WorldWideScience

Sample records for scale shell model

  1. Perturbation theory instead of large scale shell model calculations

    International Nuclear Information System (INIS)

    Feldmeier, H.; Mankos, P.

    1977-01-01

    Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de

  2. Structure of exotic nuclei by large-scale shell model calculations

    International Nuclear Information System (INIS)

    Utsuno, Yutaka; Otsuka, Takaharu; Mizusaki, Takahiro; Honma, Michio

    2006-01-01

    An extensive large-scale shell-model study is conducted for unstable nuclei around N = 20 and N = 28, aiming to investigate how the shell structure evolves from stable to unstable nuclei and affects the nuclear structure. The structure around N = 20 including the disappearance of the magic number is reproduced systematically, exemplified in the systematics of the electromagnetic moments in the Na isotope chain. As a key ingredient dominating the structure/shell evolution in the exotic nuclei from a general viewpoint, we pay attention to the tensor force. Including a proper strength of the tensor force in the effective interaction, we successfully reproduce the proton shell evolution ranging from N = 20 to 28 without any arbitrary modifications in the interaction and predict the ground state of 42Si to contain a large deformed component

  3. Large-scale shell model calculations for the N=126 isotones Po-Pu

    International Nuclear Information System (INIS)

    Caurier, E.; Rejmund, M.; Grawe, H.

    2003-04-01

    Large-scale shell model calculations were performed in the full Z=82-126 proton model space π(Oh 9/2 , 1f 7/2 , Oi 13/2 , 2p 3/2 , 1f 5/2 , 2p 1/2 ) employing the code NATHAN. The modified Kuo-Herling interaction was used, no truncation was applied up to protactinium (Z=91) and seniority truncation beyond. The results are compared to experimental data including binding energies, level schemes and electromagnetic transition rates. An overall excellent agreement is obtained for states that can be described in this model space. Limitations of the approach with respect to excitations across the Z=82 and N=126 shells and deficiencies of the interaction are discussed. (orig.)

  4. Recent shell-model results for exotic nuclei

    Directory of Open Access Journals (Sweden)

    Utsuno Yusuke

    2014-03-01

    Full Text Available We report on our recent advancement in the shell model and its applications to exotic nuclei, focusing on the shell evolution and large-scale calculations with the Monte Carlo shell model (MCSM. First, we test the validity of the monopole-based universal interaction (VMU as a shell-model interaction by performing large-scale shell-model calculations in two different mass regions using effective interactions which partly comprise VMU. Those calculations are successful and provide a deeper insight into the shell evolution beyond the single-particle model, in particular showing that the evolution of the spin-orbit splitting due to the tensor force plays a decisive role in the structure of the neutron-rich N ∼ 28 region and antimony isotopes. Next, we give a brief overview of recent developments in MCSM, and show that it is applicable to exotic nuclei that involve many valence orbits. As an example of its applications to exotic nuclei, shape coexistence in 32Mg is examined.

  5. Shell model and spectroscopic factors

    International Nuclear Information System (INIS)

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  6. Decaying and kicked turbulence in a shell model

    DEFF Research Database (Denmark)

    Hooghoudt, Jan Otto; Lohse, Detlef; Toschi, Federico

    2001-01-01

    Decaying and periodically kicked turbulence are analyzed within the Gledzer–Ohkitani–Yamada shell model, to allow for sufficiently large scaling regimes. Energy is transferred towards the small scales in intermittent bursts. Nevertheless, mean field arguments are sufficient to account for the ens......Decaying and periodically kicked turbulence are analyzed within the Gledzer–Ohkitani–Yamada shell model, to allow for sufficiently large scaling regimes. Energy is transferred towards the small scales in intermittent bursts. Nevertheless, mean field arguments are sufficient to account...

  7. Shell model in large spaces and statistical spectroscopy

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1996-01-01

    For many nuclear structure problems of current interest it is essential to deal with shell model in large spaces. For this, three different approaches are now in use and two of them are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the shell model Monte Carlo method. A brief overview of these two methods is given. Large space shell model studies raise fundamental questions regarding the information content of the shell model spectrum of complex nuclei. This led to the third approach- the statistical spectroscopy methods. The principles of statistical spectroscopy have their basis in nuclear quantum chaos and they are described (which are substantiated by large scale shell model calculations) in some detail. (author)

  8. Approximate symmetries in atomic nuclei from a large-scale shell-model perspective

    Science.gov (United States)

    Launey, K. D.; Draayer, J. P.; Dytrych, T.; Sun, G.-H.; Dong, S.-H.

    2015-05-01

    In this paper, we review recent developments that aim to achieve further understanding of the structure of atomic nuclei, by capitalizing on exact symmetries as well as approximate symmetries found to dominate low-lying nuclear states. The findings confirm the essential role played by the Sp(3, ℝ) symplectic symmetry to inform the interaction and the relevant model spaces in nuclear modeling. The significance of the Sp(3, ℝ) symmetry for a description of a quantum system of strongly interacting particles naturally emerges from the physical relevance of its generators, which directly relate to particle momentum and position coordinates, and represent important observables, such as, the many-particle kinetic energy, the monopole operator, the quadrupole moment and the angular momentum. We show that it is imperative that shell-model spaces be expanded well beyond the current limits to accommodate particle excitations that appear critical to enhanced collectivity in heavier systems and to highly-deformed spatial structures, exemplified by the second 0+ state in 12C (the challenging Hoyle state) and 8Be. While such states are presently inaccessible by large-scale no-core shell models, symmetry-based considerations are found to be essential.

  9. Symmetry-guided large-scale shell-model theory

    Czech Academy of Sciences Publication Activity Database

    Launey, K. D.; Dytrych, Tomáš; Draayer, J. P.

    2016-01-01

    Roč. 89, JUL (2016), s. 101-136 ISSN 0146-6410 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : Ab intio shell -model theory * Symplectic symmetry * Collectivity * Clusters * Hoyle state * Orderly patterns in nuclei from first principles Subject RIV: BE - Theoretical Physics Impact factor: 11.229, year: 2016

  10. New-generation Monte Carlo shell model for the K computer era

    International Nuclear Information System (INIS)

    Shimizu, Noritaka; Abe, Takashi; Yoshida, Tooru; Otsuka, Takaharu; Tsunoda, Yusuke; Utsuno, Yutaka; Mizusaki, Takahiro; Honma, Michio

    2012-01-01

    We present a newly enhanced version of the Monte Carlo shell-model (MCSM) method by incorporating the conjugate gradient method and energy-variance extrapolation. This new method enables us to perform large-scale shell-model calculations that the direct diagonalization method cannot reach. This new-generation framework of the MCSM provides us with a powerful tool to perform very advanced large-scale shell-model calculations on current massively parallel computers such as the K computer. We discuss the validity of this method in ab initio calculations of light nuclei, and propose a new method to describe the intrinsic wave function in terms of the shell-model picture. We also apply this new MCSM to the study of neutron-rich Cr and Ni isotopes using conventional shell-model calculations with an inert 40 Ca core and discuss how the magicity of N = 28, 40, 50 remains or is broken. (author)

  11. Innovative Method for Automatic Shape Generation and 3D Printing of Reduced-Scale Models of Ultra-Thin Concrete Shells

    Directory of Open Access Journals (Sweden)

    Ana Tomé

    2018-02-01

    Full Text Available A research and development project has been conducted aiming to design and produce ultra-thin concrete shells. In this paper, the first part of the project is described, consisting of an innovative method for shape generation and the consequent production of reduced-scale models of the selected geometries. First, the shape generation is explained, consisting of a geometrically nonlinear analysis based on the Finite Element Method (FEM to define the antifunicular of the shell’s deadweight. Next, the scale model production is described, consisting of 3D printing, specifically developed to evaluate the aesthetics and visual impact, as well as to study the aerodynamic behaviour of the concrete shells in a wind tunnel. The goals and constraints of the method are identified and a step-by-step guidelines presented, aiming to be used as a reference in future studies. The printed geometry is validated by high-resolution assessment achieved by photogrammetry. The results are compared with the geometry computed through geometric nonlinear finite-element-based analysis, and no significant differences are recorded. The method is revealed to be an important tool for automatic shape generation and building scale models of shells. The latter enables the performing of wind tunnel tests to obtain pressure coefficients, essential for structural analysis of this type of structures.

  12. Importance-truncated shell model for multi-shell valence spaces

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.

  13. Experimental Damage Identification of a Model Reticulated Shell

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2017-04-01

    Full Text Available The damage identification of a reticulated shell is a challenging task, facing various difficulties, such as the large number of degrees of freedom (DOFs, the phenomenon of modal localization and transition, and low modeling accuracy. Based on structural vibration responses, the damage identification of a reticulated shell was studied. At first, the auto-regressive (AR time series model was established based on the acceleration responses of the reticulated shell. According to the changes in the coefficients of the AR model between the damaged conditions and the undamaged condition, the damage of the reticulated shell can be detected. In addition, the damage sensitive factors were determined based on the coefficients of the AR model. With the damage sensitive factors as the inputs and the damage positions as the outputs, back-propagation neural networks (BPNNs were then established and were trained using the Levenberg–Marquardt algorithm (L–M algorithm. The locations of the damages can be predicted by the back-propagation neural networks. At last, according to the experimental scheme of single-point excitation and multi-point responses, the impact experiments on a K6 shell model with a scale of 1/10 were conducted. The experimental results verified the efficiency of the proposed damage identification method based on the AR time series model and back-propagation neural networks. The proposed damage identification method can ensure the safety of the practical engineering to some extent.

  14. Experimental and numerical modelling of ductile crack propagation in large-scale shell structures

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Törnquist, R.

    2004-01-01

    plastic and controlled conditions. The test specimen can be deformed either in combined in-plane bending and extension or in pure extension. Experimental results are described for 5 and 10 mm thick aluminium and steel plates. By performing an inverse finite-element analysis of the experimental results......This paper presents a combined experimental-numerical procedure for development and calibration of macroscopic crack propagation criteria in large-scale shell structures. A novel experimental set-up is described in which a mode-I crack can be driven 400 mm through a 20(+) mm thick plate under fully...... for steel and aluminium plates, mainly as curves showing the critical element deformation versus the shell element size. These derived crack propagation criteria are then validated against a separate set of experiments considering centre crack specimens (CCS) which have a different crack-tip constraint...

  15. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  16. On the shell model connection of the cluster model

    International Nuclear Information System (INIS)

    Cseh, J.; Levai, G.; Kato, K.

    2000-01-01

    Complete text of publication follows. The interrelation of basic nuclear structure models is a longstanding problem. The connection between the spherical shell model and the quadrupole collective model has been studied extensively, and symmetry considerations proved to be especially useful in this respect. A collective band was interpreted in the shell model language long ago as a set of states (of the valence nucleons) with a specific SU(3) symmetry. Furthermore, the energies of these rotational states are obtained to a good approximation as eigenvalues of an SU(3) dynamically symmetric shell model Hamiltonian. On the other hand the relation of the shell model and cluster model is less well explored. The connection of the harmonic oscillator (i.e. SU(3)) bases of the two approaches is known, but it was established only for the unrealistic harmonic oscillator interactions. Here we investigate the question: Can an SU(3) dynamically symmetric interaction provide a similar connection between the spherical shell model and the cluster model, like the one between the shell and collective models? In other words: whether or not the energy of the states of the cluster bands, defined by a specific SU(3) symmetries, can be obtained from a shell model Hamiltonian (with SU(3) dynamical symmetry). We carried out calculations within the framework of the semimicroscopic algebraic cluster model, in which not only the cluster model space is obtained from the full shell model space by an SU(3) symmetry-dictated truncation, but SU(3) dynamically symmetric interactions are also applied. Actually, Hamiltonians of this kind proved to be successful in describing the gross features of cluster states in a wide energy range. The novel feature of the present work is that we apply exclusively shell model interactions. The energies obtained from such a Hamiltonian for several bands of the ( 12 C, 14 C, 16 O, 20 Ne, 40 Ca) + α systems turn out to be in good agreement with the experimental

  17. Chaotic behaviour of the nuclear shell-model hamiltonian

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Oliveira, N.A. de; Wildenthal, B.H.

    1987-11-01

    Large scale nuclear shell-model calculations for several nuclear systems are discussed. In particular, the statistical baheviour of the energy eigenvalues and eigenstates, are discussed. The chaotic behaviour of the NSMH is then shown to be quite useful in calculating the spreading width of the highly collective multipole giant resonances. (author) [pt

  18. On the shell-model-connection of the cluster model

    International Nuclear Information System (INIS)

    Cseh, J.

    2000-01-01

    Complete text of publication follows. The interrelation of basic nuclear structure models is a longstanding problem. The connection between the spherical shell model and the quadrupole collective model has been studied extensively, and symmetry considerations proved to be especially useful in this respect. A collective band was interpreted in the shell model language long ago [1] as a set of states (of the valence nucleons) with a specific SU(3) symmetry. Furthermore, the energies of these rotational states are obtained to a good approximation as eigenvalues of an SU(3) dynamically symmetric shell model Hamiltonian. On the other hand the relation of the shell model and cluster model is less well explored. The connection of the harmonic oscillator (i.e. SU(3)) bases of the two approaches is known [2] but it was established only for the unrealistic harmonic oscillator interactions. Here we investigate the question: Can an SU(3) dynamically symmetric interaction provide a similar connection between the spherical shell model and the cluster model, like the one between the shell and collective models? In other words: whether or not the energy of the states of the cluster bands, defined by a specific SU(3) symmetries, can be obtained from a shell model Hamiltonian (with SU(3) dynamical symmetry). We carried out calculations within the framework of the semimicroscopic algebraic cluster model [3,4] in order to find an answer to this question, which seems to be affirmative. In particular, the energies obtained from such a Hamiltonian for several bands of the ( 12 C, 14 C, 16 O, 20 Ne, 40 Ca) + α systems turn out to be in good agreement with the experimental values. The present results show that the simple and transparent SU(3) connection between the spherical shell model and the cluster model is valid not only for the harmonic oscillator interactions, but for much more general (SU(3) dynamically symmetric) Hamiltonians as well, which result in realistic energy spectra. Via

  19. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  20. Large scale shell model calculations: the physics in and the physics out

    International Nuclear Information System (INIS)

    Zuker, A.P.

    1997-01-01

    After giving a few examples of recent results of the (SM) 2 collaboration, the monopole modified realistic interactions to be used in shell model calculations are described and analyzed. Rotational motion is discussed in some detail, and some introductory remarks on level densities are made. (orig.)

  1. Shell Model Far From Stability: Island of Inversion Mergers

    Science.gov (United States)

    Nowacki, F.; Poves, A.

    2018-02-01

    In this study we propose a common mechanism for the disappearance of shell closures far from stabilty. With the use of Large Scale Shell Model calculations (SM-CI), we predict that the region of deformation which comprises the heaviest Chromium and Iron isotopes at and beyond N=40 will merge with a new one at N=50 in an astonishing parallel to the N=20 and N=28 case in the Neon and Magnesium isotopes. We propose a valence space including the full pf-shell for the protons and the full sdg shell for the neutrons, which represents a come-back of the the harmonic oscillator shells in the very neutron rich regime. Our calculations preserve the doubly magic nature of the ground state of 78Ni, which, however, exhibits a well deformed prolate band at low excitation energy, providing a striking example of shape coexistence far from stability. This new Island of Inversion (IoI) adds to the four well documented ones at N=8, 20, 28 and 40.

  2. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  3. Conventional shell model: some issues

    International Nuclear Information System (INIS)

    Vallieres, M.; Pan, X.W.; Feng, D.H.; Novoselsky, A.

    1997-01-01

    We discuss some important issues in shell-model calculations related to the effective interactions used in different regions of the periodic table; in particular the quality of different interactions is discussed, as well as the mass dependence of the interactions. Mention is made of the recently developed Drexel University shell-model (DUSM). (orig.)

  4. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.

    1996-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs

  5. Dynamo Scaling Laws for Uranus and Neptune: The Role of Convective Shell Thickness on Dipolarity

    Science.gov (United States)

    Stanley, Sabine; Yunsheng Tian, Bob

    2017-10-01

    Previous dynamo scaling law studies (Christensen and Aubert, 2006) have demonstrated that the morphology of a planet’s magnetic field is determined by the local Rossby number (Ro_l): a non-dimensional diagnostic variable that quantifies the ratio of inertial forces to Coriolis forces on the average length scale of the flow. Dynamos with Ro_l ~ 0.1 produce multipolar magnetic fields. Scaling studies have also determined the dependence of the local Rossby number on non-dimensional parameters governing the system - specifically the Ekman, Prandtl, magnetic Prandtl and flux-based Rayleigh numbers (Olson and Christensen, 2006). When these scaling laws are applied to the planets, it appears that Uranus and Neptune should have dipole-dominated fields, contrary to observations. However, those scaling laws were derived using the specific convective shell thickness of the Earth’s core. Here we investigate the role of convective shell thickness on dynamo scaling laws. We find that the local Rossby number depends exponentially on the convective shell thickness. Including this new dependence on convective shell thickness, we find that the dynamo scaling laws now predict that Uranus and Neptune reside deeply in the multipolar regime, thereby resolving the previous contradiction with observations.

  6. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.; Dean, D.J.; Langanke, K.

    1997-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)

  7. Open source integrated modeling environment Delta Shell

    Science.gov (United States)

    Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.

    2012-04-01

    In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.

  8. Extensions to a nonlinear finite element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    A finite element shell-of-revolution model has been developed to analyze shipping containers under severe impact conditions. To establish the limits for this shell model, I studied the basic assumptions used in its development; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress. (orig./HP)

  9. Monte Carlo evaluation of path integral for the nuclear shell model

    International Nuclear Information System (INIS)

    Lang, G.H.

    1993-01-01

    The authors present a path-integral formulation of the nuclear shell model using auxillary fields; the path-integral is evaluated by Monte Carlo methods. The method scales favorably with valence-nucleon number and shell-model basis: full-basis calculations are demonstrated up to the rare-earth region, which cannot be treated by other methods. Observables are calculated for the ground state and in a thermal ensemble. Dynamical correlations are obtained, from which strength functions are extracted through the Maximum Entropy method. Examples in the s-d shell, where exact diagonalization can be carried out, compared well with exact results. The open-quotes sign problemclose quotes generic to quantum Monte Carlo calculations is found to be absent in the attractive pairing-plus-multipole interactions. The formulation is general for interacting fermion systems and is well suited for parallel computation. The authors have implemented it on the Intel Touchstone Delta System, achieving better than 99% parallelization

  10. Shell model calculations for exotic nuclei

    International Nuclear Information System (INIS)

    Brown, B.A.; Wildenthal, B.H.

    1991-01-01

    A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs

  11. Shell model description of Ge isotopes

    International Nuclear Information System (INIS)

    Hirsch, J G; Srivastava, P C

    2012-01-01

    A shell model study of the low energy region of the spectra in Ge isotopes for 38 ≤ N ≤ 50 is presented, analyzing the excitation energies, quadrupole moments, B(E2) values and occupation numbers. The theoretical results have been compared with the available experimental data. The shell model calculations have been performed employing three different effective interactions and valence spaces. We have used two effective shell model interactions, JUN45 and jj44b, for the valence space f 5/2 pg 9/2 without truncation. To include the proton subshell f 7/2 in valence space we have employed the fpg effective interaction due to Sorlin et al., with 48 Ca as a core and a truncation in the number of excited particles.

  12. Isospin invariant boson models for fp-shell nuclei

    International Nuclear Information System (INIS)

    Van Isacker, P.

    1994-01-01

    Isospin invariant boson models, IBM-3 and IBM-4, applicable in nuclei with neutrons and protons in the same valence shell, are reviewed. Some basic results related to these models are discussed: the mapping onto the shell model, the relation to Wigner's supermultiplet scheme, the boson-number and isospin dependence of parameters, etc. These results are examined for simple single-j shell situations (e.g. f 7/2 ) and their extension to the f p shell is investigated. Other extensions discussed here concern the treatment of odd-mass nuclei and the classification of particle-hole excitations in light nuclei. The possibility of a pseudo-SU(4) supermultiplet scheme in f p -shell nuclei is discussed. (author) 4 figs., 3 tabs., 23 refs

  13. Finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    Nuclear material shipping containers have shells of revolution as basic structural components. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Existing models are limited to large displacements, small rotations, and nonlinear materials. The paper presents a finite element model for a nonlinear shell of revolution that will account for large displacements, large strains, large rotations, and nonlinear materials

  14. Modeling of microencapsulated polymer shell solidification

    International Nuclear Information System (INIS)

    Boone, T.; Cheung, L.; Nelson, D.; Soane, D.; Wilemski, G.; Cook, R.

    1995-01-01

    A finite element transport model has been developed and implemented to complement experimental efforts to improve the quality of ICF target shells produced via controlled-mass microencapsulation. The model provides an efficient means to explore the effect of processing variables on the dynamics of shell dimensions, concentricity, and phase behavior. Comparisons with experiments showed that the model successfully predicts the evolution of wall thinning and core/wall density differences. The model was used to efficiently explore and identify initial wall compositions and processing temperatures which resulted in concentricity improvements from 65 to 99%. The evolution of trace amounts of water entering into the shell wall was also tracked in the simulations. Comparisons with phase envelope estimations from modified UNIFAP calculations suggest that the water content trajectory approaches the two-phase region where vacuole formation via microphase separation may occur

  15. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti; Collier, Nathan; Dalcí n, Lisandro D.; Ghommem, Mehdi; Calo, Victor M.

    2012-01-01

    The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  16. Many-body forces in nuclear shell-model

    International Nuclear Information System (INIS)

    Rath, P.K.

    1985-01-01

    In the microscopic derivation of the effective Hamiltonian for the nuclear shell model many-body forces between the valence nucleons occur. These many-body forces can be discriminated in ''real'' many-body forces, which can be related to mesonic and internal degrees of freedom of the nucleons, and ''effective'' many-body forces, which arise by the confinement of the nucleonic Hilbert space to the finite-dimension shell-model space. In the present thesis the influences of such three-body forces on the spectra of sd-shell nuclei are studied. For this the two common techniques for shell-model calculations (Oak Ridge-Rochester and Glasgow representation) are extended in such way that a general three-body term in the Hamiltonian can be regarded. The studies show that the repulsive contributions of the considered three-nucleon forces become more important with increasing number of valence nucleons. By this the particle-number dependence of empirical two-nucleon forces can be qualitatively explained. A special kind of effective many-body force occurs in the folded diagram expansion of the energy-dependent effective Hamiltonian for the shell model. Thereby it is shown that the contributions of the folded diagrams with three nucleons are just as important as those with two nucleons. Thus it is to be suspected that the folded diagram expansion contains many-particle terms with arbitrary particle number. The present studies however show that four nucleon effects are neglegible so that the folded diagram expansion can be confined to two- and three-particle terms. In shell-model calculations which extend over several main shells the influences of the spurious center-of-mass motion must be regarded. A procedure is discussed by which these spurious degrees of freedom can be exactly separated. (orig.) [de

  17. TWO-DIMENSIONAL APPROXIMATION OF EIGENVALUE PROBLEMS IN SHELL THEORY: FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The eigenvalue problem for a thin linearly elastic shell, of thickness 2e, clamped along its lateral surface is considered. Under the geometric assumption on the middle surface of the shell that the space of inextensional displacements is non-trivial, the authors obtain, as ε→0,the eigenvalue problem for the two-dimensional"flexural shell"model if the dimension of the space is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the spectra of both flexural and membrane shells. The method consists of rescaling the variables and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable a priori estimates for the scaled eigenvalues.

  18. Nuclear spectroscopy in large shell model spaces: recent advances

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1995-01-01

    Three different approaches are now available for carrying out nuclear spectroscopy studies in large shell model spaces and they are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the recently introduced Monte Carlo method for the shell model; (iii) the spectral averaging theory, based on central limit theorems, in indefinitely large shell model spaces. The various principles, recent applications and possibilities of these three methods are described and the similarity between the Monte Carlo method and the spectral averaging theory is emphasized. (author). 28 refs., 1 fig., 5 tabs

  19. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    Science.gov (United States)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  20. Deriving the nuclear shell model from first principles

    Science.gov (United States)

    Barrett, Bruce R.; Dikmen, Erdal; Vary, James P.; Maris, Pieter; Shirokov, Andrey M.; Lisetskiy, Alexander F.

    2014-09-01

    The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. Supported by the US NSF under Grant No. 0854912, the US DOE under

  1. Unified description of pf-shell nuclei by the Monte Carlo shell model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio

    1998-03-01

    The attempts to solve shell model by new methods are briefed. The shell model calculation by quantum Monte Carlo diagonalization which was proposed by the authors is a more practical method, and it became to be known that it can solve the problem with sufficiently good accuracy. As to the treatment of angular momentum, in the method of the authors, deformed Slater determinant is used as the basis, therefore, for making angular momentum into the peculiar state, projected operator is used. The space determined dynamically is treated mainly stochastically, and the energy of the multibody by the basis formed as the result is evaluated and selectively adopted. The symmetry is discussed, and the method of decomposing shell model space into dynamically determined space and the product of spin and isospin spaces was devised. The calculation processes are shown with the example of {sup 50}Mn nuclei. The calculation of the level structure of {sup 48}Cr with known exact energy can be done with the accuracy of peculiar absolute energy value within 200 keV. {sup 56}Ni nuclei are the self-conjugate nuclei of Z=N=28. The results of the shell model calculation of {sup 56}Ni nucleus structure by using the interactions of nuclear models are reported. (K.I.)

  2. History and future perspectives of the Monte Carlo shell model -from Alphleet to K computer-

    International Nuclear Information System (INIS)

    Shimizu, Noritaka; Otsuka, Takaharu; Utsuno, Yutaka; Mizusaki, Takahiro; Honma, Michio; Abe, Takashi

    2013-01-01

    We report a history of the developments of the Monte Carlo shell model (MCSM). The MCSM was proposed in order to perform large-scale shell-model calculations which direct diagonalization method cannot reach. Since 1999 PC clusters were introduced for parallel computation of the MCSM. Since 2011 we participated the High Performance Computing Infrastructure Strategic Program and developed a new MCSM code for current massively parallel computers such as K computer. We discuss future perspectives concerning a new framework and parallel computation of the MCSM by incorporating conjugate gradient method and energy-variance extrapolation

  3. Type I Shell Galaxies as a Test of Gravity Models

    Energy Technology Data Exchange (ETDEWEB)

    Vakili, Hajar; Rahvar, Sohrab [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Kroupa, Pavel, E-mail: vakili@physics.sharif.edu [Helmholtz-Institut für Strahlen-und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2017-10-10

    Shell galaxies are understood to form through the collision of a dwarf galaxy with an elliptical galaxy. Shell structures and kinematics have been noted to be independent tools to measure the gravitational potential of the shell galaxies. We compare theoretically the formation of shells in Type I shell galaxies in different gravity theories in this work because this is so far missing in the literature. We include Newtonian plus dark halo gravity, and two non-Newtonian gravity models, MOG and MOND, in identical initial systems. We investigate the effect of dynamical friction, which by slowing down the dwarf galaxy in the dark halo models limits the range of shell radii to low values. Under the same initial conditions, shells appear on a shorter timescale and over a smaller range of distances in the presence of dark matter than in the corresponding non-Newtonian gravity models. If galaxies are embedded in a dark matter halo, then the merging time may be too rapid to allow multi-generation shell formation as required by observed systems because of the large dynamical friction effect. Starting from the same initial state, the observation of small bright shells in the dark halo model should be accompanied by large faint ones, while for the case of MOG, the next shell generation patterns iterate with a specific time delay. The first shell generation pattern shows a degeneracy with the age of the shells and in different theories, but the relative distance of the shells and the shell expansion velocity can break this degeneracy.

  4. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    Science.gov (United States)

    2017-09-19

    NUWC-NPT Technical Report 12,236 19 September 2017 Structural Acoustic Physics -Based Modeling of Curved Composite Shells Rachel E. Hesse...SUBTITLE Structural Acoustic Physics -Based Modeling of Curved Composite Shells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...study was to use physics -based modeling (PBM) to investigate wave propagations through curved shells that are subjected to acoustic excitation. An

  5. Large-scale micromagnetic simulation of Nd-Fe-B sintered magnets with Dy-rich shell structures

    Directory of Open Access Journals (Sweden)

    T. Oikawa

    2016-05-01

    Full Text Available Large-scale micromagnetic simulations have been performed using the energy minimization method on a model with structural features similar to those of Dy grain boundary diffusion (GBD-processed sintered magnets. Coercivity increases as a linear function of the anisotropy field of the Dy-rich shell, which is independent of Dy composition in the core as long as the shell thickness is greater than about 15 nm. This result shows that the Dy contained in the initial sintered magnets prior to the GBD process is not essential for enhancing coercivity. Magnetization reversal patterns indicate that coercivity is strongly influenced by domain wall pinning at the grain boundary. This observation is found to be consistent with the one-dimensional pinning theory.

  6. Note on off-shell relations in nonlinear sigma model

    International Nuclear Information System (INIS)

    Chen, Gang; Du, Yi-Jian; Li, Shuyi; Liu, Hanqing

    2015-01-01

    In this note, we investigate relations between tree-level off-shell currents in nonlinear sigma model. Under Cayley parametrization, all odd-point currents vanish. We propose and prove a generalized U(1) identity for even-point currents. The off-shell U(1) identity given in http://dx.doi.org/10.1007/JHEP01(2014)061 is a special case of the generalized identity studied in this note. The on-shell limit of this identity is equivalent with the on-shell KK relation. Thus this relation provides the full off-shell correspondence of tree-level KK relation in nonlinear sigma model.

  7. Collapse analysis of toroidal shell

    International Nuclear Information System (INIS)

    Pomares, R.J.

    1990-01-01

    This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation

  8. Comparing several boson mappings with the shell model

    International Nuclear Information System (INIS)

    Menezes, D.P.; Yoshinaga, Naotaka; Bonatsos, D.

    1990-01-01

    Boson mappings are an essential step in establishing a connection between the successful phenomenological interacting boson model and the shell model. The boson mapping developed by Bonatsos, Klein and Li is applied to a single j-shell and the resulting energy levels and E2 transitions are shown for a pairing plus quadrupole-quadrupole Hamiltonian. The results are compared to the exact shell model calculation, as well as to these obtained through use of the Otsuka-Arima-Iachello mapping and the Zirnbauer-Brink mapping. In all cases good results are obtained for the spherical and near-vibrational cases

  9. Experimental investigation shell model excitations of 89Zr up to high spin and its comparison with 88,90Zr

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Sethi, J.

    2012-01-01

    The excited states of nuclei near N=50 closed shell provide suitable laboratory for testing the interactions of shell model states, possible presence of high spin isomers and help in understanding the shape transition as the higher orbitals are occupied. In particular, the structure of N = 49 isotones (and Z =32 to 46) with one hole in N=50 shell gap have been investigated using different reactions. Interestingly, the high spin states in these isotones have contribution from particle excitations across the respective proton and neutron shell gaps and provide suitable testing ground for the prediction of shell model interactions describing theses excitations across the shell gap. In the literature, extensive study of the high spin states of heavier N = 49 isotones starting with 91 Mo up to 95 Pd are available. Limited information existed on the high spin states of lighter isotones. Therefore, the motivation of the present work is to extend the high spin structure of 89 Zr and to characterize the structure of these levels through comparison with the large scale shell model calculations based on two new residual interactions in f 5/2 pg 9/2 model space

  10. Experimental studies of dynamic impact response with scale models of lead shielded radioactive material shipping containers

    International Nuclear Information System (INIS)

    Robinson, R.A.; Hadden, J.A.; Basham, S.J.

    1978-01-01

    Preliminary experimental studies of dynamic impact response of scale models of lead-shielded radioactive material shipping containers are presented. The objective of these studies is to provide DOE/ECT with a data base to allow the prediction of a rational margin of confidence in overviewing and assessing the adequacy of the safety and environmental control provided by these shipping containers. Replica scale modeling techniques were employed to predict full scale response with 1/8, 1/4, and 1/2 scale models of shipping containers that are used in the shipment of spent nuclear fuel and high level wastes. Free fall impact experiments are described for scale models of plain cylindrical stainless steel shells, stainless steel shells filled with lead, and replica scale models of radioactive material shipping containers. Dynamic induced strain and acceleration measurements were obtained at several critical locations on the models. The models were dropped from various heights, attitudes to the impact surface, with and without impact limiters and at uniform temperatures between -40 and 175 0 C. In addition, thermal expansion and thermal gradient induced strains were measured at -40 and 175 0 C. The frequency content of the strain signals and the effect of different drop pad compositions and stiffness were examined. Appropriate scale modeling laws were developed and scaling techniques were substantiated for predicting full scale response by comparison of dynamic strain data for 1/8, 1/4, and 1/2 scale models with stainless steel shells and lead shielding

  11. An IBM-3 hamiltonian from a multi-j-shell model

    International Nuclear Information System (INIS)

    Evans, J.A.; Elliott, J.P.; Lac, V.S.; Long, G.L.

    1995-01-01

    The number and isospin dependence of the hamiltonian in the isospin invariant form (IBM-3) of the boson model is deduced from a seniority mapping onto a shell-model system of several shells. The numerical results are compared with earlier work for a single j-shell. (orig.)

  12. Shell model for time-correlated random advection of passive scalars

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Muratore-Ginanneschi, P.

    1999-01-01

    We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...... noise limit and nonperturbatively by numerical integration. The time correlation of the velocity field is seen to enhance the intermittency of the passive scalar. [S1063-651X(99)07711-9]....

  13. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.

    Science.gov (United States)

    Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-02-21

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.

  14. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity

    International Nuclear Information System (INIS)

    Li Qian; Tu Juan; Guo Xiasheng; Zhang Dong; Matula, Thomas J

    2013-01-01

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear ‘Cross law’ to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius–time curves and the numerical simulations demonstrate that the ‘compression-only’ behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., ‘shear-thinning’ and ‘strain-softening’) in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity. (paper)

  15. Oscillating shells: A model for a variable cosmic object

    OpenAIRE

    Nunez, Dario

    1997-01-01

    A model for a possible variable cosmic object is presented. The model consists of a massive shell surrounding a compact object. The gravitational and self-gravitational forces tend to collapse the shell, but the internal tangential stresses oppose the collapse. The combined action of the two types of forces is studied and several cases are presented. In particular, we investigate the spherically symmetric case in which the shell oscillates radially around a central compact object.

  16. Ab Initio Symmetry-Adapted No-Core Shell Model

    International Nuclear Information System (INIS)

    Draayer, J P; Dytrych, T; Launey, K D

    2011-01-01

    A multi-shell extension of the Elliott SU(3) model, the SU(3) symmetry-adapted version of the no-core shell model (SA-NCSM), is described. The significance of this SA-NCSM emerges from the physical relevance of its SU(3)-coupled basis, which – while it naturally manages center-of-mass spuriosity – provides a microscopic description of nuclei in terms of mixed shape configurations. Since typically configurations of maximum spatial deformation dominate, only a small part of the model space suffices to reproduce the low-energy nuclear dynamics and hence, offers an effective symmetry-guided framework for winnowing of model space. This is based on our recent findings of low-spin and high-deformation dominance in realistic NCSM results and, in turn, holds promise to significantly enhance the reach of ab initio shell models.

  17. Shell model studies in the N = 54 isotones 99Rh, 100Pd

    International Nuclear Information System (INIS)

    Ghugre, S.S.; Sarkar, S.; Chintalapudi, S.N.

    1996-01-01

    The shell model in reproducing the observed level is used to investigate the observed level sequences in 99 Rh and 100 Pd within the spherical shell model framework. Shell model calculations have been performed using the code OXBASH

  18. Development of Full-Scale Ultrathin Shell Reflector

    Directory of Open Access Journals (Sweden)

    Durmuş Türkmen

    2012-01-01

    Full Text Available It is aimed that a new ultrathin shell composite reflector is developed considering different design options to optimize the stiffness/mass ratio, cost, and manufacturing. The reflector is an offset parabolic reflector with a diameter of 6 m, a focal length of 4.8 m, and an offset of 0.3 m and has the ability of folding and self-deploying. For Ku-band missions a full-scale offset parabolic reflector antenna is designed by considering different concepts of stiffening: (i reflective surface and skirt, (ii reflective surface and radial ribs, and (iii reflective surface, skirt, and radial ribs. In a preliminary study, the options are modeled using ABAQUS finite element program and compared with respect to their mass, fundamental frequency, and thermal surface errors. It is found that the option of reflective surface and skirt is more advantageous. The option is further analyzed to optimize the stiffness/mass ratio considering the design parameters of material thickness, width of the skirt, and ply angles. Using the TOPSIS method is determined the best reflector concept among thirty different designs. Accordingly, new design can be said to have some advantages in terms of mass, natural frequency, number of parts, production, and assembly than both SSBR and AstroMesh reflectors.

  19. Clustering of 1p-shell nuclei in the framework of the shell model

    International Nuclear Information System (INIS)

    Kwasniewicz, E.

    1991-01-01

    The two- and three-fragment clustering of the 1p-shell nuclei has been studied in the framework of the shell model. The absolute probabilities of the required types of clustering in a given nucleus have been obtained by projecting its realistic shell-model wavefunction onto the suitable subspace of the orthonormal, completely antisymmetric two- or three-cluster states. With the aid of these data the selectivity in population of final states produced in multinucleon transfer reactions has been discussed. This problem has also been considered in the approach where the exchange of nucleons between clusters has been neglected. This has enabled to demonstrate the role of the complete antisymmetrization in predicting the intensities of states populated in multinucleon transfer reactions. The compact theory of the multinucleon one- and two-cluster spectroscopic amplitudes has been formulated. The examples of studying the nuclear structure and reactions with the aid of these spectroscopic amplitudes have been presented. (author)

  20. A finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    A shell-of-revolution model was developed to analyze impact problems associated with the safety analysis of nuclear material shipping containers. The nonlinear shell theory presented by Eric Reissner in 1972 was used to develop our model. Reissner's approach includes transverse shear deformation and moments turning about the middle surface normal. With these features, this approach is valid for both thin and thick shells. His theory is formulated in terms of strain and stress resultants that refer to the undeformed geometry. This nonlinear shell model is developed using the virtual work principle associated with Reissner's equilibrium equations. First, the virtual work principle is modified for incremental loading; then it is linearized by assuming that the nonlinear portions of the strains are known. By iteration, equilibrium is then approximated for each increment. A benefit of this approach is that this iteration process makes it possible to use nonlinear material properties. (orig.)

  1. The fractal dimension of cell membrane correlates with its capacitance: A new fractal single-shell model

    Science.gov (United States)

    Wang, Xujing; Becker, Frederick F.; Gascoyne, Peter R. C.

    2010-01-01

    The scale-invariant property of the cytoplasmic membrane of biological cells is examined by applying the Minkowski–Bouligand method to digitized scanning electron microscopy images of the cell surface. The membrane is found to exhibit fractal behavior, and the derived fractal dimension gives a good description of its morphological complexity. Furthermore, we found that this fractal dimension correlates well with the specific membrane dielectric capacitance derived from the electrorotation measurements. Based on these findings, we propose a new fractal single-shell model to describe the dielectrics of mammalian cells, and compare it with the conventional single-shell model (SSM). We found that while both models fit with experimental data well, the new model is able to eliminate the discrepancy between the measured dielectric property of cells and that predicted by the SSM. PMID:21198103

  2. Use of d-3He proton spectroscopy as a diagnostic of shell rho r in capsule implosion experiments with approximately 0.2 NIF scale high temperature Hohlraums at Omega.

    Science.gov (United States)

    Delamater, N D; Wilson, D C; Kyrala, G A; Seifter, A; Hoffman, N M; Dodd, E; Singleton, R; Glebov, V; Stoeckl, C; Li, C K; Petrasso, R; Frenje, J

    2008-10-01

    We present the calculations and preliminary results from experiments on the Omega laser facility using d-(3)He filled plastic capsule implosions in gold Hohlraums. These experiments aim to develop a technique to measure shell rho r and capsule unablated mass with proton spectroscopy and will be applied to future National Ignition Facility (NIF) experiments with ignition scale capsules. The Omega Hohlraums are 1900 microm length x 1200 microm diameter and have a 70% laser entrance hole. This is approximately a 0.2 NIF scale ignition Hohlraum and reaches temperatures of 265-275 eV similar to those during the peak of the NIF drive. These capsules can be used as a diagnostic of shell rho r, since the d-(3)He gas fill produces 14.7 MeV protons in the implosion, which escape through the shell and produce a proton spectrum that depends on the integrated rho r of the remaining shell mass. The neutron yield, proton yield, and spectra change with capsule shell thickness as the unablated mass or remaining capsule rho r changes. Proton stopping models are used to infer shell unablated mass and shell rho r from the proton spectra measured with different filter thicknesses. The experiment is well modeled with respect to Hohlraum energetics, neutron yields, and x-ray imploded core image size, but there are discrepancies between the observed and simulated proton spectra.

  3. Equivalence of the spherical and deformed shell-model approach to intruder states

    International Nuclear Information System (INIS)

    Heyde, K.; Coster, C. de; Ryckebusch, J.; Waroquier, M.

    1989-01-01

    We point out that the description of intruder states, incorporating particle-hole (p-h) excitation across a closed shell in the spherical shell model or a description starting from the Nilsson model are equivalent. We furthermore indicate that the major part of the nucleon-nucleon interaction, responsible for the low excitation energy of intruder states comes as a two-body proton-neutron quadrupole interaction in the spherical shell model. In the deformed shell model, quadrupole binding energy is gained mainly through the one-body part of the potential. (orig.)

  4. Statistical properties of the nuclear shell-model Hamiltonian

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Oliveira, N.A. de

    1986-01-01

    The statistical properties of realistic nuclear shell-model Hamiltonian are investigated in sd-shell nuclei. The probability distribution of the basic-vector amplitude is calculated and compared with the Porter-Thomas distribution. Relevance of the results to the calculation of the giant resonance mixing parameter is pointed out. (Author) [pt

  5. Shell-model predictions for Lambda Lambda hypernuclei

    International Nuclear Information System (INIS)

    Gal, A.; Millener, D.

    2011-01-01

    It is shown how the recent shell-model determination of ΛN spin-dependent interaction terms in Λ hypernuclei allows for a reliable deduction of ΛΛ separation energies in ΛΛ hypernuclei across the nuclear p shell. Comparison is made with the available data, highlighting # Lambda# # Lambda# 11 Be and # Lambda# # Lambda# 12 Be which have been suggested as possible candidates for the KEK-E373 HIDA event.

  6. Shell-model-based deformation analysis of light cadmium isotopes

    Science.gov (United States)

    Schmidt, T.; Heyde, K. L. G.; Blazhev, A.; Jolie, J.

    2017-07-01

    Large-scale shell-model calculations for the even-even cadmium isotopes 98Cd-108Cd have been performed with the antoine code in the π (2 p1 /2;1 g9 /2) ν (2 d5 /2;3 s1 /2;2 d3 /2;1 g7 /2;1 h11 /2) model space without further truncation. Known experimental energy levels and B (E 2 ) values could be well reproduced. Taking these calculations as a starting ground we analyze the deformation parameters predicted for the Cd isotopes as a function of neutron number N and spin J using the methods of model independent invariants introduced by Kumar [Phys. Rev. Lett. 28, 249 (1972), 10.1103/PhysRevLett.28.249] and Cline [Annu. Rev. Nucl. Part. Sci. 36, 683 (1986), 10.1146/annurev.ns.36.120186.003343].

  7. Shell model in-water frequencies of the core barrel

    International Nuclear Information System (INIS)

    Takeuchi, K.; De Santo, D.F.

    1980-01-01

    Natural frequencies of a 1/24th-scale core barrel/vessel model in air and in water are measured by determining frequency responses to applied forces. The measured data are analyzed by the use of the one-dimensional fluid-structure computer code, MULTIFLEX, developed to calculate the hydraulic force. The fluid-structure interaction in the downcomer annulus is computed with a one-dimensional network model formed to be equivalent to two-dimensional fluid-structure interaction. The structural model incorporated in MULTIFLEX is substantially simpler than that necessary for structural analyses. Proposed for computation of structural dynamics is the projector method than can deal with the beam mode by modal analysis and the other shell modes by a direct integration method. Computed in-air and in-water frequencies agree fairly well with the experimental data, verifying the above MULTIFLEX technique

  8. Pair shell model description of collective motions

    International Nuclear Information System (INIS)

    Chen Hsitseng; Feng Dahsuan

    1996-01-01

    The shell model in the pair basis has been reviewed with a case study of four particles in a spherical single-j shell. By analyzing the wave functions according to their pair components, the novel concept of the optimum pairs was developed which led to the proposal of a generalized pair mean-field method to solve the many-body problem. The salient feature of the method is its ability to handle within the framework of the spherical shell model a rotational system where the usual strong configuration mixing complexity is so simplified that it is now possible to obtain analytically the band head energies and the moments of inertia. We have also examined the effects of pair truncation on rotation and found the slow convergence of adding higher spin pairs. Finally, we found that when the SDI and Q .Q interactions are of equal strengths, the optimum pair approximation is still valid. (orig.)

