Neutral Theory and Scale-Free Neural Dynamics
Martinello, Matteo; Hidalgo, Jorge; Maritan, Amos; di Santo, Serena; Plenz, Dietmar; Muñoz, Miguel A.
2017-10-01
Neural tissues have been consistently observed to be spontaneously active and to generate highly variable (scale-free distributed) outbursts of activity in vivo and in vitro. Understanding whether these heterogeneous patterns of activity stem from the underlying neural dynamics operating at the edge of a phase transition is a fascinating possibility, as criticality has been argued to entail many possible important functional advantages in biological computing systems. Here, we employ a well-accepted model for neural dynamics to elucidate an alternative scenario in which diverse neuronal avalanches, obeying scaling, can coexist simultaneously, even if the network operates in a regime far from the edge of any phase transition. We show that perturbations to the system state unfold dynamically according to a "neutral drift" (i.e., guided only by stochasticity) with respect to the background of endogenous spontaneous activity, and that such a neutral dynamics—akin to neutral theories of population genetics and of biogeography—implies marginal propagation of perturbations and scale-free distributed causal avalanches. We argue that causal information, not easily accessible to experiments, is essential to elucidate the nature and statistics of neural avalanches, and that neutral dynamics is likely to play an important role in the cortex functioning. We discuss the implications of these findings to design new empirical approaches to shed further light on how the brain processes and stores information.
Discretized kinetic theory on scale-free networks
Bertotti, Maria Letizia; Modanese, Giovanni
2016-10-01
The network of interpersonal connections is one of the possible heterogeneous factors which affect the income distribution emerging from micro-to-macro economic models. In this paper we equip our model discussed in [1, 2] with a network structure. The model is based on a system of n differential equations of the kinetic discretized-Boltzmann kind. The network structure is incorporated in a probabilistic way, through the introduction of a link density P(α) and of correlation coefficients P(β|α), which give the conditioned probability that an individual with α links is connected to one with β links. We study the properties of the equations and give analytical results concerning the existence, normalization and positivity of the solutions. For a fixed network with P(α) = c/α q , we investigate numerically the dependence of the detailed and marginal equilibrium distributions on the initial conditions and on the exponent q. Our results are compatible with those obtained from the Bouchaud-Mezard model and from agent-based simulations, and provide additional information about the dependence of the individual income on the level of connectivity.
Non-equilibrium mean-field theories on scale-free networks
International Nuclear Information System (INIS)
Caccioli, Fabio; Dall'Asta, Luca
2009-01-01
Many non-equilibrium processes on scale-free networks present anomalous critical behavior that is not explained by standard mean-field theories. We propose a systematic method to derive stochastic equations for mean-field order parameters that implicitly account for the degree heterogeneity. The method is used to correctly predict the dynamical critical behavior of some binary spin models and reaction–diffusion processes. The validity of our non-equilibrium theory is further supported by showing its relation with the generalized Landau theory of equilibrium critical phenomena on networks
Small-World and Scale-Free Network Models for IoT Systems
Directory of Open Access Journals (Sweden)
Insoo Sohn
2017-01-01
Full Text Available It is expected that Internet of Things (IoT revolution will enable new solutions and business for consumers and entrepreneurs by connecting billions of physical world devices with varying capabilities. However, for successful realization of IoT, challenges such as heterogeneous connectivity, ubiquitous coverage, reduced network and device complexity, enhanced power savings, and enhanced resource management have to be solved. All these challenges are heavily impacted by the IoT network topology supported by massive number of connected devices. Small-world networks and scale-free networks are important complex network models with massive number of nodes and have been actively used to study the network topology of brain networks, social networks, and wireless networks. These models, also, have been applied to IoT networks to enhance synchronization, error tolerance, and more. However, due to interdisciplinary nature of the network science, with heavy emphasis on graph theory, it is not easy to study the various tools provided by complex network models. Therefore, in this paper, we attempt to introduce basic concepts of graph theory, including small-world networks and scale-free networks, and provide system models that can be easily implemented to be used as a powerful tool in solving various research problems related to IoT.
Emergence of scale-free characteristics in socio-ecological systems with bounded rationality.
Kasthurirathna, Dharshana; Piraveenan, Mahendra
2015-06-11
Socio-ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback--Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio-ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems.
Scale-Free Relationships between Social and Landscape Factors in Urban Systems
Directory of Open Access Journals (Sweden)
Chunzhu Wei
2017-01-01
Full Text Available Urban planners and ecologists have long debated the relationship between the structure of urban landscapes and social activities. There have, however, been very few discussions as to whether any such relationships might depend on the scales of observation. This work applies a hierarchical zoning technique to data from the city of Quito, Ecuador, to examine how relationships between typical spatial landscape metrics and social indicators depend on zoning scales. Our results showed that the estimates of both landscape heterogeneity features and social indicators significantly depend on the zoning scale. The mean values of the typical landscape metrics and the social indicators all exhibited predictable responses to a changing zoning scale, suggesting a consistent and significant scaling relationship within the multiple zoning scales. Yet relationships between these pairs of variables remain notably invariant to scale. This quantitative demonstration of the scale-free nature of the relationship between landscape characteristics and social indicators furthers our understanding of the relationships between landscape structures and social aspects of urban spaces, including deprivation and public service accessibility. The relationships between social indicators and one typical landscape aggregation metric (represented as the percentage of like adjacencies were nevertheless significantly dependent on scale, suggesting the importance of zoning scale decisions for analyzing the relationships between the social indicators and the landscape characteristics related with landscape adjacency. Aside from this typical landscape aggregation metric, the general invariance to the zoning scale of relationships between landscape structures and socioeconomic indicators in Quito suggests the importance of applying these scale-free relationships in understanding complex socio-ecological systems in other cities, which are shaped by the conflated influences of both
Consensus of Multi-Agent Systems with Prestissimo Scale-Free Networks
International Nuclear Information System (INIS)
Yang Hongyong; Lu Lan; Cao Kecai; Zhang Siying
2010-01-01
In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration. (interdisciplinary physics and related areas of science and technology)
Emergence of scale-free leadership structure in social recommender systems.
Zhou, Tao; Medo, Matúš; Cimini, Giulio; Zhang, Zi-Ke; Zhang, Yi-Cheng
2011-01-01
The study of the organization of social networks is important for the understanding of opinion formation, rumor spreading, and the emergence of trends and fashion. This paper reports empirical analysis of networks extracted from four leading sites with social functionality (Delicious, Flickr, Twitter and YouTube) and shows that they all display a scale-free leadership structure. To reproduce this feature, we propose an adaptive network model driven by social recommending. Artificial agent-based simulations of this model highlight a "good get richer" mechanism where users with broad interests and good judgments are likely to become popular leaders for the others. Simulations also indicate that the studied social recommendation mechanism can gradually improve the user experience by adapting to tastes of its users. Finally we outline implications for real online resource-sharing systems.
Development of Next Generation Heating System for Scale Free Steel Reheating
Energy Technology Data Exchange (ETDEWEB)
Dr. Arvind C. Thekdi
2011-01-27
The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.
Poor—rich demarcation of Matthew effect on scale-free systems and its application
International Nuclear Information System (INIS)
Dong, Yan; Sui-Ran, Yu; Ming, Dong; Bouras, Abdelaziz
2011-01-01
In a scale-free network, only a minority of nodes are connected very often, while the majority of nodes are connected rarely. However, what is the ratio of minority nodes to majority nodes resulting from the Matthew effect? In this paper, based on a simple preferential random model, the poor-rich demarcation points are found to vary in a limited range, and form a poor-rich demarcation interval that approximates to k/m in [3,4]. As a result, the (cumulative) degree distribution of a scale-free network can be divided into three intervals: the poor interval, the demarcation interval and the rich interval. The inequality of the degree distribution in each interval is measured. Finally, the Matthew effect is applied to the ABC analysis of project management. (general)
Directory of Open Access Journals (Sweden)
Ying-Shen Juang
2012-01-01
Full Text Available Coordinate rotation digital computer (CORDIC is an efficient algorithm for computations of trigonometric functions. Scaling-free-CORDIC is one of the famous CORDIC implementations with advantages of speed and area. In this paper, a novel direct digital frequency synthesizer (DDFS based on scaling-free CORDIC is presented. The proposed multiplier-less architecture with small ROM and pipeline data path has advantages of high data rate, high precision, high performance, and less hardware cost. The design procedure with performance and hardware analysis for optimization has also been given. It is verified by Matlab simulations and then implemented with field programmable gate array (FPGA by Verilog. The spurious-free dynamic range (SFDR is over 86.85 dBc, and the signal-to-noise ratio (SNR is more than 81.12 dB. The scaling-free CORDIC-based architecture is suitable for VLSI implementations for the DDFS applications in terms of hardware cost, power consumption, SNR, and SFDR. The proposed DDFS is very suitable for medical instruments and body care area network systems.
Emergence of scale-free characteristics in socio-ecological systems with bounded rationality
Kasthurirathna, Dharshana; Piraveenan, Mahendra
2015-01-01
Socio?ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback?-Leibler divergence between Nash and Quantal Res...
Datta, D P
2003-01-01
We show that the generic 1/f spectrum problem acquires a natural explanation in a class of scale free solutions to the ordinary differential equations. We prove the existence and uniqueness of this class of solutions and show how this leads to a nonstandard, fuzzy extension of the ordinary framework of calculus, and hence, that of the classical dynamics and quantum mechanics. The exceptional role of the golden mean irrational number is also explained.
International Nuclear Information System (INIS)
Datta, Dhurjati Prasad
2003-01-01
We show that the generic 1/f spectrum problem acquires a natural explanation in a class of scale free solutions to the ordinary differential equations. We prove the existence and uniqueness of this class of solutions and show how this leads to a nonstandard, fuzzy extension of the ordinary framework of calculus, and hence, that of the classical dynamics and quantum mechanics. The exceptional role of the golden mean irrational number is also explained
Self-Organization in Coupled Map Scale-Free Networks
International Nuclear Information System (INIS)
Xiao-Ming, Liang; Zong-Hua, Liu; Hua-Ping, Lü
2008-01-01
We study the self-organization of phase synchronization in coupled map scale-free networks with chaotic logistic map at each node and find that a variety of ordered spatiotemporal patterns emerge spontaneously in a regime of coupling strength. These ordered behaviours will change with the increase of the average links and are robust to both the system size and parameter mismatch. A heuristic theory is given to explain the mechanism of self-organization and to figure out the regime of coupling for the ordered spatiotemporal patterns
Chaotic Modes in Scale Free Opinion Networks
Kusmartsev, Feo V.; Kürten, Karl E.
2010-12-01
In this paper, we investigate processes associated with formation of public opinion in varies directed random, scale free and small-world social networks. The important factor of the opinion formation is the existence of contrarians which were discovered by Granovetter in various social psychology experiments1,2,3 long ago and later introduced in sociophysics by Galam.4 When the density of contrarians increases the system behavior drastically changes at some critical value. At high density of contrarians the system can never arrive to a consensus state and periodically oscillates with different periods depending on specific structure of the network. At small density of the contrarians the behavior is manifold. It depends primary on the initial state of the system. If initially the majority of the population agrees with each other a state of stable majority may be easily reached. However when originally the population is divided in nearly equal parts consensus can never be reached. We model the emergence of collective decision making by considering N interacting agents, whose opinions are described by two state Ising spin variable associated with YES and NO. We show that the dynamical behaviors are very sensitive not only to the density of the contrarians but also to the network topology. We find that a phase of social chaos may arise in various dynamical processes of opinion formation in many realistic models. We compare the prediction of the theory with data describing the dynamics of the average opinion of the USA population collected on a day-by-day basis by varies media sources during the last six month before the final Obama-McCain election. The qualitative ouctome is in reasonable agreement with the prediction of our theory. In fact, the analyses of these data made within the paradigm of our theory indicates that even in this campaign there were chaotic elements where the public opinion migrated in an unpredictable chaotic way. The existence of such a phase
Emergence of Scale-Free Syntax Networks
Corominas-Murtra, Bernat; Valverde, Sergi; Solé, Ricard V.
The evolution of human language allowed the efficient propagation of nongenetic information, thus creating a new form of evolutionary change. Language development in children offers the opportunity of exploring the emergence of such complex communication system and provides a window to understanding the transition from protolanguage to language. Here we present the first analysis of the emergence of syntax in terms of complex networks. A previously unreported, sharp transition is shown to occur around two years of age from a (pre-syntactic) tree-like structure to a scale-free, small world syntax network. The observed combinatorial patterns provide valuable data to understand the nature of the cognitive processes involved in the acquisition of syntax, introducing a new ingredient to understand the possible biological endowment of human beings which results in the emergence of complex language. We explore this problem by using a minimal, data-driven model that is able to capture several statistical traits, but some key features related to the emergence of syntactic complexity display important divergences.
1990-02-21
LIDS-P-1953 Multiscale System Theory Albert Benveniste IRISA-INRIA, Campus de Beaulieu 35042 RENNES CEDEX, FRANCE Ramine Nikoukhah INRIA...TITLE AND SUBTITLE Multiscale System Theory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...the development of a corresponding system theory and a theory of stochastic processes and their estimation. The research presented in this and several
The scale-free dynamics of eukaryotic cells.
Directory of Open Access Journals (Sweden)
Miguel A Aon
Full Text Available Temporal organization of biological processes requires massively parallel processing on a synchronized time-base. We analyzed time-series data obtained from the bioenergetic oscillatory outputs of Saccharomyces cerevisiae and isolated cardiomyocytes utilizing Relative Dispersional (RDA and Power Spectral (PSA analyses. These analyses revealed broad frequency distributions and evidence for long-term memory in the observed dynamics. Moreover RDA and PSA showed that the bioenergetic dynamics in both systems show fractal scaling over at least 3 orders of magnitude, and that this scaling obeys an inverse power law. Therefore we conclude that in S. cerevisiae and cardiomyocytes the dynamics are scale-free in vivo. Applying RDA and PSA to data generated from an in silico model of mitochondrial function indicated that in yeast and cardiomyocytes the underlying mechanisms regulating the scale-free behavior are similar. We validated this finding in vivo using single cells, and attenuating the activity of the mitochondrial inner membrane anion channel with 4-chlorodiazepam to show that the oscillation of NAD(PH and reactive oxygen species (ROS can be abated in these two evolutionarily distant species. Taken together these data strongly support our hypothesis that the generation of ROS, coupled to redox cycling, driven by cytoplasmic and mitochondrial processes, are at the core of the observed rhythmicity and scale-free dynamics. We argue that the operation of scale-free bioenergetic dynamics plays a fundamental role to integrate cellular function, while providing a framework for robust, yet flexible, responses to the environment.
Emergence of cooperation in non-scale-free networks
International Nuclear Information System (INIS)
Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Zhou, Shi; Wang, Wenting
2014-01-01
Evolutionary game theory is one of the key paradigms behind many scientific disciplines from science to engineering. Previous studies proposed a strategy updating mechanism, which successfully demonstrated that the scale-free network can provide a framework for the emergence of cooperation. Instead, individuals in random graphs and small-world networks do not favor cooperation under this updating rule. However, a recent empirical result shows the heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma. In this paper, we propose a strategy updating rule with payoff memory. We observe that the random graphs and small-world networks can provide even better frameworks for cooperation than the scale-free networks in this scenario. Our observations suggest that the degree heterogeneity may be neither a sufficient condition nor a necessary condition for the widespread cooperation in complex networks. Also, the topological structures are not sufficed to determine the level of cooperation in complex networks. (paper)
Bursting synchronization in scale-free networks
International Nuclear Information System (INIS)
Batista, C.A.S.; Batista, A.M.; Pontes, J.C.A. de; Lopes, S.R.; Viana, R.L.
2009-01-01
Neuronal networks in some areas of the brain cortex present the scale-free property, i.e., the neuron connectivity is distributed according to a power-law, such that neurons are more likely to couple with other already well-connected ones. Neuron activity presents two timescales, a fast one related to action-potential spiking, and a slow timescale in which bursting takes place. Some pathological conditions are related with the synchronization of the bursting activity in a weak sense, meaning the adjustment of the bursting phase due to coupling. Hence it has been proposed that an externally applied time-periodic signal be applied in order to control undesirable synchronized bursting rhythms. We investigated this kind of intervention using a two-dimensional map to describe neurons with spiking-bursting activity in a scale-free network.
A Future of Communication Theory: Systems Theory.
Lindsey, Georg N.
Concepts of general systems theory, cybernetics and the like may provide the methodology for communication theory to move from a level of technology to a level of pure science. It was the purpose of this paper to (1) demonstrate the necessity of applying systems theory to the construction of communication theory, (2) review relevant systems…
Power Laws, Scale-Free Networks and Genome Biology
Koonin, Eugene V; Karev, Georgy P
2006-01-01
Power Laws, Scale-free Networks and Genome Biology deals with crucial aspects of the theoretical foundations of systems biology, namely power law distributions and scale-free networks which have emerged as the hallmarks of biological organization in the post-genomic era. The chapters in the book not only describe the interesting mathematical properties of biological networks but moves beyond phenomenology, toward models of evolution capable of explaining the emergence of these features. The collection of chapters, contributed by both physicists and biologists, strives to address the problems in this field in a rigorous but not excessively mathematical manner and to represent different viewpoints, which is crucial in this emerging discipline. Each chapter includes, in addition to technical descriptions of properties of biological networks and evolutionary models, a more general and accessible introduction to the respective problems. Most chapters emphasize the potential of theoretical systems biology for disco...
Optimal defense resource allocation in scale-free networks
Zhang, Xuejun; Xu, Guoqiang; Xia, Yongxiang
2018-02-01
The robustness research of networked systems has drawn widespread attention in the past decade, and one of the central topics is to protect the network from external attacks through allocating appropriate defense resource to different nodes. In this paper, we apply a specific particle swarm optimization (PSO) algorithm to optimize the defense resource allocation in scale-free networks. Results reveal that PSO based resource allocation shows a higher robustness than other resource allocation strategies such as uniform, degree-proportional, and betweenness-proportional allocation strategies. Furthermore, we find that assigning less resource to middle-degree nodes under small-scale attack while more resource to low-degree nodes under large-scale attack is conductive to improving the network robustness. Our work provides an insight into the optimal defense resource allocation pattern in scale-free networks and is helpful for designing a more robust network.
Generating hierarchial scale-free graphs from fractals
Energy Technology Data Exchange (ETDEWEB)
Komjathy, Julia, E-mail: komyju@math.bme.hu [Department of Stochastics, Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91 (Hungary); Simon, Karoly, E-mail: simonk@math.bme.hu [Department of Stochastics, Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91 (Hungary)
2011-08-15
Highlights: > We generate deterministic scale-free networks using graph-directed self similar IFS. > Our model exhibits similar clustering, power law decay properties to real networks. > The average length of shortest path and the diameter of the graph are determined. > Using this model, we generate random graphs with prescribed power law exponent. - Abstract: Motivated by the hierarchial network model of E. Ravasz, A.-L. Barabasi, and T. Vicsek, we introduce deterministic scale-free networks derived from a graph directed self-similar fractal {Lambda}. With rigorous mathematical results we verify that our model captures some of the most important features of many real networks: the scale-free and the high clustering properties. We also prove that the diameter is the logarithm of the size of the system. We point out a connection between the power law exponent of the degree distribution and some intrinsic geometric measure theoretical properties of the underlying fractal. Using our (deterministic) fractal {Lambda} we generate random graph sequence sharing similar properties.
1978-11-01
R 2. GOVT A $ SION NO. 3 RIEqLPýIVT’S.;TALOG NUMBER r/ 4. TITLE (and wbiFflT, -L M4 1 , FEEDBACK SYSTEM THEORY ~r Inter in- 6. PERFORMING ORG. REPORT...ANNUAL REPORT FEEDBACK SYSTEM THEORY AFOSR GRANT NO. 76-2946B Air Force Office of Scientific Research for year ending October 31, 1978 79 02 08 L|I...re less stringent than in other synthesis techniques which cannot handle significant parameter uncertainty. _I FEEDBACK SYSTEM THEORY 1. Introduction
Böbel, A.; Knapek, C. A.; Räth, C.
2018-05-01
Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski
The prisoner's dilemma in structured scale-free networks
International Nuclear Information System (INIS)
Li Xing; Wu Yonghui; Zhang Zhongzhi; Zhou Shuigeng; Rong Zhihai
2009-01-01
The conventional wisdom is that scale-free networks are prone to cooperation spreading. In this paper we investigate the cooperative behavior on the structured scale-free network. In contrast to the conventional wisdom that scale-free networks are prone to cooperation spreading, the evolution of cooperation is inhibited on the structured scale-free network when the prisoner's dilemma (PD) game is modeled. First, we demonstrate that neither the scale-free property nor the high clustering coefficient is responsible for the inhibition of cooperation spreading on the structured scale-free network. Then we provide one heuristic method to argue that the lack of age correlations and its associated 'large-world' behavior in the structured scale-free network inhibit the spread of cooperation. These findings may help enlighten further studies on the evolutionary dynamics of the PD game in scale-free networks
Scale-free music of the brain.
Directory of Open Access Journals (Sweden)
Dan Wu
Full Text Available BACKGROUND: There is growing interest in the relation between the brain and music. The appealing similarity between brainwaves and the rhythms of music has motivated many scientists to seek a connection between them. A variety of transferring rules has been utilized to convert the brainwaves into music; and most of them are mainly based on spectra feature of EEG. METHODOLOGY/PRINCIPAL FINDINGS: In this study, audibly recognizable scale-free music was deduced from individual Electroencephalogram (EEG waveforms. The translation rules include the direct mapping from the period of an EEG waveform to the duration of a note, the logarithmic mapping of the change of average power of EEG to music intensity according to the Fechner's law, and a scale-free based mapping from the amplitude of EEG to music pitch according to the power law. To show the actual effect, we applied the deduced sonification rules to EEG segments recorded during rapid-eye movement sleep (REM and slow-wave sleep (SWS. The resulting music is vivid and different between the two mental states; the melody during REM sleep sounds fast and lively, whereas that in SWS sleep is slow and tranquil. 60 volunteers evaluated 25 music pieces, 10 from REM, 10 from SWS and 5 from white noise (WN, 74.3% experienced a happy emotion from REM and felt boring and drowsy when listening to SWS, and the average accuracy for all the music pieces identification is 86.8%(kappa = 0.800, P<0.001. We also applied the method to the EEG data from eyes closed, eyes open and epileptic EEG, and the results showed these mental states can be identified by listeners. CONCLUSIONS/SIGNIFICANCE: The sonification rules may identify the mental states of the brain, which provide a real-time strategy for monitoring brain activities and are potentially useful to neurofeedback therapy.
Callier, Frank M.; Desoer, Charles A.
1991-01-01
The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.
Utilizing Maximal Independent Sets as Dominating Sets in Scale-Free Networks
Derzsy, N.; Molnar, F., Jr.; Szymanski, B. K.; Korniss, G.
Dominating sets provide key solution to various critical problems in networked systems, such as detecting, monitoring, or controlling the behavior of nodes. Motivated by graph theory literature [Erdos, Israel J. Math. 4, 233 (1966)], we studied maximal independent sets (MIS) as dominating sets in scale-free networks. We investigated the scaling behavior of the size of MIS in artificial scale-free networks with respect to multiple topological properties (size, average degree, power-law exponent, assortativity), evaluated its resilience to network damage resulting from random failure or targeted attack [Molnar et al., Sci. Rep. 5, 8321 (2015)], and compared its efficiency to previously proposed dominating set selection strategies. We showed that, despite its small set size, MIS provides very high resilience against network damage. Using extensive numerical analysis on both synthetic and real-world (social, biological, technological) network samples, we demonstrate that our method effectively satisfies four essential requirements of dominating sets for their practical applicability on large-scale real-world systems: 1.) small set size, 2.) minimal network information required for their construction scheme, 3.) fast and easy computational implementation, and 4.) resiliency to network damage. Supported by DARPA, DTRA, and NSF.
Opinion Spreading with Mobility on Scale-Free Networks
International Nuclear Information System (INIS)
Qiang, Guo; Xing-Wen, Chen; Jian-Guo, Liu; Bing-Hong, Wang; Tao, Zhou; Yu-Hua, Yao
2008-01-01
A continuum opinion dynamic model is presented based on two rules. The first one considers the mobilities of the individuals, the second one supposes that the individuals update their opinions independently. The results of the model indicate that the bounded confidence in c , separating consensus and incoherent states, of a scale-free network is much smaller than the one of a lattice. If the system can reach the consensus state, the sum of all individuals' opinion change O c (t) quickly decreases in an exponential form, while if it reaches the incoherent state finally O c (t) decreases slowly and has the punctuated equilibrium characteristic
Doria, Gino; Koch, Giorgio; Strom, Roberto
1979-01-01
This volume collects the contributions presented at the "Working Conference on System Theory in Immunology", held in Rome, May 1978. The aim of the Conference was to bring together immunologists on one side and experts in system theory and applied mathematics on the other, in order to identify problems of common interest and to establish a network of joint effort toward their solution. The methodologies of system theory for processing experimental data and for describing dynamical phenomena could indeed contribute significantly to the under standing of basic immunological facts. Conversely, the complexity of experimental results and of interpretative models should stimulate mathematicians to formulate new problems and to design appropriate procedures of analysis. The multitude of scientific publications in theoretical biology, appeared in recent years, confirms this trend and calls for extensive interaction between mat- matics and immunology. The material of this volume is divided into five sections, along ...
Applied multidimensional systems theory
Bose, Nirmal K
2017-01-01
Revised and updated, this concise new edition of the pioneering book on multidimensional signal processing is ideal for a new generation of students. Multidimensional systems or m-D systems are the necessary mathematical background for modern digital image processing with applications in biomedicine, X-ray technology and satellite communications. Serving as a firm basis for graduate engineering students and researchers seeking applications in mathematical theories, this edition eschews detailed mathematical theory not useful to students. Presentation of the theory has been revised to make it more readable for students, and introduce some new topics that are emerging as multidimensional DSP topics in the interdisciplinary fields of image processing. New topics include Groebner bases, wavelets, and filter banks.
Effects of degree correlation on scale-free gradient networks
International Nuclear Information System (INIS)
Pan Guijun; Yan Xiaoqing; Ma Weichuan; Luo Yihui; Huang Zhongbing
2010-01-01
We have studied the effects of degree correlation on congestion pressure in scale-free gradient networks. It is observed that the jamming coefficient J is insensitive to the degree correlation coefficient r for assortative and strongly disassortative scale-free networks, and J markedly decreases with an increase in r for weakly disassortative scale-free networks. We have also investigated the effects of degree correlation on the topology structure of scale-free gradient networks, and discussed the relation between the topology structure properties and transport efficiency of gradient networks.
Dekkers, Rob
2017-01-01
Offering an up-to-date account of systems theories and its applications, this book provides a different way of resolving problems and addressing challenges in a swift and practical way, without losing overview and grip on the details. From this perspective, it offers a different way of thinking in order to incorporate different perspectives and to consider multiple aspects of any given problem. Drawing examples from a wide range of disciplines, it also presents worked cases to illustrate the principles. The multidisciplinary perspective and the formal approach to modelling of systems and processes of ‘Applied Systems Theory’ makes it suitable for managers, engineers, students, researchers, academics and professionals from a wide range of disciplines; they can use this ‘toolbox’ for describing, analysing and designing biological, engineering and organisational systems as well as getting a better understanding of societal problems. This revised, updated and expanded second edition includes coverage of a...
Dekkers, Rob
2014-01-01
Offering an up-to-date account of systems theories and its applications, this book provides a different way of resolving problems and addressing challenges in a swift and practical way, without losing overview and not having a grip on the details. From this perspective, it offers a different way of thinking in order to incorporate different perspectives and to consider multiple aspects of any given problem. Drawing examples from a wide range of disciplines, it also presents worked cases to illustrate the principles. The multidisciplinary perspective and the formal approach to modelling of syst
Cooperative Dynamics in Lattice-Embedded Scale-Free Networks
International Nuclear Information System (INIS)
Shang Lihui; Zhang Mingji; Yang Yanqing
2009-01-01
We investigate cooperative behaviors of lattice-embedded scale-free networking agents in the prisoner's dilemma game model by employing two initial strategy distribution mechanisms, which are specific distribution to the most connected sites (hubs) and random distribution. Our study indicates that the game dynamics crucially depends on the underlying spatial network structure with different strategy distribution mechanism. The cooperators' specific distribution contributes to an enhanced level of cooperation in the system compared with random one, and cooperation is robust to cooperators' specific distribution but fragile to defectors' specific distribution. Especially, unlike the specific case, increasing heterogeneity of network does not always favor the emergence of cooperation under random mechanism. Furthermore, we study the geographical effects and find that the graphically constrained network structure tends to improve the evolution of cooperation in random case and in specific one for a large temptation to defect.
Degree and connectivity of the Internet's scale-free topology
International Nuclear Information System (INIS)
Zhang Lian-Ming; Wu Xiang-Sheng; Deng Xiao-Heng; Yu Jian-Ping
2011-01-01
This paper theoretically and empirically studies the degree and connectivity of the Internet's scale-free topology at an autonomous system (AS) level. The basic features of scale-free networks influence the normalization constant of degree distribution p(k). It develops a new mathematic model for describing the power-law relationships of Internet topology. From this model we theoretically obtain formulas to calculate the average degree, the ratios of the k min -degree (minimum degree) nodes and the k max -degree (maximum degree) nodes, and the fraction of the degrees (or links) in the hands of the richer (top best-connected) nodes. It finds that the average degree is larger for a smaller power-law exponent λ and a larger minimum or maximum degree. The ratio of the k min -degree nodes is larger for larger λ and smaller k min or k max . The ratio of the k max -degree ones is larger for smaller λ and k max or larger k min . The richer nodes hold most of the total degrees of Internet AS-level topology. In addition, it is revealed that the increased rate of the average degree or the ratio of the k min -degree nodes has power-law decay with the increase of k min . The ratio of the k max -degree nodes has a power-law decay with the increase of k max , and the fraction of the degrees in the hands of the richer 27% nodes is about 73% (the ‘73/27 rule’). Finally, empirically calculations are made, based on the empirical data extracted from the Border Gateway Protocol, of the average degree, ratio and fraction using this method and other methods, and find that this method is rigorous and effective for Internet AS-level topology. (interdisciplinary physics and related areas of science and technology)
Hysteresis-controlled instability waves in a scale-free driven current sheet model
Directory of Open Access Journals (Sweden)
V. M. Uritsky
2005-01-01
Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.
Dwivedi, Yogesh K; Schneberger, Scott L
2011-01-01
The overall mission of this book is to provide a comprehensive understanding and coverage of the various theories and models used in IS research. Specifically, it aims to focus on the following key objectives: To describe the various theories and models applicable to studying IS/IT management issues. To outline and describe, for each of the various theories and models, independent and dependent constructs, reference discipline/originating area, originating author(s), seminal articles, level of analysis (i.e. firm, individual, industry) and links with other theories. To provide a critical revie
Complex networks with scale-free nature and hierarchical modularity
Shekatkar, Snehal M.; Ambika, G.
2015-09-01
Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.
Some scale-free networks could be robust under selective node attacks
Zheng, Bojin; Huang, Dan; Li, Deyi; Chen, Guisheng; Lan, Wenfei
2011-04-01
It is a mainstream idea that scale-free network would be fragile under the selective attacks. Internet is a typical scale-free network in the real world, but it never collapses under the selective attacks of computer viruses and hackers. This phenomenon is different from the deduction of the idea above because this idea assumes the same cost to delete an arbitrary node. Hence this paper discusses the behaviors of the scale-free network under the selective node attack with different cost. Through the experiments on five complex networks, we show that the scale-free network is possibly robust under the selective node attacks; furthermore, the more compact the network is, and the larger the average degree is, then the more robust the network is; with the same average degrees, the more compact the network is, the more robust the network is. This result would enrich the theory of the invulnerability of the network, and can be used to build robust social, technological and biological networks, and also has the potential to find the target of drugs.
Information theory of molecular systems
Nalewajski, Roman F
2006-01-01
As well as providing a unified outlook on physics, Information Theory (IT) has numerous applications in chemistry and biology owing to its ability to provide a measure of the entropy/information contained within probability distributions and criteria of their information ""distance"" (similarity) and independence. Information Theory of Molecular Systems applies standard IT to classical problems in the theory of electronic structure and chemical reactivity. The book starts by introducing the basic concepts of modern electronic structure/reactivity theory based upon the Density Functional Theory
Fractal scale-free networks resistant to disease spread
International Nuclear Information System (INIS)
Zhang, Zhongzhi; Zhou, Shuigeng; Zou, Tao; Chen, Guisheng
2008-01-01
The conventional wisdom is that scale-free networks are prone to epidemic propagation; in the paper we demonstrate that, on the contrary, disease spreading is inhibited in fractal scale-free networks. We first propose a novel network model and show that it simultaneously has the following rich topological properties: scale-free degree distribution, tunable clustering coefficient, 'large-world' behavior, and fractal scaling. Existing network models do not display these characteristics. Then, we investigate the susceptible–infected–removed (SIR) model of the propagation of diseases in our fractal scale-free networks by mapping it to the bond percolation process. We establish the existence of non-zero tunable epidemic thresholds by making use of the renormalization group technique, which implies that power law degree distribution does not suffice to characterize the epidemic dynamics on top of scale-free networks. We argue that the epidemic dynamics are determined by the topological properties, especially the fractality and its accompanying 'large-world' behavior
Scale free effects in world currency exchange network
Górski, A. Z.; Drożdż, S.; Kwapień, J.
2008-11-01
A large collection of daily time series for 60 world currencies' exchange rates is considered. The correlation matrices are calculated and the corresponding Minimal Spanning Tree (MST) graphs are constructed for each of those currencies used as reference for the remaining ones. It is shown that multiplicity of the MST graphs' nodes to a good approximation develops a power like, scale free distribution with the scaling exponent similar as for several other complex systems studied so far. Furthermore, quantitative arguments in favor of the hierarchical organization of the world currency exchange network are provided by relating the structure of the above MST graphs and their scaling exponents to those that are derived from an exactly solvable hierarchical network model. A special status of the USD during the period considered can be attributed to some departures of the MST features, when this currency (or some other tied to it) is used as reference, from characteristics typical to such a hierarchical clustering of nodes towards those that correspond to the random graphs. Even though in general the basic structure of the MST is robust with respect to changing the reference currency some trace of a systematic transition from somewhat dispersed - like the USD case - towards more compact MST topology can be observed when correlations increase.
Universal Scaling Relations in Scale-Free Structure Formation
Guszejnov, Dávid; Hopkins, Philip F.; Grudić, Michael Y.
2018-04-01
A large number of astronomical phenomena exhibit remarkably similar scaling relations. The most well-known of these is the mass distribution dN/dM∝M-2 which (to first order) describes stars, protostellar cores, clumps, giant molecular clouds, star clusters and even dark matter halos. In this paper we propose that this ubiquity is not a coincidence and that it is the generic result of scale-free structure formation where the different scales are uncorrelated. We show that all such systems produce a mass function proportional to M-2 and a column density distribution with a power law tail of dA/d lnΣ∝Σ-1. In the case where structure formation is controlled by gravity the two-point correlation becomes ξ2D∝R-1. Furthermore, structures formed by such processes (e.g. young star clusters, DM halos) tend to a ρ∝R-3 density profile. We compare these predictions with observations, analytical fragmentation cascade models, semi-analytical models of gravito-turbulent fragmentation and detailed "full physics" hydrodynamical simulations. We find that these power-laws are good first order descriptions in all cases.
Scale-Free Networks and Commercial Air Carrier Transportation in the United States
Conway, Sheila R.
2004-01-01
Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.
Gradient networks on uncorrelated random scale-free networks
International Nuclear Information System (INIS)
Pan Guijun; Yan Xiaoqing; Huang Zhongbing; Ma Weichuan
2011-01-01
Uncorrelated random scale-free (URSF) networks are useful null models for checking the effects of scale-free topology on network-based dynamical processes. Here, we present a comparative study of the jamming level of gradient networks based on URSF networks and Erdos-Renyi (ER) random networks. We find that the URSF networks are less congested than ER random networks for the average degree (k)>k c (k c ∼ 2 denotes a critical connectivity). In addition, by investigating the topological properties of the two kinds of gradient networks, we discuss the relations between the topological structure and the transport efficiency of the gradient networks. These findings show that the uncorrelated scale-free structure might allow more efficient transport than the random structure.
Quantifying the connectivity of scale-free and biological networks
Energy Technology Data Exchange (ETDEWEB)
Shiner, J.S. E-mail: shiner@alumni.duke.edu; Davison, Matt E-mail: mdavison@uwo.ca
2004-07-01
Scale-free and biological networks follow a power law distribution p{sub k}{proportional_to}k{sup -{alpha}} for the probability that a node is connected to k other nodes; the corresponding ranges for {alpha} (biological: 1<{alpha}<2; scale-free: 2<{alpha}{<=}3) yield a diverging variance for the connectivity k and lack of predictability for the average connectivity. Predictability can be achieved with the Renyi, Tsallis and Landsberg-Vedral extended entropies and corresponding 'disorders' for correctly chosen values of the entropy index q. Escort distributions p{sub k}{proportional_to}k{sup -{alpha}}{sup q} with q>3/{alpha} also yield a nondiverging variance and predictability. It is argued that the Tsallis entropies may be the appropriate quantities for the study of scale-free and biological networks.
Opinion formation on multiplex scale-free networks
Nguyen, Vu Xuan; Xiao, Gaoxi; Xu, Xin-Jian; Li, Guoqi; Wang, Zhen
2018-01-01
Most individuals, if not all, live in various social networks. The formation of opinion systems is an outcome of social interactions and information propagation occurring in such networks. We study the opinion formation with a new rule of pairwise interactions in the novel version of the well-known Deffuant model on multiplex networks composed of two layers, each of which is a scale-free network. It is found that in a duplex network composed of two identical layers, the presence of the multiplexity helps either diminish or enhance opinion diversity depending on the relative magnitudes of tolerance ranges characterizing the degree of openness/tolerance on both layers: there is a steady separation between different regions of tolerance range values on two network layers where multiplexity plays two different roles, respectively. Additionally, the two critical tolerance ranges follow a one-sum rule; that is, each of the layers reaches a complete consensus only if the sum of the tolerance ranges on the two layers is greater than a constant approximately equaling 1, the double of the critical bound on a corresponding isolated network. A further investigation of the coupling between constituent layers quantified by a link overlap parameter reveals that as the layers are loosely coupled, the two opinion systems co-evolve independently, but when the inter-layer coupling is sufficiently strong, a monotonic behavior is observed: an increase in the tolerance range of a layer causes a decline in the opinion diversity on the other layer regardless of the magnitudes of tolerance ranges associated with the layers in question.
Ergodic theory and dynamical systems
Coudène, Yves
2016-01-01
This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of commen...
Trading leads to scale-free self-organization
Ebert, M.; Paul, W.
2012-12-01
Financial markets display scale-free behavior in many different aspects. The power-law behavior of part of the distribution of individual wealth has been recognized by Pareto as early as the nineteenth century. Heavy-tailed and scale-free behavior of the distribution of returns of different financial assets have been confirmed in a series of works. The existence of a Pareto-like distribution of the wealth of market participants has been connected with the scale-free distribution of trading volumes and price-returns. The origin of the Pareto-like wealth distribution, however, remained obscure. Here we show that in a market where the imbalance of supply and demand determines the direction of prize changes, it is the process of trading itself that spontaneously leads to a self-organization of the market with a Pareto-like wealth distribution for the market participants and at the same time to a scale-free behavior of return fluctuations and trading volume distributions.
Generating hierarchical scale free-graphs from fractals
Komjáthy, J.; Simon, K.
2011-01-01
Motivated by the hierarchial network model of E. Ravasz, A.-L. Barabási, and T. Vicsek, we introduce deterministic scale-free networks derived from a graph directed self-similar fractal ¿. With rigorous mathematical results we verify that our model captures some of the most important features of
Strategic Factor Markets Scale Free Resources and Economic Performance
DEFF Research Database (Denmark)
Geisler Asmussen, Christian
2015-01-01
This paper analyzes how scale free resources, which can be acquired by multiple firms simultaneously and deployed against one another in product market competition, will be priced in strategic factor markets, and what the consequences are for the acquiring firms' performance. Based on a game-theo...
Programming scale-free optics in disordered ferroelectrics.
Parravicini, Jacopo; Conti, Claudio; Agranat, Aharon J; DelRe, Eugenio
2012-06-15
Using the history dependence of a dipolar glass hosted in a compositionally disordered lithium-enriched potassium tantalate niobate (KTN:Li) crystal, we demonstrate scale-free optical propagation at tunable temperatures. The operating equilibration temperature is determined by previous crystal spiralling in the temperature/cooling-rate phase space.
Programming scale-free optics in disordered ferroelectrics
Parravicini, Jacopo; Conti, Claudio; Agranat, Aharon J.; DelRe, Eugenio
2012-01-01
Using the history-dependence of a dipolar glass hosted in a compositionally-disordered lithium-enriched potassium-tantalate-niobate (KTN:Li) crystal, we demonstrate scale-free optical propagation at tunable temperatures. The operating equilibration temperature is determined by previous crystal spiralling in the temperature/cooling-rate phase-space.
Directory of Open Access Journals (Sweden)
John M Zempel
2012-06-01
Full Text Available Like many complex dynamic systems, the brain exhibits scale-free dynamics that follow power law scaling. Broadband power spectral density (PSD of brain electrical activity exhibits state-dependent power law scaling with a log frequency exponent that varies across frequency ranges. Widely divergent naturally occurring neural states, awake and slow wave sleep (SWS periods, were used evaluate the nature of changes in scale-free indices. We demonstrate two analytic approaches to characterizing electrocorticographic (ECoG data obtained during Awake and SWS states. A data driven approach was used, characterizing all available frequency ranges. Using an Equal Error State Discriminator (EESD, a single frequency range did not best characterize state across data from all six subjects, though the ability to distinguish awake and SWS states in individual subjects was excellent. Multisegment piecewise linear fits were used to characterize scale-free slopes across the entire frequency range (0.2-200 Hz. These scale-free slopes differed between Awake and SWS states across subjects, particularly at frequencies below 10 Hz and showed little difference at frequencies above 70 Hz. A Multivariate Maximum Likelihood Analysis (MMLA method using the multisegment slope indices successfully categorized ECoG data in most subjects, though individual variation was seen. The ECoG spectrum is not well characterized by a single linear fit across a defined set of frequencies, but is best described by a set of discrete linear fits across the full range of available frequencies. With increasing computational tractability, the use of scale-free slope values to characterize EEG data will have practical value in clinical and research EEG studies.
