WorldWideScience

Sample records for scale scintillating fiber

  1. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    International Nuclear Information System (INIS)

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-01-01

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter

  2. Development of scintillating fiber tracker

    International Nuclear Information System (INIS)

    Ishikawa, Shuzo; Kawai, Toshihide; Kozaki, Tetsuo

    1995-01-01

    In order to use thin scintillating fiber (diameter 500 micron) as a particle tracking detector, we have developed a method to construct precise multi-layer scintillating fiber sheets. We have also developed dedicated machines for this purpose. This paper presents the details of the method and the machines. Using these machines, we have produced fiber sheets for CERN WA95/CHORUS, which intend to detect a neutrino oscillation in the νμ-ντ channel using Hybrid Emulsion Set-up. Fiber Trackers are used as a vertex detector which support the neutrino event location in the nuclear emulsion target. (author)

  3. A helical scintillating fiber hodoscope

    CERN Document Server

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    1999-01-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  4. Waveshifting fiber readout of lanthanum halide scintillators

    International Nuclear Information System (INIS)

    Case, G.L.; Cherry, M.L.; Stacy, J.G.

    2006-01-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6-8 m 2 hard X-ray coded aperture imaging telescope operating in the 20-600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr 3 and LaCl 3 ) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr 3 or LaCl 3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance

  5. Radiation damage studies on new liquid scintillators and liquid-core scintillating fibers

    International Nuclear Information System (INIS)

    Golovkin, S.V.

    1994-01-01

    The radiation resistant of some new liquid scintillation and capillaries filled with liquid scintillators has been presented. It was found that scintillation efficiency of the scintillator based on 1-methyl naphthalene with a new R39 only by 10% at the dose of 190 Mrad and the radiation resistance of thin liquid-core scintillating was decreased fibers exceeded 60 Mrad. 35 refs

  6. Long wavelength scintillators for fiber-optic applications

    International Nuclear Information System (INIS)

    Lyons, P.B.; Franks, L.; Lutz, S.; Flournoy, J.; Fullman, E.

    1980-01-01

    The use of fiber optics in plasma diagnostics has spurred the development of long wavelength scintillators with fast temporal characteristics. In this paper we describe several new liquid scintillator systems with fluorescent emissions maxima up to 730 nm. Subnanosecond scintillator FWHM response times have been obtained by the operation of liquid scintillators at elevated temperatures. Data on fiber system sensitivity versus fiber length and scintillator emission wavelength will be presented

  7. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Parr, H.

    1992-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  8. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Young, K.G.; Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Paar, H.

    1993-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain desired information and calculational procedures used in performing predictions for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. The calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  9. A scintillating fiber detector for the D0 upgrade

    International Nuclear Information System (INIS)

    Wayne, M.

    1993-03-01

    In the Step 1 version of the D0 upgrade, the inner vertex chamber will be replaced by a system of silicon microstrips surrounded by a scintillating fiber detector. Details of the detector design and status of R ampersand D and construction programs for the detector are presented. Progress on the upcoming large-scale cosmic ray test at Fermilab is also reported

  10. Performance of the CHORUS lead-scintillating fiber calorimeter

    CERN Document Server

    Buontempo, S

    1997-01-01

    We report on the design and performance of the lead-scintillating fiber calorimeter of the CHORUS experiment, which searches for νμ-ντ oscillations in the CERN Wide Band Neutrino beam. Two of the three sectors in which the calorimeter is divided are made of lead and plastic scintillating fibers, and they represent the first large scale application of this technique for combined electromagnetic and hadronic calorimetry. The third sector is built using the sandwich technique with lead plates and scintillator strips and acts as a tail catcher for the hadronic energy flow. From tests performed at the CERN SPS and PS an energy resolution of σ(E)/E=(32.3±2.4)%/E(GeV)+(1.4±0.7)% was measured for pions, and σ(E)/E=(13.8±0.9)%/E(GeV)+(−0.2±0.4)% for electrons.

  11. Scintillating fiber detection development for the SSC

    International Nuclear Information System (INIS)

    Ruchti, R.