  9. Multi-shell model of ion-induced nucleic acid condensation

    Energy Technology Data Exchange (ETDEWEB)

    Tolokh, Igor S. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Drozdetski, Aleksander V. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853-3501 (United States); Baker, Nathan A. [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States); Onufriev, Alexey V. [Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(III) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the “external” shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the “internal” shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent

  10. Symplectic no-core shell-model approach to intermediate-mass nuclei

    Science.gov (United States)

    Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.

    2014-03-01

    We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.

  11. Multibody dynamic analysis using a rotation-free shell element with corotational frame

    Science.gov (United States)

    Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen

    2018-03-01

    Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.

  12. Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy

    Science.gov (United States)

    Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.

    2016-09-01

    Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.

  13. Ground state energy fluctuations in the nuclear shell model

    International Nuclear Information System (INIS)

    Velazquez, Victor; Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Zuker, Andres P.

    2005-01-01

    Statistical fluctuations of the nuclear ground state energies are estimated using shell model calculations in which particles in the valence shells interact through well-defined forces, and are coupled to an upper shell governed by random 2-body interactions. Induced ground-state energy fluctuations are found to be one order of magnitude smaller than those previously associated with chaotic components, in close agreement with independent perturbative estimates based on the spreading widths of excited states

  14. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe.

    Science.gov (United States)

    Hindmarsh, Mark

    2018-02-16

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  15. Sound Shell Model for Acoustic Gravitational Wave Production at a First-Order Phase Transition in the Early Universe

    Science.gov (United States)

    Hindmarsh, Mark

    2018-02-01

    A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

  16. Scale-free models for the structure of business firm networks.

    Science.gov (United States)

    Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H Eugene

    2010-03-01

    We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a "nucleus," which is a small well-connected subgraph, "tendrils," which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a "bulk body," which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution lambda increases, and disappear for lambda>or=3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.

  17. Mayer–Jensen Shell Model and Magic Numbers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Mayer-Jensen Shell Model and Magic Numbers - An Independent Nucleon Model with Spin-Orbit Coupling. R Velusamy. General Article Volume 12 Issue 12 December 2007 pp 12-24 ...

  18. Quark shell model using projection operators

    International Nuclear Information System (INIS)

    Ullah, N.

    1988-01-01

    Using the projection operators in the quark shell model, the wave functions for proton are calculated and expressions for calculating the wave function of neutron and also magnetic moment of proton and neutron are derived. (M.G.B.)

  19. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    Science.gov (United States)

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  20. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., 90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation

  1. Shell model description of band structure in 48Cr

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Velazquez, Victor M.

    2007-01-01

    The band structure for normal and abnormal parity bands in 48Cr are described using the m-scheme shell model. In addition to full fp-shell, two particles in the 1d3/2 orbital are allowed in order to describe intruder states. The interaction includes fp-, sd- and mixed matrix elements

  2. Novel extrapolation method in the Monte Carlo shell model

    International Nuclear Information System (INIS)

    Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio

    2010-01-01

    We propose an extrapolation method utilizing energy variance in the Monte Carlo shell model to estimate the energy eigenvalue and observables accurately. We derive a formula for the energy variance with deformed Slater determinants, which enables us to calculate the energy variance efficiently. The feasibility of the method is demonstrated for the full pf-shell calculation of 56 Ni, and the applicability of the method to a system beyond the current limit of exact diagonalization is shown for the pf+g 9/2 -shell calculation of 64 Ge.

  3. No-Core Shell Model and Reactions

    International Nuclear Information System (INIS)

    Navratil, P; Ormand, W E; Caurier, E; Bertulani, C

    2005-01-01

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+ 6 Li and 6 He+p scattering as well as a calculation of the astrophysically important 7 Be(p, γ) 8 B S-factor

  4. Shell model for warm rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  5. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    Science.gov (United States)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  6. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  7. Shell model Monte Carlo investigation of rare earth nuclei

    International Nuclear Information System (INIS)

    White, J. A.; Koonin, S. E.; Dean, D. J.

    2000-01-01

    We utilize the shell model Monte Carlo method to study the structure of rare earth nuclei. This work demonstrates the first systematic full oscillator shell with intruder calculations in such heavy nuclei. Exact solutions of a pairing plus quadrupole Hamiltonian are compared with the static path approximation in several dysprosium isotopes from A=152 to 162, including the odd mass A=153. Some comparisons are also made with Hartree-Fock-Bogoliubov results from Baranger and Kumar. Basic properties of these nuclei at various temperatures and spin are explored. These include energy, deformation, moments of inertia, pairing channel strengths, band crossing, and evolution of shell model occupation numbers. Exact level densities are also calculated and, in the case of 162 Dy, compared with experimental data. (c) 2000 The American Physical Society

  8. Evaluation of scaling correlations for mobilization of double-shell tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Shekarriz, A.; Hammad, K.J.; Powell, M.R.

    1997-09-01

    In this report, we have examined some of the fundamental mechanisms expected to be at work during mobilization of the waste within the double-shell tanks at Hanford. The motivation stems from the idea that in order to properly apply correlations derived from scaled tests, one would have to ensure that appropriate scaling laws are utilized. Further, in the process of delineating the controlling mechanisms during mobilization, the currently used computational codes are being validated and strengthened based on these findings. Experiments were performed at 1/50-scale, different from what had been performed in the previous fiscal years (i.e., 1/12- and 1/25-scale). It was anticipated that if the current empirical correlations are to work, they should be scale invariant. The current results showed that linear scaling between the 1/25-scale and 1/50-scale correlations do not work well. Several mechanisms were examined in the scaled tests which might have contributed to the discrepancies between the results at these two scales. No deficiencies in the experimental approach and the data were found. Cognizant of these results, it was concluded that the use of the current empirical correlations for ECR should be done cautiously taking into account the appropriate properties of the material for yielding.

  9. Evaluation of scaling correlations for mobilization of double-shell tank waste

    International Nuclear Information System (INIS)

    Shekarriz, A.; Hammad, K.J.; Powell, M.R.

    1997-09-01

    In this report, we have examined some of the fundamental mechanisms expected to be at work during mobilization of the waste within the double-shell tanks at Hanford. The motivation stems from the idea that in order to properly apply correlations derived from scaled tests, one would have to ensure that appropriate scaling laws are utilized. Further, in the process of delineating the controlling mechanisms during mobilization, the currently used computational codes are being validated and strengthened based on these findings. Experiments were performed at 1/50-scale, different from what had been performed in the previous fiscal years (i.e., 1/12- and 1/25-scale). It was anticipated that if the current empirical correlations are to work, they should be scale invariant. The current results showed that linear scaling between the 1/25-scale and 1/50-scale correlations do not work well. Several mechanisms were examined in the scaled tests which might have contributed to the discrepancies between the results at these two scales. No deficiencies in the experimental approach and the data were found. Cognizant of these results, it was concluded that the use of the current empirical correlations for ECR should be done cautiously taking into account the appropriate properties of the material for yielding

  10. Wellposedness of a cylindrical shell model

    International Nuclear Information System (INIS)

    McMillan, C.

    1994-01-01

    We consider a well-known model of a thin cylindrical shell with dissipative feedback controls on the boundary in the form of forces, shears, and moments. We show that the resulting closed loop feedback problem generates a s.c. semigroup of contractions in the energy space

  11. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    Science.gov (United States)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  12. Major shell centroids in the symplectic collective model

    International Nuclear Information System (INIS)

    Draayer, J.P.; Rosensteel, G.; Tulane Univ., New Orleans, LA

    1983-01-01

    Analytic expressions are given for the major shell centroids of the collective potential V(#betta#, #betta#) and the shape observable #betta# 2 in the Sp(3,R) symplectic model. The tools of statistical spectroscopy are shown to be useful, firstly, in translating a requirement that the underlying shell structure be preserved into constraints on the parameters of the collective potential and, secondly, in giving a reasonable estimate for a truncation of the infinite dimensional symplectic model space from experimental B(E2) transition strengths. Results based on the centroid information are shown to compare favorably with results from exact calculations in the case of 20 Ne. (orig.)

  13. Mean field theory of nuclei and shell model. Present status and future outlook

    International Nuclear Information System (INIS)

    Nakada, Hitoshi

    2003-01-01

    Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave

  14. Dynamical symmetries of the shell model

    International Nuclear Information System (INIS)

    Van Isacker, P.

    2000-01-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  15. The alpha-particle and shell models of the nucleus

    International Nuclear Information System (INIS)

    Perring, J.K.; Skyrme, T.H.R.

    1994-01-01

    It is shown that it is possible to write down α-particle wave functions for the ground states of 8 Be, 12 C and 16 O, which become, when antisymmetrized, identical with shell-model wave functions. The α-particle functions are used to obtain potentials which can then be used to derive wave functions and energies of excited states. Most of the low-lying states of 16 O are obtained in this way, qualitative agreement with experiment being found. The shell structure of the 0 + level at 6·06 MeV is analyzed, and is found to consist largely of single-particle excitations. The lifetime for pair-production is calculated, and found to be comparable with the experimental value. The validity of the method is discussed, and comparison made with shell-model calculations. (author). 5 refs, 1 tab

  16. The experimental and shell model approach to 100Sn

    International Nuclear Information System (INIS)

    Grawe, H.; Maier, K.H.; Fitzgerald, J.B.; Heese, J.; Spohr, K.; Schubart, R.; Gorska, M.; Rejmund, M.

    1995-01-01

    The present status of experimental approach to 100 Sn and its shell model structure is given. New developments in experimental techniques, such as low background isomer spectroscopy and charged particle detection in 4π are surveyed. Based on recent experimental data shell model calculations are used to predict the structure of the single- and two-nucleon neighbours of 100 Sn. The results are compared to the systematic of Coulomb energies and spin-orbit splitting and discussed with respect to future experiments. (author). 51 refs, 11 figs, 1 tab

  17. Dynamic model of open shell structures buried in poroelastic soils

    Science.gov (United States)

    Bordón, J. D. R.; Aznárez, J. J.; Maeso, O.

    2017-08-01

    This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.

  18. A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Plunian, F [Laboratoire de Geophysique Interne et Tectonophysique, CNRS, Universite Joseph Fourier, Maison des Geosciences, BP 53, 38041 Grenoble Cedex 9 (France); Stepanov, R [Institute of Continuous Media Mechanics, Korolyov 1, 614013 Perm (Russian Federation)

    2007-08-15

    We derive a new shell model of magnetohydrodynamic (MHD) turbulence in which the energy transfers are not necessarily local. Like the original MHD equations, the model conserves the total energy, magnetic helicity, cross-helicity and volume in phase space (Liouville's theorem) apart from the effects of external forcing, viscous dissipation and magnetic diffusion. The model of hydrodynamic (HD) turbulence is derived from the MHD model setting the magnetic field to zero. In that case the conserved quantities are the kinetic energy and the kinetic helicity. In addition to a statistically stationary state with a Kolmogorov spectrum, the HD model exhibits multiscaling. The anomalous scaling exponents are found to depend on a free parameter {alpha} that measures the non-locality degree of the model. In freely decaying turbulence, the infra-red spectrum also depends on {alpha}. Comparison with theory suggests using {alpha} = -5/2. In MHD turbulence, we investigate the fully developed turbulent dynamo for a wide range of magnetic Prandtl numbers in both kinematic and dynamic cases. Both local and non-local energy transfers are clearly identified.

  19. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    CERN Document Server

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  20. Shell model calculations for stoichiometric Na β-alumina

    International Nuclear Information System (INIS)

    Wang, J.C.

    1985-01-01

    Walker and Catlow recently reported the results of their shell model calculations for the structure and transport of Na β-alumina (Naβ). The main computer programs used by Walker and Catlow for their calculations are PLUTO and HADES III. The latter, a recent version of HADES II written for cubic crystals, is believed to be applicable to defects in crystals of both cubic and hexagonal symmetry. PLUTO is usually used in calculating properties of perfect crystals before defects are introduced into the structure. Walker and Catlow claim that, in some respects, their models are superior to those of Wang et al. Yet, their results are quite different from those observed experimentally. In this work these differences are investigated by using a computer program designed to calculate lattice energies for s Naβ using the same shell model parameters adopted by Walker and Catlow. The core and shell positions of all ions, as well as the lattice parameters, were fully relaxed. The calculated energy difference between aBR and BR sites (0.33 eV) is about twice as large as that reported by Walker and Catlow. The present results also show that the relaxed oxygen ion positions next to the conduction plane in this case are displaced from their observed sites reported. When the core-shell spring constant of the oxygen ion was adjusted to minimize these displacements, the above-mentioned energy difference increased to about 0.56 eV. These results cast doubt on the fluid conduction plane structure suggested by Walker and Catlow and on the defect structure and activation energy obtained from their calculations

  1. Shell Models of Superfluid Turbulence

    International Nuclear Information System (INIS)

    Wacks, Daniel H; Barenghi, Carlo F

    2011-01-01

    Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.

  2. Proceedings of a symposium on the occasion of the 40th anniversary of the nuclear shell model

    International Nuclear Information System (INIS)

    Lee, T.S.H.; Wiringa, R.B.

    1990-03-01

    This report contains papers on the following topics: excitation of 1p-1h stretched states with the (p,n) reaction as a test of shell-model calculations; on Z=64 shell closure and some high spin states of 149 Gd and 159 Ho; saturating interactions in 4 He with density dependence; are short-range correlations visible in very large-basis shell-model calculations?; recent and future applications of the shell model in the continuum; shell model truncation schemes for rotational nuclei; the particle-hole interaction and high-spin states near A-16; magnetic moment of doubly closed shell +1 nucleon nucleus 41 Sc(I π =7/2 - ); the new magic nucleus 96 Zr; comparing several boson mappings with the shell model; high spin band structures in 165 Lu; optical potential with two-nucleon correlations; generalized valley approximation applied to a schematic model of the monopole excitation; pair approximation in the nuclear shell model; and many-particle, many-hole deformed states

  3. Finite size scaling of the Higgs-Yukawa model near the Gaussian fixed point

    Energy Technology Data Exchange (ETDEWEB)

    Chu, David Y.J.; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu, Taiwan (China); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [HISKP, Bonn (Germany); Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Univ. Berlin (Germany)

    2016-12-15

    We study the scaling properties of Higgs-Yukawa models. Using the technique of Finite-Size Scaling, we are able to derive scaling functions that describe the observables of the model in the vicinity of a Gaussian fixed point. A feasibility study of our strategy is performed for the pure scalar theory in the weak-coupling regime. Choosing the on-shell renormalisation scheme gives us an advantage to fit the scaling functions against lattice data with only a small number of fit parameters. These formulae can be used to determine the universality of the observed phase transitions, and thus play an essential role in future investigations of Higgs-Yukawa models, in particular in the strong Yukawa coupling region.

  4. Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements

    International Nuclear Information System (INIS)

    Caty, O.; Maire, E.; Youssef, S.; Bouchet, R.

    2008-01-01

    Closed-cell cellular materials exhibit several interesting properties. These properties are, however, very difficult to simulate and understand from the knowledge of the cellular microstructure. This problem is mostly due to the highly complex organization of the cells and to their very fine walls. X-ray tomography can produce three-dimensional (3-D) images of the structure, enabling one to visualize locally the damage of the cell walls that would result in the structure collapsing. These data could be used for meshing with continuum elements of the structure for finite element (FE) calculations. But when the density is very low, the walls are fine and the meshes based on continuum elements are not suitable to represent accurately the structure while preserving the representativeness of the model in terms of cell size. This paper presents a shell FE model obtained from tomographic 3-D images that allows bigger volumes of low-density closed-cell cellular materials to be calculated. The model is enriched by direct thickness measurement on the tomographic images. The values measured are ascribed to the shell elements. To validate and use the model, a structure composed of stainless steel hollow spheres is firstly compressed and scanned to observe local deformations. The tomographic data are also meshed with shells for a FE calculation. The convergence of the model is checked and its performance is compared with a continuum model. The global behavior is compared with the measures of the compression test. At the local scale, the model allows the local stress and strain field to be calculated. The calculated deformed shape is compared with the deformed tomographic images

  5. Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1992-01-01

    Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed

  6. Shell model test of the Porter-Thomas distribution

    International Nuclear Information System (INIS)

    Grimes, S.M.; Bloom, S.D.

    1981-01-01

    Eigenvectors have been calculated for the A=18, 19, 20, 21, and 26 nuclei in an sd shell basis. The decomposition of these states into their shell model components shows, in agreement with other recent work, that this distribution is not a single Gaussian. We find that the largest amplitudes are distributed approximately in a Gaussian fashion. Thus, many experimental measurements should be consistent with the Porter-Thomas predictions. We argue that the non-Gaussian form of the complete distribution can be simply related to the structure of the Hamiltonian

  7. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  8. Solving the nuclear shell model with an algebraic method

    International Nuclear Information System (INIS)

    Feng, D.H.; Pan, X.W.; Guidry, M.

    1997-01-01

    We illustrate algebraic methods in the nuclear shell model through a concrete example, the fermion dynamical symmetry model (FDSM). We use this model to introduce important concepts such as dynamical symmetry, symmetry breaking, effective symmetry, and diagonalization within a higher-symmetry basis. (orig.)

  9. Acoustic modeling of shell-encapsulated gas bubbles

    NARCIS (Netherlands)

    P.J.A. Frinking (Peter); N. de Jong (Nico)

    1998-01-01

    textabstractExisting theoretical models do not adequately describe the scatter and attenuation properties of the ultrasound contrast agents Quantison(TM) and Myomap(TM). An adapted version of the Rayleigh-Plesset equation, in which the shell is described by a viscoelastic solid, is proposed and

  10. Steady state model for the thermal regimes of shells of airships and hot air balloons

    Science.gov (United States)

    Luchev, Oleg A.

    1992-10-01

    A steady state model of the temperature regime of airships and hot air balloons shells is developed. The model includes three governing equations: the equation of the temperature field of airships or balloons shell, the integral equation for the radiative fluxes on the internal surface of the shell, and the integral equation for the natural convective heat exchange between the shell and the internal gas. In the model the following radiative fluxes on the shell external surface are considered: the direct and the earth reflected solar radiation, the diffuse solar radiation, the infrared radiation of the earth surface and that of the atmosphere. For the calculations of the infrared external radiation the model of the plane layer of the atmosphere is used. The convective heat transfer on the external surface of the shell is considered for the cases of the forced and the natural convection. To solve the mentioned set of the equations the numerical iterative procedure is developed. The model and the numerical procedure are used for the simulation study of the temperature fields of an airship shell under the forced and the natural convective heat transfer.

  11. Neutrino nucleosynthesis in supernovae: Shell model predictions

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1989-01-01

    Almost all of the 3 · 10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. I will argue that these neutrinos interact with nuclei in the ejected shells of the supernovae to produce new elements. It appears that this nucleosynthesis mechanism is responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, and 180 Ta, and contributes significantly to the abundances of about 15 other light nuclei. I discuss shell model predictions for the charged and neutral current allowed and first-forbidden responses of the parent nuclei, as well as the spallation processes that produce the new elements. 18 refs., 1 fig., 1 tab

  12. Extrapolation method in the Monte Carlo Shell Model and its applications

    International Nuclear Information System (INIS)

    Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio

    2011-01-01

    We demonstrate how the energy-variance extrapolation method works using the sequence of the approximated wave functions obtained by the Monte Carlo Shell Model (MCSM), taking 56 Ni with pf-shell as an example. The extrapolation method is shown to work well even in the case that the MCSM shows slow convergence, such as 72 Ge with f5pg9-shell. The structure of 72 Se is also studied including the discussion of the shape-coexistence phenomenon.

  13. Neutrinoless double-β decay matrix elements in large shell-model spaces with the generator-coordinate method

    Science.gov (United States)

    Jiao, C. F.; Engel, J.; Holt, J. D.

    2017-11-01

    We use the generator-coordinate method (GCM) with realistic shell-model interactions to closely approximate full shell-model calculations of the matrix elements for the neutrinoless double-β decay of 48Ca, 76Ge, and 82Se. We work in one major shell for the first isotope, in the f5 /2p g9 /2 space for the second and third, and finally in two major shells for all three. Our coordinates include not only the usual axial deformation parameter β , but also the triaxiality angle γ and neutron-proton pairing amplitudes. In the smaller model spaces our matrix elements agree well with those of full shell-model diagonalization, suggesting that our Hamiltonian-based GCM captures most of the important valence-space correlations. In two major shells, where exact diagonalization is not currently possible, our matrix elements are only slightly different from those in a single shell.

  14. Cask for concrete shells transportation

    International Nuclear Information System (INIS)

    Labergri, F.

    2001-01-01

    Nowadays, nuclear plant radioactive waste are conditioned in situ into concrete shells. Most of them enter in the industrial waste category defined by the regulations of radioactive material transportation. However, the content of a few ones exceeds the limits set for low specific activity substances. Thus, these shells must be transported into type B packagings. To this end, Robatel has undertaken, for EDF (Electricite de France), the development of a container, named ROBATEL TM R68, for further licensing. The particularity of this packaging is that the lid must have a wide opening to allow the usual handling operations of the concrete shells. This leads to a non-conventional conception, and makes the package more vulnerable to drop test solicitations. In order to define a minimal drop test program on a reduced scale model, we use a simple method to find the most damageable drop angle. (author)

  15. Super-hypernuclei in the quark-shell model, 2

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1989-07-01

    By following the previous paper, where the quark-shell model of nuclei in quantum chromodynamics is briefly reviewed, a short review of the MIT bag model of nuclei is presented for comparison and a simple estimate of the Hλ ('hexalambda') mass is also made for illustration. Furthermore, an even shorter review of the 'nucleon cluster model' of nuclei is presented for further comparison. (J.P.N.)

  16. Pion-nucleus double charge exchange and the nuclear shell model

    International Nuclear Information System (INIS)

    Auerbach, N.; Gibbs, W.R.; Ginocchio, J.N.; Kaufmann, W.B.

    1988-01-01

    The pion-nucleus double charge exchange reaction is studied with special emphasis on nuclear structure. The reaction mechanism and nuclear structure aspects of the process are separated using both the plane-wave and distorted-wave impulse approximations. Predictions are made employing both the seniority model and a full shell model (with a single active orbit). Transitions to the double analog state and to the ground state of the residual nucleus are computed. The seniority model yields particularly simple relations among double charge exchange cross sections for nuclei within the same shell. Limitations of the seniority model and of the plane-wave impulse approximation are discussed as well as extensions to the generalized seniority scheme. Applications of the foregoing ideas to single charge exchange are also presented

  17. Dynamic characteristics of a perforated cylindrical shell for flow distribution in SMART

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seungho; Choi, Youngin; Ha, Kyungrok [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Kyoung-Su, E-mail: pks6348@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, No-Cheol; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Jeong, Kyeong-Hoon; Park, Jin-Seok [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon 305-303 (Korea, Republic of)

    2011-10-15

    Highlights: > A 1/12 scaled-down flow skirt is manufactured and a modal test is performed. > A finite element model predicts the added mass effect of the perforated cylindrical shell. > Modal characteristics are extracted by considering the fluid-structure interaction. - Abstract: The System-integrated Modular Advanced ReacTor (SMART) is a small nuclear reactor under development in Korea. It is equipped with a perforated cylindrical shell, which is called a flow skirt, in the lower plenum of the reactor for uniform flow distribution and to prevent inflow of debris into the core. This perforated cylindrical shell can be excited by external forces such as seismic or pump pulsation loads. The dynamic characteristics of the perforated cylindrical shell must be identified for further dynamic analysis. This research explores the modal analysis of the scaled-down flow skirt model submerged in coolant water. For the numerical simulation, finite element analysis is carried out to extract modal characteristics of the structure considering the fluid-structure interaction and we introduce the NAVMI factor for similarity analysis. In the finite element model, the whole shape of the perforated cylindrical shell is simulated instead of using the effective material properties. In addition, a 1/12 scaled-down flow skirt is manufactured, and an experiment is designed using an exciter and waterproof accelerometers for the modal test. Due to excellent agreement between the modal test results and the finite element analysis results such as natural frequencies and mode shapes, the finite element model is validated and can be used to predict the dynamic characteristics of the real flow skirt. Moreover, the natural frequency of the real flow skirt can be calculated from the NAVMI factor and is in good agreement with the FEM result.

  18. Modeling plate shell structures using pyFormex

    DEFF Research Database (Denmark)

    Bagger, Anne; Verhegghe, Benedict; Hertz, Kristian Dahl

    2009-01-01

    A shell structure made of glass combines a light-weight structural concept with glass’ high permeability to light. If the geometry of the structure is plane-based facetted (plate shell structure), the glass elements will be plane panes, and these glass panes will comprise the primary load...... (plate shells and triangulated lattice shells) may not differ in complexity regarding the topology, but when it comes to the practical generation of the geometry, e.g. in CAD, the plate shell is far more troublesome to handle than the triangulated geometry. The free software tool “pyFormex”, developed...

  19. Minimum Compliance Topology Optimization of Shell-Infill Composites for Additive Manufacturing

    DEFF Research Database (Denmark)

    Wu, Jun; Clausen, Anders; Sigmund, Ole

    2017-01-01

    Additively manufactured parts are often composed of two sub-structures, a solid shell forming their exterior and a porous infill occupying the interior. To account for this feature this paper presents a novel method for generating simultaneously optimized shell and infill in the context of minimum...... interpolation model into a physical density field, upon which the compliance is minimized. Enhanced by an adapted robust formulation for controlling the minimum length scale of the base, our method generates optimized shell-infill composites suitable for additive manufacturing. We demonstrate the effectiveness...

  20. Blue mussel shell shape plasticity and natural environments: a quantitative approach

    DEFF Research Database (Denmark)

    Telesca, Luca; Michalek, Kati; Sanders, Trystan

    2018-01-01

    Shape variability represents an important direct response of organisms to selective environments. Here, we use a combination of geometric morphometrics and generalised additive mixed models (GAMMs) to identify spatial patterns of natural shell shape variation in the North Atlantic and Arctic blue...... scales analysed. Our results show how shell shape plasticity represents a powerful indicator to understand the alterations of blue mussel communities in rapidly changing environments....

  1. Statistics and the shell model

    International Nuclear Information System (INIS)

    Weidenmueller, H.A.

    1985-01-01

    Starting with N. Bohr's paper on compound-nucleus reactions, we confront regular dynamical features and chaotic motion in nuclei. The shell-model and, more generally, mean-field theories describe average nuclear properties which are thus identified as regular features. The fluctuations about the average show chaotic behaviour of the same type as found in classical chaotic systems upon quantisation. These features are therefore generic and quite independent of the specific dynamics of the nucleus. A novel method to calculate fluctuations is discussed, and the results of this method are described. (orig.)

  2. Research advances in contact model and mechanism configuration for nut shelling manipulation based on metamorphic method

    Directory of Open Access Journals (Sweden)

    Xiulan BAO

    2017-04-01

    Full Text Available Nuts are the important economic forest tree species of China. De-shell is the key operation of nut deep processing. There are some problems in the current nut cracking devices such as the low decorticating rate, the high nuts losses rate and nutmeat integrity problems, etc.. The foundation of force analysis is to establish contact model for nut and mechanical. The nut surface is rough and irregular, so the contact area cannot be modeled as regular shape. How to set up contact constraint model is the key problem to accomplish non-loss shelling. In order to study the shell-breaking mechanism and structural design of the nut shelling manipulation, a multi-fingered metamorphic manipulator is presented. An overview of the nut shelling technology and the contact manipulator modeling are proposed. The origin and application of metamorphic mechanisms are introduced. Then the research contents and development prospects of nut shelling manipulator are described.

  3. Determination of Hamiltonian matrix for IBM4 and compare it is self value with shells model

    International Nuclear Information System (INIS)

    Slyman, S.; Hadad, S.; Souman, H.

    2004-01-01

    The Hamiltonian is determined using the procedure OAI and the mapping of (IBM4) states into the shell model, which is based on the seniority classification scheme. A boson sub-matrix of the shell model Hamiltonian for the (sd) 4 configuration is constructed, and is proved to produce the same eigenvalues as the shell model Hamiltonian for the corresponding fermion states. (authors)

  4. Continuum shell-model with complicated configurations

    International Nuclear Information System (INIS)

    Barz, H.W.; Hoehn, J.

    1977-05-01

    The traditional shell model has been combined with the coupled channels method in order to describe resonance reactions. For that purpose the configuration space is divided into two subspaces (Feshbach projection method). Complicated shell-model configurations can be included into the subspace of discrete states which contains the single particle resonance states too. In the subspace of scattering states the equation of motion is solved by using the coupled channels method. Thereby the orthogonality between scattering states and discrete states is ensured. Resonance states are defined with outgoing waves in all channels. By means of simple model calculations the special role of the continuum is investigated. In this connection the energy dependence of the resonance parameters, the isospin mixture via the continuum, threshold effect, as well as the influence of the number of channels taken into account on the widths, positions and dipole strengths of the resonance are discussed. The model is mainly applied to the description of giant resonances excited by the scattering of nucleons and photo-nucleus processes (source term method) found in reactions on light nuclei. The giant resonance observed in the 15 N(p,n) reaction is explained by the inclusion of 2p-2h states. The same is true for the giant resonance in 13 C(J = 1/2, 3/2) as well as for the giant resonance built on the first 3 - state in 16 O. By means of a correlation analysis for the reduced widths amplitudes an access to the doorway conception is found. (author)

  5. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  6. Seniority truncation in an equations-of-motion approach to the shell model

    International Nuclear Information System (INIS)

    Covello, A.; Andreozzi, F.; Gargano, A.; Porrino, A.

    1989-01-01

    This paper presents an equations-of-motion method for treating shell-model problems within the framework of the seniority scheme. This method can be applied at many levels of approximation and represents therefore a valuable tool to further reduce seniority truncated shell-model spaces. To show its practical value the authors report some results of an extensive study of the N = 82 isotones which is currently under way

  7. Exact boson mappings for nuclear neutron (proton) shell-model algebras having SU(3) subalgebras

    International Nuclear Information System (INIS)

    Bonatsos, D.; Klein, A.

    1986-01-01

    In this paper the commutation relations of the fermion pair operators of identical nucleons coupled to spin zero are given for the general nuclear major shell in LST coupling. The associated Lie algebras are the unitary symplectic algebras Sp(2M). The corresponding multipole subalgebras are the unitary algebras U(M), which possess SU(3) subalgebras. Number conserving exact boson mappings of both the Dyson and hermitian form are given for the nuclear neutron (proton) s--d, p--f, s--d--g, and p--f--h shells, and their group theoretical structure is emphasized. The results are directly applicable in the case of the s--d shell, while in higher shells the experimentally plausible pseudo-SU(3) symmetry makes them applicable. The final purpose of this work is to provide a link between the shell model and the Interacting Boson Model (IBM) in the deformed limit. As already implied in the work of Draayer and Hecht, it is difficult to associate the boson model developed here with the conventional IBM model. The differences between the two approaches (due mainly to the effects of the Pauli principle) as well as their physical implications are extensively discussed

  8. Towards a shell-model description of intruder states and the onset of deformation

    International Nuclear Information System (INIS)

    Heyde, K.; Van Isacker, P.; Casten, R.F.; Wood, J.L.

    1985-01-01

    Basing on the nuclear shell-model and concentrating on the monopole, pairing and quadrupole corrections originating from the nucleon-nucleon force, both the appearance of low-lying 0 + intruder states near major closed shells (Z = 50, 82) and sub-shell regions (Z = 40, 64) can be described. Moreover, a number of new facets related to the study of intruder states are presented. 19 refs., 3 figs

  9. Realistic Gamow shell model for resonance and continuum in atomic nuclei

    Science.gov (United States)

    Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.

    2018-02-01

    The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.

  10. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale.

    Science.gov (United States)

    Linville, Jessica L; Shen, Yanwen; Ignacio-de Leon, Patricia A; Schoene, Robin P; Urgun-Demirtas, Meltem

    2017-06-01

    A modified version of an in-situ CO 2 removal process was applied during anaerobic digestion of food waste with two types of walnut shell biochar at bench scale under batch operating mode. Compared with the coarse walnut shell biochar, the fine walnut shell biochar has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96-3.83 g biochar (g VS added ) -1 fine walnut shell biochar amended digesters produced biogas with 77.5%-98.1% CH 4 content by removing 40%-96% of the CO 2 compared with the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VS added ) -1 , the fine walnut shell biochar amended digesters (85.7% CH 4 content and 61% CO 2 removal) outperformed the coarse walnut shell biochar amended digesters (78.9% CH 4 content and 51% CO 2 removal). Biochar addition also increased alkalinity as CaCO 3 from 2800 mg L -1 in the control digesters to 4800-6800 mg L -1 , providing process stability for food waste anaerobic digestion.

  11. The creep analysis of shell structures using generalised models

    International Nuclear Information System (INIS)

    Boyle, J.T.; Spence, J.

    1981-01-01

    In this paper a new, more complete estimate of the accuracy of the stationary creep model is given for the general case through the evaluation of exact and approximate energy surfaces. In addition, the stationary model is extended to include more general non-stationary (combined elastic-creep) behaviour and to include the possibility of material deterioration through damage. The resulting models are then compared to existing exact solutions for several shell structures - e.g. a thin pressurised cylinder, a curved pipe in bending and an S-bellows under axial extension with large deflections. In each case very good agreement is obtained. Although requiring similar computing effort, so that the same solution techniques can be utilised, the calculation times are shown to be significantly reduced using the generalised approach. In conclusion, it has been demonstrated that a new simple mechanical model of a thin shell in creep, with or without material deterioration can be constructed; the model is assessed in detail and successfully compared to existing solutions. (orig./HP)

  12. Connections between the dynamical symmetries in the microscopic shell model

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, A. I., E-mail: anageorg@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Drumev, K. P. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria)

    2016-03-25

    The dynamical symmetries of the microscopic shell model appear as the limiting cases of a symmetry adapted Pairing-Plus-Quadrupole Model /PQM/, with a Hamiltonian containing isoscalar and isovector pairing and quadrupole interactions. We establish a correspondence between each of the three types of pairing bases and Elliott’s SU(3) basis, that describes collective rotation of nuclear systems with quadrupole deformation. It is derived from their complementarity to the same LS coupling chain of the shell model number conserving algebra. The probability distribution of the S U(3) basis states within the pairing eigenstates is also obtained through a numerical diagonalization of the PQM Hamiltonian in each limit. We introduce control parameters, which define the phase diagram of the model and determine the role of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  13. Ocean-driven heating of Europa's icy shell at low latitudes

    Science.gov (United States)

    Soderlund, K. M.; Schmidt, B. E.; Wicht, J.; Blankenship, D. D.

    2014-01-01

    The ice shell of Jupiter's moon Europa is marked by regions of disrupted ice known as chaos terrains that cover up to 40% of the satellite's surface, most commonly occurring within 40° of the equator. Concurrence with salt deposits implies a coupling between the geologically active ice shell and the underlying liquid water ocean at lower latitudes. Europa's ocean dynamics have been assumed to adopt a two-dimensional pattern, which channels the moon's internal heat to higher latitudes. Here we present a numerical model of thermal convection in a thin, rotating spherical shell where small-scale convection instead adopts a three-dimensional structure and is more vigorous at lower latitudes. Global-scale currents are organized into three zonal jets and two equatorial Hadley-like circulation cells. We find that these convective motions transmit Europa's internal heat towards the surface most effectively in equatorial regions, where they can directly influence the thermo-compositional state and structure of the ice shell. We suggest that such heterogeneous heating promotes the formation of chaos features through increased melting of the ice shell and subsequent deposition of marine ice at low latitudes. We conclude that Europa's ocean dynamics can modulate the exchange of heat and materials between the surface and interior and explain the observed distribution of chaos terrains.

  14. All (4,1): Sigma models with (4,q) off-shell supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Chris [The Blackett Laboratory, Imperial College London,Prince Consort Road London SW7 @AZ (United Kingdom); Lindström, Ulf [The Blackett Laboratory, Imperial College London,Prince Consort Road London SW7 @AZ (United Kingdom); Department of Physics and Astronomy, Division of Theoretical Physics,Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2017-03-08

    Off-shell (4,q) supermultiplets in 2-dimensions are constructed for q=1,2,4. These are used to construct sigma models whose target spaces are hyperkähler with torsion. The off-shell supersymmetry implies the three complex structures are simultaneously integrable and allows us to construct actions using extended superspace and projective superspace, giving an explicit construction of the target space geometries.

  15. HR Del REMNANT ANATOMY USING TWO-DIMENSIONAL SPECTRAL DATA AND THREE-DIMENSIONAL PHOTOIONIZATION SHELL MODELS

    International Nuclear Information System (INIS)

    Moraes, Manoel; Diaz, Marcos

    2009-01-01

    The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological, and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in Hα, which forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien. The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [O III] and [N II] maps is located along the polar directions inside the hourglass structure. Abundance gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in oxygen and nitrogen than the inner regions. Detailed 2.5-dimensional photoionization modeling of the three-dimensional shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of three-dimensional clumpy models including a disk-shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10 -4 M sun is derived from these models. We estimate that 50%-70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.

  16. Optimal designs of mollusk shells from bivalves to snails.

    Science.gov (United States)

    Okabe, Takuya; Yoshimura, Jin

    2017-02-10

    Bivalve, ammonite and snail shells are described by a small number of geometrical parameters. Raup noted that the vast majority of theoretically possible shell forms do not occur in nature. The constraint factors that regulate the biased distribution of natural form have long since been an open problem in evolution. The problem of whether natural shell form is a result of optimization remains unsolved despite previous attempts. Here we solve this problem by considering the scaling exponent of shell thickness as a morphological parameter. The scaling exponent has a drastic effect on the optimal design of shell shapes. The observed characteristic shapes of natural shells are explained in a unified manner as a result of optimal utilization of shell material resources, while isometric growth in thickness leads to impossibly tight coiling.

  17. Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell Structures

    Science.gov (United States)

    Hilburger, Mark W.; Haynie, Waddy T.; Lovejoy, Andrew E.; Roberts, Michael G.; Norris, Jeffery P.; Waters, W. Allen; Herring, Helen M.

    2012-01-01

    New analysis-based shell buckling design factors (aka knockdown factors), along with associated design and analysis technologies, are being developed by NASA for the design of launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s launch vehicle development and performance risks by reducing the reliance on testing, providing high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale level. This paper describes recent buckling test efforts at NASA on two different orthogrid-stiffened metallic cylindrical shell test articles. One of the test articles was an 8-ft-diameter orthogrid-stiffened cylinder and was subjected to an axial compression load. The second test article was a 27.5-ft-diameter Space Shuttle External Tank-derived cylinder and was subjected to combined internal pressure and axial compression.

  18. Simple spherical ablative-implosion model

    International Nuclear Information System (INIS)

    Mayer, F.J.; Steele, J.T.; Larsen, J.T.

    1980-01-01

    A simple model of the ablative implosion of a high-aspect-ratio (shell radius to shell thickness ratio) spherical shell is described. The model is similar in spirit to Rosenbluth's snowplow model. The scaling of the implosion time was determined in terms of the ablation pressure and the shell parameters such as diameter, wall thickness, and shell density, and compared these to complete hydrodynamic code calculations. The energy transfer efficiency from ablation pressure to shell implosion kinetic energy was examined and found to be very efficient. It may be possible to attach a simple heat-transport calculation to our implosion model to describe the laser-driven ablation-implosion process. The model may be useful for determining other energy driven (e.g., ion beam) implosion scaling

  19. Dynamic reponse of a cylindrical shell immersed in a potential fluid

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1978-01-01

    A numerical solution technique is presented for determining the dynamic response of a thin, elastic, circular, cylindrical shell of constant wall thickness and density, immersed in a potential fluid. The shell may be excited by an arbitrary radial forcing function with a specified time history and spatial distribution. In addition, a pressure history may be specified over a segment of the fluid outer boundary. Any of the natural shell end conditions may be prescribed. A numerical instability prevented direct solutions where the ratio of the hydrodynamic forces to shell inertial forces is greater than two. This instability is believed to be the result of the weak coupling between the equations describing the fluid to those describing the shell. To circumvent this instability, an effective mass was calculated and added to the shell. Comparison of numerical to experimental results are made using a 1 / 12 scale model of a nuclear reactor core support barrel. Natural frequencies and modes are determined for this model in air, water, and oil. The computed frequencies compare to experimental results to within 15%. The use of this numerical technique is illustrated by comparing it to an analytical solution for shell beam modes and an uncertainty in the analytical technique concerning the proper effective mass to use, is resolved

  20. Dynamic reponse of a cylindrical shell immersed in a potential fluid

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, G.E.

    1978-04-18

    A numerical solution technique is presented for determining the dynamic response of a thin, elastic, circular, cylindrical shell of constant wall thickness and density, immersed in a potential fluid. The shell may be excited by an arbitrary radial forcing function with a specified time history and spatial distribution. In addition, a pressure history may be specified over a segment of the fluid outer boundary. Any of the natural shell end conditions may be prescribed. A numerical instability prevented direct solutions where the ratio of the hydrodynamic forces to shell inertial forces is greater than two. This instability is believed to be the result of the weak coupling between the equations describing the fluid to those describing the shell. To circumvent this instability, an effective mass was calculated and added to the shell. Comparison of numerical to experimental results are made using a /sup 1///sub 12/ scale model of a nuclear reactor core support barrel. Natural frequencies and modes are determined for this model in air, water, and oil. The computed frequencies compare to experimental results to within 15%. The use of this numerical technique is illustrated by comparing it to an analytical solution for shell beam modes and an uncertainty in the analytical technique concerning the proper effective mass to use, is resolved.

  1. THE LAST MINUTES OF OXYGEN SHELL BURNING IN A MASSIVE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Bernhard [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Viallet, Maxime; Janka, Hans-Thomas [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Heger, Alexander, E-mail: b.mueller@qub.ac.uk [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Victoria 3800 (Australia)

    2016-12-10

    We present the first  4 π– three-dimensional (3D) simulation of the last minutes of oxygen shell burning in an 18 M {sub ⊙} supernova progenitor up to the onset of core collapse. A moving inner boundary is used to accurately model the contraction of the silicon and iron core according to a one-dimensional stellar evolution model with a self-consistent treatment of core deleptonization and nuclear quasi-equilibrium. The simulation covers the full solid angle to allow the emergence of large-scale convective modes. Due to core contraction and the concomitant acceleration of nuclear burning, the convective Mach number increases to ∼0.1 at collapse, and an ℓ  = 2 mode emerges shortly before the end of the simulation. Aside from a growth of the oxygen shell from 0.51 M {sub ⊙} to 0.56 M {sub ⊙} due to entrainment from the carbon shell, the convective flow is reasonably well described by mixing-length theory, and the dominant scales are compatible with estimates from linear stability analysis. We deduce that artificial changes in the physics, such as accelerated core contraction, can have precarious consequences for the state of convection at collapse. We argue that scaling laws for the convective velocities and eddy sizes furnish good estimates for the state of shell convection at collapse and develop a simple analytic theory for the impact of convective seed perturbations on shock revival in the ensuing supernova. We predict a reduction of the critical luminosity for explosion by 12% – 24% due to seed asphericities for our 3D progenitor model relative to the case without large seed perturbations.

  2. No-Core Shell Model for A = 47 and A = 49

    Energy Technology Data Exchange (ETDEWEB)

    Vary, J P; Negoita, A G; Stoica, S

    2006-11-13

    We apply the no-core shell model to the nuclear structure of odd-mass nuclei straddling {sup 48}Ca. Starting with the NN interaction, that fits two-body scattering and bound state data, we evaluate the nuclear properties of A = 47 and A = 49 nuclei while preserving all the underlying symmetries. Due to model space limitations and the absence of three-body interactions, we incorporate phenomenological interaction terms determined by fits to A = 48 nuclei in a previous effort. Our modified Hamiltonian produces reasonable spectra for these odd-mass nuclei. In addition to the differences in single-particle basis states, the absence of a single-particle Hamiltonian in our no-core approach complicates comparisons with valence effective NN interactions. We focus on purely off-diagonal two-body matrix elements since they are not affected by ambiguities in the different roles for one-body potentials and we compare selected sets of fp-shell matrix elements of our initial and modified Hamiltonians in the harmonic oscillator basis with those of a recent model fp-shell interaction, the GXPF1 interaction of Honma et al. While some significant differences emerge from these comparisons, there is an overall reasonably good correlation between our off-diagonal matrix elements and those of GXPF1.

  3. Projected shell model study of neutron- deficient 122Ce

    Indian Academy of Sciences (India)

    Projected shell model; band diagram; yrast energies; electromagnetic quan- ... signed to 122Ce by detecting γ-rays in coincidence with evaporated charged particles .... 0.75 from the free nucleon values to account for the core-polarization and ...