On Restructurable Control System Theory
Athans, M.
1983-01-01
The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.
Sparse cliques trump scale-free networks in coordination and competition
Gianetto, David A.; Heydari, Babak
2016-02-01
Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner’s Dilemma game.
Trajectory Control of Scale-Free Dynamical Networks with Exogenous Disturbances
International Nuclear Information System (INIS)
Yang Hongyong; Zhang Shun; Zong Guangdeng
2011-01-01
In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned. (interdisciplinary physics and related areas of science and technology)
Discrete scale-free distributions and associated limit theorems
International Nuclear Information System (INIS)
Hopcraft, K I; Jakeman, E; Matthews, J O
2004-01-01
Consideration is given to the convergence properties of sums of identical, independently distributed random variables drawn from a class of discrete distributions with power-law tails, which are relevant to scale-free networks. Different limiting distributions, and rates of convergence to these limits, are identified and depend on the index of the tail. For indices ≥2, the topology evolves to a random Poisson network, but the rate of convergence can be extraordinarily slow and unlikely to be yet evident for the current size of the WWW for example. It is shown that treating discrete scale-free behaviour with continuum or mean-field approximations can lead to incorrect results. (letter to the editor)
Cascading failure in the wireless sensor scale-free networks
Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li
2015-05-01
In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).
Network Theory: A Primer and Questions for Air Transportation Systems Applications
Holmes, Bruce J.
2004-01-01
A new understanding (with potential applications to air transportation systems) has emerged in the past five years in the scientific field of networks. This development emerges in large part because we now have a new laboratory for developing theories about complex networks: The Internet. The premise of this new understanding is that most complex networks of interest, both of nature and of human contrivance, exhibit a fundamentally different behavior than thought for over two hundred years under classical graph theory. Classical theory held that networks exhibited random behavior, characterized by normal, (e.g., Gaussian or Poisson) degree distributions of the connectivity between nodes by links. The new understanding turns this idea on its head: networks of interest exhibit scale-free (or small world) degree distributions of connectivity, characterized by power law distributions. The implications of scale-free behavior for air transportation systems include the potential that some behaviors of complex system architectures might be analyzed through relatively simple approximations of local elements of the system. For air transportation applications, this presentation proposes a framework for constructing topologies (architectures) that represent the relationships between mobility, flight operations, aircraft requirements, and airspace capacity, and the related externalities in airspace procedures and architectures. The proposed architectures or topologies may serve as a framework for posing comparative and combinative analyses of performance, cost, security, environmental, and related metrics.
Adaptive local routing strategy on a scale-free network
International Nuclear Information System (INIS)
Feng, Liu; Han, Zhao; Ming, Li; Yan-Bo, Zhu; Feng-Yuan, Ren
2010-01-01
Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination, an adaptive local routing strategy on a scale-free network is proposed, in which the node adjusts the forwarding probability with the dynamical traffic load (packet queue length) and the degree distribution of neighbouring nodes. The critical queue length of a node is set to be proportional to its degree, and the node with high degree has a larger critical queue length to store and forward more packets. When the queue length of a high degree node is shorter than its critical queue length, it has a higher probability to forward packets. After higher degree nodes are saturated (whose queue lengths are longer than their critical queue lengths), more packets will be delivered by the lower degree nodes around them. The adaptive local routing strategy increases the probability of a packet finding its destination quickly, and improves the transmission capacity on the scale-free network by reducing routing hops. The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies. (general)
Innovation diffusion equations on correlated scale-free networks
Energy Technology Data Exchange (ETDEWEB)
Bertotti, M.L., E-mail: marialetizia.bertotti@unibz.it [Free University of Bozen–Bolzano, Faculty of Science and Technology, Bolzano (Italy); Brunner, J., E-mail: johannes.brunner@tis.bz.it [TIS Innovation Park, Bolzano (Italy); Modanese, G., E-mail: giovanni.modanese@unibz.it [Free University of Bozen–Bolzano, Faculty of Science and Technology, Bolzano (Italy)
2016-07-29
Highlights: • The Bass diffusion model can be formulated on scale-free networks. • In the trickle-down version, the hubs adopt earlier and act as monitors. • We improve the equations in order to describe trickle-up diffusion. • Innovation is generated at the network periphery, and hubs can act as stiflers. • We compare diffusion times, in dependence on the scale-free exponent. - Abstract: We introduce a heterogeneous network structure into the Bass diffusion model, in order to study the diffusion times of innovation or information in networks with a scale-free structure, typical of regions where diffusion is sensitive to geographic and logistic influences (like for instance Alpine regions). We consider both the diffusion peak times of the total population and of the link classes. In the familiar trickle-down processes the adoption curve of the hubs is found to anticipate the total adoption in a predictable way. In a major departure from the standard model, we model a trickle-up process by introducing heterogeneous publicity coefficients (which can also be negative for the hubs, thus turning them into stiflers) and a stochastic term which represents the erratic generation of innovation at the periphery of the network. The results confirm the robustness of the Bass model and expand considerably its range of applicability.
Innovation diffusion equations on correlated scale-free networks
International Nuclear Information System (INIS)
Bertotti, M.L.; Brunner, J.; Modanese, G.
2016-01-01
Highlights: • The Bass diffusion model can be formulated on scale-free networks. • In the trickle-down version, the hubs adopt earlier and act as monitors. • We improve the equations in order to describe trickle-up diffusion. • Innovation is generated at the network periphery, and hubs can act as stiflers. • We compare diffusion times, in dependence on the scale-free exponent. - Abstract: We introduce a heterogeneous network structure into the Bass diffusion model, in order to study the diffusion times of innovation or information in networks with a scale-free structure, typical of regions where diffusion is sensitive to geographic and logistic influences (like for instance Alpine regions). We consider both the diffusion peak times of the total population and of the link classes. In the familiar trickle-down processes the adoption curve of the hubs is found to anticipate the total adoption in a predictable way. In a major departure from the standard model, we model a trickle-up process by introducing heterogeneous publicity coefficients (which can also be negative for the hubs, thus turning them into stiflers) and a stochastic term which represents the erratic generation of innovation at the periphery of the network. The results confirm the robustness of the Bass model and expand considerably its range of applicability.
Label-based routing for a family of scale-free, modular, planar and unclustered graphs
International Nuclear Information System (INIS)
Comellas, Francesc; Miralles, Alicia
2011-01-01
We give an optimal labeling and routing algorithm for a family of scale-free, modular and planar graphs with zero clustering. The relevant properties of this family match those of some networks associated with technological and biological systems with a low clustering, including some electronic circuits and protein networks. The existence of an efficient routing protocol for this graph model should help when designing communication algorithms in real networks and also in the understanding of their dynamic processes.
General Systems Theory and Instructional Systems Design.
Salisbury, David F.
1990-01-01
Describes basic concepts in the field of general systems theory (GST) and identifies commonalities that exist between GST and instructional systems design (ISD). Models and diagrams that depict system elements in ISD are presented, and two matrices that show how GST has been used in ISD literature are included. (11 references) (LRW)
Systems Theory and Systems Approach to Leadership
Directory of Open Access Journals (Sweden)
Dr.Sc. Berim Ramosaj
2014-06-01
Full Text Available Systems theory is product of the efforts of many researchers to create an intermediate field of coexistence of all sciences. If not for anything else, because of the magnitude that the use of systemic thinking and systemic approach has taken, it has become undisputed among the theories. Systems theory not only provides a glossary of terms with which researchers from different fields can be understood, but provides a framework for the presentation and interpretation of phenomena and realities. This paper addresses a systematic approach to leadership, as an attempt to dredge leadership and systems theory literature to find the meeting point. Systems approach is not an approach to leadership in terms of a manner of leader’s work, but it’s the leader's determination to factorize in his leadership the external environment and relationships with and among elements. Leader without followers is unable to exercise his leadership and to ensure their conviction he should provide a system, a structure, a purpose, despite the alternative chaos. Systems approach clarifies the thought on the complexity and dynamism of the environment and provides a framework for building ideas. If the general system theory is the skeleton of science (Boulding: 1956, this article aims to replenish it with leadership muscles by prominent authors who have written on systems theory and leadership, as well as through original ideas. In this work analytical methods were used (by analyzing approaches individually as well as synthetic methods (by assaying individual approaches in context of entirety. The work is a critical review of literature as well as a deductive analysis mingled with models proposed by authors through inductive analysis. Meta-analysis has been used to dissect the interaction and interdependence between leadership approaches.
Gestalt Therapy and General System Theory.
Whitner, Phillip A.
While General Systems Theory (GST) concepts appear to be applicable in explaining some of the phenomena that occur in a Gestalt Therapy group, research is needed to support this assumption. General Systems Theory may not be a group theory per se. Instead, GST may be a theory about groups. A meta-theory exists where its value and usefulness is…
System Theory and Physiological Processes.
Jones, R W
1963-05-03
Engineers and physiologists working together in experimental and theoretical studies predict that the application of system analysis to biological processes will increase understanding of these processes and broaden the base of system theory. Richard W. Jones, professor of electrical engineering at Northwestern University, Evanston, Illinois, and John S. Gray, professor of physiology at Northwestern's Medical School, discuss these developments. Their articles are adapted from addresses delivered in Chicago in November 1962 at the 15th Annual Conference on Engineering in Medicine and Biology.
Trends in modern system theory
Athans, M.
1976-01-01
The topics considered are related to linear control system design, adaptive control, failure detection, control under failure, system reliability, and large-scale systems and decentralized control. It is pointed out that the design of a linear feedback control system which regulates a process about a desirable set point or steady-state condition in the presence of disturbances is a very important problem. The linearized dynamics of the process are used for design purposes. The typical linear-quadratic design involving the solution of the optimal control problem of a linear time-invariant system with respect to a quadratic performance criterion is considered along with gain reduction theorems and the multivariable phase margin theorem. The stumbling block in many adaptive design methodologies is associated with the amount of real time computation which is necessary. Attention is also given to the desperate need to develop good theories for large-scale systems, the beginning of a microprocessor revolution, the translation of the Wiener-Hopf theory into the time domain, and advances made in dynamic team theory, dynamic stochastic games, and finite memory stochastic control.
Generate the scale-free brain music from BOLD signals.
Lu, Jing; Guo, Sijia; Chen, Mingming; Wang, Weixia; Yang, Hua; Guo, Daqing; Yao, Dezhong
2018-01-01
Many methods have been developed to translate a human electroencephalogram (EEG) into music. In addition to EEG, functional magnetic resonance imaging (fMRI) is another method used to study the brain and can reflect physiological processes. In 2012, we established a method to use simultaneously recorded fMRI and EEG signals to produce EEG-fMRI music, which represents a step toward scale-free brain music. In this study, we used a neural mass model, the Jansen-Rit model, to simulate activity in several cortical brain regions. The interactions between different brain regions were represented by the average normalized diffusion tensor imaging (DTI) structural connectivity with a coupling coefficient that modulated the coupling strength. Seventy-eight brain regions were adopted from the Automated Anatomical Labeling (AAL) template. Furthermore, we used the Balloon-Windkessel hemodynamic model to transform neural activity into a blood-oxygen-level dependent (BOLD) signal. Because the fMRI BOLD signal changes slowly, we used a sampling rate of 250 Hz to produce the temporal series for music generation. Then, the BOLD music was generated for each region using these simulated BOLD signals. Because the BOLD signal is scale free, these music pieces were also scale free, which is similar to classic music. Here, to simulate the case of an epileptic patient, we changed the parameter that determined the amplitude of the excitatory postsynaptic potential (EPSP) in the neural mass model. Finally, we obtained BOLD music for healthy and epileptic patients. The differences in levels of arousal between the 2 pieces of music may provide a potential tool for discriminating the different populations if the differences can be confirmed by more real data. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Scale-free, axisymmetry galaxy models with little angular momentum
International Nuclear Information System (INIS)
Richstone, D.O.
1980-01-01
Two scale-free models of elliptical galaxies are constructed using a self-consistent field approach developed by Schwarschild. Both models have concentric, oblate spheroidal, equipotential surfaces, with a logarithmic potential dependence on central distance. The axial ratio of the equipotential surfaces is 4:3, and the extent ratio of density level surfaces id 2.5:1 (corresponding to an E6 galaxy). Each model satisfies the Poisson and steady state Boltzmann equaion for time scales of order 100 galactic years
Medium Theory and Social Systems
DEFF Research Database (Denmark)
Tække, Jesper
the possibility for observation both of a social micro and a social macro level from a medium perspective. In the next section the paper frames the macro level by a tentative synthesis of the medium theory and the sociological systems theory briefly describing a socio......-evolutionary process where new media alter the societal capacity to handle complexity in time and space. In this section it becomes probable that by means of different media, social systems give different possibilities for actual social performance. In a way, social systems themselves can be...... seen as medium for formation. Finally the paper takes the micro level perspective by applying the theory to newsgroups, interpreting them as self-organizing interactive systems giving a differentiated and diversified scope for social inclusion. ...
Systemic Thinking in Career Development Theory: Contributions of the Systems Theory Framework
McMahon, Mary; Patton, Wendy
2018-01-01
This article considers systemic thinking in relation to the Systems Theory Framework (STF) and to career theory. An overview of systems theory and its applications is followed by a discussion of career theory to provide a context for the subsequent description of STF. The contributions of STF to career theory and to theory integration are…
Dynamical systems V bifurcation theory and catastrophe theory
1994-01-01
Bifurcation theory and catastrophe theory are two of the best known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Moreover, understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics", such as the characterization of personalities and the difference between a "genius" and a "maniac". Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, the first printing of w...
Particle swarm optimization with scale-free interactions.
Directory of Open Access Journals (Sweden)
Chen Liu
Full Text Available The particle swarm optimization (PSO algorithm, in which individuals collaborate with their interacted neighbors like bird flocking to search for the optima, has been successfully applied in a wide range of fields pertaining to searching and convergence. Here we employ the scale-free network to represent the inter-individual interactions in the population, named SF-PSO. In contrast to the traditional PSO with fully-connected topology or regular topology, the scale-free topology used in SF-PSO incorporates the diversity of individuals in searching and information dissemination ability, leading to a quite different optimization process. Systematic results with respect to several standard test functions demonstrate that SF-PSO gives rise to a better balance between the convergence speed and the optimum quality, accounting for its much better performance than that of the traditional PSO algorithms. We further explore the dynamical searching process microscopically, finding that the cooperation of hub nodes and non-hub nodes play a crucial role in optimizing the convergence process. Our work may have implications in computational intelligence and complex networks.
Directory of Open Access Journals (Sweden)
Xiaolin Liu
Full Text Available Loss of consciousness in anesthetized healthy participants and in patients with unresponsive wakefulness syndrome (UWS is associated with substantial alterations of functional connectivity across large-scale brain networks. Yet, a prominent distinction between the two cases is that after anesthesia, brain connectivity and consciousness are spontaneously restored, whereas in patients with UWS this restoration fails to occur, but why? A possible explanation is that the self-organizing capability of the brain is compromised in patients with UWS but not in healthy participants undergoing anesthesia. According to the theory of self-organized criticality, many natural complex systems, including the brain, evolve spontaneously to a critical state wherein system behaviors display spatial and/or temporal scale-invariant characteristics. Here we tested the hypothesis that the scale-free property of brain network organization is in fact fundamentally different between anesthetized healthy participants and UWS patients. We introduced a novel, computationally efficient approach to determine anatomical-functional parcellation of the whole-brain network at increasingly finer spatial scales. We found that in healthy participants, scale-free distributions of node size and node degree were present across wakefulness, propofol sedation, and recovery, despite significant propofol-induced functional connectivity changes. In patients with UWS, the scale-free distribution of node degree was absent, reflecting a fundamental difference between the two groups in adaptive reconfiguration of functional interaction between network components. The maintenance of scale-invariance across propofol sedation in healthy participants suggests the presence of persistent, on-going self-organizing processes to a critical state--a capacity that is compromised in patients with UWS.
IMMANUEL WALLERSTEIN'S WORLD SYSTEM THEORY
Directory of Open Access Journals (Sweden)
Cosma Sorinel
2010-12-01
Full Text Available World-systems analysis is not a theory, but an approach to social analysis and social change developed, among others by the Immanuel Wallerstein. Professor Wallerstein writes in three domains of world-systems analysis: the historical development of the modern world-system; the contemporary crisis of the capitalist world-economy; the structures of knowledge. The American anlyst rejects the notion of a "Third World", claiming there is only one world connected by a complex network of economic exchange relationship. Our world system is characterized by mechanisms which bring about a redistribution of resources from the periphery to the core. His analytical approach has made a significant impact and established an institutional base devoted to the general approach.
Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.
Yi, Hangmo
2015-01-01
I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.
Scheduling theory, algorithms, and systems
Pinedo, Michael L
2016-01-01
This new edition of the well-established text Scheduling: Theory, Algorithms, and Systems provides an up-to-date coverage of important theoretical models in the scheduling literature as well as important scheduling problems that appear in the real world. The accompanying website includes supplementary material in the form of slide-shows from industry as well as movies that show actual implementations of scheduling systems. The main structure of the book, as per previous editions, consists of three parts. The first part focuses on deterministic scheduling and the related combinatorial problems. The second part covers probabilistic scheduling models; in this part it is assumed that processing times and other problem data are random and not known in advance. The third part deals with scheduling in practice; it covers heuristics that are popular with practitioners and discusses system design and implementation issues. All three parts of this new edition have been revamped, streamlined, and extended. The reference...
Scale-free networks of earthquakes and aftershocks
International Nuclear Information System (INIS)
Baiesi, Marco; Paczuski, Maya
2004-01-01
We propose a metric to quantify correlations between earthquakes. The metric consists of a product involving the time interval and spatial distance between two events, as well as the magnitude of the first one. According to this metric, events typically are strongly correlated to only one or a few preceding ones. Thus a classification of events as foreshocks, main shocks, or aftershocks emerges automatically without imposing predetermined space-time windows. In the simplest network construction, each earthquake receives an incoming link from its most correlated predecessor. The number of aftershocks for any event, identified by its outgoing links, is found to be scale free with exponent γ=2.0(1). The original Omori law with p=1 emerges as a robust feature of seismicity, holding up to years even for aftershock sequences initiated by intermediate magnitude events. The broad distribution of distances between earthquakes and their linked aftershocks suggests that aftershock collection with fixed space windows is not appropriate
Network synchronization: optimal and pessimal scale-free topologies
Energy Technology Data Exchange (ETDEWEB)
Donetti, Luca [Departamento de Electronica y Tecnologia de Computadores and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hurtado, Pablo I; Munoz, Miguel A [Departamento de Electromagnetismo y Fisica de la Materia and Instituto Carlos I de Fisica Teorica y Computacional Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)], E-mail: mamunoz@onsager.ugr.es
2008-06-06
By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.
Network synchronization: optimal and pessimal scale-free topologies
International Nuclear Information System (INIS)
Donetti, Luca; Hurtado, Pablo I; Munoz, Miguel A
2008-01-01
By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability
Sandpile on scale-free networks with assortative mixing
International Nuclear Information System (INIS)
Yin Yanping; Zhang Duanming; Pan Guijun; He Minhua; Tan Jin
2007-01-01
We numerically investigate the Bak-Tang-Wiesenfeld sandpile model on scale-free networks with assortative mixing, where the threshold height of each node is equal to its degree. It is observed that a large fraction of multiple topplings are included in avalanches on assortative networks, which is absent on uncorrelated networks. We introduce a parameter F-bar(a) to characterize the fraction of multiple topplings in avalanches of area a. The fraction of multiple topplings increases dramatically with the degree of assortativity and has a peak for small a whose height also increase with the assortativity of the networks. Unlike the case on uncorrelated networks, the distributions of avalanche size, area and duration do not follow pure power law, but deviate more obviously from pure power law with the growing degree of assortativity. The results show that the assortative mixing has a strong influence on the behavior of avalanche dynamics on complex networks
Intermittent exploration on a scale-free network
International Nuclear Information System (INIS)
Ramezanpour, A
2007-02-01
We study an intermittent random walk on a random network of scale-free degree distribution. The walk is a combination of simple random walks of duration t w and random long-range jumps. While the time the walker needs to cover all the nodes increases with t w , the corresponding time for the edges displays a non monotonic behavior with a minimum for some nontrivial value of t w . This is a heterogeneity-induced effect that is not observed in homogeneous small-world networks. The optimal t w increases with the degree of assortativity in the network. Depending on the nature of degree correlations and the elapsed time the walker finds an over/underestimate of the degree distribution exponent. (author)
Improved Efficient Routing Strategy on Scale-Free Networks
Jiang, Zhong-Yuan; Liang, Man-Gui
Since the betweenness of nodes in complex networks can theoretically represent the traffic load of nodes under the currently used routing strategy, we propose an improved efficient (IE) routing strategy to enhance to the network traffic capacity based on the betweenness centrality. Any node with the highest betweenness is susceptible to traffic congestion. An efficient way to improve the network traffic capacity is to redistribute the heavy traffic load from these central nodes to non-central nodes, so in this paper, we firstly give a path cost function by considering the sum of node betweenness with a tunable parameter β along the actual path. Then, by minimizing the path cost, our IE routing strategy achieved obvious improvement on the network transport efficiency. Simulations on scale-free Barabási-Albert (BA) networks confirmed the effectiveness of our strategy, when compared with the efficient routing (ER) and the shortest path (SP) routing.
Epidemic spreading on adaptively weighted scale-free networks.
Sun, Mengfeng; Zhang, Haifeng; Kang, Huiyan; Zhu, Guanghu; Fu, Xinchu
2017-04-01
We introduce three modified SIS models on scale-free networks that take into account variable population size, nonlinear infectivity, adaptive weights, behavior inertia and time delay, so as to better characterize the actual spread of epidemics. We develop new mathematical methods and techniques to study the dynamics of the models, including the basic reproduction number, and the global asymptotic stability of the disease-free and endemic equilibria. We show the disease-free equilibrium cannot undergo a Hopf bifurcation. We further analyze the effects of local information of diseases and various immunization schemes on epidemic dynamics. We also perform some stochastic network simulations which yield quantitative agreement with the deterministic mean-field approach.
Truncation of power law behavior in 'scale-free' network models due to information filtering
International Nuclear Information System (INIS)
Mossa, Stefano; Barthelemy, Marc; Eugene Stanley, H.; Nunes Amaral, Luis A.
2002-01-01
We formulate a general model for the growth of scale-free networks under filtering information conditions--that is, when the nodes can process information about only a subset of the existing nodes in the network. We find that the distribution of the number of incoming links to a node follows a universal scaling form, i.e., that it decays as a power law with an exponential truncation controlled not only by the system size but also by a feature not previously considered, the subset of the network 'accessible' to the node. We test our model with empirical data for the World Wide Web and find agreement
Effect of clustering on attack vulnerability of interdependent scale-free networks
International Nuclear Information System (INIS)
Li, Rui-qi; Sun, Shi-wen; Ma, Yi-lin; Wang, Li; Xia, Cheng-yi
2015-01-01
In order to deeply understand the complex interdependent systems, it is of great concern to take clustering coefficient, which is an important feature of many real-world systems, into account. Previous study mainly focused on the impact of clustering on interdependent networks under random attacks, while we extend the study to the case of the more realistic attacking strategy, targeted attack. A system composed of two interdependent scale-free networks with tunable clustering is provided. The effects of coupling strength and coupling preference on attack vulnerability are explored. Numerical simulation results demonstrate that interdependent links between two networks make the entire system much more fragile to attacks. Also, it is found that clustering significantly increases the vulnerability of interdependent scale-free networks. Moreover, for fully coupled network, disassortative coupling is found to be most vulnerable to random attacks, while the random and assortative coupling have little difference. Additionally, enhancing coupling strength can greatly enhance the fragility of interdependent networks against targeted attacks. These results can not only improve the deep understanding of structural complexity of complex systems, but also provide insights into the guidance of designing resilient infrastructures.
Synchronization in scale-free networks: The role of finite-size effects
Torres, D.; Di Muro, M. A.; La Rocca, C. E.; Braunstein, L. A.
2015-06-01
Synchronization problems in complex networks are very often studied by researchers due to their many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, scale-free networks with degree distribution P(k)∼ k-λ , are widely used in research since they are ubiquitous in Nature and other real systems. In this paper we focus on the surface relaxation growth model in scale-free networks with 2.5< λ <3 , and study the scaling behavior of the fluctuations, in the steady state, with the system size N. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of N=N* that depends on λ: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above N* , the fluctuations decrease with λ, which means that the synchronization of the system improves as λ increases. We explain this crossover analyzing the role of the network's heterogeneity produced by the system size N and the exponent of the degree distribution.
Linear response theory for quantum open systems
Wei, J. H.; Yan, YiJing
2011-01-01
Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.
Systems Theory and Communication. Annotated Bibliography.
Covington, William G., Jr.
This annotated bibliography presents annotations of 31 books and journal articles dealing with systems theory and its relation to organizational communication, marketing, information theory, and cybernetics. Materials were published between 1963 and 1992 and are listed alphabetically by author. (RS)
Dynamics of epidemic spreading model with drug-resistant variation on scale-free networks
Wan, Chen; Li, Tao; Zhang, Wu; Dong, Jing
2018-03-01
Considering the influence of the virus' drug-resistant variation, a novel SIVRS (susceptible-infected-variant-recovered-susceptible) epidemic spreading model with variation characteristic on scale-free networks is proposed in this paper. By using the mean-field theory, the spreading dynamics of the model is analyzed in detail. Then, the basic reproductive number R0 and equilibriums are derived. Studies show that the existence of disease-free equilibrium is determined by the basic reproductive number R0. The relationships between the basic reproductive number R0, the variation characteristic and the topology of the underlying networks are studied in detail. Furthermore, our studies prove the global stability of the disease-free equilibrium, the permanence of epidemic and the global attractivity of endemic equilibrium. Numerical simulations are performed to confirm the analytical results.
Epidemic spreading in scale-free networks including the effect of individual vigilance
International Nuclear Information System (INIS)
Gong Yong-Wang; Song Yu-Rong; Jiang Guo-Ping
2012-01-01
In this paper, we study the epidemic spreading in scale-free networks and propose a new susceptible-infected-recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective spreading rate is dynamically adjusted with the time evolution at the vigilance period. Using the mean-field theory, an analytical result is derived. It shows that individual vigilance has no effect on the epidemic threshold. The numerical simulations agree well with the analytical result. Furthermore, we investigate the effect of individual vigilance on the epidemic spreading speed. It is shown that individual vigilance can slow the epidemic spreading speed effectively and delay the arrival of peak epidemic infection. (general)
Spreading dynamics of an e-commerce preferential information model on scale-free networks
Wan, Chen; Li, Tao; Guan, Zhi-Hong; Wang, Yuanmei; Liu, Xiongding
2017-02-01
In order to study the influence of the preferential degree and the heterogeneity of underlying networks on the spread of preferential e-commerce information, we propose a novel susceptible-infected-beneficial model based on scale-free networks. The spreading dynamics of the preferential information are analyzed in detail using the mean-field theory. We determine the basic reproductive number and equilibria. The theoretical analysis indicates that the basic reproductive number depends mainly on the preferential degree and the topology of the underlying networks. We prove the global stability of the information-elimination equilibrium. The permanence of preferential information and the global attractivity of the information-prevailing equilibrium are also studied in detail. Some numerical simulations are presented to verify the theoretical results.
Power-law citation distributions are not scale-free.
Golosovsky, Michael
2017-09-01
We analyze time evolution of statistical distributions of citations to scientific papers published in the same year. While these distributions seem to follow the power-law dependence we find that they are nonstationary and the exponent of the power-law fit decreases with time and does not come to saturation. We attribute the nonstationarity of citation distributions to different longevity of the low-cited and highly cited papers. By measuring citation trajectories of papers we found that citation careers of the low-cited papers come to saturation after 10-15 years while those of the highly cited papers continue to increase indefinitely: The papers that exceed some citation threshold become runaways. Thus, we show that although citation distribution can look as a power-law dependence, it is not scale free and there is a hidden dynamic scale associated with the onset of runaways. We compare our measurements to our recently developed model of citation dynamics based on copying-redirection-triadic closure and find explanations to our empirical observations.
Weighted Scale-Free Network Properties of Ecological Network
International Nuclear Information System (INIS)
Lee, Jae Woo; Maeng, Seong Eun
2013-01-01
We investigate the scale-free network properties of the bipartite ecological network, in particular, the plant-pollinator network. In plant-pollinator network, the pollinators visit the plant to get the nectars. In contrast to the other complex network, the plant-pollinator network has not only the trophic relationships among the interacting partners but also the complexities of the coevolutionary effects. The interactions between the plant and pollinators are beneficial relations. The plant-pollinator network is a bipartite and weighted network. The networks have two types of the nodes: plant and pollinator. We consider the visiting frequency of a pollinator to a plant as the weighting value of the link. We defined the strength of a node as the sum of the weighting value of the links. We reported the cumulative distribution function (CDF) of the degree and the strength of the plant-pollinator network. The CDF of the plants followed stretched exponential functions for both degree and strength, but the CDF of the pollinators showed the power law for both degree and strength. The average strength of the links showed the nonlinear dependence on the degree of the networks.
Improving Estimation of Betweenness Centrality for Scale-Free Graphs
Energy Technology Data Exchange (ETDEWEB)
Bromberger, Seth A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Klymko, Christine F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henderson, Keith A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearce, Roger [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-11-07
Betweenness centrality is a graph statistic used to nd vertices that are participants in a large number of shortest paths in a graph. This centrality measure is commonly used in path and network interdiction problems and its complete form requires the calculation of all-pairs shortest paths for each vertex. This leads to a time complexity of O(jV jjEj), which is impractical for large graphs. Estimation of betweenness centrality has focused on performing shortest-path calculations on a subset of randomly- selected vertices. This reduces the complexity of the centrality estimation to O(jSjjEj); jSj < jV j, which can be scaled appropriately based on the computing resources available. An estimation strategy that uses random selection of vertices for seed selection is fast and simple to implement, but may not provide optimal estimation of betweenness centrality when the number of samples is constrained. Our experimentation has identi ed a number of alternate seed-selection strategies that provide lower error than random selection in common scale-free graphs. These strategies are discussed and experimental results are presented.
Introduction to the theory of infinite systems. Theory and practices
Fedorov, Foma M.
2017-11-01
A review of the author's work is given, which formed the basis for a new theory of general infinite systems. The Gaussian elimination and Cramer's rule have been extended to infinite systems. A special particular solution is obtained, it is called a strictly particular solution. Necessary and sufficient conditions for existence of the nontrivial solutions of homogeneous systems are given.
Theory of multi-bunch feedback systems
International Nuclear Information System (INIS)
Kohaupt, R.D.
1991-06-01
In this article the theory of multibunch feedback systems is developed in a rigorous way including the fact that the elements of feedback systems are localized in the ring. The results of the theory which can be used for any strength of the systems are the base for the multibunch feedback systems for PETRA and HERA, already tested successfully in PETRA. (orig.)
Teschendorff, Andrew E.; Banerji, Christopher R. S.; Severini, Simone; Kuehn, Reimer; Sollich, Peter
2015-01-01
One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology. PMID:25919796
Network theory and its applications in economic systems
Huang, Xuqing
This dissertation covers the two major parts of my Ph.D. research: i) developing theoretical framework of complex networks; and ii) applying complex networks models to quantitatively analyze economics systems. In part I, we focus on developing theories of interdependent networks, which includes two chapters: 1) We develop a mathematical framework to study the percolation of interdependent networks under targeted-attack and find that when the highly connected nodes are protected and have lower probability to fail, in contrast to single scale-free (SF) networks where the percolation threshold pc = 0, coupled SF networks are significantly more vulnerable with pc significantly larger than zero. 2) We analytically demonstrates that clustering, which quantifies the propensity for two neighbors of the same vertex to also be neighbors of each other, significantly increases the vulnerability of the system. In part II, we apply the complex networks models to study economics systems, which also includes two chapters: 1) We study the US corporate governance network, in which nodes representing directors and links between two directors representing their service on common company boards, and propose a quantitative measure of information and influence transformation in the network. Thus we are able to identify the most influential directors in the network. 2) We propose a bipartite networks model to simulate the risk propagation process among commercial banks during financial crisis. With empirical bank's balance sheet data in 2007 as input to the model, we find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation during the financial crisis between 2008 and 2011. The results suggest that complex networks model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the
Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling.
Directory of Open Access Journals (Sweden)
Qingyun Wang
Full Text Available This paper investigates the dependence of synchronization transitions of bursting oscillations on the information transmission delay over scale-free neuronal networks with attractive and repulsive coupling. It is shown that for both types of coupling, the delay always plays a subtle role in either promoting or impairing synchronization. In particular, depending on the inherent oscillation period of individual neurons, regions of irregular and regular propagating excitatory fronts appear intermittently as the delay increases. These delay-induced synchronization transitions are manifested as well-expressed minima in the measure for spatiotemporal synchrony. For attractive coupling, the minima appear at every integer multiple of the average oscillation period, while for the repulsive coupling, they appear at every odd multiple of the half of the average oscillation period. The obtained results are robust to the variations of the dynamics of individual neurons, the system size, and the neuronal firing type. Hence, they can be used to characterize attractively or repulsively coupled scale-free neuronal networks with delays.
International Nuclear Information System (INIS)
Chen Xiaojie; Fu Feng; Wang Long
2008-01-01
We study the evolutionary Prisoner's dilemma game on scale-free networks, focusing on the influence of different initial distributions for cooperators and defectors on the evolution of cooperation. To address this issue, we consider three types of initial distributions for defectors: uniform distribution at random, occupying the most connected nodes, and occupying the lowest-degree nodes, respectively. It is shown that initial configurations for defectors can crucially influence the cooperation level and the evolution speed of cooperation. Interestingly, the situation where defectors initially occupy the lowest-degree vertices can exhibit the most robust cooperation, compared with two other distributions. That is, the cooperation level is least affected by the initial percentage of defectors. Moreover, in this situation, the whole system evolves fastest to the prevalent cooperation. Besides, we obtain the critical values of initial frequency of defectors above which the extinction of cooperators occurs for the respective initial distributions. Our results might be helpful in explaining the maintenance of high cooperation in scale-free networks
General Systems Theory and Instructional Design.
Salisbury, David F.
The use of general systems theory in the field of instructional systems design (ISD) is explored in this paper. Drawing on work by Young, the writings of 12 representative ISD writers and researchers were surveyed to determine the use of 60 general systems theory concepts by the individual authors. The average number of concepts used by these…
Unified kinetic theory in toroidal systems
International Nuclear Information System (INIS)
Hitchcock, D.A.; Hazeltine, R.D.
1980-12-01
The kinetic theory of toroidal systems has been characterized by two approaches: neoclassical theory which ignores instabilities and quasilinear theory which ignores collisions. In this paper we construct a kinetic theory for toroidal systems which includes both effects. This yields a pair of evolution equations; one for the spectrum and one for the distribution function. In addition, this theory yields a toroidal generalization of the usual collision operator which is shown to have many similar properties - conservation laws, H theorem - to the usual collision operator
Differential geometric methods in system theory.
Brockett, R. W.
1971-01-01
Discussion of certain problems in system theory which have been or might be solved using some basic concepts from differential geometry. The problems considered involve differential equations, controllability, optimal control, qualitative behavior, stochastic processes, and bilinear systems. The main goal is to extend the essentials of linear theory to some nonlinear classes of problems.
The kinetic theory of open systems
International Nuclear Information System (INIS)
Klimontovich, Yu.L.
2001-01-01
This paper begins with a survey of recently obtained results in the statistical theory of open systems, including quantum open systems. Then the definition of the thermal flux in the kinetic theory is considered, further the collision nature of the Landau damping. Finally the Lamb shift and Bethe's formula are analyzed. (orig.)
A computable type theory for control systems
P.J. Collins (Pieter); L. Guo; J. Baillieul
2009-01-01
htmlabstractIn this paper, we develop a theory of computable types suitable for the study of control systems. The theory uses type-two effectivity as the underlying computational model, but we quickly develop a type system which can be manipulated abstractly, but for which all allowable operations
Theories are knowledge organizing systems (KOS)
DEFF Research Database (Denmark)
Hjørland, Birger
2015-01-01
The notion “theory” is a neglected concept in the field of information science and knowledge organization (KO) as well as generally in philosophy and in many other fields, although there are exceptions from this general neglect (e.g., the so-called “theory theory” in cognitive psychology......-laden. The concept of knowledge organization system (KOS) is briefly introduced and discussed. A theory is a fundamental form of KOS and theories are the point of departure of any KOS. It is generally understood in KO that concepts are the units of KOS, but the theory-dependence of concepts brings theories...
Zhu, Zheng; Andresen, Juan Carlos; Janzen, Katharina; Katzgraber, Helmut G.
2013-03-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free graphs in a magnetic field. Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show, in agreement with analytical calculations, that the system exhibits a de Almeida-Thouless line. Furthermore, we study avalanches in the system at zero temperature to see if the system displays self-organized criticality. This would suggest that damage (avalanches) can spread across the whole system with nonzero probability, i.e., that Boolean decision problems on scale-free networks with competing interactions are fragile when not in thermal equilibrium.
Zhu, Zheng; Andresen, Juan Carlos; Moore, M. A.; Katzgraber, Helmut G.
2014-02-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free networks in an external bias (magnetic field). Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First, we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show that the system has a spin-glass phase in a field, i.e., exhibits a de Almeida-Thouless line. Furthermore, we study avalanche distributions when the system is driven by a field at zero temperature to test if the system displays self-organized criticality. Numerical results suggest that avalanches (damage) can spread across the whole system with nonzero probability when the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be fragile when not in thermal equilibrium.
Titchmarsh-Weyl theory for canonical systems
Directory of Open Access Journals (Sweden)
Keshav Raj Acharya
2014-11-01
Full Text Available The main purpose of this paper is to develop Titchmarsh- Weyl theory of canonical systems. To this end, we first observe the fact that Schrodinger and Jacobi equations can be written into canonical systems. We then discuss the theory of Weyl m-function for canonical systems and establish the relation between the Weyl m-functions of Schrodinger equations and that of canonical systems which involve Schrodinger equations.
Development of similarity theory for control systems
Myshlyaev, L. P.; Evtushenko, V. F.; Ivushkin, K. A.; Makarov, G. V.
2018-05-01
The area of effective application of the traditional similarity theory and the need necessity of its development for systems are discussed. The main statements underlying the similarity theory of control systems are given. The conditions for the similarity of control systems and the need for similarity control control are formulated. Methods and algorithms for estimating and similarity control of control systems and the results of research of control systems based on their similarity are presented. The similarity control of systems includes the current evaluation of the degree of similarity of control systems and the development of actions controlling similarity, and the corresponding targeted change in the state of any element of control systems.
Control Systems and Number Theory
Directory of Open Access Journals (Sweden)
Fuhuo Li
2012-01-01
and PID-controllers are applied successfully in the EV control by J.-Y. Cao and B.-G. Cao 2006 and Cao et al. 2007, which we may unify in our framework. Finally, we mention some similarities between control theory and zeta-functions.
Importance theory for lumped-parameter systems
International Nuclear Information System (INIS)
Cady, K.B.; Kenton, M.A.; Ward, J.C.; Piepho, M.G.
1981-01-01
A general sensitivity theory has been developed for nonlinear lumped parameter system simulations. The point of departure is general perturbation theory for nonlinear systems. Importance theory as developed here allows the calculation of the sensitivity of a response function to any physical or design parameter; importance of any equation or term or physical effect in the system model on the response function; variance of the response function caused by the variances and covariances of all physical parameters; and approximate effect on the response function of missing physical phenomena or incorrect parameters
Distribution system reliability evaluation using credibility theory
African Journals Online (AJOL)
Xufeng Xu, Joydeep Mitra
have found that credibility theory, which broadens the scope of fuzzy set theory, is an effective tool for representing fuzzy events, and have developed a theoretical .... Based on the status of switches, the distribution system can be divided into multiple SPSS, which are connected with tie switches. For example, SPSS.
Parquet theory of finite temperature boson systems
International Nuclear Information System (INIS)
He, H.W.
1992-01-01
In this dissertation, the author uses the parquet summation for the two-body vertex as the framework for a perturbation theory of finite-temperature homogeneous boson systems. The present formalism is a first step toward a full description of the thermodynamic behavior of a finite temperature boson system through parquet summation. The current approximation scheme focuses on a system below the Bose-Einstein condensation temperature and considers only the contribution from Bogoliubov excitations out of a boson condensate. Comparison with the finite temperature variational theory by Campbell et al. shows strong similarities between variational theory and the current theory. Numerical results from a 4 He system and a nuclear system are discussed
ORGANIZATIONAL THEORY, SYSTEMIC THINKING AND SYSTEM MANAGEMENT
Shahram Mirzaie Daryani; Samad Aali; Ahmad Asli-zadeh
2012-01-01
Organizational theory offers effective ways of thinking to researchers and practitioners who are interested in this field of study. This knowledge helps managers make organizational behavior more efficient through analyzing complex situations and developing effective tools to resolve them. In other words, it opens human’s mind to different aspects of life both inside and outside of the organization. Therefore, the value of organizational theory is in changing managers' thinking ways, thought ...