    1993-01-01

    SSC Detector Program at Notre Dame has been concentrating on the development of scintillating fiber detectors for tracking applications. Initial work has focused on the development of new scintillation materials for micro-tracking and central tracking detectors based on organic plastics and liquids, This effort has included studies of solvents, solutes and waveguides. Techniques capable of providing the detection of single photons from fibers, are also being developed, leading to a collaboration with Rockwell, UCLA, and UTexas-Dallas groups on the development and application of the Solid State Photomultiplier (SSPM). This initial collaboration has been strengthened and expanded to the formation of a larger collaboration whose goal is to develop a fiber tracking subsystem for SSC, incorporating scintillating fibers and solid state photodetectors. The major subsystem proposal submitted to SSCL by this new collaboration, known at the Fiber Tracking Group (FTG), has been approved and funding is being put in place. The collaboration consists of 12 institutions and Notre Dame is a spokesman group

  12. Scintillating Optical Fiber Imagers for biology

    International Nuclear Information System (INIS)

    Mastrippolito, R.

    1990-01-01

    S.O.F.I (Scintillating Optical Fiber Imager) is a detector developed to replace the autoradiographic films used in molecular biology for the location of radiolabelled ( 32 P) DNA molecules in blotting experiments. It analyses samples on a 25 x 25 cm 2 square area still 25 times faster than autoradiographic films, with a 1.75 and 3 mm resolution for two orthogonal directions. This device performs numerised images with a dynamic upper than 100 which allows the direct quantitation of the analysed samples. First, this thesis describes the S.O.F.I. development (Scintillating Optical Fibers, coding of these fibers and specific electronic for the treatment of the Multi-Anode Photo-Multiplier signals) and experiments made in collaboration with molecular biology laboratories. In a second place, we prove the feasibility of an automatic DNA sequencer issued from S.O.F.I [fr

  13. A projective geometry lead fiber scintillator detector

    International Nuclear Information System (INIS)

    Paar, H.; Thomas, D.; Sivertz, M.; Ong, B.; Acosta, D.; Taylor, T.; Shreiner, B.

    1990-01-01

    The Superconducting Super Collider (SSC), presently under construction near Dallas, Texas requires highly sophisticated particle detectors. The energy and particle flux at the SSC are more than an order of magnitude higher than the highest machine located at the Fermi National Accelerator near Chicago. An important element of particle detectors for the SSC is the calorimeter. It measures a particle's energy by sampling its energy deposit in heavy material, such as (depleted) uranium or lead. The sampling medium must be interspersed with heavy absorber material. In the case of scintillating plastic, two methods are under consideration: plates and fibers. In the case of plates, a sandwich of scintillator plates and uranium plates is constructed. In the use of fibers (still in the prototype stage), 1 mm. diameter cylindrical scintillating fibers are inserted into grooves that are machined into lead layers. The layers are stacked and epoxied together to form the required geometrical shape of the detector. Lead and scintillating plastic sampling can meet the physics requirements of the detector. This has been shown in an R ampersand D program which is underway at the University of California at San Diego (UCSD), High Energy Physics Group. This R ampersand D is funded by the Department of Energy, High Energy Physics and SSC Divisions

  14. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed

  15. Plastic fiber scintillator response to fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-11-15

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  16. Improved terbium-doped, lithium-loaded glass scintillator fibers

    International Nuclear Information System (INIS)

    Spector, G.B.; McCollum, T.; Spowart, A.R.

    1993-01-01

    An improved terbium-doped, 6 Li-loaded glass scintillator has been drawn into fibers. Tests indicate that the neutron detection response of the fibers is superior to the response with fibers drawn from the original terbium-doped glass. The new fibers offer less attenuation (1/e length of ∝40 cm) and improved gamma ray/neutron discrimination. The improved fibers will be incorporated in a scintillator fiber optic long counter for neutron detection. (orig.)

  17. New liquid scintillators for fiber-optic applications

    International Nuclear Information System (INIS)

    Lutz, S.S.; Franks, L.A.; Flournoy, J.M.; Lyons, P.B.