  4. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  5. Elementary isovector spin and orbital magnetic dipole modes revisited in the shell model

    International Nuclear Information System (INIS)

    Richter, A.

    1988-08-01

    A review is given on the status of mainly spin magnetic dipole modes in some sd- and fp-shell nuclei studied with inelastic electron and proton scattering, and by β + -decay. Particular emphasis is also placed on a fairly new, mainly orbital magnetic dipole mode investigated by high-resolution (e,e') and (p,p') scattering experiments on a series of fp-shell nuclei. Both modes are discussed in terms of the shell model with various effective interactions. (orig.)

  6. Spherical-shell boundaries for two-dimensional compressible convection in a star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so

  7. Bursts and shocks in a continuum shell model

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...

  8. Use of shell model calculations in R-matrix studies of neutron-induced reactions

    International Nuclear Information System (INIS)

    Knox, H.D.

    1986-01-01

    R-matrix analyses of neutron-induced reactions for many of the lightest p-shell nuclei are difficult due to a lack of distinct resonance structure in the reaction cross sections. Initial values for the required R-matrix parameters, E,sub(lambda) and γsub(lambdac) for states in the compound system, can be obtained from shell model calculations. In the present work, the results of recent shell model calculations for the lithium isotopes have been used in R-matrix analyses of 6 Li+n and 7 Li+n reactions for E sub(n) 7 Li and 8 Li on the 6 Li+n and 7 Li+n reaction mechanisms and cross sections are discussed. (author)

  9. Folding of non-Euclidean curved shells

    Science.gov (United States)

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan

    2015-03-01

    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  10. Quantum chaos in the two-center shell model

    Energy Technology Data Exchange (ETDEWEB)

    Milek, B; Noerenberg, W; Rozmej, P [Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany, F.R.)

    1989-11-01

    Within an axially symmetric two-center shell model single-particle levels with {Omega}=1/2 are analyzed with respect to their level-spacing distributions and avoided level crossings as functions of the shape parameters. Only for shapes sufficiently far from any additional symmetry, ideal Wigner distributions are found as signature for quantum chaos. (orig.).

  11. Quantum chaos in the two-center shell model

    Energy Technology Data Exchange (ETDEWEB)

    Milek, B; Noerenberg, W; Rozmej, P

    1989-03-01

    Within an axially symmetric two-center shell model single-particle levels with ..cap omega.. = 1/2 are analyzed with respect to their level-spacing distributions and avoided level crossings as functions of the shape parameters. Only for shapes sufficiently far from any additional symmetry, ideal Wigner distributions are found as signature for quantum chaos.

  12. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  13. A different interpretation of the nuclear shell model

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1984-12-01

    In the first order approximation the nucleons are moving into a collective well extracted from the two-body N-N interaction. The nuclear shell model is explained by the structure of the first order solution of the Schroedinger equation. In the next step the two-body correlations generated by the N-N potential are introduced in the wave function

  14. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    Science.gov (United States)

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-02

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  15. Statistical Mechanics of Thin Spherical Shells

    Directory of Open Access Journals (Sweden)

    Andrej Košmrlj

    2017-01-01

    Full Text Available We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated “pressure.” Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.

  16. Nuclear shell theory

    CERN Document Server

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  17. A shell-model calculation in terms of correlated subsystems

    International Nuclear Information System (INIS)

    Boisson, J.P.; Silvestre-Brac, B.

    1979-01-01

    A method for solving the shell-model equations in terms of a basis which includes correlated subsystems is presented. It is shown that the method allows drastic truncations of the basis to be made. The corresponding calculations are easy to perform and can be carried out rapidly

  18. Round Robin Posttest analysis of a 1/10-scale Steel Containment Vessel Model Test

    International Nuclear Information System (INIS)

    Komine, Kuniaki; Konno, Mutsuo

    1999-01-01

    NUPEC and U.S. Nuclear Regulatory Commission (USNRC) have been jointly sponsoring 'Structural Behavior Test' at Sandia National Laboratory (SNL) in Cooperative Containment Research Program'. As one of the test, a test of a mixed scaled SCV model with 1/10 in the geometry and 1/4 in the shell thickness. Round Robin analyses of a 1/10-scale Steel Containment Vessel (SCV) Model Test were carried out to obtain an adequate analytical method among seven organizations belonged to five countries in the world. As one of sponsor, Nuclear Power Engineering Corporation (NUPEC) filled the important role of a posttest analysis of SCV model. This paper describes NUPEC's analytical results in the round robin posttest analysis. (author)

  19. Slush Fund: The Multiphase Nature of Oceanic Ices and Its Role in Shaping Europa's Icy Shell

    Science.gov (United States)

    Buffo, J.; Schmidt, B. E.; Huber, C.

    2017-12-01

    The role of Europa's ice shell in mediating ocean-surface interaction, constraining potential habitability of the underlying hydrosphere, and dictating the surface morphology of the moon is discussed extensively in the literature, yet the dynamics and characteristics of the shell itself remain largely unconstrained. Some of the largest unknowns arise from underrepresented physics and varying a priori assumptions built into the current ice shell models. Here we modify and apply a validated one-dimensional reactive transport model designed to simulate the formation and evolution of terrestrial sea ice to the Europa environment. The top-down freezing of sea ice due to conductive heat loss to the atmosphere is akin to the formation of the Jovian moon's outer ice shell, albeit on a different temporal and spatial scale. Nevertheless, the microscale physics that govern the formation of sea ice on Earth (heterogenous solidification leading to brine pockets and channels, multiphase reactive transport phenomena, gravity drainage) likely operate in a similar manner at the ice-ocean interface of Europa, dictating the thermal, chemical, and mechanical properties of the ice shell. Simulations of the European ice-ocean interface at different stages during the ice shell's evolution are interpolated to produce vertical profiles of temperature, salinity, solid fraction, and eutectic points throughout the entire shell. Additionally, the model is coupled to the equilibrium chemistry package FREZCHEM to investigate the impact a diverse range of putative European ocean chemistries has on ice shell properties. This method removes the need for a priori assumptions of impurity entrainment rates and ice shell properties, thus providing a first principles constraint on the stratigraphic characteristics of a simulated European ice shell. These insights have the potential to improve existing estimates for the onset of solid state convection, melt lens formation due to eutectic melting, ice

  20. Coexistence of spherical states with deformed and superdeformed bands in doubly magic 40Ca; A shell model challenge

    International Nuclear Information System (INIS)

    Caurier, E.; Nowacki, F.; Menendez, J.; Poves, A.

    2007-02-01

    Large scale shell model calculations, with dimensions reaching 10 9 , are carried out to describe the recently observed deformed (ND) and superdeformed (SD) bands based on the first and second excited 0 + states of 40 Ca at 3.35 MeV and 5.21 MeV respectively. A valence space comprising two major oscillator shells, sd and pf, can accommodate most of the relevant degrees of freedom of this problem. The ND band is dominated by configurations with four particles promoted to the pf-shell (4p-4h in short). The SD band by 8p-8h configurations. The ground state of 40 Ca is strongly correlated, but the closed shell still amounts to 65%. The energies of the bands are very well reproduced by the calculations. The out-band transitions connecting the SD band with other states are very small and depend on the details of the mixing among the different np-nh configurations, in spite of that, the calculation describes them reasonably. For the in-band transition probabilities along the SD band, we predict a fairly constant transition quadrupole moment Q 0 (t) ∼ 70 e fm 2 up to J=10, that decreases toward the higher spins. We submit also that the J=8 states of the deformed and superdeformed band are maximally mixed. (authors)

  1. Coexistence of spherical states with deformed and superdeformed bands in doubly magic 40Ca: A shell-model challenge

    International Nuclear Information System (INIS)

    Caurier, E.; Nowacki, F.; Menendez, J.; Poves, A.

    2007-01-01

    Large-scale shell-model calculations, with dimensions reaching 10 9 , are carried out to describe the recently observed deformed (ND) and superdeformed (SD) bands based on the first and second excited 0 + states of 40 Ca at 3.35 and 5.21 MeV, respectively. A valence space comprising two major oscillator shells, sd and pf, can accommodate most of the relevant degrees of freedom of this problem. The ND band is dominated by configurations with four particles promoted to the pf shell (4p-4h in short). The SD band by 8p-8h configurations. The ground state of 40 Ca is strongly correlated, but the closed shell still amounts to 65%. The energies of the bands are very well reproduced by the calculations. The out-band transitions connecting the SD band with other states are very small and depend on the details of the mixing among the different np-nh configurations; in spite of that, the calculation describes them reasonably. For the in-band transition probabilities along the SD band, we predict a fairly constant transition quadrupole moment Q 0 (t)∼170 e fm 2 up to J=10 that decreases toward the higher spins. We submit also that the J=8 states of the deformed and superdeformed bands are maximally mixed

  2. Ab Initio Study of 40Ca with an Importance Truncated No-Core Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Roth, R; Navratil, P

    2007-05-22

    We propose an importance truncation scheme for the no-core shell model, which enables converged calculations for nuclei well beyond the p-shell. It is based on an a priori measure for the importance of individual basis states constructed by means of many-body perturbation theory. Only the physically relevant states of the no-core model space are considered, which leads to a dramatic reduction of the basis dimension. We analyze the validity and efficiency of this truncation scheme using different realistic nucleon-nucleon interactions and compare to conventional no-core shell model calculations for {sup 4}He and {sup 16}O. Then, we present the first converged calculations for the ground state of {sup 40}Ca within no-core model spaces including up to 16{h_bar}{Omega}-excitations using realistic low-momentum interactions. The scheme is universal and can be easily applied to other quantum many-body problems.

  3. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-01-01

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal

  4. Shell-model Monte Carlo studies of nuclei

    International Nuclear Information System (INIS)

    Dean, D.J.

    1997-01-01

    The pair content and structure of nuclei near N = Z are described in the frwnework of shell-model Monte Carlo (SMMC) calculations. Results include the enhancement of J=0 T=1 proton-neutron pairing at N=Z nuclei, and the maxked difference of thermal properties between even-even and odd-odd N=Z nuclei. Additionally, a study of the rotational properties of the T=1 (ground state), and T=0 band mixing seen in 74 Rb is presented

  5. Multi-scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell.

    Science.gov (United States)

    Balani, Kantesh; Patel, Riken R; Keshri, Anup K; Lahiri, Debrupa; Agarwal, Arvind

    2011-10-01

    Carapace, the protective shell of a freshwater snapping turtle, Chelydra serpentina, shields them from ferocious attacks of their predators while maintaining light-weight and agility for a swim. The microstructure and mechanical properties of the turtle shell are very appealing to materials scientists and engineers for bio-mimicking, to obtain a multi-functional surface. In this study, we have elucidated the complex microstructure of a dry Chelydra serpentina's shell which is very similar to a multi-layered composite structure. The microstructure of a turtle shell's carapace elicits a sandwich structure of waxy top surface with a harder sub-surface layer serving as a shielding structure, followed by a lamellar carbonaceous layer serving as shock absorber, and the inner porous matrix serves as a load-bearing scaffold while acting as reservoir of retaining water and nutrients. The mechanical properties (elastic modulus and hardness) of various layers obtained via nanoindentation corroborate well with the functionality of each layer. Elastic modulus ranged between 0.47 and 22.15 GPa whereas hardness varied between 53.7 and 522.2 MPa depending on the microstructure of the carapace layer. Consequently, the modulus of each layer was represented into object oriented finite element (OOF2) modeling towards extracting the overall effective modulus of elasticity (~4.75 GPa) of a turtle's carapace. Stress distribution of complex layered structure was elicited with an applied strain of 1% in order to understand the load sharing of various composite layers in the turtle's carapace. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. NIF-Scale Hohlraum Asymmetry Studies Using Point-Projection Radiograph of Thin Shells

    International Nuclear Information System (INIS)

    Pollaine, S.; Bradley, D.; Landen, O.; Wallace, R.; Jones, O.

    2000-01-01

    Our current OMEGA experimental campaign is developing the thin shell diagnostic for use on NIF with the needed accuracy. The thin shell diagnostic has the advantage of linearity over alternative measurement techniques, so that low-order modes will not corrupt the measurement of high-order modes. Although our random measurement errors are adequate, we need to monitor beam balance and ensure that the thin shells have a uniform thickness

  7. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 3

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Corum, J.M.; Bryson, J.W.

    1975-06-01

    The third in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: the experimental data provide design information directly applicable to nozzles in cylindrical vessels; and the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 3 had a 10 in. OD and the nozzle had a 1.29 in. OD, giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios for the cylinder and the nozzle were 50 and 7.68 respectively. Thirteen separate loading cases were analyzed. In each, one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for all the loadings were obtained using 158 three-gage strain rosettes located on the inner and outer surfaces. The loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  8. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 4

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-06-01

    The last in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models in the series are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: (1) the experimental data provide design information directly applicable to nozzles in cylindrical vessels, and (2) the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 4 had an outside diameter of 10 in., and the nozzle had an outside diameter of 1.29 in., giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios were 50 and 20.2 for the cylinder and nozzle respectively. Thirteen separate loading cases were analyzed. For each loading condition one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for each of the 13 loadings were obtained using 157 three-gage strain rosettes located on the inner and outer surfaces. Each of the 13 loading cases was also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  9. A novel Rapid Additive Manufacturing concept for architectural composite shell construction inspired by the shell formation in land snails.

    Science.gov (United States)

    Felbrich, Benjamin; Wulle, Frederik; Allgaier, Christoph; Menges, Achim; Verl, Alexander; Wurst, Karl-Heinz; Nebelsick, James

    2018-01-04

    State of the art rapid additive manufacturing (RAM), specifically Fused Filament Fabrication (FFF) has gained popularity among architects, engineers and designers for quick prototyping of technical devices, rapid production of small series and even construction scale fabrication of architectural elements. The spectrum of producible shapes and the resolution of detail, however, are determined and constrained by the layer-based nature of the fabrication process. These aspects significantly limit FFF-based approaches for the prefabrication and in-situ fabrication of freeform shells at the architectural scale. Snails exhibit a shell building process that suggests ways to overcome these limits. They produce a soft, pliable proteinaceous film - the periostracum - which later hardens and serves, among other functions, as a form-giving surface for an inner calcium carbonate layer. Snail shell formation behavior is interpreted from a technical point of view to extract potentially useful aspects for a biomimetic transfer. A RAM concept for continuous extrusion of thin free form composite shells inspired by the snail shell formation is presented. © 2018 IOP Publishing Ltd.

  10. Dynamic centering of liquid shells

    International Nuclear Information System (INIS)

    Tsamopoulos, J.A.; Brown, R.A.

    1987-01-01

    The moderate-amplitude axisymmetric oscillations of an inviscid liquid shell surrounding an incompressible gas bubble are calculated by a multiple-time-scale expansion for initial deformations composed of two-lobed perturbations of the shell and a displacement of the bubble from the center of mass of the liquid. Two types of small-amplitude motion are identified and lead to very different nonlinear dynamic interactions, as described by the results valid up to second order in the amplitude of the initial deformation. In the ''bubble mode,'' the oscillations of the captive bubble and the liquid shell are exactly in phase and the bubble vibrates about its initial eccentric location. The bubble moves toward the center of the drop when the shell is perturbed into a ''sloshing mode'' of oscillation where both interfaces move out of phase. These results explain the centering of liquid shells observed in several experiments

  11. The contribution of Skyrme Hartree-Fock calculations to the understanding of the shell model

    International Nuclear Information System (INIS)

    Zamick, L.

    1984-01-01

    The authors present a detailed comparison of Skyrme Hartree-Fock and the shell model. The H-F calculations are sensitive to the parameters that are chosen. The H-F results justify the use of effective charges in restricted model space calculations by showing that the core contribution can be large. Further, the H-F results roughly justify the use of a constant E2 effective charge, but seem to yield nucleus dependent E4 effective charges. The H-F can yield results for E6 and higher multipoles, which would be zero in s-d model space calculations. On the other side of the coin in H-F the authors can easily consider only the lowest rotational band, whereas in the shell model one can calculate the energies and properties of many more states. In the comparison some apparent problems remain, in particular E4 transitions in the upper half of the s-d shell

  12. BOWOOSS: bionic optimized wood shells with sustainability

    Science.gov (United States)

    Pohl, Göran

    2011-04-01

    In architecture, shell construction is used for the most efficient, large spatial structures. Until now the use of wood rather played a marginal role, implementing those examples of architecture, although this material offers manifold advantages, especially against the background of accelerating shortage of resources and increasing requirements concerning the energy balance. Regarding the implementation of shells, nature offers a wide range of suggestions. The focus of the examinations is on the shells of marine plankton, especially of diatoms, whose richness in species promises the discovery of entirely new construction principles. The project is targeting at transferring advantageous features of these organisms on industrial produced, modular wood shell structures. Currently a transfer of these structures in CAD - models is taking place, helping to perform stress analysis by computational methods. Micro as well as macro structures are the subject of diverse consideration, allowing to draw the necessary conclusions for an architectural design. The insights of these tests are the basis for the development of physical models on different scales, which are used to verify the different approaches. Another important aim which is promoted in the project is to enhance the competitiveness of timber construction. Downsizing of the prefabricated structural elements leads to considerable lower transportation costs as abnormal loads can be avoided as far as possible and means of transportation can be loaded with higher efficiency so that an important contribution to the sustainability in the field of architecture can also be made.

  13. Deformed shell model studies of spectroscopic properties of Zn and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... April 2014 physics pp. 757–767. Deformed shell model studies of ... experiments without isotopical enrichment thereby reducing the cost considerably. By taking a large mass of the sample because of its low cost, one can ...

  14. Analysis of two colliding fractionally damped spherical shells in modelling blunt human head impacts

    Science.gov (United States)

    Rossikhin, Yury A.; Shitikova, Marina V.

    2013-06-01

    The collision of two elastic or viscoelastic spherical shells is investigated as a model for the dynamic response of a human head impacted by another head or by some spherical object. Determination of the impact force that is actually being transmitted to bone will require the model for the shock interaction of the impactor and human head. This model is indended to be used in simulating crash scenarios in frontal impacts, and provide an effective tool to estimate the severity of effect on the human head and to estimate brain injury risks. The model developed here suggests that after the moment of impact quasi-longitudinal and quasi-transverse shock waves are generated, which then propagate along the spherical shells. The solution behind the wave fronts is constructed with the help of the theory of discontinuities. It is assumed that the viscoelastic features of the shells are exhibited only in the contact domain, while the remaining parts retain their elastic properties. In this case, the contact spot is assumed to be a plane disk with constant radius, and the viscoelastic features of the shells are described by the fractional derivative standard linear solid model. In the case under consideration, the governing differential equations are solved analytically by the Laplace transform technique. It is shown that the fractional parameter of the fractional derivative model plays very important role, since its variation allows one to take into account the age-related changes in the mechanical properties of bone.

  15. Collectivity in heavy nuclei in the shell model Monte Carlo approach

    International Nuclear Information System (INIS)

    Özen, C.; Alhassid, Y.; Nakada, H.

    2014-01-01

    The microscopic description of collectivity in heavy nuclei in the framework of the configuration-interaction shell model has been a major challenge. The size of the model space required for the description of heavy nuclei prohibits the use of conventional diagonalization methods. We have overcome this difficulty by using the shell model Monte Carlo (SMMC) method, which can treat model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We identify a thermal observable that can distinguish between vibrational and rotational collectivity and use it to describe the crossover from vibrational to rotational collectivity in families of even-even rare-earth isotopes. We calculate the state densities in these nuclei and find them to be in close agreement with experimental data. We also calculate the collective enhancement factors of the corresponding level densities and find that their decay with excitation energy is correlated with the pairing and shape phase transitions. (author)

  16. Intruder level and deformation in SD-pair shell model

    International Nuclear Information System (INIS)

    Luo Yan'an; Ning Pingzhi; Pan Feng

    2004-01-01

    The influence of intruder level on nuclear deformation is studied within the framework of the nucleon-pair shell model truncated to an SD-pair subspace. The results suggest that the intruder level has a tendency to reduce the deformation and plays an important role in determining the onset of rotational behavior. (authors)

  17. Corrections to the neutrinoless double-β-decay operator in the shell model

    Science.gov (United States)

    Engel, Jonathan; Hagen, Gaute

    2009-06-01

    We use diagrammatic perturbation theory to construct an effective shell-model operator for the neutrinoless double-β decay of Se82. The starting point is the same Bonn-C nucleon-nucleon interaction that is used to generate the Hamiltonian for recent shell-model calculations of double-β decay. After first summing high-energy ladder diagrams that account for short-range correlations and then adding diagrams of low order in the G matrix to account for longer-range correlations, we fold the two-body matrix elements of the resulting effective operator with transition densities from the recent shell-model calculation to obtain the overall nuclear matrix element that governs the decay. Although the high-energy ladder diagrams suppress this matrix element at very short distances as expected, they enhance it at distances between one and two fermis, so that their overall effect is small. The corrections due to longer-range physics are large, but cancel one another so that the fully corrected matrix element is comparable to that produced by the bare operator. This cancellation between large and physically distinct low-order terms indicates the importance of a reliable nonperturbative calculation.

  18. Development of Mortar Simulator with Shell-In-Shell System – Problem of External Ballistics

    Directory of Open Access Journals (Sweden)

    A. Fedaravicius

    2007-01-01

    Full Text Available The shell-in-shell system used in the mortar simulator raises a number of non-standard technical and computational problems starting from the requirement to distribute the propelling blast energy between the warhead and the ballistic barrel, finishing with the requirement that the length of warhead's flight path must be scaled to combat shell firing tables. The design problem of the simulator is split into two parts – the problem of external ballistics where the initial velocities of the warhead must be determined, and the problem of internal ballistics – where the design of the cartridge and the ballistic barrel must be performed.

  19. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  20. Scaling model for high-aspect-ratio microballoon direct-drive implosions at short laser wavelengths

    International Nuclear Information System (INIS)

    Schirmann, D.; Juraszek, D.; Lane, S.M.; Campbell, E.M.

    1992-01-01

    A scaling model for hot spherical ablative implosions in direct-drive mode is presented. The model results have been compared with experiments from LLE, ILE, and LLNL. Reduction of the neutron yield due to illumination nonuniformities is taken into account by the assumption that the neutron emission is cut off when the gas shock wave reflected off the center meets the incoming pusher, i.e., at a time when the probability of shell breakup is greatly enhanced. The main advantage of this semiempirical scaling model is that it elucidates the principal features of these simple implosions and permits one to estimate very quickly the performance of a high-aspect-ratio direct-drive target illuminated by short-wavelength laser light. (Author)

  1. Round Robin Posttest analysis of a 1/10-scale Steel Containment Vessel Model Test

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Kuniaki [Nuclear Power Engineering Corp., Tokyo (Japan); Konno, Mutsuo

    1999-07-01

    NUPEC and U.S. Nuclear Regulatory Commission (USNRC) have been jointly sponsoring 'Structural Behavior Test' at Sandia National Laboratory (SNL) in Cooperative Containment Research Program'. As one of the test, a test of a mixed scaled SCV model with 1/10 in the geometry and 1/4 in the shell thickness. Round Robin analyses of a 1/10-scale Steel Containment Vessel (SCV) Model Test were carried out to obtain an adequate analytical method among seven organizations belonged to five countries in the world. As one of sponsor, Nuclear Power Engineering Corporation (NUPEC) filled the important role of a posttest analysis of SCV model. This paper describes NUPEC's analytical results in the round robin posttest analysis. (author)

  2. Free vibration analysis of delaminated composite shells using different shell theories

    International Nuclear Information System (INIS)

    Nanda, Namita; Sahu, S.K.

    2012-01-01

    Free vibration response of laminated composite shells with delamination is presented using the finite element method based on first order shear deformation theory. The shell theory used is the extension of dynamic, shear deformable theory according to the Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. An eight-noded C 0 continuity, isoparametric quadrilateral element with five degrees of freedom per node is used in the formulation. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. The natural frequencies of the delaminated cylindrical (CYL), spherical (SPH) and hyperbolic paraboloid (HYP) shells are determined by using the above mentioned shell theories, namely Sanders', Love's, and Donnell's. The validity of the present approach is established by comparing the authors' results with those available in the literature. Additional studies on free vibration response of CYL, SPH and HYP shells are conducted to assess the effects of delamination size and number of layers considering all three shell theories. It is shown that shell theories according to Sanders and Love always predict practically identical frequencies. Donnell's theory gives reliable results only for shallow shells. Moreover, the natural frequency is found to be very sensitive to delamination size and number of layers in the shell.

  3. Moments Method for Shell-Model Level Density

    International Nuclear Information System (INIS)

    Zelevinsky, V; Horoi, M; Sen'kov, R A

    2016-01-01

    The modern form of the Moments Method applied to the calculation of the nuclear shell-model level density is explained and examples of the method at work are given. The calculated level density practically exactly coincides with the result of full diagonalization when the latter is feasible. The method provides the pure level density for given spin and parity with spurious center-of-mass excitations subtracted. The presence and interplay of all correlations leads to the results different from those obtained by the mean-field combinatorics. (paper)

  4. Modeling the Electrostatics of Hollow Shell Suspensions: Ion Distribution, Pair Interactions, and Many-Body Effects.

    Science.gov (United States)

    Hallez, Yannick; Meireles, Martine

    2016-10-11

    Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.

  5. Design, fabrication and testing of a prototype stressed-shell fuel isolation container

    International Nuclear Information System (INIS)

    Crosthwaite, J.L.; Barrie, J.N.; Nuttall, K.

    1982-07-01

    Atomic Energy of Canada Limited is conducting and coordinating research into the development of engineered barriers for the disposal of unreprocessed irradiated fuel within a deep, stable geologic vault. In one approach, a containment shell of corrosion-resistant metal is proposed as the principal barrier to radionuclide release, giving a high probability of containment for at least 300 years, thus ensuring isolation of nearly all fission products for their hazardous lives. The simplest concept is the 'stressed-shell' container, designed with sufficient shell thickness to withstand the hydrostatic pressure within a 1000-m deep disposal vault postulated to have flooded with groundwater. This report describes the design, fabrication, analysis and hydrostatic testing of a full-scale stressed-shell prototype. The report concludes that the deformation and collapse performance of stressed-shell designs, based on short-term mechanical properties be modelled adequately by BOSOR 5, a commercially available stress-strain computer program. If the stressed-shell concept is retained as a viable fuel isolation concept, future analyses should include an assessment of the role of material creep on long-term container performance

  6. A Shell Model for Free Vibration Analysis of Carbon Nanoscroll

    Directory of Open Access Journals (Sweden)

    Amin Taraghi Osguei

    2017-04-01

    Full Text Available Carbon nanoscroll (CNS is a graphene sheet rolled into a spiral structure with great potential for different applications in nanotechnology. In this paper, an equivalent open shell model is presented to study the vibration behavior of a CNS with arbitrary boundary conditions. The equivalent parameters used for modeling the carbon nanotubes are implemented to simulate the CNS. The interactions between the layers of CNS due to van der Waals forces are included in the model. The uniformly distributed translational and torsional springs along the boundaries are considered to achieve a unified solution for different boundary conditions. To study the vibration characteristics of CNS, total energy including strain energy, kinetic energy, and van der Waals energy are minimized using the Rayleigh-Ritz technique. The first-order shear deformation theory has been utilized to model the shell. Chebyshev polynomials of first kind are used to obtain the eigenvalue matrices. The natural frequencies and corresponding mode shapes of CNS in different boundary conditions are evaluated. The effect of electric field in axial direction on the natural frequencies and mode shapes of CNS is investigated. The results indicate that, as the electric field increases, the natural frequencies decrease.

  7. Heat transfer models for predicting Salmonella enteritidis in shell eggs through supply chain distribution.

    Science.gov (United States)

    Almonacid, S; Simpson, R; Teixeira, A

    2007-11-01

    Egg and egg preparations are important vehicles for Salmonella enteritidis infections. The influence of time-temperature becomes important when the presence of this organism is found in commercial shell eggs. A computer-aided mathematical model was validated to estimate surface and interior temperature of shell eggs under variable ambient and refrigerated storage temperature. A risk assessment of S. enteritidis based on the use of this model, coupled with S. enteritidis kinetics, has already been reported in a companion paper published earlier in JFS. The model considered the actual geometry and composition of shell eggs and was solved by numerical techniques (finite differences and finite elements). Parameters of interest such as local (h) and global (U) heat transfer coefficient, thermal conductivity, and apparent volumetric specific heat were estimated by an inverse procedure from experimental temperature measurement. In order to assess the error in predicting microbial population growth, theoretical and experimental temperatures were applied to a S. enteritidis growth model taken from the literature. Errors between values of microbial population growth calculated from model predicted compared with experimentally measured temperatures were satisfactorily low: 1.1% and 0.8% for the finite difference and finite element model, respectively.

  8. Off-shell dynamics of the O(3) NLS model beyond Monte Carlo and perturbation theory

    International Nuclear Information System (INIS)

    Balog, J.; Niedermaier, M.

    1997-01-01

    The off-shell dynamics of the O(3) non-linear sigma model is probed in terms of spectral densities and two-point functions by means of the form factor approach. The exact form factors of the spin field, Noether current, EM tensor and the topological charge density are computed up to six particles. The corresponding n≤6 particle spectral densities are used to compute the two-point functions, and are argued to deviate at most a few per mille from the exact answer in the entire energy range below 10 3 in units of the mass gap. To cover yet higher energies we propose an extrapolation scheme to arbitrary particle numbers based on a novel scaling hypothesis for the spectral densities. It yields candidate results for the exact two-point functions at all energy scales and allows us to exactly determine the values of two, previously unknown, non-perturbative constants. (orig.)

  9. Use of a finite range nucleon-nucleon interaction in the continuum shell model

    International Nuclear Information System (INIS)

    Faes, Jean-Baptiste

    2007-01-01

    The unification of nuclear structure and nuclear reactions was always a great challenge of nuclear physics. The extreme complexity of finite quantum systems lead in the past to a separate development of the nuclear structure and the nuclear reactions. A unified description of structure and reactions is possible within the continuum shell model. All previous applications of this model used the zero-range residual interaction and the finite depth local potential to generate the single-particle basis. In the thesis, we have presented an extension of the continuum shell model for finite-range nucleon-nucleon interaction and an arbitrary number of nucleons in the scattering continuum. The great advantage of the present formulation is the same two-body interaction used both to generate the single-particle basis and to describe couplings to the continuum states. This formulation opens a possibility for an ab initio continuum shell model studies with the same nucleon-nucleon interaction generating the nuclear mean field, the configuration mixing and the coupling to the scattering continuum. First realistic applications of the above model has been shown for spectra of "1"7F and "1"7O, and elastic phase-shifts in the reaction "1"6O(p, p)"1"6O. (author)

  10. Understanding nuclei in the upper sd - shell

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)

    2014-08-14

    Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.

  11. A shell-neutral modeling approach yields sustainable oyster harvest estimates: a retrospective analysis of the Louisiana state primary seed grounds

    Science.gov (United States)

    Soniat, Thomas M.; Klinck, John M.; Powell, Eric N.; Cooper, Nathan; Abdelguerfi, Mahdi; Hofmann, Eileen E.; Dahal, Janak; Tu, Shengru; Finigan, John; Eberline, Benjamin S.; La Peyre, Jerome F.; LaPeyre, Megan K.; Qaddoura, Fareed

    2012-01-01

    A numerical model is presented that defines a sustainability criterion as no net loss of shell, and calculates a sustainable harvest of seed (<75 mm) and sack or market oysters (≥75 mm). Stock assessments of the Primary State Seed Grounds conducted east of the Mississippi from 2009 to 2011 show a general trend toward decreasing abundance of sack and seed oysters. Retrospective simulations provide estimates of annual sustainable harvests. Comparisons of simulated sustainable harvests with actual harvests show a trend toward unsustainable harvests toward the end of the time series. Stock assessments combined with shell-neutral models can be used to estimate sustainable harvest and manage cultch through shell planting when actual harvest exceeds sustainable harvest. For exclusive restoration efforts (no fishing allowed), the model provides a metric for restoration success-namely, shell accretion. Oyster fisheries that remove shell versus reef restorations that promote shell accretion, although divergent in their goals, are convergent in their management; both require vigilant attention to shell budgets.

  12. Inner shell Coulomb ionization by heavy charged particles studied by the SCA model

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1976-12-01

    The seven papers, introduced by the most recent, subtitled 'A condensed status review', form a survey of the work by the author and his colleagues on K-, L-, and M-shell ionisation by impinging protons, deuterons and α-particles in the period 1971-1976. The SCA model is discussed and compared with other approximations for inner shell Coulomb ionisation. The future aspects in this field are also discussed. (JIW)

  13. Cluster model of s-and p-shell ΛΛ hypernuclei

    Indian Academy of Sciences (India)

    The binding energy ( ) of the s- and p-shell hypernuclei are calculated variationally in the cluster model and multidimensional integrations are performed using Monte Carlo. A variety of phenomenological -core potentials consistent with the -core energies and a wide range of simulated s-state potentials are ...

  14. Realistic shell-model calculations for Sn isotopes

    International Nuclear Information System (INIS)

    Covello, A.; Andreozzi, F.; Coraggio, L.; Gargano, A.; Porrino, A.

    1997-01-01

    We report on a shell-model study of the Sn isotopes in which a realistic effective interaction derived from the Paris free nucleon-nucleon potential is employed. The calculations are performed within the framework of the seniority scheme by making use of the chain-calculation method. This provides practically exact solutions while cutting down the amount of computational work required by a standard seniority-truncated calculation. The behavior of the energy of several low-lying states in the isotopes with A ranging from 122 to 130 is presented and compared with the experimental one. (orig.)

  15. A REMARK ON FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the “classical” linear limiting membrane model, whose juetification has already been established by a convergence theorem.

  16. Off-shell dark matter: A cosmological relic of quantum gravity

    Science.gov (United States)

    Saravani, Mehdi; Afshordi, Niayesh

    2017-02-01

    We study a novel proposal for the origin of cosmological cold dark matter (CDM) which is rooted in the quantum nature of spacetime. In this model, off-shell modes of quantum fields can exist in asymptotic states as a result of spacetime nonlocality (expected in generic theories of quantum gravity) and play the role of CDM, which we dub off-shell dark matter (O f DM ). However, their rate of production is suppressed by the scale of nonlocality (e.g. Planck length). As a result, we show that O f DM is only produced in the first moments of big bang, and then effectively decouples (except through its gravitational interactions). We examine the observational predictions of this model: In the context of cosmic inflation, we show that this proposal relates the reheating temperature to the inflaton mass, which narrows down the uncertainty in the number of e -foldings of specific inflationary scenarios. We also demonstrate that O f DM is indeed cold, and discuss potentially observable signatures on small scale matter power spectrum.

  17. Final Report Fermionic Symmetries and Self consistent Shell Model

    International Nuclear Information System (INIS)

    Zamick, Larry

    2008-01-01

    In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with 'anomoulous' magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them. The importance of a self consistent shell model was emphasized.

  18. Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process

    International Nuclear Information System (INIS)

    Lee, Hyeon-Hui; Lee, Jae-Chul; Joo, Yong-Jin; Oh, Min; Lee, Chang-Ha

    2014-01-01

    Highlights: • Detailed dynamic model for the Shell entrained flow gasifier was developed. • The model included sub-models of reactor, membrane wall, gas quench and slag flow. • The dynamics of each zone including membrane wall in the gasifier were analyzed. • Cold gas efficiency (81.82%), gas fraction and temperature agreed with Shell data. • The model could be used as part of the overall IGCC simulation. - Abstract: The Shell coal gasification system is a single-stage, up-flow, oxygen-blown gasifier which utilizes dry pulverized coal with an entrained flow mechanism. Moreover, it has a membrane wall structure and operates in the slagging mode. This work provides a detailed dynamic model of the 300 MW Shell gasifier developed for use as part of an overall IGCC (integrated gasification combined cycle) process simulation. The model consists of several sub-models, such as a volatilization zone, reaction zone, quench zone, slag zone, and membrane wall zone, including heat transfers between the wall layers and steam generation. The dynamic results were illustrated and the validation of the gasifier model was confirmed by comparing the results in the steady state with the reference data. The product gases (H 2 and CO) began to come out from the exit of the reaction zone within 0.5 s, and nucleate boiling heat transfer was dominant in the water zone of the membrane wall due to high heat fluxes. The steady state of the process was reached at nearly t = 500 s, and our simulation data for the steady state, such as the temperature and composition of the syngas, the cold gas efficiency (81.82%), and carbon conversion (near 1.0) were in good agreement with the reference data

  19. MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories

    International Nuclear Information System (INIS)

    Arkani-Hamed, Nima; Schuster, Philip; Toro, Natalia; Thaler, Jesse; Wang, Lian-Tao; Mrenna, Stephen

    2007-01-01

    We describe a coherent strategy and set of tools for reconstructing the fundamental theory of the TeV scale from LHC data. We show that On-Shell Effective Theories (OSETs) effectively characterize hadron collider data in terms of masses, production cross sections, and decay modes of candidate new particles. An OSET description of the data strongly constrains the underlying new physics, and sharply motivates the construction of its Lagrangian. Simulating OSETs allows efficient analysis of new-physics signals, especially when they arise from complicated production and decay topologies. To this end, we present MARMOSET, a Monte Carlo tool for simulating the OSET version of essentially any new-physics model. MARMOSET enables rapid testing of theoretical hypotheses suggested by both data and model-building intuition, which together chart a path to the underlying theory. We illustrate this process by working through a number of data challenges, where the most important features of TeV-scale physics are reconstructed with as little as 5 fb -1 of simulated LHC signals

  20. MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories

    Energy Technology Data Exchange (ETDEWEB)

    Arkani-Hamed, Nima; Schuster, Philip; Toro, Natalia; /Harvard U., Phys. Dept.; Thaler, Jesse; /UC, Berkeley /LBL, Berkeley; Wang, Lian-Tao; /Princeton U.; Knuteson, Bruce; /MIT, LNS; Mrenna, Stephen; /Fermilab

    2007-03-01

    We describe a coherent strategy and set of tools for reconstructing the fundamental theory of the TeV scale from LHC data. We show that On-Shell Effective Theories (OSETs) effectively characterize hadron collider data in terms of masses, production cross sections, and decay modes of candidate new particles. An OSET description of the data strongly constrains the underlying new physics, and sharply motivates the construction of its Lagrangian. Simulating OSETs allows efficient analysis of new-physics signals, especially when they arise from complicated production and decay topologies. To this end, we present MARMOSET, a Monte Carlo tool for simulating the OSET version of essentially any new-physics model. MARMOSET enables rapid testing of theoretical hypotheses suggested by both data and model-building intuition, which together chart a path to the underlying theory. We illustrate this process by working through a number of data challenges, where the most important features of TeV-scale physics are reconstructed with as little as 5 fb{sup -1} of simulated LHC signals.

  1. Strontium and fluorine in tuatua shells

    International Nuclear Information System (INIS)

    Trompetter, W.J.; Coote, G.E.

    1993-01-01

    This report describes the research to date on the elemental distributions of strontium, calcium, and fluorine in a collection of 24 tuatua shells (courtesy of National Museum). Variations in elemental concentrations were measured in the shell cross-sections using a scanning proton microprobe (PIXE and PIGME). In this paper we report the findings to date, and present 2-D measurement scans as illustrative grey-scale pictures. Our results support the hypothesis that increased strontium concentrations are deposited in the shells during spawning, and that fluorine concentration is proportional to growth rate. (author). 15 refs.; 13 figs.; 1 appendix

  2. Shell-model calculations with a basis that contains correlated pairs

    International Nuclear Information System (INIS)

    Boisson, J.P.; Silvestre-Brac, B.A.; Liotta, R.J.

    1979-01-01

    A method to solve the shell-model equations within a basis that contains correlated pairs of particles is presented. The method is illustrated for the three-identical-particle system. Applications in nuclei around 208 Pb are given and comparisons with both experimental data and other calculations are carried out. (Auth.)

  3. Electromagnetic and weak observables in the context of the shell model

    International Nuclear Information System (INIS)

    Wildenthal, B.H.

    1984-01-01

    Wave functions for A = 17-39 nuclei have been obtained from diagonalizations of a single Hamiltonian formulation in the complete sd-shell configuration space for each NTJ system. These wave functions are used to generate the one-body density matrices corresponding to weak and electromagnetic transitions and moments. These densities are combined with different assumptions for the single-particle matrix elements of the weak and electromagnetic operators to produce theoretical matrix elements. The predictions are compared with experiment to determine, in some ''linearly dependent'' fashion, the correctness of the wave functions themselves, the optimum values of the single-particle matrix elements, and the viability of the overall shell-model formulation. (author)

  4. Short-Range Correlated Magnetic Core-Shell CrO₂/Cr₂O₃ Nanorods: Experimental Observations and Theoretical Considerations.

    Science.gov (United States)

    Gandhi, Ashish C; Li, Tai-Yue; Chan, Ting Shan; Wu, Sheng Yun

    2018-05-09

    With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM) cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO₂/Cr₂O₃ core-shell nanorods (NRs) has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO₂ extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.

  5. Mathematical Modeling of the Thermal Shell State of the Cylindrical Cryogenic Tank During Filling and Emptying

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Liquid hydrogen and oxygen are used as the oxidizer and fuel for liquid rocket engines. Liquefied natural gas, which is based on methane, is seen as a promising motor fuel for internal combustion engines. One of the technical problems arising from the use of said cryogenic liquid is to provide containers for storage, transport and use in the propulsion system. In the design and operation of such vessels it is necessary to have reliable information about their temperature condition, on which depend the loss of cryogenic fluids due to evaporation and the stress-strain state of the structural elements of the containers.Uneven temperature distribution along the generatrix of the cylindrical thin-walled shell of rocket cryogenic tanks, in a localized zone of cryogenic liquid level leads to a curvature of the shell and reduce the permissible axle load in a hazard shell buckling in the preparation for the start of the missile in flight with an increasing acceleration. Moving the level of the cryogenic liquid during filling or emptying the tank at a certain combination of parameters results in an increase of the local temperature distribution nonuniformity.Along with experimental study of the shell temperature state of the cryogenic container, methods of mathematical modeling allow to have information needed for designing and testing the construction of cryogenic tanks. In this study a mathematical model is built taking into account features of heat transfer in a cryogenic container, including the boiling cryogenic liquid in the inner surface of the container. This mathematical model describes the temperature state of the thin-walled shell of cylindrical cryogenic tank during filling and emptying. The work also presents a quantitative analysis of this model in case of fixed liquid level, its movement at a constant speed, and harmonic oscillations relative to a middle position. The quantitative analysis of this model has allowed to find the limit options

  6. Stochastic estimation of nuclear level density in the nuclear shell model: An application to parity-dependent level density in 58Ni

    Directory of Open Access Journals (Sweden)

    Noritaka Shimizu

    2016-02-01

    Full Text Available We introduce a novel method to obtain level densities in large-scale shell-model calculations. Our method is a stochastic estimation of eigenvalue count based on a shifted Krylov-subspace method, which enables us to obtain level densities of huge Hamiltonian matrices. This framework leads to a successful description of both low-lying spectroscopy and the experimentally observed equilibration of Jπ=2+ and 2− states in 58Ni in a unified manner.

  7. Large scale nuclear structure studies

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    Results of large scale nuclear structure studies are reported. The starting point is the Hartree-Fock-Bogoliubov solution with angular momentum and proton and neutron number projection after variation. This model for number and spin projected two-quasiparticle excitations with realistic forces yields in sd-shell nuclei similar good results as the 'exact' shell-model calculations. Here the authors present results for a pf-shell nucleus 46 Ti and results for the A=130 mass region where they studied 58 different nuclei with the same single-particle energies and the same effective force derived from a meson exchange potential. They carried out a Hartree-Fock-Bogoliubov variation after mean field projection in realistic model spaces. In this way, they determine for each yrast state the optimal mean Hartree-Fock-Bogoliubov field. They apply this method to 130 Ce and 128 Ba using the same effective nucleon-nucleon interaction. (Auth.)

  8. Transition sum rules in the shell model

    Science.gov (United States)

    Lu, Yi; Johnson, Calvin W.

    2018-03-01

    An important characterization of electromagnetic and weak transitions in atomic nuclei are sum rules. We focus on the non-energy-weighted sum rule (NEWSR), or total strength, and the energy-weighted sum rule (EWSR); the ratio of the EWSR to the NEWSR is the centroid or average energy of transition strengths from an nuclear initial state to all allowed final states. These sum rules can be expressed as expectation values of operators, which in the case of the EWSR is a double commutator. While most prior applications of the double commutator have been to special cases, we derive general formulas for matrix elements of both operators in a shell model framework (occupation space), given the input matrix elements for the nuclear Hamiltonian and for the transition operator. With these new formulas, we easily evaluate centroids of transition strength functions, with no need to calculate daughter states. We apply this simple tool to a number of nuclides and demonstrate the sum rules follow smooth secular behavior as a function of initial energy, as well as compare the electric dipole (E 1 ) sum rule against the famous Thomas-Reiche-Kuhn version. We also find surprising systematic behaviors for ground-state electric quadrupole (E 2 ) centroids in the s d shell.