Applications of the Theory of Technical Systems
DEFF Research Database (Denmark)
Andreasen, Mogens Myrup; McAloone, Timothy Charles
2008-01-01
of Vladimir Hubka and a short historical sketch of the incidental nature of our group’s introduction to Vladimir Hubka, which led to life long cooperation and academic development. Results have been obtained in the areas of DFX, workbench-based design, mechatronics, product development, and multi......This paper uses the development and applications of Hubka’s Theory of Technical Systems (TTS) at DTU as an example of the power of the theory, the necessity of detailing and fitting the theory, and the role of a theory as a basis for research.At the same time the paper is a balance of the influence...
Degradable Systems: A Survey of Multistate System Theory.
1982-08-01
and Subtitle) S. TYPE OF REPORT & PERIOD COVERED C. O DEGRADABLE SYSTEMS: A SURVEY OF MULTISTATE TECHNICAL SYSTEM THEORY 6. PERFORMING ORG. REPORT...THIS PAGE(R7,en Date £nt.,.d) AEoS-T- 8- 9 2 0 Degradable Systems: A Survey of Multistate System Theory by 1 2Emad El-Neweihi and Frank Proschan
A novel evolving scale-free model with tunable attractiveness
International Nuclear Information System (INIS)
Xuan, Liu; Tian-Qi, Liu; Xing-Yuan, Li; Hao, Wang
2010-01-01
In this paper, a new evolving model with tunable attractiveness is presented. Based on the Barabasi–Albert (BA) model, we introduce the attractiveness of node which can change with node degree. Using the mean-field theory, we obtain the analytical expression of power-law degree distribution with the exponent γ in (3, ∞). The new model is more homogeneous and has a lower clustering coefficient and bigger average path length than the BA model. (general)
Neurosemantics, neurons and system theory.
Breidbach, Olaf
2007-08-01
Following the concept of internal representations, signal processing in a neuronal system has to be evaluated exclusively based on internal system characteristics. Thus, this approach omits the external observer as a control function for sensory integration. Instead, the configuration of the system and its computational performance are the effects of endogenous factors. Such self-referential operation is due to a strictly local computation in a network and, thereby, computations follow a set of rules that constitute the emergent behaviour of the system. These rules can be shown to correspond to a "logic" that is intrinsic to the system, an idea which provides the basis for neurosemantics.
Activity System Theory Approach to Healthcare Information System
Bai, Guohua
2004-01-01
Healthcare information system is a very complex system and has to be approached from systematic perspectives. This paper presents an Activity System Theory (ATS) approach by integrating system thinking and social psychology. First part of the paper, the activity system theory is presented, especially a recursive model of human activity system is introduced. A project ‘Integrated Mobile Information System for Diabetic Healthcare (IMIS)’ is then used to demonstrate a practical application of th...
MACCIA, ELIZABETH S.; AND OTHERS
AN ANNOTATED BIBLIOGRAPHY OF 20 ITEMS AND A DISCUSSION OF ITS SIGNIFICANCE WAS PRESENTED TO DESCRIBE CURRENT UTILIZATION OF SUBJECT THEORIES IN THE CONSTRUCTION OF AN EDUCATIONAL THEORY. ALSO, A THEORY MODEL WAS USED TO DEMONSTRATE CONSTRUCTION OF A SCIENTIFIC EDUCATIONAL THEORY. THE THEORY MODEL INCORPORATED SET THEORY (S), INFORMATION THEORY…
International Nuclear Information System (INIS)
Schwamb, M.
2006-01-01
An overview over present achievements and future challenges in the field of few-nucleon systems is presented. Special emphasis is laid on the construction of a unified approach to hadronic and electromagnetic reactions on few-nucleon systems, necessary for studying the borderline between quark-gluon and effective descriptions. (orig.) (orig.)
Educational Interpretations of General Systems Theory.
Hug, William E.; King, James E.
This chapter discusses General Systems Theory as it applies to education, classrooms, innovations, and instructional design. The principles of equifinality, open and closed systems, the individual as the key system, hierarchical structures, optimization, stability, cooperation, and competition are discussed, and their relationship to instructional…
Get with the System: General Systems Theory for Business Officials.
Graczyk, Sandra L.
1993-01-01
An introduction to general systems theory and an overview of vocabulary and concepts are presented to introduce school business officials to systems thinking and to foster its use as an analytical tool. The theory is then used to analyze a sample problem: planning changes to a district's administrative computer system. (eight references) (MLF)
General systems theory mathematical foundations
Mesarovic, Mihajlo D
1975-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Walking Across Wikipedia: A Scale-Free Network Model of Semantic Memory Retrieval
Directory of Open Access Journals (Sweden)
Graham William Thompson
2014-02-01
Full Text Available Semantic knowledge has been investigated using both online and offline methods. One common online method is category recall, in which members of a semantic category like animals are retrieved in a given period of time. The order, timing, and number of retrievals are used as assays of semantic memory processes. One common offline method is corpus analysis, in which the structure of semantic knowledge is extracted from texts using co-occurrence or encyclopedic methods. Online measures of semantic processing, as well as offline measures of semantic structure, have yielded data resembling inverse power law distributions. The aim of the present study is to investigate whether these patterns in data might be related. A semantic network model of animal knowledge is formulated on the basis of Wikipedia pages and their overlap in word probability distributions. The network is scale-free, in that node degree is related to node frequency as an inverse power law. A random walk over this network is shown to simulate a number of results from a category recall experiment, including power law-like distributions of inter-response intervals. Results are discussed in terms of theories of semantic structure and processing.
International Nuclear Information System (INIS)
Wu, An-Cai
2014-01-01
Recent empirical analyses of some realistic dynamical networks have demonstrated that their degree distributions are stable scale-free (SF), but the instantaneous well-connected hubs at one point of time can quickly become weakly connected. Motivated by these empirical results, we propose a simple toy dynamical agent-to-agent contact network model, in which each agent stays at one node of a static underlay network and the nearest neighbors swap their positions with each other. Although the degree distribution of the dynamical network model at any one time is equal to that in the static underlay network, the numbers and identities of each agent’s contacts will change over time. It is found that the dynamic interaction tends to suppress epidemic spreading in terms of larger epidemic threshold, smaller prevalence (the fraction of infected individuals) and smaller velocity of epidemic outbreak. Furthermore, the dynamic interaction results in the prevalence to undergo a phase transition at a finite threshold of the epidemic spread rate in the thermodynamic limit, which is in contradiction to the absence of an epidemic threshold in static SF networks. Some of these findings obtained from heterogeneous mean-field theory are in good agreement with numerical simulations. (paper)
Distributed computer systems theory and practice
Zedan, H S M
2014-01-01
Distributed Computer Systems: Theory and Practice is a collection of papers dealing with the design and implementation of operating systems, including distributed systems, such as the amoeba system, argus, Andrew, and grapevine. One paper discusses the concepts and notations for concurrent programming, particularly language notation used in computer programming, synchronization methods, and also compares three classes of languages. Another paper explains load balancing or load redistribution to improve system performance, namely, static balancing and adaptive load balancing. For program effici
Application of Chaos Theory to Engine Systems
Matsumoto, Kazuhiro; Diebner, Hans H.; Tsuda, Ichiro; Hosoi, Yukiharu
2008-01-01
We focus on the control issue for engine systems from the perspective of chaos theory, which is based on the fact that engine systems have a low-dimensional chaotic dynamics. Two approaches are discussed: controlling chaos and harnessing chaos, respectively. We apply Pyragas' chaos control method to an actual engine system. The experimental results show that the chaotic motion of an engine system may be stabilized to a periodic motion. Alternatively, harnessing chaos for engine systems is add...
The Theory of Random Laser Systems
International Nuclear Information System (INIS)
Xunya Jiang
2002-01-01
Studies of random laser systems are a new direction with promising potential applications and theoretical interest. The research is based on the theories of localization and laser physics. So far, the research shows that there are random lasing modes inside the systems which is quite different from the common laser systems. From the properties of the random lasing modes, they can understand the phenomena observed in the experiments, such as multi-peak and anisotropic spectrum, lasing mode number saturation, mode competition and dynamic processes, etc. To summarize, this dissertation has contributed the following in the study of random laser systems: (1) by comparing the Lamb theory with the Letokhov theory, the general formulas of the threshold length or gain of random laser systems were obtained; (2) they pointed out the vital weakness of previous time-independent methods in random laser research; (3) a new model which includes the FDTD method and the semi-classical laser theory. The solutions of this model provided an explanation of the experimental results of multi-peak and anisotropic emission spectra, predicted the saturation of lasing modes number and the length of localized lasing modes; (4) theoretical (Lamb theory) and numerical (FDTD and transfer-matrix calculation) studies of the origin of localized lasing modes in the random laser systems; and (5) proposal of using random lasing modes as a new path to study wave localization in random systems and prediction of the lasing threshold discontinuity at mobility edge
Spin glass behavior of the antiferromagnetic Heisenberg model on scale free network
International Nuclear Information System (INIS)
Surungan, Tasrief; Zen, Freddy P; Williams, Anthony G
2015-01-01
Randomness and frustration are considered to be the key ingredients for the existence of spin glass (SG) phase. In a canonical system, these ingredients are realized by the random mixture of ferromagnetic (FM) and antiferromagnetic (AF) couplings. The study by Bartolozzi et al. [Phys. Rev. B73, 224419 (2006)] who observed the presence of SG phase on the AF Ising model on scale free network (SFN) is stimulating. It is a new type of SG system where randomness and frustration are not caused by the presence of FM and AF couplings. To further elaborate this type of system, here we study Heisenberg model on AF SFN and search for the SG phase. The canonical SG Heisenberg model is not observed in d-dimensional regular lattices for (d ≤ 3). We can make an analogy for the connectivity density (m) of SFN with the dimensionality of the regular lattice. It should be plausible to find the critical value of m for the existence of SG behaviour, analogous to the lower critical dimension (d l ) for the canonical SG systems. Here we study system with m = 2, 3, 4 and 5. We used Replica Exchange algorithm of Monte Carlo Method and calculated the SG order parameter. We observed SG phase for each value of m and estimated its corersponding critical temperature. (paper)
The theory of hadronic systems
International Nuclear Information System (INIS)
Gibbs, W.R.
1995-01-01
This report briefly discusses progress on the following topics: isospin breaking in the pion-nucleon system; subthreshold amplitudes in the πN system; neutron-proton charge-exchange; transparency in pion production; energy dependence of pion DCX; direct capture of pions into deeply bound atomic states; knock out of secondary components in the nucleus; radii of neutron distributions in nuclei; the hadronic double scattering operator; pion scattering and charge exchange from polarized nuclei; pion absorption in nuclei; modification of nucleon structure in nuclei; and antiproton annihilation in nuclei
Algebraic methods in system theory
Brockett, R. W.; Willems, J. C.; Willsky, A. S.
1975-01-01
Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.
A novel classification system for aging theories
Directory of Open Access Journals (Sweden)
Lucas Siqueira Trindade
2013-03-01
Full Text Available Theories of lifespan evolution are a source of confusion amongst aging researchers. After a century of aging research the dispute over whether the aging process is active or passive persists and a comprehensive and universally accepted theoretical model remains elusive. Evolutionary aging theories primarily dispute whether the aging process is exclusively adapted to favor the kin or exclusively non-adapted to favor the individual. Interestingly, contradictory data and theories supporting both exclusively programmed and exclusively non-programmed theories continue to grow. However, this is a false dichotomy; natural selection favors traits resulting in efficient reproduction whether they benefit the individual or the kin. Thus, to understand the evolution of aging, first we must understand the environment-dependent balance between the advantages and disadvantages of extended lifespan in the process of spreading genes. As described by distinct theories, different niches and environmental conditions confer on extended lifespan a range of fitness values varying from highly beneficial to highly detrimental. Here, we considered the range of fitness values for extended lifespan and develop a fitness-based framework for categorizing existing theories. We show that all theories can be classified into four basic types: secondary (beneficial, maladaptive (neutral, assisted death (detrimental and senemorphic aging (varying between beneficial to detrimental. We anticipate that this classification system will assist with understanding and interpreting aging/death by providing a way of considering theories as members of one of these classes rather than consideration of their individual details.
Self-Organized Criticality in a Simple Neuron Model Based on Scale-Free Networks
International Nuclear Information System (INIS)
Lin Min; Wang Gang; Chen Tianlun
2006-01-01
A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays power-law behavior of avalanche sizes and generates long-range temporal correlation. More importantly, we find different dynamical behavior for nodes with different connectivity in the scale-free networks.
Solar system constraints on disformal gravity theories
International Nuclear Information System (INIS)
Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy
2015-01-01
Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology
On the kinetic theory of quantum systems
International Nuclear Information System (INIS)
Calkoen, C.J.
1986-01-01
The contents of this thesis which deals with transport phenomena of specific gases, plasmas and fluids, can be separated into two distinct parts. In the first part a statistical way is suggested to estimate the neutrino mass. Herefore use is made of the fact that massive neutrinos possess a non-zero volume viscosity in contrast with massless neutrinos. The second part deals with kinetic theory of strongly condensed quantum systems of which examples in nature are: liquid Helium, heavy nuclei, electrons in a metal and the interior of stars. In degenerate systems fermions in general interact strongly so that ordinary kinetic theory is not directly applicable. For such cases Landau-Fermi-liquid theory, in which the strongly interacting particles are replaced by much weaker interacting quasiparticles, proved to be very useful. A method is developed in this theory to calculate transport coefficients. Applications of this method on liquid 3 Helium yield surprisingly good agreement with experimental results for thermal conductivities. (Auth.)
Acoustic array systems theory, implementation, and application
Bai, Mingsian R; Benesty, Jacob
2013-01-01
Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applic
Optimization theory for large systems
Lasdon, Leon S
2002-01-01
Important text examines most significant algorithms for optimizing large systems and clarifying relations between optimization procedures. Much data appear as charts and graphs and will be highly valuable to readers in selecting a method and estimating computer time and cost in problem-solving. Initial chapter on linear and nonlinear programming presents all necessary background for subjects covered in rest of book. Second chapter illustrates how large-scale mathematical programs arise from real-world problems. Appendixes. List of Symbols.
Systems theory of interconnected port contact systems
Eberard, D.; Maschke, B.M.; Schaft, A.J. van der
2005-01-01
Port-based network modeling of a large class of complex physical systems leads to dynamical systems known as port-Hamiltonian systems. The key ingredient of any port-Hamiltonian system is a power-conserving interconnection structure (mathematically formalized by the geometric notion of a Dirac
Telecommunications system reliability engineering theory and practice
Ayers, Mark L
2012-01-01
"Increasing system complexity require new, more sophisticated tools for system modeling and metric calculation. Bringing the field up to date, this book provides telecommunications engineers with practical tools for analyzing, calculating, and reporting availability, reliability, and maintainability metrics. It gives the background in system reliability theory and covers in-depth applications in fiber optic networks, microwave networks, satellite networks, power systems, and facilities management. Computer programming tools for simulating the approaches presented, using the Matlab software suite, are also provided"
McAteer, R. T. James
2015-08-01
My soul is spiraling in frozen fractals all around, And one thought crystallizes like an icy blast, I'm never going back, the past is in the past.Elsa, from Disney’s Frozen, characterizes two fundamental aspects of scale-free processes in Nature: fractals are everywhere in space; fractals can be used to probe changes in time. Self-Organized Criticality provides a powerful set of tools to study scale-free processes. It connects spatial fractals (more generically, multifractals) to temporal evolution. The drawback is that this usually results in scale-free, unit-less, indices, which can be difficult to connect to everyday physics. Here, I show a novel method that connects one of the most powerful SOC tools - the wavelet transform modulus maxima approach to calculating multifractality - to one of the most powerful equations in all of physics - Ampere’s law. In doing so I show how the multifractal spectra can be expressed in terms of current density, and how current density can then be used for the prediction of future energy release from such a system.Our physical understanding of the solar magnetic field structure, and hence our ability to predict solar activity, is limited by the type of data currently available. I show that the multifractal spectrum provides a powerful physical connection between the details of photospheric magnetic gradients of current data and the coronal magnetic structure. By decomposing Ampere’s law and comparing it to the wavelet transform modulus maximum method, I show how the scale-free Holder exponent provides a direct measure of current density across all relevant sizes. The prevalence of this current density across various scales is connected to its stability in time, and hence to the ability of the magnetic structure to store and then release energy. Hence (spatial) multifractals inform us of (future) solar activity.Finally I discuss how such an approach can be used in any study of scale-free processes, and highlight the necessary
Dynamic Systems Theory and Team Sport Coaching
Gréhaigne, Jean-Francis; Godbout, Paul
2014-01-01
This article examines the theory of dynamic systems and its use in the domains of the study and coaching of team sports. The two teams involved in a match are looked at as two interacting systems in movement, where opposition is paramount. A key element for the observation of game play is the notion of configuration of play and its ever-changing…
Correlation control theory of chaotic laser systems
International Nuclear Information System (INIS)
Li Fuli.
1986-04-01
A novel control theory of chaotic systems is studied. The correlation functions are calculated and used as feedback signals of the chaotic lasers. Computer experiments have shown that in this way the chaotic systems can be controlled to have time-independent output when the external control parameters are in chaotic domain. (author)
IDEA: A Unifying Theory for Evaluation Systems
DEFF Research Database (Denmark)
Bella, Giampaolo; Giustolisi, Rosario
2017-01-01
Secure systems for voting, exams, auctions and conference paper management are theorised to address the same problem, that of secure evaluations. In support of such a unifying theory comes a model for Secure Evaluation Systems (SES), which offers innovative common grounds to understand all four...
Rube Goldberg Salad System: Teaching Systems Theory in Communication
Linabary, Jasmine R.; Long, Ziyu; Mouton, Ashton; Rao, Ranjani L.; Buzzanell, Patrice M.
2016-01-01
Systems theory has been a staple in organizational communication textbooks since the field's inception (Miller, 2015; Poole, 2014). Nevertheless, the authors' classroom experiences have revealed that systems theory may not seem applicable to students due to its complicated nature. While examples and cases can help students make sense of the…
Dynamical Systems Theory: Application to Pedagogy
Abraham, Jane L.
Theories of learning affect how cognition is viewed, and this subsequently leads to the style of pedagogical practice that is used in education. Traditionally, educators have relied on a variety of theories on which to base pedagogy. Behavioral learning theories influenced the teaching/learning process for over 50 years. In the 1960s, the information processing approach brought the mind back into the learning process. The current emphasis on constructivism integrates the views of Piaget, Vygotsky, and cognitive psychology. Additionally, recent scientific advances have allowed researchers to shift attention to biological processes in cognition. The problem is that these theories do not provide an integrated approach to understanding principles responsible for differences among students in cognitive development and learning ability. Dynamical systems theory offers a unifying theoretical framework to explain the wider context in which learning takes place and the processes involved in individual learning. This paper describes how principles of Dynamic Systems Theory can be applied to cognitive processes of students, the classroom community, motivation to learn, and the teaching/learning dynamic giving educational psychologists a framework for research and pedagogy.
Using institutional theory in enterprise systems research
DEFF Research Database (Denmark)
Svejvig, Per
2013-01-01
This paper sets out to examine the use of institutional theory as a conceptually rich lens to study social issues of enterprise systems (ES) research. More precisely, the purpose is to categorize current ES research using institutional theory to develop a conceptual model that advances ES research...... model that advocates multi-level and multi-theory approaches and applies newer institutional aspects such as institutional logics. The findings show that institutional theory in ES research is in its infancy and adopts mainly traditional institutional aspects like isomorphism, with the organization....... Key institutional features are presented such as isomorphism, rationalized myths, and bridging macro and micro structures, and institutional logics and their implications for ES research are discussed. Through a literature review of 181 articles, of which 18 papers are selected, we build a conceptual...
Relativistic Theory of Few Body Systems
Energy Technology Data Exchange (ETDEWEB)
Franz Gross
2002-11-01
Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.
Neurodynamic system theory: scope and limits.
Erdi, P
1993-06-01
This paper proposes that neurodynamic system theory may be used to connect structural and functional aspects of neural organization. The paper claims that generalized causal dynamic models are proper tools for describing the self-organizing mechanism of the nervous system. In particular, it is pointed out that ontogeny, development, normal performance, learning, and plasticity, can be treated by coherent concepts and formalism. Taking into account the self-referential character of the brain, autopoiesis, endophysics and hermeneutics are offered as elements of a poststructuralist brain (-mind-computer) theory.
Nonlinear system theory: another look at dependence.
Wu, Wei Biao
2005-10-04
Based on the nonlinear system theory, we introduce previously undescribed dependence measures for stationary causal processes. Our physical and predictive dependence measures quantify the degree of dependence of outputs on inputs in physical systems. The proposed dependence measures provide a natural framework for a limit theory for stationary processes. In particular, under conditions with quite simple forms, we present limit theorems for partial sums, empirical processes, and kernel density estimates. The conditions are mild and easily verifiable because they are directly related to the data-generating mechanisms.
Application of grey system theory in telecare.
Huang, Jui-Chen
2011-05-01
As a superiority to conventional statistical models, grey models require only a limited amount of data to estimate the behaviour of unknown systems. Grey system theory can be used in the effective factor assessment, and used in large samples where data are not available or uncertain whether the data was representative. Therefore, the purpose of this study was to adopt grey system theory to discuss older adult users' opinions on the telecare and its effect on their quality of life. This study surveyed the older adult users of Taiwan as subjects. User perception of the telecare services was collected via face-to-face interview. The grey system theory was used to examine the model. The results showed that the overall living quality has the greatest effect on the perceived effects of the telecare on their quality of life, followed by the acquisition of information, accessibility of medical care services, and safety. This finding may serve as a reference to future studies and it also shows that the grey system theory is a feasible analysis method. Copyright © 2011 Elsevier Ltd. All rights reserved.
Relativistic quantum theory of composite systems
International Nuclear Information System (INIS)
Sogami, I.
1978-01-01
A relativistic quantum theory free from the difficulties of tachyons and ghosts is formulated to describe the scattering processes between composite systems of spinless quarks. To evade the complication brewed by introducing gluon fields or strings, valence quarks are effectively assumed to be in the relative motion of harmonic oscillation correlating with the motion of the composite system as a whole. A quark-antiquark system is represented by a bilocal field describing a sequence of mesons and every meson is identified with the composite system in a definite eigenstate of relative motion. The quantization is performed in the interaction picture, so that the microcausal condition is satisfied by local fields which result from the decomposition of bilocal fields. Imposing a weakened macrocausal condition on the whole motion of the extended system, a causal bilocal propagator is defined and a consistent time ordering among bilocal fields is defined. The invariant S-matrix is obtained and the graphical method for the calculation of its elements is developed in parallel with the conventional local field theory. For the (bilocal field) 3 interaction any malignant divergence does not appear excepting those in the renormalizable local field theory. The theory provides one promising and comprehensive phenomenology of hadrons which is suitable especially to describe the hard structure of hadrons. (author)
Topological theory of dynamical systems recent advances
Aoki, N
1994-01-01
This monograph aims to provide an advanced account of some aspects of dynamical systems in the framework of general topology, and is intended for use by interested graduate students and working mathematicians. Although some of the topics discussed are relatively new, others are not: this book is not a collection of research papers, but a textbook to present recent developments of the theory that could be the foundations for future developments. This book contains a new theory developed by the authors to deal with problems occurring in diffentiable dynamics that are within the scope of general topology. To follow it, the book provides an adequate foundation for topological theory of dynamical systems, and contains tools which are sufficiently powerful throughout the book. Graduate students (and some undergraduates) with sufficient knowledge of basic general topology, basic topological dynamics, and basic algebraic topology will find little difficulty in reading this book.
Quantum field theory and multiparticle systems
International Nuclear Information System (INIS)
Trlifaj, M.
1981-01-01
The use of quantum field theory methods for the investigation of the physical characteristics of the MANY-BODY SYSTEMS is discussed. Mainly discussed is the method of second quantization and the method of the Green functions. Briefly discussed is the method of calculating the Green functions at finite temperatures. (Z.J.)
General Systems Theory and Counterplan Competition.
Madsen, Arnie
1989-01-01
Discusses the trend in academic debate on policy questions toward a wide acceptance of counterplans, encouraging combinations of proposals which appear at face value able to coexist but upon deeper analysis are incompatible. Argues in opposition to this trend by applying concepts from general systems theory to competition. (KEH)
A Review of Group Systems Theory
Connors, Joanie V.; Caple, Richard B.
2005-01-01
The ability to see interpersonal and group processes beyond the individual level is an essential skill for group therapists (Crouch, Bloch & Wanlass, 1994; Dies, 1994; Fuhriman & Burlingame, 1994). In addition to interpersonal therapy models (e.g., Sullivan and Yalom), there are a number of systems theory models that offer a broad array of…
Pathways, Networks, and Systems: Theory and Experiments
Energy Technology Data Exchange (ETDEWEB)
Joseph H. Nadeau; John D. Lambris
2004-10-30
The international conference provided a unique opportunity for theoreticians and experimenters to exchange ideas, strategies, problems, challenges, language and opportunities in both formal and informal settings. This dialog is an important step towards developing a deep and effective integration of theory and experiments in studies of systems biology in humans and model organisms.
Theory and Simulation of Multicomponent Osmotic Systems.
Karunaweera, Sadish; Gee, Moon Bae; Weerasinghe, Samantha; Smith, Paul E
2012-05-28
Most cellular processes occur in systems containing a variety of components many of which are open to material exchange. However, computer simulations of biological systems are almost exclusively performed in systems closed to material exchange. In principle, the behavior of biomolecules in open and closed systems will be different. Here, we provide a rigorous framework for the analysis of experimental and simulation data concerning open and closed multicomponent systems using the Kirkwood-Buff (KB) theory of solutions. The results are illustrated using computer simulations for various concentrations of the solutes Gly, Gly(2) and Gly(3) in both open and closed systems, and in the absence or presence of NaCl as a cosolvent. In addition, KB theory is used to help rationalize the aggregation properties of the solutes. Here one observes that the picture of solute association described by the KB integrals, which are directly related to the solution thermodynamics, and that provided by more physical clustering approaches are different. It is argued that the combination of KB theory and simulation data provides a simple and powerful tool for the analysis of complex multicomponent open and closed systems.
ŽAMPA’S SYSTEMS THEORY: A COMPREHENSIVE THEORY OF MEASUREMENT IN DYNAMIC SYSTEMS
Directory of Open Access Journals (Sweden)
Renata Rychtáriková
2018-04-01
Full Text Available The article outlines in memoriam Prof. Pavel Žampa’s concepts of system theory which enable us to devise a measurement in dynamic systems independently of the particular system behaviour. From the point of view of Žampa’s theory, terms like system time, system attributes, system link, system element, input, output, sub-systems, and state variables are defined. In Conclusions, Žampa’s theory is discussed together with another mathematical approaches of qualitative dynamics known since the 19th century. In Appendices, we present applications of Žampa’s technical approach to measurement of complex dynamical (chemical and biological systems at the Institute of Complex Systems, University of South Bohemia in České Budějovice.
Propositional systems in local field theories
International Nuclear Information System (INIS)
Banai, M.
1980-07-01
The authors investigate propositional systems for local field theories, which reflect intrinsically the uncertainties of measurements made on the physical system, and satisfy the isotony and local commutativity postulates of Haag and Kastler. The spacetime covariance can be implemented in natural way in these propositional systems. New techniques are introduced to obtain these propositional systems: the lattice-valued logics. The decomposition of the complete orthomodular lattice-valued logics shows that these logics are more general than the usual two-valued ones and that in these logics there is enough structure to characterize the classical and quantum, non relativistic and relativistic local field theories in a natural way. The Hilbert modules give the natural inner product ''spaces'' (modules) for the realization of the lattice-valued logics. (author)
A theory of desynchronisable closed loop system
Directory of Open Access Journals (Sweden)
Harsh Beohar
2010-10-01
Full Text Available The task of implementing a supervisory controller is non-trivial, even though different theories exist that allow automatic synthesis of these controllers in the form of automata. One of the reasons for this discord is due to the asynchronous interaction between a plant and its controller in implementations, whereas the existing supervisory control theories assume synchronous interaction. As a consequence the implementation suffer from the so-called inexact synchronisation problem. In this paper we address the issue of inexact synchronisation in a process algebraic setting, by solving a more general problem of refinement. We construct an asynchronous closed loop system by introducing a communication medium in a given synchronous closed loop system. Our goal is to find sufficient conditions under which a synchronous closed loop system is branching bisimilar to its corresponding asynchronous closed loop system.
Efficient routing on scale-free networks based on local information
International Nuclear Information System (INIS)
Yin Chuanyang; Wang Binghong; Wang Wenxu; Zhou Tao; Yang Huijie
2006-01-01
In this Letter, we propose a new routing strategy with a single tunable parameter α only based on local information of network topology. The probability that a given node i with degree k i receives packets from its neighbors is proportional to k i α . In order to maximize the packets handling capacity of underlying structure that can be measured by the critical point of continuous phase transition from free flow to congestion, the optimal value of α is sought out. Through investigating the distributions of queue length on each node in free state, we give an explanation why the delivering capacity of the network can be enhanced by choosing the optimal α. Furthermore, dynamic properties right after the critical point are also studied. Interestingly, it is found that although the system enters the congestion state, it still possesses partial delivering capability which does not depend on α. This phenomenon suggests that the capacity of the scale-free network can be enhanced by increasing the forwarding ability of small important nodes which bear severe congestion
A local adaptive algorithm for emerging scale-free hierarchical networks
International Nuclear Information System (INIS)
Gomez Portillo, I J; Gleiser, P M
2010-01-01
In this work we study a growing network model with chaotic dynamical units that evolves using a local adaptive rewiring algorithm. Using numerical simulations we show that the model allows for the emergence of hierarchical networks. First, we show that the networks that emerge with the algorithm present a wide degree distribution that can be fitted by a power law function, and thus are scale-free networks. Using the LaNet-vi visualization tool we present a graphical representation that reveals a central core formed only by hubs, and also show the presence of a preferential attachment mechanism. In order to present a quantitative analysis of the hierarchical structure we analyze the clustering coefficient. In particular, we show that as the network grows the clustering becomes independent of system size, and also presents a power law decay as a function of the degree. Finally, we compare our results with a similar version of the model that has continuous non-linear phase oscillators as dynamical units. The results show that local interactions play a fundamental role in the emergence of hierarchical networks.
Fractional parentage analysis and a scale-free reproductive network of brown trout.
Koyano, Hitoshi; Serbezov, Dimitar; Kishino, Hirohisa; Schweder, Tore
2013-11-07
In this study, we developed a method of fractional parentage analysis using microsatellite markers. We propose a method for calculating parentage probability, which considers missing data and genotyping errors due to null alleles and other causes, by regarding observed alleles as realizations of random variables which take values in the set of alleles at the locus and developing a method for simultaneously estimating the true and null allele frequencies of all alleles at each locus. We then applied our proposed method to a large sample collected from a wild population of brown trout (Salmo trutta). On analyzing the data using our method, we found that the reproductive success of brown trout obeyed a power law, indicating that when the parent-offspring relationship is regarded as a link, the reproductive system of brown trout is a scale-free network. Characteristics of the reproductive network of brown trout include individuals with large bodies as hubs in the network and different power exponents of degree distributions between males and females. © 2013 Elsevier Ltd. All rights reserved.
Cascading Dynamics of Heterogenous Scale-Free Networks with Recovery Mechanism
Directory of Open Access Journals (Sweden)
Shudong Li
2013-01-01
Full Text Available In network security, how to use efficient response methods against cascading failures of complex networks is very important. In this paper, concerned with the highest-load attack (HL and random attack (RA on one edge, we define five kinds of weighting strategies to assign the external resources for recovering the edges from cascading failures in heterogeneous scale-free (SF networks. The influence of external resources, the tolerance parameter, and the different weighting strategies on SF networks against cascading failures is investigated carefully. We find that, under HL attack, the fourth kind of weighting method can more effectively improve the integral robustness of SF networks, simultaneously control the spreading velocity, and control the outburst of cascading failures in SF networks than other methods. Moreover, the third method is optimal if we only knew the local structure of SF networks and the uniform assignment is the worst. The simulations of the real-world autonomous system in, Internet have also supported our findings. The results are useful for using efficient response strategy against the emergent accidents and controlling the cascading failures in the real-world networks.
Holographic representation of space-variant systems: system theory.
Marks Ii, R J; Krile, T F
1976-09-01
System theory for holographic representation of linear space-variant systems is derived. The utility of the resulting piecewise isoplanatic approximation (PIA) is illustrated by example application to the invariant system, ideal magnifier, and Fourier transformer. A method previously employed to holographically represent a space-variant system, the discrete approximation, is shown to be a special case of the PIA.
Emergence of fractal scale-free networks from stochastic evolution on the Cayley tree
Energy Technology Data Exchange (ETDEWEB)
Chełminiak, Przemysław, E-mail: geronimo@amu.edu.pl
2013-11-29
An unexpected recognition of fractal topology in some real-world scale-free networks has evoked again an interest in the mechanisms stimulating their evolution. To explain this phenomenon a few models of a deterministic construction as well as a probabilistic growth controlled by a tunable parameter have been proposed so far. A quite different approach based on the fully stochastic evolution of the fractal scale-free networks presented in this Letter counterpoises these former ideas. It is argued that the diffusive evolution of the network on the Cayley tree shapes its fractality, self-similarity and the branching number criticality without any control parameter. The last attribute of the scale-free network is an intrinsic property of the skeleton, a special type of spanning tree which determines its fractality.
Convergence speed of consensus problems over undirected scale-free networks
International Nuclear Information System (INIS)
Sun Wei; Dou Li-Hua
2010-01-01
Scale-free networks and consensus behaviour among multiple agents have both attracted much attention. To investigate the consensus speed over scale-free networks is the major topic of the present work. A novel method is developed to construct scale-free networks due to their remarkable power-law degree distributions, while preserving the diversity of network topologies. The time cost or iterations for networks to reach a certain level of consensus is discussed, considering the influence from power-law parameters. They are both demonstrated to be reversed power-law functions of the algebraic connectivity, which is viewed as a measurement on convergence speed of the consensus behaviour. The attempts of tuning power-law parameters may speed up the consensus procedure, but it could also make the network less robust over time delay at the same time. Large scale of simulations are supportive to the conclusions. (general)
Different behaviors of epidemic spreading in scale-free networks with identical degree sequence
Energy Technology Data Exchange (ETDEWEB)
Chu Xiangwei; Guan Jihong [School of Electronics and Information, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Zhang Zhongzhi; Zhou Shuigeng [School of Computer Science, Fudan University, Shanghai 200433 (China); Li Mo, E-mail: zhangzz@fudan.edu.c, E-mail: jhguan@tongj.edu.c, E-mail: sgzhou@fudan.edu.c [Software School, Fudan University, Shanghai 200433 (China)
2010-02-12
Recently, the study of dynamical behaviors of the susceptible-infected (SI) disease model in complex networks, especially in Barabasi-Albert (BA) scale-free networks, has attracted much attention. Although some interesting phenomena have been observed, the formative reasons for those particular dynamical behaviors are still not well understood, despite the speculation that topological properties (for example the degree distribution) have a strong impact on epidemic spreading. In this paper, we study the evolution behaviors of epidemic spreading on a class of scale-free networks sharing identical degree sequence, and observe significantly different evolution behaviors in the whole family of networks. We show that the power-law degree distribution does not suffice to characterize the dynamical behaviors of disease diffusion on scale-free networks.
Different behaviors of epidemic spreading in scale-free networks with identical degree sequence
International Nuclear Information System (INIS)
Chu Xiangwei; Guan Jihong; Zhang Zhongzhi; Zhou Shuigeng; Li Mo
2010-01-01
Recently, the study of dynamical behaviors of the susceptible-infected (SI) disease model in complex networks, especially in Barabasi-Albert (BA) scale-free networks, has attracted much attention. Although some interesting phenomena have been observed, the formative reasons for those particular dynamical behaviors are still not well understood, despite the speculation that topological properties (for example the degree distribution) have a strong impact on epidemic spreading. In this paper, we study the evolution behaviors of epidemic spreading on a class of scale-free networks sharing identical degree sequence, and observe significantly different evolution behaviors in the whole family of networks. We show that the power-law degree distribution does not suffice to characterize the dynamical behaviors of disease diffusion on scale-free networks.
The Global Positioning System: Theory and operation
Tucker, Lester Plunkett
Scope and method of study. The purpose of this study is to document the theory, development, and training needs of the United States Global Positioning System for the United States Air Force. This subject area had very little information and to assess the United States Air Force training needs required an investigation into existing training accomplished on the Global Positioning System. The United States Air Force has only one place to obtain the data at Headquarters Air Education and Training Command. Findings and conclusion. The United States Air Force, at the time of this study, does not have a theory and operations course dealing with the newest technology advancement in world navigation. Although this new technology is being provided on aircraft in the form of new navigation hardware, no official course of study is provided by the United States Air Force to it's pilots and navigators dealing with theory and operation. Based on the latest reports dealing with the Global Positioning System, a course on the Global Positioning System was developed in the Instructional Systems Design format to provide background information and understanding of this new technology. Readers of this study must be aware that the information contained in this study is very dynamic. Technology is advancing so fast in this area that it might make this information obsolete in a short amount of time.
Symmetric linear systems - An application of algebraic systems theory
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
Effect of trap position on the efficiency of trapping in treelike scale-free networks
International Nuclear Information System (INIS)
Zhang Zhongzhi; Lin Yuan; Ma Youjun
2011-01-01
The conventional wisdom is that the role and impact of nodes on dynamical processes in scale-free networks are not homogenous, because of the presence of highly connected nodes at the tail of their power-law degree distribution. In this paper, we explore the influence of different nodes as traps on the trapping efficiency of the trapping problem taking place on scale-free networks. To this end, we study in detail the trapping problem in two families of deterministically growing scale-free networks with treelike structure: one family is non-fractal, the other is fractal. In the first part of this work, we attack a special case of random walks on the two network families with a perfect trap located at a hub, i.e. node with the highest degree. The second study addresses the case with trap distributed uniformly over all nodes in the networks. For these two cases, we compute analytically the mean trapping time (MTT), a quantitative indicator characterizing the trapping efficiency of the trapping process. We show that in the non-fractal scale-free networks the MTT for both cases follows different scalings with the network order (number of network nodes), implying that trap's position has a significant effect on the trapping efficiency. In contrast, it is presented that for both cases in the fractal scale-free networks, the two leading scalings exhibit the same dependence on the network order, suggesting that the location of trap has no essential impact on the trapping efficiency. We also show that for both cases of the trapping problem, the trapping efficiency is more efficient in the non-fractal scale-free networks than in their fractal counterparts.
Datta, D P
2003-01-01
A new class of finitely differentiable scale free solutions to the simplest class of ordinary differential equations is presented. Consequently, the real number set gets replaced by an extended physical set, each element of which is endowed with an equivalence class of infinitesimally separated neighbours in the form of random fluctuations. We show how a sense of time and evolution is intrinsically defined by the infinite continued fraction of the golden mean irrational number (Radical radicand 5 -1)/2, which plays a key role in this extended SL(2,R) formalism of calculus analogous to El Naschie's theory of E sup ( supinfinity sup ) spacetime manifold. Time may thereby undergo random inversions generating well defined random scales, thus allowing a dynamical system to evolve self similarly over the set of multiple scales. The late time stochastic fluctuations of a dynamical system enjoys the generic 1/f spectrum. A universal form of the related probability density is also derived. We prove that the golden mea...
International Nuclear Information System (INIS)
Datta, Dhurjati Prasad
2003-01-01
A new class of finitely differentiable scale free solutions to the simplest class of ordinary differential equations is presented. Consequently, the real number set gets replaced by an extended physical set, each element of which is endowed with an equivalence class of infinitesimally separated neighbours in the form of random fluctuations. We show how a sense of time and evolution is intrinsically defined by the infinite continued fraction of the golden mean irrational number (Radical radicand 5 -1)/2, which plays a key role in this extended SL(2,R) formalism of calculus analogous to El Naschie's theory of E (∞) spacetime manifold. Time may thereby undergo random inversions generating well defined random scales, thus allowing a dynamical system to evolve self similarly over the set of multiple scales. The late time stochastic fluctuations of a dynamical system enjoys the generic 1/f spectrum. A universal form of the related probability density is also derived. We prove that the golden mean number is intrinsically random, letting all measurements in the physical universe fundamentally uncertain. The present analysis offers an explanation of the universal occurrence of the golden mean in diverse natural and biological processes as well as the mass spectrum of high energy particle physics
A scale-free structure prior for graphical models with applications in functional genomics.
Directory of Open Access Journals (Sweden)
Paul Sheridan
Full Text Available The problem of reconstructing large-scale, gene regulatory networks from gene expression data has garnered considerable attention in bioinformatics over the past decade with the graphical modeling paradigm having emerged as a popular framework for inference. Analysis in a full Bayesian setting is contingent upon the assignment of a so-called structure prior-a probability distribution on networks, encoding a priori biological knowledge either in the form of supplemental data or high-level topological features. A key topological consideration is that a wide range of cellular networks are approximately scale-free, meaning that the fraction, , of nodes in a network with degree is roughly described by a power-law with exponent between and . The standard practice, however, is to utilize a random structure prior, which favors networks with binomially distributed degree distributions. In this paper, we introduce a scale-free structure prior for graphical models based on the formula for the probability of a network under a simple scale-free network model. Unlike the random structure prior, its scale-free counterpart requires a node labeling as a parameter. In order to use this prior for large-scale network inference, we design a novel Metropolis-Hastings sampler for graphical models that includes a node labeling as a state space variable. In a simulation study, we demonstrate that the scale-free structure prior outperforms the random structure prior at recovering scale-free networks while at the same time retains the ability to recover random networks. We then estimate a gene association network from gene expression data taken from a breast cancer tumor study, showing that scale-free structure prior recovers hubs, including the previously unknown hub SLC39A6, which is a zinc transporter that has been implicated with the spread of breast cancer to the lymph nodes. Our analysis of the breast cancer expression data underscores the value of the scale-free
Do citation systems represent theories of truth?