    1981-01-01

    New long-wavelength-emitting, high-speed, liquid scintillators have been developed and tailored specifically for plasma diagnostic experiments employing fiber optics. These scintillators offer significant advantages over commercially available plastic scintillators in terms of sensitivity and bandwidth. FWHM response times as fast as 350 ps have been measured. Emission spectra, time response data, and relative sensitivity information are presented

  18. Scintillating optical fibers for fine-grained hodoscopes

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    Fast detectors with fine spatial resolution will be needed to exploit high event rates at ISABELLE. Scintillating optical fibers for fine grained hodoscopes have been developed by the authors. A commercial manufacturer of optical fibers has drawn and clad PVT scintillator. Detection efficiencies greater than 99% have been achieved for a 1 mm fiber with a PMT over lengths up to 60 cm. Small diameter PMT's and avalanche photodiodes have been tested with the fibers. Further improvements are sought for the fiber and for the APD's sensitivity and coupling efficiency with the fiber

  19. Detection of gamma rays using scintillation optical fibers

    International Nuclear Information System (INIS)

    Park, J. W.; Hong, S. B.

    2002-01-01

    Scintillating optical fibers have several advantages over other conventional materials used for radiation detection. We have used glass and plastic scintillating fibers to detect gamma rays emitted from 60 Co and 137 Cs, and beta rays from 90 Sr. The sensors are constructed of single strand or multi-strand fibers of 1 mm diameter. The glass scintillating fiber used contains cerium-activated lithium-silicate as scintillating material and the plastic scintillating fiber used is Bicron model BCF-12. In this paper, we report the pulse-height spectra obtained by both sensor types, and analyze them in the aspect of their usability for radiation detectors. Our investigation suggests that the glass fiber can be used to develop gamma ray detectors which will function in high and low gamma ray flux environments. Use of the sensor for the beta ray detection was not satisfactory. The plastic fiber sensor did not work satisfactorily for the weak gamma sources, but did produce somewhat promising results. The scintillating plastic fiber offers some feasibility as beta ray sensor material

  20. A study of liquid scintillator and fiber materials for use in a fiber calorimeter

    International Nuclear Information System (INIS)

    Altice, P.P. Jr.

    1990-04-01

    This reports an investigation into the performance of selected scintillation oils and fiber materials to test their applicability in high energy, liquid scintillator calorimetry. Two scintillating oils, Bicron BC-517 and an oil mixed for the MACRO experiment, and two fiber materials, Teflon and GlassClad PS-252, were tested for the following properties: light yield, attenuation length and internal reflection angle. The results of these tests indicated that the scintillation oils and the fiber materials had an overall good performance with lower energies and would meet the requirements of liquid scintillator detection at SSC energies. 6 refs

  1. Fiber-optic multipoint radiation sensing system using waveguide scintillators

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Yoda, Masaki; Tanaka, Koutarou; Masumaru, Tarou; Morimoto, Souichirou.

    1996-01-01

    Novel fiber-optic radiation sensors and a multipoint measurement method that takes advantage of them have been developed. The new sensor design, which we call a 'waveguide scintillator', consists of a scintillating material and a wavelength-shifting fiber (WLSF). The WLSF is embedded in the scintillating material, and each end is connected to a transparent optical fiber. These waveguide scintillators can be connected in series along an optical fiber loop to form a radiation monitoring system, and each end of the fiber loop is terminated with a photodetector. This new radiation monitoring arrangement dispenses with the need for electronic apparatus at each measuring point and consequently improves resistance to noise. Furthermore, it offers the advantages of multipoint monitoring - meaning that radiation intensity can be measured at multiple sensors - using only two photodetectors. We have examined the light output characteristics and time resolution of a prototype arrangement of these new waveguide scintillators, thus confirming the feasibility of multipoint measurements using a system of multiple waveguide scintillators connected in series in an optical fiber loop. (author)

  2. Trigger and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-01-01

    Scintillating Fiber technology has made great advances and has demonstrated great promise for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation floors available, make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This paper will discuss some of the system aspects which should be considered by anyone attempting to design a scintillating fiber tracking system and high speed tracking trigger. As the reader will see, seemingly simple decisions can have far reaching effects on overall system performance

  3. Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1989-01-01

    During the past year, considerable effort has been applied to the development of scintillating fiber detectors in several areas: new scintillation liquids and studies of their fluorescence properties; new fluorescent dyes based on non-intramolecular proton transfer; new dyes based on intramolecular proton transfer; incorporation of these new dyes in plastic (polystyrene) and liquid scintillation solutions; development of small cross section glass capillaries for the containment of liquid scintillators; studies of waveguide characteristics; studies of image intensifier phosphor screen characteristics; initial steps to form a collaboration to study and develop appropriate new properties of the Solid State Photomultiplier; construction of a new laboratory at Notre Dame to enhance our capabilities for further measurements and studies; and organization of and execution of a Workshop on Scintillating Fiber Detector Development for the SSC, held at Fermilab, November 14--16, 1988

  4. Optical fibers and avalanche photodiodes for scintillator counters

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Palmer, R.B.; Strand, R.C.