  9. Interference in the $gg\\rightarrow h \\rightarrow \\gamma\\gamma$ On-Shell Rate and the Higgs Boson Total Width

    OpenAIRE

    Campbell, John; Carena, Marcela; Harnik, Roni; Liu, Zhen

    2017-01-01

    We consider interference between the Higgs signal and QCD background in $gg\\rightarrow h \\rightarrow \\gamma\\gamma$ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the Standard Model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on th...

  10. Recent evolution of theoretical models in inner shell photoionization

    International Nuclear Information System (INIS)

    Combet Farnoux, F.

    1978-01-01

    This paper is a brief review of various atomic theoretical models recently developed to calculate photoionization cross sections in the low energy range (from the far ultraviolet to the soft X ray region). For both inner and outer shells concerned, we emphasize the necessity to go beyond the independent particle models by means of the introduction of correlation effects in both initial and final states. The basic physical ideas of as elaborated models as Random Phase Approximation with exchange, Many Body Perturbation Theory and R matrix Theory are outlined and summarized. As examples, the results of some calculations are shown and compared with experiment

  11. Shell-model results in fp and fpg9/2 spaces for 61,63,65Co isotopes

    International Nuclear Information System (INIS)

    Srivastava, P. C.; Kota, V. K. B.

    2011-01-01

    Low-lying spectra and several high-spin states of odd-even 61,63,65 Co isotopes are calculated in two different shell-model spaces. First set of calculations have been carried out in fp-shell valence space (full fp space for 63,65 Co and a truncated one for 61 Co) using two recently derived fp-shell interactions, namely GXPF1A and KB3G, with 40 Ca as core. Similarly, the second set of calculations have been performed in fpg 9/2 valence space using an fpg effective interaction due to Sorlin et al., with 48 Ca as core and imposing a truncation. It is seen that the results of GXPF1A and KB3G are reasonable for 61,63 Co. For 65 Co, shell-model results show that the fpg interaction adopted in the study is inadequate and also points out that it is necessary to include orbitals higher than 1g 9/2 for neutron-rich Co isotopes.

  12. Spectroscopy of 215Ra: the shell model and enhanced E3 transitions

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Dracoulis, G.D.; Kibedi, T.; Fabricius, B.; Lane, G.J.; Poletti, A.R.; Baxter, A.M.

    1998-01-01

    Excited states in the N=127 nucleus 215 Ra have been studied using γ-ray and electron spectroscopy following reactions of 13 C on 206 Pb targets. Levels were identified up to spins of ∝61/2 ℎ and excitation energies of ∝6 MeV. Enhanced octupole transitions are a feature of the level scheme. Lifetimes and magnetic moments were measured for several isomeric levels. The level scheme, transition rates and magnetic moments are compared with empirical shell model calculations and multiparticle octupole-coupled shell model calculations. In general, the experimental data are well described, but in comparison with its success in describing enhanced E3 transitions between related states in the radon isotopes, some limitations of the multiparticle octupole-coupling approach are revealed in 215 Ra. (orig.)

  13. Shell structure from N=Z (100Sn) to N>>Z (78Ni)

    International Nuclear Information System (INIS)

    Grawe, H.

    2003-01-01

    The shell structure of 100 Sn shows striking resemblance to 56 Ni one major shell below. Large-scale shell model calculations employing realistic interactions derived from effective NN potentials and allowing for up to 4p4h excitations of the 100 Sn core account very well for the spectroscopy of key neighbours 102,103 Sn, 98 Cd and 94 Ag, as inferred from level energies, isomerism, E2 strengths and Gamow-Teller (GT) decay of high-spin states. Recent β- decay studies of 101-104 Sn using the sulphurisation ISOL technique open the perspective to study the 100 Sn GT resonance. At N>>Z the persistence of the N=50 and the weakness of the N=40 shells are traced back to the monopole interaction in S=0 proton-neutron (πν) pairs of nucleons, a scenario which can be generalised to account for the new N=6,16(14),34(32) magicity in light neutron-rich nuclei. (orig.)

  14. Studies of dust shells around stars

    International Nuclear Information System (INIS)

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  15. Curvature-Induced Instabilities of Shells

    Science.gov (United States)

    Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark P.; Bade, Abdikhalaq J.; Holmes, Douglas P.

    2018-01-01

    Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood. Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing scaling predictions for the instabilities that are in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.

  16. Buckling shells are also swimmers

    Science.gov (United States)

    Quilliet, Catherine; Dyfcom Bubbleboost Team

    We present an experimental and numerical study on the displacement of shells undergoing deformations in a fluid. When submitted to cycles of pressure difference between outside and inside, a shell buckles and debuckles, showing a succession of shapes and a dynamics that are different during the two phases. Hence such objects are likely to swim, including at low Reynolds (microscopic scale). We studied the swimming of buckling/debuckling shells at macroscopic scale using different approaches (force quantization, shape recording, displacement along a frictionless rail, study of external flow using PIV), and showed that inertia plays a role in propulsion, even in situations where dimensionless numbers correspond also to microswimmers in water. Different fluid viscosities were explored, showing an optimum for the displacement. Interestingly, the most favorable cases lead to displacements in the same direction and sense during both motor stroke (buckling phase) and recovery stroke (de-buckling phase). This work opens the route for the synthesis with high throughput of abusively simple synthetic swimmers, possibly gathered into nanorobots, actuated by a scalar field such as the pressure in echographic devices. Universite Grenoble Alpes, CNRS, European Research Council.

  17. Study of the tensor correlation in oxygen isotopes using mean-field-type and shell model methods

    International Nuclear Information System (INIS)

    Sugimoto, Satoru

    2007-01-01

    The tensor force plays important roles in nuclear structure. Recently, we have developed a mean-field-type model which can treat the two-particle-two-hole correlation induced by the tensor force. We applied the model to sub-closed-shell oxygen isotopes and found that an sizable attractive energy comes from the tensor force. We also studied the tensor correlation in 16O using a shell model including two-particle-two-hole configurations. In this case, quite a large attractive energy is obtained for the correlation energy from the tensor force

  18. Fragmentation of single-particle strength and the validity of the shell model

    International Nuclear Information System (INIS)

    Brand, M.G.E.; Rijsdijk, G.A.; Muller, F.A.; Allaart, K.; Dickhoff, W.H.

    1991-01-01

    The problem of missing spectroscopic strength in proton knock-out reactions is addressed by calculating this strength with a realistic interaction up to about a hundred MeV missing energy. An interaction suitably modified for short-range correlations (G-matrix) is employed in the calculation of the self-energy including all orbitals up to and including three major shells above the Fermi level for protons. The spectroscopic strength is obtained by solving the Dyson equation for the Green function with a self-energy up to second order in the interaction. Results for 48 Ca and 90 Zr are compared with recent (e,e'p) data. The calculated strength overestimates the data by about 10-15% of the independent particle shell-model (IPSM) sum rule. This is in accordance with what is expected from depletions calculated in infinite nuclear matter. Inclusion of higher order terms into the self-energy, especially the correlated motion of particles and holes, is found to be necessary to reproduce the observed fragmentation of strength in the low-energy region. The widths of the strength distributions compare well with empirical formulas which have been deduced from optical potentials. The validity of the conventional shell-model picture is connected with the relevance of Landau's quasiparticle picture for strongly interacting Fermi systems. (orig.)

  19. Interference in the gg→h→γγ On-Shell Rate and the Higgs Boson Total Width.

    Science.gov (United States)

    Campbell, John; Carena, Marcela; Harnik, Roni; Liu, Zhen

    2017-11-03

    We consider interference between the Higgs signal and QCD background in gg→h→γγ and its effect on the on-shell Higgs rate. The existence of sizable strong phases leads to destructive interference of about 2% of the on-shell cross section in the standard model. This effect can be enhanced by beyond the standard model physics. In particular, since it scales differently from the usual rates, the presence of interference allows indirect limits to be placed on the Higgs width in a novel way, using on-shell rate measurements. Our study motivates further QCD calculations to reduce uncertainties. We discuss possible width-sensitive observables, both using total and differential rates and find that the HL-LHC can potentially indirectly constrain widths of order tens of MeV.

  20. First-Principles Modeling of Core/Shell Quantum Dot Sensitized Solar Cells

    NARCIS (Netherlands)

    Azpiroz, Jon Mikel; Infante, Ivan; De Angelis, Filippo

    2015-01-01

    We report on the density functional theory (DFT) modeling of core/shell quantum dot (QD) sensitized solar cells (QDSSCs), a device architecture that holds great potential in photovoltaics but has not been fully exploited so far. To understand the working mechanisms of this kind of solar cells, we

  1. Large-Scale Trade in Legally Protected Marine Mollusc Shells from Java and Bali, Indonesia.

    Science.gov (United States)

    Nijman, Vincent; Spaan, Denise; Nekaris, K Anne-Isola

    2015-01-01

    Tropical marine molluscs are traded globally. Larger species with slow life histories are under threat from over-exploitation. We report on the trade in protected marine mollusc shells in and from Java and Bali, Indonesia. Since 1987 twelve species of marine molluscs are protected under Indonesian law to shield them from overexploitation. Despite this protection they are traded openly in large volumes. We collected data on species composition, origins, volumes and prices at two large open markets (2013), collected data from wholesale traders (2013), and compiled seizure data by the Indonesian authorities (2008-2013). All twelve protected species were observed in trade. Smaller species were traded for Java and Bali, but the trade involves networks stretching hundreds of kilometres throughout Indonesia. Wholesale traders offer protected marine mollusc shells for the export market by the container or by the metric ton. Data from 20 confiscated shipments show an on-going trade in these molluscs. Over 42,000 shells were seized over a 5-year period, with a retail value of USD700,000 within Indonesia; horned helmet (Cassis cornuta) (>32,000 shells valued at USD500,000), chambered nautilus (Nautilus pompilius) (>3,000 shells, USD60,000) and giant clams (Tridacna spp.) (>2,000 shells, USD45,000) were traded in largest volumes. Two-thirds of this trade was destined for international markets, including in the USA and Asia-Pacific region. We demonstrated that the trade in protected marine mollusc shells in Indonesia is not controlled nor monitored, that it involves large volumes, and that networks of shell collectors, traders, middlemen and exporters span the globe. This impedes protection of these species on the ground and calls into question the effectiveness of protected species management in Indonesia; solutions are unlikely to be found only in Indonesia and must involve the cooperation of importing countries.

  2. Large-Scale Trade in Legally Protected Marine Mollusc Shells from Java and Bali, Indonesia

    Science.gov (United States)

    Nijman, Vincent; Spaan, Denise; Nekaris, K. Anne-Isola

    2015-01-01

    Background Tropical marine molluscs are traded globally. Larger species with slow life histories are under threat from over-exploitation. We report on the trade in protected marine mollusc shells in and from Java and Bali, Indonesia. Since 1987 twelve species of marine molluscs are protected under Indonesian law to shield them from overexploitation. Despite this protection they are traded openly in large volumes. Methodology/Principal Findings We collected data on species composition, origins, volumes and prices at two large open markets (2013), collected data from wholesale traders (2013), and compiled seizure data by the Indonesian authorities (2008–2013). All twelve protected species were observed in trade. Smaller species were traded for trade involves networks stretching hundreds of kilometres throughout Indonesia. Wholesale traders offer protected marine mollusc shells for the export market by the container or by the metric ton. Data from 20 confiscated shipments show an on-going trade in these molluscs. Over 42,000 shells were seized over a 5-year period, with a retail value of USD700,000 within Indonesia; horned helmet (Cassis cornuta) (>32,000 shells valued at USD500,000), chambered nautilus (Nautilus pompilius) (>3,000 shells, USD60,000) and giant clams (Tridacna spp.) (>2,000 shells, USD45,000) were traded in largest volumes. Two-thirds of this trade was destined for international markets, including in the USA and Asia-Pacific region. Conclusions/Significance We demonstrated that the trade in protected marine mollusc shells in Indonesia is not controlled nor monitored, that it involves large volumes, and that networks of shell collectors, traders, middlemen and exporters span the globe. This impedes protection of these species on the ground and calls into question the effectiveness of protected species management in Indonesia; solutions are unlikely to be found only in Indonesia and must involve the cooperation of importing countries. PMID:26717021

  3. Nuclear deformation in the configuration-interaction shell model

    Science.gov (United States)

    Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Mustonen, M. T.

    2018-02-01

    We review a method that we recently introduced to calculate the finite-temperature distribution of the axial quadrupole operator in the laboratory frame using the auxiliary-field Monte Carlo technique in the framework of the configuration-interaction shell model. We also discuss recent work to determine the probability distribution of the quadrupole shape tensor as a function of intrinsic deformation β,γ by expanding its logarithm in quadrupole invariants. We demonstrate our method for an isotope chain of samarium nuclei whose ground states describe a crossover from spherical to deformed shapes.

  4. Projected shell model study of odd-odd f-p-g shell proton-rich nuclei

    International Nuclear Information System (INIS)

    Palit, R.; Sheikh, J.A.; Sun, Y.; Jain, H.C.

    2003-01-01

    A systematic study of two-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A∼70-80 region is performed using the projected shell model approach. The study includes Br, Rb, and Y isotopes with N=Z+2 and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N=Z nucleus 74 Rb, using the concept of spontaneous symmetry breaking is also presented

  5. Core-shell particles as model compound for studying fouling

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Nielsen, Troels Bach; Andersen, Morten Boel Overgaard

    2008-01-01

    Synthetic colloidal particles with hard cores and soft, water-swollen shells were used to study cake formation during ultrafiltration. The total cake resistance was lowest for particles with thick shells, which indicates that interparticular forces between particles (steric hindrance...... and electrostatic repulsion) influenced cake formation. At low pressure the specific cake resistance could be predicted from the Kozeny-Carman equation. At higher pressures, the resistance increased due to cake compression. Both cake formation and compression were reversible. For particles with thick shells...

  6. Finite element analysis of the cross-section of wind turbine blades; a comparison between shell and 2D-solid models

    DEFF Research Database (Denmark)

    Pardo, D.; Branner, K.

    2005-01-01

    line load. The results are compared with result from similar shell models, which typically are used for practical design. Usually, good agreement between the shell models and the detailed 2D-solid model is found for the deflections, strains and stresses in regions with loads from pure bending. However...

  7. Thin-shell wormholes in dilaton gravity

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2005-01-01

    In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed

  8. Computational Fluid Dynamics Modeling Of Scaled Hanford Double Shell Tank Mixing - CFD Modeling Sensitivity Study Results

    International Nuclear Information System (INIS)

    Jackson, V.L.

    2011-01-01

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

  9. Briquetting of Palm Kernel Shell | Ugwu | Journal of Applied ...

    African Journals Online (AJOL)

    In several developing countries, briquettes from agricultural residues contribute significantly to the energy mix especially for small scale and household requirements. In this work, briquettes were produced from Palm kernel shell. This was achieved by carbonising the shell to get the charcoal followed by the pulverization of ...

  10. The use of COD and plastic instability in crack propagation and arrest in shells

    Science.gov (United States)

    Erdogan, F.; Ratwani, M.

    1974-01-01

    The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.

  11. Charge radii and electromagnetic moments of Li and Be isotopes from the ab initio no-core shell model

    International Nuclear Information System (INIS)

    Forssen, C.; Caurier, E.; Navratil, P.

    2009-01-01

    Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using high-precision nucleon-nucleon potentials. The isotopic trends of our computed charge radii and quadrupole and magnetic-dipole moments are in good agreement with experimental results with the exception of the 11 Li charge radius. The magnetic moments are in particular well described, whereas the absolute magnitudes of the quadrupole moments are about 10% too small. The small magnitude of the 6 Li quadrupole moment is reproduced, and with the CD-Bonn NN potential, also its correct sign

  12. Cluster shell model: I. Structure of 9Be, 9B

    Science.gov (United States)

    Della Rocca, V.; Iachello, F.

    2018-05-01

    We calculate energy spectra, electromagnetic transition rates, longitudinal and transverse electron scattering form factors and log ft values for beta decay in 9Be, 9B, within the framework of a cluster shell model. By comparing with experimental data, we find strong evidence for the structure of these nuclei to be two α-particles in a dumbbell configuration with Z2 symmetry, plus an additional nucleon.

  13. Reexamination of shell model tests of the Porter-Thomas distribution

    International Nuclear Information System (INIS)

    Grimes, S.M.

    1983-01-01

    Recent shell model calculations have yielded width amplitude distributions which have apparently not agreed with the Porter-Thomas distribution. This result conflicts with the present experimental evidence. A reanalysis of these calculations suggests that, although correct, they do not imply that the Porter-Thomas distribution will fail to describe the width distributions observed experimentally. The conditions for validity of the Porter-Thomas distribution are discussed

  14. Amplitude structure of off-shell processes

    International Nuclear Information System (INIS)

    Fearing, H.W.; Goldstein, G.R.; Moravcsik, M.J.

    1984-01-01

    The structure of M matrices, or scattering amplitudes, and of potentials for off-shell processes is discussed with the objective of determining how one can obtain information on off-shell amplitudes of a process in terms of the physical observables of a larger process in which the first process is embedded. The procedure found is inevitably model dependent, but within a particular model for embedding, a determination of the physically measurable amplitudes of the larger process is able to yield a determination of the off-shell amplitudes of the embedded process

  15. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    International Nuclear Information System (INIS)

    Tamaki, Takashi; Tsujikawa, Shinji

    2008-01-01

    We derive analytic solutions of a chameleon scalar field φ that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m A inside of the body. The standard thin-shell field profile is recovered by taking the limit m A r c →∞, where r c is a radius of the body. We show the existence of ''no-shell'' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m A r c >>1, the effective coupling of φ with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value φ A at the extremum of an effective potential induced by the matter coupling.

  16. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  17. Addressing Challenges and Scalability in the Synthesis of Thin Uniform Metal Shells on Large Metal Nanoparticle Cores: Case Study of Ag-Pt Core-Shell Nanocubes.

    Science.gov (United States)

    Aslam, Umar; Linic, Suljo

    2017-12-13

    Bimetallic nanoparticles in which a metal is coated with an ultrathin (∼1 nm) layer of a second metal are often desired for their unique chemical and physical properties. Current synthesis methods for producing such core-shell nanostructures often require incremental addition of a shell metal precursor which is rapidly reduced onto metal cores. A major shortcoming of this approach is that it necessitates precise concentrations of chemical reagents, making it difficult to perform at large scales. To address this issue, we considered an approach whereby the reduction of the shell metal precursor was controlled through in situ chemical modification of the precursor. We used this approach to develop a highly scalable synthesis for coating atomic layers of Pt onto Ag nanocubes. We show that Ag-Pt core-shell nanostructures are synthesized in high yields and that these structures effectively combine the optical properties of the plasmonic Ag nanocube core with the surface properties of the thin Pt shell. Additionally, we demonstrate the scalability of the synthesis by performing a 10 times scale-up.

  18. Computer Modeling of the Dynamic Strength of Metal-Plastic Cylindrical Shells Under Explosive Loading

    Science.gov (United States)

    Abrosimov, N. A.; Novosel'tseva, N. A.

    2017-05-01

    A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.

  19. Spectroscopic information on light halo - nuclei within the framework of multiparticle shell model

    International Nuclear Information System (INIS)

    Khaydarov, R.R.

    2004-09-01

    Aim of the inquiry: to develop the potential approach within the framework of multiparticle shell model; to obtain analytical expressions for a wave function and equations for widths off sub-barrier resonance states; to apply the theoretical approach for obtaining properties of 5 He, 5 Li, 8 B and 11 N nuclei; to estimate values of root-mean-square radiuses, radial density of nucleons, magnetic dipole and electrical quadrupole moments and spectroscopic information for 8 B and 8 Li with use of a method of expansion on functions of Storm - Liouville; to estimate the contribution of 2p - shell of 13 C and process of exchange replacement to the astrophysical S-factor of 13 C (α, n) 16 O reaction. Method of the research: theoretical approaches within the framework of multiparticle shell model. Achieved results and their novelty: new theoretical approach allowing to describe correctly the experimental static characteristics of sub-barrier one-particle resonance states in of 5 He, 5 Li, 8 B and 11 N light nuclei has been developed. Structure of 8 B and 8 Li light mirror nuclei with use of the approach for the description of one-particle resonance states based on the method of expansion on functions of Storm - Liouville has been investigated; The spectroscopic information for proton halo in 8 B and values of the magnetic dipole and electric quadrupole moments of 8 B and 8 Li with use of technique of genealogical coefficients have been obtained. The contribution of 2p - shell of 13 C (α, n) 16 O reaction has been estimated. (author)

  20. 3D MODELS COMPARISON OF COMPLEX SHELL IN UNDERWATER AND DRY ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    S. Troisi

    2015-04-01

    Full Text Available In marine biology the shape, morphology, texture and dimensions of the shells and organisms like sponges and gorgonians are very important parameters. For example, a particular type of gorgonian grows every year only few millimeters; this estimation was conducted without any measurement instrument but it has been provided after successive observational studies, because this organism is very fragile: the contact could compromise its structure and outliving. Non-contact measurement system has to be used to preserve such organisms: the photogrammetry is a method capable to assure high accuracy without contact. Nevertheless, the achievement of a 3D photogrammetric model of complex object (as gorgonians or particular shells is a challenge in normal environments, either with metric camera or with consumer camera. Indeed, the successful of automatic target-less image orientation and the image matching algorithms is strictly correlated to the object texture properties and of camera calibration quality as well. In the underwater scenario, the environment conditions strongly influence the results quality; in particular, water’s turbidity, the presence of suspension, flare and other optical aberrations decrease the image quality reducing the accuracy and increasing the noise on the 3D model. Furthermore, seawater density variability influences its refraction index and consequently the interior orientation camera parameters. For this reason, the camera calibration has to be performed in the same survey conditions. In this paper, a comparison between the 3D models of a Charonia Tritonis shell are carried out through surveys conducted both in dry and underwater environments.

  1. Large-scale synthesis of Ni-Ag core-shell nanoparticles with magnetic, optical and anti-oxidation properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chung-Che; Chen, Dong-Hwang [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan 701, Taiwan (China)

    2006-07-14

    The large-scale synthesis and characterization of Ni-core/Ag-shell (Ni at Ag) nanoparticles by the successive hydrazine reduction of nickel chloride and silver nitrate in ethylene glycol using polyethyleneimine (PEI) as a protective agent are described. The resultant Ni at Ag nanoparticles had a mean core diameter of 6.2 nm and a shell thickness of 0.85 nm, without significant change in the nickel concentration of 0.25-25 mM for the Ag coating. Also, both Ni cores and Ag nanoshells had an fcc structure and PEI was capped on the particle surface. X-ray photoelectron spectroscopy analysis confirmed that the Ni cores were fully covered by Ag nanoshells. In addition, the Ni at Ag nanoparticles exhibited a characteristic absorption band at 430 nm and were nearly superparamagnetic. Based on the weight of Ni cores, the saturation magnetization (M{sub s}), remanent magnetization (M{sub r}) and coercivity (H{sub c}) were obtained as 17.2 emu g{sup -1}, 4.0 emu g{sup -1} and 81 Oe, respectively. Furthermore, the resultant Ni at Ag nanoparticles exhibited better anti-oxidation properties than Ni nanoparticles did due to the protection of the Ag nanoshells.

  2. Multidimensional Analysis of Direct-Drive Plastic-Shell Implosions on OMEGA

    Science.gov (United States)

    Radha, P. B.

    2004-11-01

    Direct-drive implosions of plastic shells with the OMEGA laser are used as energy-scaled warm surrogates for ignition cryogenic targets designed for use on the National Ignition Facility. Plastic targets involve varying shell thickness (15 to 33 μm), fill pressures (3 to 15 atm), and shell adiabats. The multidimensional hydrodynamics code DRACO is used to evaluate the effects of capsule-surface roughness and illumination nonuniformities on target performance. These simulations indicate that shell stability during the acceleration phase plays a critical role in determining fusion yields. For shells that are thick enough to survive the Rayleigh--Taylor growth, target yields are significantly reduced by growth of the long (ℓ surrogacy between these plastic-shell implosions and the cryogenic ignition designs.

  3. Large-Scale Trade in Legally Protected Marine Mollusc Shells from Java and Bali, Indonesia.

    Directory of Open Access Journals (Sweden)

    Vincent Nijman

    Full Text Available Tropical marine molluscs are traded globally. Larger species with slow life histories are under threat from over-exploitation. We report on the trade in protected marine mollusc shells in and from Java and Bali, Indonesia. Since 1987 twelve species of marine molluscs are protected under Indonesian law to shield them from overexploitation. Despite this protection they are traded openly in large volumes.We collected data on species composition, origins, volumes and prices at two large open markets (2013, collected data from wholesale traders (2013, and compiled seizure data by the Indonesian authorities (2008-2013. All twelve protected species were observed in trade. Smaller species were traded for 32,000 shells valued at USD500,000, chambered nautilus (Nautilus pompilius (>3,000 shells, USD60,000 and giant clams (Tridacna spp. (>2,000 shells, USD45,000 were traded in largest volumes. Two-thirds of this trade was destined for international markets, including in the USA and Asia-Pacific region.We demonstrated that the trade in protected marine mollusc shells in Indonesia is not controlled nor monitored, that it involves large volumes, and that networks of shell collectors, traders, middlemen and exporters span the globe. This impedes protection of these species on the ground and calls into question the effectiveness of protected species management in Indonesia; solutions are unlikely to be found only in Indonesia and must involve the cooperation of importing countries.

  4. Phases and phase transitions in the algebraic microscopic shell model

    Directory of Open Access Journals (Sweden)

    Georgieva A. I.

    2016-01-01

    Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  5. Angle-correlated cross sections in the framework of the continuum shell model

    International Nuclear Information System (INIS)

    Moerschel, K.P.

    1984-01-01

    In the present thesis in the framework of the continuum shell modell a concept for the treatment of angle-correlated cross sections was developed by which coincidence experiments on electron scattering on nuclei are described. For this the existing Darmstadt continuum-shell-model code had to be extended to the calculation of the correlation coefficients in which nuclear dynamics enter and which determine completely the angle-correlated cross sections. Under inclusion of the kinematics a method for the integration over the scattered electron was presented and used for the comparison with corresponding experiments. As application correlation coefficients for the proton channel in 12 C with 1 - and 2 + excitations were studied. By means of these coefficients finally cross sections for the reaction 12 C (e,p) 11 B could be calculated and compared with the experiment whereby the developed methods were proved as suitable to predict correctly both the slope and the quantity of the experimental cross sections. (orig.) [de

  6. Half-life calculation of one-proton emitters with a shell model potential

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, M. M.; Duarte, S. B. [Centro Brasileiro de Pesquisas Fisicas-CBPF/MCT Rua Dr. Xavier Sigaud, 150, 22290-180, Rio de Janeiro-RJ (Brazil); Teruya, N. [Departamento de Fisica, Universidade Federal da Paraiba - UFPB Campus de Joao Pessoa, 58051-970, Joao Pessoa - PB (Brazil)

    2013-03-25

    The accumulated amount of data for half-lives of proton emitters still remains a challenge to the ability of nuclear models to reproduce them consistently. These nuclei are far from beta stability line in a region where the validity of current nuclear models is not guaranteed. A nuclear shell model is introduced to the calculation of the nuclear barrier of less deformed proton emitters. The predictions using the proposed model are in good agreement with the data, with the advantage of have used only a single parameter in the model.

  7. One-step synthesis of gold-polyaniline core-shell particles

    International Nuclear Information System (INIS)

    Wang Zhijuan; Yuan Junhua; Han Dongxue; Niu Li; Ivaska, Ari

    2007-01-01

    A one-step method has been developed for synthesizing gold-polyaniline (Au-PANI) core-shell particles by using chlorauric acid (HAuCl 4 ) to oxidize aniline in the presence of acetic acid and Tween 40 at room temperature. SEM images indicated that the resulting core-shell particles were composed of submicrometre-scale Au particles and PANI shells with an average thickness of 25 nm. Furthermore, a possible mechanism concerning the growth of Au-PANI particles was also proposed based on the results of control experiments

  8. Recent developments in anisotropic heterogeneous shell theory

    CERN Document Server

    Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G

    2016-01-01

    This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.

  9. Design and modeling of an additive manufactured thin shell for x-ray astronomy

    Science.gov (United States)

    Feldman, Charlotte; Atkins, Carolyn; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Willingale, Richard; Doel, Peter

    2017-09-01

    Future X-ray astronomy missions require light-weight thin shells to provide large collecting areas within the weight limits of launch vehicles, whilst still delivering angular resolutions close to that of Chandra (0.5 arc seconds). Additive manufacturing (AM), also known as 3D printing, is a well-established technology with the ability to construct or `print' intricate support structures, which can be both integral and light-weight, and is therefore a candidate technique for producing shells for space-based X-ray telescopes. The work described here is a feasibility study into this technology for precision X-ray optics for astronomy and has been sponsored by the UK Space Agency's National Space Technology Programme. The goal of the project is to use a series of test samples to trial different materials and processes with the aim of developing a viable path for the production of an X-ray reflecting prototype for astronomical applications. The initial design of an AM prototype X-ray shell is presented with ray-trace modelling and analysis of the X-ray performance. The polishing process may cause print-through from the light-weight support structure on to the reflecting surface. Investigations in to the effect of the print-through on the X-ray performance of the shell are also presented.

  10. Exchange bias and asymmetric hysteresis loops from a microscopic model of core/shell nanoparticles

    International Nuclear Information System (INIS)

    Iglesias, Oscar; Batlle, Xavier; Labarta, Amilcar

    2007-01-01

    We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromagnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loop shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Overlap functions computed from the spin configurations along the loops have been obtained to explain the origin and magnitude of these features microscopically

  11. Shell-like structures advanced theories and applications

    CERN Document Server

    Eremeyev, Victor

    2017-01-01

    The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems: • comprehensive review of the most popular theories of plates and shells, • relations between three-dimensional theories and two-dimensional ones, • presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories), • modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc., • applications in modeling of non-classical objects like, for example, nanostructures, • presentation of actual numerical tools based on the finite element approach.

  12. Shell model the Monte Carlo way

    International Nuclear Information System (INIS)

    Ormand, W.E.

    1995-01-01

    The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined

  13. Shell model the Monte Carlo way

    Energy Technology Data Exchange (ETDEWEB)

    Ormand, W.E.

    1995-03-01

    The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined.

  14. Structures of $p$-shell double-$\\Lambda$ hypernuclei studied with microscopic cluster models

    OpenAIRE

    Kanada-En'yo, Yoshiko

    2018-01-01

    $0s$-orbit $\\Lambda$ states in $p$-shell double-$\\Lambda$ hypernuclei ($^{\\ \\,A}_{\\Lambda\\Lambda}Z$), $^{\\ \\,8}_{\\Lambda\\Lambda}\\textrm{Li}$, $^{\\ \\,9}_{\\Lambda\\Lambda}\\textrm{Li}$, $^{10,11,12}_{\\ \\ \\ \\ \\ \\Lambda\\Lambda}\\textrm{Be}$, $^{12,13}_{\\ \\ \\Lambda\\Lambda}\\textrm{B}$, and $^{\\,14}_{\\Lambda\\Lambda}\\textrm{C}$ are investigated. Microscopic cluster models are applied to core nuclear part and a potential model is adopted for $\\Lambda$ particles. The $\\Lambda$-core potential is a folding ...

  15. Shells on elastic foundations

    International Nuclear Information System (INIS)

    Das, Y.C.; Kedia, K.K.

    1977-01-01

    No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)

  16. Short-Range Correlated Magnetic Core-Shell CrO2/Cr2O3 Nanorods: Experimental Observations and Theoretical Considerations

    Directory of Open Access Journals (Sweden)

    Ashish C. Gandhi

    2018-05-01

    Full Text Available With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO2/Cr2O3 core-shell nanorods (NRs has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO2 extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.

  17. Statistical mechanics of microscopically thin thermalized shells

    Science.gov (United States)

    Kosmrlj, Andrej

    Recent explosion in fabrication of microscopically thin free standing structures made from graphene and other two-dimensional materials has led to a renewed interest in the mechanics of such structures in presence of thermal fluctuations. Since late 1980s it has been known that for flat solid sheets thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli in a scale-dependent fashion. However, much is still unknown about the mechanics of thermalized flat sheets of complex geometries and about the mechanics of thermalized shells with non-zero background curvature. In this talk I will present recent development in the mechanics of thermalized ribbons, spherical shells and cylindrical tubes. Long ribbons are found to behave like hybrids between flat sheets with renormalized elastic constants and semi-flexible polymers, and these results can be used to predict the mechanics of graphene kirigami structures. Contrary to the anticipated behavior for ribbons, the non-zero background curvature of shells leads to remarkable novel phenomena. In shells, thermal fluctuations effectively generate negative surface tension, which can significantly reduce the critical buckling pressure for spherical shells and the critical axial load for cylindrical tubes. For large shells this thermally generated load becomes big enough to spontaneously crush spherical shells and cylindrical tubes even in the absence of external loads. I will comment on the relevance for crushing of microscopic shells (viral capsids, bacteria, microcapsules) due to osmotic shocks and for crushing of nanotubes.

  18. Intrinsic Density Matrices of the Nuclear Shell Model

    International Nuclear Information System (INIS)

    Deveikis, A.; Kamuntavichius, G.

    1996-01-01

    A new method for calculation of shell model intrinsic density matrices, defined as two-particle density matrices integrated over the centre-of-mass position vector of two last particles and complemented with isospin variables, has been developed. The intrinsic density matrices obtained are completely antisymmetric, translation-invariant, and do not employ a group-theoretical classification of antisymmetric states. They are used for exact realistic density matrix expansion within the framework of the reduced Hamiltonian method. The procedures based on precise arithmetic for calculation of the intrinsic density matrices that involve no numerical diagonalization or orthogonalization have been developed and implemented in the computer code. (author). 11 refs., 2 tabs

  19. Morphing the Shell Model into an Effective Theory

    International Nuclear Information System (INIS)

    Haxton, W. C.; Song, C.-L.

    2000-01-01

    We describe a strategy for attacking the canonical nuclear structure problem--bound-state properties of a system of point nucleons interacting via a two-body potential--which involves an expansion in the number of particles scattering at high momenta, but is otherwise exact. The required self-consistent solutions of the Bloch-Horowitz equation for effective interactions and operators are obtained by an efficient Green's function method based on the Lanczos algorithm. We carry out this program for the simplest nuclei, d and 3 He , in order to explore the consequences of reformulating the shell model as a controlled effective theory. (c) 2000 The American Physical Society

  20. Inner-shell corrections to the Bethe stopping-power formula evaluated from a realistic atomic model

    International Nuclear Information System (INIS)

    Inokuti, M.; Manson, S.T.

    1985-01-01

    Generalized oscillator strengths for K- and L-shell ionization have been calculated using a central potential derived from the Hartree-Slater model. In cases in which an ejected electron carries low kinetic energies, sizable differences with hydrogenic-model calculations are evident

  1. Structural-performance testing of titanium-shell lead-matrix container MM2

    Energy Technology Data Exchange (ETDEWEB)

    Hosaluk, L. J.; Barrie, J. N.

    1992-05-15

    This report describes the hydrostatic structural-performance testing of a half-scale, titanium-shell, lead-matrix container (MM2) with a large, simulated volumetric casting defect. Mechancial behaviour of the container is assessed from extensive surface-strain measurements and post-test non-destructive and destructive examinations. Measured strain data are compared briefly with analytical results from a finite-element model of a previous test prototype, MM1, and with data generated by a finite-difference computer code. Finally, procedures are recommended for more detailed analytical modelling. (auth)

  2. Reversible patterning of spherical shells through constrained buckling

    Science.gov (United States)

    Marthelot, J.; Brun, P.-T.; Jiménez, F. López; Reis, P. M.

    2017-07-01

    Recent advances in active soft structures envision the large deformations resulting from mechanical instabilities as routes for functional shape morphing. Numerous such examples exist for filamentary and plate systems. However, examples with double-curved shells are rarer, with progress hampered by challenges in fabrication and the complexities involved in analyzing their underlying geometrical nonlinearities. We show that on-demand patterning of hemispherical shells can be achieved through constrained buckling. Their postbuckling response is stabilized by an inner rigid mandrel. Through a combination of experiments, simulations, and scaling analyses, our investigation focuses on the nucleation and evolution of the buckling patterns into a reticulated network of sharp ridges. The geometry of the system, namely, the shell radius and the gap between the shell and the mandrel, is found to be the primary ingredient to set the surface morphology. This prominence of geometry suggests a robust, scalable, and tunable mechanism for reversible shape morphing of elastic shells.

  3. A layered shell containing patches of piezoelectric fibers and interdigitated electrodes: Finite element modeling and experimental validation

    DEFF Research Database (Denmark)

    Nielsen, Bo Bjerregaard; Nielsen, Martin S.; Santos, Ilmar

    2017-01-01

    The work gives a theoretical and experimental contribution to the problem of smart materials connected to double curved flexible shells. In the theoretical part the finite element modeling of a double curved flexible shell with a piezoelectric fiber patch with interdigitated electrodes (IDEs......) is presented. The developed element is based on a purely mechanical eight-node isoparametric layered element for a double curved shell, utilizing first-order shear deformation theory. The electromechanical coupling of piezoelectric material is added to all elements, but can also be excluded by setting...... the piezoelectric material properties to zero. The electrical field applied via the IDEs is aligned with the piezoelectric fibers, and hence the direct d33 piezoelectric constant is utilized for the electromechanical coupling. The dynamic performance of a shell with a microfiber composite (MFC) patch...

  4. One-dimensional σ-models with N = 5, 6, 7, 8 off-shell supersymmetries

    International Nuclear Information System (INIS)

    Gonzales, M.; Toppan, F.; Rojas, M.

    2008-12-01

    We computed the actions for the 1D N = 5 σ-models with respect to the two inequivalent (2, 8, 6) multiplets. 4 supersymmetry generators are manifest, while the constraint originated by imposing the 5-th supersymmetry automatically induces a full N = 8 off-shell invariance. The resulting action coincides in the two cases and corresponds to a conformally flat 2D target satisfying a special geometry of rigid type. To obtain these results we developed a computational method (for Maple 11) which does not require the notion of superfields and is instead based on the nowadays available list of the inequivalent representations of the 1D N-extended supersymmetry. Its application to systematically analyze the σ-models off-shell invariant actions for the remaining N = 5, 6, 7, 8 (k, 8, 8 - k) multiplets, as well as for the N > 8 representations, only requires more cumbersome computations. (author)

  5. Structure of liposome encapsulating proteins characterized by X-ray scattering and shell-modeling

    International Nuclear Information System (INIS)

    Hirai, Mitsuhiro; Kimura, Ryota; Takeuchi, Kazuki; Hagiwara, Yoshihiko; Kawai-Hirai, Rika; Ohta, Noboru; Igarashi, Noriyuki; Shimuzu, Nobutaka

    2013-01-01

    Wide-angle X-ray scattering data using a third-generation synchrotron radiation source are presented. Lipid liposomes are promising drug delivery systems because they have superior curative effects owing to their high adaptability to a living body. Lipid liposomes encapsulating proteins were constructed and the structures examined using synchrotron radiation small- and wide-angle X-ray scattering (SR-SWAXS). The liposomes were prepared by a sequential combination of natural swelling, ultrasonic dispersion, freeze-throw, extrusion and spin-filtration. The liposomes were composed of acidic glycosphingolipid (ganglioside), cholesterol and phospholipids. By using shell-modeling methods, the asymmetric bilayer structure of the liposome and the encapsulation efficiency of proteins were determined. As well as other analytical techniques, SR-SWAXS and shell-modeling methods are shown to be a powerful tool for characterizing in situ structures of lipid liposomes as an important candidate of drug delivery systems

  6. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    Science.gov (United States)

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  7. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Seung-Bok Choi

    2013-02-01

    Full Text Available In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  8. Finite element modeling of shell shape in the freshwater turtle Pseudemys concinna reveals a trade-off between mechanical strength and hydrodynamic efficiency.

    Science.gov (United States)

    Rivera, Gabriel; Stayton, C Tristan

    2011-10-01

    Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low-drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade-offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator-induced loads. We tested the idea that "lotic" shell shapes are weaker than "lentic" shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. "Lotic" shell shapes produced significantly higher stresses than "lentic" shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many-to-one mapping of shell shape onto strength, P. concinna experiences a trade-off in shell shape between hydrodynamic and mechanical performance. This trade-off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade-off in some cases, as changes in

  9. Axisymmetric analysis of a 1:6-scale reinforced concrete containment building using a distributed cracking model for the concrete

    International Nuclear Information System (INIS)

    Weatherby, J.R.

    1987-09-01

    Results of axisymmetric structural analyses of a 1:6 scale model of a reinforced concrete nuclear containment building are presented. Both a finite element shell analysis and a simplified membrane analysis were made to predict the structural response and ultimate pressure capacity of the model. Analytical results indicate that the model will fail at an internal pressure of 187 psig when the stress level in the hoop reinforcement at the midsection of the cylinder exceeds the ultimate strength of the bar splices. 5 refs., 34 figs., 6 tabs

  10. Gravity settling of Hanford single-shell tank sludges

    International Nuclear Information System (INIS)

    Brooks, K.P.; Rector, D.R.; Smith, P.A.

    1999-01-01

    The US Department of Energy plans to use gravity settling in million-gallon storage tanks while pretreating sludge on the Hanford site. To be considered viable in these large tanks, the supernatant must become clear, and the sludge must be concentrated in an acceptable time. These separations must occur over the wide range of conditions associated with sludge pretreatment. In the work reported here, gravity settling was studied with liter quantities of actual single-shell tank sludge from hanford Tank 241-C-107. Because of limited sludge availability, an approach was developed using the results of these liter-scale tests to predict full-scale operation. Samples were centrifuged at various g-forces to simulate compaction with higher layers of sludge. A semi-empirical settling model was then developed incorporating both the liter-scale settling data and the centrifuge compression results to describe the sludge behavior in a million-gallon tank. The settling model predicted that the compacted sludge solids would exceed 20 wt% in less than 30 days of settling in a 10-m-tall tank for all pretreatment steps

  11. Projected shell model description of N = 114 superdeformed isotone nuclei

    International Nuclear Information System (INIS)

    Guo, R S; Chen, L M; Chou, C H

    2006-01-01

    A systematic description of the yrast superdeformed (SD) bands in N 114, Z = 80-84 isotone nuclei using the projected shell model is presented. The calculated γ-ray energies, moment of inertia and M1 transitions are compared with the data for which spin is assigned. Excellent agreement with the available data for all isotones is obtained. The calculated electromagnetic properties provide a microscopic understanding of those measured nuclei. Some predictions in superdeformed nuclei are also discussed

  12. A model study of aggregates composed of spherical soot monomers with an acentric carbon shell

    Science.gov (United States)

    Luo, Jie; Zhang, Yongming; Zhang, Qixing

    2018-01-01

    Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.

  13. Shell Venster

    International Nuclear Information System (INIS)

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  14. Vibration of liquid-filled thin shells

    International Nuclear Information System (INIS)

    Kalnins, A.

    1979-01-01

    This paper describes the analysis of free and forced vibration of a thin, axisymmetric shell, which contains some liquid. The axis of symmetry is vertical. Only such vibration is considered which can be produced by a horizontal movement of the base of shell. The objective of this paper is to examine the response of the coupled shell-liquid system for a frequency range lying between zero and the lowest natural sloshing frequency of the liquid. The mass of the liquid is modeled by a stationary and one or more sloshing masses. It is shown how the stationary mass can be incorporated in the vibration analysis of the shell and how to natural frequency of the coupled shell-liquid system can be obtained from a simple formula, if the lowest natural frequency of the shell, plus the stationary mass of the liquid, can be determined. A numerical example is given. (orig.)

  15. Numerical model for the thermal-hydraulic solution of shell-and-U-tubes heat exchanger with segmental baffles

    International Nuclear Information System (INIS)

    Baptista Filho, Benedito Dias

    1979-01-01

    A numerical model has been developed to calculate the flow, pressure and temperature distribution of steady-state |for the tube and shell-side fluids in a shell-and-U-tubes heat exchanger with segmental baffles. It was based on the Subchannel Analysis Method- The model, checked with experimental results from one heat exchanger, predicted with good accuracy outlet temperatures for both fluids. The method, implemented ' in a computer program of low cost and easy application, can be used in the design and performance evaluation of commercial units.(author)

  16. Two-dimensional perturbations of the accelerated motion of inhomogeneous gas layers and shells in the interstellar medium

    Science.gov (United States)

    Krasnobaev, K. V.; Kotova, G. Yu.; Tagirova, R. R.