Directory of Open Access Journals (Sweden)
Betsy Van der Veer Martens
2001-01-01
Full Text Available This article suggests that the citation can be viewed not only as a "concept symbol" but also as a "boundary object". The scientific, legal, and patent citation systems in America are examined at the micro, meso, and macro levels in order to understand how they function as commodified theories of truth in contemporary knowledge representation. This approach also offers a meta-theoretical overview of existing citation research efforts in science, law, and technology that may be of interdisciplinary interest.
Information theory of open fragmenting systems
International Nuclear Information System (INIS)
Gulminelli, F.; Juillet, O.; Chomaz, Ph.; Ison, M. J.; Dorso, C. O.
2007-01-01
An information theory description of finite systems explicitly evolving in time is presented. We impose a MaxEnt variational principle on the Shannon entropy at a given time while the constraints are set at a former time. The resulting density matrix contains explicit time odd components in the form of collective flows. As a specific application we consider the dynamics of the expansion in connection with heavy ion experiments. Lattice gas and classical molecular dynamics simulations are shown
System Theory Aspects of Multi-Body Dynamics.
1978-08-18
systems are described from a system theory point of view. Various system theory concepts and research topics which have applicability to this class of...systems are identified and briefly described. The subject of multi-body dynamics is presented in a vector space setting and is related to system theory concepts. (Author)
Statistical evaluation of waveform collapse reveals scale-free properties of neuronal avalanches
Directory of Open Access Journals (Sweden)
Aleena eShaukat
2016-04-01
Full Text Available Neural avalanches are a prominent form of brain activity characterized by network-wide bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent work suggests that avalanches of different durations can be rescaled and thus collapsed together. This collapse mirrors work in statistical physics where it is proposed to form a signature of systems evolving in a critical state. However, no rigorous statistical test has been proposed to examine the degree to which neuronal avalanches collapse together. Here, we describe a statistical test based on functional data analysis, where raw avalanches are first smoothed with a Fourier basis, then rescaled using a time-warping function. Finally, an F ratio test combined with a bootstrap permutation is employed to determine if avalanches collapse together in a statistically reliable fashion. To illustrate this approach, we recorded avalanches from cortical cultures on multielectrode arrays as in previous work. Analyses show that avalanches of various durations can be collapsed together in a statistically robust fashion. However, a principal components analysis revealed that the offset of avalanches resulted in marked variance in the time-warping function, thus arguing for limitations to the strict fractal nature of avalanche dynamics. We compared these results with those obtained from cultures treated with an AMPA/NMDA receptor antagonist (APV/DNQX, which yield a power-law of avalanche durations with a slope greater than 3/2. When collapsed together, these avalanches showed marked misalignments both at onset and offset time-points. In sum, the proposed statistical evaluation suggests the presence of scale-free avalanche waveforms and constitutes an avenue for examining critical dynamics in neuronal systems.
Thermospheric dynamics - A system theory approach
Codrescu, M.; Forbes, J. M.; Roble, R. G.
1990-01-01
A system theory approach to thermospheric modeling is developed, based upon a linearization method which is capable of preserving nonlinear features of a dynamical system. The method is tested using a large, nonlinear, time-varying system, namely the thermospheric general circulation model (TGCM) of the National Center for Atmospheric Research. In the linearized version an equivalent system, defined for one of the desired TGCM output variables, is characterized by a set of response functions that is constructed from corresponding quasi-steady state and unit sample response functions. The linearized version of the system runs on a personal computer and produces an approximation of the desired TGCM output field height profile at a given geographic location.
Morphodynamics: Ergodic theory of complex systems
International Nuclear Information System (INIS)
Fivaz, R.
1993-01-01
Morphodynamics is a general theory of stationary complex systems, such as living systems, or mental and social systems; it is based on the thermodynamics of physical systems and built on the same lines. By means of the ergodic hypothesis, thermodynamics is known to connect the particle dynamics to the emergence of order parameters in the equations of state. In the same way, morphodynamics connects order parameters to the emergence of higher level variables; through recurrent applications of the ergodic hypothesis, a hierarchy of equations of state is established which describes a series of successive levels of organization. The equations support a cognitivist interpretation that leads to general principles of evolution; the principles determine the spontaneous and irreversible complexification of systems living in their natural environment. 19 refs
Parameters affecting the resilience of scale-free networks to random failures.
Energy Technology Data Exchange (ETDEWEB)
Link, Hamilton E.; LaViolette, Randall A.; Lane, Terran (University of New Mexico, Albuquerque, NM); Saia, Jared (University of New Mexico, Albuquerque, NM)
2005-09-01
It is commonly believed that scale-free networks are robust to massive numbers of random node deletions. For example, Cohen et al. in (1) study scale-free networks including some which approximate the measured degree distribution of the Internet. Their results suggest that if each node in this network failed independently with probability 0.99, most of the remaining nodes would still be connected in a giant component. In this paper, we show that a large and important subclass of scale-free networks are not robust to massive numbers of random node deletions. In particular, we study scale-free networks which have minimum node degree of 1 and a power-law degree distribution beginning with nodes of degree 1 (power-law networks). We show that, in a power-law network approximating the Internet's reported distribution, when the probability of deletion of each node is 0.5 only about 25% of the surviving nodes in the network remain connected in a giant component, and the giant component does not persist beyond a critical failure rate of 0.9. The new result is partially due to improved analytical accommodation of the large number of degree-0 nodes that result after node deletions. Our results apply to power-law networks with a wide range of power-law exponents, including Internet-like networks. We give both analytical and empirical evidence that such networks are not generally robust to massive random node deletions.
Generating clustered scale-free networks using Poisson based localization of edges
Türker, İlker
2018-05-01
We introduce a variety of network models using a Poisson-based edge localization strategy, which result in clustered scale-free topologies. We first verify the success of our localization strategy by realizing a variant of the well-known Watts-Strogatz model with an inverse approach, implying a small-world regime of rewiring from a random network through a regular one. We then apply the rewiring strategy to a pure Barabasi-Albert model and successfully achieve a small-world regime, with a limited capacity of scale-free property. To imitate the high clustering property of scale-free networks with higher accuracy, we adapted the Poisson-based wiring strategy to a growing network with the ingredients of both preferential attachment and local connectivity. To achieve the collocation of these properties, we used a routine of flattening the edges array, sorting it, and applying a mixing procedure to assemble both global connections with preferential attachment and local clusters. As a result, we achieved clustered scale-free networks with a computational fashion, diverging from the recent studies by following a simple but efficient approach.
Scaling Techniques for Massive Scale-Free Graphs in Distributed (External) Memory
Pearce, Roger; Gokhale, Maya; Amato, Nancy M.
2013-01-01
We present techniques to process large scale-free graphs in distributed memory. Our aim is to scale to trillions of edges, and our research is targeted at leadership class supercomputers and clusters with local non-volatile memory, e.g., NAND Flash
Emergence of super cooperation of prisoner's dilemma games on scale-free networks.
Directory of Open Access Journals (Sweden)
Angsheng Li
Full Text Available Recently, the authors proposed a quantum prisoner's dilemma game based on the spatial game of Nowak and May, and showed that the game can be played classically. By using this idea, we proposed three generalized prisoner's dilemma (GPD, for short games based on the weak Prisoner's dilemma game, the full prisoner's dilemma game and the normalized Prisoner's dilemma game, written by GPDW, GPDF and GPDN respectively. Our games consist of two players, each of which has three strategies: cooperator (C, defector (D and super cooperator (denoted by Q, and have a parameter γ to measure the entangled relationship between the two players. We found that our generalised prisoner's dilemma games have new Nash equilibrium principles, that entanglement is the principle of emergence and convergence (i.e., guaranteed emergence of super cooperation in evolutions of our generalised prisoner's dilemma games on scale-free networks, that entanglement provides a threshold for a phase transition of super cooperation in evolutions of our generalised prisoner's dilemma games on scale-free networks, that the role of heterogeneity of the scale-free networks in cooperations and super cooperations is very limited, and that well-defined structures of scale-free networks allow coexistence of cooperators and super cooperators in the evolutions of the weak version of our generalised prisoner's dilemma games.
A high-level and scalable approach for generating scale-free graphs using active objects
K. Azadbakht (Keyvan); N. Bezirgiannis (Nikolaos); F.S. de Boer (Frank); Aliakbary, S. (Sadegh)
2016-01-01
textabstractThe Barabasi-Albert model (BA) is designed to generate scale-free networks using the preferential attachment mechanism. In the preferential attachment (PA) model, new nodes are sequentially introduced to the network and they attach preferentially to existing nodes. PA is a classical
The Mathematics of Networks Science: Scale-Free, Power-Law Graphs and Continuum Theoretical Analysis
Padula, Janice
2012-01-01
When hoping to initiate or sustain students' interest in mathematics teachers should always consider relevance, relevance to students' lives and in the middle and later years of instruction in high school and university, accessibility. A topic such as the mathematics behind networks science, more specifically scale-free graphs, is up-to-date,…
Betweenness-based algorithm for a partition scale-free graph
International Nuclear Information System (INIS)
Zhang Bai-Da; Wu Jun-Jie; Zhou Jing; Tang Yu-Hua
2011-01-01
Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom—up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top—down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches. (interdisciplinary physics and related areas of science and technology)
Quantum information theory with Gaussian systems
Energy Technology Data Exchange (ETDEWEB)
Krueger, O.
2006-04-06
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Theory and design of CNC systems
Suh, Suk-Hwan; Chung, Dae-Hyuk; Stroud, Ian
2008-01-01
Computer Numerical Control (CNC) controllers are high value-added products counting for over 30% of the price of machine tools. The development of CNC technology depends on the integration of technologies from many different industries, and requires strategic long-term support. a oeTheory and Design of CNC Systemsa covers the elements of control, the design of control systems, and modern open-architecture control systems. Topics covered include Numerical Control Kernel (NCK) design of CNC, Programmable Logic Control (PLC), and the Man-Machine Interface (MMI), as well as the major modules for t
Quantum information theory with Gaussian systems
International Nuclear Information System (INIS)
Krueger, O.
2006-01-01
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
System theory as applied differential geometry. [linear system
Hermann, R.
1979-01-01
The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.
Essay on a general theory of nervous system functions
Energy Technology Data Exchange (ETDEWEB)
Schweizer, H J
1985-01-01
The axiomatic theory unites the aspects of neurophysiology, psychology and system-theory. The formulation of the structural-nucleus of the theory relies on basic insights from biology, neurophysiology and system-theory. The structural-nucleus allows the reconstruction of the essential properties of nervous system functions, organisation and development. The theory also contributes to the discussion of stochastic automata and artificial intelligence.
Scale-free behavior of networks with the copresence of preferential and uniform attachment rules
Pachon, Angelica; Sacerdote, Laura; Yang, Shuyi
2018-05-01
Complex networks in different areas exhibit degree distributions with a heavy upper tail. A preferential attachment mechanism in a growth process produces a graph with this feature. We herein investigate a variant of the simple preferential attachment model, whose modifications are interesting for two main reasons: to analyze more realistic models and to study the robustness of the scale-free behavior of the degree distribution. We introduce and study a model which takes into account two different attachment rules: a preferential attachment mechanism (with probability 1 - p) that stresses the rich get richer system, and a uniform choice (with probability p) for the most recent nodes, i.e. the nodes belonging to a window of size w to the left of the last born node. The latter highlights a trend to select one of the last added nodes when no information is available. The recent nodes can be either a given fixed number or a proportion (αn) of the total number of existing nodes. In the first case, we prove that this model exhibits an asymptotically power-law degree distribution. The same result is then illustrated through simulations in the second case. When the window of recent nodes has a constant size, we herein prove that the presence of the uniform rule delays the starting time from which the asymptotic regime starts to hold. The mean number of nodes of degree k and the asymptotic degree distribution are also determined analytically. Finally, a sensitivity analysis on the parameters of the model is performed.
Scattering theory for open quantum systems
International Nuclear Information System (INIS)
Behrndt, Jussi
2006-01-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A D in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of A D can be regarded as the Hamiltonian of a closed system which contains the open system {A D ,h}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(μ)} of maximal dissipative operators depending on energy μ, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)
Scattering theory for open quantum systems
Energy Technology Data Exchange (ETDEWEB)
Behrndt, Jussi [Technische Univ. Berlin (Germany). Inst. fuer Mathematik; Malamud, Mark M. [Donetsk National University (Ukraine). Dept. of Mathematics; Neidhardt, Hagen [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)
2006-07-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A{sub D} in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of A{sub D} can be regarded as the Hamiltonian of a closed system which contains the open system {l_brace}A{sub D},h{r_brace}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {l_brace}A({mu}){r_brace} of maximal dissipative operators depending on energy {mu}, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)
Lubashevsky, I.; Kanemoto, S.
2010-07-01
A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as “altruism self-organization”. For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.
Systems biology: the reincarnation of systems theory applied in biology?
Wolkenhauer, O
2001-09-01
With the availability of quantitative data on the transcriptome and proteome level, there is an increasing interest in formal mathematical models of gene expression and regulation. International conferences, research institutes and research groups concerned with systems biology have appeared in recent years and systems theory, the study of organisation and behaviour per se, is indeed a natural conceptual framework for such a task. This is, however, not the first time that systems theory has been applied in modelling cellular processes. Notably in the 1960s systems theory and biology enjoyed considerable interest among eminent scientists, mathematicians and engineers. Why did these early attempts vanish from research agendas? Here we shall review the domain of systems theory, its application to biology and the lessons that can be learned from the work of Robert Rosen. Rosen emerged from the early developments in the 1960s as a main critic but also developed a new alternative perspective to living systems, a concept that deserves a fresh look in the post-genome era of bioinformatics.
Applied optimal control theory of distributed systems
Lurie, K A
1993-01-01
This book represents an extended and substantially revised version of my earlierbook, Optimal Control in Problems ofMathematical Physics,originally published in Russian in 1975. About 60% of the text has been completely revised and major additions have been included which have produced a practically new text. My aim was to modernize the presentation but also to preserve the original results, some of which are little known to a Western reader. The idea of composites, which is the core of the modern theory of optimization, was initiated in the early seventies. The reader will find here its implementation in the problem of optimal conductivity distribution in an MHD-generatorchannel flow.Sincethen it has emergedinto an extensive theory which is undergoing a continuous development. The book does not pretend to be a textbook, neither does it offer a systematic presentation of the theory. Rather, it reflects a concept which I consider as fundamental in the modern approach to optimization of dis tributed systems. ...
Development in structural systems reliability theory
International Nuclear Information System (INIS)
Murotsu, Y.
1986-01-01
This paper is concerned with two topics on structural systems reliability theory. One covers automatic generation of failure mode equations, identifications of stochastically dominant failure modes, and reliability assessment of redundant structures. Reduced stiffness matrixes and equivalent nodal forces representing the failed elements are introduced for expressing the safety of the elements, using a matrix method. Dominant failure modes are systematically selected by a branch-and-bound technique and heuristic operations. The other discusses the various optimum design problems based on reliability concept. Those problems are interpreted through a solution to a multi-objective optimization problem. (orig.)
Development in structural systems reliability theory
Energy Technology Data Exchange (ETDEWEB)
Murotsu, Y
1986-07-01
This paper is concerned with two topics on structural systems reliability theory. One covers automatic generation of failure mode equations, identifications of stochastically dominant failure modes, and reliability assessment of redundant structures. Reduced stiffness matrixes and equivalent nodal forces representing the failed elements are introduced for expressing the safety of the elements, using a matrix method. Dominant failure modes are systematically selected by a branch-and-bound technique and heuristic operations. The other discusses the various optimum design problems based on reliability concept. Those problems are interpreted through a solution to a multi-objective optimization problem.
Kinetic theory for strongly coupled Coulomb systems
Dufty, James; Wrighton, Jeffrey
2018-01-01
The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.
Quantum field theory in stationary coordinate systems
International Nuclear Information System (INIS)
Pfautsch, J.D.
1981-01-01
Quantum field theory is examined in stationary coordinate systems in Minkowski space. Preliminary to quantization of the scalar field, all of the possible stationary coordinate systems in flat spacetime are classified and explicitly constructed. Six distinct classes of such systems are found. Of these six, three have (identical) event horizons associated with them and five have Killing horizons. Two classes have distinct Killing and event horizons, with an intervening region analogous to the ergosphere in rotating black holes. Particular representatives of each class are selected for subsequent use in the quantum field theory. The scalar field is canonically quantized and a vacuum defined in each of the particular coordinate systems chosen. The vacuum states can be regarded as adapted to the six classes of stationary motions. There are only two vacuum states found, the Minkowski vacuum in those coordinate systems without event horizons and the Fulling vacuum in those with event horizons. The responses of monopole detectors traveling along stationary world lines are calculated in both the Minkowski and Fulling vacuums. The responses for each class of motions are distinct from those for every other class. A vacuum defined by the response of a detector must therefore not be equivalent in general to a vacuum defined by canonical quantization. Quantization of the scalar field within a rotating wedge is examined. It has not been possible to construct mode functions satisfying appropriate boundary conditions on the surface of the wedge. The asymptotic form of the renormalized stress tensor near the surfaces had been calculated and is found to include momentum terms which represent a circulation of energy within the wedge
Theories and simulations of complex social systems
Mago, Vijay
2014-01-01
Research into social systems is challenging due to their complex nature. Traditional methods of analysis are often difficult to apply effectively as theories evolve over time. This can be due to a lack of appropriate data, or too much uncertainty. It can also be the result of problems which are not yet understood well enough in the general sense so that they can be classified, and an appropriate solution quickly identified. Simulation is one tool that deals well with these challenges, fits in well with the deductive process, and is useful for testing theory. This field is still relatively new, and much of the work is necessarily innovative, although it builds upon a rich and varied foundation. There are a number of existing modelling paradigms being applied to complex social systems research. Additionally, new methods and measures are being devised through the process of conducting research. We expect that readers will enjoy the collection of high quality research works from new and accomplished researchers. ...
Theory and Simulations of Solar System Plasmas
Goldstein, Melvyn L.
2011-01-01
"Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.
Selective evolutionary generation systems: Theory and applications
Menezes, Amor A.
This dissertation is devoted to the problem of behavior design, which is a generalization of the standard global optimization problem: instead of generating the optimizer, the generalization produces, on the space of candidate optimizers, a probability density function referred to as the behavior. The generalization depends on a parameter, the level of selectivity, such that as this parameter tends to infinity, the behavior becomes a delta function at the location of the global optimizer. The motivation for this generalization is that traditional off-line global optimization is non-resilient and non-opportunistic. That is, traditional global optimization is unresponsive to perturbations of the objective function. On-line optimization methods that are more resilient and opportunistic than their off-line counterparts typically consist of the computationally expensive sequential repetition of off-line techniques. A novel approach to inexpensive resilience and opportunism is to utilize the theory of Selective Evolutionary Generation Systems (SECS), which sequentially and probabilistically selects a candidate optimizer based on the ratio of the fitness values of two candidates and the level of selectivity. Using time-homogeneous, irreducible, ergodic Markov chains to model a sequence of local, and hence inexpensive, dynamic transitions, this dissertation proves that such transitions result in behavior that is called rational; such behavior is desirable because it can lead to both efficient search for an optimizer as well as resilient and opportunistic behavior. The dissertation also identifies system-theoretic properties of the proposed scheme, including equilibria, their stability and their optimality. Moreover, this dissertation demonstrates that the canonical genetic algorithm with fitness proportional selection and the (1+1) evolutionary strategy are particular cases of the scheme. Applications in three areas illustrate the versatility of the SECS theory: flight
Mobile user forecast and power-law acceleration invariance of scale-free networks
International Nuclear Information System (INIS)
Guo Jin-Li; Guo Zhao-Hua; Liu Xue-Jiao
2011-01-01
This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well. (interdisciplinary physics and related areas of science and technology)
Node-node correlations and transport properties in scale-free networks
Obregon, Bibiana; Guzman, Lev
2011-03-01
We study some transport properties of complex networks. We focus our attention on transport properties of scale-free and small-world networks and compare two types of transport: Electric and max-flow cases. In particular, we construct scale-free networks, with a given degree sequence, to estimate the distribution of conductances for different values of assortative/dissortative mixing. For the electric case we find that the distributions of conductances are affect ed by the assortative mixing of the network whereas for the max-flow case, the distributions almost do not show changes when node-node correlations are altered. Finally, we compare local and global transport in terms of the average conductance for the small-world (Watts-Strogatz) model
Simulating the wealth distribution with a Richest-Following strategy on scale-free network
Hu, Mao-Bin; Jiang, Rui; Wu, Qing-Song; Wu, Yong-Hong
2007-07-01
In this paper, we investigate the wealth distribution with agents playing evolutionary games on a scale-free social network adopting the Richest-Following strategy. Pareto's power-law distribution (1897) of wealth is demonstrated with power factor in agreement with that of US or Japan. Moreover, the agent's personal wealth is proportional to its number of contacts (connectivity), and this leads to the phenomenon that the rich gets richer and the poor gets relatively poorer, which agrees with the Matthew Effect.
International Nuclear Information System (INIS)
Liu, Chen; Wang, Jiang; Wang, Lin; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok
2014-01-01
Highlights: • Synchronization transitions in hybrid scale-free neuronal networks are investigated. • Multiple synchronization transitions can be induced by the time delay. • Effect of synchronization transitions depends on the ratio of the electrical and chemical synapses. • Coupling strength and the density of inter-neuronal links can enhance the synchronization. -- Abstract: The impacts of information transmission delay on the synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses are investigated. Numerical results show that multiple appearances of synchronization regions transitions can be induced by different information transmission delays. With the time delay increasing, the synchronization of neuronal activities can be enhanced or destroyed, irrespective of the probability of chemical synapses in the whole hybrid neuronal network. In particular, for larger probability of electrical synapses, the regions of synchronous activities appear broader with stronger synchronization ability of electrical synapses compared with chemical ones. Moreover, it can be found that increasing the coupling strength can promote synchronization monotonously, playing the similar role of the increasing the probability of the electrical synapses. Interestingly, the structures and parameters of the scale-free neuronal networks, especially the structural evolvement plays a more subtle role in the synchronization transitions. In the network formation process, it is found that every new vertex is attached to the more old vertices already present in the network, the more synchronous activities will be emerge
Faster Parallel Traversal of Scale Free Graphs at Extreme Scale with Vertex Delegates
Pearce, Roger
2014-11-01
© 2014 IEEE. At extreme scale, irregularities in the structure of scale-free graphs such as social network graphs limit our ability to analyze these important and growing datasets. A key challenge is the presence of high-degree vertices (hubs), that leads to parallel workload and storage imbalances. The imbalances occur because existing partitioning techniques are not able to effectively partition high-degree vertices. We present techniques to distribute storage, computation, and communication of hubs for extreme scale graphs in distributed memory supercomputers. To balance the hub processing workload, we distribute hub data structures and related computation among a set of delegates. The delegates coordinate using highly optimized, yet portable, asynchronous broadcast and reduction operations. We demonstrate scalability of our new algorithmic technique using Breadth-First Search (BFS), Single Source Shortest Path (SSSP), K-Core Decomposition, and Page-Rank on synthetically generated scale-free graphs. Our results show excellent scalability on large scale-free graphs up to 131K cores of the IBM BG/P, and outperform the best known Graph500 performance on BG/P Intrepid by 15%
Faster Parallel Traversal of Scale Free Graphs at Extreme Scale with Vertex Delegates
Pearce, Roger; Gokhale, Maya; Amato, Nancy M.
2014-01-01
© 2014 IEEE. At extreme scale, irregularities in the structure of scale-free graphs such as social network graphs limit our ability to analyze these important and growing datasets. A key challenge is the presence of high-degree vertices (hubs), that leads to parallel workload and storage imbalances. The imbalances occur because existing partitioning techniques are not able to effectively partition high-degree vertices. We present techniques to distribute storage, computation, and communication of hubs for extreme scale graphs in distributed memory supercomputers. To balance the hub processing workload, we distribute hub data structures and related computation among a set of delegates. The delegates coordinate using highly optimized, yet portable, asynchronous broadcast and reduction operations. We demonstrate scalability of our new algorithmic technique using Breadth-First Search (BFS), Single Source Shortest Path (SSSP), K-Core Decomposition, and Page-Rank on synthetically generated scale-free graphs. Our results show excellent scalability on large scale-free graphs up to 131K cores of the IBM BG/P, and outperform the best known Graph500 performance on BG/P Intrepid by 15%
Fluctuation-driven flocking movement in three dimensions and scale-free correlation.
Niizato, Takayuki; Gunji, Yukio-Pegio
2012-01-01
Recent advances in the study of flocking behavior have permitted more sophisticated analyses than previously possible. The concepts of "topological distances" and "scale-free correlations" are important developments that have contributed to this improvement. These concepts require us to reconsider the notion of a neighborhood when applied to theoretical models. Previous work has assumed that individuals interact with neighbors within a certain radius (called the "metric distance"). However, other work has shown that, assuming topological interactions, starlings interact on average with the six or seven nearest neighbors within a flock. Accounting for this observation, we previously proposed a metric-topological interaction model in two dimensions. The goal of our model was to unite these two interaction components, the metric distance and the topological distance, into one rule. In our previous study, we demonstrated that the metric-topological interaction model could explain a real bird flocking phenomenon called scale-free correlation, which was first reported by Cavagna et al. In this study, we extended our model to three dimensions while also accounting for variations in speed. This three-dimensional metric-topological interaction model displayed scale-free correlation for velocity and orientation. Finally, we introduced an additional new feature of the model, namely, that a flock can store and release its fluctuations.
Fluctuation-driven flocking movement in three dimensions and scale-free correlation.
Directory of Open Access Journals (Sweden)
Takayuki Niizato
Full Text Available Recent advances in the study of flocking behavior have permitted more sophisticated analyses than previously possible. The concepts of "topological distances" and "scale-free correlations" are important developments that have contributed to this improvement. These concepts require us to reconsider the notion of a neighborhood when applied to theoretical models. Previous work has assumed that individuals interact with neighbors within a certain radius (called the "metric distance". However, other work has shown that, assuming topological interactions, starlings interact on average with the six or seven nearest neighbors within a flock. Accounting for this observation, we previously proposed a metric-topological interaction model in two dimensions. The goal of our model was to unite these two interaction components, the metric distance and the topological distance, into one rule. In our previous study, we demonstrated that the metric-topological interaction model could explain a real bird flocking phenomenon called scale-free correlation, which was first reported by Cavagna et al. In this study, we extended our model to three dimensions while also accounting for variations in speed. This three-dimensional metric-topological interaction model displayed scale-free correlation for velocity and orientation. Finally, we introduced an additional new feature of the model, namely, that a flock can store and release its fluctuations.
Evaluating the transport in small-world and scale-free networks
International Nuclear Information System (INIS)
Juárez-López, R.; Obregón-Quintana, B.; Hernández-Pérez, R.; Reyes-Ramírez, I.; Guzmán-Vargas, L.
2014-01-01
We present a study of some properties of transport in small-world and scale-free networks. Particularly, we compare two types of transport: subject to friction (electrical case) and in the absence of friction (maximum flow). We found that in clustered networks based on the Watts–Strogatz (WS) model, for both transport types the small-world configurations exhibit the best trade-off between local and global levels. For non-clustered WS networks the local transport is independent of the rewiring parameter, while the transport improves globally. Moreover, we analyzed both transport types in scale-free networks considering tendencies in the assortative or disassortative mixing of nodes. We construct the distribution of the conductance G and flow F to evaluate the effects of the assortative (disassortative) mixing, finding that for scale-free networks, as we introduce different levels of the degree–degree correlations, the power-law decay in the conductances is altered, while for the flow, the power-law tail remains unchanged. In addition, we analyze the effect on the conductance and the flow of the minimum degree and the shortest path between the source and destination nodes, finding notable differences between these two types of transport
Epidemic spreading in weighted scale-free networks with community structure
International Nuclear Information System (INIS)
Chu, Xiangwei; Guan, Jihong; Zhang, Zhongzhi; Zhou, Shuigeng
2009-01-01
Many empirical studies reveal that the weights and community structure are ubiquitous in various natural and artificial networks. In this paper, based on the SI disease model, we investigate the epidemic spreading in weighted scale-free networks with community structure. Two exponents, α and β, are introduced to weight the internal edges and external edges, respectively; and a tunable probability parameter q is also introduced to adjust the strength of community structure. We find the external weighting exponent β plays a much more important role in slackening the epidemic spreading and reducing the danger brought by the epidemic than the internal weighting exponent α. Moreover, a novel result we find is that the strong community structure is no longer helpful for slackening the danger brought by the epidemic in the weighted cases. In addition, we show the hierarchical dynamics of the epidemic spreading in the weighted scale-free networks with communities which is also displayed in the famous BA scale-free networks
Scaling Techniques for Massive Scale-Free Graphs in Distributed (External) Memory
Pearce, Roger
2013-05-01
We present techniques to process large scale-free graphs in distributed memory. Our aim is to scale to trillions of edges, and our research is targeted at leadership class supercomputers and clusters with local non-volatile memory, e.g., NAND Flash. We apply an edge list partitioning technique, designed to accommodate high-degree vertices (hubs) that create scaling challenges when processing scale-free graphs. In addition to partitioning hubs, we use ghost vertices to represent the hubs to reduce communication hotspots. We present a scaling study with three important graph algorithms: Breadth-First Search (BFS), K-Core decomposition, and Triangle Counting. We also demonstrate scalability on BG/P Intrepid by comparing to best known Graph500 results. We show results on two clusters with local NVRAM storage that are capable of traversing trillion-edge scale-free graphs. By leveraging node-local NAND Flash, our approach can process thirty-two times larger datasets with only a 39% performance degradation in Traversed Edges Per Second (TEPS). © 2013 IEEE.
Functional theory of extended Coulomb systems
International Nuclear Information System (INIS)
Martin, R.M.; Ortiz, G.
1997-01-01
A consistent formulation is presented for a functional theory of extended quantum many-particle systems with long-range Coulomb interactions, which extends the density-functional theory of Hohenberg and Kohn to encompass the theory of dielectrics formulated in terms of electric fields and polarization. We show that a complete description of insulators in the thermodynamic limit requires a functional of density and macroscopic polarization; nevertheless, for any insulator the state with zero macroscopic electric field can be considered a reference state that is a functional of the density alone. Dielectric phenomena involve the behavior of the material in the presence of macroscopic electric fields that induce changes of the macroscopic polarization from its equilibrium value in the reference state. In the thermodynamic limit there is strictly no ground state and constraints must be placed upon the electronic wave functions in order to have a well-defined energy functional; within these constrained subspaces the Hohenberg-Kohn theorems can be generalized in terms of the density and the change in the macroscopic polarization. The essential role of the polarization is shown by an explicit example of two potentials that lead to the same periodic density in a crystal, but different macroscopic electric fields and polarization. In the Kohn-Sham approach both the kinetic and the exchange-correlation energy are shown to depend upon the changes in polarization; this leads to generalized Kohn-Sham equations with a nonlocal operator. The effect can be traced to the polarization of the average exchange-correlation hole itself in the presence of macroscopic fields, which is essential for an exact description of static dielectric phenomena. copyright 1997 The American Physical Society
Global positioning system theory and practice
Hofmann-Wellenhof, Bernhard; Collins, James
2001-01-01
This book is dedicated to Dr. Benjamin William Remondi for many reasons. The project of writing a Global Positioning System (GPS) book was con ceived in April 1988 at a GPS meeting in Darmstadt, Germany. Dr. Remondi discussed with me the need for an additional GPS textbook and suggested a possible joint effort. In 1989, I was willing to commit myself to such a project. Unfortunately, the timing was less than ideal for Dr. Remondi. Therefore, I decided to start the project with other coauthors. Dr. Remondi agreed and indicated his willingness to be a reviewer. I selected Dr. Herbert Lichtenegger, my colleague from the Technical University Graz, Austria, and Dr. James Collins from Rockville, Maryland, U.S.A. In my opinion, the knowledge ofthe three authors should cover the wide spectrum of GPS. Dr. Lichtenegger is a geodesist with broad experience in both theory and practice. He has specialized his research to geodetic astron omy including orbital theory and geodynamical phenomena. Since 1986, Dr. Lichteneg...
Activity theory as a challenge to systems design
DEFF Research Database (Denmark)
Bødker, Susanne
1991-01-01
This paper suggests an improvement of the theoretical foundation of information systems research of the 1990s. This foundation is found in human activity theory. The paper deals with how human activity theory can help systems design change, theoretically and practically. Applying activity theory...
Fast sparsely synchronized brain rhythms in a scale-free neural network.
Kim, Sang-Yoon; Lim, Woochang
2015-08-01
We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D. For small D, full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp>〈fi〉 (〈fi〉: ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4〈fi〉 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D
Fast sparsely synchronized brain rhythms in a scale-free neural network
Kim, Sang-Yoon; Lim, Woochang
2015-08-01
We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D . For small D , full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp> ( : ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D
General Open Systems Theory and the Substrata-Factor Theory of Reading.
Kling, Martin
This study was designed to extend the generality of the Substrata-Factor Theory by two methods of investigation: (1) theoretically, to est"blish the validity of the hypothesis that an isomorphic relationship exists between the Substrata-Factor Theory and the General Open Systems Theory, and (2) experimentally, to disc"ver through a…
Geometric Theory of Reduction of Nonlinear Control Systems
Elkin, V. I.
2018-02-01
The foundations of a differential geometric theory of nonlinear control systems are described on the basis of categorical concepts (isomorphism, factorization, restrictions) by analogy with classical mathematical theories (of linear spaces, groups, etc.).
The Systemic Theory of Living Systems and Relevance to CAM
Directory of Open Access Journals (Sweden)
José A. Olalde Rangel
2005-01-01
Full Text Available The Systemic Theory of Living Systems is being published in several parts in eCAM. The theory is axiomatic. It originates from the phenomenological idea that physiological health is based on three factors: integrity of its structure or organization, O, functional organic energy reserve, E, and level of active biological intelligence, I. From the theory is derived a treatment strategy called Systemic Medicine (SM. This is based on identifying and prescribing phytomedicines and/or other medications that strengthen each factor. Energy-stimulating phytomedicines increase available energy and decrease total entropy of an open biological system by providing negative entropy. The same occurs with phytomedicines that act as biological intelligence modulators. They should be used as the first line of treatment in all ailments, since all pathologies, by definition, imply a higher than normal organic entropy. SM postulates that the state of health, H, of an individual, is effectively equal to the product of the strength of each factor H = O × E × I. SM observes that when all three factors are brought back to ideal levels, patients' conditions begin the recovery to normal health.
System Dynamics as Model-Based Theory Building
Schwaninger, Markus; Grösser, Stefan N.
2008-01-01
This paper introduces model-based theory building as a feature of system dynamics (SD) with large potential. It presents a systemic approach to actualizing that potential, thereby opening up a new perspective on theory building in the social sciences. The question addressed is if and how SD enables the construction of high-quality theories. This contribution is based on field experiment type projects which have been focused on model-based theory building, specifically the construction of a mi...
Theory of Neural Information Processing Systems
International Nuclear Information System (INIS)
Galla, Tobias
2006-01-01
It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 10 11 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kuehn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the
Solar-System Tests of Gravitational Theories
Shapiro, Irwin
1997-01-01
We are engaged in testing gravitational theory by means of observations of objects in the solar system. These tests include an examination of the Principle Of Equivalence (POE), the Shapiro delay, the advances of planetary perihelia, the possibility of a secular variation G in the "gravitational constant" G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. These results are consistent with our preliminary results focusing on the contribution of Lunar Laser Ranging (LLR), which were presented at the seventh Marcel Grossmann meeting on general relativity. The largest improvement over previous results comes in the uncertainty for (eta): a factor of five better than our previous value. This improvement reflects the increasing strength of the LLR data. A similar analysis presented at the same meeting by a group at the Jet Propulsion Laboratory gave a similar result for (eta). Our value for (beta) represents our first such result determined simultaneously with the solar quadrupole moment from the dynamical data set. These results are being prepared for publication. We have shown how positions determined from different planetary ephemerides can be compared and how the combination of VLBI and pulse timing information can yield a direct tie between planetary and radio frames. We have continued to include new data in our analysis as they became available. Finally, we have made improvement in our analysis software (PEP) and ported it to a network of modern workstations from its former home on a "mainframe" computer.
Scale-free models for the structure of business firm networks.
Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H Eugene
2010-03-01
We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a "nucleus," which is a small well-connected subgraph, "tendrils," which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a "bulk body," which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution lambda increases, and disappear for lambda>or=3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.
Entanglement percolation on a quantum internet with scale-free and clustering characters
International Nuclear Information System (INIS)
Wu Liang; Zhu Shiqun
2011-01-01
The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.
Entanglement percolation on a quantum internet with scale-free and clustering characters
Energy Technology Data Exchange (ETDEWEB)
Wu Liang; Zhu Shiqun [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China)
2011-11-15
The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.
An efficient strategy for enhancing traffic capacity by removing links in scale-free networks
International Nuclear Information System (INIS)
Huang, Wei; Chow, Tommy W S
2010-01-01
An efficient link-removal strategy, called the variance-of-neighbor-degree-reduction (VNDR) strategy, for enhancing the traffic capacity of scale-free networks is proposed in this paper. The VNDR strategy, which considers the important role of hub nodes, balances the amounts of packets routed from each node to the node's neighbors. Compared against the outcomes of strategies that remove links among hub nodes, our results show that the traffic capacity can be greatly enhanced, especially under the shortest path routing strategy. It is also found that the average transport time is effectively reduced by using the VNDR strategy only under the shortest path routing strategy
The Systemic Theory of Living Systems and Relevance to CAM: the Theory (Part III
Directory of Open Access Journals (Sweden)
José A. Olalde Rangel
2005-01-01
Full Text Available Western medical science lacks a solid philosophical and theoretical approach to disease cognition and therapeutics. My first two articles provided a framework for a humane medicine based on Modern Biophysics. Its precepts encompass modern therapeutics and CAM. Modern Biophysics and its concepts are presently missing in medicine, whether orthodox or CAM, albeit they probably provide the long sought explanation that bridges the abyss between East and West. Key points that differentiate Systemic from other systems' approaches are ‘Intelligence’, ‘Energy’ and the objective ‘to survive’. The General System Theory (GST took a forward step by proposing a departure from the mechanistic biological concept—of analyzing parts and processes in isolation—and brought us towards an organismic model. GST examines the system's components and results of their interaction. However, GST still does not go far enough. GST assumes ‘Self-Organization’ as a spontaneous phenomenon, ignoring a causative entity or central controller to all systems: Intelligence. It also neglects ‘Survive’ as the directional motivation common to any living system, and scarcely assigns ‘Energy’ its true inherent value. These three parameters, Intelligence, Energy and Survive, are vital variables to be considered, in our human quest, if we are to achieve a unified theory of life.
The Female Voice: Applications to Bowen's Family Systems Theory.
Knudson-Martin, Carmen
1994-01-01
Responds to calls from feminist scholars to address potential biases against women in theories of family therapy. Summarizes findings from studies of female development and integrates findings into expanded model of Bowen's family systems theory. Includes case example comparing expanded model with traditional application of Bowen's theory.…
Lederman, Linda Costigan; Rogers, Don
The two papers in this document focus on general systems theory. In her paper, Linda Lederman discusses the emergence and evolution of general systems theory, defines its central concepts, and draws some conclusions regarding the nature of the theory and its value as an epistemology. Don Rogers, in his paper, relates some of the important features…
Cook, Desmond L.
This document, one of a series of reports examining the possible contribution of other disciplines to evaluation methodology, describes the major elements of general systems theory (GST), cybernetics theory (CT) and management control theory (MCT). The author suggests that MCT encapsulates major concerns of evaluation since it reveals that…
Topology of the Italian airport network: A scale-free small-world network with a fractal structure?
International Nuclear Information System (INIS)
Guida, Michele; Maria, Funaro
2007-01-01
In this paper, for the first time we analyze the structure of the Italian Airport Network (IAN) looking at it as a mathematical graph and investigate its topological properties. We find that it has very remarkable features, being like a scale-free network, since both the degree and the 'betweenness centrality' distributions follow a typical power-law known in literature as a Double Pareto Law. From a careful analysis of the data, the Italian Airport Network turns out to have a self-similar structure. In short, it is characterized by a fractal nature, whose typical dimensions can be easily determined from the values of the power-law scaling exponents. Moreover, we show that, according to the period examined, these distributions exhibit a number of interesting features, such as the existence of some 'hubs', i.e. in the graph theory's jargon, nodes with a very large number of links, and others most probably associated with geographical constraints. Also, we find that the IAN can be classified as a small-world network because the average distance between reachable pairs of airports grows at most as the logarithm of the number of airports. The IAN does not show evidence of 'communities' and this result could be the underlying reason behind the smallness of the value of the clustering coefficient, which is related to the probability that two nearest neighbors of a randomly chosen airport are connected
Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro
1994-01-01
We calculate reduced moments (xi bar)(sub q) of the matter density fluctuations, up to order q = 5, from counts in cells produced by particle-mesh numerical simulations with scale-free Gaussian initial conditions. We use power-law spectra P(k) proportional to k(exp n) with indices n = -3, -2, -1, 0, 1. Due to the supposed absence of characteristic times or scales in our models, all quantities are expected to depend on a single scaling variable. For each model, the moments at all times can be expressed in terms of the variance (xi bar)(sub 2), alone. We look for agreement with the hierarchical scaling ansatz, according to which ((xi bar)(sub q)) proportional to ((xi bar)(sub 2))(exp (q - 1)). For n less than or equal to -2 models, we find strong deviations from the hierarchy, which are mostly due to the presence of boundary problems in the simulations. A small, residual signal of deviation from the hierarchical scaling is however also found in n greater than or equal to -1 models. The wide range of spectra considered and the large dynamic range, with careful checks of scaling and shot-noise effects, allows us to reliably detect evolution away from the perturbation theory result.