    1980-01-01

    Fine hodoscopes can be made of new scintillating optical fibers and one half inch end-on PMT's. An avalanche photodiode with small size and immunity to magnetic fields remains as a tempting new device to be proven as a photodetector for the fibers

  5. Detection system using scintillating optical fibers and image tube readout

    International Nuclear Information System (INIS)

    Alspector, J.; Borenstein, S.

    1979-01-01

    The hodoscope subgroup has studied a detection system consisting of bundles of optical fibers with readout via image tubes. The basic building block is an optical fiber with a scintillator inner core. The inner core has refractive index n/sub o/ (1.58 for plastic scintillator), and the outer sheath has a low index (approx. 1.4). Light is created in the core by passage of a particle track; if the light strikes the sheath at an angle greater than the critical angle phi/sub c/, it is trapped in the fiber until it finds its way to the photon detector

  6. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R., E-mail: raspberry@lanl.gov; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  7. Simulation and optimisation of a position sensitive scintillation detector with wavelength shifting fibers for thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Herzkamp, Matthias; Engels, Ralf; Kemmerling, Guenter [ZEA-2, Forschungszentrum Juelich (Germany); Brueckel, Thomas [JCNS, Forschungszentrum Juelich (Germany); Stahl, Achim [III. Physikalisches Institut B, RWTH Aachen (Germany); Waasen, Stefan van [ZEA-2, Forschungszentrum Juelich (Germany); Faculty of Engineering, University of Duisburg-Essen (Germany)

    2015-07-01

    In neutron scattering experiments it is important to have position sensitive large scale detectors for thermal neutrons. A detector based on a neutron scintillator with wave length shifting fibers is a new kind of such a detector. We present the simulation of the detector based on the microscopic structure of the scintillation material of the mentioned detector. It consists of a converter and a scintillation powder bound in a matrix. The converter in our case is lithium fluoride with enriched lithium 6, to convert thermal neutrons into high energetic alpha and triton particles. The scintillation material is silver doped zinc sulfide. We show that pulse height spectra obtained by these scintillators can be be explained by the simple model of randomly distributed spheres of zinc sulfide and lithium fluoride. With this model, it is possible to optimise the mass ratio of zinc sulfide to lithium fluoride with respect to detection efficiency and/or energy deposition in zinc sulfide.

  8. Research in high energy physics: Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1988-01-01

    The scintillating fiber detector development program at the University of Notre Dame is divided into several components. These include: Research on scintillating glass fiber materials; Research on scintillating plastic fiber materials; Research on scintillating liquids in fiber capillaries; Studies of improvements in image intensification and light amplification of appropriate test and development facilities at Notre Dame. The overall goal of the program is to develop efficient scintillating fiber detectors with long, optical attenuation length, and excellent radiation resistance properties for tracking and microvertex detectors and as component active sampling materials for scintillation calorimetry. We now discuss each of these programs in turn. 2 figs., 3 tabs

  9. Scifi97: Conference on Scintillating Fiber Detectors. Proceedings

    International Nuclear Information System (INIS)

    Bross, A.D.; Ruchti, R.C.; Wayne, M.R.