    2015-03-01

    The evolution of perturbations in a two-layer spherical shell and a plane layer with a two-step density distribution has been simulated numerically. The clumps formed by instability are shown to have qualitatively different structures, depending on the ratio of the densities in the inner and outer layers of the shell. Inhomogeneities bordered by a dense gas are formed in shells with an outwardly decreasing density. If, however, a denser gas is in the outer layer, then cores surrounded by a more rarefied material appear. These results are used to analyze the expansion of the HII region RCW 82. Since the inhomogeneities observed in the 13CO emission in the outer parts of this region have sharply delineated boundaries, our calculations argue for the model of the expansion of a shell with an outwardly decreasing density. The interaction of an accelerating shell with clumps in front of it has also been investigated. The deformations of a clump during its penetration into the shell and the formation of a groove in the shell gradually fillingwith a cold gas have been revealed. Thereafter, the shell material collapses to form a cumulative jet. As applied to the HII region RCW 82, we conclude that the existence of jets is possible if there are inhomogeneities with a scale of ˜1018 cm in the interstellar medium. The lack of data on such jet flows at the boundary of this region is an additional argument for the model where the inhomogeneous structure of the boundaries is attributable to the development of Rayleigh-Taylor instability.

  17. Relativistic effects in atomic inner-shell transitions

    International Nuclear Information System (INIS)

    Chen, M.H.

    1982-01-01

    Theoretical calculations of atomic inner-shell transition rates based on independent-particle models are reviewed. Factors affecting inner-shell transition rates are examined, particularly the effects of relativity. 48 references, 5 figures

  18. Comparisons between shell-model calculations, seniority truncation, and quasiparticle approximations: Application to the odd Ni isotopes and odd N = 82 isotones

    International Nuclear Information System (INIS)

    Losano, L.; Dias, H.; Krmpotic, F.; Wildenthal, B.H.

    1988-01-01

    A detailed study of the results of correcting BCS approximation for the effects of particle-number projection and blocking has been carried out. A low-seniority shell-model approximation was used as the frame of reference for investigating the mixing of one- and three-quasiparticle states in odd-mass Ni isotopes and in odd-mass N = 82 isotones. We discuss the results obtained for the energy spectra and electromagnetic decay properties. Effects of seniority-five configurations on the low-lying states have also been studied through the comparison of the low-seniority shell-model results with those which arose from the corresponding full shell-model calculations

  19. Mathematical Modeling and Kinematics Analysis of Double Spherical Shell Rotary Docking Skirt

    Directory of Open Access Journals (Sweden)

    Gong Haixia

    2017-01-01

    Full Text Available In order to solve the problem of large trim and heel angles of the wrecked submarine, the double spherical shell rotating docking skirt is studied. According to the working principle of the rotating docking skirt, and the fixed skirt, the directional skirt, the angle skirt are simplified as the connecting rod. Therefore, the posture equation and kinematics model of the docking skirt are deduced, and according to the kinematics model, the angle of rotation of the directional skirt and the angle skirt is obtained when the wrecked submarine is in different trim and heel angles. Through the directional skirt and angle skirt with the matching rotation can make docking skirt interface in the 0°~2γ range within the rotation, to complete the docking skirt and the wrecked submarine docking. The MATLAB software is used to visualize the rotation angle of fixed skirt and directional skirt, which lays a good foundation for the development of the control of the double spherical shell rotating docking skirt in future.

  20. Stability of bubble nuclei through Shell-Effects

    OpenAIRE

    Dietrich, Klaus; Pomorski, Krzysztof

    1997-01-01

    We investigate the shell structure of bubble nuclei in simple phenomenological shell models and study their binding energy as a function of the radii and of the number of neutron and protons using Strutinsky's method. Shell effects come about, on the one hand, by the high degeneracy of levels with large angular momentum and, on the other, by the big energy gaps between states with a different number of radial nodes. Shell energies down to -40 MeV are shown to occur for certain magic nuclei. E...

  1. Transition in x-ray yield, mass scaling observed in the high-wire-number, plasma-shell regime

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.; Apruzese, J.P.; Thornhill, J.W.; Davis, J.; Sanford, T.W.L.; Mock, R.C.; Nash, T.J.

    1999-01-01

    Initial calculations, based on classical transport coefficients and carried out to predict the efficiency with which the implosion kinetic energy of aluminum Z pinches could be thermalized and converted into kilovolt x-rays, predicted a sharp transition between m 2 and m yield scaling, where m is the aluminum array mass. Later, when ad hoc increases in the heat conductivity and artificial viscosity were introduced into these calculations and the densities that were achieved on axis were sharply reduced, the transition from m 2 to m scaling was found to have shifted, but was otherwise still fairly sharp and well-defined. The location of these breakpoint curves defined the locus of implosion velocities at which the yields would obtain their maximum for different mass arrays. The first such mass breakpoint curve that was calculated is termed hard, while the second is termed soft. Early 24, 30, and 42 aluminum wire experiments on the Saturn accelerator at the Sandia National laboratories confirmed the predictions of the soft breakpoint curve calculations. In this talk, the authors present results from a more recent set of aluminum experiments on Saturn, in which the array mass was varied at a fixed array radius and in which the radius was varied for a fixed mass. In both sets of experiments, the wire numbers were large: in excess of 92 and generally 136 or 192. In this high-wire-number regime, the wire plasmas are calculated to merge to form a plasma shell prior to significant radial implosion. Large wire number has been found to improve the pinch compressibility, and the analysis of these experiments in the shell regime shows that they come very close to the original predictions of the hard breakpoint curve calculations. A discussion of these detailed comparisons will be presented

  2. Shell stabilization of super- and hyperheavy nuclei without magic gaps

    International Nuclear Information System (INIS)

    Bender, M.; Nazarewicz, W.; Oak Ridge National Lab., TN; Warsaw Univ.; Reinhard, P.G.; Oak Ridge National Lab., TN

    2001-05-01

    Quantum stabilization of superheavy elements is quantified in terms of the shell-correction energy. We compute the shell correction using self-consistent nuclear models: the non-relativistic Skyrme-Hartree-Fock approach and the relativistic mean-field model, for a number of parametrizations. All the forces applied predict a broad valley of shell stabilization around Z = 120 and N = 172-184. We also predict two broad regions of shell stabilization in hyperheavy elements with N ∼ 258 and N ∼ 308. Due to the large single-particle level density, shell corrections in the superheavy elements differ markedly from those in lighter nuclei. With increasing proton and neutron numbers, the regions of nuclei stabilized by shell effects become poorly localized in particle number, and the familiar pattern of shells separated by magic gaps is basically gone. (orig.)

  3. Preparation of hollow shell ICF targets using a depolymerizing model

    International Nuclear Information System (INIS)

    Letts, S.A.; Fearon, E.M.; Buckley, S.R.

    1994-11-01

    A new technique for producing hollow shell laser fusion capsules was developed that starts with a depolymerizable mandrel. In this technique we use poly(alpha-methylstyrene) (PAMS) beads or shells as mandrels which are overcoated with plasma polymer. The PAMS mandrel is thermally depolymerized to gas phase monomer, which diffuses through the permeable and thermally more stable plasma polymer coating, leaving a hollow shell. We have developed methods for controlling the size of the PAMS mandrel by either grinding to make smaller sizes or melt sintering to form larger mandrels. Sphericity and surface finish are improved by heating the PAMS mandrels in hot water using a surfactant to prevent aggregation. Using this technique we have made shells from 200 μm to 5 mm diameter with 15 to 100 μm wall thickness having sphericity better than 2 μm and surface finish better than 10 nm RMS

  4. Effect of supercritical water shell on cavitation bubble dynamics

    International Nuclear Information System (INIS)

    Shao Wei-Hang; Chen Wei-Zhong

    2015-01-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. (paper)

  5. Prevalence and Antimicrobial Resistance of Enterobacteriaceae in Shell Eggs from Small-Scale Poultry Farms and Farmers' Markets.

    Science.gov (United States)

    Kilonzo-Nthenge, A; Nahashon, S N; Godwin, S; Liu, S; Long, D

    2016-12-01

    Public health concerns over the emergence of antimicrobial resistant bacteria have increased recently. The purpose of this study was to investigate the prevalence of antimicrobial resistant Enterobacteriaceae in shell eggs purchased from small poultry farms and farmers' markets. A total of 504 eggs were pooled to make 252 composite samples, consisting of 2 eggs per composite. The microbial quality of shell eggs was determined by standard quantitative, biochemical, and PCR techniques. Susceptibility to 13 antimicrobial agents was determined by the Kirby-Bauer disk diffusion technique, and results were interpreted based on Clinical and Laboratory Standards Institute values. Shell eggs and egg contents were positive for Escherichia coli (11.9 and 5.2%, respectively), Enterobacter (9.1 and 7.9%), and Serratia (11.5 and 4.8%). Salmonella was isolated from 3.6% of egg shells but not from egg contents. Mean (±SD) Enterobacteriaceae levels (4.4 ± 2.0 log CFU per eggshell) on shell eggs from poultry farms was significantly higher (P ≤ 0.05) than that on shell eggs from farmers' markets (2.1 ± 1.3 log CFU per eggshell). Of the 134 isolates recovered, resistance among isolates from farm and market shell eggs to erythromycin was most common (48.5 and 32.8%, respectively) followed by ampicillin (44.8 and 17.2%), and tetracycline (29.9 and 17.2%). The multiple antibiotic resistance index value for E. coli and Pantoea was 0.62, and that for Salmonella and Klebsiella terrigena was 0.08, indicating that Enterobacteriaceae in shell eggs can be resistant to multiple antimicrobial agents. These data reveal that shell eggs from small poultry farms and farmers' markets can harbor antimicrobial resistant pathogenic and commensal bacteria. Thus, failure to properly handle shell eggs poses a potential health hazard to consumers.

  6. Acoustic coupling of two parallel shells in compressible fluid

    International Nuclear Information System (INIS)

    Gerges, S.N.Y.

    1982-01-01

    Modifications are done in the acoustic impedance for a vibrating shell, due to the pressure of another similar shell. The multi-analysis method of scattering is used. The results of the impedance in function of the shell radius, the wave length, the distance between the shell axis and its vibration models are presented. (E.G.) [pt

  7. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 2

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-10-01

    Model 2 in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. Both the cylinder and the nozzle of model 2 had outside diameters of 10 in., giving a d 0 /D 0 ratio of 1.0, and both had outside diameter/thickness ratios of 100. Sixteen separate loading cases in which one end of the cylinder was rigidly held were analyzed. An internal pressure loading, three mutually perpendicular force components, and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. In addition to these 13 loadings, 3 additional loads were applied to the nozzle (in-plane bending moment, out-of-plane bending moment, and axial force) with the free end of the cylinder restrained. The experimental stress distributions for each of the 16 loadings were obtained using 152 three-gage strain rosettes located on the inner and outer surfaces. All the 16 loading cases were also analyzed theoretically using a finite-element shell analysis. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good general agreement, and it is felt that the analysis would be satisfactory for most engineering purposes. (auth)

  8. Nonobservable nature of the nuclear shell structure: Meaning, illustrations, and consequences

    Science.gov (United States)

    Duguet, T.; Hergert, H.; Holt, J. D.; Somà, V.

    2015-09-01

    Background: The concept of single-nucleon shells constitutes a basic pillar of our understanding of nuclear structure. Effective single-particle energies (ESPEs) introduced by French [Proceedings of the International School of Physics "Enrico Fermi," Course XXXVI, Varenna 1965, edited by C. Bloch (Academic Press, New York, 1966)] and Baranger [Nucl. Phys. A 149, 225 (1970), 10.1016/0375-9474(70)90692-5] represent the most appropriate tool to relate many-body observables to a single-nucleon shell structure. As briefly discussed in Duguet and Hagen [Phys. Rev. C 85, 034330 (2012), 10.1103/PhysRevC.85.034330], the dependence of ESPEs on one-nucleon transfer probability matrices makes them purely theoretical quantities that "run" with the nonobservable resolution scale λ employed in the calculation. Purpose: Given that ESPEs provide a way to interpret the many-body problem in terms of simpler theoretical ingredients, the goal is to specify the terms, i.e., the exact sense and conditions, in which this interpretation can be conducted meaningfully. Methods: While the nuclear shell structure is both scale and scheme dependent, the present study focuses on the former. A detailed discussion is provided to illustrate the scale (in)dependence of observables and nonobservables and the reasons why ESPEs, i.e., the shell structure, belong to the latter category. State-of-the-art multireference in-medium similarity renormalization group and self-consistent Gorkov Green's function many-body calculations are employed to corroborate the formal analysis. This is done by comparing the behavior of several observables and of nonobservable ESPEs (and spectroscopic factors) under (quasi) unitary similarity renormalization group transformations of the Hamiltonian parametrized by the resolution scale λ . Results: The formal proofs are confirmed by the results of ab initio many-body calculations in their current stage of implementation. In practice, the unitarity of the similarity

  9. P-shell hyperon binding energies

    International Nuclear Information System (INIS)

    Koetsier, D.; Amos, K.

    1991-01-01

    A shell model for lambda hypernuclei has been used to determine the binding energy of the hyperon in nuclei throughout the p shell. Conventional (Cohen and Kurath) potential energies for nucleon-nucleon interactions were used with hyperon-nucleon interactions taken from Nijmegen one boson exchange potentials. The hyperon binding energies calculated from these potentials compare well with measured values. 7 refs., 2 figs

  10. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  11. Shell model for BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions

    Science.gov (United States)

    Vielma, J.; Jackson, D.; Roundy, D.; Schneider, G.

    2010-03-01

    Even though the composition of BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions is similar to other ferroelectric compounds, the dielectric response is unusual. Results of permittivity measurements as a function of temperature show a diffuse phase transition indicative of a weakly coupled relaxor behavior.footnotetextC. C. Huang and D. P. Cann, J. Appl. Phys. 104, 024117 (2008) To investigate the weakly coupled relaxor behavior in these materials at intermediate length scales we are developing a newly calibrated shell model based on first-principles supercell calculations of both the solid solution and its compositional endpoints. Initial results for its phase diagram will presented.

  12. Study of nickel nuclei by (p,d) and (p,t) reactions. Shell model interpretation

    International Nuclear Information System (INIS)

    Kong-A-Siou, D.-H.

    1975-01-01

    The experimental techniques employed at the Nuclear Science Institute (Grenoble) and at Michigan State University are described. The development of the transition amplitude calculation of the one-or two-nucleon transfer reactions is described first, after which the principle of shell model calculations is outlined. The choices of configuration space and two-body interactions are discussed. The DWBA method of analysis is studied in more detail. The effects of different approximations and the influence of the parameters are examined. Special attention is paid to the j-dependence of the form of the angular distributions, on effect not explained in the standard DWBA framework. The results are analysed and a large section is devoted to a comparative study of the experimental results obtained and those from other nuclear reactions. The spectroscopic data obtained are compared with the results of shell model calculations [fr

  13. OWL: A code for the two-center shell model with spherical Woods-Saxon potentials

    Science.gov (United States)

    Diaz-Torres, Alexis

    2018-03-01

    A Fortran-90 code for solving the two-center nuclear shell model problem is presented. The model is based on two spherical Woods-Saxon potentials and the potential separable expansion method. It describes the single-particle motion in low-energy nuclear collisions, and is useful for characterizing a broad range of phenomena from fusion to nuclear molecular structures.

  14. Holographic shell model: Stack data structure inside black holes?

    Science.gov (United States)

    Davidson, Aharon

    2014-03-01

    Rather than tiling the black hole horizon by Planck area patches, we suggest that bits of information inhabit, universally and holographically, the entire black core interior, a bit per a light sheet unit interval of order Planck area difference. The number of distinguishable (tagged by a binary code) configurations, counted within the context of a discrete holographic shell model, is given by the Catalan series. The area entropy formula is recovered, including Cardy's universal logarithmic correction, and the equipartition of mass per degree of freedom is proven. The black hole information storage resembles, in the count procedure, the so-called stack data structure.

  15. Zero-point energies in the two-center shell model

    International Nuclear Information System (INIS)

    Reinhard, P.G.

    1975-01-01

    The zero-point energies (ZPE) contained in the potential-energy surfaces (PES) of a two-center shell model are evaluated. For the c.m. motion of the system as a whole the kinetic ZPE was found to be negligible, whereas it varies appreciably for the rotational and oscillation modes (about 5-9MeV). For the latter two modes the ZPE also depends sensitively on the changing pairing structure, which can induce strong local fluctuations, particularly in light nuclei. The potential ZPE is very small for heavy nuclei, but might just become important in light nuclei. (Auth.)

  16. Refined 2D and Exact 3D Shell Models for the Free Vibration Analysis of Single- and Double-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Salvatore Brischetto

    2015-12-01

    Full Text Available The present paper talks about the free vibration analysis of simply supported Single- and Double-Walled Carbon Nanotubes (SWCNTs and DWCNTs. Refined 2D Generalized Differential Quadrature (GDQ shell methods and an exact 3D shell model are compared. A continuum approach (based on an elastic three-dimensional shell model is used for natural frequency investigation of SWCNTs and DWCNTs. SWCNTs are defined as isotropic cylinders with an equivalent thickness and Young modulus. DWCNTs are defined as two concentric isotropic cylinders (with an equivalent thickness and Young modulus which can be linked by means of the interlaminar continuity conditions or by means of van der Waals interactions. Layer wise approaches are mandatory for the analysis of van der Waals forces in DWCNTs. The effect of van der Waals interaction between the two cylinders is shown for different DWCNT lengths, diameters and vibration modes. The accuracy of beam models and classical 2D shell models in the free vibration analysis of SWCNTs and DWCNTs is also investigated.

  17. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  18. Galileon radiation from a spherical collapsing shell

    Energy Technology Data Exchange (ETDEWEB)

    Martín-García, Javier [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera 15, E-28049 Madrid (Spain); Vázquez-Mozo, Miguel Á. [Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM),Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain)

    2017-01-17

    Galileon radiation in the collapse of a thin spherical shell of matter is analyzed. In the framework of a cubic Galileon theory, we compute the field profile produced at large distances by a short collapse, finding that the radiated field has two peaks traveling ahead of light fronts. The total energy radiated during the collapse follows a power law scaling with the shell’s physical width and results from two competing effects: a Vainshtein suppression of the emission and an enhancement due to the thinness of the shell.

  19. Smoking Guns for On-Shell New Physics at the LHC

    CERN Document Server

    Arnesen, Christian; Zupan, Jure

    2009-01-01

    Using Tevatron bounds we derive upper limits on the LHC Higgs production rate under the assumption that no beyond the Standard Model (BSM) particles are being produced near their mass shell. A violation of these limits would constitute a smoking gun for light BSM particles. Furthermore, we demonstrate how R_T, the ratio of the partially integrated Higgs transverse momentum distribution to the inclusive rate, can also be used as a probe of light BSM particles. This ratio is insensitive to heavy virtual effects and can be well-approximated by its SM value, i.e. it is model independent. The perturbative expansion for R_T has reduced renormalization scale dependence, at the order of 5% at next-to-leading order in QCD, due to a cancellation of Wilson coefficients. A deviation from the SM value implies that light BSM particles are being produced near their mass shell. We discuss a possible loophole to this conclusion, namely the existence of a non-perturbative, CP violating sector that couples to the Higgs. We use ...

  20. Four shells atomic model to computer the counting efficiency of electron-capture nuclides

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Fernandez Martinez, A.

    1985-01-01

    The present paper develops a four-shells atomic model in order to obtain the efficiency of detection in liquid scintillation courting, Mathematical expressions are given to calculate the probabilities of the 229 different atomic rearrangements so as the corresponding effective energies. This new model will permit the study of the influence of the different parameters upon the counting efficiency for nuclides of high atomic number. (Author) 7 refs

  1. Fermion dynamical symmetry and the nuclear shell model

    International Nuclear Information System (INIS)

    Ginocchio, J.N.

    1985-01-01

    The interacting boson model (IBM) has been very successful in giving a unified and simple description of the spectroscopic properties of a wide range of nuclei, from vibrational through rotational nuclei. The three basic assumptions of the model are that: (1) the valence nucleons move about a doubly closed core, (2) the collective low-lying states are composed primarily of coherent pairs of neutrons and pairs of protons coupled to angular momentum zero and two, and (3) these coherent pairs are approximated as bosons. In this review we shall show how it is possible to have fermion Hamiltonians which have a class of collective eigenstates composed entirely of monopole and quadrupole pairs of fermions. Hence these models satisfy the assumptions (1) and (2) above but no boson approximation need be made. Thus the Pauli principle is kept in tact. Furthermore the fermion shell model states excluded in the IBM can be classified by the number of fermion pairs which are not coherent monopole or quadrupole pairs. Hence the mixing of these states into the low-lying spectrum can be calculated in a systematic and tractable manner. Thus we can introduce features which are outside the IBM. 11 refs

  2. Three-body forces in p-shell nuclei

    International Nuclear Information System (INIS)

    Hees, A.G.M. van; Booten, J.G.L.; Glaudemans, P.W.M.

    1990-01-01

    Within the (0 + 1)ℎω shell-model space for p-shell nuclei we found that a schematic three-body interaction in addition to a translationally invariant two-body interaction leads to a strongly improved description of energy levels. The present three-body interaction is related to the Δ-isobar intermediate-state model of the two-pion exchange three-nucleon interaction. (orig.)

  3. 2.5D global-disk oscillation models of the Be shell star ζ Tauri. I. Spectroscopic and polarimetric analysis

    Science.gov (United States)

    Escolano, C.; Carciofi, A. C.; Okazaki, A. T.; Rivinius, T.; Baade, D.; Štefl, S.

    2015-04-01

    Context. A large number of Be stars exhibit intensity variations of their violet and red emission peaks in their H i lines observed in emission. This is the so-called V/R phenomenon, usually explained by the precession of a one-armed spiral density perturbation in the circumstellar disk. That global-disk oscillation scenario was confirmed, both observationally and theoretically, in the previous series of two papers analyzing the Be shell star ζ Tauri. The vertically averaged (2D) global-disk oscillation model used at the time was able to reproduce the V/R variations observed in Hα, as well as the spatially resolved interferometric data from AMBER/VLTI. Unfortunately, that model failed to reproduce the V/R phase of Br15 and the amplitude of the polarization variation, suggesting that the inner disk structure predicted by the model was incorrect. Aims: The first aim of the present paper is to quantify the temporal variations of the shell-line characteristics of ζ Tauri. The second aim is to better understand the physics underlying the V/R phenomenon by modeling the shell-line variations together with the V/R and polarimetric variations. The third aim is to test a new 2.5D disk oscillation model, which solves the set of equations that describe the 3D perturbed disk structure but keeps only the equatorial (i.e., 2D) component of the solution. This approximation was adopted to allow comparisons with the previous 2D model, and as a first step toward a future 3D model. Methods: We carried out an extensive analysis of ζ Tauri's spectroscopic variations by measuring various quantities characterizing its Balmer line profiles: red and violet emission peak intensities (for Hα, Hβ, and Br15), depth and asymmetry of the shell absorption (for Hβ, Hγ, and Hδ), and the respective position (i.e., radial velocity) of each component. We attempted to model the observed variations by implementing in the radiative transfer code HDUST the perturbed disk structure computed with a

  4. Host susceptibility hypothesis for shell disease in American lobsters.

    Science.gov (United States)

    Tlusty, Michael F; Smolowitz, Roxanna M; Halvorson, Harlyn O; DeVito, Simone E

    2007-12-01

    Epizootic shell disease (ESD) in American lobsters Homarus americanus is the bacterial degradation of the carapace resulting in extensive irregular, deep erosions. The disease is having a major impact on the health and mortality of some American lobster populations, and its effects are being transferred to the economics of the fishery. While the onset and progression of ESD in American lobsters is undoubtedly multifactorial, there is little understanding of the direct causality of this disease. The host susceptibility hypothesis developed here states that although numerous environmental and pathological factors may vary around a lobster, it is eventually the lobster's internal state that is permissive to or shields it from the final onset of the diseased state. To support the host susceptibility hypothesis, we conceptualized a model of shell disease onset and severity to allow further research on shell disease to progress from a structured model. The model states that shell disease onset will occur when the net cuticle degradation (bacterial degradation, decrease of host immune response to bacteria, natural wear, and resorption) is greater than the net deposition (growth, maintenance, and inflammatory response) of the shell. Furthermore, lesion severity depends on the extent to which cuticle degradation exceeds deposition. This model is consistent with natural observations of shell disease in American lobster.

  5. FABRICATION AND PROPERTIES OVERCOATED RESORCINOL-FORMALDEHYDE SHELLS FOR OMEGA EXPERIMENTS

    International Nuclear Information System (INIS)

    NIKROO, A; CZECHOWICZ, D; PAGUIO, R; GREENWOOD, A.L; TAKAGI, M.

    2003-09-01

    OAK-B135 New high gain designs for direct drive ignition on NIF require foam shells. Scaled down versions of these designs are needed for near term experiments on the OMEGA laser facility at the Laboratory Laser Energetics (LLE). These shells need to be about 1 mm in diameter and 50-100 (micro)m wall thickness and densities of 100-250 mg/cc. In addition, a full density permeation seal needs to be deposited for retention of the fill gas at room temperature or the ice at cryogenic temperatures. They have fabricated such shells using Resorcinol-formaldehyde (R/F) as the selected foam material due to its transparency in the optical region. Extensive characterization of the wall uniformity of these shells has been performed. The foam shells have ∼ 5%-6% non-concentricities on the average. A full density permeation seal has been deposited on the R/F shells using two different techniques. In the first technique R/F shells are coated directly with plasma polymer to thicknesses of 3-4 (micro)m. In the second technique, R/F shells are coated with polyvinylphenol, using a chemical interfacial polymerization technique. Data on surface finish and gas retention for R/F shells coated by both methods are provided

  6. Gasification of ‘Loose' Groundnut Shells in a Throathless Downdraft Gasifier

    OpenAIRE

    Kuhe, Aondoyila; Aliyu, Samuel Jacob

    2015-01-01

    In this paper, gasification potential of biomass residue was investigated using a laboratory scale throatless downdraft gasifier. Experimental results of groundnut shell was gasified in the throatless downdraft gasifier to produce a clean gas with a calorific value of around 5.92 MJ/Nm3 and a combustible fraction of 45% v/v. Low moisture (8.6%) and ash content (3.19%) are the main advantages of groundnut shells for gasification. It is suggested that gasification of shell waste products is a ...

  7. Novel cost effective full scale mussel shell bioreactors for metal removal and acid neutralization.

    Science.gov (United States)

    DiLoreto, Z A; Weber, P A; Olds, W; Pope, J; Trumm, D; Chaganti, S R; Heath, D D; Weisener, C G

    2016-12-01

    Acid mine drainage (AMD) impacted waters are a worldwide concern for the mining industry and countries dealing with this issue; both active and passive technologies are employed for the treatment of such waters. Mussel shell bioreactors (MSB) represent a passive technology that utilizes waste from the shellfish industry as a novel substrate. The aim of this study is to provide insight into the biogeochemical dynamics of a novel full scale MSB for AMD treatment. A combination of water quality data, targeted geochemical extractions, and metagenomic analyses were used to evaluate MSB performance. The MSB raised the effluent pH from 3.4 to 8.3 while removing up to ∼99% of the dissolved Al, and Fe and >90% Ni, Tl, and Zn. A geochemical gradient was observed progressing from oxidized to reduced conditions with depth. The redox conditions helped define the microbial consortium that consists of a specialized niche of organisms that influence elemental cycling (i.e. complex Fe and S cycling). MSB technology represents an economic and effective means of full scale, passive AMD treatment that is an attractive alternative for developing economies due to its low cost and ease of implementation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. LOW MACH NUMBER MODELING OF CONVECTION IN HELIUM SHELLS ON SUB-CHANDRASEKHAR WHITE DWARFS. II. BULK PROPERTIES OF SIMPLE MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, A. M.; Zingale, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Nonaka, A.; Almgren, A. S.; Bell, J. B. [Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-08-10

    The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. We explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway, and convective runaway. Our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.

  9. EM Transition Sum Rules Within the Framework of sdg Proton-Neutron Interacting Boson Model, Nuclear Pair Shell Model and Fermion Dynamical Symmetry Model

    Science.gov (United States)

    Zhao, Yumin

    1997-07-01

    By the techniques of the Wick theorem for coupled clusters, the no-energy-weighted electromagnetic sum-rule calculations are presented in the sdg neutron-proton interacting boson model, the nuclear pair shell model and the fermion-dynamical symmetry model. The project supported by Development Project Foundation of China, National Natural Science Foundation of China, Doctoral Education Fund of National Education Committee, Fundamental Research Fund of Southeast University

  10. Soil calcium availability influences shell ecophenotype formation in the sub-antarctic land snail, Notodiscus hookeri.

    Directory of Open Access Journals (Sweden)

    Maryvonne Charrier

    Full Text Available Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region. The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell and OS (organic shell. The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS-ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial

  11. The status of experimental buckling investigations of shells

    International Nuclear Information System (INIS)

    Singer, J.

    1982-01-01

    The recent developments in shell buckling experiments are surveyed and related to a review of the progress in the seventies. Model fabrication, imperfection measurements, boundary conditions, nondestructive testing, combined loading, postbuckling behavior, composite shells and other aspects of shell buckling tests are discussed. The motivation for experiments and the conclusions drawn in the previous review are reassessed. (orig.)

  12. On the absence of an α-nucleus structure in a two-centre shell model

    International Nuclear Information System (INIS)

    Gupta, R.K.; Sharma, M.K.; Antonenko, N.V.; Scheid, W.

    1999-01-01

    The two-centre shell model, used within the Strutinsky macro-microscopic method, is a valid prescription for calculating adiabatic or diabatic potential energy surfaces. It is shown, however, that this model does not contain the appropriate α-nucleus structure effects, very much required for collisions between light nuclei. A possible way to incorporate such effects is suggested. (author). Letter-to-the-editor

  13. Optical properties of core-shell and multi-shell nanorods

    Science.gov (United States)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  14. Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shell formation mechanisms.

    Science.gov (United States)

    De Wit, Pierre; Durland, Evan; Ventura, Alexander; Langdon, Chris J

    2018-02-22

    Despite recent work to characterize gene expression changes associated with larval development in oysters, the mechanism by which the larval shell is first formed is still largely unknown. In Crassostrea gigas, this shell forms within the first 24 h post fertilization, and it has been demonstrated that changes in water chemistry can cause delays in shell formation, shell deformations and higher mortality rates. In this study, we use the delay in shell formation associated with exposure to CO 2 -acidified seawater to identify genes correlated with initial shell deposition. By fitting linear models to gene expression data in ambient and low aragonite saturation treatments, we are able to isolate 37 annotated genes correlated with initial larval shell formation, which can be categorized into 1) ion transporters, 2) shell matrix proteins and 3) protease inhibitors. Clustering of the gene expression data into co-expression networks further supports the result of the linear models, and also implies an important role of dynein motor proteins as transporters of cellular components during the initial shell formation process. Using an RNA-Seq approach with high temporal resolution allows us to identify a conceptual model for how oyster larval calcification is initiated. This work provides a foundation for further studies on how genetic variation in these identified genes could affect fitness of oyster populations subjected to future environmental changes, such as ocean acidification.

  15. Test of the fermion dynamical symmetry model microscopy in the sd shell

    International Nuclear Information System (INIS)

    Halse, P.

    1987-01-01

    The recently formulated fermion dynamical symmetry model treats low-lying collective levels as states classified in a pseudo-orbit pseudo-spin (k-i) basis having either k = 1 and zero i seniority, or i = (3/2) and zero k seniority. The validity of this suggestion, which has not previously been subjected to a microscopic examination, is determined for even-even nuclei in the sd shell, for which the model is phenomenologically successful, by comparing these states with the eigenfunctions of a realistic Hamiltonian. Most low-lying levels are almost orthogonal to the fermion dynamical symmetry model zero seniority subspaces

  16. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Science.gov (United States)

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data.

  17. Effects of cluster-shell competition and BCS-like pairing in 12C

    Science.gov (United States)

    Matsuno, H.; Itagaki, N.

    2017-12-01

    The antisymmetrized quasi-cluster model (AQCM) was proposed to describe α-cluster and jj-coupling shell models on the same footing. In this model, the cluster-shell transition is characterized by two parameters, R representing the distance between α clusters and Λ describing the breaking of α clusters, and the contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α-cluster model wave function. Not only the closure configurations of the major shells but also the subclosure configurations of the jj-coupling shell model can be described starting with the α-cluster model wave functions; however, the particle-hole excitations of single particles have not been fully established yet. In this study we show that the framework of AQCM can be extended even to the states with the character of single-particle excitations. For ^{12}C, two-particle-two-hole (2p2h) excitations from the subclosure configuration of 0p_{3/2} corresponding to a BCS-like pairing are described, and these shell model states are coupled with the three α-cluster model wave functions. The correlation energy from the optimal configuration can be estimated not only in the cluster part but also in the shell model part. We try to pave the way to establish a generalized description of the nuclear structure.

  18. Angular momentum dependence of the distribution of shell model eigenenergies

    International Nuclear Information System (INIS)

    Yen, M.K.

    1974-01-01

    In the conventional shell model calculation the many-particle energy matrices are constructed and diagonalized for definite angular momentum and parity. However the resulting set of eigenvalues possess a near normal behavior and hence a simple statistical description is possible. Usually one needs only about four parameters to capture the average level densities if the size of the set is not too small. The parameters are essentially moments of the distribution. But the difficulty lies in the yet unsolved problem of calculating moments in the fixed angular momentum subspace. We have derived a formula to approximate the angular momentum projection dependence of any operator averaged in a shell model basis. This approximate formula which is a truncated series in Hermite polynomials has been proved very good numerically and justified analytically for large systems. Applying this formula to seven physical cases we have found that the fixed angular momentum projection energy centroid, width and higher central moments can be obtained accurately provided for even-even nuclei the even and odd angular momentum projections are treated separately. Using this information one can construct the energy distribution for fixed angular momentum projection assuming normal behavior. Then the fixed angular momentum level densities are deduced and spectra are extracted. Results are in reasonably good agreement with the exact values although not as good as those obtained using exact fixed angular momentum moments. (Diss. Abstr. Int., B)

  19. AUTOMATED BATCH CHARACTERIZATION OF ICF SHELLS WITH VISION-ENABLED OPTICAL MICROSCOPE SYSTEM

    International Nuclear Information System (INIS)

    HUANG, H.; STEPHENS, R.B.; HILL, D.W.; LYON, C.; NIKROO, A.; STEINMAN, D.A.

    2003-09-01

    OAK-B135 Inertial Confinement Fusion (ICF) shells are mesoscale objects with nano-scale dimensional and nano-surface finish requirements. Currently, the shell dimensions are measured by white-light interferometry and an image analysis method. These two methods complement each other and give a rather complete data set on a single shell. The process is, however, labor intensive. They have developed an automation routine to fully characterize a shell in one shot and perform unattended batch measurements. The method is useful to the ICF program both for production screening and for full characterization. It also has potential for Inertial Fusion Energy (IFE) power plant where half a million shells need to be processed daily

  20. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya E.

    2014-03-01

    Full Text Available It is evidence for an extension of the Standard Model in particle physics, if static electric dipole moments (EDMs are measured for any elementary particle. The nuclear EDM arises mainly from two sources: one comes from asymmetric charge distribution in a nucleus and the other is due to the nucleon intrinsic EDM. We estimate the nuclear EDMs from two sources for the 1/21+ states in Xe isotopes by a shell model approach using full orbitals between magic numbers 50 and 82.

  1. Development of two mix model postprocessors for the investigation of shell mix in indirect drive implosion cores

    International Nuclear Information System (INIS)

    Welser-Sherrill, L.; Mancini, R. C.; Haynes, D. A.; Haan, S. W.; Koch, J. A.; Izumi, N.; Tommasini, R.; Golovkin, I. E.; MacFarlane, J. J.; Radha, P. B.; Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.

    2007-01-01

    The presence of shell mix in inertial confinement fusion implosion cores is an important characteristic. Mixing in this experimental regime is primarily due to hydrodynamic instabilities, such as Rayleigh-Taylor and Richtmyer-Meshkov, which can affect implosion dynamics. Two independent theoretical mix models, Youngs' model and the Haan saturation model, were used to estimate the level of Rayleigh-Taylor mixing in a series of indirect drive experiments. The models were used to predict the radial width of the region containing mixed fuel and shell materials. The results for Rayleigh-Taylor mixing provided by Youngs' model are considered to be a lower bound for the mix width, while those generated by Haan's model incorporate more experimental characteristics and consequently have larger mix widths. These results are compared with an independent experimental analysis, which infers a larger mix width based on all instabilities and effects captured in the experimental data

  2. Bending stresses in Facetted Glass Shells

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik

    2008-01-01

    A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...

  3. Signatures of shell evolution in alpha decay across the N = 126 shell closure

    Science.gov (United States)

    Rui-Wang; Wang, Rui-Yao; Qian, Yi-Bin; Ren, Zhong-Zhou

    2017-06-01

    Within the alpha-cluster model, we particularly investigate the alpha decay of exotic nuclei in the vicinity of the N = 126 neutron shell plus the Z = 82 proton shell. The systematics of alpha-preformation probability (P α ), as an indicator of the shell effect, is deduced from the ratio of the experimental decay width to the calculated one. Through the comparative analysis of the P α trend in the N = 124-130 isotonic chain, the N = 126 and Z = 82 shell closures are believed to strongly affect the formation of the alpha particle before its penetration. Additionally, the P α variety in Po and Rn isotopes is presented as another proof for such an influence. More importantly, it may be concluded that the expected neutron (or proton) shell effect gradually fades away along with the increasing valence proton (or neutron) number. The odd-even staggering presented in the P α value is also discussed. Supported by National Natural Science Foundation of China (11375086, 11535004, 11605089, 11120101005), Natural Science Youth Fund of Jiangsu Province (BK20150762), Fundamental Research Funds for the Central Universities (30916011339), 973 National Major State Basic Research and Development Program of China (2013CB834400), and a Project Funded by the Priority Academic Programme Development of JiangSu Higher Education Institutions (PAPD)

  4. Projected Shell Model Description of Positive Parity Band of 130Pr Nucleus

    Science.gov (United States)

    Singh, Suram; Kumar, Amit; Singh, Dhanvir; Sharma, Chetan; Bharti, Arun; Bhat, G. H.; Sheikh, J. A.

    2018-02-01

    Theoretical investigation of positive parity yrast band of odd-odd 130Pr nucleus is performed by applying the projected shell model. The present study is undertaken to investigate and verify the very recently observed side band in 130Pr theoretically in terms of quasi-particle (qp) configuration. From the analysis of band diagram, the yrast as well as side band are found to arise from two-qp configuration πh 11/2 ⊗ νh 11/2. The present calculations are viewed to have qualitatively reproduced the known experimental data for yrast states, transition energies, and B( M1) / B( E2) ratios of this nucleus. The recently observed positive parity side band is also reproduced by the present calculations. The energy states of the side band are predicted up to spin 25+, which is far above the known experimental spin of 18+ and this could serve as a motivational factor for future experiments. In addition, the reduced transition probability B( E2) for interband transitions has also been calculated for the first time in projected shell model, which would serve as an encouragement for other research groups in the future.

  5. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  6. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.

    1977-01-01

    Reinforced and prestressed concrete containments for reactors have been developed in order to avoid the difficulties of welding of steel containments encountered as their capacities have become large: growing thickness of steel shells gave rise to the requirement of stress relief at the construction sites. However, these concrete vessels also seem to face another difficulty: the lack of shearing resistance capacity. In order to improve the shearing resistance capacity of the containment vessel, while avoiding the difficulty of welding, a new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented. The results of model tests in 1:30 scale are also reported. (Auth.)

  7. Nanocrystalline p-hydroxyacetanilide (paracetamol) and gold core-shell structure as a model drug deliverable organic-inorganic hybrid nanostructure

    Science.gov (United States)

    Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2013-09-01

    We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release. Electronic supplementary information (ESI) available: See DOI: 10.1039/c3nr03566b

  8. Some Differential Geometric Relations in the Elastic Shell

    Directory of Open Access Journals (Sweden)

    Xiaoqin Shen

    2016-01-01

    Full Text Available The theory of the elastic shells is one of the most important parts of the theory of solid mechanics. The elastic shell can be described with its middle surface; that is, the three-dimensional elastic shell with equal thickness comprises a series of overlying surfaces like middle surface. In this paper, the differential geometric relations between elastic shell and its middle surface are provided under the curvilinear coordinate systems, which are very important for forming two-dimensional linear and nonlinear elastic shell models. Concretely, the metric tensors, the determinant of metric matrix field, the Christoffel symbols, and Riemann tensors on the three-dimensional elasticity are expressed by those on the two-dimensional middle surface, which are featured by the asymptotic expressions with respect to the variable in the direction of thickness of the shell. Thus, the novelty of this work is that we can further split three-dimensional mechanics equations into two-dimensional variation problems. Finally, two kinds of special shells, hemispherical shell and semicylindrical shell, are provided as the examples.

  9. Radar attenuation in Europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure

    Science.gov (United States)

    Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.

    2017-03-01

    Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.

  10. Vibration test of spherical shell structure and replacing method into mathematical model

    International Nuclear Information System (INIS)

    Takayanagi, M.; Suzuki, S.; Okamura, T.; Haas, E.E.; Krutzik, N.J.

    1989-01-01

    To verify the beam-type and oval-type vibratory characteristics of a spherical shell structure, two test specimens were made and vibration tests were carried out. Results of these tests are compared with results of detailed analyses using 3-D FEM and 2-D axisymmetric FEM models. The analytical results of overall vibratory characteristics are in good agreement with the test results, has been found that the effect of the attached mass should be considered in evaluating local vibration. The replacing method into equivalent beam model is proposed

  11. Stability analysis of whirling composite shells partially filled with two liquid phases

    Energy Technology Data Exchange (ETDEWEB)

    Sahebnasagh, Mohammad [Department of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nikkhah-Bahrami, Mansour; Firouz-Abadi, Roohollah [Department of Aerospace Engineering, Sharif University, Tehran (Iran, Islamic Republic of)

    2017-05-15

    In this paper, the stability of whirling composite cylindrical shells partially filled with two liquid phases is studied. Using the first-order shear shell theory, the structural dynamics of the shell is modeled and based on the Navier-Stokes equations for ideal liquid, a 2D model is developed for liquid motion at each section of the cylinder. In steady state condition, liquids are supposed to locate according to mass density. In this study, the thick shells are investigated. Using boundary conditions between liquids, the model of coupled fluid-structure system is obtained. This coupled fluid-structure model is employed to determine the critical speed of the system. The effects of the main variables on the stability of the shell are studied and the results are investigated.

  12. Semiclassical shell structure in rotating Fermi systems

    International Nuclear Information System (INIS)

    Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.

    2010-01-01

    The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.

  13. Linear and nonlinear symmetrically loaded shells of revolution approximated with the finite element method

    International Nuclear Information System (INIS)

    Cook, W.A.

    1978-10-01

    Nuclear Material shipping containers have shells of revolution as a basic structural component. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Present models are limited to large displacements, small rotations, and nonlinear materials. This report discusses a first approach to developing a finite element nonlinear shell of revolution model that accounts for these nonlinear geometric effects. The approach uses incremental loads and a linear shell model with equilibrium iterations. Sixteen linear models are developed, eight using the potential energy variational principle and eight using a mixed variational principle. Four of these are suitable for extension to nonlinear shell theory. A nonlinear shell theory is derived, and a computational technique used in its solution is presented

  14. Dehydration of core/shell fruits

    OpenAIRE

    Liu, Y.; Yang, Xiaosong; Cao, Y.; Wang, Z.; Chen, B.; Zhang, Jian J.; Zhang, H.

    2015-01-01

    Dehydrated core/shell fruits, such as jujubes, raisins and plums, show very complex buckles and wrinkles on their exocarp. It is a challenging task to model such complicated patterns and their evolution in a virtual environment even for professional animators. This paper presents a unified physically-based approach to simulate the morphological transformation for the core/shell fruits in the dehydration process. A finite element method (FEM), which is based on the multiplicative decomposition...

  15. Off-shell distortions of multichannel atomic processes

    Science.gov (United States)

    Barrachina, R. O.; Clauser, C. F.

    2017-10-01

    Any multichannel problem can be reduced to a succession of two-body events. However, these basic building blocks of many-body theories do not correspond to elastic processes but are off-the-energy-shell. In view of this difficulty, the great majority of the Distorted-Wave models includes a subsidiary approximation where these off-shell terms are arbitrarily forced to lie on the energy shell. At a first glance, since the energy deficiency is negligible for high enough velocities, the on-shell assumption seems to be completely justified. However, for the case of Coulomb interactions, the two-body off-shell distortions have branch-point singularities on the on-shell limit. In this article we demonstrate that these singularities might produce sizeable distortions of multiple scattering amplitudes, mainly when dealing with ion-ion collisions. Finally, we propose a method of including these distortions that might lead to better results that removing them completely.

