductivity, improved flame-retardant capabilities, and usage as an extra solar power resource. The thermal analysis for this kind of microencapsulation has been done and can be used as a guideline for designing integrated thermo-regulating smart textiles in the future. These metamaterial microcapsules may open up new routes to enhancing thermo-regulating textiles with novel properties and added value.

  15. On the calculation of length scales for turbulent heat transfer correlation

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M.J.; Hollingsworth, D.K.

    1999-07-01

    Turbulence length scale calculation methods were critically reviewed for their usefulness in boundary layer heat transfer correlations. Merits and deficiencies in each calculation method were presented. A rigorous method for calculating an energy-based integral scale was introduced. The method uses the variance of the streamwise velocity and a measured dissipation spectrum to calculate the length scale. Advantages and disadvantages of the new method were discussed. A principal advantage is the capability to decisively calculate length scales in a low-Reynolds-number turbulent boundary layer. The calculation method was tested with data from grid-generated, free-shear-layer, and wall-bounded turbulence. In each case, the method proved successful. The length scale is well behaved in turbulent boundary layers with momentum thickness Reynolds numbers from 400 to 2,100 and in flows with turbulent Reynolds numbers as low as 90.

  16. On the correlation of heat transfer in turbulent boundary layers subjected to free-stream turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M.J.; Hollingsworth, D.K.

    1999-07-01

    The turbulent flow of a fluid bounded by a heated surface is a wonderfully complex yet derisively mundane phenomenon. Despite its commonness in natural and man-made environments, the authors struggle to accurately predict its behavior in many simple situations. A complexity encountered in a number of flows is the presence of free-stream turbulence. A turbulent free-stream typically yields increased surface friction and heat transfer. Turbulent boundary layers with turbulent free-streams are encountered in gas-turbine engines, rocket nozzles, electronic-cooling passages, geophysical flows, and numerous other dynamic systems. Here, turbulent boundary layers were subjected to grid-generated free-stream turbulence to study the effects of length scale and intensity on heat transfer. The research focused on correlating heat transfer without the use of conventional boundary-layer Reynolds numbers. The boundary-layers studied ranged from 400 to 2,700 in momentum-thickness Reynolds number and from 450 to 1,900 in enthalpy-thickness Reynolds number. Free-stream turbulence intensities varied from 0.1 to 8.0%. The turbulent-to-viscous length-scale ratios presented are the smallest found in the heat-transfer literature; the ratios spanned from 100 to 1000. The turbulent-to-thermal ratios (using enthalpy thickness as the thermal scale) are also the smallest reported; the ratios ranged from 3.2 to 12.3. A length-scale dependence was identified in a Stanton number based on a near-wall streamwise velocity fluctuation. A new near-wall Stanton number was introduced; this parameter was regarded as a constant in a two-region boundary-layer model. The new model correlated heat-transfer to within 7%.

  17. Step scaling and the Yang-Mills gradient flow

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2014-01-01

    The use of the Yang-Mills gradient flow in step-scaling studies of lattice QCD is expected to lead to results of unprecedented precision. Step scaling is usually based on the Schrödinger functional, where time ranges over an interval [0,T] and all fields satisfy Dirichlet boundary conditions at time 0 and T. In these calculations, potentially important sources of systematic errors are boundary lattice effects and the infamous topology-freezing problem. The latter is here shown to be absent if Neumann instead of Dirichlet boundary conditions are imposed on the gauge field at time 0. Moreover, the expectation values of gauge-invariant local fields at positive flow time (and of other well localized observables) that reside in the center of the space-time volume are found to be largely insensitive to the boundary lattice effects.

  18. Broadening the Boundaries of Psychology through Community Psychology

    Science.gov (United States)

    Kagan, Carolyn

    2008-01-01

    This paper argues for community psychology to be included within the discipline boundaries of psychology. In doing this, it will enable psychology to begin to address some of the large scale social issues affecting people's well-being. It will be necessary, however, to incorporate aspects of other disciplines, make explicit the political…

  19. Optimal design of MR shock absorber and application to vehicle suspension

    International Nuclear Information System (INIS)

    Nguyen, Quoc-Hung; Choi, Seung-Bok

    2009-01-01

    This paper presents an optimal design of a magnetorheological (MR) shock absorber based on finite element analysis. The MR shock absorber is constrained in a specific volume and the optimization problem identifies geometric dimensions of the shock absorber that minimize a multi-objective function. The objective function is proposed by considering the damping force, dynamic range and the inductive time constant of the shock absorber. After describing the configuration of the MR shock absorber, a quasi-static modeling of the shock absorber is performed based on the Bingham model of an MR fluid. The initial geometric dimensions of the shock absorber are then determined based on the assumption of constant magnetic flux density throughout the magnetic circuit. The objective function of the optimization problem is derived based on the solution of the initial shock absorber. An optimization procedure using a golden-section algorithm and a local quadratic fitting technique is constructed via a commercial finite element method parametric design language. Using the developed optimization tool, optimal solutions of the MR shock absorber, which is constrained in a specific cylindrical volume defined by its radius and height, are determined. Subsequently, a quarter-car suspension model with the optimized MR shock absorber is formulated and the vibration control performance of the suspension is evaluated under bump and sinusoidal road conditions

  20. Observations of temporal and spatial behaviour of plasmas in relation to the interchange stability boundary scaling in GAMMA 10

    International Nuclear Information System (INIS)

    Minami, R.; Cho, T.; Kohagura, J.

    2002-01-01

    Observations of internal core plasma structural behaviour during the magnetohydrodynamic (MHD) destabilization of the central cell plasmas are carried out by the use of our developed semiconductor x-ray detector arrays installed in both central cell and anchor regions of the GAMMA 10 tandem mirror. In the present paper, it is found from the developed x-ray diagnostics that the bulk plasmas rotate without a change in its shape and structure with an ExB velocity during the destabilization. The onset of the off-axis rotation is identified to be closely related to a scaling of the MHD stability boundary (i.e. the anchor beta requirements for stabilizing central cell hot ion plasmas). These data confirm pressure driven interchange instability in tandem mirror plasmas, and reveal the rigid rotational bulk plasma structure as the first demonstrated interior plasma property during the destabilization. (author)