Some open problems in random matrix theory and the theory of integrable systems
Deift, Percy
2007-01-01
We describe a list of open problems in random matrix theory and integrable systems which was presented at the conference ``Integrable Systems, Random Matrices, and Applications'' at the Courant Institute in May 2006.
Theoretical and expert system approach to photoionization theories
Directory of Open Access Journals (Sweden)
Petrović Ivan D.
2016-01-01
Full Text Available The influence of the ponderomotive and the Stark shifts on the tunneling transition rate was observed, for non-relativistic linearly polarized laser field for alkali atoms, with three different theoretical models, the Keldysh theory, the Perelomov, Popov, Terent'ev (PPT theory, and the Ammosov, Delone, Krainov (ADK theory. We showed that aforementioned shifts affect the transition rate differently for different approaches. Finally, we presented a simple expert system for analysis of photoionization theories.
International Nuclear Information System (INIS)
Gong Yubing; Xie Yanhang; Lin Xiu; Hao Yinghang; Ma Xiaoguang
2010-01-01
Research highlights: → Chemical delay and chemical coupling can tame chaotic bursting. → Chemical delay-induced transitions from bursting synchronization to intermittent multiple spiking synchronizations. → Chemical coupling-induced different types of delay-dependent firing transitions. - Abstract: Chemical synaptic connections are more common than electric ones in neurons, and information transmission delay is especially significant for the synapses of chemical type. In this paper, we report a phenomenon of ordering spatiotemporal chaos and synchronization transitions by the delays and coupling through chemical synapses of modified Hodgkin-Huxley (MHH) neurons on scale-free networks. As the delay τ is increased, the neurons exhibit transitions from bursting synchronization (BS) to intermittent multiple spiking synchronizations (SS). As the coupling g syn is increased, the neurons exhibit different types of firing transitions, depending on the values of τ. For a smaller τ, there are transitions from spatiotemporal chaotic bursting (SCB) to BS or SS; while for a larger τ, there are transitions from SCB to intermittent multiple SS. These findings show that the delays and coupling through chemical synapses can tame the chaotic firings and repeatedly enhance the firing synchronization of neurons, and hence could play important roles in the firing activity of the neurons on scale-free networks.
Impacts of hybrid synapses on the noise-delayed decay in scale-free neural networks
International Nuclear Information System (INIS)
Yilmaz, Ergin
2014-01-01
Highlights: • We investigate the NDD phenomenon in a hybrid scale-free network. • Electrical synapses are more impressive on the emergence of NDD. • Electrical synapses are more efficient in suppressing of the NDD. • Average degree has two opposite effects on the appearance time of the first spike. - Abstract: We study the phenomenon of noise-delayed decay in a scale-free neural network consisting of excitable FitzHugh–Nagumo neurons. In contrast to earlier works, where only electrical synapses are considered among neurons, we primarily examine the effects of hybrid synapses on the noise-delayed decay in this study. We show that the electrical synaptic coupling is more impressive than the chemical coupling in determining the appearance time of the first-spike and more efficient on the mitigation of the delay time in the detection of a suprathreshold input signal. We obtain that hybrid networks including inhibitory chemical synapses have higher signal detection capabilities than those of including excitatory ones. We also find that average degree exhibits two different effects, which are strengthening and weakening the noise-delayed decay effect depending on the noise intensity
Scale-Free Brain-Wave Music from Simultaneously EEG and fMRI Recordings
Lu, Jing; Wu, Dan; Yang, Hua; Luo, Cheng; Li, Chaoyi; Yao, Dezhong
2012-01-01
In the past years, a few methods have been developed to translate human EEG to music. In 2009, PloS One 4 e5915, we developed a method to generate scale-free brainwave music where the amplitude of EEG was translated to music pitch according to the power law followed by both of them, the period of an EEG waveform is translated directly to the duration of a note, and the logarithm of the average power change of EEG is translated to music intensity according to the Fechner's law. In this work, we proposed to adopt simultaneously-recorded fMRI signal to control the intensity of the EEG music, thus an EEG-fMRI music is generated by combining two different and simultaneous brain signals. And most importantly, this approach further realized power law for music intensity as fMRI signal follows it. Thus the EEG-fMRI music makes a step ahead in reflecting the physiological process of the scale-free brain. PMID:23166768
Scale-free brain-wave music from simultaneously EEG and fMRI recordings.
Lu, Jing; Wu, Dan; Yang, Hua; Luo, Cheng; Li, Chaoyi; Yao, Dezhong
2012-01-01
In the past years, a few methods have been developed to translate human EEG to music. In 2009, PloS One 4 e5915, we developed a method to generate scale-free brainwave music where the amplitude of EEG was translated to music pitch according to the power law followed by both of them, the period of an EEG waveform is translated directly to the duration of a note, and the logarithm of the average power change of EEG is translated to music intensity according to the Fechner's law. In this work, we proposed to adopt simultaneously-recorded fMRI signal to control the intensity of the EEG music, thus an EEG-fMRI music is generated by combining two different and simultaneous brain signals. And most importantly, this approach further realized power law for music intensity as fMRI signal follows it. Thus the EEG-fMRI music makes a step ahead in reflecting the physiological process of the scale-free brain.
International Nuclear Information System (INIS)
Hao Yinghang; Gong, Yubing; Wang Li; Ma Xiaoguang; Yang Chuanlu
2011-01-01
Research highlights: → Single synchronization transition for gap-junctional coupling. → Multiple synchronization transitions for chemical synaptic coupling. → Gap junctions and chemical synapses have different impacts on synchronization transition. → Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.
Energy Technology Data Exchange (ETDEWEB)
Hao Yinghang [School of Physics, Ludong University, Yantai 264025 (China); Gong, Yubing, E-mail: gongyubing09@hotmail.co [School of Physics, Ludong University, Yantai 264025 (China); Wang Li; Ma Xiaoguang; Yang Chuanlu [School of Physics, Ludong University, Yantai 264025 (China)
2011-04-15
Research highlights: Single synchronization transition for gap-junctional coupling. Multiple synchronization transitions for chemical synaptic coupling. Gap junctions and chemical synapses have different impacts on synchronization transition. Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.
All in the family: integrating attachment and family systems theories.
Crittenden, Patricia McKinsey; Dallos, Rudi
2009-07-01
This article brings together ideas from attachment and systemic family therapy. There is both growing interest among systemic practitioners in the conceptual and empirical base of attachment theory and also the need for attachment theory to expand dyadic patterning to include its context in family functioning. We propose the Dynamic-Maturational Model (DMM) as being the most compatible and useful variant of attachment theory. With its emphasis on the functional nature of behavior, a dynamic view of development and change, and a focus on multiple attachments and representational systems, the DMM fits systemic concepts well. We propose that many apparent discrepancies between the theories will disappear if careful distinctions are made between observed behavior, functional explanations, and attributions. We conclude with theory-based recommendations for selecting treatment strategies. Several case examples that are theory based, counterintuitive, and tied to disorders that are difficult to treat are offered to give substance to our ideas.
Mathematical Systems Theory : from Behaviors to Nonlinear Control
Julius, A; Pasumarthy, Ramkrishna; Rapisarda, Paolo; Scherpen, Jacquelien
2015-01-01
This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The first volume of this two-volume work covers a variety of topics related to nonlinear and hybrid control systems. After giving a detailed account of the state of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of nonlinear and hybrid control systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the worksho...
A general sensitivity theory for simulations of nonlinear systems
International Nuclear Information System (INIS)
Kenton, M.A.
1981-01-01
A general sensitivity theory is developed for nonlinear lumped-parameter system simulations. The point-of-departure is general perturbation theory, which has long been used for linear systems in nuclear engineering and reactor physics. The theory allows the sensitivity of particular figures-of-merit of the system behavior to be calculated with respect to any parameter.An explicit procedure is derived for applying the theory to physical systems undergoing sudden events (e.g., reactor scrams, tank ruptures). A related problem, treating figures-of-merit defined as functions of extremal values of system variables occurring at sudden events, is handled by the same procedure. The general calculational scheme for applying the theory to numerical codes is discussed. It is shown that codes which use pre-packaged implicit integration subroutines can be augmented to include sensitivity theory: a companion set of subroutines to solve the sensitivity problem is listed. This combined system analysis code is applied to a simple model for loss of post-accident heat removal in a liquid metal-cooled fast breeder reactor. The uses of the theory for answering more general sensitivity questions are discussed. One application of the theory is to systematically determine whether specific physical processes in a model contribute significantly to the figures-of-merit. Another application of the theory is for selecting parameter values which enable a model to match experimentally observed behavior
Optimization and Control of Bilinear Systems Theory, Algorithms, and Applications
Pardalos, Panos M
2008-01-01
Covers developments in bilinear systems theory Focuses on the control of open physical processes functioning in a non-equilibrium mode Emphasis is on three primary disciplines: modern differential geometry, control of dynamical systems, and optimization theory Includes applications to the fields of quantum and molecular computing, control of physical processes, biophysics, superconducting magnetism, and physical information science
General Systems Theory Approaches to Organizations: Some Problems in Application
Peery, Newman S., Jr.
1975-01-01
Considers the limitations of General Systems Theory (GST) as a major paradigm within administrative theory and concludes that most systems formulations overemphasize growth and show little appreciation for intraorganizational conflict, diversity of values, and political action within organizations. Suggests that these limitations are mainly due to…
Client-Controlled Case Information: A General System Theory Perspective
Fitch, Dale
2004-01-01
The author proposes a model for client control of case information via the World Wide Web built on principles of general system theory. It incorporates the client into the design, resulting in an information structure that differs from traditional human services information-sharing practices. Referencing general system theory, the concepts of…
Theory of Technical Systems--Educational Tool for Engineering
Eder, Wolfgang Ernst
2016-01-01
Hubka's theory of technical systems (TTS) is briefly outlined. It describes commonalities in all engineering devices, whatever their physical principles of action. This theory is based on a general transformation system (TrfS), which can be used to show engineering in the contexts of society, economics and historic developments. The life cycle of…
Realization theory for rational systems: Minimal rational realizations
J. Nemcová (Jana); J.H. van Schuppen (Jan)
2010-01-01
htmlabstractThe study of realizations of response maps is a topic of control and system theory. Realization theory is used in system identification and control synthesis. A minimal rational realization of a given response map p is a rational realization of p such that the dimension of its state
Continuous and distributed systems theory and applications
Sadovnichiy, Victor
2014-01-01
In this volume, the authors close the gap between abstract mathematical approaches, such as abstract algebra, number theory, nonlinear functional analysis, partial differential equations, methods of nonlinear and multi-valued analysis, on the one hand, and practical applications in nonlinear mechanics, decision making theory and control theory on the other. Readers will also benefit from the presentation of modern mathematical modeling methods for the numerical solution of complicated engineering problems in hydromechanics, geophysics and mechanics of continua. This compilation will be of interest to mathematicians and engineers working at the interface of these field. It presents selected works of the open seminar series of Lomonosov Moscow State University and the National Technical University of Ukraine “Kyiv Polytechnic Institute”. The authors come from Germany, Italy, Spain, Russia, Ukraine, and the USA.
Perturbation Theory for Open Two-Level Nonlinear Quantum Systems
International Nuclear Information System (INIS)
Zhang Zhijie; Jiang Dongguang; Wang Wei
2011-01-01
Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)
Heuristic algorithm for determination of local properties of scale-free networks
Mitrovic, M
2006-01-01
Complex networks are everywhere. Many phenomena in nature can be modeled as networks: - brain structures - protein-protein interaction networks - social interactions - the Internet and WWW. They can be represented in terms of nodes and edges connecting them. Important characteristics: - these networks are not random; they have a structured architecture. Structure of different networks are similar: - all have power law degree distribution (scale-free property) - despite large size there is usually relatively short path between any two nodes (small world property). Global characteristics: - degree distribution, clustering coefficient and the diameter. Local structure: - frequency of subgraphs of given type (subgraph of order k is a part of the network consisting of k nodes and edges between them). There are different types of subgraphs of the same order.
Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks
Li, Qiang; Chen, Minyou; Perc, Matjaž; Iqbal, Azhar; Abbott, Derek
2013-10-01
We study the impact of adaptive degrees of trust on the evolution of cooperation in the quantum prisoner's dilemma game. In addition to the strategies, links between players are also subject to evolution. Starting with a scale-free interaction network, players adjust trust towards their neighbors based on received payoffs. The latter governs the strategy adoption process, while trust governs the rewiring of links. As soon as the degree of trust towards a neighbor drops to zero, the link is rewired to another randomly chosen player within the network. We find that for small temptations to defect cooperators always dominate, while for intermediate and strong temptations a single quantum strategy is able to outperform all other strategies. In general, reciprocal trust remains within close relationships and favors the dominance of a single strategy. Due to coevolution, the power-law degree distributions transform to Poisson distributions.
The Medieval inquisition: scale-free networks and the suppression of heresy
Ormerod, Paul; Roach, Andrew P.
2004-08-01
Qualitative evidence suggests that heresy within the medieval Church had many of the characteristics of a scale-free network. From the perspective of the Church, heresy can be seen as an infectious disease. The disease persisted for long periods of time, breaking out again even when the Church believed it to have been eradicated. A principal mechanism of heresy was through a small number of individuals with very large numbers of social contacts. Initial attempts by the inquisition to suppress heresy by general persecution, or even mass slaughter, of populations thought to harbour the ‘disease’ failed. Gradually, however, inquisitors learned about the nature of the social networks by which heresy both spread and persisted. Eventually, a policy of targeting key individuals was implemented, which proved to be much more successful.
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free
Bianconi, Ginestra; Rahmede, Christoph
2015-09-01
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces.
Improved routing strategies for data traffic in scale-free networks
International Nuclear Information System (INIS)
Wu, Zhi-Xi; Peng, Gang; Wong, Wing-Ming; Yeung, Kai-Hau
2008-01-01
We study the information packet routing process in scale-free networks by mimicking Internet traffic delivery. We incorporate both the global shortest paths information and local degree information of the network in the dynamic process, via two tunable parameters, α and β, to guide the packet routing. We measure the performance of the routing method by both the average transit times of packets and the critical packet generation rate (above which packet aggregation occurs in the network). We found that the routing strategies which integrate ingredients of both global and local topological information of the underlying networks perform much better than the traditional shortest path routing protocol taking into account the global topological information only. Moreover, by doing comparative studies with some related works, we found that the performance of our proposed method shows universal efficiency characteristic against the amount of traffic
Inelastic transport theory for nanoscale systems
DEFF Research Database (Denmark)
Frederiksen, Thomas
2007-01-01
This thesis describes theoretical and numerical investigations of inelastic scat- tering and energy dissipation in electron transport through nanoscale sys- tems. A computational scheme, based on a combination of density functional theory (DFT) and nonequilibrium Green’s functions (NEGF), has been...
On activity theory in cognitive systems
DEFF Research Database (Denmark)
Abolfazlian, Ali Reza Kian
Theory' (Virksomhedsteori). Virksomhedsteori er den dominante teori i den sovjetiske tradition af social psykologi. Virksomhedsteori startede med Vygotskys arbejde og fortsatte sin vækst under vejledningen af forskere som Leontiev og Luria. Med sit erkendelsesteoretiske program baseret på interaktion med...
A theory of desynchronisable closed loops system
Beohar, H.; Cuijpers, P.J.L.; Bliudze, S.; Bruni, R.; Grohmann, D.; Silva, A.
2010-01-01
The task of implementing a supervisory controller is non-trivial, even though different theories exist that allow automatic synthesis of these controllers in the form of automata. One of the reasons for this discord is due to the asynchronous interaction between a plant and its controller in
Scale-free brain quartet: artistic filtering of multi-channel brainwave music.
Wu, Dan; Li, Chaoyi; Yao, Dezhong
2013-01-01
To listen to the brain activities as a piece of music, we proposed the scale-free brainwave music (SFBM) technology, which translated scalp EEGs into music notes according to the power law of both EEG and music. In the present study, the methodology was extended for deriving a quartet from multi-channel EEGs with artistic beat and tonality filtering. EEG data from multiple electrodes were first translated into MIDI sequences by SFBM, respectively. Then, these sequences were processed by a beat filter which adjusted the duration of notes in terms of the characteristic frequency. And the sequences were further filtered from atonal to tonal according to a key defined by the analysis of the original music pieces. Resting EEGs with eyes closed and open of 40 subjects were utilized for music generation. The results revealed that the scale-free exponents of the music before and after filtering were different: the filtered music showed larger variety between the eyes-closed (EC) and eyes-open (EO) conditions, and the pitch scale exponents of the filtered music were closer to 1 and thus it was more approximate to the classical music. Furthermore, the tempo of the filtered music with eyes closed was significantly slower than that with eyes open. With the original materials obtained from multi-channel EEGs, and a little creative filtering following the composition process of a potential artist, the resulted brainwave quartet opened a new window to look into the brain in an audible musical way. In fact, as the artistic beat and tonal filters were derived from the brainwaves, the filtered music maintained the essential properties of the brain activities in a more musical style. It might harmonically distinguish the different states of the brain activities, and therefore it provided a method to analyze EEGs from a relaxed audio perspective.
Client-controlled case information: a general system theory perspective.
Fitch, Dale
2004-07-01
The author proposes a model for client control of case information via the World Wide Web built on principles of general system theory. It incorporates the client into the design, resulting in an information structure that differs from traditional human services information-sharing practices. Referencing general system theory, the concepts of controller and controlled system, as well as entropy and negentropy, are applied to the information flow and autopoietic behavior as they relate to the boundary-maintaining functions of today's organizations. The author's conclusions synthesize general system theory and human services values to lay the foundation for an information-sharing framework for human services in the 21st century.
The Einstein-Vlasov System/Kinetic Theory.
Andréasson, Håkan
2011-01-01
The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.
Elements of automata theory and the theory of Markov chains. [Self-organizing control systems
Energy Technology Data Exchange (ETDEWEB)
Lind, M
1975-03-01
Selected topics from automata theory and the theory of Markov chains are treated. In particular, finite-memory automata are discussed in detail, and the results are used to formulate an automation model of a class of continuous systems. Stochastic automata are introduced as a natural generalization of the deterministic automaton. Markov chains are shown to be closely related to stochastic automata. Results from Markov chain theory are thereby directly applicable to analysis of stochastic automata. This report provides the theoretical foundation for the investigation in Riso Report No. 315 of a class of self-organizing control systems. (25 figures) (auth)
A Mathematical Theory of System Information Flow
2016-06-27
i.i.d. is usually quite involved. There are numerous experiments , often using photons, to test Bell’s Inequality recorded in the literature, but the...classical setting. Peter focused on non-locality as an alternative theory and experiments using the CHSH inequality , and devised a statistical procedure...761 (2014). 7. BIERHORST, P., A new loophole in recent Bell test experiments , arXiv:1311.4488, (2014). 8. BIERHORST, P., A Mathematical Foundation
International Nuclear Information System (INIS)
Reynolds, A M
2009-01-01
The movement patterns of a diverse range of animals have scale-free characteristics. These characteristics provide necessary but not sufficient conditions for the presence of movement patterns that can be approximated by Levy walks. Nevertheless, it has been widely assumed that the occurrence of scale-free animal movements can indeed be attributed to the presence of Levy walks. This is, in part, because it is known that the super-diffusive properties of Levy walks can be advantageous in random search scenarios when searchers have little or no prior knowledge of target locations. However, fractional Brownian motions (fBms) and fractional Levy motions (fLms) are both scale-free and super-diffusive, and so it is possible that these motions rather than Levy walks underlie some or all occurrences of scale-free animal movement patterns. Here this possibility is examined in numerical simulations through a determination of the searching efficiencies of fBm and fLm searches. It is shown that these searches are less efficient than Levy walk searches. This finding does not rule out the possibility that some animals with scale-free movement patterns are executing fBm and fLm searches, but it does make Levy walk searches the more likely possibility.
The sensitivity theory for inertial confinement pellet fusion system
International Nuclear Information System (INIS)
Cai, Shaohui; Zhang, Yuquan.
1986-01-01
A sensitivity theory for inertial confinement pellet fusion system is developed based on a physical model similar to that embodied in the laser fusion code MEDUSA. The theory presented here can be an efficient tool for estimating the effects of many alternations in the data field. Our result is different from Greenspan's work in 1980. (author)
Multicomponent density-functional theory for time-dependent systems
Butriy, O.; Ebadi, H.; de Boeij, P. L.; van Leeuwen, R.; Gross, E. K. U.
2007-01-01
We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried
Process theory for supervisory control of stochastic systems with data
Markovski, J.
2012-01-01
We propose a process theory for supervisory control of stochastic nondeterministic plants with data-based observations. The Markovian process theory with data relies on the notion of Markovian partial bisimulation to capture controllability of stochastic nondeterministic systems. It presents a
A denotational theory of synchronous reactive systems
Benveniste , Albert; Le Guernic , Paul; Sorel , Yves; Sorine , Michel
1992-01-01
International audience; In this paper, systems which interact permanently with their environments are considered. Such systems are encountered, for instance, in real-time control or signal processing systems, C3-systems, and man-machine interfaces, to mention just a few cases. The design and implementation of such systems require a concurrent programming language which can be used to verify and synthesize the synchronization mechanisms, and to perform transformations of the concurrent source ...
Ma, Fei; Su, Jing; Yao, Bing
2018-05-01
The problem of determining and calculating the number of spanning trees of any finite graph (model) is a great challenge, and has been studied in various fields, such as discrete applied mathematics, theoretical computer science, physics, chemistry and the like. In this paper, firstly, thank to lots of real-life systems and artificial networks built by all kinds of functions and combinations among some simpler and smaller elements (components), we discuss some helpful network-operation, including link-operation and merge-operation, to design more realistic and complicated network models. Secondly, we present a method for computing the total number of spanning trees. As an accessible example, we apply this method to space of trees and cycles respectively, and our results suggest that it is indeed a better one for such models. In order to reflect more widely practical applications and potentially theoretical significance, we study the enumerating method in some existing scale-free network models. On the other hand, we set up a class of new models displaying scale-free feature, that is to say, following P(k) k-γ, where γ is the degree exponent. Based on detailed calculation, the degree exponent γ of our deterministic scale-free models satisfies γ > 3. In the rest of our discussions, we not only calculate analytically the solutions of average path length, which indicates our models have small-world property being prevailing in amounts of complex systems, but also derive the number of spanning trees by means of the recursive method described in this paper, which clarifies our method is convenient to research these models.
A Systems Model of Parkinson's Disease Using Biochemical Systems Theory.
Sasidharakurup, Hemalatha; Melethadathil, Nidheesh; Nair, Bipin; Diwakar, Shyam
2017-08-01
Parkinson's disease (PD), a neurodegenerative disorder, affects millions of people and has gained attention because of its clinical roles affecting behaviors related to motor and nonmotor symptoms. Although studies on PD from various aspects are becoming popular, few rely on predictive systems modeling approaches. Using Biochemical Systems Theory (BST), this article attempts to model and characterize dopaminergic cell death and understand pathophysiology of progression of PD. PD pathways were modeled using stochastic differential equations incorporating law of mass action, and initial concentrations for the modeled proteins were obtained from literature. Simulations suggest that dopamine levels were reduced significantly due to an increase in dopaminergic quinones and 3,4-dihydroxyphenylacetaldehyde (DOPAL) relating to imbalances compared to control during PD progression. Associating to clinically observed PD-related cell death, simulations show abnormal parkin and reactive oxygen species levels with an increase in neurofibrillary tangles. While relating molecular mechanistic roles, the BST modeling helps predicting dopaminergic cell death processes involved in the progression of PD and provides a predictive understanding of neuronal dysfunction for translational neuroscience.
Integrable Hamiltonian systems and spectral theory
Moser, J
1981-01-01
Classical integrable Hamiltonian systems and isospectral deformations ; geodesics on an ellipsoid and the mechanical system of C. Neumann ; the Schrödinger equation for almost periodic potentials ; finite band potentials ; limit cases, Bargmann potentials.
f-electron systems: pushing band theory
International Nuclear Information System (INIS)
Koelling, D.D.
1991-01-01
The f-electron orbitrals have always been the ''incomplete atomic shells acting as local moments, and weakly interacting with the remaining electronic structure'' in the minds of most people. So examining them using a band theory where one views them as itinerant was once - and to some extent even today still is - considered with some skepticism. Nonetheless, a very significant community has successfully utilized band theory as a probe of the electronic structure of the appropriate actinides and rare earths. Those people actually using the approach would be the first to declare that it is not the whole solution. Instead, one is pushing and even exceeding its limit of applicability. However, the apropriate procedure is to push the model consistently to its limits, patch where possible, and then look to see where discrepancies remain. I propose to offer a selected review of past developments (emphasizing the career to data of A.J. Freeman in this area), offer a list of interesting puzzles for the future, and then make some guesses as to the techniques one might want to use. (orig.)
Quantum open system theory: bipartite aspects.
Yu, T; Eberly, J H
2006-10-06
We demonstrate in straightforward calculations that even under ideally weak noise the relaxation of bipartite open quantum systems contains elements not previously encountered in quantum noise physics. While additivity of decay rates is known to be generic for decoherence of a single system, we demonstrate that it breaks down for bipartite coherence of even the simplest composite systems.
Performance improvement of professional printing systems : from theory to practice
Ezzeldin Mahdy Abdelmonem, M.
2012-01-01
Performance Improvement of Professional Printing Systems: from theory to practice Markets demand continuously for higher quality, higher speed, and more energy-efficient professional printers. In this thesis, control strategies have been developed to improve the performance of both professional
JIT supply chain; an investigation through general system theory
Directory of Open Access Journals (Sweden)
O P Mishra
2013-03-01
Full Text Available This paper explains theoretical approach of the four theories of General system Theory (GST developed by Yourdon (1989 [Yourdon, E. (1989. Modern Structured Analysis. Yourdon Press, Prentice-Hall International, Englewood Cliffs, New Jersey. Senge] while applying it in information technology and subsequently used by caddy (2007 [Caddy I.N., & Helou, M.M. (2007. Supply chains and their management: Application of general systems theory. Journal of Retailing and Consumer Services, 14, 319–327.] in field of supply chain and management. JIT philosophy in core activities of supply chain i.e. procurement, production processes, and logistics are discussed through general system theory. The growing structure of the supply chain poses the implication restrictions and requires a heavy support system, many times a compromise is done while implementing JIT. The study would be useful to understand the general trends generated naturally regarding the adoption of the JIT philosophy in the supply chain.
Wasserman, Deborah L
2010-05-01
This paper offers a framework for using a systems orientation and "foundational theory" to enhance theory-driven evaluations and logic models. The framework guides the process of identifying and explaining operative relationships and perspectives within human service program systems. Self-Determination Theory exemplifies how a foundational theory can be used to support the framework in a wide range of program evaluations. Two examples illustrate how applications of the framework have improved the evaluators' abilities to observe and explain program effect. In both exemplars improvements involved addressing and organizing into a single logic model heretofore seemingly disparate evaluation issues regarding valuing (by whose values); the role of organizational and program context; and evaluation anxiety and utilization. Copyright 2009 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Jensen, Tina Blegind; Kjærgaard, Annemette; Svejvig, Per
2009-01-01
Institutional theory has proven to be a central analytical perspective for investigating the role of social and historical structures of information systems (IS) implementation. However, it does not explicitly account for how organisational actors make sense of and enact technologies in their local...... context. We address this limitation by exploring the potential of using institutional theory with sensemaking theory to study IS implementation in organisations. We argue that each theoretical perspective has its own explanatory power and that a combination of the two facilitates a much richer...... interpretation of IS implementation by linking macro- and micro-levels of analysis. To illustrate this, we report from an empirical study of the implementation of an Electronic Patient Record (EPR) system in a clinical setting. Using key constructs from the two theories, our findings address the phenomenon...
Nonsmooth Optimization Algorithms, System Theory, and Software Tools
1993-04-13
Optimization Algorithms, System Theory , and Scftware Tools" AFOSR-90-OO68 L AUTHOR($) Elijah Polak -Professor and Principal Investigator 7. PERFORMING...NSN 754Q-01-2W0-S500 Standard Form 295 (69O104 Draft) F’wsa*W by hA Sit 230.1""V AFOSR-90-0068 NONSMO0 TH OPTIMIZA TION A L GORI THMS, SYSTEM THEORY , AND
Stochastic chemical kinetics theory and (mostly) systems biological applications
Érdi, Péter; Lente, Gabor
2014-01-01
This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.
Theory and practice in machining systems
Ito, Yoshimi
2017-01-01
This book describes machining technology from a wider perspective by considering it within the machining space. Machining technology is one of the metal removal activities that occur at the machining point within the machining space. The machining space consists of structural configuration entities, e.g., the main spindle, the turret head and attachments such the chuck and mandrel, and also the form-generating movement of the machine tool itself. The book describes fundamental topics, including the form-generating movement of the machine tool and the important roles of the attachments, before moving on to consider the supply of raw materials into the machining space, and the discharge of swarf from it, and then machining technology itself. Building on the latest research findings “Theory and Practice in Machining System” discusses current challenges in machining. Thus, with the inclusion of introductory and advanced topics, the book can be used as a guide and survey of machining technology for students an...
Quantum theory of the nonconservative system II
International Nuclear Information System (INIS)
Yeon, K.H.
1984-01-01
Utilizing the propagator for a damped harmonic oscillator in nonconservative system, we show the corresponding wave function, energy expectation value, transition amplitude and uncertainty relation. (Author)
Hamilton-Jacobi theory of continuos systems
International Nuclear Information System (INIS)
Guler, Y.
1987-01-01
The Hamilton-Jacobi partial differential equation for classical field systems is obtained in a 5n-dimensional phase space and it is integrated by the method of characteristics. Space-time partial derivatives of Hamilton's principal functions S μ (Φ i , x v ) (μ, v = 1, 2, 3, 4) are identified as the energy-momentum tensor of the system
Public Management Information Systems: Theory and Prescription.
Bozeman, Barry; Bretschneider, Stuart
1986-01-01
The existing theoretical framework for research in management information systems (MIS) is criticized for its lack of attention to the external environment of organizations, and a new framework is developed which better accommodates MIS in public organizations: public management information systems. Four models of publicness that reflect external…
Contraction theory based adaptive synchronization of chaotic systems
International Nuclear Information System (INIS)
Sharma, B.B.; Kar, I.N.
2009-01-01
Contraction theory based stability analysis exploits the incremental behavior of trajectories of a system with respect to each other. Application of contraction theory provides an alternative way for stability analysis of nonlinear systems. This paper considers the design of a control law for synchronization of certain class of chaotic systems based on backstepping technique. The controller is selected so as to make the error dynamics between the two systems contracting. Synchronization problem with and without uncertainty in system parameters is discussed and necessary stability proofs are worked out using contraction theory. Suitable adaptation laws for unknown parameters are proposed based on the contraction principle. The numerical simulations verify the synchronization of the chaotic systems. Also parameter estimates converge to their true values with the proposed adaptation laws.
Nursing Services Delivery Theory: an open system approach.
Meyer, Raquel M; O'Brien-Pallas, Linda L
2010-12-01
This paper is a discussion of the derivation of the Nursing Services Delivery Theory from the application of open system theory to large-scale organizations. The underlying mechanisms by which staffing indicators influence outcomes remain under-theorized and unmeasured, resulting in a 'black box' that masks the nature and organization of nursing work. Theory linking nursing work, staffing, work environments, and outcomes in different settings is urgently needed to inform management decisions about the allocation of nurse staffing resources in organizations. A search of CINAHL and Business Source Premier for the years 1980-2008 was conducted using the following terms: theory, models, organization, organizational structure, management, administration, nursing units, and nursing. Seminal works were included. The healthcare organization is conceptualized as an open system characterized by energy transformation, a dynamic steady state, negative entropy, event cycles, negative feedback, differentiation, integration and coordination, and equifinality. The Nursing Services Delivery Theory proposes that input, throughput, and output factors interact dynamically to influence the global work demands placed on nursing work groups at the point of care in production subsystems. THE Nursing Services Delivery Theory can be applied to varied settings, cultures, and countries and supports the study of multi-level phenomena and cross-level effects. The Nursing Services Delivery Theory gives a relational structure for reconciling disparate streams of research related to nursing work, staffing, and work environments. The theory can guide future research and the management of nursing services in large-scale healthcare organizations. © 2010 Blackwell Publishing Ltd.
Coupling effects on turning points of infectious diseases epidemics in scale-free networks.
Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung
2017-05-31
Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.
A dynamic routing strategy with limited buffer on scale-free network
Wang, Yufei; Liu, Feng
2016-04-01
In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.
Dynamics of an epidemic model with quarantine on scale-free networks
Kang, Huiyan; Liu, Kaihui; Fu, Xinchu
2017-12-01
Quarantine strategies are frequently used to control or reduce the transmission risks of epidemic diseases such as SARS, tuberculosis and cholera. In this paper, we formulate a susceptible-exposed-infected-quarantined-recovered model on a scale-free network incorporating the births and deaths of individuals. Considering that the infectivity is related to the degrees of infectious nodes, we introduce quarantined rate as a function of degree into the model, and quantify the basic reproduction number, which is shown to be dependent on some parameters, such as quarantined rate, infectivity and network structures. A theoretical result further indicates the heterogeneity of networks and higher infectivity will raise the disease transmission risk while quarantine measure will contribute to the prevention of epidemic spreading. Meanwhile, the contact assumption between susceptibles and infectives may impact the disease transmission. Furthermore, we prove that the basic reproduction number serves as a threshold value for the global stability of the disease-free and endemic equilibria and the uniform persistence of the disease on the network by constructing appropriate Lyapunov functions. Finally, some numerical simulations are illustrated to perform and complement our analytical results.
Jiang, Zhong-Yuan; Ma, Jian-Feng
Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.
Nonlinear dynamical systems for theory and research in ergonomics.
Guastello, Stephen J
2017-02-01
Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system. Practitioner Summary: Nonlinear dynamical systems theory reframes problems in ergonomics that involve complex systems as they change over time. The leading applications to date include psychophysics, control theory, cognitive workload and fatigue, biomechanics, occupational accidents, resilience of systems, team coordination and synchronisation of system components.
A quest towards a mathematical theory of living systems
Bellomo, Nicola; Gibelli, Livio; Outada, Nisrine
2017-01-01
This monograph aims to lay the groundwork for the design of a unified mathematical approach to the modeling and analysis of large, complex systems composed of interacting living things. Drawing on twenty years of research in various scientific fields, it explores how mathematical kinetic theory and evolutionary game theory can be used to understand the complex interplay between mathematical sciences and the dynamics of living systems. The authors hope this will contribute to the development of new tools and strategies, if not a new mathematical theory. The first chapter discusses the main features of living systems and outlines a strategy for their modeling. The following chapters then explore some of the methods needed to potentially achieve this in practice. Chapter Two provides a brief introduction to the mathematical kinetic theory of classical particles, with special emphasis on the Boltzmann equation; the Enskog equation, mean field models, and Monte Carlo methods are also briefly covered. Chapter Three...
Control theory of digitally networked dynamic systems
Lunze, Jan
2013-01-01
The book gives an introduction to networked control systems and describes new modeling paradigms, analysis methods for event-driven, digitally networked systems, and design methods for distributed estimation and control. Networked model predictive control is developed as a means to tolerate time delays and packet loss brought about by the communication network. In event-based control the traditional periodic sampling is replaced by state-dependent triggering schemes. Novel methods for multi-agent systems ensure complete or clustered synchrony of agents with identical or with individual dynamic
Cable system transients theory, modeling and simulation
Ametani, Akihiro; Nagaoka, Naoto
2015-01-01
A systematic and comprehensive introduction to electromagnetic transient in cable systems, written by the internationally renowned pioneer in this field Presents a systematic and comprehensive introduction to electromagnetic transient in cable systems Written by the internationally renowned pioneer in the field Thorough coverage of the state of the art on the topic, presented in a well-organized, logical style, from fundamentals and practical applications A companion website is available
Theory of uniqueness of Indian Caste System
Ashwin Kumar
2006-01-01
Classical studies on pre-modern Indian social structure have suggested apparent differences between the Indian caste system and social stratification as one can discern in other parts of the world. However, one needs to question such dogmatic assertions that such vast differences really existed. An endeavor is made in this research paper to reflect on the nature of caste hierarchy in pre-modern India. The caste system forms the significant basis of pre-modern Indian social structure. Early wr...
Mirror theory applied to toroidal systems
International Nuclear Information System (INIS)
Cohen, R.H.
1987-01-01
Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, and losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma fetures are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong r.f. heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong r.f. heating and collisions. 37 refs., 3 figs
Mirror theory applied to toroidal systems
International Nuclear Information System (INIS)
Cohen, R.H.
1987-01-01
Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, end losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma features are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong rf heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong rf heating and collisions. 37 refs
Residue number systems theory and applications
Mohan, P V Ananda
2016-01-01
This new and expanded monograph improves upon Mohan's earlier book, Residue Number Systems (Springer, 2002) with a state of the art treatment of the subject. Replete with detailed illustrations and helpful examples, this book covers a host of cutting edge topics such as the core function, the quotient function, new Chinese Remainder theorems, and large integer operations. It also features many significant applications to practical communication systems and cryptography such as FIR filters and elliptic curve cryptography. Starting with a comprehensive introduction to the basics and leading up to current research trends that are not yet widely distributed in other publications, this book will be of interest to both researchers and students alike.
Replacement of the Project Manager Reflected Through Activity Theory and Work-System Theory
Vartiainen, Tero; Aramo-Immonen, Heli; Jussila, Jari; Pirhonen, Maritta; Liikamaa, Kirsi
Replacement of the project manager (RPM) is a known phenomenon in information systems (IS) projects, but scant attention is given to it in the project management or IS literature. Given its critical effects on the project business, the organization, the project team, and the project manager, it should be studied in more depth. We identified factors which make RPM occurrences inherently different and we show that work-system theory and activity theory give comprehensive lenses to advance research on RPM. For the future research on RPM we identified three objectives: experiences on RPM, process model for RPM, and organizational culture's influence on RPM occurrences.
Towards a Systemic Theory of Gifted Education
Ziegler, Albert; Phillipson, Shane N.
2012-01-01
In this target article, we argue that current approaches to gifted education are based on the erroneous view that to understand the development of exceptionality we need to understand firstly the components of giftedness, including cognitive such as intelligence and non-cognitive factors such as motivation. In contrast, systemic approaches to…
Nursing Services Delivery Theory: an open system approach
Meyer, Raquel M; O’Brien-Pallas, Linda L
2010-01-01
meyer r.m. & o’brien-pallas l.l. (2010)Nursing services delivery theory: an open system approach. Journal of Advanced Nursing66(12), 2828–2838. Aim This paper is a discussion of the derivation of the Nursing Services Delivery Theory from the application of open system theory to large-scale organizations. Background The underlying mechanisms by which staffing indicators influence outcomes remain under-theorized and unmeasured, resulting in a ‘black box’ that masks the nature and organization of nursing work. Theory linking nursing work, staffing, work environments, and outcomes in different settings is urgently needed to inform management decisions about the allocation of nurse staffing resources in organizations. Data sources A search of CINAHL and Business Source Premier for the years 1980–2008 was conducted using the following terms: theory, models, organization, organizational structure, management, administration, nursing units, and nursing. Seminal works were included. Discussion The healthcare organization is conceptualized as an open system characterized by energy transformation, a dynamic steady state, negative entropy, event cycles, negative feedback, differentiation, integration and coordination, and equifinality. The Nursing Services Delivery Theory proposes that input, throughput, and output factors interact dynamically to influence the global work demands placed on nursing work groups at the point of care in production subsystems. Implications for nursing The Nursing Services Delivery Theory can be applied to varied settings, cultures, and countries and supports the study of multi-level phenomena and cross-level effects. Conclusion The Nursing Services Delivery Theory gives a relational structure for reconciling disparate streams of research related to nursing work, staffing, and work environments. The theory can guide future research and the management of nursing services in large-scale healthcare organizations. PMID:20831573
International Nuclear Information System (INIS)
Lin Min; Wang Gang; Chen Tianlun
2007-01-01
A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA) scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behaviors. More importantly, these critical behaviors change with the parameter b, which weights the distance in comparison with the degree in the GBA network evolution.
Generalized Einstein-Aether theories and the Solar System
International Nuclear Information System (INIS)
Bonvin, Camille; Durrer, Ruth; Ferreira, Pedro G.; Zlosnik, Tom G.; Starkman, Glenn
2008-01-01
It has been shown that generalized Einstein-Aether theories may lead to significant modifications to the nonrelativistic limit of the Einstein equations. In this paper we study the effect of a general class of such theories on the Solar System. We consider corrections to the gravitational potential in negative and positive powers of distance from the source. Using measurements of the perihelion shift of Mercury and time delay of radar signals to Cassini, we place constraints on these corrections. We find that a subclass of generalized Einstein-Aether theories is compatible with these constraints
Affordances in activity theory and cognitive systems engineering
DEFF Research Database (Denmark)
Albrechtsen, H.; Andersen, H.H.K.; Bødker, S.
2001-01-01
on design for low level interaction modalities. To incorporate the concept of affordances in the design of human computer interaction it is necessary to systematically unravel affordances that supporthuman action possibilities. Furthermore, it is a necessity that Gibson's theory of affordances...... is supplemented by careful analyses of other human modalities and activities than visual perception. Within HMI two well established perspectives on HMI,Activity Theory (AT) and Cognitive Systems Engineering (CSE), have discussed such analyses and design of action possibilities focusing on providing computer...... to cover deeper semantic and pragmatic aspects of the ecology of work, as compared with the previous applications of Gibson's theory in HMI....
Mobile Hybrid Power System Theory of Operation
Pierce, Timothy M. Jr.
2016-01-01
Efficiency is a driving constraint for electrical power systems as global energy demands are ever increasing. Followed by the introduction of diesel generators, electricity has become available in more locations than ever. However, operating a diesel generator on its own is not the most energy efficient. This is because the high crest factor loads, of many applications, decrease the fuel efficiency of a hydrocarbon generator. To understand this, we need to understand how an electrical load af...