    1998-01-01

    These proceedings represent papers presented at the Conference on Scintillating and Fiber Detectors SCIFI97 held at Notre Dame, Indiana in November 1997. The topics discussed included the developments in photosensor technology, calorimetry, including upgrading of hadron calorimeters and EM calorimeters. Medical imaging instrumentation and techniques were also discussed, particularly the PET scanners. Astrophysical applications in detection and composition determination of galactic cosmic rays and solar neutrons were discussed. General developments in scintillation fiber trackers including new materials were a popular topic at the Conference. The Conference reviewed the state-of-the-art of the field of scintillation fiber detectors and their applications in nuclear medicine, astrophysics, and particle physics. The Conference was sponsored by the U.S. Department of Energy, the Fermi National Accelerator Laboratory, and Argonne National Laboratory, as well as other sponsors. There were 66 papers presented at the Conference,out of which 23 have been abstracted for the Energy,Science and Technology database

  10. Fine-grained hodoscopes based on scintillating optical fibers

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    In order to exploit the high event rates at ISABELLE, it will be necessary to have fast detection with fine spatial resolution. The authors are currently constructing a prototype fine-grained hodoscope, the elements of which are scintillating optical fibers. The fibers have been drawn from commercially available plastic scintillator which has been clad with a thin layer of silicone. So far it has been demonstrated with one mm diameter fibers, that with a photodetector at each end, the fibers are more than 99% efficient for lengths of about 60 cm. The readout will be accomplished either with small diameter photomultiplier tubes or avalanche photodiodes used either in the linear or Geiger mode. The program of fiber development and evaluation is described. The status of the APD as a readout element is discussed, and an optical encoding readout scheme is described for events of low multiplicity

  11. Optimum plastic scintillator and optical fiber combination for brachytherapy dosimetry

    International Nuclear Information System (INIS)

    Arnfield, Mark R.; Gaballa, Hani E.; Zwicker, Robert D.; Islam, Quazi; Schmidt-Ullrich, Rupert

    1995-01-01

    Purpose/Objective: There have been several recent reports using plastic scintillators to measure dose in photon and electron beams. External beam measurements agreed well with standard ion chamber dosimetry. This was implemented by using two identical, parallel optical fibers with a small piece of plastic scintillator attached to one. We have constructed a similar device for application to brachytherapy. Brachytherapy dosimetry is a more difficult problem than external beam because of high dose gradients and widely ranging photon energies. Based on detailed spectral measurements, we have designed a dosimeter specifically to meet the unique, stringent needs of brachytherapy. Materials and Methods: The work consisted of two stages. In the first stage, we measured the optical spectra emitted by commercial plastic scintillators and silica core optical fibers in the presence of a 10 Curie iridium 192 HDR source. In the second stage, the spectral information was used to select an optimum combination of scintillator and fiber which were incorporated in the dosimeter. Equipment for the spectral measurements included a 0.1 meter monochromator with a sensitive photomultiplier (PMT) with flat response across the visible. The resolution of spectral scans was 4 nm. The dosimeter was constructed with a 1mm x 3mm piece of plastic scintillator bonded with optical cement to a 0.6 mm diameter silica core optical fiber. A second, identical optical fiber running alongside the first, with no scintillator attached, was used for background subtraction. Two PMTs with high sensitivity in the visible were used at the fiber distal ends. There was a space for an optical filter between the fiber and the PMTs, whose purpose is described below. The PMTs were connected to a differential pair whose output was transferred to a current source for measurement by a standard electrometer. Results: The scintillation spectra of six different types of silica core optical fibers in the presence of the

  12. Test beam results from a scintillating fibers-lead calorimeter

    International Nuclear Information System (INIS)

    Caria, M.

    1991-01-01

    The SpaCal collaboration has built prototypes of lead-scintillating fibers calorimter. The aim is to check predicted performances. Here are briefly mentioned results obtained from prototypes tests in beam of e, π, μ at CERN. Layers 2m long of extruded lead, were equipped with 1mm fibers in an hexagonal geometry. The ratio of scintillator to lead was 1/4. Results are presented on the most appealing features of such a calorimeter: energy resolution, homogeneity, containment and compensation. It is shown, that excellent energy resolution togehter with compensation has been achieved. (orig.)

  13. Scintillating plastic optical fiber radiation detectors in high energy particle physics

    International Nuclear Information System (INIS)

    Bross, A.D.

    1991-01-01

    We describe the application of scintillating optical fiber in instrumentation for high energy particle physics. The basic physics of the scintillation process in polymers is discussed first and then we outline the fundamentals of scintillating fiber technology. Fiber performance, optimization, and characterization measurements are given. Detector applications in the areas of particle tracking and particle energy determination are then described. 13 refs., 12 figs

  14. Scintillators for fiber optics: system sensitivity and bandwidth as a function of fiber length

    International Nuclear Information System (INIS)

    Lutz, S.S.; Franks, L.A.; Fluornoy, J.M.; Lyons, P.B.