  16. Study of band structure in 78,80Sr using Triaxial Projected Shell Model

    International Nuclear Information System (INIS)

    Behera, N.; Naik, Z.; Bhat, G.H.; Sheikh, J.A.; Palit, R.; Sun, Y.

    2017-01-01

    The purpose of present work is to carry out a systematic study of the yrast-band and gamma-band structure for the even-even 78-80 Sr nuclei using Triaxial Projected Shell Model (TPSM) approach. These nuclei were chosen because 78 Sr has well developed side band(unassigned configuration) and 80 Sr has well developed band observed experimentally

  17. Enhanced energy storage and suppressed dielectric loss in oxide core-shell-polyolefin nanocomposites by moderating internal surface area and increasing shell thickness

    Energy Technology Data Exchange (ETDEWEB)

    Fredin, Lisa A.; Li, Zhong; Ratner, Mark A.; Marks, Tobin J. [Department of Chemistry Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Lanagan, Michael T. [Center for Dielectric Studies, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802-4800 (United States)

    2012-11-20

    Dielectric loss in metal oxide core/Al{sub 2}O{sub 3} shell polypropylene nanocomposites scales with the particle surface area. By moderating the interfacial surface area between the phases and using increasing shell thicknesses, dielectric loss is significantly reduced, and thus the energy stored within, and recoverable from, capacitors fabricated from these materials is significantly increased, to as high as 2.05 J/cm{sup 3}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Axisymmetric bifurcations of thick spherical shells under inflation and compression

    KAUST Repository

    deBotton, G.; Bustamante, R.; Dorfmann, A.

    2013-01-01

    Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic and incompressible material are summarized and then specialized to a form suitable for the analysis of a spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during inflation is analyzed using four different material models. Specifically, one and two terms in the Ogden energy formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate the existence of local pressure maxima and minima and the dependence of the corresponding stretches on the material model and on shell thickness. These results are then used to investigate axisymmetric bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled spherical shell subject to an external pressure. We find that the results of the two terms Ogden formulation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we identify additional critical stretches, which have not been reported in the literature before.© 2012 Published by Elsevier Ltd.

  19. Fabrication of polyacrylate core–shell nanoparticles via spray drying method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pengpeng, E-mail: chenpp@ahu.edu.cn [Anhui University, College of Chemistry and Chemical Engineering (China); Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng, E-mail: wangcpg@163.com [Chinese Academy of Forestry, Institute of Chemical Industry of Forest Products (China)

    2016-05-15

    Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core–shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core–shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.Graphical Abstract.

  20. Fabrication of polyacrylate core–shell nanoparticles via spray drying method

    International Nuclear Information System (INIS)

    Chen, Pengpeng; Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng

    2016-01-01

    Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core–shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core–shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.Graphical Abstract

  1. Coupled-cluster calculations for ground and excited states of closed- and open-shell nuclei using methods of quantum chemistry

    International Nuclear Information System (INIS)

    Wloch, Marta; Gour, Jeffrey R; Piecuch, Piotr; Dean, David J; Hjorth-Jensen, Morten; Papenbrock, Thomas

    2005-01-01

    We discuss large-scale ab initio calculations of ground and excited states of 16 O and preliminary calculations for 15 O and 17 O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we are able to obtain the virtually converged results for 16 O and promising results for 15 O and 17 O at the level of two-body interactions. The calculated properties other than binding and excitation energies include charge radius and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to seven or eight major oscillator shells, for which nontruncated shell-model calculations for nuclei with A = 15-17 active particles are presently not possible

  2. Three-fluid MHD-model of a current shell in Z-pinch

    International Nuclear Information System (INIS)

    Bazdenkov, S.V.; Vikhrev, V.V.

    1975-01-01

    Formation and motion of the current shell in a power pulsed discharge (Z-pinch) are discussed. One-dimmensional nonstationary problem about a discharge in deuterium is solved in the three-liquid magnetohydrodynamic approximation with regard for gas ionization and motion of neutral atoms. It is shown that after the shell removal there remains a large quantity of an ionized gas near an isolating chamber wall. The quantity is sufficient that a secondary breakdown may take place in the ionized gas. The moving current shell has a double structure, i.e. a current ''piston'' and a current layer in the shock wave front

  3. Liquid crystals in micron-scale droplets, shells and fibers

    Science.gov (United States)

    Urbanski, Martin; Reyes, Catherine G.; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P. F.

    2017-04-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  4. Liquid crystals in micron-scale droplets, shells and fibers

    International Nuclear Information System (INIS)

    Urbanski, Martin; Reyes, Catherine G; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P F

    2017-01-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  5. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    Science.gov (United States)

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hi shells, supershells, shell-like objects, and ''worms''

    International Nuclear Information System (INIS)

    Heiles, C.

    1984-01-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo

  7. Shell launches its Claus off-gas desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Groenendaal, W; van Meurs, H C.A.

    1972-01-01

    The Shell Flue Gas Desulfurization (SFGD) Process was developed for removal of sulfur oxides from flue gases originating from oil-fired boilers or furnaces. It can also be used to remove sulfur dioxide from Claus sulfur recovery tail gases if they are combined with boiler/furnace flue gases. For Claus tail gas only, the Shell Claus off-gas desulfurization process was developed. Claus unit operation and desulfurization by low temperature Claus processes and conversion/concentration processes are discussed. The new Shell process consists of a conversion/concentration process involving a reduction section and an amine absorption section. In the reduction section, all sulfur compounds and free sulfur are completely reduced to hydrogen sulfide with hydrogen, or hydrogen plus carbon monoxide, over a cobalt/molybdenum-on-alumina catalyst at a temperature of about 300/sup 0/C. Extensive bench scale studies on the reduction system have been carried out. A life test of more than 4000 hr showed a stable activity of the reduction catalyst, which means that in commercial units, very long catalyst lives can be expected. The commercial feasibility of the reduction section was further demonstrated in the Godorf refinery of Deutsche Shell AG. More than 80 absorption units using alkanolamine (AIDP) solutions have been installed. Bench scale studies of the ADIP absorption units were compared to commercial experience.The total capital investment of the new Shell process is 0.7, 2.0, and 3.2 $ times 10 to the 6th power for 100, 500, and 1000 tons of sulfur/sd capacity Claus units, respectively. The total operating costs for these units are, respectively, 610, 1930 and 3310 $/stream day. The capital investment corresponds to about 75% of the capital investment of the preceding Claus unit.

  8. Zero-point energies in the two-center shell model. II

    International Nuclear Information System (INIS)

    Reinhard, P.-G.

    1978-01-01

    The zero-point energy (ZPE) contained in the potential-energy surface of a two-center shell model (TCSM) is evaluated. In extension of previous work, the author uses here the full TCSM with l.s force, smoothing and asymmetry. The results show a critical dependence on the height of the potential barrier between the centers. The ZPE turns out to be non-negligible along the fission path for 236 U, and even more so for lighter systems. It is negligible for surface quadrupole motion and it is just on the fringe of being negligible for motion along the asymmetry coordinate. (Auth.)

  9. Shell-model Monte Carlo simulations of the BCS-BEC crossover in few-fermion systems

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; Mølmer, Klaus; Özen, C.

    2009-01-01

    We study a trapped system of fermions with a zero-range two-body interaction using the shell-model Monte Carlo method, providing ab initio results for the low particle number limit where mean-field theory is not applicable. We present results for the N-body energies as function of interaction...

  10. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell.

    Science.gov (United States)

    Lacour, Thomas; Guédra, Matthieu; Valier-Brasier, Tony; Coulouvrat, François

    2018-01-01

    Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy, or targeted drug delivery. Their functions can be mechanically activated by means of focused ultrasound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV) process. In this context, a four-phases (vapor + liquid + shell + surrounding environment) model of ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to very large deformations of soft, nearly incompressible materials. Various responses to ultrasound excitation are illustrated, depending on linear and nonlinear mechanical shell properties and acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a relevant threshold ensuring complete vaporization of the inner liquid layer is defined. The dependence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.

  11. Comparison of Active Carbon, Sawdust, Almond Shell and Hazelnut Shell Absorbent in Removal of Nickel from Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Moslem Mohammadi Galehzan

    2013-09-01

    Full Text Available The most important environmental pollutants are heavy metals in industrial wastewater effluents. Nickel is one of the toxic heavy metals which its high concentration causes skin allergy, heart disease and various cancers. So removal of this element from industrial effluent is of prime concern and necessary. The main purpose of this study is to compare kinetics and isotherms of nickel uptake by activated carbon (AC, sawdust (SD, hazelnut shell (SH and almond shells (AH. Adsorbents are initially prepared to remove nickel from solutions with concentrations 2.5 to 125 mg/l. pH test results showed that maximum absorption using AC, SH, SD and AH obtained at pH 6, 6, 6 and 7 respectively. Kinetics experiments showed that maximum absorption equilibrium time at concentration of 5 mg/l of AC, SH, SD and AH occur at 60, 75, 120 and 150 minutes respectively. Kinetic models fitting results showed that for sawdust and hazelnut shells, Lagergern model and for activated carbon and peanut shell Ho et al. model are suitable and have the lowest error and highest correlation coefficient at 95 percent confidence level. The results also revealed that rate of Nickel adsorption follows this order: AH

  12. Curvature-driven morphing of non-Euclidean shells

    Science.gov (United States)

    Pezzulla, Matteo; Stoop, Norbert; Jiang, Xin; Holmes, D. P.

    2017-05-01

    We investigate how thin structures change their shape in response to non-mechanical stimuli that can be interpreted as variations in the structure's natural curvature. Starting from the theory of non-Euclidean plates and shells, we derive an effective model that reduces a three-dimensional stimulus to the natural fundamental forms of the mid-surface of the structure, incorporating expansion, or growth, in the thickness. Then, we apply the model to a variety of thin bodies, from flat plates to spherical shells, obtaining excellent agreement between theory and numerics. We show how cylinders and cones can either bend more or unroll, and eventually snap and rotate. We also study the nearly isometric deformations of a spherical shell and describe how this shape change is ruled by the geometry of a spindle. As the derived results stem from a purely geometrical model, they are general and scalable.

  13. Automatic determination of 3D orientations of fossilized oyster shells from a densely packed Miocene shell bed

    Science.gov (United States)

    Puttonen, Ana; Harzhauser, Mathias; Puttonen, Eetu; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2018-02-01

    Shell beds represent a useful source of information on various physical processes that cause the depositional condition. We present an automated method to calculate the 3D orientations of a large number of elongate and platy objects (fossilized oyster shells) on a sedimentary bedding plane, developed to support the interpretation of possible depositional patterns, imbrications, or impact of local faults. The study focusses on more than 1900 fossil oyster shells exposed in a densely packed Miocene shell bed. 3D data were acquired by terrestrial laser scanning on an area of 459 m2 with a resolution of 1 mm. Bivalve shells were manually defined as 3D-point clouds of a digital surface model and stored in an ArcGIS database. An individual shell coordinate system (ISCS) was virtually embedded into each shell and its orientation was determined relative to the coordinate system of the entire, tectonically tilted shell bed. Orientation is described by the rotation angles roll, pitch, and yaw in a Cartesian coordinate system. This method allows an efficient measurement and analysis of the orientation of thousands of specimens and is a major advantage compared to the traditional 2D approach, which measures only the azimuth (yaw) angles. The resulting data can variously be utilized for taphonomic analyses and the reconstruction of prevailing hydrodynamic regimes and depositional environments. For the first time, the influence of possible post-sedimentary vertical displacements can be quantified with high accuracy. Here, the effect of nearby fault lines—present in the reef—was tested on strongly tilted oyster shells, but it was found out that the fault lines did not have a statistically significant effect on the large tilt angles. Aside from the high reproducibility, a further advantage of the method is its non-destructive nature, which is especially suitable for geoparks and protected sites such as the studied shell bed.

  14. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells.

    Science.gov (United States)

    Sahin, Mehmet

    2018-05-23

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  15. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells

    Science.gov (United States)

    Sahin, Mehmet

    2018-05-01

    In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.

  16. Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products

    Directory of Open Access Journals (Sweden)

    Mehrdad Khatami

    2018-03-01

    Full Text Available Among an array of hybrid nanoparticles, core-shell nanoparticles comprise of two or more materials, such as metals and biomolecules, wherein one of them forms the core at the center, while the other material/materials that were located around the central core develops a shell. Core-shell nanostructures are useful entities with high thermal and chemical stability, lower toxicity, greater solubility, and higher permeability to specific target cells. Plant or natural products-mediated synthesis of nanostructures refers to the use of plants or its extracts for the synthesis of nanostructures, an emerging field of sustainable nanotechnology. Various physiochemical and greener methods have been advanced for the synthesis of nanostructures, in contrast to conventional approaches that require the use of synthetic compounds for the assembly of nanostructures. Although several biological resources have been exploited for the synthesis of core-shell nanoparticles, but plant-based materials appear to be the ideal candidates for large-scale green synthesis of core-shell nanoparticles. This review summarizes the known strategies for the greener production of core-shell nanoparticles using plants extract or their derivatives and highlights their salient attributes, such as low costs, the lack of dependence on the use of any toxic materials, and the environmental friendliness for the sustainable assembly of stabile nanostructures.

  17. Shell structure of the A = 6 ground states from three-body dynamics

    International Nuclear Information System (INIS)

    Lehman, D.R.; Parke, W.C.

    1983-01-01

    Three-body (αNN) models of the 6 He and 6 Li ground states are used to investigate their shell structure. Three models for each nucleus are considered: simple, full (nn), and full (np) for 6 He, and simple, full (0%), and full (4%) for 6 Li. The full models in both cases are obtained by including the S/sub 1/2/, P/sub 1/2/, and P/sub 3/2/ partial waves of the αN interaction, whereas the simple model truncates to only the strongly resonant P/sub 3/2/ wave. The 6 He full models distinguish between use of the nn or np parameters for the 1 S 0 NN interaction, while the 6 Li full models have either a pure 3 S 1 NN interaction (0%) or a 3 S 1 - 3 D 1 interaction that leads to a 4% d-wave component in the deuteron (4%). These models are used to calculate the probabilities of the orbital components of the wave functions, the configuration-space single-particle orbital densities, and the configuration-space two-particle wave function amplitudes in j-j coupling with the nucleon coordinates referred to the alpha particle as the ''core'' or ''center of force.'' The results are then compared with those from phenomenological and realistic-interaction shell models. Major findings of the comparison are the following: None of the shell models considered have a distribution of orbital probabilities across shells like that predicted by three-body models; the orbital rms radii from three-body models indicate an ordering of the orbits within shells, i.e., p/sub 1/2/ outside p/sub 3/2/, unlike oscillator shell models with a single oscillator parameter where the p-shell orbitals have the same shape; and, as expected, three-body orbital densities decay at large radial distances as exponentials rather than the too compact Gaussian falling off of oscillator shell models

  18. Inner-shell couplings in transiently formed superheavy quasimolecules

    Energy Technology Data Exchange (ETDEWEB)

    Verma, P [Kalindi College, University of Delhi, New Delhi 110008 (India); Mokler, P H [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Braeuning-Demian, A; Kozhuharov, C; Braeuning, H; Bosch, F; Hagmann, S; Liesen, D [GSI Helmholzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Anton, J; Fricke, B [Universitaet Kassel, 34109 Kassel (Germany); Stachura, Z [Institute for Nuclear Physics, Cracow PL 31342 (Poland); Wahab, M A, E-mail: p.verma.du@gmail.com [Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 (India)

    2011-06-15

    The inner-shell couplings for U{sup q+}-ions (73{<=}q{<=}91) moving moderately slow at {approx}69 MeV u{sup -1} and bombarding thin Au targets have been investigated. Having established the definite survival probability of incoming projectile K vacancies in these targets in an earlier publication, the transfer of these vacancies to the target K-shell due to inner-shell couplings has been studied. As the system is in the quasiadiabatic collision regime for the K-shell of collision partners, advanced SCF-DFS (self-consistent field-Dirac-Fock-Slater) multielectron level diagrams have been used for interpretation. Using a simple model, the L-K shell coupling interaction distance has been estimated and compared with level diagram calculations.

  19. Analysis of thin composite structures using an efficient hex-shell finite element

    Energy Technology Data Exchange (ETDEWEB)

    Shiri, Seddik [Universite Bordeaux, Pessac (France); Naceur, Hakim [Universite de valenciennes, Valenciennes (France)

    2013-12-15

    In this paper a general methodology for the modeling of material composite multilayered shell structures is proposed using a Hex-shell finite element modeling. The first part of the paper is devoted to the general FE formulation of the present composite 8-node Hex-shell element called SCH8, based only on displacement degrees of freedom. A particular attention is given to alleviate shear, trapezoidal and thickness locking, without resorting to the classical plane-stress assumption. The anisotropic material behavior of layered shells is modeled using a fully three dimensional elastic orthotropic material law in each layer, including the thickness stress component. Applications to laminate thick shell structures are studied to validate the methodology, and good results have been obtained in comparison with ABAQUS commercial code.

  20. Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2000-01-01

    A pseudo shell SU(3) model description of normal parity bands in 159 Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompanied by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values

  1. Rhythmic patterns in ancient shells: Can we reconstruct sub-annual cyclicity in trace element and stable isotope profiles from rudist bivalves?

    Science.gov (United States)

    de Winter, N.; Sinnesael, M.; Vansteenberge, S.; Goderis, S.; Snoeck, C.; Van Malderen, S. J. M.; Vanhaecke, F. F.; Claeys, P.

    2017-12-01

    Well-preserved shells of Torreites rudists from the Late Campanian Saiwan Formation in Oman exhibit fine internal layering. These fine (±20 µm) laminae are rhythmically bundled (±400 µm) and subdivide the shells' larger scale annual lamination (±15 mm), suggesting the presence of several interfering cycles in shell growth rate. The aim of the present study is to determine the duration and chemical signature of these rhythmic variations in shell composition. To achieve this, a range of micro-analytical techniques is applied on cross sections through the shells. Firstly, microscopy-based layer counting and colorimetric analysis are carried out on thin sections of shell calcite. Secondly, X-Ray Fluorescence (XRF) and Fourier Transform InfraRed (FTIR) mapping of cross sections of the shells reveal chemical and structural differences between laminae in 2D. Thirdly, high-resolution XRF (25 µm) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS; 10 µm) trace element profiles are used to quantify variations in chemical composition between shell laminae. Fourthly, annual chronology is established based on micro-sampled stable carbon and oxygen stable isotope measurements (250 µm) along the growth axis of the shells. Finally, spectral analysis routines are applied to extract rhythmic patterns matched to the shell laminae from the structural, chemical and colorimetric data. Combining these methods allows for a full evaluation of the structural and chemical characteristics as well as the timing of sub-annual lamination in rudist shells. The results of this study shed light on the external factors that influenced growth rates in rudist bivalves. A better understanding of the timing of deposition of these laminae allows them to be used to improve age models of geochemical records in rudist shells. Characterization of small scale variations in shell composition will characterize the uncertainties contained within lower resolution proxy records from

  2. A multi scale model for small scale plasticity

    International Nuclear Information System (INIS)

    Zbib, Hussein M.

    2002-01-01

    Full text.A framework for investigating size-dependent small-scale plasticity phenomena and related material instabilities at various length scales ranging from the nano-microscale to the mesoscale is presented. The model is based on fundamental physical laws that govern dislocation motion and their interaction with various defects and interfaces. Particularly, a multi-scale model is developed merging two scales, the nano-microscale where plasticity is determined by explicit three-dimensional dislocation dynamics analysis providing the material length-scale, and the continuum scale where energy transport is based on basic continuum mechanics laws. The result is a hybrid simulation model coupling discrete dislocation dynamics with finite element analyses. With this hybrid approach, one can address complex size-dependent problems, including dislocation boundaries, dislocations in heterogeneous structures, dislocation interaction with interfaces and associated shape changes and lattice rotations, as well as deformation in nano-structured materials, localized deformation and shear band

  3. Fossil shell emission in dying radio loud AGNs

    Science.gov (United States)

    Kino, M.; Ito, H.; Kawakatu, N.; Orienti, M.; Nagai, H.; Wajima, K.; Itoh, R.

    2016-02-01

    We investigate shell emission associated with dying radio loud AGNs. First, based on our recent work by Ito et al. (2015), we describe the dynamical and spectral evolution of shells after stopping the jet energy injection. We find that the shell emission overwhelms that of the radio lobes soon after stopping the jet energy injection because fresh electrons are continuously supplied into the shell via the forward shock, while the radio lobes rapidly fade out without jet energy injection. We find that such fossil shells can be a new class of target sources for SKA telescope. Next, we apply the model to the nearby radio source 3C84. Then, we find that the fossil shell emission in 3C84 is less luminous in the radio band while it is bright in the TeV γ-ray band and can be detectable by CTA. Data from STELLA

  4. Core@shell@shell structured carbon-based magnetic ternary nanohybrids: Synthesis and their enhanced microwave absorption properties

    Science.gov (United States)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-05-01

    High encapsulation efficiency of core@shell@shell structured carbon-based magnetic ternary nanohybrids have been synthesized in high yield by chemical vapor deposition of acetylene directly over octahedral-shaped Fe2O3 nanoparticles. By controlling the pyrolysis temperature, Fe3O4@Fe3C@carbon nanotubes (CNTs) and Fe@Fe3C@CNTs ternary nanohybrids could be selectively produced. The optimal RL values for the as-prepared ternary nanohybrids could reach up to ca. -46.7, -52.7 and -29.5 dB, respectively. The excellent microwave absorption properties of the obtaiend ternary nanohybrids were proved to ascribe to the quarter-wavelength matching model. Moreover, the as-prepared Fe@Fe3C@CNTs ternary nanohybrids displayed remarkably enhanced EM wave absorption capabilities compared to Fe3O4@Fe3C@CNTs due to their excellent dielectric loss abilities, good complementarities between the dielectric loss and the magnetic loss, and high attenuation constant. Generally, this strategy can be extended to explore other categories of core@shell or core@shell@shell structured carbon-based nanohybrids, which is very beneficial to accelerate the advancements of high performance MAMs.

  5. Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement

    Science.gov (United States)

    Wu, K. Chauncey

    2008-01-01

    In this study, a sub-scale advanced composite shell design is evaluated to determine its potential for use on a future aircraft fuselage. Two composite shells with the same nominal 8-ply [+/-45/+/-Theta](sub s) layup are evaluated, where Theta indicates a tow-steered ply. To build this shell, a fiber placement machine would be used to steer unidirectional prepreg tows as they are placed around the circumference of a 17-inch diameter right circular cylinder. The fiber orientation angle varies continuously from 10 degrees (with respect to the shell axis of revolution) at the crown, to 45 degrees on the side, and back to 10 degrees on the keel. All 24 tows are placed at each point on every fiber path in one structure designated as the shell with overlaps. The resulting pattern of tow overlaps causes the laminate thickness to vary between 8 and 16 plies. The second shell without tow overlaps uses the capability of the fiber placement machine to cut and add tows at any point along the fiber paths to fabricate a shell with a nearly uniform 8-ply laminate thickness. Issues encountered during the design and analysis of these shells are presented and discussed. Static stiffness and buckling loads of shells with tow-steered layups are compared with the performance of a baseline quasi-isotropic shell using both finite element analyses and classical strength of materials theory.

  6. Small scale models equal large scale savings

    International Nuclear Information System (INIS)

    Lee, R.; Segroves, R.

    1994-01-01

    A physical scale model of a reactor is a tool which can be used to reduce the time spent by workers in the containment during an outage and thus to reduce the radiation dose and save money. The model can be used for worker orientation, and for planning maintenance, modifications, manpower deployment and outage activities. Examples of the use of models are presented. These were for the La Salle 2 and Dresden 1 and 2 BWRs. In each case cost-effectiveness and exposure reduction due to the use of a scale model is demonstrated. (UK)

  7. Mechanistically-Based Field-Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

    International Nuclear Information System (INIS)

    Tim Scheibe; Alexandre Tartakovsky; Brian Wood; Joe Seymour

    2007-01-01

    Effective environmental management of DOE sites requires reliable prediction of reactive transport phenomena. A central issue in prediction of subsurface reactive transport is the impact of multiscale physical, chemical, and biological heterogeneity. Heterogeneity manifests itself through incomplete mixing of reactants at scales below those at which concentrations are explicitly defined (i.e., the numerical grid scale). This results in a mismatch between simulated reaction processes (formulated in terms of average concentrations) and actual processes (controlled by local concentrations). At the field scale, this results in apparent scale-dependence of model parameters and inability to utilize laboratory parameters in field models. Accordingly, most field modeling efforts are restricted to empirical estimation of model parameters by fitting to field observations, which renders extrapolation of model predictions beyond fitted conditions unreliable. The objective of this project is to develop a theoretical and computational framework for (1) connecting models of coupled reactive transport from pore-scale processes to field-scale bioremediation through a hierarchy of models that maintain crucial information from the smaller scales at the larger scales; and (2) quantifying the uncertainty that is introduced by both the upscaling process and uncertainty in physical parameters. One of the challenges of addressing scale-dependent effects of coupled processes in heterogeneous porous media is the problem-specificity of solutions. Much effort has been aimed at developing generalized scaling laws or theories, but these require restrictive assumptions that render them ineffective in many real problems. We propose instead an approach that applies physical and numerical experiments at small scales (specifically the pore scale) to a selected model system in order to identify the scaling approach appropriate to that type of problem. Although the results of such studies will

  8. Mechanistically-Based Field-Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

    Energy Technology Data Exchange (ETDEWEB)

    Tim Scheibe; Alexandre Tartakovsky; Brian Wood; Joe Seymour

    2007-04-19

    Effective environmental management of DOE sites requires reliable prediction of reactive transport phenomena. A central issue in prediction of subsurface reactive transport is the impact of multiscale physical, chemical, and biological heterogeneity. Heterogeneity manifests itself through incomplete mixing of reactants at scales below those at which concentrations are explicitly defined (i.e., the numerical grid scale). This results in a mismatch between simulated reaction processes (formulated in terms of average concentrations) and actual processes (controlled by local concentrations). At the field scale, this results in apparent scale-dependence of model parameters and inability to utilize laboratory parameters in field models. Accordingly, most field modeling efforts are restricted to empirical estimation of model parameters by fitting to field observations, which renders extrapolation of model predictions beyond fitted conditions unreliable. The objective of this project is to develop a theoretical and computational framework for (1) connecting models of coupled reactive transport from pore-scale processes to field-scale bioremediation through a hierarchy of models that maintain crucial information from the smaller scales at the larger scales; and (2) quantifying the uncertainty that is introduced by both the upscaling process and uncertainty in physical parameters. One of the challenges of addressing scale-dependent effects of coupled processes in heterogeneous porous media is the problem-specificity of solutions. Much effort has been aimed at developing generalized scaling laws or theories, but these require restrictive assumptions that render them ineffective in many real problems. We propose instead an approach that applies physical and numerical experiments at small scales (specifically the pore scale) to a selected model system in order to identify the scaling approach appropriate to that type of problem. Although the results of such studies will

  9. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  10. Pilot-scale production of grout with simulated double-shell slurry feed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, G.A.

    1994-08-01

    This report describes the pilot-scale production of grout with simulated double-shell slurry feed (DSSF) waste performed in November 1988, and the subsequent thermal behavior of the grout as it cured in a large, insulated vessel. The report was issued in draft form in April 1989 and comments were subsequently received; however, the report was not finalized until 1994. In finalizing this report, references or information gained after the report was drafted in April 1989 have not been incorporated to preserve the report`s historical perspective. This report makes use of criteria from Ridelle (1987) to establish formulation criteria. This document has since been superseded by a document prepared by Reibling and Fadeef (1991). However, the reference to Riddelle (1987) and any analysis based on its content have been maintained within this report. In addition, grout is no longer being considered as the waste form for disposal of Hanford`s low-level waste. However, grout disposal is being maintained as an option in case there is an emergency need to provide additional tank space. Current plans are to vitrify low-level wastes into a glass matrix.

  11. In-medium no-core shell model for ab initio nuclear structure calculations

    International Nuclear Information System (INIS)

    Gebrerufael, Eskendr

    2017-01-01

    In this work, we merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the multi-reference in-medium similarity renormalization group (IM-SRG), to define a novel many-body approach for the comprehensive description of ground and excited states of closed- and open-shell medium-mass nuclei. Building on the key advantages of the two methods - the decoupling of excitations at the many-body level in the IM-SRG, and the exact diagonalization in the NCSM applicable up to medium-light nuclei - their combination enables fully converged no-core calculations for an unprecedented range of nuclei and observables at moderate computational cost. The efficiency and rapid model-space convergence of the new approach make it ideally suited for ab initio studies of ground and low-lying excited states of nuclei up to the medium-mass regime. Interactions constructed within the framework of chiral effective field theory provide an excellent opportunity to describe properties of nuclei from first principles, i.e., rooted in quantum chromodynamics, they overcome the lack of predictive power of phenomenological potentials. The hard core of these interactions causes strong short-range correlations, which we soften by using the similarity-renormalization-group transformation that accelerates the model-space convergence of many-body calculations. Three-nucleon effects, which are mandatory for the correct description of bulk properties of nuclei, are included in our calculations by using the normal-ordered two-body approximation, which has been shown to be sufficient to capture the main effects of the three-nucleon interaction. Using these interactions, we analyze energies of ground and excited states in the carbon and oxygen isotopic chains, where conventional NCSM calculations are still feasible and provide an important benchmark. Furthermore, we study the Hoyle state in 12 C - a three-alpha cluster state that cannot be converged in standard NCSM

  12. Large-scale mitochondrial COI gene sequence variability reflects the complex colonization history of the invasive soft-shell clam, Mya arenaria (L.) (Bivalvia)

    Science.gov (United States)

    Lasota, Rafal; Pierscieniak, Karolina; Garcia, Pascale; Simon-Bouhet, Benoit; Wolowicz, Maciej

    2016-11-01

    The aim of the study was to determine genetic diversity in the soft-shell clam Mya arenaria on a wide geographical scale using mtDNA COI gene sequences. Low levels of genetic diversity was found, which can most likely be explained by a bottleneck effect during Pleistocene glaciations and/or selection. The geographical genetic structuring of the studied populations was also very low. The star-like phylogeny of the haplotypes indicates a relatively recent, rapid population expansion following the glaciation period and repeated expansion following the founder effect(s) after the initial introduction of the soft-shell clam to Europe. North American populations are characterized by the largest number of haplotypes, including rare ones, as expected for native populations. Because of the founder effect connected with initial and repeated expansion events, European populations have significantly lower numbers of haplotypes in comparison with those of North America. We also observed subtle differentiations among populations from the North and Baltic seas. The recently founded soft-shell clam population in the Black Sea exhibited the highest genetic similarity to Baltic populations, which confirmed the hypothesis that M. arenaria was introduced to the Gulf of Odessa from the Baltic Sea. The most enigmatic results were obtained for populations from the White Sea, which were characterized by high genetic affinity with American populations.

  13. Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics

    Science.gov (United States)

    McClelland, Ryan S.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.

  14. Time-dependent shell-model theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Ayik, S.; Noerenberg, W.

    1982-01-01

    A transport theory is formulated within a time-dependent shell-model approach. Time averaging of the equations for macroscopic quantities lead to irreversibility and justifies weak-coupling limit and Markov approximation for the (energy-conserving) one- and two-body collision terms. Two coupled equations for the occupation probabilities of dynamical single-particle states and for the collective variable are derived and explicit formulas for transition rates, dynamical forces, mass parameters and friction coefficients are given. The applicability of the formulation in terms of characteristic quantities of nuclear systems is considered in detail and some peculiarities due to memory effects in the initial equilibration process of heavy-ion collisions are discussed. (orig.)

  15. Magnetization of the Ising model on the Sierpinski pastry-shell

    Science.gov (United States)

    Chame, Anna; Branco, N. S.

    1992-02-01

    Using a real-space renormalization group approach, we calculate the approximate magnetization in the Ising model on the Sierpinski Pastry-shell. We consider, as an approximation, only two regions of the fractal: the internal surfaces, or walls (sites on the border of eliminated areas), with coupling constants JS, and the bulk (all other sites), with coupling constants Jv. We obtain the mean magnetization of the two regions as a function of temperature, for different values of α= JS/ JV and different geometric parameters b and l. Curves present a step-like behavior for some values of b and l, as well as different universality classes for the bulk transition.

  16. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    Science.gov (United States)

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  17. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  18. Effect of temperature on energy potential of pyrolysis products from oil palm shells

    OpenAIRE

    Lina María Romero Millán; María Alejandra Cruz Domínguez; Fabio Emiro Sierra Vargas

    2016-01-01

    Context: Taking into account that near 220 000 tons of oil palm shells are produced every year in Colombia, as a waste of the Elaeis Guineensis palm oil transformation process, the aim of this work is to determine the energy potential of oil palm shells, when transformed through slow pyrolysis process. Methods: Using a fixed bed lab scale reactor, different oil palm shells pyrolysis tests were performed between 300°C and 500°C. The effect of the temperature in the process product yield an...

  19. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.

    Science.gov (United States)

    Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia

    2017-11-01

    Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Gasification of ‘Loose’ Groundnut Shells in a Throathless Downdraft Gasifier

    Directory of Open Access Journals (Sweden)

    Aondoyila Kuhe

    2015-07-01

    Full Text Available In this paper, gasification potential of biomass residue was investigated using a laboratory scale throatless downdraft gasifier. Experimental results of groundnut shell was gasified in the throatless downdraft gasifier to produce a clean gas with a calorific value of around 5.92 MJ/Nm3 and a combustible fraction of 45% v/v. Low moisture (8.6% and ash content (3.19% are the main advantages of groundnut shells for gasification. It is suggested that gasification of shell waste products is a clean energy alternative to fossil fuels. The product gas can be used efficiently for heating and possible usage in internal combustion engines.

  1. Corrections to the free-nucleon values of the single-particle matrix elements of the M1 and Gamow-Teller operators, from a comparison of shell-model predictions with sd-shell data

    International Nuclear Information System (INIS)

    Brown, B.A.; Wildenthal, B.H.

    1983-01-01

    The magnetic dipole moments of states in mirror pairs of the sd-shell nuclei and the strengths of the Gamow-Teller beta decays which connect them are compared with predictions based on mixed-configuration shell-model wave functions. From this analysis we extract the average effective values of the single-particle matrix elements of the l, s, and [Y/sup( 2 )xs]/sup( 1 ) components of the M1 and Gamow-Teller operators acting on nucleons in the 0d/sub 5/2/, 1s/sub 1/2/, and 0d/sub 3/2/ orbits. These results are compared with the recent calculations by Towner and Khanna of the corrections to the free-nucleon values of these matrix elements which arise from the effects of isobar currents, mesonic-exchange currents, and mixing with configurations outside the sd shell

  2. One particle-hole excitations in p- and fp-shell nuclei

    International Nuclear Information System (INIS)

    Hees, A.G.M. van.

    1982-01-01

    Results are presented of shell model calculations of medium and light atomic nuclei. The influence of the allowance of one particle-hole excitations is investigated. This enables improved descriptions of intermediate mass nuclei in the fp-shell. For light p-shell nuclei one particle-hole excitations create exclusively situations with abnormal parity. The description of situations with normal parity is not changed by enlarging the model space. In the first chapter shell-model calculations are performed on the light Ni-isotopes (A = 57-59). One nucleon is allowed to be excited from the fsub(7/2) orbit to one of the other fp-shell orbits. The general observation in the enlarged model space is that one can use operators that require a much weaker 'renormalization' and the calculation requires only a selected set of matrix elements of the Hamiltonian. An additional advantage of the inclusion of one particle-hole excitations is that it allows a description of several intruder states, i.e. states that cannot be produced with the assumption of a closed 56 Ni core. In the second chapter the nuclei with mass number A = 52-55, i.e. a small number of holes in the 56 Ni core, are investigated similarly. In the third chapter much lighter nuclei (A = 4-16) are discussed. For a theoretical description of nonnormal-parity states one has to admit the excitation of at least one nucleon to a higher harmonic-oscillator major-shell. (Auth.)

  3. Pion-nucleon vertex function with an off-shell nucleon

    International Nuclear Information System (INIS)

    Nutt, W.T.; Shakin, C.M.

    1977-01-01

    A model calculation for the π-N vertex function is presented in the case in which there is a single off-mass-shell nucleon and a (nearly) on-mass-shell pion. Very strong effects due to the P 11 resonance at 1470 MeV are found. A simple parametrization of the vertex function is prvided in the case that at least one nucleon is on its mass shell. (Auth.)

  4. Off-shell CHY amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  5. Neutron transfer reactions in the fp-shell region

    International Nuclear Information System (INIS)

    Mahgoub, Mahmoud

    2008-01-01

    Neutron transfer reactions were used to study the stability of the magic number N=28 near 56 Ni. On one hand the one-neutron pickup (d,p) reaction was used for precision spectroscopy of single-particle levels in 55 Fe. On the other hand we investigated the two-neutron transfer mechanism into 56 Ni using the pickup reaction 58 Ni(vectorp,t) 56 Ni. In addition the reliability of inverse kinematics reactions at low energy to study exotic nuclei was tested by the neutron transfer reactions t( 40 Ar,p) 42 Ar and d( 54 Fe,p) 55 Fe using tritium and deuterium targets, respectively, and by comparing the results with those of the normal kinematics reactions. The experimental data, differential cross-section and analyzing powers, are compared to DWBA and coupled channel calculations utilizing the code CHUCK3. By performing the single-neutron stripping reaction (vectord,p) on 54 Fe the 1f 7/2 shell in the ground state configuration was found to be partly broken. The instability of the 1f 7/2 shell and the magic number N=28 was confirmed once by observing a number of levels with J π = 7/2 - at low excitation energies, which should not be populated if 54 Fe has a closed 1f 7/2 shell, and also by comparing our high precision experimental data with a large scale shell model calculation using the ANTOINE code [5]. Calculations including a partly broken 1f 7/2 shell show better agreement with the experiment. The instability of the 1f 7/2 shell was confirmed also by performing the two-neutron pick-up reaction (vectorp,t) on 58 Ni to study 56 Ni, where a considerable improvement in the DWBA calculation was observed after considering 1f 7/2 as a broken shell. To prove the reliability of inverse kinematics transfer reactions at low energies (∝ 2 AMeV), the aforementioned single-neutron transfer reaction (d,p) was repeated using a beam of 54 Fe ions and a deuteron target. From this inverse kinematics experiment we were able to reproduce the absolute cross-section and angular

  6. Radar attenuation in Europa's ice shell: obstacles and opportunities for constraining shell thickness and thermal structure

    Science.gov (United States)

    Kalousova, Klara; Schroeder, Dustin M.; Soderlund, Krista M.; Sotin, Christophe

    2016-10-01

    With its strikingly young surface and possibly recent endogenic activity, Europa is one of the most exciting bodies within our Solar System and a primary target for spacecraft exploration. Future missions to Europa are expected to carry ice penetrating radar instruments which are powerful tools to investigate the subsurface thermophysical structure of its ice shell.Several authors have addressed the 'penetration depth' of radar sounders at icy moons, however, the concept and calculation of a single value penetration depth is a potentially misleading simplification since it ignores the thermal and attenuation structure complexity of a realistic ice shell. Here we move beyond the concept of a single penetration depth by exploring the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's ice shell as well as for a low loss and high loss temperature-dependent attenuation model. The possibility to detect brines is also investigated.Our results indicate that: (i) for all ice shell thicknesses investigated (5-30 km), a nominal satellite-borne radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth strongly varies laterally with the deepest penetration possible through the cold downwellings, (iii) the direct detection of the ice/ocean interface might be possible for shells of up to 15 km if the radar signal travels through the cold downwelling, (iv) even if the ice/ocean interface is not detected, the penetration through most of the shell could constrain the deep shell structure through the loss of signal, and (v) for all plausible ice shells the two-way attenuation to the eutectic point is ≤30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow structure.Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. K.K. acknowledges support by the Grant Agency of the

  7. Minute co-variations of Sr/Ca ratios and microstructures in the aragonitic shell of Cerastoderma edule (Bivalvia) - Are geochemical variations at the ultra-scale masking potential environmental signals?

    Science.gov (United States)

    Füllenbach, Christoph S.; Schöne, Bernd R.; Shirai, Kotaro; Takahata, Naoto; Ishida, Akizumi; Sano, Yuji

    2017-05-01

    controlling their formation exert a strong control over the incorporation of strontium into shells of C. edule. Analytical techniques with lower sampling resolution, e.g., LA-ICP-MS, cannot resolve such fine-scale Sr variations. As a result, the signal-to-noise ratio decreases and the data generated by such techniques may therefore not seem to provide useful paleotemperature data. Future studies should therefore employ a combined analysis of Sr/Cashell and shell microstructures, and interpret Sr/Ca values of shell portions with different microstructures separately.

  8. Core excitations across the neutron shell gap in 207Tl

    Directory of Open Access Journals (Sweden)

    E. Wilson

    2015-07-01

    Full Text Available The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.

  9. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry.

    Science.gov (United States)

    Ooi, Leslie C-L; Low, Eng-Ti L; Abdullah, Meilina O; Nookiah, Rajanaidu; Ting, Ngoot C; Nagappan, Jayanthi; Manaf, Mohamad A A; Chan, Kuang-Lim; Halim, Mohd A; Azizi, Norazah; Omar, Wahid; Murad, Abdul J; Lakey, Nathan; Ordway, Jared M; Favello, Anthony; Budiman, Muhammad A; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T; Jiang, Nan; Smith, Steven W; Brown, Clyde R; Kuek, Alex C S; Bahrain, Shabani; Hoynes-O'Connor, Allison; Nguyen, Amelia Y; Chaudhari, Hemangi G; Shah, Shivam A; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian

  10. Snap-Through Buckling Problem of Spherical Shell Structure

    Directory of Open Access Journals (Sweden)

    Sumirin Sumirin

    2014-12-01

    Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.

  11. Modelling the carbon AGB star R Sculptoris. Constraining the dust properties in the detached shell based on far-infrared and sub-millimeter observations

    Science.gov (United States)

    Brunner, M.; Maercker, M.; Mecina, M.; Khouri, T.; Kerschbaum, F.

    2018-06-01

    Context. On the asymptotic giant branch (AGB), Sun-like stars lose a large portion of their mass in an intensive wind and enrich the surrounding interstellar medium with nuclear processed stellar material in the form of molecular gas and dust. For a number of carbon-rich AGB stars, thin detached shells of gas and dust have been observed. These shells are formed during brief periods of increased mass loss and expansion velocity during a thermal pulse, and open up the possibility to study the mass-loss history of thermally pulsing AGB stars. Aims: We study the properties of dust grains in the detached shell around the carbon AGB star R Scl and aim to quantify the influence of the dust grain properties on the shape of the spectral energy distribution (SED) and the derived dust shell mass. Methods: We modelled the SED of the circumstellar dust emission and compared the models to observations, including new observations of Herschel/PACS and SPIRE (infrared) and APEX/LABOCA (sub-millimeter). We derived present-day mass-loss rates and detached shell masses for a variation of dust grain properties (opacities, chemical composition, grain size, and grain geometry) to quantify the influence of changing dust properties to the derived shell mass. Results: The best-fitting mass-loss parameters are a present-day dust mass-loss rate of 2 × 10-10 M⊙ yr-1 and a detached shell dust mass of (2.9 ± 0.3) × 10-5 M⊙. Compared to similar studies, the uncertainty on the dust mass is reduced by a factor of 4. We find that the size of the grains dominates the shape of the SED, while the estimated dust shell mass is most strongly affected by the geometry of the dust grains. Additionally, we find a significant sub-millimeter excess that cannot be reproduced by any of the models, but is most likely not of thermal origin. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  12. 3D-modelling of bifunctional core-shell catalysts for the production of fuels from biomass-based synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenjin; Lee, Seung Cheol; Li, Hui; Pfeifer, Peter; Dittmeyer, Roland [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Micro Process Engineering (IMVT)

    2013-09-01

    Until now, the main route for the production of DME from synthesis gas in industry is methanol synthesis on a metallic catalyst and subsequent dehydration of methanol on an acid catalyst (two-step process). A single-step process using bifunctional catalysts to perform the two steps simultaneously would be preferred e.g. due to thermodynamic considerations; but this is impeded by the higher volumetric heat release which may cause deactivation of the methanol synthesis catalyst function. Thus we propose to conduct the reaction in a microchannel reactor. However, in order to increase the productivity of the microchannel reactor and to lower the investment costs, we aim at a high selectivity and activity of the catalyst. The continuously removal of methanol by dehydration on an acidic ZSM-5 catalyst as shell improves the thermodynamic conditions of methanol synthesis in the CuO/ZnO/Al{sub 2}O{sub 3} core; thus, the synthesis gas conversion can be higher than that determined by the thermodynamics of pure methanol synthesis. The molecular sieving in the zeolite layer can further lead to higher selectivity of DME at milder reaction conditions. However, mass transport limitation of the synthesis gas to the catalyst core should not hinder the reaction, and therefore a more detailed investigation is required. In order to computer-aided optimize the catalyst structure and the operating conditions for core-shell catalysts, a simulation model should be developed to study the coupled reaction and transport processes in core-shell catalysts. In this simulation model the complicated interaction of diffusion and reaction in the zeolite layer (shell) must be detailed by a network model to describe its structure and the mechanisms effectively. In addition, suitable diffusion and kinetic models are required to describe the mass transport and reactions in the layer. Suitable networks, diffusion and kinetic models are discussed for 3D simulations in this contribution. (orig.)