Advancing Theory? Landscape Archaeology and Geographical Information Systems
Directory of Open Access Journals (Sweden)
Di Hu
2012-05-01
Full Text Available This paper will focus on how Geographical Information Systems (GIS have been applied in Landscape Archaeology from the late 1980s to the present. GIS, a tool for organising and analysing spatial information, has exploded in popularity, but we still lack a systematic overview of how it has contributed to archaeological theory, specifically Landscape Archaeology. This paper will examine whether and how GIS has advanced archaeological theory through a historical review of its application in archaeology.
On nonequilibrium many-body systems III: nonlinear transport theory
International Nuclear Information System (INIS)
Luzzi, R.; Vasconcellos, A.R.; Algarte, A.C.S.
1986-01-01
A nonlinear transport theory for many-body systems arbitrarily away from equilibrium, based on the nonequilibrium statistical operator (NSO) method, is presented. Nonlinear transport equations for a basis set of dynamical quantities are derived using two equivalent treatments that may be considered far reaching generalizations of the Hilbert-Chapman-Enskog method and Mori's generalized Langevin equations method. The first case is considered in some detail and the general characteristics of the theory are discussed. (Author) [pt
A monequillibrium mary-body systems IV: Respouse function theory
International Nuclear Information System (INIS)
Luzzi, R.; Vasconcellos, A.R.; Algarte, A.C.S.
1987-01-01
A response function theory for many-body systems arbitrarily away from equilibrium is presented. It is based on the nonequilibrium statistical operator method fully described in a previous article. A formal theory is presented evaluation of transition probabilties and the average values of dynamical quantities in far-from-equilibrium many-body systems under the action of external perturbations. A nonequilibrium thermodynamic Green's function algorithn appropriate for the calculation of response functions and scattering cross sections in terms of a generalized fluctuation-dissipation theorem for far-from-equilibrium systems is also derived. (author) [pt
Cosmological Simulations with Scale-Free Initial Conditions. I. Adiabatic Hydrodynamics
International Nuclear Information System (INIS)
Owen, J.M.; Weinberg, D.H.; Evrard, A.E.; Hernquist, L.; Katz, N.
1998-01-01
We analyze hierarchical structure formation based on scale-free initial conditions in an Einstein endash de Sitter universe, including a baryonic component with Ω bary = 0.05. We present three independent, smoothed particle hydrodynamics (SPH) simulations, performed at two resolutions (32 3 and 64 3 dark matter and baryonic particles) and with two different SPH codes (TreeSPH and P3MSPH). Each simulation is based on identical initial conditions, which consist of Gaussian-distributed initial density fluctuations that have a power spectrum P(k) ∝ k -1 . The baryonic material is modeled as an ideal gas subject only to shock heating and adiabatic heating and cooling; radiative cooling and photoionization heating are not included. The evolution is expected to be self-similar in time, and under certain restrictions we identify the expected scalings for many properties of the distribution of collapsed objects in all three realizations. The distributions of dark matter masses, baryon masses, and mass- and emission-weighted temperatures scale quite reliably. However, the density estimates in the central regions of these structures are determined by the degree of numerical resolution. As a result, mean gas densities and Bremsstrahlung luminosities obey the expected scalings only when calculated within a limited dynamic range in density contrast. The temperatures and luminosities of the groups show tight correlations with the baryon masses, which we find can be well represented by power laws. The Press-Schechter (PS) approximation predicts the distribution of group dark matter and baryon masses fairly well, though it tends to overestimate the baryon masses. Combining the PS mass distribution with the measured relations for T(M) and L(M) predicts the temperature and luminosity distributions fairly accurately, though there are some discrepancies at high temperatures/luminosities. In general the three simulations agree well for the properties of resolved groups, where a group
Theories about architecture and performance of multi-agent systems
Gazendam, Henk W.M.; Jorna, René J.
1998-01-01
Multi-agent systems are promising as models of organization because they are based on the idea that most work in human organizations is done based on intelligence, communication, cooperation, and massive parallel processing. They offer an alternative for system theories of organization, which are
Acknowledging the Infrasystem: A Critical Feminist Analysis of Systems Theory.
Creedon, Pamela J.
1993-01-01
Examines the absence of a critical feminist perspective in the application of systems theory as a unifying model for public relations. Describes an unacknowledged third system, the infrasystem, that constructs both suprasystem and subsystem interactions. Concludes with a case analysis of sport as illustration. (HB)
What Should Instructional Designers Know about General Systems Theory?
Salisbury, David F.
1989-01-01
Describes basic concepts in the field of general systems theory (GST) and explains the relationship between instructional systems design (ISD) and GST. Benefits of integrating GST into the curriculum of ISD graduate programs are discussed, and a short bibliography on GST is included. (LRW)
Quantum theory of many-particle systems
Fetter, Alexander L
2003-01-01
""Singlemindedly devoted to its job of educating potential many-particle theorists…deserves to become the standard text in the field."" - Physics Today""The most comprehensive textbook yet published in its field and every postgraduate student or teacher in this field should own or have access to a copy."" - EndeavorA self-contained, unified treatment of nonrelativistic many-particle systems, this text offers a solid introduction to procedures in a manner that enables students to adopt techniques for their own use. Its discussions of formalism and applications move easily between general theo
Anthropocentric language theory and Serbian case systems
Directory of Open Access Journals (Sweden)
Topolinjska Zuzana
2002-01-01
Full Text Available The author understands case as a relationship of syntactic dependence between a subordinated noun phrase and the governing syntactic construction (predicative expression and/or another noun phrase. The above definition construes case as a universal category characteristics of all the languages sharing the nomen vs verbum opposition. Particular cases are conceived as primarily semantically motivated. The two relevant semantic parameters are /+/ -human / (or /+/ -animated/ and /+/ -localized/, i. e. - in other words - the so-called hierarchy of animateness and the spatial location of the objects that the corresponding noun phrases refer to. N and D are being characterized as /+ hum/, A and I as /-hum/ and L as belonging to another semantic paradigm is defined simply as /+ loc/. Results of the analyses of morphological syncretism's and of syntactic exponents of the NPs-dependence found in Serbian case systems support the above tentative interpretation of the case as a (semantic and syntactic category.
The temporolimbic system theory of paranoid schizophrenia.
Casanova, M F
1997-01-01
The hippocampus serves as a funnel for heavily processed sensory information that has converged at the entorhinal cortex. Lesions of the hippocampus do not alter incoming sensory or motor information but, rather, alter their integration with our baggage of emotional experiences and social values. According to Bogerts, such a lesion would be ideally situated to result in laboriously processed sensory information that is out of context to our outside environment. In this regard, Bogerts describes the pathological findings of a patient with a gross delusional disorder. The salient finding at autopsy was a developmental lesion in the left posterior parahippocampal gyrus. Although a number of lesions have been described in the brains of patients with schizophrenia, Bogerts believes that those in the limbic system appear critical to the expression of paranoid symptoms.
Product Distribution Theory for Control of Multi-Agent Systems
Lee, Chia Fan; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for controlling Multi-Agent Systems (MAS's). First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint stare of the agents. Accordingly we can consider a team game in which the shared utility is a performance measure of the behavior of the MAS. For such a scenario the game is at equilibrium - the Lagrangian is optimized - when the joint distribution of the agents optimizes the system's expected performance. One common way to find that equilibrium is to have each agent run a reinforcement learning algorithm. Here we investigate the alternative of exploiting PD theory to run gradient descent on the Lagrangian. We present computer experiments validating some of the predictions of PD theory for how best to do that gradient descent. We also demonstrate how PD theory can improve performance even when we are not allowed to rerun the MAS from different initial conditions, a requirement implicit in some previous work.
Open-system Kohn-Sham density functional theory.
Zhou, Yongxi; Ernzerhof, Matthias
2012-03-07
A simple model for electron transport through molecules is provided by the source-sink potential (SSP) method [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)]. In SSP, the boundary conditions of having an incoming and outgoing electron current are enforced through complex potentials that are added to the Hamiltonian. Depending on the sign of the imaginary part of the potentials, current density is generated or absorbed. In this way, a finite system can be used to model infinite molecular electronic devices. The SSP has originally been developed for the Hückel method and subsequently it has been extended [F. Goyer and M. Ernzerhof, J. Chem. Phys. 134, 174101 (2011)] to the Hubbard model. Here we present a step towards its generalization for first-principles electronic structure theory methods. In particular, drawing on our earlier work, we discuss a new generalized density functional theory for complex non-Hermitian Hamiltonians. This theory enables us to combine SSP and Kohn-Sham theory to obtain a method for the description of open systems that exchange current density with their environment. Similarly, the Hartree-Fock method is extended to the realm of non-Hermitian, SSP containing Hamiltonians. As a proof of principle, we present the first applications of complex-density functional theory (CODFT) as well as non-Hermitian Hartree-Fock theory to electron transport through molecules. © 2012 American Institute of Physics
Extending density functional embedding theory for covalently bonded systems.
Yu, Kuang; Carter, Emily A
2017-12-19
Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.
Systems Theory and the Earth Systems Approach in Science Education. ERIC Digest.
Lee, Hyongyong
The systems approach provides a framework for integrating different scientific disciplines. This approach is used often in Earth Systems Education. This ERIC Digest describes the systems theory and its influence on science education. (Contains 16 references.) (YDS)
Gauge theory for finite-dimensional dynamical systems
International Nuclear Information System (INIS)
Gurfil, Pini
2007-01-01
Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory
Systemic Functional Theory: A Pickax of Textual Investigation
Directory of Open Access Journals (Sweden)
Taofeek Dalamu
2017-03-01
Full Text Available The study examines Systemic Functional Theory (SFT as a tool of examining text, and perhaps, text of any dimension as long as it falls within the grammatical organs of the clause. The author provides explanations for the theory from its relevant source(s. The chronological appreciation involves the efforts of Saussure, Firth, Malinowski, Hjelmslev, etc. However, Halliday’s insight seems prominent and upon which Systemic Functional Theory receives a global status that it has assumed today. Halliday constructs numerous concepts e.g. lexicogrammar, processes, cohesion, coherence, system, system network with background from traditional grammar and sociological tokens. In addition to that, the three metafunctions are characterized as its core operational concepts. Out of these, the mood system serves as the instrument of analysis of Psalm one utilized in this endeavor as a case study. Although the clauses fall within the profile of the indicative and imperative, the study reveals that some of the structures are inverted in order to propagate the intended messages. To that end, there are inverted indicative clauses expressed as inverted declarative statements, inverted imperative questions and inverted negativized polarity. In sum, Systemic Functional Theory is a facility for explaining different shapes of texts.
The Einstein-Vlasov System/Kinetic Theory
Directory of Open Access Journals (Sweden)
Håkan Andréasson
2002-12-01
Full Text Available The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e., fluid models. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.
The Nature of Living Systems: An Exposition of the Basic Concepts in General Systems Theory.
Miller, James G.
General systems theory is a set of related definitions, assumptions, and propositions which deal with reality as an integrated hierarchy of organizations of matter and energy. In this paper, the author defines the concepts of space, time, matter, energy, and information in terms of their meaning in general systems theory. He defines a system as a…
Network analysis and synthesis a modern systems theory approach
Anderson, Brian D O
2006-01-01
Geared toward upper-level undergraduates and graduate students, this book offers a comprehensive look at linear network analysis and synthesis. It explores state-space synthesis as well as analysis, employing modern systems theory to unite the classical concepts of network theory. The authors stress passive networks but include material on active networks. They avoid topology in dealing with analysis problems and discuss computational techniques. The concepts of controllability, observability, and degree are emphasized in reviewing the state-variable description of linear systems. Explorations
Lectures on algebraic system theory: Linear systems over rings
Kamen, E. W.
1978-01-01
The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.
Time delay systems theory, numerics, applications, and experiments
Ersal, Tulga; Orosz, Gábor
2017-01-01
This volume collects contributions related to selected presentations from the 12th IFAC Workshop on Time Delay Systems, Ann Arbor, June 28-30, 2015. The included papers present novel techniques and new results of delayed dynamical systems. The topical spectrum covers control theory, numerical analysis, engineering and biological applications as well as experiments and case studies. The target audience primarily comprises research experts in the field of time delay systems, but the book may also be beneficial for graduate students alike. .
Statistical quasi-particle theory for open quantum systems
Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2018-04-01
This paper presents a comprehensive account on the recently developed dissipaton-equation-of-motion (DEOM) theory. This is a statistical quasi-particle theory for quantum dissipative dynamics. It accurately describes the influence of bulk environments, with a few number of quasi-particles, the dissipatons. The novel dissipaton algebra is then followed, which readily bridges the Schrödinger equation to the DEOM theory. As a fundamental theory of quantum mechanics in open systems, DEOM characterizes both the stationary and dynamic properties of system-and-bath interferences. It treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that could be experimentally measurable. Examples are the linear or nonlinear Fano interferences and the Herzberg-Teller vibronic couplings in optical spectroscopies. This review covers the DEOM construction, the underlying dissipaton algebra and theorems, the physical meanings of dynamical variables, the possible identifications of dissipatons, and some recent advancements in efficient DEOM evaluations on various problems. The relations of the present theory to other nonperturbative methods are also critically presented.
International Summer School on Mathematical Systems Theory and Economics
Szegö, G
1969-01-01
The International Summer School on Mathematical Systems Theory and Economics was held at the Villa Monastero in Varenna, Italy, from June 1 through June 12, 1967. The objective of this Summer School was to review the state of the art and the prospects for the application of the mathematical theory of systems to the study and the solution of economic problems. Particular emphasis was given to the use of the mathematical theory of control for the solution of problems in economics. It was felt that the publication of a volume collecting most of the lectures given at the school would show the current status of the application of these methods. The papers are organized into four sections arranged into two volumes: basic theories and optimal control of economic systems which appear in the first volume, and special mathematical problems and special applications which are contained in the second volume. Within each section the papers follow in alphabetical order by author. The seven papers on basic theories are a rat...
Li, Jianan; Zhou, Qizhi; Campos, Luiza C
2017-12-01
Greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland (CW) was employed for removing four emerging pharmaceuticals and personal care products (PPCPs) (i.e. DEET, paracetamol, caffeine and triclosan). Orthogonal design was used to test the effect of light intensity, aeration, E.coli abundance and plant biomass on the target compounds. Synthetic wastewater contaminated with the target compounds at concentration of 25 μg/L was prepared, and both batch and continuous flow experiments were conducted. Up to 100% removals were achieved for paracetamol (PAR), caffeine (CAF) and tricolsan (TCS) while the highest removal for DEET was 32.2% in batch tests. Based on orthogonal Duncan analysis, high light intensity (240 μmolmm -2 s -1 ), full aeration, high plant biomass (1.00 kg/m 2 ) and high E.coli abundance (1.0 × 10 6 CFU/100 mL) favoured elimination of the PPCPs. Batch verification test achieved removals of 17.1%, 98.8%, 96.4% and 95.4% for DEET, PAR, CAF and TCS respectively. Continuous flow tests with CW only and CW followed by stabilization tank (CW-ST) were carried out. Final removals of the PPCP contaminants were 32.6%, 97.7%, 98.0% and 100% for DEET, PAR, CAF and TCS, respectively, by CW system alone, while 43.3%, 97.5%, 98.2% and 100%, respectively, were achieved by CW-ST system. By adding the ST tank, PPCP concentrations decreased significantly faster (p < 0.05) compared with continuous flow CW alone. In addition, after removing aerators during continuous flow CW experiments, the treatment systems presented good stability for the PPCP removals. CW-ST showed better chemical oxygen demand (COD) and total organic carbon (TOC) removals (89.3%, 91.2%, respectively) than CW only (79.4%, 85.2%, respectively). However, poor DEET removal (<50%) and high E.coli abundance (up to 1.7 log increase) in the final treated water indicated further treatment processes may be required. Statistical analysis showed significant correlations
Modeling of MEMS piezoelectric energy harvesters using electromagnetic and power system theories
Ahmad, Mahmoud Al; Alshareef, Husam N.; Elshurafa, Amro M.; Salama, Khaled N.
2012-01-01
-to-electrical analogy, electromagnetic theory, and power system theory is developed. The mechanical-to-electrical analogy and power system theory allow the derivation of an equivalent input impedance expression for the network, whereas electromagnetic transmission line
A synthesis theory for self-oscillating adaptive systems /SOAS/
Horowitz, I.; Smay, J.; Shapiro, A.
1974-01-01
A quantitative synthesis theory is presented for the Self-Oscillating Adaptive System (SOAS), whose nonlinear element has a static, odd character with hard saturation. The synthesis theory is based upon the quasilinear properties of the SOAS to forced inputs, which permits the extension of quantitative linear feedback theory to the SOAS. A reasonable definition of optimum design is shown to be the minimization of the limit cycle frequency. The great advantages of the SOAS is its zero sensitivity to pure gain changes. However, quasilinearity and control of the limit cycle amplitude at the system output, impose additional constraints which partially or completely cancel this advantage, depending on the numerical values of the design parameters. By means of narrow-band filtering, an additional factor is introduced which permits trade-off between filter complexity and limit cycle frequency minimization.
A Theory of the Origin of the Solar System
Directory of Open Access Journals (Sweden)
V. MITRA
1969-06-01
Full Text Available theory of tlie origin of the solar system is propounded.
The approach belongs to the dualistic class of theories but still retains all
the essential features of a monistic theory. It emphasizes the need of a
foreign body approaching the solar nebula for the occurrence of an instability
in the boundary layer of the nebular disc. This foreign body is postulated
to be a brother star of the Sun in the sense that both belong to a common
central parent body such as any two successive planets belong to
the Sun. The analysis gives a law of distance of the planets from tlie Sun.
This law is obeyed separately by both the groups of the planets more closely
than the existing Titius - Bode's law. The law is also found to be applicable
in the various satellite systems.
Nonautonomous linear Hamiltonian systems oscillation, spectral theory and control
Johnson, Russell; Novo, Sylvia; Núñez, Carmen; Fabbri, Roberta
2016-01-01
This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hami...
A mean field theory of coded CDMA systems
International Nuclear Information System (INIS)
Yano, Toru; Tanaka, Toshiyuki; Saad, David
2008-01-01
We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems
A mean field theory of coded CDMA systems
Energy Technology Data Exchange (ETDEWEB)
Yano, Toru [Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522 (Japan); Tanaka, Toshiyuki [Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)], E-mail: yano@thx.appi.keio.ac.jp
2008-08-15
We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.
Ecological theories of systems and contextual change in medical education.
Ellaway, Rachel H; Bates, Joanna; Teunissen, Pim W
2017-12-01
Contemporary medical practice is subject to many kinds of change, to which both individuals and systems have to respond and adapt. Many medical education programmes have their learners rotating through different training contexts, which means that they too must learn to adapt to contextual change. Contextual change presents many challenges to medical education scholars and practitioners, not least because of a somewhat fractured and contested theoretical basis for responding to these challenges. There is a need for robust concepts to articulate and connect the various debates on contextual change in medical education. Ecological theories of systems encompass a range of concepts of how and why systems change and how and why they respond to change. The use of these concepts has the potential to help medical education scholars explore the nature of change and understand the role it plays in affording as well as limiting teaching and learning. This paper, aimed at health professional education scholars and policy makers, explores a number of key concepts from ecological theories of systems to present a comprehensive model of contextual change in medical education to inform theory and practice in all areas of medical education. The paper considers a range of concepts drawn from ecological theories of systems, including biotic and abiotic factors, panarchy, attractors and repellers, basins of attraction, homeostasis, resilience, adaptability, transformability and hysteresis. Each concept is grounded in practical examples from medical education. Ecological theories of systems consider change and response in terms of adaptive cycles functioning at different scales and speeds. This can afford opportunities for systematic consideration of responses to contextual change in medical education, which in turn can inform the design of education programmes, activities, evaluations, assessments and research that accommodates the dynamics and consequences of contextual change.
The Formation of the Solar System: Theories Old and New
Woolfson, Michael
ch. 1. Theories come and theories go -- ch. 2. Measuring atoms and the universe -- ch. 3. Greek offerings -- ch. 4. The shoulders of giants -- ch. 5. A voyage of discovery to the solar system -- ch. 6. The problem to be solved -- ch. 7. The French connection -- ch. 8. American Catherine-Wheels -- ch. 9. British big tides -- ch. 10. Russian could capture-with British help -- ch. 11. German vortices-with a little French help -- ch. 12. McCrea's floccules -- ch. 13. What earlier theories indicate -- ch. 14. Disks around new stars -- ch. 15. Planets around other stars -- ch. 16. Disks around older stars -- ch. 17. What a theory should explain now -- ch. 18. The new Solar Nebula theory: the angular momentum problem -- ch. 19. Making planets top-down -- ch. 20. A bottom-up alternative -- ch. 21. Making planets faster -- ch. 22. Wandering planets -- ch. 23. Back to top-down -- ch. 24. This is the stuff that stars are made of -- ch. 25. Making dense cool clouds -- ch. 26. A star is born -- ch. 27. Close to the maddening crowd -- ch. 28. Close encounters of the stellar kind -- ch. 29. Ever decreasing circles -- ch. 30. How many planetary systems? -- ch. 31. Starting a family -- ch. 32. Tilting-but not as windmills -- ch. 33. The terrestrial planets raise problems! -- ch. 34. A British Bang theory: the earth and Venus -- ch. 35. Behold the wandering moon -- ch. 36. Fleet Mercury and warlike Mars -- ch. 37. Gods of the sea and the nether regions -- ch. 38. Bits and pieces -- ch. 39. Comets-the harbingers of doom! -- ch. 40. Making atoms with a biggish bang -- ch. 41. Is the capture theory valid?
Applications of Bayesian decision theory to intelligent tutoring systems
Vos, Hendrik J.
1994-01-01
Some applications of Bayesian decision theory to intelligent tutoring systems are considered. How the problem of adapting the appropriate amount of instruction to the changing nature of a student's capabilities during the learning process can be situated in the general framework of Bayesian decision
A Dynamic Systems Theory Model of Visual Perception Development
Coté, Carol A.
2015-01-01
This article presents a model for understanding the development of visual perception from a dynamic systems theory perspective. It contrasts to a hierarchical or reductionist model that is often found in the occupational therapy literature. In this proposed model vision and ocular motor abilities are not foundational to perception, they are seen…
Optimal relaxed causal sampler using sampled-date system theory
Shekhawat, Hanumant; Meinsma, Gjerrit
This paper studies the design of an optimal relaxed causal sampler using sampled data system theory. A lifted frequency domain approach is used to obtain the existence conditions and the optimal sampler. A state space formulation of the results is also provided. The resulting optimal relaxed causal
An Application of General System Theory (GST) to Group Therapy.
Matthews, Charles O.
1992-01-01
Demonstrates the compatibility of General System Theory (GST) with the traditional counseling literature in explicating a therapy group's progression through Tuckman's (1965, 1977) developmental stages (forming, storming, norming, performing, and adjourning). Description uses both traditional group literature and GST concepts. (Author/NB)
Study of one dimensional magnetic system via field theory
International Nuclear Information System (INIS)
Talim, S.L.
1988-04-01
We present a study of one-dimensional magnetic system using field theory methods. We studied the discreteness effects in a classical anisotropic one dimensional antiferromagnet in an external magnetic field. It is shown that for TMMC, at the temperatures and magnetic fields where most experiments have been done, the corrections are small and can be neglected. (author)
Solution of quantum integrable systems from quiver gauge theories
Energy Technology Data Exchange (ETDEWEB)
Dorey, Nick [Department of Applied Mathematics and Theoretical Physics, University of Cambridge,Cambridge (United Kingdom); Zhao, Peng [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook (United States)
2017-02-23
We construct new integrable systems describing particles with internal spin from four-dimensional N = 2 quiver gauge theories. The models can be quantized and solved exactly using the quantum inverse scattering method and also using the Bethe/Gauge correspondence.
Random matrix theory for pseudo-Hermitian systems: Cyclic blocks
Indian Academy of Sciences (India)
We discuss the relevance of random matrix theory for pseudo-Hermitian systems, and, for Hamiltonians that break parity and time-reversal invariance . In an attempt to understand the random Ising model, we present the treatment of cyclic asymmetric matrices with blocks and show that the nearest-neighbour spacing ...
International Nuclear Information System (INIS)
Aldana, Maximino; Larralde, Hernan
2004-01-01
We investigate the nature of the phase transition from an ordered to a disordered state that occurs in a family of neural network models with noise. These models are closely related to the majority voter model, where a ferromagneticlike interaction between the elements prevails. Each member of the family is distinguished by the network topology, which is determined by the probability distribution of the number of incoming links. We show that for homogeneous random topologies, the phase transition belongs to the standard mean-field universality class, characterized by the order parameter exponent β=1/2. However, for scale-free networks we obtain phase transition exponents ranging from 1/2 to infinity. Furthermore, we show the existence of a phase transition even for values of the scale-free exponent in the interval (1.5,2], where the average network connectivity diverges
Complex Time-Delay Systems Theory and Applications
Atay, Fatihcan M
2010-01-01
Time delays in dynamical systems arise as an inevitable consequence of finite speeds of information transmission. Realistic models increasingly demand the inclusion of delays in order to properly understand, analyze, design, and control real-life systems. The goal of this book is to present the state-of-the-art in research on time-delay dynamics in the framework of complex systems and networks. While the mathematical theory of delay equations is quite mature, its application to the particular problems of complex systems and complexity is a newly emerging field, and the present volume aims to play a pioneering role in this perspective. The chapters in this volume are authored by renowned experts and cover both theory and applications in a wide range of fields, with examples extending from neuroscience and biology to laser physics and vehicle traffic. Furthermore, all chapters include sufficient introductory material and extensive bibliographies, making the book a self-contained reference for both students and ...
International Conference on Dynamical Systems : Theory and Applications
2016-01-01
The book is a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.
International Conference on Dynamical Systems : Theory and Applications
2016-01-01
The book is the second volume of a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.
Theory of heavy-fermion compounds theory of strongly correlated Fermi-systems
Amusia, Miron Ya; Shaginyan, Vasily R; Stephanovich, Vladimir A
2015-01-01
This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good...
Theory of ground state factorization in quantum cooperative systems.
Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio
2008-05-16
We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.
Yang-Baxter algebra - Integrable systems - Conformal quantum field theories
International Nuclear Information System (INIS)
Karowski, M.
1989-01-01
This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)
Elements of a compatible optimization theory for coupled systems
International Nuclear Information System (INIS)
Bonnemay, A.
1969-01-01
The first theory deals with the compatible optimization in coupled systems. A game theory for two players and with a non-zero sum is first developed. The conclusions are then extended to the case of a game with any finite number of players. After this essentially static study, the dynamic aspect of the problem is applied to the case of games which evolve. By applying PONTRYAGIN maximum principle it is possible to derive a compatible optimisation theorem which constitutes a necessary condition. (author) [fr
Nonlinear PI control of chaotic systems using singular perturbation theory
International Nuclear Information System (INIS)
Wang Jiang; Wang Jing; Li Huiyan
2005-01-01
In this paper, we develop the nonlinear PI controllers for a class of chaotic systems based on singular perturbation theory. The original system is decomposed into two reduced order systems, to which the nonlinear uncertain terms belongs. In order to alleviate the deterioration of these nonlinear uncertainties, the nonlinear PI controllers are applied to each subsystem and combined to construct the composite controller for the full order system. The effectiveness and feasibility of the proposed control scheme is demonstrated through numerical simulations on the chaotic Chua's circuit
Linear circuits, systems and signal processing: theory and application
International Nuclear Information System (INIS)
Byrnes, C.I.; Saeks, R.E.; Martin, C.F.
1988-01-01
In part because of its universal role as a first approximation of more complicated behaviour and in part because of the depth and breadth of its principle paradigms, the study of linear systems continues to play a central role in control theory and its applications. Enhancing more traditional applications to aerospace and electronics, application areas such as econometrics, finance, and speech and signal processing have contributed to a renaissance in areas such as realization theory and classical automatic feedback control. Thus, the last few years have witnessed a remarkable research effort expended in understanding both new algorithms and new paradigms for modeling and realization of linear processes and in the analysis and design of robust control strategies. The papers in this volume reflect these trends in both the theory and applications of linear systems and were selected from the invited and contributed papers presented at the 8th International Symposium on the Mathematical Theory of Networks and Systems held in Phoenix on June 15-19, 1987
Guillemin, Ernst A
2013-01-01
An eminent electrical engineer and authority on linear system theory presents this advanced treatise, which approaches the subject from the viewpoint of classical dynamics and covers Fourier methods. This volume will assist upper-level undergraduates and graduate students in moving from introductory courses toward an understanding of advanced network synthesis. 1963 edition.
Energy flow theory of nonlinear dynamical systems with applications
Xing, Jing Tang
2015-01-01
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...
Mode 3 knowledge production: Systems and systems theory, clusters and networks
Carayannis, Elias G.; Campbell, David F. J.; Rehman, Scheherazade S.
2016-01-01
With the comprehensive term of "Mode 3," we want to draw a conceptual link between systems and systems theory and want to demonstrate further how this can be applied to knowledge in the next steps. Systems can be understood as being composed of "elements", which are tied together by a "self-rationale". For innovation, often innovation clusters and innovation networks are being regarded as important. By leveraging systems theory for innovation concepts, one can implement references between the...
Theory of constraints for publicly funded health systems.
Sadat, Somayeh; Carter, Michael W; Golden, Brian
2013-03-01
Originally developed in the context of publicly traded for-profit companies, theory of constraints (TOC) improves system performance through leveraging the constraint(s). While the theory seems to be a natural fit for resource-constrained publicly funded health systems, there is a lack of literature addressing the modifications required to adopt TOC and define the goal and performance measures. This paper develops a system dynamics representation of the classical TOC's system-wide goal and performance measures for publicly traded for-profit companies, which forms the basis for developing a similar model for publicly funded health systems. The model is then expanded to include some of the factors that affect system performance, providing a framework to apply TOC's process of ongoing improvement in publicly funded health systems. Future research is required to more accurately define the factors affecting system performance and populate the model with evidence-based estimates for various parameters in order to use the model to guide TOC's process of ongoing improvement.
Zone of Proximal Development (ZPD) as an Emergent System: A Dynamic Systems Theory Perspective.
Karimi-Aghdam, Saeed
2017-03-01
This paper sets out to present a novel construal of one of the notions of Vygotskian cultural-historical theory viz., zone of proximal development (ZPD) drawing upon dynamic systems theory. The principal thesis maintains that ZDP is an emergent and dynamic system which is engendered by a dialectical concatenation of psychogenesic and sociogenesic facets of human development over time. It is reasoned that Vygotskian cultural-historical theory of human development, by invoking dialectical logic, has transcended Cartesian substance dualism and in turn has proffered a monistic and process-anchored ontology for emerging becoming of human consciousness. Likewise, it is contended that dynamic systems theory, having assumed fluent flux of reality with a capital R as its ontological axiom, entails a consilience of cognitive and contextual conceptual schemes to describe, explain, and optimize human development. The paper concludes by drawing some interpretive conclusions in regard to ZPD from dynamic systems theory perspective.
The theory and practice of the Dewey Decimal Classification system
Satija, M P
2013-01-01
The Dewey Decimal Classification system (DDC) is the world's most popular library classification system. The 23rd edition of the DDC was published in 2011. This second edition of The Theory and Practice of the Dewey Decimal Classification System examines the history, management and technical aspects of the DDC up to its latest edition. The book places emphasis on explaining the structure and number building techniques in the DDC and reviews all aspects of subject analysis and number building by the most recent version of the DDC. A history of, and introduction to, the DDC is followed by subjec
Theory and applications of artificial endocrine system-an overview
Institute of Scientific and Technical Information of China (English)
CUI Wei; QIANG Sheng; GAO X Z
2006-01-01
Inspired by the biological endocrine system, the Artificial Endocrine System (AES) has been proposed and investigated during the past decade. As a novel branch of computational intelligence methods, it has its unique and distinguishing features. This paper intends to give an overview of the current research work in the AES. The preliminary theory of the AES, which is based on the simplified mathematic models of natural endocrine system, is first introduced here. Some typical AES algorithms and their applications are also briefly discussed. Finally, a few remarks and conclusions are made.
Quantum theory of many-body systems techniques and applications
Zagoskin, Alexandre
2014-01-01
This text presents a self-contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green’s functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory and the Matsubara, Keldysh and Nambu-Gor'kov formalism, as well as an introduction to Feynman path integrals. This new edition contains an introduction to the methods of theory of one-dimensional systems (bosonization and conformal field theory) and their applications to many-body problems. Intended for graduate students in physics and related fields, the aim is not to be exhaustive, but to present enough detail to enable the student to follow the current research literature, or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum...
Transition Theory – Sustainable Transition of Socio-Technical Systems
DEFF Research Database (Denmark)
Søndergård, Bent; Holm, Jesper; Stauning, Inger
2015-01-01
Theories of transition management, transition studies and social practise theory Applied to studies of hosuing and construction......Theories of transition management, transition studies and social practise theory Applied to studies of hosuing and construction...
A Systematic Review of Literature Using Business Systems Theory
DEFF Research Database (Denmark)
Rana, Mohammad Bakhtiar; Morgan, Glenn
2015-01-01
, international business (IB) studies do not tend to borrow much from this sub-field. This paper reviews BST literature from 1992 to 2015 and seeks to identify its contributions and gaps, in ways that can be helpful for future research in IB. Trend analysis of BST literature and mapping this sub-field suggests......Business system theory (BST) lies at the intersection of organization theory, political economy and sociology. It is gaining incremental attention in the field of management, particularly in cross-border and comparative studies of the structure, strategy and management of multinationals. Yet...... that the BST research stream can be identified in relation to four ‘broad themes’ which we describe as junctures- i.e. comparative business systems, internationalisation and MNC management, organizational capability and innovation, and transnational communities. Mapping and pattern recognition of the ‘themes...
Theory of many-body localization in periodically driven systems
International Nuclear Information System (INIS)
Abanin, Dmitry A.; De Roeck, Wojciech; Huveneers, François
2016-01-01
We present a theory of periodically driven, many-body localized (MBL) systems. We argue that MBL persists under periodic driving at high enough driving frequency: The Floquet operator (evolution operator over one driving period) can be represented as an exponential of an effective time-independent Hamiltonian, which is a sum of quasi-local terms and is itself fully MBL. We derive this result by constructing a sequence of canonical transformations to remove the time-dependence from the original Hamiltonian. When the driving evolves smoothly in time, the theory can be sharpened by estimating the probability of adiabatic Landau–Zener transitions at many-body level crossings. In all cases, we argue that there is delocalization at sufficiently low frequency. We propose a phase diagram of driven MBL systems.
Information theory and stochastics for multiscale nonlinear systems
Majda, Andrew J; Grote, Marcus J
2005-01-01
This book introduces mathematicians to the fascinating emerging mathematical interplay between ideas from stochastics and information theory and important practical issues in studying complex multiscale nonlinear systems. It emphasizes the serendipity between modern applied mathematics and applications where rigorous analysis, the development of qualitative and/or asymptotic models, and numerical modeling all interact to explain complex phenomena. After a brief introduction to the emerging issues in multiscale modeling, the book has three main chapters. The first chapter is an introduction to information theory with novel applications to statistical mechanics, predictability, and Jupiter's Red Spot for geophysical flows. The second chapter discusses new mathematical issues regarding fluctuation-dissipation theorems for complex nonlinear systems including information flow, various approximations, and illustrates applications to various mathematical models. The third chapter discusses stochastic modeling of com...
Continuous and distributed systems II theory and applications
Zgurovsky, Mikhail
2015-01-01
As in the previous volume on the topic, the authors close the gap between abstract mathematical approaches, such as applied methods of modern algebra and analysis, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems, on the one hand, and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. Readers will also benefit from the presentation of modern mathematical modeling methods for the numerical solution of complicated engineering problems in biochemistry, geophysics, biology and climatology. This compilation will be of interest to mathematicians and engineers working at the interface of these fields. It presents selected works of the joint seminar series of Lomonosov Moscow State University and the Institute for Applied System Analysis at National Technical University of Ukraine “Kyiv Polytechnic Institute”. The authors come from Brazil, Germany, France, Mexico, Spain, Poland, Russia, Ukraine, and the USA. ...
Developments in entanglement theory and applications to relevant physical systems
Lamata Manuel, Lucas
2007-01-01
This Thesis is devoted to the analysis of entanglement in relevant physical systems. Entanglement is the conducting theme of this research, though I do not dedicate to a single topic, but consider a wide scope of physical situations. I have followed mainly three lines of research for this Thesis, with a series of different works each, which are, Entanglement and Relativistic Quantum Theory, Continuous-variable entanglement, and Multipartite entanglement.
Y-system for γ-deformed ABJM theory
Energy Technology Data Exchange (ETDEWEB)
Chen, Hui-Huang; Liu, Peng [Institute of High Energy Physics, and Theoretical Physics Center for Science Facilities,Chinese Academy of Sciences,19B Yuquan Road, Beijing 100049 (China); University of Chinese Academy of Sciences,19A Yuquan Road, Beijing 100049 (China); Wu, Jun-Bao [School of Science, University of Tianjin,92 Weijin Road, Tianjin 300072 (China); School of Physics and Nuclear Energy Engineering, Beihang University,37 Xueyuan Road, Beijing 100191 (China); Institute of High Energy Physics, and Theoretical Physics Center for Science Facilities,Chinese Academy of Sciences,19B Yuquan Road, Beijing 100049 (China); University of Chinese Academy of Sciences,19A Yuquan Road, Beijing 100049 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Road, Beijing 100871 (China)
2017-03-27
We investigate the integrable aspects of the planar γ-deformed ABJM theory and propose the twisted asymptotic Bethe ansatz equations. A more general method through a twisted generating functional is discussed, based on which, the asymptotic large L solution of Y-system is modified in order to match the asymptotic Bethe ansatz equations. Several applications of our method in the sl(2)-like sector and some important examples in β-deformed ABJM are presented as well.
Category Theory as a Formal Mathematical Foundation for Model-Based Systems Engineering
Mabrok, Mohamed; Ryan, Michael J.
2017-01-01
In this paper, we introduce Category Theory as a formal foundation for model-based systems engineering. A generalised view of the system based on category theory is presented, where any system can be considered as a category. The objects
The Systemic Theory of Living Systems. Part IV: Systemic Medicine—The Praxis
Directory of Open Access Journals (Sweden)
José A. Olalde Rangel
2005-01-01
Full Text Available This fourth lecture illustrates the praxis and results of Systemic Medicine (SM in various therapeutic applications. SM's success has made it popular throughout Venezuela and Puerto Rico. The treatment of over 300 000 patients by 150 orthodox MD's, trained and qualified in SM, in 35 medical establishments with above average results corroborate its effectiveness as an eCAM in chronic degenerative diseases. Herein we provide a synopsis of results obtained in four such pathologies—the journal's necessary space restrictions somewhat limiting content—as well as clinical and photographic evidence. The validity of any medical theory is substantiated by its degree of effectivity and success. The workability of evidence-based SM corroborates Systemic Theory's transcendence.
The theory of critical phenomena in two-dimensional systems
International Nuclear Information System (INIS)
Olvera de la C, M.
1981-01-01
An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)
Developing interprofessional education online: An ecological systems theory analysis.
Bluteau, Patricia; Clouder, Lynn; Cureton, Debra
2017-07-01
This article relates the findings of a discourse analysis of an online asynchronous interprofessional learning initiative involving two UK universities. The impact of the initiative is traced over three intensive periods of online interaction, each of several-weeks duration occurring over a three-year period, through an analysis of a random sample of discussion forum threads. The corpus of rich data drawn from the forums is interpreted using ecological systems theory, which highlights the complexity of interaction of individual, social and cultural elements. Ecological systems theory adopts a life course approach to understand how development occurs through processes of progressively more complex reciprocal interaction between people and their environment. This lens provides a novel approach for analysis and interpretation of findings with respect to the impact of pre-registration interprofessional education and the interaction between the individual and their social and cultural contexts as they progress through 3/4 years of their programmes. Development is mapped over time (the chronosystem) to highlight the complexity of interaction across microsystems (individual), mesosystems (curriculum and institutional/care settings), exosystems (community/wider local context), and macrosystems (national context and culture). This article illustrates the intricacies of students' interprofessional development over time and the interactive effects of social ecological components in terms of professional knowledge and understanding, wider appreciation of health and social care culture and identity work. The implications for contemporary pre-registration interprofessional education and the usefulness and applicability of ecological systems theory for future research and development are considered.
Directory of Open Access Journals (Sweden)
Fengjie Xie
Full Text Available In this work, we study an evolutionary prisoner's dilemma game (PDG on Barabási-Albert scale-free networks with limited player interactions, and explore the effect of interaction style and degree on cooperation. The results show that high-degree preference interaction, namely the most applicable interaction in the real world, is less beneficial for emergence of cooperation on scale-free networks than random interaction. Besides, cooperation on scale-free networks is enhanced with the increase of interaction degree regardless whether the interaction is high-degree preference or random. If the interaction degree is very low, the cooperation level on scale-free networks is much lower than that on regular ring networks, which is against the common belief that scale-free networks must be more beneficial for cooperation. Our analysis indicates that the interaction relations, the strategy and the game payoff of high-connectivity players play important roles in the evolution of cooperation on scale-free networks. A certain number of interactions are necessary for scale-free networks to exhibit strong capability of facilitating cooperation. Our work provides important insight for members on how to interact with others in a social organization.
Theory of L -edge spectroscopy of strongly correlated systems
Lüder, Johann; Schött, Johan; Brena, Barbara; Haverkort, Maurits W.; Thunström, Patrik; Eriksson, Olle; Sanyal, Biplab; Di Marco, Igor; Kvashnin, Yaroslav O.
2017-12-01
X-ray absorption spectroscopy measured at the L edge of transition metals (TMs) is a powerful element-selective tool providing direct information about the correlation effects in the 3 d states. The theoretical modeling of the 2 p →3 d excitation processes remains to be challenging for contemporary ab initio electronic structure techniques, due to strong core-hole and multiplet effects influencing the spectra. In this work, we present a realization of the method combining the density-functional theory with multiplet ligand field theory, proposed in Haverkort et al. [Phys. Rev. B 85, 165113 (2012), 10.1103/PhysRevB.85.165113]. In this approach, a single-impurity Anderson model (SIAM) is constructed, with almost all parameters obtained from first principles, and then solved to obtain the spectra. In our implementation, we adopt the language of the dynamical mean-field theory and utilize the local density of states and the hybridization function, projected onto TM 3 d states, in order to construct the SIAM. The developed computational scheme is applied to calculate the L -edge spectra for several TM monoxides. A very good agreement between the theory and experiment is found for all studied systems. The effect of core-hole relaxation, hybridization discretization, possible extensions of the method as well as its limitations are discussed.
The S(c)ensory Immune System Theory.
Veiga-Fernandes, Henrique; Freitas, António A
2017-10-01
Viewpoints on the immune system have evolved across different paradigms, including the clonal selection theory, the idiotypic network, and the danger and tolerance models. Herein, we propose that in multicellular organisms, where panoplies of cells from different germ layers interact and immune cells are constantly generated, the behavior of the immune system is defined by the rules governing cell survival, systems physiology and organismic homeostasis. Initially, these rules were imprinted at the single cell-protist level, but supervened modifications in the transition to multicellular organisms. This context determined the emergence of the 'sensory immune system', which operates in a s(c)ensor mode to ensure systems physiology, organismic homeostasis, and perpetuation of its replicating molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fundamental link between system theory and statistical mechanics
International Nuclear Information System (INIS)
Atmanspacher, H.; Scheingraber, H.
1987-01-01
A fundamental link between system theory and statistical mechanics has been found to be established by the Kolmogorov entropy. By this quantity the temporal evolution of dynamical systems can be classified into regular, chaotic, and stochastic processes. Since K represents a measure for the internal information creation rate of dynamical systems, it provides an approach to irreversibility. The formal relationship to statistical mechanics is derived by means of an operator formalism originally introduced by Prigogine. For a Liouville operator L and an information operator M tilde acting on a distribution in phase space, it is shown that i[L, M tilde] = KI (I = identity operator). As a first consequence of this equivalence, a relation is obtained between the chaotic correlation time of a system and Prigogine's concept of a finite duration of presence. Finally, the existence of chaos in quantum systems is discussed with respect to the existence of a quantum mechanical time operator
Renormalization group theory of phase transitions in square Ising systems
International Nuclear Information System (INIS)
Nienhuis, B.
1978-01-01
Some renormalization group calculations are presented on a number of phase transitions in a square Ising model, both second and first order. Of these transitions critical exponents are calculated, the amplitudes of the power law divergences and the locus of the transition. In some cases attention is paid to the thermodynamic functions also far from the critical point. Universality and scaling are discussed and the renormalization group theory is reviewed. It is shown how a renormalization transformation, which relates two similar systems with different macroscopic dimensions, can be constructed, and how some critical properties of the system follow from this transformation. Several numerical and analytical applications are presented. (Auth.)
Directory of Open Access Journals (Sweden)
Andy M Reynolds
2007-04-01
Full Text Available During their trajectories in still air, fruit flies (Drosophila melanogaster explore their landscape using a series of straight flight paths punctuated by rapid 90 degrees body-saccades [1]. Some saccades are triggered by visual expansion associated with collision avoidance. Yet many saccades are not triggered by visual cues, but rather appear spontaneously. Our analysis reveals that the control of these visually independent saccades and the flight intervals between them constitute an optimal scale-free active searching strategy. Two characteristics of mathematical optimality that are apparent during free-flight in Drosophila are inter-saccade interval lengths distributed according to an inverse square law, which does not vary across landscape scale, and 90 degrees saccade angles, which increase the likelihood that territory will be revisited and thereby reduce the likelihood that near-by targets will be missed. We also show that searching is intermittent, such that active searching phases randomly alternate with relocation phases. Behaviorally, this intermittency is reflected in frequently occurring short, slow speed inter-saccade intervals randomly alternating with rarer, longer, faster inter-saccade intervals. Searching patterns that scale similarly across orders of magnitude of length (i.e., scale-free have been revealed in animals as diverse as microzooplankton, bumblebees, albatrosses, and spider monkeys, but these do not appear to be optimised with respect to turning angle, whereas Drosophila free-flight search does. Also, intermittent searching patterns, such as those reported here for Drosophila, have been observed in foragers such as planktivorous fish and ground foraging birds. Our results with freely flying Drosophila may constitute the first reported example of searching behaviour that is both scale-free and intermittent.
Game Theory and Risk-Based Levee System Design
Hui, R.; Lund, J. R.; Madani, K.
2014-12-01
Risk-based analysis has been developed for optimal levee design for economic efficiency. Along many rivers, two levees on opposite riverbanks act as a simple levee system. Being rational and self-interested, land owners on each river bank would tend to independently optimize their levees with risk-based analysis, resulting in a Pareto-inefficient levee system design from the social planner's perspective. Game theory is applied in this study to analyze decision making process in a simple levee system in which the land owners on each river bank develop their design strategies using risk-based economic optimization. For each land owner, the annual expected total cost includes expected annual damage cost and annualized construction cost. The non-cooperative Nash equilibrium is identified and compared to the social planner's optimal distribution of flood risk and damage cost throughout the system which results in the minimum total flood cost for the system. The social planner's optimal solution is not feasible without appropriate level of compensation for the transferred flood risk to guarantee and improve conditions for all parties. Therefore, cooperative game theory is then employed to develop an economically optimal design that can be implemented in practice. By examining the game in the reversible and irreversible decision making modes, the cost of decision making myopia is calculated to underline the significance of considering the externalities and evolution path of dynamic water resource problems for optimal decision making.
Conductance of finite systems and scaling in localization theory
Suslov, I. M.
2012-11-01
The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β( g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β( g) in 1/ g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ɛ looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ - iω for conductivity are discussed.
Conductance of finite systems and scaling in localization theory
International Nuclear Information System (INIS)
Suslov, I. M.
2012-01-01
The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β(g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β(g) in 1/g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ε looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ −iω for conductivity are discussed.
Disformal theories of gravity: from the solar system to cosmology
Energy Technology Data Exchange (ETDEWEB)
Sakstein, Jeremy, E-mail: j.a.sakstein@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2014-12-01
This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use local tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible.
Disformal theories of gravity: from the solar system to cosmology
International Nuclear Information System (INIS)
Sakstein, Jeremy
2014-01-01
This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use local tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible
Review and application of group theory to molecular systems biology.
Rietman, Edward A; Karp, Robert L; Tuszynski, Jack A
2011-06-22
In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.
Conservation of resources theory and research use in health systems.
Alvaro, Celeste; Lyons, Renée F; Warner, Grace; Hobfoll, Stevan E; Martens, Patricia J; Labonté, Ronald; Brown, Richard E
2010-10-20
Health systems face challenges in using research evidence to improve policy and practice. These challenges are particularly evident in small and poorly resourced health systems, which are often in locations (in Canada and globally) with poorer health status. Although organizational resources have been acknowledged as important in understanding research use resource theories have not been a focus of knowledge translation (KT) research. What resources, broadly defined, are required for KT and how does their presence or absence influence research use?In this paper, we consider conservation of resources (COR) theory as a theoretical basis for understanding the capacity to use research evidence in health systems. Three components of COR theory are examined in the context of KT. First, resources are required for research uptake. Second, threat of resource loss fosters resistance to research use. Third, resources can be optimized, even in resource-challenged environments, to build capacity for KT. A scan of the KT literature examined organizational resources needed for research use. A multiple case study approach examined the three components of COR theory outlined above. The multiple case study consisted of a document review and key informant interviews with research team members, including government decision-makers and health practitioners through a retrospective analysis of four previously conducted applied health research studies in a resource-challenged region. The literature scan identified organizational resources that influence research use. The multiple case study supported these findings, contributed to the development of a taxonomy of organizational resources, and revealed how fears concerning resource loss can affect research use. Some resources were found to compensate for other resource deficits. Resource needs differed at various stages in the research use process. COR theory contributes to understanding the role of resources in research use, resistance to
Conservation of resources theory and research use in health systems
Directory of Open Access Journals (Sweden)
Hobfoll Stevan E
2010-10-01
Full Text Available Abstract Background Health systems face challenges in using research evidence to improve policy and practice. These challenges are particularly evident in small and poorly resourced health systems, which are often in locations (in Canada and globally with poorer health status. Although organizational resources have been acknowledged as important in understanding research use resource theories have not been a focus of knowledge translation (KT research. What resources, broadly defined, are required for KT and how does their presence or absence influence research use? In this paper, we consider conservation of resources (COR theory as a theoretical basis for understanding the capacity to use research evidence in health systems. Three components of COR theory are examined in the context of KT. First, resources are required for research uptake. Second, threat of resource loss fosters resistance to research use. Third, resources can be optimized, even in resource-challenged environments, to build capacity for KT. Methods A scan of the KT literature examined organizational resources needed for research use. A multiple case study approach examined the three components of COR theory outlined above. The multiple case study consisted of a document review and key informant interviews with research team members, including government decision-makers and health practitioners through a retrospective analysis of four previously conducted applied health research studies in a resource-challenged region. Results The literature scan identified organizational resources that influence research use. The multiple case study supported these findings, contributed to the development of a taxonomy of organizational resources, and revealed how fears concerning resource loss can affect research use. Some resources were found to compensate for other resource deficits. Resource needs differed at various stages in the research use process. Conclusions COR theory contributes to
Regularity theory for mean-field game systems
Gomes, Diogo A; Voskanyan, Vardan
2016-01-01
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
Regularity Theory for Mean-Field Game Systems
Gomes, Diogo A.
2016-09-14
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
Regularity Theory for Mean-Field Game Systems
Gomes, Diogo A.; Pimentel, Edgard A.; Voskanyan, Vardan K.
2016-01-01
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
Extended Hartree-Fock-Bogoliubov theory for degenerate Bose systems
International Nuclear Information System (INIS)
Tommasini, Paolo; Passos, E J V de; Pires, M O C; Piza, A F R de Toledo
2005-01-01
An extension of the Hartree-Fock-Bogoliubov (HFB) theory of degenerate Bose systems in which the coupling between one and two quasi-particles is taken into account is developed. The excitation operators are written as linear combinations of one and two HFB quasi-particles. Excitation energies and quasi-particle amplitudes are given by generalized Bogoliubov equations. The excitation spectrum has two branches. The first one is a discrete branch which is gapless and has a phonon character at large wavelength and, contrarily to HFB, is always stable. This branch is detached from a second, continuum branch whose threshold, at fixed total momentum, coincides with the two quasi-particle threshold of the HFB theory. The gap between the two branches at P = 0 is twice the HFB gap, which thus provides for the relevant energy scale. Numerical results for a specific case are given
GRG computer algebra system in gravitation and general relativity theory
International Nuclear Information System (INIS)
Zhitnikov, V.V.; Obukhova, I.G.
1985-01-01
The main concepts and capabilities of the GRG specialized computer agebra system intended for performing calculations in the gravitation theory are described. The GRG system is written in the STANDARD LISP language. The program consists of two parts: the first one - for setting initial data, the second one - for specifying a consequence of calculations. The system can function in three formalisms: a coordinate, a tetradic with the Lorentz basis and a spinor ones. The major capabilities of the GRG system are the following: calculation of connectivity and curvature according to the specified metrics, tetrad and torsion; metric type determination according to Petrov; calculation of the Bianchi indentities; operation with an electromagnetic field; tetradic rotations; coordinate conversions
System theory on group manifolds and coset spaces.
Brockett, R. W.
1972-01-01
The purpose of this paper is to study questions regarding controllability, observability, and realization theory for a particular class of systems for which the state space is a differentiable manifold which is simultaneously a group or, more generally, a coset space. We show that it is possible to give rather explicit expressions for the reachable set and the set of indistinguishable states in the case of autonomous systems. We also establish a type of state space isomorphism theorem. Our objective is to reduce all questions about the system to questions about Lie algebras generated from the coefficient matrices entering in the description of the system and in that way arrive at conditions which are easily visualized and tested.
Designing modular manufacturing systems using mass customisation theories and methods
DEFF Research Database (Denmark)
Jørgensen, Steffen Nordahl; Hvilshøj, Mads; Madsen, Ole
2012-01-01
Today, manufacturing systems are developed as engineered to order (ETO) solutions tailored to produce a specific product or a limited product mix. However, such dedicated systems are not consistent with the current market demands for rapid product changes, high product variety, and customisation....... In response, modular manufacturing systems (MMS) are evolving, which are aimed to possess the required responsiveness and to be the manufacturing paradigm of mass customisation (MC). Hereby, MMS brings the development process of manufacturing systems against configured to order (CTO). Up to now, research...... in MMS has primarily focused on potential benefits, basic principles, and enabling technologies, while the approaches of actually designing and creating modular architectures have received less attention. A potential to fill these gaps by applying MC theories and methods is identified based...
Theory of activated transport in bilayer quantum Hall systems.
Roostaei, B; Mullen, K J; Fertig, H A; Simon, S H
2008-07-25
We analyze the transport properties of bilayer quantum Hall systems at total filling factor nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.
Effective field theories for superconducting systems with multiple Fermi surfaces
Energy Technology Data Exchange (ETDEWEB)
Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)
2016-11-15
In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.
Classical and Quantum Nonlinear Integrable Systems: Theory and Application
International Nuclear Information System (INIS)
Brzezinski, Tomasz
2003-01-01
This is a very interesting collection of introductory and review articles on the theory and applications of classical and quantum integrable systems. The book reviews several integrable systems such as the KdV equation, vertex models, RSOS and IRF models, spin chains, integrable differential equations, discrete systems, Ising, Potts and other lattice models and reaction--diffusion processes, as well as outlining major methods of solving integrable systems. These include Lax pairs, Baecklund and Miura transformations, the inverse scattering method, various types of the Bethe Ansatz, Painleve methods, the dbar method and fusion methods to mention just a few. The book is divided into two parts, each containing five chapters. The first part is devoted to classical integrable systems and introduces the subject through the KdV equation, and then proceeds through Painleve analysis, discrete systems and two-dimensional integrable partial differential equations, to culminate in the review of solvable lattice models in statistical physics, solved through the coordinate and algebraic Bethe Ansatz methods. The second part deals with quantum integrable systems, and begins with an outline of unifying approaches to quantum, statistical, ultralocal and non-ultralocal systems. The theory and methods of solving quantum integrable spin chains are then described. Recent developments in applying Bethe Ansatz methods in condensed matter physics, including superconductivity and nanoscale physics, are reviewed. The book concludes with an introduction to diffusion-reaction processes. Every chapter is devoted to a different subject and is self-contained, and thus can be read separately. A reader interesting in classical methods of solitons, such as the methods of solving the KdV equation, can start from Chapter 1, while a reader interested in the Bethe Ansatz method can immediately proceed to Chapter 5, and so on. Thus the book should appeal and be useful to a wide range of theoretical
A unified theory for systems and cellular memory consolidation.
Dash, Pramod K; Hebert, April E; Runyan, Jason D
2004-04-01
The time-limited role of the hippocampus for explicit memory storage has been referred to as systems consolidation where learning-related changes occur first in the hippocampus followed by the gradual development of a more distributed memory trace in the neocortex. Recent experiments are beginning to show that learning induces plasticity-related molecular changes in the neocortex as well as in the hippocampus and with a similar time course. Present memory consolidation theories do not account for these findings. In this report, we present a theory (the C theory) that incorporates these new findings, provides an explanation for the length of time for hippocampal dependency, and that can account for the apparent longer consolidation periods in species with larger brains. This theory proposes that a process of cellular consolidation occurs in the hippocampus and in areas of the neocortex during and shortly after learning resulting in long-term memory storage in both areas. For a limited time, the hippocampus is necessary for memory retrieval, a process involving the coordinated reactivation of these areas. This reactivation is later mediated by longer extrahippocampal connectivity between areas. The delay in hippocampal-independent memory retrieval is the time it takes for gene products in these longer extrahippocampal projections to be transported from the soma to tagged synapses by slow axonal transport. This cellular transport event defines the period of hippocampal dependency and, thus, the duration of memory consolidation. The theoretical description for memory consolidation presented in this review provides alternative explanations for several experimental observations and presents a unification of the concepts of systems and cellular memory consolidation.
Nonlinear closure relations theory for transport processes in nonequilibrium systems
International Nuclear Information System (INIS)
Sonnino, Giorgio
2009-01-01
A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ('Onsager') transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.
CHAOS THEORY, GLOBAL SYSTEMIC CHANGE, AND HYBRID WARS
Directory of Open Access Journals (Sweden)
A. Korybko
2016-01-01
Full Text Available The global system is being rocked by the dueling ambitions of two competing blocs, with the US and its allies fighting to reinforce their unipolar system while Russia and its partners struggle to forge a multipolar future. The rapidity and scope with which events are unfolding makes it overwhelming for the casual observer to make sense of all of the complex processes currently at play, and truth be told, it’s understandable that all of this can appear confusing. In an attempt to clarify the present state of global affairs and forecast the direction that it’s all headed in, the article begins by explaining the nature of chaos theory and describing how it’s applicable to conceptualizing contemporary international relations. Afterwards, the idea of “chaos sequencing” is proposed, which in essence is a model that can be used in understanding the process of chaotic change. Following that, the article addresses the topic of global systemic change and includes the most relevant examples for how this relates to the present day. Next, the research combines these two aforementioned elements (chaos theory and global systemic change and presents a forward-looking geopolitical analysis that incorporates cutting-edge Hybrid War theory and aims to put the New Cold War into its proper perspective. Finally, the article ends on a suggestive note in encouraging analysts to study the authors’ conceptualization of Hybrid War in order to better prepare themselves for understanding and responding to forthcoming international events.
Theory of strong hybridization-induced relaxation in uranium systems
International Nuclear Information System (INIS)
Hu, G.; Cooper, B.R.
1988-01-01
Commonly, for metallic uranium systems, sharp magnetic excitations are not observed in neutron inelastic scattering experiments, but rather there is a continuous spectrum of magnetic response. By extending our earlier theory for partially delocalized cerium systems, we can understand this behavior. The band-f hybridization is transformed to resonant scattering in our theory, where the exchange part of the scattering gives both a two-ion interaction (physically corresponding to cooperative hybridization, giving anisotropic magnetic ordering with unusual excitation dispersion for cerium systems) and a hybridization coupling of each ion to the band sea (giving relaxation and strong energy renormalization of the excitations for cerium systems). For uranium the f delocalization (and hence the hybridization) is much stronger than for cerium. The two-ion interaction (giving quasi-ionic energy level splitting) grows by an order of magnitude or more, as evidenced by greatly increased magnetic ordering temperatures. On the other hand, the single-site hybridization strength parameter J-script characterizing the f-to-band-bath coupling grows more moderately as the f levels move toward the Fermi energy, because of the renormalizing effect of the direct scattering which broadens the f levels. The increased energy scale of the quasi-ionic level splitting for uranium as compared to cerium or plutonium is the major contributor to the greatly increased width of magnetic scattering distributions, while the moderate increase in coupling of each uranium quasi-ion to the band sea gives a lesser contribution. We apply this theory to UP and UAs and compare our results with experiment
Scattering Theory for Open Quantum Systems with Finite Rank Coupling
International Nuclear Information System (INIS)
Behrndt, Jussi; Malamud, Mark M.; Neidhardt, Hagen
2007-01-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A D in a Hilbert space is used to describe an open quantum system. In this case the minimal self-adjoint dilation of A D can be regarded as the Hamiltonian of a closed system which contains the open system, but since K-tilde is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(μ)} of maximal dissipative operators depending on energy μ, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems
Energy Technology Data Exchange (ETDEWEB)
Kuhlemann, Verena [Emory Univ., Atlanta, GA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2013-10-28
Matrix-vector multiplication is the key operation in any Krylov-subspace iteration method. We are interested in Krylov methods applied to problems associated with the graph Laplacian arising from large scale-free graphs. Furthermore, computations with graphs of this type on parallel distributed-memory computers are challenging. This is due to the fact that scale-free graphs have a degree distribution that follows a power law, and currently available graph partitioners are not efficient for such an irregular degree distribution. The lack of a good partitioning leads to excessive interprocessor communication requirements during every matrix-vector product. Here, we present an approach to alleviate this problem based on embedding the original irregular graph into a more regular one by disaggregating (splitting up) vertices in the original graph. The matrix-vector operations for the original graph are performed via a factored triple matrix-vector product involving the embedding graph. And even though the latter graph is larger, we are able to decrease the communication requirements considerably and improve the performance of the matrix-vector product.
Rzhetsky, A; Gomez, S M
2001-10-01
Current growth in the field of genomics has provided a number of exciting approaches to the modeling of evolutionary mechanisms within the genome. Separately, dynamical and statistical analyses of networks such as the World Wide Web and the social interactions existing between humans have shown that these networks can exhibit common fractal properties-including the property of being scale-free. This work attempts to bridge these two fields and demonstrate that the fractal properties of molecular networks are linked to the fractal properties of their underlying genomes. We suggest a stochastic model capable of describing the evolutionary growth of metabolic or signal-transduction networks. This model generates networks that share important statistical properties (so-called scale-free behavior) with real molecular networks. In particular, the frequency of vertices connected to exactly k other vertices follows a power-law distribution. The shape of this distribution remains invariant to changes in network scale: a small subgraph has the same distribution as the complete graph from which it is derived. Furthermore, the model correctly predicts that the frequencies of distinct DNA and protein domains also follow a power-law distribution. Finally, the model leads to a simple equation linking the total number of different DNA and protein domains in a genome with both the total number of genes and the overall network topology. MatLab (MathWorks, Inc.) programs described in this manuscript are available on request from the authors. ar345@columbia.edu.
International Nuclear Information System (INIS)
Xie Wei-Hao; Zhou Bin; Liu En-Xiao; Lu Wei-Dang; Zhou Ting
2015-01-01
Many real communication networks, such as oceanic monitoring network and land environment observation network, can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue (HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue (HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity. (paper)
Weird astronomical theories of the solar system and beyond
Seargent, David
2016-01-01
After addressing strange cosmological hypotheses in Weird Universe, David Seargent tackles the no-less bizarre theories closer to home. Alternate views on the Solar System's formation, comet composition, and the evolution of life on Earth are only some of the topics he addresses in this new work. Although these ideas exist on the fringe of mainstream astronomy, they can still shed light on the origins of life and the evolution of the planets. Continuing the author's series of books popularizing strange astronomy facts and knowledge, Weird Astronomical Theories presents an approachable exploration of the still mysterious questions about the origin of comets, the pattern of mass extinctions on Earth, and more. The alternative theories discussed here do not come from untrained amateurs. The scientists whose work is covered includes the mid-20th century Russian S. K. Vsekhsvyatskii, cosmologist Max Tegmark, British astronomers Victor Clube and William Napier, and American Tom Van Flandern, a special...
General Systems Theory: Application To The Design Of Speech Communication Courses
Tucker, Raymond K.
1971-01-01
General systems theory can be applied to problems in the teaching of speech communication courses. The author describes general systems theory as it is applied to the designing, conducting and evaluation of speech communication courses. (Author/MS)
On the theory system of hydrothermal uranium metallization in China
International Nuclear Information System (INIS)
Du Letian
2011-01-01
Based on summarizing the mass of research outcome of the predecessors, the author attempts to make a brief generalization on the theory system of hydrothermal uranium mineralization in China. The system of uranium metallization is founded in the basic way of uranium source-migration-transportation-richment-reservation. The system mainly consists of the following frames: (1) mineralization type of silification zone; (2) age gap of mineralization to host rock; (3) alkli metasomatism; (4) metallogenic layer of crust; (5)integratation of 4 types mineralization (granite, volcanics, carbonaceous-siliceous-argilaceous rock and sandstone) in tectonic-hydrothermal process; (6) pre-enrichment process of metallization; (7) decouplement of granite magma evolution; (8) types of rich ore by high tempreture sericitization; (9)basalt event;(10) rock and ore formation by HARCON. (authors)
Bifurcation theory for finitely smooth planar autonomous differential systems
Han, Maoan; Sheng, Lijuan; Zhang, Xiang
2018-03-01
In this paper we establish bifurcation theory of limit cycles for planar Ck smooth autonomous differential systems, with k ∈ N. The key point is to study the smoothness of bifurcation functions which are basic and important tool on the study of Hopf bifurcation at a fine focus or a center, and of Poincaré bifurcation in a period annulus. We especially study the smoothness of the first order Melnikov function in degenerate Hopf bifurcation at an elementary center. As we know, the smoothness problem was solved for analytic and C∞ differential systems, but it was not tackled for finitely smooth differential systems. Here, we present their optimal regularity of these bifurcation functions and their asymptotic expressions in the finite smooth case.
Modelling machine ensembles with discrete event dynamical system theory
Hunter, Dan
1990-01-01
Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).
Renormalization group method in the theory of dynamical systems
International Nuclear Information System (INIS)
Sinai, Y.G.; Khanin, K.M.
1988-01-01
One of the most important events in the theory of dynamical systems for the last decade has become a wide penetration of ideas and renormalization group methods (RG) into this traditional field of mathematical physics. RG-method has been one of the main tools in statistical physics and it has proved to be rather effective while solving problems of the theory of dynamical systems referring to new types of bifurcations (see further). As in statistical mechanics the application of the RG-method is of great interest in the neighborhood of the critical point concerning the order-chaos transition. First the RG-method was applied in the pioneering papers dedicated to the appearance of a stochastical regime as a result of infinite sequences of period doubling bifurcations. At present this stochasticity mechanism is the most studied one and many papers deal with it. The study of the so-called intermittency phenomenon was the next example of application of the RG-method, i.e. the study of such a situation where the domains of the stochastical and regular behavior do alternate along a trajectory of the dynamical system
The coupled cluster theory of quantum lattice systems
International Nuclear Information System (INIS)
Bishop, R.; Xian, Yang
1994-01-01
The coupled cluster method is widely recognized nowadays as providing an ab initio method of great versatility, power, and accuracy for handling in a fully microscopic and systematic way the correlations between particles in quantum many-body systems. The number of successful applications made to date within both chemistry and physics is impressive. In this article, the authors review recent extensions of the method which now provide a unifying framework for also dealing with strongly interacting infinite quantum lattice systems described by a Hamiltonian. Such systems include both spin-lattice models (such as the anisotropic Heisenberg or XXZ model) exhibiting interesting magnetic properties, and electron lattice models (such as the tJ and Hubbard models), where the spins or fermions are localized on the sites of a regular lattice; as well as lattice gauge theories [such as the Abelian U(1) model of quantum electrodynamics and non-Abelian SU(n) models]. Illustrative results are given for both the XXZ spin lattice model and U(1) lattice gauge theory
Keldysh field theory for driven open quantum systems.
Sieberer, L M; Buchhold, M; Diehl, S
2016-09-01
Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
The dispersion-focalization theory of sound systems
Schwartz, Jean-Luc; Abry, Christian; Boë, Louis-Jean; Vallée, Nathalie; Ménard, Lucie
2005-04-01
The Dispersion-Focalization Theory states that sound systems in human languages are shaped by two major perceptual constraints: dispersion driving auditory contrast towards maximal or sufficient values [B. Lindblom, J. Phonetics 18, 135-152 (1990)] and focalization driving auditory spectra towards patterns with close neighboring formants. Dispersion is computed from the sum of the inverse squared inter-spectra distances in the (F1, F2, F3, F4) space, using a non-linear process based on the 3.5 Bark critical distance to estimate F2'. Focalization is based on the idea that close neighboring formants produce vowel spectra with marked peaks, easier to process and memorize in the auditory system. Evidence for increased stability of focal vowels in short-term memory was provided in a discrimination experiment on adult French subjects [J. L. Schwartz and P. Escudier, Speech Comm. 8, 235-259 (1989)]. A reanalysis of infant discrimination data shows that focalization could well be the responsible for recurrent discrimination asymmetries [J. L. Schwartz et al., Speech Comm. (in press)]. Recent data about children vowel production indicate that focalization seems to be part of the perceptual templates driving speech development. The Dispersion-Focalization Theory produces valid predictions for both vowel and consonant systems, in relation with available databases of human languages inventories.
Theory Interpretation of Control System and Design Practice
International Nuclear Information System (INIS)
Jung, Heon Sul
2003-11-01
This book tells of theory interpretation of control system and design practice using automatic balancing weighing machine , including what control is, basic use of CEM Tool such as summary, work environment of CEM Tool, Symbol of CEM Tool, instruction of CEM Tool, drawing graph, and practice of making of CEM Tool, basic use of SIM Tool, driving test of sensor measurement motor such as LED, Pulse pick-up, answer test of RC circuit, structure of balancing weighing machine and wheel mathematical model, analysis of time response and frequency response of balancing weighing machine, and mathematical model and material property of balancing weighing machine.
Adaptive Associative Scale-Free Maps for Fusing Human and Robotic Intelligences
National Research Council Canada - National Science Library
Lorincz, Andras
2006-01-01
This report results from a contract tasking Eotvos Lorand University as follows: The Grantee will perform research in high level Information Fusion focused on real-time management and cooperative planning in supervised autonomous systems...
Renormalized perturbation theory: Vlasov-Poisson System, weak turbulence limit and gyrokinetics
International Nuclear Information System (INIS)
Zhang, Y.Z.; Mahajan, S.M.
1987-10-01
The Self-consistency of the renormalized perturbation theory is demonstrated by applying it to the Vlasov-Poisson System and showing that the theory has the correct weak turbulence limit. Energy conservation is proved to arbitrary high order for the electrostatic drift waves. The theory is applied to derive renormalized equations for a low-β gyrokinetic system. Comparison of our theory with other current theories is presented. 22 refs
Bioattractors: dynamical systems theory and the evolution of regulatory processes
Jaeger, Johannes; Monk, Nick
2014-01-01
In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype–phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait – such as attractors with associated basins and their bifurcations – define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. PMID:24882812
Embedding research in health systems: lessons from complexity theory.
Caffrey, Louise; Wolfe, Charles; McKevitt, Christopher
2016-07-22
Internationally, there has been increasing focus on creating health research systems. This article aims to investigate the challenges of implementing apparently simple strategies to support the development of a health research system. We focus on a case study of an English National Health Service Hospital Trust that sought to implement the national recommendation that health organisations should introduce a statement about research on all patient admission letters. We apply core concepts from complexity theory to the case study and undertake a documentary analysis of the email dialogue between staff involved in implementing this initiative. The process of implementing a research statement in patient admission letters in one clinical service took 1 year and 21 days. The length of time needed was influenced firstly by adaptive self-organisation, underpinned by competing interests. Secondly, it was influenced by the relationship between systems, rather than simply being a product of issues within those systems. The relationship between the health system and the research system was weaker than might have been expected. Responsibilities were unclear, leading to confusion and delayed action. Conventional ways of thinking about organisations suggest that change happens when leaders and managers change the strategic vision, structure or procedures in an organisation and then persuade others to rationally implement the strategy. However, health research systems are complex adaptive systems characterised by high levels of unpredictability due to self-organisation and systemic interactions, which give rise to 'emergent' properties. We argue for the need to study how micro-processes of organisational dynamics may give rise to macro patterns of behaviour and strategic organisational direction and for the use of systems approaches to investigate the emergent properties of health research systems.
System theory in industrial patient monitoring: an overview.
Baura, G D
2004-01-01
Patient monitoring refers to the continuous observation of repeating events of physiologic function to guide therapy or to monitor the effectiveness of interventions, and is used primarily in the intensive care unit and operating room. Commonly processed signals are the electrocardiogram, intraarterial blood pressure, arterial saturation of oxygen, and cardiac output. To this day, the majority of physiologic waveform processing in patient monitors is conducted using heuristic curve fitting. However in the early 1990s, a few enterprising engineers and physicians began using system theory to improve their core processing. Applications included improvement of signal-to-noise ratio, either due to low signal levels or motion artifact, and improvement in feature detection. The goal of this mini-symposium is to review the early work in this emerging field, which has led to technologic breakthroughs. In this overview talk, the process of system theory algorithm research and development is discussed. Research for industrial monitors involves substantial data collection, with some data used for algorithm training and the remainder used for validation. Once the algorithms are validated, they are translated into detailed specifications. Development then translates these specifications into DSP code. The DSP code is verified and validated per the Good Manufacturing Practices mandated by FDA.
Predictive microbiology in a dynamic environment: a system theory approach.
Van Impe, J F; Nicolaï, B M; Schellekens, M; Martens, T; De Baerdemaeker, J
1995-05-01
The main factors influencing the microbial stability of chilled prepared food products for which there is an increased consumer interest-are temperature, pH, and water activity. Unlike the pH and the water activity, the temperature may vary extensively throughout the complete production and distribution chain. The shelf life of this kind of foods is usually limited due to spoilage by common microorganisms, and the increased risk for food pathogens. In predicting the shelf life, mathematical models are a powerful tool to increase the insight in the different subprocesses and their interactions. However, the predictive value of the sigmoidal functions reported in the literature to describe a bacterial growth curve as an explicit function of time is only guaranteed at a constant temperature within the temperature range of microbial growth. As a result, they are less appropriate in optimization studies of a whole production and distribution chain. In this paper a more general modeling approach, inspired by system theory concepts, is presented if for instance time varying temperature profiles are to be taken into account. As a case study, we discuss a recently proposed dynamic model to predict microbial growth and inactivation under time varying temperature conditions from a system theory point of view. Further, the validity of this methodology is illustrated with experimental data of Brochothrix thermosphacta and Lactobacillus plantarum. Finally, we propose some possible refinements of this model inspired by experimental results.
Application of queuing theory in inventory systems with substitution flexibility
Seyedhoseini, S. M.; Rashid, Reza; Kamalpour, Iman; Zangeneh, Erfan
2015-03-01
Considering the competition in today's business environment, tactical planning of a supply chain becomes more complex than before. In many multi-product inventory systems, substitution flexibility can improve profits. This paper aims to prepare a comprehensive substitution inventory model, where an inventory system with two substitute products with ignorable lead time has been considered, and effects of simultaneous ordering have been examined. In this paper, demands of customers for both of the products have been regarded as stochastic parameters, and queuing theory has been used to construct a mathematical model. The model has been coded by C++, and it has been analyzed due to a real example, where the results indicate efficiency of proposed model.
Complex adaptive systems and game theory: An unlikely union
Hadzikadic, M.; Carmichael, T.; Curtin, C.
2010-01-01
A Complex Adaptive System is a collection of autonomous, heterogeneous agents, whose behavior is defined with a limited number of rules. A Game Theory is a mathematical construct that assumes a small number of rational players who have a limited number of actions or strategies available to them. The CAS method has the potential to alleviate some of the shortcomings of GT. On the other hand, CAS researchers are always looking for a realistic way to define interactions among agents. GT offers an attractive option for defining the rules of such interactions in a way that is both potentially consistent with observed real-world behavior and subject to mathematical interpretation. This article reports on the results of an effort to build a CAS system that utilizes GT for determining the actions of individual agents. ?? 2009 Wiley Periodicals, Inc. Complexity, 16,24-42, 2010.
System theory in medical diagnostic devices: an overview.
Baura, Gail D
2006-01-01
Medical diagnostics refers to testing conducted either in vitro or in vivo to provide critical health care information for risk assessment, early diagnosis, treatment, or disease management. Typical in vivo diagnostic tests include the computed tomography scan, magnetic resonance imaging, and blood pressure screening. Typical in vitro diagnostic tests include cholesterol, Papanicolaou smear, and conventional glucose monitoring tests. Historically, devices associated with both types of diagnostics have used heuristic curve fitting during signal analysis. However, since the early 1990s, a few enterprising engineers and physicians have used system theory to improve their core processing for feature detection and system identification. Current applications include automated Pap smear screening for detection of cervical cancer and diagnosis of Alzheimer's disease. Future applications, such as disease prediction before symptom onset and drug treatment customization, have been catalyzed by the Human Genome Project.
Theory of Magnetoelectric Properties of 2D Systems
Chen, S. C.; Wu, J. Y.; Lin, C. Y.; Lin, M. F.
2017-12-01
This book addresses important advances in diverse quantization phenomena. 'Theory of Magnetoelectric Properties of 2D Systems' develops the generalized tight-binding model in order to comprehend the rich quantization phenomena in 2D materials. The unusual effects, taken into consideration simultaneously, mainly come from the multi-orbital hybridization, the spin-orbital coupling, the intralayer and interlayer atomic interactions, the layer number, the stacking configuration, the site-energy difference, the magnetic field, and the electric field. The origins of the phenomena are discussed in depth, particularly focusing on graphene, tinene, phosphorene and MoS2, with a broader model also drawn. This model could be further used to investigate electronic properties of 1D and 3D condensed-matter systems, and this book will prove to be a valuable resource to researchers and graduate students working in 2D materials science.
Nodal aberration theory for wild-filed asymmetric optical systems
Chen, Yang; Cheng, Xuemin; Hao, Qun
2016-10-01
Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.
HRM Model in Tourism, Based on Dialectical Systems Theory
Directory of Open Access Journals (Sweden)
Simona Šarotar Žižek
2015-12-01
Full Text Available A human resources management (HRM model integrating trends in HRM with trends in tourism into a dialectical system by the Dialectical Systems Theory (DST. HRM strategy, integrated within the tourism organization’s (to’s strategy is implemented through functional strategies helping their users to achieve a requisitely holistic (rh HRM strategy replacing the prevailing one-sided ones. to’s strategy covers: employees (1 planning, (2 acquisition and selection, (3 development and training, (4 diversity management, (5 teamwork and creativity, (6 motivation and rewarding, (7 stress reduction and health, (8 relationships, (9 personal holism, (10 well-being, (11 work and results assessment; etc. Everyone matters; their synergy is crucial. An innovated HRM model for TOS, which applies employees’, organizations’ rh and integrates new knowledge about HRM. HRM belongs to central managers’ tools. Their HRM must be adapted for TOS, where employees are crucial.
What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated.
Kumaran, Dharshan; Hassabis, Demis; McClelland, James L
2016-07-01
We update complementary learning systems (CLS) theory, which holds that intelligent agents must possess two learning systems, instantiated in mammalians in neocortex and hippocampus. The first gradually acquires structured knowledge representations while the second quickly learns the specifics of individual experiences. We broaden the role of replay of hippocampal memories in the theory, noting that replay allows goal-dependent weighting of experience statistics. We also address recent challenges to the theory and extend it by showing that recurrent activation of hippocampal traces can support some forms of generalization and that neocortical learning can be rapid for information that is consistent with known structure. Finally, we note the relevance of the theory to the design of artificial intelligent agents, highlighting connections between neuroscience and machine learning. Copyright © 2016 Elsevier Ltd. All rights reserved.
An enactive and dynamical systems theory account of dyadic relationships
Directory of Open Access Journals (Sweden)
Miriam eKyselo
2014-05-01
Full Text Available Many social relationships are a locus of struggle and suffering, either at the individual or interactional level. In this paper we explore why this is the case and suggest a modeling approach for dyadic interactions and the well-being of the participants. To this end we bring together an enactive approach to self with dynamical systems theory. Our basic assumption is that the quality of any social interaction or relationship fundamentally depends on the nature and constitution of the individuals engaged in these interactions. From an enactive perspective the self is conceived as an embodied and socially enacted autonomous system striving to maintain an identity. This striving is involves a basic two-fold goal: the ability to exist as an individual in its own right, while also being open to and affected by others. In terms of dynamical systems theory one can thus consider the individual self as a self-other organized system represented by a phase space spanned by the dimensions of distinction and participation, and in which attractors can be defined. Based on two everyday examples of dyadic relationship we propose a simple model of relationship dynamics in which struggle or well-being in the dyad is analyzed in terms of movements of dyadic states that are in tension or in harmony with individually developed attractors. Our model predicts that relationships can be sustained when the dyad develops a new joint attractor towards which dyadic states tend to move, and well-being when this attractor is in balance with the individuals’ attractors. We outline how this can inspire research on psychotherapy. The psychotherapy process itself provides a setting in which participants can become aware how they fare with regards to the two-fold norm of distinction and participation and develop, through active engagement between client (or couple and therapist, strategies to co-negotiate their self-organization.
An enactive and dynamical systems theory account of dyadic relationships.
Kyselo, Miriam; Tschacher, Wolfgang
2014-01-01
Many social relationships are a locus of struggle and suffering, either at the individual or interactional level. In this paper we explore why this is the case and suggest a modeling approach for dyadic interactions and the well-being of the participants. To this end we bring together an enactive approach to self with dynamical systems theory. Our basic assumption is that the quality of any social interaction or relationship fundamentally depends on the nature and constitution of the individuals engaged in these interactions. From an enactive perspective the self is conceived as an embodied and socially enacted autonomous system striving to maintain an identity. This striving involves a basic two-fold goal: the ability to exist as an individual in one's own right, while also being open to and affected by others. In terms of dynamical systems theory one can thus consider the individual self as a self-other organized system represented by a phase space spanned by the dimensions of distinction and participation, where attractors can be defined. Based on two everyday examples of dyadic relationship we propose a simple model of relationship dynamics, in which struggle or well-being in the dyad is analyzed in terms of movements of dyadic states that are in tension or in harmony with individually developed attractors. Our model predicts that relationships can be sustained when the dyad develops a new joint attractor toward which dyadic states tend to move, and well-being when this attractor is in balance with the individuals' attractors. We outline how this can inspire research on psychotherapy. The psychotherapy process itself provides a setting that supports clients to become aware how they fare with regards to the two-fold norm of distinction and participation and develop, through active engagement between client (or couple) and therapist, strategies to co-negotiate their self-organization.