  13. Large-area super-resolution optical imaging by using core-shell microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Lo, Wei-Chieh

    2017-09-01

    We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.

  14. Effect of shell thickness on the exchange bias blocking temperature and coercivity in Co-CoO core-shell nanoparticles

    Science.gov (United States)

    Thomas, S.; Reethu, K.; Thanveer, T.; Myint, M. T. Z.; Al-Harthi, S. H.

    2017-08-01

    The exchange bias blocking temperature distribution of naturally oxidized Co-CoO core-shell nanoparticles exhibits two distinct signatures. These are associated with the existence of two magnetic entities which are responsible for the temperature dependence of an exchange bias field. One is from the CoO grains which undergo thermally activated magnetization reversal. The other is from the disordered spins at the Co-CoO interface which exhibits spin-glass-like behavior. We investigated the oxide shell thickness dependence of the exchange bias effect. For particles with a 3 nm thick CoO shell, the predominant contribution to the temperature dependence of exchange bias is the interfacial spin-glass layer. On increasing the shell thickness to 4 nm, the contribution from the spin-glass layer decreases, while upholding the antiferromagnetic grain contribution. For samples with a 4 nm CoO shell, the exchange bias training was minimal. On the other hand, 3 nm samples exhibited both the training effect and a peak in coercivity at an intermediate set temperature Ta. This is explained using a magnetic core-shell model including disordered spins at the interface.

  15. New method to evaluate optical properties of core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Renteria-Tapia, V. [Universidad de Guadalajara, Ameca, Departamento de Ciencias Naturales y Exactas, Centro Universitario de Los Valles (Mexico); Franco, A., E-mail: alfredofranco@fisica.unam.mx; Garcia-Macedo, J. [Universidad Nacional Autonoma de Mexico, Departamento de Estado Solido, Instituto de Fisica (Mexico)

    2012-06-15

    A new method is presented to calculate, for metallic core-dielectric shell nanostructures, the local refractive index, resonance condition, maximum spectral shift, plasma wavelength, and the sensitivity of the wavelength maximum to variations in the refractive index of the environment. The equations that describe these properties are directly related to the surface plasmon peak position, refractive index of the shell, and to the surrounding medium. The method is based on the approach that a layered core dispersed in a dielectric environment (core-shell model) can be figured out as an uncoated sphere dispersed in a medium with a local refractive index (local refractive index model). Thus, in the Mie theory, the same spectral position of the surface plasmon resonance peak can be obtained by varying the volume fraction of the shell or by varying the local refractive index. The assumed equivalence between plasmon resonance wavelengths enable us to show that the local refractive index depends geometrically on the shell volume fraction. Hence, simple relationships between optical and geometrical properties of these core-shell nanostructures are obtained. Furthermore, good agreement is observed between the new relationships and experimental data corresponding to gold nanoparticles (radius = 7.5 nm) covered with silica shells (with thicknesses up to 29.19 nm), which insured that the equivalence hypothesis is correct.

  16. New method to evaluate optical properties of core–shell nanostructures

    International Nuclear Information System (INIS)

    Rentería-Tapia, V.; Franco, A.; García-Macedo, J.

    2012-01-01

    A new method is presented to calculate, for metallic core–dielectric shell nanostructures, the local refractive index, resonance condition, maximum spectral shift, plasma wavelength, and the sensitivity of the wavelength maximum to variations in the refractive index of the environment. The equations that describe these properties are directly related to the surface plasmon peak position, refractive index of the shell, and to the surrounding medium. The method is based on the approach that a layered core dispersed in a dielectric environment (core–shell model) can be figured out as an uncoated sphere dispersed in a medium with a local refractive index (local refractive index model). Thus, in the Mie theory, the same spectral position of the surface plasmon resonance peak can be obtained by varying the volume fraction of the shell or by varying the local refractive index. The assumed equivalence between plasmon resonance wavelengths enable us to show that the local refractive index depends geometrically on the shell volume fraction. Hence, simple relationships between optical and geometrical properties of these core–shell nanostructures are obtained. Furthermore, good agreement is observed between the new relationships and experimental data corresponding to gold nanoparticles (radius = 7.5 nm) covered with silica shells (with thicknesses up to 29.19 nm), which insured that the equivalence hypothesis is correct.

  17. Region of validity of the Thomas–Fermi model with quantum, exchange and shell corrections

    International Nuclear Information System (INIS)

    Dyachkov, S A; Levashov, P R; Minakov, D V

    2016-01-01

    A novel approach to calculate thermodynamically consistent shell corrections in wide range of parameters is used to predict the region of validity of the Thomas-Fermi approach. Calculated thermodynamic functions of electrons at high density are consistent with the more precise density functional theory. It makes it possible to work out a semi-classical model applicable both at low and high density. (paper)

  18. Mechanical characteristics of fully mechanized top-coal caving face and surrounding rock stress shell

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guang-xiang [Anhui University of Science and Technology, Huainan (China)

    2005-06-15

    The distribution of surrounding rock stress in fully mechanized top-coal caving (FMTC) face was fully researched by large-scale and non-linear three-dimensional numerical simulation and equivalent laboratory. The results show that, there is the structure that is made of macroscopical stress shell composed of high stress binds in overlying strata of FMTC face. Stress shell, which bears and pass load of overlying strata, is primary supporting body. The stress in skewback of stress shell forms abutment pressure of surrounding rock in vicinity of working face. Bond-beam structure lies in reducing zone under stress shell. It only bear partial burden of strata under stress shell. The uppermost mechanical characteristic of FMTC face is lying in the low stress area under stress shell. It is the essential cause of strata behaviors of FMTC face relaxation. On the basis of analyzing stress shell, the mechanical essence that top coal performs a function of bedding is demonstrated. 4 refs., 7 figs.

  19. Shell effects in the superasymmetric fission

    CERN Document Server

    Mirea, M

    2002-01-01

    A new formalism based on the Landau-Zener promotion mechanism intends to explain the fine structure of alpha and cluster decay. The analysis of this phenomenon is accomplished by following the modality in which the shells are reorganized during the decay process beginning with the initial ground state of the parent towards the final configuration of two separated nuclei. A realistic level scheme is obtained in the framework of the superasymmetric two-center shell model. (author)

  20. Post-collapse perturbation theory in 1D cosmology - beyond shell-crossing

    Science.gov (United States)

    Taruya, Atsushi; Colombi, Stéphane

    2017-10-01

    We develop a new perturbation theory (PT) treatment that can describe gravitational dynamics of large-scale structure after shell-crossing in the one-dimensional cosmological case. Starting with cold initial conditions, the motion of matter distribution follows at early stages the single-stream regime, which can, in one dimension, be described exactly by the first-order Lagrangian perturbation, I.e. the Zel'dovich solution. However, the single-stream flow no longer holds after shell-crossing and a proper account of the multistream flow is essential for post-collapse dynamics. In this paper, extending previous work by Colombi, we present a perturbative description for the multistream flow after shell-crossing in a cosmological setup. In addition, we introduce an adaptive smoothing scheme to deal with the bulk properties of phase-space structures. The filtering scales in this scheme are linked to the next-crossing time in the post-collapse region, estimated from our PT calculations. Our PT treatment combined with adaptive smoothing is illustrated in several cases. Predictions are compared to simulations and we find that post-collapse PT with adaptive smoothing reproduces the power spectrum and phase-space structures remarkably well even at small scales, where Zel'dovich solution substantially deviates from simulations.

  1. Complete Surface Mapping of ICF Shells

    International Nuclear Information System (INIS)

    Stephens, R.B.; Olson, D.; Huang, H.; Gibson, J.B.

    2004-01-01

    Inertial confinement fusion shells have previously been evaluated on the basis of microscopic examination for local defects and limited surface profiling to represent their average fluctuation power. Since defects are local, and don't always have visible edges, this approach both misses some important fluctuations and doesn't properly represent the spatially dependent surface fluctuation power. We have taken the first step toward correcting this problem by demonstrating the capability to completely map the surface of a NIF shell with the resolution to account for all modes. This allows complete accounting of all the surface fluctuations. In the future this capability could be used for valuable shells to generate a complete r(θ, φ) surface map for accurate 3-D modeling of a shot

  2. COMPLETE SURFACE MAPPING OF ICF SHELLS

    International Nuclear Information System (INIS)

    STEPHENS, R.B.; OLSON, D.; HUANG, H.; GIBSON, J.B.

    2003-09-01

    OAK-B135 Inertial confinement fusion shells have previously been evaluated on the basis of microscopic examination for local defects and limited surface profiling to represent their average fluctuation power. Since defects are local, and don't always have visible edges, this approach both misses some important fluctuations and doesn't properly represent the spatially dependent surface fluctuation power. they have taken the first step toward correcting this problem by demonstrating the capability to completely map the surface of a NIF shell with the resolution to account for all modes. This allows complete accounting of all the surface fluctuations. In the future this capability could be used for valuable shells to generate a complete r(θ,ψ) surface map for accurate 3-D modeling of a shot

  3. Fixed J spectral distributions in large shell model spaces. Pt. 3

    International Nuclear Information System (INIS)

    Jacquemin, C.; Auger, G.; Quesne, C.

    1982-01-01

    A method is developed to exactly calculate the fixed J quasiparticle centroid energies and partial widths. Some results obtained in the even-mass lead isotopes with various interactions are analysed. Fixed J quasiparticle distributions are used to predict an upper limit for the deviations between the quasiparticle approximation and the shell model results for the low-energy levels. The influence of the states with a high quasiparticle number in the low-energy region is seen to strongly depend upon the interaction. The importance of the dimensionalities and the internal widths is explaining the admixtures is stressed. (orig.)

  4. Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dytrych, T. [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic); Louisiana State Univ., Baton Rouge, LA (United States); Maris, Pieter [Iowa State Univ., Ames, IA (United States); Launey, K. D. [Louisiana State Univ., Baton Rouge, LA (United States); Draayer, J. P. [Louisiana State Univ., Baton Rouge, LA (United States); Vary, James [Iowa State Univ., Ames, IA (United States); Langr, D. [Czech Technical Univ., Prague (Czech Republic); Aerospace Research and Test Establishment, Prague (Czech Republic); Saule, E. [Univ. of North Carolina, Charlotte, NC (United States); Caprio, M. A. [Univ. of Notre Dame, IN (United States); Catalyurek, U. [The Ohio State Univ., Columbus, OH (United States). Dept. of Electrical and Computer Engineering; Sosonkina, M. [Old Dominion Univ., Norfolk, VA (United States)

    2016-06-09

    We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and signi cant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis a ords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.

  5. Coulomb energy of uniformly charged spheroidal shell systems.

    Science.gov (United States)

    Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera

    2015-03-01

    We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.

  6. Continuum shell-model study of 16O and 40Ca

    International Nuclear Information System (INIS)

    Heil, V.; Stock, W.

    1976-06-01

    Continuum shell-model calculations of the E1 and E2 strengths in 16 O and 40 Ca are presented. A consistent microscopic description of both the giant resonances and isospin forbidden E1- transitions between bound states can be achieved through 1) a careful choice of the single-particle potential, 2) the use of a finite-range residual interaction (including the Coulomb particle-hole force), and 3) the removal of spurious states. The results obtained within the separation expansion approximation of Birkholz are in reasonable agreement with measured photonucleon angular distributions and formfactors for electroexcitation. The influence of the continuum on the isospin mixing in bound states is found to be very strong. (orig.) [de

  7. Estimation of shell thickness in a continuously cast steel billet using radiotracers

    International Nuclear Information System (INIS)

    Prasad, A.S.; Pandey, J.C.; Kaur, G.

    1994-01-01

    In the continuous casting of steel, one of the factors which limits the rate of faster withdrawal of the casting from the mould is the thickness of the solid shell below the mould. If the shell can not contain the liquid pool, breakouts occur and process of casting disrupts. Estimates of shell thickness have been made on the basis of heat- transfer considerations. The shell thickness could also be delineated, to some extent, by adding radiotracers during casting and subsequently determining the dispersion of radioactivity by autoradiography. The paper presents the results of the estimation of shell thickness based on the heat-transfer model and validation of the model by plant trials using radiotracers. (author). 11 refs., 5 figs., 1 tab

  8. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya Eri

    2015-01-01

    Full Text Available Existence of the electric dipole moment (EDM is deeply related with time-reversal invariance. The EDMof a diamagnetic atom is mainly induced by the nuclear Schiff moment. After carrying out the shell model calculations to obtain wavefunctions for Xe isotopes, we evaluate nuclear Schiff moments for Xe isotopes to estimate their atomic EDMs. We estimate the contribution from each single particle orbital for the Schiff moment. It is found that the contribution on the Schiff moment is very different from orbital to orbital.

  9. Micromagnetic studies of three-dimensional pyramidal shell structures

    International Nuclear Information System (INIS)

    Knittel, A; Franchin, M; Fischbacher, T; Fangohr, H; Nasirpouri, F; Bending, S J

    2010-01-01

    We present a systematic numerical analysis of the magnetic properties of pyramidal-shaped core-shell structures in a size range below 400 nm. These are three-dimensional structures consisting of a ferromagnetic shell which is grown on top of a non-magnetic core. The standard micromagnetic model without the magnetocrystalline anisotropy term is used to describe the properties of the shell. We vary the thickness of the shell between the limiting cases of an ultra-thin shell and a conventional pyramid and delineate different stable magnetic configurations. We find different kinds of single-domain states, which predominantly occur at smaller system sizes. In analogy to equivalent states in thin square films we term these onion, flower, C and S states. At larger system sizes, we also observe two types of vortex states, which we refer to as symmetric and asymmetric vortex states. For a classification of the observed states, we derive a phase diagram that specifies the magnetic ground state as a function of structure size and shell thickness. The transitions between different ground states can be understood qualitatively. We address the issue of metastability by investigating the stability of all occurring configurations for different shell thicknesses. For selected geometries and directions hysteresis measurements are analysed and discussed. We observe that the magnetic behaviour changes distinctively in the limit of ultra-thin shells. The study has been motivated by the recent progress made in the growth of faceted core-shell structures.

  10. Dossier Shell Eco-Marathon; Dossier Shell Eco-Marathon

    Energy Technology Data Exchange (ETDEWEB)

    Matla, P.

    2012-05-15

    Three articles address subjects concerning the annual race with highly energy efficient cars: the Shell Eco-Marathon. [Dutch] In 3 artikelen wordt aandacht besteed aan de ontwerpen voor de jaarlijkse race met superzuinige auto's, de Shell Eco-Marathon.

  11. Off-shell sensitivity, repulsive correlations and the pion-nucleus optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Keister, B D [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics

    1977-07-01

    Repulsive nucleon-nucleon correlations tend to reduce the dependence of pion-nucleus elastic scattering upon the off-shell pion-nucleon dynamics. However, optical potential calculations can in practice be quite sensitive to the particular choice of off-shell model parameters. It is argued that this sensitivity results from the nature of the optical potential as a one-body operator which introduces extra off-shell dependence not found in physical many-body process itself. Thus, one must be very careful in any attempt to extract correlation or off-shell information, or to predict pion-nucleus phase shifts, by means of an optical potential theory. Results of model calculations are presented for purposes of illustration.

  12. Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.

    Science.gov (United States)

    Gangil, Sandip

    2014-03-01

    Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications

    International Nuclear Information System (INIS)

    Koller, Josep; Reeves, Geoffrey D.; Friedel, Reiner H.W.

    2008-01-01

    Space weather modeling, forecasts, and predictions, especially for the radiation belts in the inner magnetosphere, require detailed information about the Earth's magnetic field. Results depend on the magnetic field model and the L* (pron. L-star) values which are used to describe particle drift shells. Space wather models require integrating particle motions along trajectories that encircle the Earth. Numerical integration typically takes on the order of 10 5 calls to a magnetic field model which makes the L* calculations very slow, in particular when using a dynamic and more accurate magnetic field model. Researchers currently tend to pick simplistic models over more accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic field models affect the calculation of electron phase space density by applying adiabatic invariants including the drift shell value L*. We present here a new method using a surrogate model based on a neural network technique to replace the time consuming L* calculations made with modern magnetic field models. The advantage of surrogate models (or meta-models) is that they can compute the same output in a fraction of the time while adding only a marginal error. Our drift shell model LANL* (Los Alamos National Lab L-star) is based on L* calculation using the TSK03 model. The surrogate model has currently been tested and validated only for geosynchronous regions but the method is generally applicable to any satellite orbit. Computations with the new model are several million times faster compared to the standard integration method while adding less than 1% error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric space weather is limited partly due to the long computing time of accurate L* values. Without them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the inner magnetosphere are used to understand physical

  14. LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Koller, Josep [Los Alamos National Laboratory; Reeves, Geoffrey D [Los Alamos National Laboratory; Friedel, Reiner H W [Los Alamos National Laboratory

    2008-01-01

    Space weather modeling, forecasts, and predictions, especially for the radiation belts in the inner magnetosphere, require detailed information about the Earth's magnetic field. Results depend on the magnetic field model and the L* (pron. L-star) values which are used to describe particle drift shells. Space wather models require integrating particle motions along trajectories that encircle the Earth. Numerical integration typically takes on the order of 10{sup 5} calls to a magnetic field model which makes the L* calculations very slow, in particular when using a dynamic and more accurate magnetic field model. Researchers currently tend to pick simplistic models over more accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic field models affect the calculation of electron phase space density by applying adiabatic invariants including the drift shell value L*. We present here a new method using a surrogate model based on a neural network technique to replace the time consuming L* calculations made with modern magnetic field models. The advantage of surrogate models (or meta-models) is that they can compute the same output in a fraction of the time while adding only a marginal error. Our drift shell model LANL* (Los Alamos National Lab L-star) is based on L* calculation using the TSK03 model. The surrogate model has currently been tested and validated only for geosynchronous regions but the method is generally applicable to any satellite orbit. Computations with the new model are several million times faster compared to the standard integration method while adding less than 1% error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric space weather is limited partly due to the long computing time of accurate L* values. Without them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the inner magnetosphere are used to understand

  15. Core-shell polymer nanorods by a two-step template wetting process

    International Nuclear Information System (INIS)

    Dougherty, S; Liang, J

    2009-01-01

    One-dimensional core-shell polymer nanowires offer many advantages and great potential for many different applications. In this paper we introduce a highly versatile two-step template wetting process to fabricate two-component core-shell polymer nanowires with controllable shell thickness. PLLA and PMMA were chosen as model polymers to demonstrate the feasibility of this process. Solution wetting with different concentrations of polymer solutions was used to fabricate the shell layer and melt wetting was used to fill the shell with the core polymer. The shell thickness was analyzed as a function of the polymer solution concentration and viscosity, and the core-shell morphology was observed with TEM. This paper demonstrates the feasibility of fabricating polymer core-shell nanostructures using our two-step template wetting process and opens the arena for optimization and future experiments with polymers that are desirable for specific applications.

  16. Metal shell technology based upon hollow jet instability

    International Nuclear Information System (INIS)

    Kendall, J.M.; Lee, M.C.; Wang, T.G.

    1982-01-01

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. We describe a technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal. We have produced shells in the 0.7--2.0 mm size range using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold--lead--antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise

  17. Scaling of hydrodynamics and swimming kinematics of shelled Antarctic sea butterfly

    Science.gov (United States)

    Adhikari, Deepak; Webster, Donald; Yen, Jeannette

    2016-11-01

    A portable tomographic PIV system was used to study fluid dynamics and kinematics of pteropods (aquatic snails nicknamed 'sea butterflies') in Antarctica. These pteropods (Limacina helicina antarctica) swim with a pair of parapodia (or "wings") via a unique flapping propulsion mechanism that incorporates similar techniques as observed in small flying insects. The swimming velocity is typically 14 - 30 mm/s for pteropod size ranging 1.5 - 5 mm, and the pteropod shell pitches forward-and-backward at 1.9 - 3 Hz. It has been shown that pitching motion of the shell effectively positions the parapodia such that they flap downwards during both power and recovery strokes. The non-dimensional variables characterizing the motion of swimming pteropods are flapping, translating, and pitching Reynolds numbers (i.e. Ref, ReU, and ReΩ) . We found that the relationship between these Reynolds numbers show an existence of a critical ReΩ, below which pteropods fail to swim successfully. We explore the importance of this critical ReΩ by changing the viscosity of the seawater using methylcellulose. At higher viscosity, our results indicate that pteropods do not swim with optimal propulsion efficiency. Finally, we examine the wake signature of swimming pteropod, consisting of a pair of vortex rings, in the modified viscosity environment.

  18. Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models

    International Nuclear Information System (INIS)

    Saraswati, Teguh Endah; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri

    2017-01-01

    Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH 3 ). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory. (paper)

  19. Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models

    Science.gov (United States)

    Endah Saraswati, Teguh; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri

    2017-01-01

    Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH3). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory.

  20. Simulation of nonlinear benchmarks and sheet metal forming processes using linear and quadratic solid–shell elements combined with advanced anisotropic behavior models

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2016-01-01

    Full Text Available A family of prismatic and hexahedral solid‒shell (SHB elements with their linear and quadratic versions is presented in this paper to model thin 3D structures. Based on reduced integration and special treatments to eliminate locking effects and to control spurious zero-energy modes, the SHB solid‒shell elements are capable of modeling most thin 3D structural problems with only a single element layer, while describing accurately the various through-thickness phenomena. In this paper, the SHB elements are combined with fully 3D behavior models, including orthotropic elastic behavior for composite materials and anisotropic plastic behavior for metallic materials, which allows describing the strain/stress state in the thickness direction, in contrast to traditional shell elements. All SHB elements are implemented into ABAQUS using both standard/quasi-static and explicit/dynamic solvers. Several benchmark tests have been conducted, in order to first assess the performance of the SHB elements in quasi-static and dynamic analyses. Then, deep drawing of a hemispherical cup is performed to demonstrate the capabilities of the SHB elements in handling various types of nonlinearities (large displacements and rotations, anisotropic plasticity, and contact. Compared to classical ABAQUS solid and shell elements, the results given by the SHB elements show good agreement with the reference solutions.

  1. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past

    DEFF Research Database (Denmark)

    Der Sarkissian, Clio; Pichereau, Vianney; Dupont, Catherine

    2017-01-01

    Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro...... extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure......, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine...

  2. Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons

    Science.gov (United States)

    Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.

    2015-12-01

    Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.

  3. Exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model

    International Nuclear Information System (INIS)

    Divari, P.C.; Vergados, J.D.; Kosmas, T.S.; Skouras, L.D.

    2001-01-01

    A comprehensive study of the exotic (μ - ,e + ) conversion in 27 Al, 27 Al(μ - ,e + ) 27 Na is presented. The relevant operators are deduced assuming one-pion and two-pion modes in the framework of intermediate neutrino mixing models, paying special attention to the light neutrino case. The total rate is calculated by summing over partial transition strengths for all kinematically accessible final states derived with s-d shell model calculations employing the well-known Wildenthal realistic interaction

  4. The integumental appendages of the turtle shell: an evo-devo perspective.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Cherepanov, Gennadii O

    2015-05-01

    The turtle shell is composed of dorsal armor (carapace) and ventral armor (plastron) covered by a keratinized epithelium. There are two epithelial appendages of the turtle shell: scutes (large epidermal shields separated by furrows and forming a unique mosaic) and tubercles (numerous small epidermal bumps located on the carapaces of some species). In our perspective, we take a synthetic, comparative approach to consider the homology and evolution of these integumental appendages. Scutes have been more intensively studied, as they are autapomorphic for turtles and can be diagnostic taxonomically. Their pattern of tessellation is stable phylogenetically, but labile in the individual. We discuss the history of developmental investigations of these structures and hypotheses of evolutionary and anomalous variation. In our estimation, the scutes of the turtle shell are an evolutionary novelty, whereas the tubercles found on the shells of some turtles are homologous to reptilian scales. © 2015 Wiley Periodicals, Inc.

  5. International Symposia on Scale Modeling

    CERN Document Server

    Ito, Akihiko; Nakamura, Yuji; Kuwana, Kazunori

    2015-01-01

    This volume thoroughly covers scale modeling and serves as the definitive source of information on scale modeling as a powerful simplifying and clarifying tool used by scientists and engineers across many disciplines. The book elucidates techniques used when it would be too expensive, or too difficult, to test a system of interest in the field. Topics addressed in the current edition include scale modeling to study weather systems, diffusion of pollution in air or water, chemical process in 3-D turbulent flow, multiphase combustion, flame propagation, biological systems, behavior of materials at nano- and micro-scales, and many more. This is an ideal book for students, both graduate and undergraduate, as well as engineers and scientists interested in the latest developments in scale modeling. This book also: Enables readers to evaluate essential and salient aspects of profoundly complex systems, mechanisms, and phenomena at scale Offers engineers and designers a new point of view, liberating creative and inno...

  6. Core/shell CdS/ZnS nanoparticles: Molecular modelling and characterization by photocatalytic decomposition of Methylene Blue

    Czech Academy of Sciences Publication Activity Database

    Praus, P.; Svoboda, L.; Tokarský, J.; Hospodková, Alice; Klemm, V.

    2014-01-01

    Roč. 292, Feb (2014), s. 813-822 ISSN 0169-4332 Institutional support: RVO:68378271 Keywords : core/shell nanoparticles * CdS/ZnS * molecular modelling * electron tunnelling * photocatalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.711, year: 2014

  7. Cosmological streaming velocities and large-scale density maxima

    International Nuclear Information System (INIS)

    Peacock, J.A.; Lumsden, S.L.; Heavens, A.F.

    1987-01-01

    The statistical testing of models for galaxy formation against the observed peculiar velocities on 10-100 Mpc scales is considered. If it is assumed that observers are likely to be sited near maxima in the primordial field of density perturbations, then the observed filtered velocity field will be biased to low values by comparison with a point selected at random. This helps to explain how the peculiar velocities (relative to the microwave background) of the local supercluster and the Rubin-Ford shell can be so similar in magnitude. Using this assumption to predict peculiar velocities on two scales, we test models with large-scale damping (i.e. adiabatic perturbations). Allowed models have a damping length close to the Rubin-Ford scale and are mildly non-linear. Both purely baryonic universes and universes dominated by massive neutrinos can account for the observed velocities, provided 0.1 ≤ Ω ≤ 1. (author)

  8. Multi-Scale Models for the Scale Interaction of Organized Tropical Convection

    Science.gov (United States)

    Yang, Qiu

    Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.

  9. Off-Shell Higgs Probe of Naturalness

    Science.gov (United States)

    Gonçalves, Dorival; Han, Tao; Mukhopadhyay, Satyanarayan

    2018-03-01

    Examining the Higgs sector at high energy scales through off-shell Higgs production can potentially shed light on the naturalness problem of the Higgs boson mass. We propose such a study at the LHC by utilizing a representative model with a new scalar field (S ) coupled to the standard model Higgs doublet (H ) in a form |S |2|H |2. In the process p p →h*→Z Z , the dominant momentum-dependent part of the one-loop scalar singlet corrections, especially above the new threshold at 2 mS, leads to a measurable deviation in the differential distribution of the Z -pair invariant mass, in accordance with the quadratic divergence cancellation to the Higgs mass. We find that it is conceivable to probe such new physics at the 5 σ level at the high-luminosity LHC, improving further with the upgraded 27 TeV LHC, without requiring the precise measurement of the Higgs boson total width. The discovery of such a Higgs portal could also have important implications for thermal dark matter as well as for electroweak baryogenesis.

  10. Modelling by the SPH method of the impact of a shell containing a fluid

    International Nuclear Information System (INIS)

    Maurel, B.

    2008-01-01

    The aim of this work was to develop a numerical simulation tool using a mesh-less approach, able to simulate the deformation and the rupture of thin structures under the impact of a fluid. A model of thick mesh-less shell (Mindlin-Reissner) based on the SPH method has then been carried out. A contact algorithm has moreover been perfected for the interactions between the structure and the fluid, it is modelled too by the SPH method. These studies have been carried out and been included in the CEA Europlexus fast dynamics software. (O.M.)

  11. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.

    Science.gov (United States)

    Sun, Jing Ya; Wang, Zhi Kui; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Tran, Toan Trong; Lu, Xianmao

    2010-12-28

    The intriguing optical and catalytic properties of metal-silica core-shell nanoparticles, inherited from their plasmonic metallic cores together with the rich surface chemistry and increased stability offered by their silica shells, have enabled a wide variety of applications. In this work, we investigate the confined vibrational modes of a series of monodisperse Ag@SiO(2) (cubic core)-shell nanospheres synthesized using a modified Stöber sol-gel method. The particle-size dependence of their mode frequencies has been mapped by Brillouin light scattering, a powerful tool for probing hypersonic vibrations. Unlike the larger particles, the observed spheroidal-like mode frequencies of the smaller ones do not scale with inverse diameter. Interestingly, the onset of the deviation from this linearity occurs at a smaller particle size for higher-energy modes than for lower-energy ones. Finite element simulations show that the mode displacement profiles of the Ag@SiO(2) core-shells closely resemble those of a homogeneous SiO(2) sphere. Simulations have also been performed to ascertain the effects that the core shape and the relative hardness of the core and shell materials have on the vibrations of the core-shell as a whole. As the vibrational modes of a particle have a bearing on its thermal and mechanical properties, the findings would be of value in designing core-shell nanostructures with customized thermal and mechanical characteristics.

  12. Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Zarei, M.Sh.; Amir, S.; Khoddami Maraghi, Z. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)

    2013-02-01

    In this work nonlinear vibration of double-walled carbon nanotube (DWCNT) embedded in an elastic medium and subjected to an axial fluid flow (incompressible and non-viscose) is investigated. The elastic medium is simulated using Pasternak foundation in which adjacent layer interactions are assumed to have been coupled by van der Waals (VdW) force. The higher-order equation of motion is derived using Hamilton's principle and nonlocal-nonlinear shell theory. Galerkin and averaging methods are adopted to solve the higher-order governing equations. Elastic medium, small scale parameter, velocity and fluid density are taken into account to calculate the effects of axial and circumferential wave numbers in this study. Results reveal that increasing circumferential wave number, leads to enhanced nonlinearity. Critical flow velocities of DWCNT are inversely related to the non-local parameter (e{sub 0}a), so that increase in the later lead to reduced critical flow velocities.

  13. Effect of perforation on the sound transmission through a double-walled cylindrical shell

    Science.gov (United States)

    Zhang, Qunlin; Mao, Yijun; Qi, Datong

    2017-12-01

    An analytical model is developed to study the sound transmission loss through a general double-walled cylindrical shell system with one or two walls perforated, which is excited by a plane wave in the presence of external mean flow. The shell motion is governed by the classical Donnell's thin shell theory, and the mean particle velocity model is employed to describe boundary conditions at interfaces between the shells and fluid media. In contrast to the conventional solid double-walled shell system, numerical results show that perforating the inner shell in the transmission side improves sound insulation performance over a wide frequency band, and removes fluctuation of sound transmission loss with frequency at mid-frequencies in the absence of external flow. Both the incidence and azimuthal angles have nearly negligible effect on the sound transmission loss over the low and middle frequency range when perforating the inner shell. Width of the frequency band with continuous sound transmission loss can be tuned by the perforation ratio.

  14. Gamma-Ray Bursts and Relativistic Shells: The Surface Filling Factor

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Cooper, C.; Ramirez-Ruiz, E.; Sumner, M.C.; Yoshida, A.; Namiki, M.

    1999-01-01

    The variability observed in many complex gamma-ray bursts (GRBs) is inconsistent with causally connected variations in a single, symmetric, relativistic shell interacting with the ambient material (open-quotes external shocksclose quotes). Rather, either the central site must produce ∼10 50 ergs s -1 for hundreds of seconds (open-quotes internal shocksclose quotes), or the local spherical symmetry of the shell must be broken on an angular scale much smaller than Γ -1 , where Γ is the bulk Lorentz factor for the shell. The observed variability in the external shock models arises from the number of causally connected regions that (randomly) become active. We define the surface filling factor to be the ratio of the area of causally connected regions that become active to the observable area of the shell. From the observed variability in 52 BATSE bursts, we estimate the surface filling factor to be typically ∼5x10 -3 , although some values are near unity. We find that the surface filling factor, f, is ∼0.1ΔT/T in both the constant Γ phase (which probably produces the GRB) and the decelerating phase (which probably produces the X-ray afterglows). Here, ΔT is a typical timescale of variability, and T is the time since the initial signal. We analyze the 2 hr flare seen by ASCA 36 hr after the GRB and conclude that the surface filling factor must be small (10 -3 ) in the X-ray afterglow phase as well. Compared with the energy required for an isotropic shell, E iso , explanations for a low surface filling factor can either require more energy (f -1 E iso ∼10 56 ergs) or less energy [(ΔT/4T) 2 E iso ∼10 49 ergs]. Thus, the low filling factor cannot be used as a strong argument that GRBs must be internal shocks. copyright copyright 1999. The American Astronomical Society

  15. Ab initio results for intermediate-mass, open-shell nuclei

    Science.gov (United States)

    Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.

    2017-01-01

    A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.

  16. Bridging quantum chemistry and nuclear structure theory: Coupled-cluster calculations for closed- and open-shell nuclei

    International Nuclear Information System (INIS)

    Piecuch, Piotr; Wloch, Marta; Gour, Jeffrey R.; Dean, David J.; Papenbrock, Thomas; Hjorth-Jensen, Morten

    2005-01-01

    We review basic elements of the single-reference coupled-cluster theory and discuss large scale ab initio calculations of ground and excited states of 15O, 16O, and 17O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we obtain the converged results for 16O and promising preliminary results for 15O and 17O at the level of two-body interactions. The calculated properties other than energies include matter density, charge radius, and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to 7 or 8 major oscillator shells, for which non-truncated shell-model calculations for nuclei with A = 15 17 active particles are presently not possible. We argue that the use of coupled-cluster methods and computer algorithms developed by quantum chemists to calculate properties of nuclei is an important step toward the development of accurate and affordable many-body theories that cross the boundaries of various physical sciences

  17. Vibrations of composite circular shell structures due to transient loads

    International Nuclear Information System (INIS)

    Schrader, K.-H.; Krutzik, N.; Winkel, G.

    1975-01-01

    Referring to a container consisting of different shell structures - such as spherical, cylindrical and conical shells - the dynamic behavior of coupled spatial shell structures due to transient loads will be investigated. The spatial structure including the filling of water will be idealized as a three-dimensional model consisting of ring elements. The influence of the water filling on the vibrations will be considered by virtual masses added to the shell structures. In circular direction as well as in meridional direction a consistent mass model has been used. By variation of the virtual masses it will be clarified, how these additional masses influence the vibrational behavior of the composed system. Another aspect which will be investigated is the influence of different stiffnesses of substructures or parts of substructures on the natural frequencies, and on their affiliated eigensystems. Furthermore, the maximum and minimum stresses in the structures caused by transient loads acting on the inner surface of the shells will be explored. Here it seems to be possible to locate an area of maximum strain. Rotational loads as well as nonrotational loads will be considered

  18. Compressed shell conditions extracted from spectroscopic analysis of Ti K-shell absorption spectra with evaluation of line self-emission

    Energy Technology Data Exchange (ETDEWEB)

    Johns, H. M.; Mancini, R. C.; Hakel, P.; Nagayama, T. [Physics Department, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557 (United States); Smalyuk, V. A.; Regan, S. P.; Delettrez, J. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States)

    2014-08-15

    Ti-doped tracer layers embedded in the shell at varying distances from the fuel-shell interface serve as a spectroscopic diagnostic for direct-drive experiments conducted at OMEGA. Detailed modeling of Ti K-shell absorption spectra produced in the tracer layer considers n = 1–2 transitions in F- through Li-like Ti ions in the 4400–4800 eV range, both including and excluding line self-emission. Testing the model on synthetic spectra generated from 1-D LILAC hydrodynamic simulations reveals that the model including self-emission best reproduces the simulation, while the model excluding self-emission overestimates electron temperature T{sub e} and density N{sub e} to a higher degree for layers closer to the core. The prediction of the simulation that the magnitude of T{sub e} and duration of Ti absorption will be strongly tied to the distance of the layer from the core is consistent with the idea that regions of the shell close to the core are more significantly heated by thermal transport out of the hot dense core, but more distant regions are less affected by it. The simulation predicts more time variation in the observed T{sub e}, N{sub e} conditions in the compressed shell than is observed in the experiment, analysis of which reveals conditions remain in the range T{sub e} = 400–600 eV and N{sub e} = 3.0–10.0 × 10{sup 24} cm{sup −3} for all but the most distant Ti-doped layer, with error bars ∼5% T{sub e} value and ∼10% N{sub e} on average. The T{sub e}, N{sub e} conditions of the simulation lead to a greater degree of ionization for zones close to the core than occurs experimentally, and less ionization for zones far from the core.

  19. Water Dynamics in the Hydration Shells of Biomolecules

    Science.gov (United States)

    2017-01-01

    The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water. PMID:28248491

  20. Neutron transfer reactions in the fp-shell region

    Energy Technology Data Exchange (ETDEWEB)

    Mahgoub, Mahmoud

    2008-06-26

    Neutron transfer reactions were used to study the stability of the magic number N=28 near {sup 56}Ni. On one hand the one-neutron pickup (d,p) reaction was used for precision spectroscopy of single-particle levels in {sup 55}Fe. On the other hand we investigated the two-neutron transfer mechanism into {sup 56}Ni using the pickup reaction {sup 58}Ni((vector)p,t){sup 56}Ni. In addition the reliability of inverse kinematics reactions at low energy to study exotic nuclei was tested by the neutron transfer reactions t({sup 40}Ar,p){sup 42}Ar and d({sup 54}Fe,p){sup 55}Fe using tritium and deuterium targets, respectively, and by comparing the results with those of the normal kinematics reactions. The experimental data, differential cross-section and analyzing powers, are compared to DWBA and coupled channel calculations utilizing the code CHUCK3. By performing the single-neutron stripping reaction ((vector)d,p) on {sup 54}Fe the 1f{sub 7/2} shell in the ground state configuration was found to be partly broken. The instability of the 1f{sub 7/2} shell and the magic number N=28 was confirmed once by observing a number of levels with J{sup {pi}} = 7/2{sup -} at low excitation energies, which should not be populated if {sup 54}Fe has a closed 1f{sub 7/2} shell, and also by comparing our high precision experimental data with a large scale shell model calculation using the ANTOINE code [5]. Calculations including a partly broken 1f{sub 7/2} shell show better agreement with the experiment. The instability of the 1f{sub 7/2} shell was confirmed also by performing the two-neutron pick-up reaction ((vector)p,t) on {sup 58}Ni to study {sup 56}Ni, where a considerable improvement in the DWBA calculation was observed after considering 1f{sub 7/2} as a broken shell. To prove the reliability of inverse kinematics transfer reactions at low energies ({proportional_to} 2 AMeV), the aforementioned single-neutron transfer reaction (d,p) was repeated using a beam of {sup 54}Fe ions and a

  1. Shell and isotopic effects in neutron interaction with nuclei. [Optical model and nucleus asymmetry correlations

    Energy Technology Data Exchange (ETDEWEB)

    Pasechnik, M V

    1978-01-01

    Major results of investigations into the shell structure of deformed nuclei with the number of neutrons of approximately 100, as well as new isotopic effects in the inelastic scattering of fast neutrons with nuclei are reported. The experiments conducted at the WWR-M research reactor have shown a substantial dependence of the nuclear excited energy-level density on the mass number and the number of neutrons. The fact resulted in a conclusion that the deformed nuclei possess filled shells, that was an incentive to revise the whole nuclear shell concept. In particular it was established that the property of magicity rests not only on the sphericity of nuclei but it may be also observed in strongly deformed nuclei. The isotope-spin dependence of the nuclear potential was studied at the AG-5 pulse electrostatic generator. The parameters of the potential were determined by comparing the experimental data on inelastic scattering and polarization of fast neutrons by nuclei from /sup 48/Ti to /sup 209/Bi with the calculations in terms of the optical model. Simple correlations were established between the optical potential and the nucleus asymmetry parameter ..cap alpha..=N-Z/A in wide ranges of mass numbers and neutron energy.

  2. Large-scale exact diagonalizations reveal low-momentum scales of nuclei

    Science.gov (United States)

    Forssén, C.; Carlsson, B. D.; Johansson, H. T.; Sääf, D.; Bansal, A.; Hagen, G.; Papenbrock, T.

    2018-03-01

    Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding 1010 on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to Nmax=22 and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.

  3. Delft-FEWS:A Decision Making Platform to Intergrate Data, Model, Algorithm for Large-Scale River Basin Water Management

    Science.gov (United States)

    Yang, T.; Welles, E.

    2017-12-01

    In this paper, we introduce a flood forecasting and decision making platform, named Delft-FEWS, which has been developed over years at the Delft Hydraulics and now at Deltares. The philosophy of Delft-FEWS is to provide water managers and operators with an open shell tool, which allows the integratation of a variety of hydrological, hydraulics, river routing, and reservoir models with hydrometerological forecasts data. Delft-FEWS serves as an powerful tool for both basin-scale and national-scale water resources management. The essential novelty of Delft-FEWS is to change the flood forecasting and water resources management from a single model or agency centric paradigm to a intergrated framework, in which different model, data, algorithm and stakeholders are strongly linked together. The paper will start with the challenges in water resources managment, and the concept and philosophy of Delft-FEWS. Then, the details of data handling and linkages of Delft-FEWS with different hydrological, hydraulic, and reservoir models, etc. Last, several cases studies and applications of Delft-FEWS will be demonstrated, including the National Weather Service and the Bonneville Power Administration in USA, and a national application in the water board in the Netherland.

  4. Geometrically controlled snapping transitions in shells with curved creases.

    Science.gov (United States)

    Bende, Nakul Prabhakar; Evans, Arthur A; Innes-Gold, Sarah; Marin, Luis A; Cohen, Itai; Hayward, Ryan C; Santangelo, Christian D

    2015-09-08

    Curvature and mechanics are intimately connected for thin materials, and this coupling between geometry and physical properties is readily seen in folded structures from intestinal villi and pollen grains to wrinkled membranes and programmable metamaterials. While the well-known rules and mechanisms behind folding a flat surface have been used to create deployable structures and shape transformable materials, folding of curved shells is still not fundamentally understood. Shells naturally deform by simultaneously bending and stretching, and while this coupling gives them great stability for engineering applications, it makes folding a surface of arbitrary curvature a nontrivial task. Here we discuss the geometry of folding a creased shell, and demonstrate theoretically the conditions under which it may fold smoothly. When these conditions are violated we show, using experiments and simulations, that shells undergo rapid snapping motion to fold from one stable configuration to another. Although material asymmetry is a proven mechanism for creating this bifurcation of stability, for the case of a creased shell, the inherent geometry itself serves as a barrier to folding. We discuss here how two fundamental geometric concepts, creases and curvature, combine to allow rapid transitions from one stable state to another. Independent of material system and length scale, the design rule that we introduce here explains how to generate snapping transitions in arbitrary surfaces, thus facilitating the creation of programmable multistable materials with fast actuation capabilities.

  5. Calculations of concrete plates and shells under impact load

    International Nuclear Information System (INIS)

    Kappler, H.; Krings, W.

    1982-01-01

    The dynamic behaviour of concrete slabs and shells is determined for a given load time function using axisymmetric computational models with an exact formulation for the midpoint. On the basis of a finite difference method, rotational inertia, shear deformation, elasticity and cracking are taken into account. For shells the coupling of bending moment and normal force is considered. Comparisons with two-dimensional models show good agreement connected with a considerable reduction of computational time. (orig.) [de

  6. Shell-model calculations of beta-decay rates for s- and r-process nucleosyntheses

    International Nuclear Information System (INIS)

    Takahashi, K.; Mathews, G.J.; Bloom, S.D.