Mapping Koch curves into scale-free small-world networks
International Nuclear Information System (INIS)
Zhang Zhongzhi; Gao Shuyang; Zhou Shuigeng; Chen Lichao; Zhang Hongjuan; Guan Jihong
2010-01-01
The class of Koch fractals is one of the most interesting families of fractals, and the study of complex networks is a central issue in the scientific community. In this paper, inspired by the famous Koch fractals, we propose a mapping technique converting Koch fractals into a family of deterministic networks called Koch networks. This novel class of networks incorporates some key properties characterizing a majority of real-life networked systems-a power-law distribution with exponent in the range between 2 and 3, a high clustering coefficient, a small diameter and average path length and degree correlations. Besides, we enumerate the exact numbers of spanning trees, spanning forests and connected spanning subgraphs in the networks. All these features are obtained exactly according to the proposed generation algorithm of the networks considered. The network representation approach could be used to investigate the complexity of some real-world systems from the perspective of complex networks.
Scale-free flow of life: on the biology, economics, and physics of the cell
Directory of Open Access Journals (Sweden)
Kurakin Alexei
2009-05-01
Full Text Available Abstract The present work is intended to demonstrate that most of the paradoxes, controversies, and contradictions accumulated in molecular and cell biology over many years of research can be readily resolved if the cell and living systems in general are re-interpreted within an alternative paradigm of biological organization that is based on the concepts and empirical laws of nonequilibrium thermodynamics. In addition to resolving paradoxes and controversies, the proposed re-conceptualization of the cell and biological organization reveals hitherto unappreciated connections among many seemingly disparate phenomena and observations, and provides new and powerful insights into the universal principles governing the emergence and organizational dynamics of living systems on each and every scale of biological organizational hierarchy, from proteins and cells to economies and ecologies.
On the role of general system theory for functional neuroimaging.
Stephan, Klaas Enno
2004-12-01
One of the most important goals of neuroscience is to establish precise structure-function relationships in the brain. Since the 19th century, a major scientific endeavour has been to associate structurally distinct cortical regions with specific cognitive functions. This was traditionally accomplished by correlating microstructurally defined areas with lesion sites found in patients with specific neuropsychological symptoms. Modern neuroimaging techniques with high spatial resolution have promised an alternative approach, enabling non-invasive measurements of regionally specific changes of brain activity that are correlated with certain components of a cognitive process. Reviewing classic approaches towards brain structure-function relationships that are based on correlational approaches, this article argues that these approaches are not sufficient to provide an understanding of the operational principles of a dynamic system such as the brain but must be complemented by models based on general system theory. These models reflect the connectional structure of the system under investigation and emphasize context-dependent couplings between the system elements in terms of effective connectivity. The usefulness of system models whose parameters are fitted to measured functional imaging data for testing hypotheses about structure-function relationships in the brain and their potential for clinical applications is demonstrated by several empirical examples.
Vanhoof, E.; Huysmans, P.; Aerts, Walter; Verelst, J.; Aveiro, D.; Tribolet, J.; Gouveia, D.
2014-01-01
This paper uses a mixed methods approach of design science and case study research to evaluate structures of Accounting Information Systems (AIS) that report in multiple Generally Accepted Accounting Principles (GAAP), using Normalized Systems Theory (NST). To comply with regulation, many companies
Energy Technology Data Exchange (ETDEWEB)
Yilmaz, Ergin, E-mail: erginyilmaz@yahoo.com [Department of Biomedical Engineering, Engineering Faculty, Bülent Ecevit University, 67100 Zonguldak (Turkey); Ozer, Mahmut [Department of Electrical and Electronics Engineering, Engineering Faculty, Bülent Ecevit University, 67100 Zonguldak (Turkey)
2013-08-01
We consider a scale-free network of stochastic HH neurons driven by a subthreshold periodic stimulus and investigate how the collective spiking regularity or the collective temporal coherence changes with the stimulus frequency, the intrinsic noise (or the cell size), the network average degree and the coupling strength. We show that the best temporal coherence is obtained for a certain level of the intrinsic noise when the frequencies of the external stimulus and the subthreshold oscillations of the network elements match. We also find that the collective regularity exhibits a resonance-like behavior depending on both the coupling strength and the network average degree at the optimal values of the stimulus frequency and the cell size, indicating that the best temporal coherence also requires an optimal coupling strength and an optimal average degree of the connectivity.
INSTRUCTIONAL SYSTEMS DESIGN (ISD: Theory and Practice in Second Life
Directory of Open Access Journals (Sweden)
Nil GOKSEL CANBEK
2011-08-01
Full Text Available The considerable changes in distance learning related technologies and Web 2.0 tools direct new immersive platforms to serve on the concept of avatar-driven interactions. In this sense, the immersive learning platforms, like Second Life (SL, embrace innovative forms of network based settings for effective community interactions. SL, as an interactive learning milieu, conducts 3D interactions and active education within the context of Instructional Systems Design (ISD which makes learning experiences efficient for both the tutor and learners on the platform designed on social networking. The platform gives an appropriate service to its users to be part of an instructional application of virtual worlds in where learners become connected though online activities. Within the learning theories existing nowadays, instructional designers, who are working in 3D environment like SL, are using mainly cognitive theory and constructivist strategy of learning. According to cognitive learning theory, people learn in different ways that are individually contextual and new trends in Instructional Design (ID had to address these differences. There are number of already approbated instructional models, which are used widely in the process of creation learning courses for 3D environments. The most frequently used model is ADDIE (Assess–Design–Develop–Implement– Evaluate, and the model PIE (Plan-Integrate–Evaluate, that is relatively new and become increasingly popular as it allows easy integration of technology in the classroom-oriented (virtual or real teaching. Based on the above mentioned concerns, this paper will examine the instructional design models used to create immersive courses within SL. Further, the paper will collect ideas on the instructional tools and technologies used for designing SL courses as these new technologies used in this environment draws heavily on andragogy. The paper will also clarify the obstacles on virtual learning
Scale-free channeling patterns near the onset of erosion of sheared granular beds.
Aussillous, Pascale; Zou, Zhenhai; Guazzelli, Élisabeth; Yan, Le; Wyart, Matthieu
2016-10-18
Erosion shapes our landscape and occurs when a sufficient shear stress is exerted by a fluid on a sedimented layer. What controls erosion at a microscopic level remains debated, especially near the threshold forcing where it stops. Here we study, experimentally, the collective dynamics of the moving particles, using a setup where the system spontaneously evolves toward the erosion onset. We find that the spatial organization of the erosion flux is heterogeneous in space and occurs along channels of local flux σ whose distribution displays scaling near threshold and follows [Formula: see text], where J is the mean erosion flux. Channels are strongly correlated in the direction of forcing but not in the transverse direction. We show that these results quantitatively agree with a model where the dynamics is governed by the competition of disorder (which channels mobile particles) and particle interactions (which reduces channeling). These observations support that, for laminar flows, erosion is a dynamical phase transition that shares similarity with the plastic depinning transition occurring in dirty superconductors. The methodology we introduce here could be applied to probe these systems as well.
Scale-free channeling patterns near the onset of erosion of sheared granular beds
Aussillous, Pascale; Zou, Zhenhai; Guazzelli, Élisabeth; Yan, Le; Wyart, Matthieu
2016-10-01
Erosion shapes our landscape and occurs when a sufficient shear stress is exerted by a fluid on a sedimented layer. What controls erosion at a microscopic level remains debated, especially near the threshold forcing where it stops. Here we study, experimentally, the collective dynamics of the moving particles, using a setup where the system spontaneously evolves toward the erosion onset. We find that the spatial organization of the erosion flux is heterogeneous in space and occurs along channels of local flux σ whose distribution displays scaling near threshold and follows P(σ)≈J/σ, where J is the mean erosion flux. Channels are strongly correlated in the direction of forcing but not in the transverse direction. We show that these results quantitatively agree with a model where the dynamics is governed by the competition of disorder (which channels mobile particles) and particle interactions (which reduces channeling). These observations support that, for laminar flows, erosion is a dynamical phase transition that shares similarity with the plastic depinning transition occurring in dirty superconductors. The methodology we introduce here could be applied to probe these systems as well.
On routing strategy with finite-capacity effect on scale-free networks
International Nuclear Information System (INIS)
Tang, S.; Jiang, X.; Ma, L.; Zhang, Z.; Zheng, Z.
2010-01-01
We propose a class of systems with finite-capacity effect to investigate routing-strategy optimization. The local topology and the variable capacity, two crucial elements for routing, are naturally coupled by considering the interactions among packets. We show how the combination of these two elements controls the normal and efficient functioning of routing in the frame of condensation and coverage, respectively. Specifically, it is shown that the dynamic behaviors of diffusing packets exhibit condensation, for which exact results of the stationary state and phase transition are given. Further, we explore the diffusion coverage of routed packets through simulation. Various alternatives for the strategy parameters are illustrated to apply standard techniques to alleviate condensation and accelerate coverage. Our results provide a practical way for the design of optimal routing strategies in complex networks by the manipulation of a few parameters. (author)
Theory for the Emergence of Modularity in Complex Systems
Deem, Michael; Park, Jeong-Man
2013-03-01
Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased
A non–extensive thermodynamic theory of ecological systems
International Nuclear Information System (INIS)
Xuan, Le Van; Ngoc, Nguyen Khac; Lan, Nguyen Tri; Viet, Nguyen Ai
2017-01-01
After almost 30 years of development, it is not controversial issue that the so–called Tsallis entropy provides a useful approach to studying the complexity where the non–additivity of the systems under consideration is frequently met. Also, in the ecological research, Tsallis entropy, or in other words, q –entropy has been found itself as a generalized approach to define a range of diversity indices including Shannon–Wiener and Simpson indices. As a further stage of development in theoretical research, a thermodynamic theory based on Tsallis entropy or diversity indices in ecology has to be constructed for ecological systems to provide knowledge of ecological macroscopic behaviors. The standard method of theoretical physics is used in the manipulation and the equivalence between phenomenological thermodynamics and ecological aspects is the purpose of the ongoing research. The present work is in the line of the authors research to implement Tsallis non–extensivity approach to obtain the most important thermodynamic quantities of ecological systems such as internal energy U q and temperature T q based on a given modeled truncated Boltzmann distribution of the Whittaker plot for a dataset. These quantities have their own ecological meaning, especially the temperature T q provides the insight of equilibrium condition among ecological systems as it is well–known in 0th law of thermodynamics. (paper)
A non-extensive thermodynamic theory of ecological systems
Van Xuan, Le; Khac Ngoc, Nguyen; Lan, Nguyen Tri; Viet, Nguyen Ai
2017-06-01
After almost 30 years of development, it is not controversial issue that the so-called Tsallis entropy provides a useful approach to studying the complexity where the non-additivity of the systems under consideration is frequently met. Also, in the ecological research, Tsallis entropy, or in other words, q-entropy has been found itself as a generalized approach to define a range of diversity indices including Shannon-Wiener and Simpson indices. As a further stage of development in theoretical research, a thermodynamic theory based on Tsallis entropy or diversity indices in ecology has to be constructed for ecological systems to provide knowledge of ecological macroscopic behaviors. The standard method of theoretical physics is used in the manipulation and the equivalence between phenomenological thermodynamics and ecological aspects is the purpose of the ongoing research. The present work is in the line of the authors research to implement Tsallis non-extensivity approach to obtain the most important thermodynamic quantities of ecological systems such as internal energy Uq and temperature Tq based on a given modeled truncated Boltzmann distribution of the Whittaker plot for a dataset. These quantities have their own ecological meaning, especially the temperature Tq provides the insight of equilibrium condition among ecological systems as it is well-known in 0th law of thermodynamics.
CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS
International Nuclear Information System (INIS)
Hansen, Brad M. S.
2010-01-01
We provide an 'effective theory' of tidal dissipation in extrasolar planet systems by empirically calibrating a model for the equilibrium tide. The model is valid to high order in eccentricity and parameterized by two constants of bulk dissipation-one for dissipation in the planet and one for dissipation in the host star. We are able to consistently describe the distribution of extrasolar planetary systems in terms of period, eccentricity, and mass (with a lower limit of a Saturn mass) with this simple model. Our model is consistent with the survival of short-period exoplanet systems, but not with the circularization period of equal mass stellar binaries, suggesting that the latter systems experience a higher level of dissipation than exoplanet host stars. Our model is also not consistent with the explanation of inflated planetary radii as resulting from tidal dissipation. The paucity of short-period planets around evolved A stars is explained as the result of enhanced tidal inspiral resulting from the increase in stellar radius with evolution.
Squids old and young: Scale-free design for a simple billboard
Packard, Andrew
2011-03-01
Squids employ a large range of brightness-contrast spatial frequencies in their camouflage and signalling displays. The 'billboard' of coloured elements ('spots'=chromatophore organs) in the skin is built autopoietically-probably by lateral inhibitory processes-and enlarges as much as 10,000-fold during development. The resulting two-dimensional array is a fractal-like colour/size hierarchy lying in several layers of a multilayered network. Dynamic control of the array by muscles and nerves produces patterns that recall 'half-tone' processing (cf. ink-jet printer). In the more sophisticated (loliginid) squids, patterns also combine 'continuous tones' (cf. dye-sublimation printer). Physiologists and engineers can exploit the natural colour-coding of the integument to understand nerve and muscle system dynamics, examined here at the level of the ensemble. Integrative functions of the whole (H) are analysed in terms of the power spectrum within and between ensembles and of spontaneous waves travelling through the billboard. Video material may be obtained from the author at the above address.
Play therapy in perspective theory of eco systemic therapy
Directory of Open Access Journals (Sweden)
Sofwan Adiputra
2017-11-01
Full Text Available Play therapy is a counseling approach for children applying toys, games, and other play media to communicate to the children "language." One of the Play therapy models that combine ecosystems as being formed by an inseparable reciprocal relationship between living things, and their environment is Eco systemic Play Therapy (EPT. Ecosystem Play Therapy as a hybrid model that integrates the concepts of science biology, several models of child psychotherapy, and developmental theories. This model is not eclectic. Rather, it is the integration of several models to create an independent model that is different from the sum of its parts. The focus of EPT is on the process of optimizing the implementation of the child's function as the context of the child's ecosystem or world. EPT is developed from a phenomenological philosophical perspective, in contrast to traditional perspectives.
Describing a Strongly Correlated Model System with Density Functional Theory.
Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth
2017-07-06
The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.
International Nuclear Information System (INIS)
Backes, Steffen
2017-04-01
The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non
Energy Technology Data Exchange (ETDEWEB)
Backes, Steffen
2017-04-15
The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non
The Power and Promise of Developmental Systems Theory
Directory of Open Access Journals (Sweden)
Letitia Meynell
2008-09-01
Full Text Available I argue that it is time for many feminists to rethink their attitudes towards evolutionary biology, not because feminists have been wrong to be deeply sceptical about many of its claims, both explicit and implicit, but because biology itself has changed. A new appreciation for the importance of development in biology has become mainstream and a new ontology, associated with developmental systems theory (DST, has been introduced over the last two decades. This turn challenges some of the features of evolutionary biology that have most troubled feminists. DST undermines the idea of biologicales sence and challenges both nature /nurture and nature/culture distinctions. Freed from these conceptual constraints, evolutionary biology no longer poses the problems that have justified feminist scepticism. Indeed, feminists have already found useful applications for DST and I argue that they should expand their use of DST to support more radical and wide-ranging political theories.Si les féministes n’ont pas eu tort d’être profondément sceptiques face aux nombreuses revendications de la biologie, leur attitude face à cette science doit être remise en question car la biologie s’est transformée au courant des dernières décennies. La «théorie des systèmes de développement» (developmental systems theory-TDS est une théorie qui s’est considérablement développée et qui a pris beaucoup d’ampleur. Cette théorie n’accepte pas le concept d’essence biologique ce qui pose un défi important à la distinction nature/culture. Une des conséquences de cet apport théorique est que le scepticisme des féministes face à la biologie de l’évolution n’est plus justifié car la biologie ne comporte plus les contraintes essentialistes qui s’avéraient contentieuses. En effet, certaines féministes ont déjà trouvé des applications utiles pour la TDS et nous avançons que les féministes doivent maintenant élargir l’utilisation de la
Numerical perturbative methods in the quantum theory of physical systems
International Nuclear Information System (INIS)
Adam, G.
1980-01-01
During the last two decades, development of digital electronic computers has led to the deployment of new, distinct methods in theoretical physics. These methods, based on the advances of modern numerical analysis as well as on specific equations describing physical processes, enabled to perform precise calculations of high complexity which have completed and sometimes changed our image of many physical phenomena. Our efforts have concentrated on the development of numerical methods with such intrinsic performances as to allow a successful approach of some Key issues in present theoretical physics on smaller computation systems. The basic principle of such methods is to translate, in numerical analysis language, the theory of perturbations which is suited to numerical rather than to analytical computation. This idea has been illustrated by working out two problems which arise from the time independent Schroedinger equation in the non-relativistic approximation, within both quantum systems with a small number of particles and systems with a large number of particles, respectively. In the first case, we are led to the numerical solution of some quadratic ordinary differential equations (first section of the thesis) and in the second case, to the solution of some secular equations in the Brillouin area (second section). (author)
Cognitive performance modeling based on general systems performance theory.
Kondraske, George V
2010-01-01
General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).
Using Organizational Systems Theory to Improve Defense Acquisition and Warfighter Requirements
National Research Council Canada - National Science Library
Alexander, Michael J
2007-01-01
.... Hence, this MBA study employed a systems approach to more credibly pinpoint improvement areas in the Defense Acquisition System through the use of systems theory and an organizational systems model...
Zhang, Zhongzhi; Dong, Yuze; Sheng, Yibin
2015-10-01
Random walks including non-nearest-neighbor jumps appear in many real situations such as the diffusion of adatoms and have found numerous applications including PageRank search algorithm; however, related theoretical results are much less for this dynamical process. In this paper, we present a study of mixed random walks in a family of fractal scale-free networks, where both nearest-neighbor and next-nearest-neighbor jumps are included. We focus on trapping problem in the network family, which is a particular case of random walks with a perfect trap fixed at the central high-degree node. We derive analytical expressions for the average trapping time (ATT), a quantitative indicator measuring the efficiency of the trapping process, by using two different methods, the results of which are consistent with each other. Furthermore, we analytically determine all the eigenvalues and their multiplicities for the fundamental matrix characterizing the dynamical process. Our results show that although next-nearest-neighbor jumps have no effect on the leading scaling of the trapping efficiency, they can strongly affect the prefactor of ATT, providing insight into better understanding of random-walk process in complex systems.
International Nuclear Information System (INIS)
Li, Bin; Li, Feng; Liu, Hongqi; Cai, Hui; Mao, Xinyong; Peng, Fangyu
2014-01-01
This study presents a novel measurement strategy and an error-compensation model for the measurement of large-scale free-form surfaces in on-machine laser measurement systems. To improve the measurement accuracy, the effects of the scan depth, surface roughness, incident angle and azimuth angle on the measurement results were investigated experimentally, and a practical measurement strategy considering the position and orientation of the sensor is presented. Also, a semi-quantitative model based on geometrical optics is proposed to compensate for the measurement error associated with the incident angle. The normal vector of the measurement point is determined using a cross-curve method from the acquired surface data. Then, the azimuth angle and incident angle are calculated to inform the measurement strategy and error-compensation model, respectively. The measurement strategy and error-compensation model are verified through the measurement of a large propeller blade on a heavy machine tool in a factory environment. The results demonstrate that the strategy and the model are effective in increasing the measurement accuracy. (paper)
International Nuclear Information System (INIS)
Xie, Huijuan; Gong, Yubing
2017-01-01
In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on multiple coherence resonances (MCR) and synchronization transitions (ST) induced by time delay in adaptive scale-free Hodgkin–Huxley neuronal networks. It is found that STDP has a big influence on MCR and ST induced by time delay and on the effect of network average degree on the MCR and ST. MCR is enhanced or suppressed as the adjusting rate A p of STDP decreases or increases, and there is optimal A p by which ST becomes strongest. As network average degree 〈k〉 increases, ST is enhanced and there is optimal 〈k〉 at which MCR becomes strongest. Moreover, for a larger A p value, ST is enhanced more rapidly with increasing 〈k〉 and the optimal 〈k〉 for MCR increases. These results show that STDP can either enhance or suppress MCR, and there is optimal STDP that can most strongly enhance ST induced by time delay in the adaptive neuronal networks. These findings could find potential implication for the information processing and transmission in neural systems.
Lyapunov analysis: from dynamical systems theory to applications
Cencini, Massimo; Ginelli, Francesco
2013-06-01
[17], von Neumann [18], Krylov [19]3 and Asonov and Sinai [20] on ergodic theory. Lyapunov exponents quantify exponential sensitivity to initial conditions and provide direct access to the entropy production in ergodic systems via the Pesin theory [21]. Further advances have been made possible by the introduction of proper physical invariant measures for certain dissipative systems due to Sinai [22], Ruelle [23] and Bowen [24, 25]. However, it was necessary to wait until the end of the 1970s before the independent works of Shimada and Nagashima [26] and Benettin et al [27] introduced the numerical algorithms required to compute Lyapunov exponents beyond the largest one. The availability of such algorithms and also, at about the same time, of those necessary for the computation of fractal dimensions and entropies by Grassberger and Procaccia [28], made possible the study of chaotic behavior in physically relevant models. Lyapunov analysis, applied to experimental systems [29], was also made possible by a combination of these numerical methods with ideas from nonlinear time series analysis [30]. As a result, it is nowadays widely recognized that Lyapunov exponents are a central tool of chaos theory, crucial for characterizing a number of interesting physical properties including dynamical entropies and fractal dimensions [31]. Their pivotal role in modern dynamical systems theory has been established by a fruitful exchange between a rigorous (and beautiful) mathematical theory and the algorithmic approaches essential for understanding many physical phenomena. From the 1990s to the present, with the concomitant progress in both theoretical understanding and computer capabilities, there has been a progressive shift of interest from low dimensional towards high dimensional systems. This shift towards dynamics characterized by many degrees of freedom, possibly spatially organized and/or with several characteristic temporal scales, has been accompanied by the need for
Chen, Huey T
2016-12-01
Theories of program and theories of evaluation form the foundation of program evaluation theories. Theories of program reflect assumptions on how to conceptualize an intervention program for evaluation purposes, while theories of evaluation reflect assumptions on how to design useful evaluation. These two types of theories are related, but often discussed separately. This paper attempts to use three theoretical perspectives (reductionism, systems thinking, and pragmatic synthesis) to interface them and discuss the implications for evaluation practice. Reductionism proposes that an intervention program can be broken into crucial components for rigorous analyses; systems thinking view an intervention program as dynamic and complex, requiring a holistic examination. In spite of their contributions, reductionism and systems thinking represent the extreme ends of a theoretical spectrum; many real-world programs, however, may fall in the middle. Pragmatic synthesis is being developed to serve these moderate- complexity programs. These three theoretical perspectives have their own strengths and challenges. Knowledge on these three perspectives and their evaluation implications can provide a better guide for designing fruitful evaluations, improving the quality of evaluation practice, informing potential areas for developing cutting-edge evaluation approaches, and contributing to advancing program evaluation toward a mature applied science. Copyright © 2016 Elsevier Ltd. All rights reserved.
Principles of General Systems Theory: Some Implications for Higher Education Administration
Gilliland, Martha W.; Gilliland, J. Richard
1978-01-01
Three principles of general systems theory are presented and systems theory is distinguished from systems analysis. The principles state that all systems tend to become more disorderly, that they must be diverse in order to be stable, and that only those maximizing their resource utilization for doing useful work will survive. (Author/LBH)
BOOK REVIEW: Theory of Neural Information Processing Systems
Galla, Tobias
2006-04-01
It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 1011 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kühn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the
Walloth, Christian
2016-01-01
This book presents a theory as well as methods to understand and to purposively influence complex systems. It suggests a theory of complex systems as nested systems, i. e. systems that enclose other systems and that are simultaneously enclosed by even other systems. According to the theory presented, each enclosing system emerges through time from the generative activities of the systems they enclose. Systems are nested and often emerge unplanned, and every system of high dynamics is enclosed by a system of slower dynamics. An understanding of systems with faster dynamics, which are always guided by systems of slower dynamics, opens up not only new ways to understanding systems, but also to effectively influence them. The aim and subject of this book is to lay out these thoughts and explain their relevance to the purposive development of complex systems, which are exemplified in case studies from an urban system. The interested reader, who is not required to be familiar with system-theoretical concepts or wit...
Recent trends in social systems quantitative theories and quantitative models
Hošková-Mayerová, Šárka; Soitu, Daniela-Tatiana; Kacprzyk, Janusz
2017-01-01
The papers collected in this volume focus on new perspectives on individuals, society, and science, specifically in the field of socio-economic systems. The book is the result of a scientific collaboration among experts from “Alexandru Ioan Cuza” University of Iaşi (Romania), “G. d’Annunzio” University of Chieti-Pescara (Italy), "University of Defence" of Brno (Czech Republic), and "Pablo de Olavide" University of Sevilla (Spain). The heterogeneity of the contributions presented in this volume reflects the variety and complexity of social phenomena. The book is divided in four Sections as follows. The first Section deals with recent trends in social decisions. Specifically, it aims to understand which are the driving forces of social decisions. The second Section focuses on the social and public sphere. Indeed, it is oriented on recent developments in social systems and control. Trends in quantitative theories and models are described in Section 3, where many new formal, mathematical-statistical to...
Switching theory-based steganographic system for JPEG images
Cherukuri, Ravindranath C.; Agaian, Sos S.
2007-04-01
Cellular communications constitute a significant portion of the global telecommunications market. Therefore, the need for secured communication over a mobile platform has increased exponentially. Steganography is an art of hiding critical data into an innocuous signal, which provide answers to the above needs. The JPEG is one of commonly used format for storing and transmitting images on the web. In addition, the pictures captured using mobile cameras are in mostly in JPEG format. In this article, we introduce a switching theory based steganographic system for JPEG images which is applicable for mobile and computer platforms. The proposed algorithm uses the fact that energy distribution among the quantized AC coefficients varies from block to block and coefficient to coefficient. Existing approaches are effective with a part of these coefficients but when employed over all the coefficients they show there ineffectiveness. Therefore, we propose an approach that works each set of AC coefficients with different frame work thus enhancing the performance of the approach. The proposed system offers a high capacity and embedding efficiency simultaneously withstanding to simple statistical attacks. In addition, the embedded information could be retrieved without prior knowledge of the cover image. Based on simulation results, the proposed method demonstrates an improved embedding capacity over existing algorithms while maintaining a high embedding efficiency and preserving the statistics of the JPEG image after hiding information.
System of marketing deciding support based on game theory
Directory of Open Access Journals (Sweden)
Gordana Dukić
2008-12-01
Full Text Available Quantitative methods and models can be applied in numerous spheres of marketing deciding. The choice of optimal strategy in product advertising is one of the problems that the marketing-management often meets. The use of models developed within the framework of game theory makes significantly easier to find out the solutions of conflict situations that appear herewith. The system of deciding support presented in this work is based on the supposition that two opposed sides take part in the game. With the aim of deciding process promotion, the starting model incorporates computer simulation of percentile changes in the market share that represent elements of payment matrix. The supposition is that the random variables that represent them follow the normal division. It is necessary to carry out the evaluation of their parameters because of relevant data. Information techniques, computer and the adequate program applications take the special position in solving and analysis of the suggested model. This kind of their application represents the basic characteristic of the deciding support system.
Energy Technology Data Exchange (ETDEWEB)
Perumalla, Kalyan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Alam, Maksudul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-10-01
A novel parallel algorithm is presented for generating random scale-free networks using the preferential-attachment model. The algorithm, named cuPPA, is custom-designed for single instruction multiple data (SIMD) style of parallel processing supported by modern processors such as graphical processing units (GPUs). To the best of our knowledge, our algorithm is the first to exploit GPUs, and also the fastest implementation available today, to generate scale free networks using the preferential attachment model. A detailed performance study is presented to understand the scalability and runtime characteristics of the cuPPA algorithm. In one of the best cases, when executed on an NVidia GeForce 1080 GPU, cuPPA generates a scale free network of a billion edges in less than 2 seconds.
Density functional theory for polymeric systems in 2D
International Nuclear Information System (INIS)
Słyk, Edyta; Bryk, Paweł; Roth, Roland
2016-01-01
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim’s first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys . 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT. (paper)
Gravitation theory - Empirical status from solar system experiments.
Nordtvedt, K. L., Jr.
1972-01-01
Review of historical and recent experiments which speak in favor of a post-Newtonian relativistic gravitational theory. The topics include the foundational experiments, metric theories of gravity, experiments designed to differentiate among the metric theories, and tests of Machian concepts of gravity. It is shown that the metric field for any metric theory can be specified by a series of potential terms with several parameters. It is pointed out that empirical results available up to date yield values of the parameters which are consistent with the prediction of Einstein's general relativity.
D1/D5 systems in N=4 string theories
International Nuclear Information System (INIS)
Gava, Edi; Hammou, Amine B.; Morales, Jose F.; Narain, Kumar S.
2001-01-01
We propose CFT descriptions of the D1/D5 system in a class of freely acting Z 2 orbifolds/orientifolds of type IIB theory, with sixteen unbroken supercharges. The CFTs describing D1/D5 systems involve N=(4,4) or N=(4,0) sigma models on (R 3 xS 1 xT 4 x(T 4 ) N /S N )/Z 2 , where the action of Z 2 is diagonal and its precise nature depends on the model. We also discuss D1(D5)-brane states carrying non-trivial Kaluza-Klein charges, which correspond to excitations of two-dimensional CFTs of the type (R 3 xS 1 xT 4 ) N /S N xZ 2 N . The resulting multiplicities for two-charge bound states are shown to agree with the predictions of U-duality. We raise a puzzle concerning the multiplicities of three-charge systems, which is generically present in all vacuum configurations with sixteen unbroken supercharges studied so far, including the more familiar type IIB on K3 case: the constraints put on BPS counting formulae by U-duality are apparently in contradiction with any CFT interpretation. We argue that the presence of RR backgrounds appearing in the symmetric product CFT may provide a resolution of this puzzle. Finally, we show that the whole tower of D-instanton corrections to certain 'BPS saturated couplings' in the low energy effective actions match with the corresponding one-loop threshold corrections on the dual fundamental string side
International Nuclear Information System (INIS)
Castro, A; Gross, E K U
2014-01-01
We derive the fundamental equations of an optimal control theory for systems containing both quantum electrons and classical ions. The system is modeled with Ehrenfest dynamics, a non-adiabatic variant of molecular dynamics. The general formulation, that needs the fully correlated many-electron wavefunction, can be simplified by making use of time-dependent density-functional theory. In this case, the optimal control equations require some modifications that we will provide. The abstract general formulation is complemented with the simple example of the H 2 + molecule in the presence of a laser field. (paper)
Dissipative open systems theory as a foundation for the thermodynamics of linear systems.
Delvenne, Jean-Charles; Sandberg, Henrik
2017-03-06
In this paper, we advocate the use of open dynamical systems, i.e. systems sharing input and output variables with their environment, and the dissipativity theory initiated by Jan Willems as models of thermodynamical systems, at the microscopic and macroscopic level alike. We take linear systems as a study case, where we show how to derive a global Lyapunov function to analyse networks of interconnected systems. We define a suitable notion of dynamic non-equilibrium temperature that allows us to derive a discrete Fourier law ruling the exchange of heat between lumped, discrete-space systems, enriched with the Maxwell-Cattaneo correction. We complete these results by a brief recall of the steps that allow complete derivation of the dissipation and fluctuation in macroscopic systems (i.e. at the level of probability distributions) from lossless and deterministic systems.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).
Causal fermion systems as a candidate for a unified physical theory
International Nuclear Information System (INIS)
Finster, Felix; Kleiner, Johannes
2015-01-01
The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction. (paper)
Causal fermion systems as a candidate for a unified physical theory
Finster, Felix; Kleiner, Johannes
2015-07-01
The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction.
Untangling the drivers of nonlinear systems with information theory
Wing, S.; Johnson, J.
2017-12-01
Many systems found in nature are nonlinear. The drivers of the system are often nonlinearly correlated with one another, which makes it a challenge to understand the effects of an individual driver. For example, solar wind velocity (Vsw) and density (nsw) are both found to correlate well with radiation belt fluxes and are thought to be drivers of the magnetospheric dynamics; however, the Vsw is anti-correlated with nsw, which can potentially confuse interpretation of these relationships as causal or coincidental. Information theory can untangle the drivers of these systems, describe the underlying dynamics, and offer constraints to modelers and theorists, leading to better understanding of the systems. Two examples are presented. In the first example, the solar wind drivers of geosynchronous electrons with energy range of 1.8-3.5 MeV are investigated using mutual information (MI), conditional mutual information (CMI), and transfer entropy (TE). The information transfer from Vsw to geosynchronous MeV electron flux (Je) peaks with a lag time (t) of 2 days. As previously reported, Je is anticorrelated with nsw with a lag of 1 day. However, this lag time and anticorrelation can be attributed mainly to the Je(t + 2 days) correlation with Vsw(t) and nsw(t + 1 day) anticorrelation with Vsw(t). Analyses of solar wind driving of the magnetosphere need to consider the large lag times, up to 3 days, in the (Vsw, nsw) anticorrelation. Using CMI to remove the effects of Vsw, the response of Je to nsw is 30% smaller and has a lag time < 24 hr, suggesting that the loss mechanism due to nsw or solar wind dynamic pressure has to start operating in < 24 hr. nsw transfers about 36% as much information as Vsw (the primary driver) to Je. Nonstationarity in the system dynamics are investigated using windowed TE. When the data is ordered according to high or low transfer entropy it is possible to understand details of the triangle distribution that has been identified between Je(t + 2
Esquivel-Gómez, Jose de Jesus; Barajas-Ramírez, Juan Gonzalo
2018-01-01
One of the most effective mechanisms to contain the spread of an infectious disease through a population is the implementation of quarantine policies. However, its efficiency is affected by different aspects, for example, the structure of the underlining social network where highly connected individuals are more likely to become infected; therefore, the speed of the transmission of the decease is directly determined by the degree distribution of the network. Another aspect that influences the effectiveness of the quarantine is the self-protection processes of the individuals in the population, that is, they try to avoid contact with potentially infected individuals. In this paper, we investigate the efficiency of quarantine and self-protection processes in preventing the spreading of infectious diseases over complex networks with a power-law degree distribution [ P ( k ) ˜ k - ν ] for different ν values. We propose two alternative scale-free models that result in power-law degree distributions above and below the exponent ν = 3 associated with the conventional Barabási-Albert model. Our results show that the exponent ν determines the effectiveness of these policies in controlling the spreading process. More precisely, we show that for the ν exponent below three, the quarantine mechanism loses effectiveness. However, the efficiency is improved if the quarantine is jointly implemented with a self-protection process driving the number of infected individuals significantly lower.
Directory of Open Access Journals (Sweden)
Supriya Aggarwal
2012-01-01
Full Text Available One of the most important steps in spectral analysis is filtering, where window functions are generally used to design filters. In this paper, we modify the existing architecture for realizing the window functions using CORDIC processor. Firstly, we modify the conventional CORDIC algorithm to reduce its latency and area. The proposed CORDIC algorithm is completely scale-free for the range of convergence that spans the entire coordinate space. Secondly, we realize the window functions using a single CORDIC processor as against two serially connected CORDIC processors in existing technique, thus optimizing it for area and latency. The linear CORDIC processor is replaced by a shift-add network which drastically reduces the number of pipelining stages required in the existing design. The proposed design on an average requires approximately 64% less pipeline stages and saves up to 44.2% area. Currently, the processor is designed to implement Blackman windowing architecture, which with slight modifications can be extended to other widow functions as well. The details of the proposed architecture are discussed in the paper.
Solar system constraints on multifield theories of modified dynamics
Sanders, R. H.
2006-01-01
Any viable theory of modified Newtonian dynamics (MOND) as modified gravity is likely to require fields in addition to the usual tensor field of General Relativity. For these theories, the MOND phenomenology emerges as an effective fifth force probably associated with a scalar field. Here, I
Affect Theory and Autoethnography in Ordinary Information Systems
DEFF Research Database (Denmark)
Bødker, Mads; Chamberlain, Alan
2016-01-01
This paper uses philosophical theories of affect as a lens for exploring autoethnographic renderings of everyday experience with information technology. Affect theories, in the paper, denote a broad trend in post-humanistic philosophy that explores sensation and feeling as emergent and relational...
Macroscopic Theory for Evolving Biological Systems Akin to Thermodynamics.
Kaneko, Kunihiko; Furusawa, Chikara
2018-05-20
We present a macroscopic theory to characterize the plasticity, robustness, and evolvability of biological responses and their fluctuations. First, linear approximation in intracellular reaction dynamics is used to demonstrate proportional changes in the expression of all cellular components in response to a given environmental stress, with the proportion coefficient determined by the change in growth rate as a consequence of the steady growth of cells. We further demonstrate that this relationship is supported through adaptation experiments of bacteria, perhaps too well as this proportionality is held even across cultures of different types of conditions. On the basis of simulations of cell models, we further show that this global proportionality is a consequence of evolution in which expression changes in response to environmental or genetic perturbations are constrained along a unique one-dimensional curve, which is a result of evolutionary robustness. It then follows that the expression changes induced by environmental changes are proportionally reduced across different components of a cell by evolution, which is akin to the Le Chatelier thermodynamics principle. Finally, with the aid of a fluctuation-response relationship, this proportionality is shown to hold between fluctuations caused by genetic changes and those caused by noise. Overall, these results and support from the theoretical and experimental literature suggest a formulation of cellular systems akin to thermodynamics, in which a macroscopic potential is given by the growth rate (or fitness) represented as a function of environmental and evolutionary changes.
Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory
Lucia, David J.; Beran, Philip S.; Silva, Walter A.
2003-01-01
This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.
Applied Systemic Theory and Educational Psychology: Can the Twain Ever Meet?
Pellegrini, Dario W.
2009-01-01
This article reflects on the potential benefits of applying systemic theory to the work of educational psychologists (EPs). It reviews developments in systemic thinking over time, and discusses the differences between more directive "first order" versus collaborative "second order" approaches. It considers systemic theories and…
General System Theory: Toward a Conceptual Framework for Science and Technology Education for All.
Chen, David; Stroup, Walter
1993-01-01
Suggests using general system theory as a unifying theoretical framework for science and technology education for all. Five reasons are articulated: the multidisciplinary nature of systems theory, the ability to engage complexity, the capacity to describe system dynamics, the ability to represent the relationship between microlevel and…
Ensemble Bayesian forecasting system Part I: Theory and algorithms
Herr, Henry D.; Krzysztofowicz, Roman
2015-05-01
The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of
Koole, Sander L; Schlinkert, Caroline; Maldei, Tobias; Baumann, Nicola
2018-03-10
One of the enduring missions of personality science is to unravel what it takes to become a fully functioning person. In the present article, the authors address this matter from the perspectives of self-determination theory (SDT) and personality systems interactions (PSI) theory. SDT (a) is rooted in humanistic psychology; (b) has emphasized a first-person perspective on motivation and personality; (c) posits that the person, supported by the social environment, naturally moves toward growth through the satisfaction of basic psychological needs for autonomy, competence, and relatedness. PSI theory (a) is rooted in German volition psychology; (b) has emphasized a third-person perspective on motivation and personality; and (c) posits that a fully functioning person can form and enact difficult intentions and integrate new experiences, and that such competencies are facilitated by affect regulation. The authors review empirical support for SDT and PSI theory, their convergences and divergences, and how the theories bear on recent empirical research on internalization, vitality, and achievement flow. The authors conclude that SDT and PSI theory offer complementary insights into developing a person's full potential. © 2018 The Authors. Journal of Personality Published by Wiley Periodicals, Inc.
Xue, Jingxin
The article aims to completely, systematically and objectively analyze the current situation of Entrepreneurship Education in China with Ecological Systems Theory. From this perspective, the author discusses the structure, function and its basic features of higher education entrepreneur services network system, and puts forward the opinion that every entrepreneurship organization in higher education institution does not limited to only one platform. Different functional supporting platforms should be combined closed through composite functional organization to form an integrated network system, in which each unit would impels others' development.
Cancer Theory from Systems Biology Point of View
Wang, Gaowei; Tang, Ying; Yuan, Ruoshi; Ao, Ping
In our previous work, we have proposed a novel cancer theory, endogenous network theory, to understand mechanism underlying cancer genesis and development. Recently, we apply this theory to hepatocellular carcinoma (HCC). A core endogenous network of hepatocyte was established by integrating the current understanding of hepatocyte at molecular level. Quantitative description of the endogenous network consisted of a set of stochastic differential equations which could generate many local attractors with obvious or non-obvious biological functions. By comparing with clinical observation and experimental data, the results showed that two robust attractors from the model reproduced the main known features of normal hepatocyte and cancerous hepatocyte respectively at both modular and molecular level. In light of our theory, the genesis and progression of cancer is viewed as transition from normal attractor to HCC attractor. A set of new insights on understanding cancer genesis and progression, and on strategies for cancer prevention, cure, and care were provided.
The temporolimbic system theory of positive schizophrenic symptoms.
Bogerts, B
1997-01-01
This article proposes that subtle structural and functional disturbance of limbic key structures in the medial temporal lobe-especially of the left hippocampal formation and parahippocampal gyrus-can explain the so-called positive symptoms of schizophrenia. After presenting pathophysiological considerations linking limbic dysfunction to schizophrenia, the article reviews evidence from structural, biochemical, and functional studies supporting the theory. Also discussed here are neurodevelopmental and laterality aspects, as well as predictions, questions, and future tasks derived from the theory.
International Nuclear Information System (INIS)
Negri, L.J.
1982-01-01
A tecnique permiting the construction of a lagrangian function for nao-holononic systems is established. The classical formalism of the relativistic strings is discussed in the point of view of the Dirac theory for singular systems and in the context of a problem of two-dimensional surface immersion in space-time. It is shown how to solve the problem corresponding to the immersion in the case of free-finite and open strings by the specification of a non-conventional gauge. The relation between the string theory and Maxwell fields of place 2 is analyzed and the properties of string 'current density' to obtain new information about the model is explored. (L.C.) [pt