    1985-01-01

    Examples of large-basis shell-model calculations of Gamow-Teller β-decay properties of specific interest in the astrophysical s- and r- processes are presented. Numerical results are given for: (1) the GT-matrix elements for the excited state decays of the unstable s-process nucleus 99 Tc; and (2) the GT-strength function for the neutron-rich nucleus 130 Cd, which lies on the r-process path. The results are discussed in conjunction with the astrophysics problems. 23 refs., 3 figs

  7. The Nuclear Shell Model and its Relation with Other Nuclear Models

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J. P. [University of Sussex, Brighton (United Kingdom)

    1963-01-15

    The starting point of all versions of the shell model is the physical idea that the interaction between a given nucleon and all the others resembles that between a nucleon and a fixed field. From this starting point one might attempt to construct a field which is self-consistent but this approach is not followed in most shell-model calculations because of the complications that arise. The more usual approach has been to use the idea of an average field to provide a complete set of sin gle-particle wave functions. Then, if the parameters of the field (e.g. its size) are correctly chosen, we would expect to reach a good approximation to the nuclear-wave function by taking that configuration of single-particle wave functions which has lowest energy in this field. The wave functions could clearly be improved by allowing the mixing of excited configurations but this is rarely done because of the resulting complexity of the problem. Even in the lowest configuration there are in general many independent wave functions for a many-particle system which would all be degenerate in the average field. To find the nuclear energy levels and wave functions we must therefore build up the energy matrix in this degenerate set, using the inter-nucleon two-body forces, and then diagonalize this matrix. If the detailed form of the nuclear forces was known we might regard such calculations as the first step towards an exact calculation in which higher configurations were included but every indication is that the convergence would be extremely slow. It is more usual to treat an energy calculation in the lowest configuration unashamedly as a model calculation and to attempt to deduce, by comparisons with experimental data in the many-particle nuclei, the nature of the effective nuclear forces required in that configuration. If the model is realistic then we should not expect these effective forces to change very much in going from one nucleus to its neighbour and since there are many more

  8. Multi-Scale Modeling for Predicting the Stiffness and Strength of Hollow-Structured Metal Foams with Structural Hierarchy

    Directory of Open Access Journals (Sweden)

    Yong Yi

    2018-03-01

    Full Text Available This work was inspired by previous experiments which managed to establish an optimal template-dealloying route to prepare ultralow density metal foams. In this study, we propose a new analytical–numerical model of hollow-structured metal foams with structural hierarchy to predict its stiffness and strength. The two-level model comprises a main backbone and a secondary nanoporous structure. The main backbone is composed of hollow sphere-packing architecture, while the secondary one is constructed of a bicontinuous nanoporous network proposed to describe the nanoscale interactions in the shell. Firstly, two nanoporous models with different geometries are generated by Voronoi tessellation, then the scaling laws of the mechanical properties are determined as a function of relative density by finite volume simulation. Furthermore, the scaling laws are applied to identify the uniaxial compression behavior of metal foams. It is shown that the thickness and relative density highly influence the Young’s modulus and yield strength, and vacancy defect determines the foams being self-supported. The present study provides not only new insights into the mechanical behaviors of both nanoporous metals and metal foams, but also a practical guide for their fabrication and application.

  9. Architected Lattices with High Stiffness and Toughness via Multicore-Shell 3D Printing.

    Science.gov (United States)

    Mueller, Jochen; Raney, Jordan R; Shea, Kristina; Lewis, Jennifer A

    2018-03-01

    The ability to create architected materials that possess both high stiffness and toughness remains an elusive goal, since these properties are often mutually exclusive. Natural materials, such as bone, overcome such limitations by combining different toughening mechanisms across multiple length scales. Here, a new method for creating architected lattices composed of core-shell struts that are both stiff and tough is reported. Specifically, these lattices contain orthotropic struts with flexible epoxy core-brittle epoxy shell motifs in the absence and presence of an elastomeric silicone interfacial layer, which are fabricated by a multicore-shell, 3D printing technique. It is found that architected lattices produced with a flexible core-elastomeric interface-brittle shell motif exhibit both high stiffness and toughness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Radiative capture reaction {sup 7}Be(p,{gamma}){sup 8}B in the continuum shell model

    Energy Technology Data Exchange (ETDEWEB)

    Bennaceur, K; Ploszajczak, M [Grand Accelerateur National d` Ions Lourds (GANIL), Caen (France); Nowacki, F [Grand Accelerateur National d` Ions Lourds (GANIL), Caen (France); [Lab. de Physique Theorique Strasbourg, Strasbourg (France); Okolowicz, J [Grand Accelerateur National d` Ions Lourds (GANIL), Caen (France); [Inst. of Nuclear Physics, Krakow (Poland)

    1998-06-01

    We present here the first application of realistic shell model (SM) including coupling between many-particle (quasi-)bound states and the continuum of one-particle scattering states to the calculation of the total capture cross section and the astrophysical factor in the reaction {sup 7}Be(p,{gamma}){sup 8}B. (orig.)

  11. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors

    Science.gov (United States)

    Grote, Fabian; Wen, Liaoyong; Lei, Yong

    2014-06-01

    Large-scale arrays of core/shell nanostructures are highly desirable to enhance the performance of supercapacitors. Here we demonstrate an innovative template-based fabrication technique with high structural controllability, which is capable of synthesizing well-ordered three-dimensional arrays of SnO2/MnO2 core/shell nanotubes for electrochemical energy storage in supercapacitor applications. The SnO2 core is fabricated by atomic layer deposition and provides a highly electrical conductive matrix. Subsequently a thin MnO2 shell is coated by electrochemical deposition onto the SnO2 core, which guarantees a short ion diffusion length within the shell. The core/shell structure shows an excellent electrochemical performance with a high specific capacitance of 910 F g-1 at 1 A g-1 and a good rate capability of remaining 217 F g-1 at 50 A g-1. These results shall pave the way to realize aqueous based asymmetric supercapacitors with high specific power and high specific energy.

  12. Tensor-optimized shell model for the Li isotopes with a bare nucleon-nucleon interaction

    Science.gov (United States)

    Myo, Takayuki; Umeya, Atsushi; Toki, Hiroshi; Ikeda, Kiyomi

    2012-08-01

    We study the Li isotopes systematically in terms of the tensor-optimized shell model (TOSM) by using a bare nucleon-nucleon interaction as the AV8' interaction. The short-range correlation is treated in the unitary correlation operator method (UCOM). Using the TOSM + UCOM approach, we investigate the role of the tensor force on each spectrum of the Li isotopes. It is found that the tensor force produces quite a characteristic effect on various states in each spectrum and those spectra are affected considerably by the tensor force. The energy difference between the spin-orbit partner, the p1/2 and p3/2 orbits of the last neutron, in 5Li is caused by opposite roles of the tensor correlation. In 6Li, the spin-triplet state in the LS coupling configuration is favored energetically by the tensor force in comparison with jj coupling shell-model states. In 7,8,9Li, the low-lying states containing extra neutrons in the p3/2 orbit are favored energetically due to the large tensor contribution to allow the excitation from the 0s, orbit to the p1/2 orbit by the tensor force. Those three nuclei show the jj coupling character in their ground states which is different from 6Li.

  13. Multi-scale modeling of composites

    DEFF Research Database (Denmark)

    Azizi, Reza

    A general method to obtain the homogenized response of metal-matrix composites is developed. It is assumed that the microscopic scale is sufficiently small compared to the macroscopic scale such that the macro response does not affect the micromechanical model. Therefore, the microscopic scale......-Mandel’s energy principle is used to find macroscopic operators based on micro-mechanical analyses using the finite element method under generalized plane strain condition. A phenomenologically macroscopic model for metal matrix composites is developed based on constitutive operators describing the elastic...... to plastic deformation. The macroscopic operators found, can be used to model metal matrix composites on the macroscopic scale using a hierarchical multi-scale approach. Finally, decohesion under tension and shear loading is studied using a cohesive law for the interface between matrix and fiber....

  14. Coulomb ionization of inner shells by heavy charged particles

    International Nuclear Information System (INIS)

    Lapicki, G.

    1975-01-01

    The theory of inner-shell Coulomb ionization by heavy charged particles, of atomic number small compared to the target atomic number, is developed through the extension of work by Brandt and his coworkers for K shells to L shells. In slow collisions relative to the characteristic times of the inner shell electrons, the quantum-mechanical predictions in the plane-wave Born approximation (PWBA) can exceed experimental cross sections by orders of magnitude. The effects of the perturbation of the atom by and the Coulomb deflection of the particle during collisions are included in the theory. The perturbed atomic states amount to a binding of the inner-shell electrons to the moving particle in slow collisions, and to a polarization of the inner shells by the particle passing at large impact parameters during nonadiabatic collisions. These effects, not contained in the PWBA, are treated in the framework of the perturbed stationary state (PSS) theory for slow collisions and in terms of the harmonic oscillator model of Ashley, Brandt, and Ritchie for stopping powers in fast collisions. The effect of the Coulomb deflection of the particle in the field of the target nucleus on the cross sections is incorporated in the semiclassical approximation of Bang and Hansteen. Except for the lightest target atoms, the contribution of electron capture by the particles to inner-shell ionizations is shown to be negligible. The theory as developed earlier for the K shell, and here for L shells, agrees well with the vast body of experimental data on inner-shell Coulomb ionization by heavy charged particles

  15. A Galerkin approximation for linear elastic shallow shells

    Science.gov (United States)

    Figueiredo, I. N.; Trabucho, L.

    1992-03-01

    This work is a generalization to shallow shell models of previous results for plates by B. Miara (1989). Using the same basis functions as in the plate case, we construct a Galerkin approximation of the three-dimensional linearized elasticity problem, and establish some error estimates as a function of the thickness, the curvature, the geometry of the shell, the forces and the Lamé costants.

  16. Scheme and scale dependences of leading electroweak corrections

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Sirlin, A.

    1996-01-01

    The scheme and scale dependences of leading M t -dependent contributions to Δρ, Δr, and τ, which arise because of the truncation of the perturbative series, are investigated by comparing expressions in the on-shell and MS schemes of renormalization, and studying their scale variations. Starting from the conventional on-shell formulae, we find rather large scheme and scale dependences. We then propose a simple, physically motivated modification of the conventional expressions and show that it leads to a sharp reduction in the scheme and scale dependences. Implications for electroweak physics are discussed. (orig.)

  17. Piezoelectric constants for ZnO calculated using classical polarizable core-shell potentials

    International Nuclear Information System (INIS)

    Dai Shuangxing; Dunn, Martin L; Park, Harold S

    2010-01-01

    We demonstrate the feasibility of using classical atomistic simulations, i.e. molecular dynamics and molecular statics, to study the piezoelectric properties of ZnO using core-shell interatomic potentials. We accomplish this by reporting the piezoelectric constants for ZnO as calculated using two different classical interatomic core-shell potentials: that originally proposed by Binks and Grimes (1994 Solid State Commun. 89 921-4), and that proposed by Nyberg et al (1996 J. Phys. Chem. 100 9054-63). We demonstrate that the classical core-shell potentials are able to qualitatively reproduce the piezoelectric constants as compared to benchmark ab initio calculations. We further demonstrate that while the presence of the shell is required to capture the electron polarization effects that control the clamped ion part of the piezoelectric constant, the major shortcoming of the classical potentials is a significant underprediction of the clamped ion term as compared to previous ab initio results. However, the present results suggest that overall, these classical core-shell potentials are sufficiently accurate to be utilized for large scale atomistic simulations of the piezoelectric response of ZnO nanostructures.

  18. Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia shell calcite precipitated at constant temperature

    Directory of Open Access Journals (Sweden)

    P. S. Freitas

    2009-07-01

    Full Text Available Small-scale heterogeneity of biogenic carbonate elemental composition can be a significant source of error in the accurate use of element/Ca ratios as geochemical proxies. In this study ion microprobe (SIMS profiles showed significant small-scale variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in new shell calcite of the marine bivalves Pecten maximus and Mytilus edulis that was precipitated during a constant-temperature culturing experiment. Elevated Mg/Ca, Sr/Ca and Mn/Ca ratios were found to be associated with the deposition of elaborate shell features, i.e. a shell surface stria in P. maximus and surface shell disturbance marks in both species, the latter a common occurrence in bivalve shells. In both species the observed small-scale elemental heterogeneity most likely was not controlled by variable transport of ions to the extra-pallial fluid, but by factors such as the influence of shell organic content and/or crystal size and orientation, the latter reflecting conditions at the shell crystal-solution interface. In the mid and innermost regions of the P. maximus shell the lack of significant small-scale variation of Mg/Ca ratios, which is consistent with growth at constant temperature, suggest a potential application as a palaeotemperature proxy. Cross-growth band element/Ca ratio profiles in the interior of bivalve shells may provide more promising palaeo-environmental tools than sampling from the outer region of bivalve shells.

  19. Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires

    Science.gov (United States)

    Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel

    2017-06-01

    We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.

  20. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    Science.gov (United States)

    Yang, Chungja

    Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and

  1. Study on modal characteristics of perforated shell using effective Young's modulus

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Yu, Seon Oh

    2011-01-01

    Research highlights: → The effective Young's modulus of perforated shell is proposed for modal analysis. → The penetration pattern is almost negligible for effective elastic constants. → The frequency of perforated shell decreases significantly due to the hole effect. - Abstract: For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with effective material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the effective material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

  2. Breakup of an accelerated shell owing to Rayleigh--Taylor instability

    International Nuclear Information System (INIS)

    Suydam, B.R.

    1978-06-01

    A simplified model for the Rayleigh-Taylor instability of an accelerated shell is examined, and it is found that the most dangerous wavelength to be about that of the shell thickness. The shell material is assumed to be an inviscid, incompressible fluid. Effects of finite compressibility and of surface tension are found to be negligible, but the effects of viscosity are shown to be very large. The need for better knowledge of viscosity at high pressure is pointed out

  3. Scale invariance in chaotic time series: Classical and quantum examples

    Science.gov (United States)

    Landa, Emmanuel; Morales, Irving O.; Stránský, Pavel; Fossion, Rubén; Velázquez, Victor; López Vieyra, J. C.; Frank, Alejandro

    Important aspects of chaotic behavior appear in systems of low dimension, as illustrated by the Map Module 1. It is indeed a remarkable fact that all systems tha make a transition from order to disorder display common properties, irrespective of their exacta functional form. We discuss evidence for 1/f power spectra in the chaotic time series associated in classical and quantum examples, the one-dimensional map module 1 and the spectrum of 48Ca. A Detrended Fluctuation Analysis (DFA) method is applied to investigate the scaling properties of the energy fluctuations in the spectrum of 48Ca obtained with a large realistic shell model calculation (ANTOINE code) and with a random shell model (TBRE) calculation also in the time series obtained with the map mod 1. We compare the scale invariant properties of the 48Ca nuclear spectrum sith similar analyses applied to the RMT ensambles GOE and GDE. A comparison with the corresponding power spectra is made in both cases. The possible consequences of the results are discussed.

  4. Modeling and Simulation on NOx and N2O Formation in Co-combustion of Low-rank Coal and Palm Kernel Shell

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2012-12-01

    Full Text Available NOx and N2O emissions from coal combustion are claimed as the major contributors for the acid rain, photochemical smog, green house and ozone depletion problems. Based on the facts, study on those emissions formation is interest topic in the combustion area. In this paper, theoretical study by modeling and simulation on NOx and N2O formation in co-combustion of low-rank coal and palm kernel shell has been done. Combustion model was developed by using the principle of chemical-reaction equilibrium. Simulation on the model in order to evaluate the composition of the flue gas was performed by minimization the Gibbs free energy. The results showed that by introduced of biomass in coal combustion can reduce the NOx concentration in considerably level. Maximum NO level in co-combustion of low-rank coal and palm kernel shell with fuel composition 1:1 is 2,350 ppm, low enough compared to single low-rank coal combustion up to 3,150 ppm. Moreover, N2O is less than 0.25 ppm in all cases. Keywords: low-rank coal, N2O emission, NOx emission, palm kernel shell

  5. CO2 sequestration using principles of shell formation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Woo; Jang, Young-Nam [CO2 Sequestration Research Department, Korea Institute of Geoscience and Mineral Resources (Korea, Republic of); Lee, Si-Hyun; Lim, Kyoung-Soo; Jeong, Soon-Kwan [Energy Conservation Research Department of Clean Energy System Research Center, Korea Institute of Energy Research (Korea, Republic of)

    2011-06-15

    The biomimetic sequestration of carbon dioxide to reduce the CO2 emitted into the atmosphere is introduced in this paper. Bivalve shells are used as a good model of CO2 sequestration in this paper, because the shell is derived from the calcium ions and CO2 in seawater. Carbonic anhydrase, hemocyte from diseased shell (HDS) and extrapallial fluid (EFP) are involved in shell formation. This paper compares the soluble protein extracted from Crassostrea gigas with bovine carbonic anhydrase II in terms of their ability to promote CO2 hydration and the production of calcium precipitates. The result demonstrates that HDS has more functional groups to bind calcium ions in aqueous systems, and a different process of calcium precipitation, than does bovine carbonic anhydrase II. To understand molecular weight and secondary protein structure, mass-spectroscopic analysis (MALDI-TOF) and circular dichroism (CD) analysis were used. With regard to EPF, EPF related to shell formation is composed of several fractions and plays a role in sequestration of CO2.

  6. Shells and containers under complex impact shock conditions - a practical solution concept

    International Nuclear Information System (INIS)

    Krieg, R.

    2000-01-01

    Many practically relevant impact processes are not as hard as a projectile impact but calculation or experimental assessment are difficult. Recent experiments at Karlsruhe Research Center show that many of these processes are similar, independent of geometry and scale, even for complex geometries and conditions. The preconditions and scaling factors for transfer of the model results to real dimensions are presented, and experimental facilities for investigating liquid impact on container walls are described. The latter were originally developed for analyses of serious accidents in nuclear facilities but can be used for other purposes as well. Using a concrete example, it was shown that the load of liquid impact on a shell with relatively filigrane protruding structures is lower by a factor of 14 than the impact of a comparable solid [de

  7. Enceladus's crust as a non-uniform thin shell: I tidal deformations

    Science.gov (United States)

    Beuthe, Mikael

    2018-03-01

    The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should take into account the lateral variations of shell structure. I construct here the theory of non-uniform viscoelastic thin shells, allowing for depth-dependent rheology and large lateral variations of shell thickness and rheology. Coupling to tides yields two 2D linear partial differential equations of the fourth order on the sphere which take into account self-gravity, density stratification below the shell, and core viscoelasticity. If the shell is laterally uniform, the solution agrees with analytical formulas for tidal Love numbers; errors on displacements and stresses are less than 5% and 15%, respectively, if the thickness is less than 10% of the radius. If the shell is non-uniform, the tidal thin shell equations are solved as a system of coupled linear equations in a spherical harmonic basis. Compared to finite element models, thin shell predictions are similar for the deformations due to Enceladus's pressurized ocean, but differ for the tides of Ganymede. If Enceladus's shell is conductive with isostatic thickness variations, surface stresses are approximately inversely proportional to the local shell thickness. The radial tide is only moderately enhanced at the south pole. The combination of crustal thinning and convection below the poles can amplify south polar stresses by a factor of 10, but it cannot explain the apparent time lag between the maximum plume brightness and the opening of tiger stripes. In a second paper, I will study the impact of a non-uniform crust on tidal dissipation.

  8. Potentials for calculating both parity states in p-shell nuclei

    International Nuclear Information System (INIS)

    Resler, D.A.

    1989-01-01

    A Hamiltonian employing a ''physical'' central two-body potential has been used for simultaneous calculation of both normal and non-normal parity states of p-shell nuclei. Normal parity states have been calculated in a full 0/h bar/ω space and non-normal parity states in a full 1/h bar/ω space with the effects of spurious center-of-mass states completely removed. No explicit core is used in any of the shell model calculations. Results are compared with experimental data and previous shell model calculations for the following nuclei: 4 He, /sup 5,6,7,8/Li, 8 Be, /sup 13,14/C, and 13 N. 34 refs., 9 figs., 3 tabs

  9. Irradiation creep and growth behavior of Zircaloy-4 inner shell of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jong-Ha; Cho, Yeong-Garp; Kim, Jong-In [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2012-03-15

    The inner shell of the reflector vessel of HANARO was made of Zircaloy-4 rolled plate. Zircaloy-4 rolled plate shows highly anisotropic behavior by fast neutron irradiation. This paper describes the analysis method for the irradiation induced creep and growth of the inner shell of HANARO. The anisotropic irradiation creep behavior was modeled as uniaxial strain-hardening power law modified by Hill's stress potential and the anisotropic irradiation growth was modeled by using volumetric swelling with anisotropic strain rate. In this study, the irradiation induced creep and growth behavior of the inner shell of the HANARO reflector vessel was re-evaluated. The rolling direction, the fast neutron flux, and the boundary conditions were applied with the same conditions as the actual inner shell. Analysis results show that deformation of the inner shell due to irradiation does not raise any problem for the lifetime of HANARO. (author)

  10. Molluscan shell colour.

    Science.gov (United States)

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  11. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    KAUST Repository

    Kumar, Rohit

    2017-08-11

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  12. Scission-point model of nuclear fission based on deformed-shell effects

    International Nuclear Information System (INIS)

    Wilkins, B.D.; Steinberg, E.P.; Chasman, R.R.

    1976-01-01

    A static model of nuclear fission is proposed based on the assumption of statistical equilibrium among collective degrees of freedom at the scission point. The relative probabilities of formation of complementary fission fragment pairs are determined from the relative potential energies of a system of two nearly touching, coaxial spheroids with quadrupole deformations. The total potential energy of the system at the scission point is calculated as the sum of liquid-drop and shell- and pairing-correction terms for each spheroid, and Coulomb and nuclear potential terms describing the interaction between them. The fissioning system at the scission point is characterized by three parameters: the distance between the tips of the spheroids (d), the intrinsic excitation energy of the fragments (tau/sub int/), and a collective temperature (T/sub coll/). No attempt is made to adjust these parameters to give optimum fits to experimental data, but rather, a single choice of values for d, tau/sub int/, and T/sub coll/ is used in the calculations for all fissioning systems. The general trends of the distributions of mass, nuclear charge, and kinetic energy in the fission of a wide range of nuclides from Po to Fm are well reproduced in the calculations. The major influence of the deformed-shell corrections for neutrons is indicated and provides a convenient framework for the interpretation of observed trends in the data and for the prediction of new results. The scission-point configurations derived from the model provide an interpretation of the ''saw-tooth'' neutron emission curve as well as previously unexplained observations on the variation of TKE for isotopes of U, Pu, Cm, and Cf; structure in the width of total kinetic energy release as a function of fragment mass ratio; and a difference in threshold energies for symmetric and asymmetric mass splits in the fission of Ra and Ac isotopes

  13. The character and behaviour of circumstellar shells at T Tauri stars

    International Nuclear Information System (INIS)

    Goetz, W.

    1988-01-01

    T Tauri stars are extremely young low-mass stars in the pre-main sequence stage. A brief review of investigations made at the Sonneberg observatory concerning the character and the behaviour of circumstellar shells at T Tauri stars is given. They lead to the construction of a shell model on the basis of observational facts. The idea rests upon the causal connection between the gas and dust shell phenomenon and the cosmogonic mass loss of the stars, which is the connecting link between the stars and their shells and which appears in the early phase of the pre-main sequence stage and decreases, like the accompanying shell phenomena, during the evolution of the stars. (author)

  14. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  15. Batch Scale Removal of an Organic Pollutant Amaranth Dye from Aqueous Solution using Pisum sativum Peels and Arachis hypogaea Shells as Adsorbents

    International Nuclear Information System (INIS)

    Rehman, R.; Afzal, A.

    2015-01-01

    The goal of this study was to utilize low cost and environmentally friendly adsorbents for batch scale removal of Amaranth dye from aqueous medium. Peels of Pisum sativum (Pea) and Arachis hypogaea (Peanut) were utilized to investigate their dye removing capacity. The optimized adsorption conditions for Pisum sativum (P.S.P) and Arachis hypogaea (A.H.S) were: adsorbent dose; 0.6 and 0.4 g, contact time; 45 and 10 minutes, pH; 2.0 for both, agitation speed; 150 and 100 rpm and temperature; 60 and 50 degree C for P.S.P and A.H.S respectively. The adsorption data well suited to Langmuir isotherm. Maximum adsorption capacities were found to be 144.93 and 10.53 mg/g for P.S.P and A.H.S respectively. Feasibility of the process was indicated by negative values of thermodynamic parameters delta G/sup 0/ for both adsorbents. Kinetic studies indicated that adsorption of Amaranth dye from aqueous medium by Pisum sativum peels and Arachis hypogaea shells followed pseudo-seconder order kinetics. It was concluded that Pisum sativum peels are more effective adsorbent for removal of Amaranth from aqueous solution as compared to Arachis hypogaea shells. (author)

  16. Modal analysis of a stiffened toroidal shell sector

    International Nuclear Information System (INIS)

    Cerreta, R.; Di Pietro, E.; Pizzuto, A.

    1987-01-01

    This paper presents the results of the modal analysis of a sector of the toroidal vacuum vessel of a new experimental machine for research in the field of controlled thermonuclear fusion (FTU - Frascati Tokamak Upgrade). The vacuum vessel, one of the most critical components of the experimental device, consist of 12 stainless steel toroidal sectors, and it is designed to withstand pulsed electromagnetic loads during operation. Results of the modal analysis of the stiffened toroidal shell sector are compared and discussed with regard to the experimental data. Theoretical eigenvalues and eigenvectors have been predicted by means of ABAQUS finite element code. Experimental analysis has been carried out on a full scale model and natural frequencies have been measured. Satisfactory agreement between experimental and theoretical eigenvalues has been found

  17. Gross theory of nuclear β-decay with shell effects

    International Nuclear Information System (INIS)

    Pabst, M.

    1979-01-01

    The present work tries to introduce shell effects selection rules into the gross theory systematically. Instead of an unbunched or bunched Fermigas spectrum a single-particle spectrum in the shell model with a Woods-Saxon potential is used. The knowledge of spin and parity of the levels allows us to introduce selection rules in an approximative way. (orig.)

  18. Shell shape as a biomarker of marine pollution historic increase.

    Science.gov (United States)

    Márquez, F; Primost, M A; Bigatti, G

    2017-01-30

    Buccinanops globulosus is a TBT sensitive marine gastropod, classified as a good indicator of imposex incidence and used as a model to study adverse contamination effects. Population and maritime industries has incremented pollution in Nuevo gulf harbor since 1970s, promoting morphological changes in B. globulosus shell shape. We study the shell shape of the species comparing present day's specimens from the harbor zone with those collected in the same zone before the increasing of maritime activity and pre-Hispanic archaeological Middens. We demonstrated that harbor pollution produces globular shell shape in B. globulosus, an effect that probably allows gastropods to isolate themselves from the external adverse environment. On the contrary, shells from pre-Hispanic periods, unpolluted sites and those collected before the expansion of maritime activities, presented an elongated shell shape. Our study confirms that shell shape variation in marine gastropods can be used as a biomarker of harbor pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Recent Developments in No-Core Shell-Model Calculations

    International Nuclear Information System (INIS)

    Navratil, P.; Quaglioni, S.; Stetcu, I.; Barrett, B.R.

    2009-01-01

    We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.

  20. Recent Developments in No-Core Shell-Model Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R

    2009-03-20

    We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.

  1. Removal of Nickel from Aqueous Solution by Hard-Shell Pistachios

    Directory of Open Access Journals (Sweden)

    Shayan Shamohammadi

    2013-08-01

    Full Text Available Nickel is one of the heavy metals which commonly can be found in industrial wastewater. Many studies have been done on agricultural waste for the removal of nickel from aqueous solutions. The purpose of this study is to identify hard-shell pistachios as a local attraction for removal of nickel from aqueous solution. Nickel adsorption isotherm models are studied using shell pistachios. Pistachio shell was chosen which its particle size is between 800-600 microns. The stock solution of nickel ions was prepared mixing nickel nitrate with distilled water. The results showed that the maximum absorption efficiency occurs (73.3% at pH=8. Also, it was shown that with increasing adsorbent dose, equilibrium time decreased within constant concentration. Examination of uptake isotherm models showed that models of Freundlich, BET, Radke-Praunitz, Redlich-Peterson and Sips describe data in 97% level of confidence well,  however Freundlich and Sips isotherm models has the lowest error factor 0.10597 and 0/10598 respectively and the highest correlation coefficient (0.9785. Comparison of adsorbent capacity within removal of nickel from aqueous solution shows that Pistachio shell with special absorbent surface of 1.7 m2/g and uptake capacity of 0.3984 mg/g is proper than adsorbents of Kaolinite, Bagasse, sludge-ash.

  2. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  3. Modelling the structure and kinematics of the Firework nebula: The nature of the GK Persei nova shell and its jet-like feature

    Science.gov (United States)

    Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.

    2016-10-01

    Aims: The shaping mechanisms of old nova remnants are probes for several important and unexplained processes, such as dust formation and the structure of evolved star nebulae. To gain a more complete understanding of the dynamics of the GK Per (1901) remnant, an examination of symmetry of the nova shell is explored, followed by a kinematical analysis of the previously detected jet-like feature in the context of the surrounding fossil planetary nebula. Methods: Faint-object high-resolution echelle spectroscopic observations and imaging were undertaken covering the knots which comprise the nova shell and the surrounding nebulosity. New imaging from the Aristarchos telescope in Greece and long-slit spectra from the Manchester Echelle Spectrometer instrument at the San Pedro Mártir observatory in Mexico were obtained, supplemented with archival observations from several other optical telescopes. Position-velocity arrays are produced of the shell, and also individual knots, and are then used for morpho-kinematic modelling with the shape code. The overall structure of the old knotty nova shell of GK Per and the planetary nebula in which it is embedded is then analysed. Results: Evidence is found for the interaction of knots with each other and with a wind component, most likely the periodic fast wind emanating from the central binary system. We find that a cylindrical shell with a lower velocity polar structure gives the best model fit to the spectroscopy and imaging. We show in this work that the previously seen jet-like feature is of low velocity. Conclusions: The individual knots have irregular tail shapes; we propose here that they emanate from episodic winds from ongoing dwarf nova outbursts by the central system. The nova shell is cylindrical, not spherical, and the symmetry axis relates to the inclination of the central binary system. Furthermore, the cylinder axis is aligned with the long axis of the bipolar planetary nebula in which it is embedded. Thus, the

  4. Spatial scale separation in regional climate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Feser, F.

    2005-07-01

    In this thesis the concept of scale separation is introduced as a tool for first improving regional climate model simulations and, secondly, to explicitly detect and describe the added value obtained by regional modelling. The basic idea behind this is that global and regional climate models have their best performance at different spatial scales. Therefore the regional model should not alter the global model's results at large scales. The for this purpose designed concept of nudging of large scales controls the large scales within the regional model domain and keeps them close to the global forcing model whereby the regional scales are left unchanged. For ensemble simulations nudging of large scales strongly reduces the divergence of the different simulations compared to the standard approach ensemble that occasionally shows large differences for the individual realisations. For climate hindcasts this method leads to results which are on average closer to observed states than the standard approach. Also the analysis of the regional climate model simulation can be improved by separating the results into different spatial domains. This was done by developing and applying digital filters that perform the scale separation effectively without great computational effort. The separation of the results into different spatial scales simplifies model validation and process studies. The search for 'added value' can be conducted on the spatial scales the regional climate model was designed for giving clearer results than by analysing unfiltered meteorological fields. To examine the skill of the different simulations pattern correlation coefficients were calculated between the global reanalyses, the regional climate model simulation and, as a reference, of an operational regional weather analysis. The regional climate model simulation driven with large-scale constraints achieved a high increase in similarity to the operational analyses for medium-scale 2 meter

  5. Stability of core–shell nanowires in selected model solutions

    International Nuclear Information System (INIS)

    Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-01-01

    Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods

  6. Stability of core–shell nanowires in selected model solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kalska-Szostko, B., E-mail: kalska@uwb.edu.pl; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-30

    Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  7. Analysis of thin-walled cylindrical composite shell structures subject to axial and bending loads: Concept development, analytical modeling and experimental verification

    Science.gov (United States)

    Mahadev, Sthanu

    Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically

  8. On the mechanics of elastic lines in thin shells

    Science.gov (United States)

    Benet, Eduard; Vernerey, Franck

    The deformation of soft shells in nature and engineering is often conditioned by the presence of lines whose mechanical properties are different from the shell. For instance, the deformation of tree leaves is conditioned by the presence of harder stems, and cell mitosis is driven by a stiffening line along its membrane. From an experimental standpoint, many groups have taken advantage of this feature to develop self-actuated shells with prescribed deformations. Examples include the polymerization of gels along certain lines, or the inclusion of stiffer lines via 3D printing. However, there is not yet a general continuum theory that accounts for this type of discontinuity within the membrane. Hence, we extend the general shell theory to account for the inclusion of a line that potentially induces jumps in stresses, couple stresses and moments, across its thickness. This is achieved via coupling the rod and the membrane deformations, and ensuring continuity of displacements. The model is then applied to three important problems: a constriction disc inside a shell of revolution, the induced twisting of a shell via the torsion of an embedded line, and the effect of an helicoidal line on the uni-axial deformation of a cylindrical shell. National Science Foundation CAREER award 1350090.

  9. CIRCUMSTELLAR SHELL FORMATION IN SYMBIOTIC RECURRENT NOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin; Bildsten, Lars [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-12-20

    We present models of spherically symmetric recurrent nova shells interacting with circumstellar material (CSM) in a symbiotic system composed of a red giant (RG) expelling a wind and a white dwarf accreting from this material. Recurrent nova eruptions periodically eject material at high velocities ({approx}> 10{sup 3} km s{sup -1}) into the RG wind profile, creating a decelerating shock wave as CSM is swept up. High CSM densities cause the shocked wind and ejecta to have very short cooling times of days to weeks. Thus, the late-time evolution of the shell is determined by momentum conservation instead of energy conservation. We compute and show evolutionary tracks of shell deceleration, as well as post-shock structure. After sweeping up all the RG wind, the shell coasts at a velocity {approx}100 km s{sup -1}, depending on system parameters. These velocities are similar to those measured in blueshifted CSM from the symbiotic nova RS Oph, as well as a few Type Ia supernovae that show evidence of CSM, such as 2006X, 2007le, and PTF 11kx. Supernovae occurring in such systems may not show CSM interaction until the inner nova shell gets hit by the supernova ejecta, days to months after the explosion.

  10. Multimode interaction in axially excited cylindrical shells

    Directory of Open Access Journals (Sweden)

    Silva F. M. A.

    2014-01-01

    Full Text Available Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural frequencies. The shell is modelled using the Donnell nonlinear shallow shell theory and the discretized equations of motion are obtained by applying the Galerkin method. For this, a modal solution that takes into account the modal interaction among the relevant modes and the influence of their companion modes (modes with rotational symmetry, which satisfies the boundary and continuity conditions of the shell, is derived. Special attention is given to the 1:1:1:1 internal resonance (four interacting modes. Solving numerically the governing equations of motion and using several tools of nonlinear dynamics, a detailed parametric analysis is conducted to clarify the influence of the internal resonances on the bifurcations, stability boundaries, nonlinear vibration modes and basins of attraction of the structure.

  11. Application of dimensional analysis to the study of shells subject to external pressure and to the use of models

    International Nuclear Information System (INIS)

    Lefrancois, A.

    1976-01-01

    The method of dimensional analysis is applied to the evaluation of deformation, stress, and ideal buckling strength (which is independent of the values of the elastic range), of shells subject to external pressure. The relations obtained are verified in two examples: a cylindrical ring and a tube with free ends and almost circular cross-section. Further, it is shown how and to what extent the results obtained from model tests can be used to predict the behaviour of geometrically similar shells which are made of the same material, or even of a different material. (Author) [fr

  12. In-situ observation of Cu-Pt core-shell nanoparticles in the atomic scale by XAFS

    International Nuclear Information System (INIS)

    Zheng, Xusheng; Liu, Shoujie; Chen, Xing; Cheng, Jie; Ye, Qing; Pan, Zhiyun; Chu, Wangsheng; Wu, Ziyu; Marcelli, Augosto

    2013-01-01

    Bimetallic nanoparticles play an important role in potential industrial applications, such as catalysis, optoelectronics, information storage and biological labeling. Herein, homogeneous Cu-Pt core-shell nanoparticles with the averaged size of 8 nm have been synthesized by chemical methods. Cu atoms diffusion process, which motivated by heating, was observed in-situ by using temperature-dependent x-ray absorption fine-structure (XAFS) spectroscopy. Results show that Cu diffuse gradually from Cu core to Pt shell in these nanoparticles with increasing temperature. We also found the surface ligand (O) bonded Pt at the room temperature and were removed gradually by heating the sample. The analysis of the diffusion process in bimetallic nanoparticles will provide important guideline for their designing and tuning.

  13. PREFACE: 11th International Spring Seminar on Nuclear Physics: Shell Model and Nuclear Structure - achievements of the past two decades

    Science.gov (United States)

    2015-02-01

    The 11th International Seminar on Nuclear Physics was held in Ischia from May 12 to May 16, 2014. This Seminar was dedicated to Aldo Covello, who has been the promoter of this series of meetings, which started in Sorrento in 1986 and continued with meetings held every two or three years in the Naples area. Aldo's idea was to offer to a group of researchers, actively working in selected fields of Nuclear Physics, the opportunity to confront their points of view in a lively and informal way. The choice for the period of the year, Spring, as well as the sites chosen reflected this intent. The first meeting was of a purely theoretical nature, but it was immediately clear that the scope of these conferences needed to be enlarged calling into play the experimental community. Then, starting from the second meeting, all the following ones have been characterized by fruitful discussion between theoretical and experimental researchers on current achievements and future developments of nuclear structure. This may be read, in fact, as one of the motivating factors for Aldo's election as Fellow of the American Physical Society in 2008 "... for his outstanding contributions to the international nuclear physics community by providing, for over two decades, a venue for theorists and experimentalists to share their latest ideas." The present meeting, organized by Aldo's former students and with the benefit of his suggestions, has maintained this tradition. The title "Shell model and nuclear structure: achievements of the past two decades" recalls that of the 2nd International Spring Seminar "Shell Model and Nuclear Structure: where do we stand?". The main aim of this 11th Seminar was, in fact, to discuss the changes of the past two decades on our view of nuclei in terms of shell structure as well as the perspectives of the shell model, which has been one of the key points in Aldo's research. This point is well accounted by the Opening Speech of Igal Talmi, one of the fathers of the

  14. Theoretical spectroscopy and the fp shell

    International Nuclear Information System (INIS)

    Poves, A.; Zuker, A.

    1980-01-01

    The recently developed quasiconfiguration method is applied to fp shell nuclei. Second order degenerate perturbation theory is shown to be sufficient to produce, for low lying states, the same results as large diagonalizations in the f(7/2)p(3/2)p(1/2)f(5/2)sup(n) full space. due to the operation of linked cluster mechanisms. Realistic interactions with minimal monopole changes are shown to be successful in reproducing spectra, binding energies, quadrupole moments and transition rates. Large shell model spaces are seen to exhibit typical many body behaviour. Quasiconfigurations allow insight into the underlying coupling schemes

  15. Van der Waals coefficients beyond the classical shell model

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jianmin, E-mail: jianmint@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Fang, Yuan; Hao, Pan [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Scuseria, G. E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ruzsinszky, Adrienn; Perdew, John P. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2015-01-14

    Van der Waals (vdW) coefficients can be accurately generated and understood by modelling the dynamic multipole polarizability of each interacting object. Accurate static polarizabilities are the key to accurate dynamic polarizabilities and vdW coefficients. In this work, we present and study in detail a hollow-sphere model for the dynamic multipole polarizability proposed recently by two of the present authors (JT and JPP) to simulate the vdW coefficients for inhomogeneous systems that allow for a cavity. The inputs to this model are the accurate static multipole polarizabilities and the electron density. A simplification of the full hollow-sphere model, the single-frequency approximation (SFA), circumvents the need for a detailed electron density and for a double numerical integration over space. We find that the hollow-sphere model in SFA is not only accurate for nanoclusters and cage molecules (e.g., fullerenes) but also yields vdW coefficients among atoms, fullerenes, and small clusters in good agreement with expensive time-dependent density functional calculations. However, the classical shell model (CSM), which inputs the static dipole polarizabilities and estimates the static higher-order multipole polarizabilities therefrom, is accurate for the higher-order vdW coefficients only when the interacting objects are large. For the lowest-order vdW coefficient C{sub 6}, SFA and CSM are exactly the same. The higher-order (C{sub 8} and C{sub 10}) terms of the vdW expansion can be almost as important as the C{sub 6} term in molecular crystals. Application to a variety of clusters shows that there is strong non-additivity of the long-range vdW interactions between nanoclusters.

  16. Role of shell structure in the 2νββ nuclear matrix elements

    International Nuclear Information System (INIS)

    Nakada, H.

    1998-01-01

    Significance of the nuclear shell structure in the ββ nuclear matrix elements is pointed out. The 2νββ processes are mainly mediated by the low-lying 1 + states. The shell structure also gives rise to concentration or fragmentation of the 2νββ components over intermediate states, depending on nuclide. These roles of the shell structure are numerically confirmed by realistic shell model calculations. Some shell structure effects are suggested for 0νββ matrix elements; dominance of low-lying intermediate states and nucleus-dependence of their spin-parities. (orig.)

  17. The shell model. Towards a unified description of nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Poves, Alfredo [Departamento de Fisica Teorica, Universidad Autonoma Cantoblanco, 28049 - Madrid (Spain); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    In this series of lectures we present the foundations of the spherical shell model that we treat as an approximation to the exact solution of the full secular problem. We introduce the notions of valence space, effective interaction and effective operator. We analyse the structure of the realistic effective interactions, identifying their monopole part with the spherical mean field. The multipole Hamiltonian is shown to have a universal (simple) form that includes pairing (isovector and isoscalar), quadrupole, octupole, deca-pole, and ({sigma}{center_dot}{tau})({sigma}{center_dot}{tau}). We describe the methods of resolution of the secular problem, in particular the Lanczos method. The model is applied to the description of nuclear deformation and its relationship with the deformed mean field theories is studied. We propose a new symmetry, `quasi`-SU3, to understand deformation in the spherical basis. Finally, we discuss the domain of nuclei very far from the valley of {beta} stability, addressing the vanishing of some magic closures that can be explained in terms of intruder states. (author) 53 refs., 20 figs., 3 tabs.

  18. The shell model. Towards a unified description of nuclear structure

    International Nuclear Information System (INIS)

    Poves, Alfredo

    1998-01-01

    In this series of lectures we present the foundations of the spherical shell model that we treat as an approximation to the exact solution of the full secular problem. We introduce the notions of valence space, effective interaction and effective operator. We analyse the structure of the realistic effective interactions, identifying their monopole part with the spherical mean field. The multipole Hamiltonian is shown to have a universal (simple) form that includes pairing (isovector and isoscalar), quadrupole, octupole, deca-pole, and (σ·τ)(σ·τ). We describe the methods of resolution of the secular problem, in particular the Lanczos method. The model is applied to the description of nuclear deformation and its relationship with the deformed mean field theories is studied. We propose a new symmetry, 'quasi'-SU3, to understand deformation in the spherical basis. Finally, we discuss the domain of nuclei very far from the valley of β stability, addressing the vanishing of some magic closures that can be explained in terms of intruder states. (author)

  19. Anticavitation and Differential Growth in Elastic Shells

    KAUST Repository

    Moulton, Derek E.

    2010-07-22

    Elastic anticavitation is the phenomenon of a void in an elastic solid collapsing on itself. Under the action of mechanical loading alone typical materials do not admit anticavitation. We study the possibility of anticavitation as a consequence of an imposed differential growth. Working in the geometry of a spherical shell, we seek radial growth functions which cause the shell to deform to a solid sphere. It is shown, surprisingly, that most material models do not admit full anticavitation, even when infinite growth or resorption is imposed at the inner surface of the shell. However, void collapse can occur in a limiting sense when radial and circumferential growth are properly balanced. Growth functions which diverge or vanish at a point arise naturally in a cumulative growth process. © 2010 Springer Science+Business Media B.V.

  20. Synthesis of soft shell poly(styrene) colloids for filtration experiments

    DEFF Research Database (Denmark)

    Hinge, Mogens

    Separating a solid from a liquid is an important unit operation in many different industries e.g. mining, chemical, pharmaceutical and food industries. Solid liquid separation can roughly be divided into three groups. 1) Separation by gravity forces e.g. sedimentation, centrifugation, 2) Separation...... consisting of a solid poly(styrene) (PS) core with a water swollen shell have been employed in investigating the effect from varying amounts and type of water swollen material on filtration dewatering properties. Three series of model material have been used in this investigation 1) poly......(styrene-co-acrylic acid) core-shell colloids with varying thickness of the poly(acrylic acid) (PAA) shell. 2) poly(styrene-co-acrylic acid) core-shell colloids with varying diameter of the PS core and 3) poly(styrene-co-N-isopropylacrylamide) core-shell colloids with varying thickness of the poly...