    1981-01-01

    Scintillators have been employed for several years as ionizing radiation-to-light converters in plasma diagnostic experiments that utilize fiber optics. Until recently, nanosecond and subnanosecond scintillators were available only in the near ultraviolet. However, the bandwidth and transmission properties of fiber optics both strongly favor operation at longer wavelengths. More recently, nanosecond and subnanosecond scintillators with emission peaks around 480 nm have been reported. A time-resolved plasma-imaging experiment using one of these scintillators and 100 channels of graded-index fiber, each 500 m long, has been successfully tested on a nuclear event at the Nevada Test Site. During the past year we have developed several new scintillator systems with emission wavelengths more compatible with fiber optics and with response times in the nanosecond and subnanosecond time region. One scintillator, based on Kodak dye 14567 (DCM), has an emission maximum at 650 nm and a response time (FWHM) of 1.2 ns. Experimental data on system sensitivity and bandwidth versus fiber length are presented for three fluor-fiber systems. Data on fluor formulation, response time, and linearity-of-response are given, and a model for scintillator nonlinearity, based on solvent, radiation-induced, transient absorption, is presented

  15. X-ray imaging and detection using plastic scintillating fibers

    CERN Document Server

    Ikhlef, A; Beddar, A S

    2000-01-01

    This paper discusses the application of plastic scintillating fiber array in X-ray imaging with low-energy radiation. This array is coupled to a multichannel intensified photocathode and then to a CCD detector via a fiber optics taper. The length of the fiber array is experimentally optimized for the radiation used. We found here that the length of the fibers (interaction medium) does not contribute too much in the degradation of the spatial resolution under 10 keV irradiation along the axis of the fiber array. Modulation Transfer Function (MTF) measurements of the PSF array are compared to the optics MTF of the imaging system (without the sample) and that cross-talk in the fiber array is found to be negligible for a fiber array thickness of 20 mm.

  16. Gas scintillation drift chambers with wave shifter fiber readout

    International Nuclear Information System (INIS)

    Sadoulet, B.; Weiss, S.; Parsons, A.; Lin, R.P.; Smith, G.

    1988-01-01

    The authors present results from their prototype xenon gas scintillation drift chamber. They discuss its operation with two types of light detection schemes: one based on a Anger camera geometry and one based on an array of wave shifting light fibers. The results demonstrate some of the instruments's tremendous potential

  17. Cerium-doped scintillating fused-silica fibers

    Science.gov (United States)

    Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P.; Faulkner, J.; Kunori, S.

    2018-04-01

    We report on a set of measurements made on (scintillating) cerium-doped fused-silica fibers using high-energy particle beams. These fibers were uniformly embedded in a copper absorber in order to utilize electromagnetic showers as a source of charged particles for generating signals. This new type of cerium-doped fiber potentially offers myriad new applications in calorimeters in high-energy physics, tracking systems, and beam monitoring detectors for future applications. The light yield, pulse shape, attenuation length, and light propagation speeds are given and discussed. Possible future applications are also explored.

  18. Multisector scintillation detector with fiber-optic light collection

    Science.gov (United States)

    Ampilogov, N. V.; Denisov, S. P.; Kokoulin, R. P.; Petrukhin, A. A.; Prokopenko, N. N.; Shulzhenko, I. A.; Unatlokov, I. B.; Yashin, I. I.

    2017-07-01

    A new type of scintillation detector for the use in high energy physics is described. The octagonal detector consists of eight triangular scintillator sectors with total area of 1 m2. Each sector represents two plates of 2 cm thick plastic scintillator. Seven 1 mm thick WLS fibers are laid evenly between the plates. The space between the fibers is filled with silicone compound to provide better light collection. Fiber ends from all eight sectors are gathered in the central part of the detector into a bunch and docked to the cathode of a FEU-115m photomultiplier. The read-out of the counter signals is carried out from 7th and 12th dynodes, providing a wide dynamic range up to about 10000 particles. The front-end electronics of the detector is based on the flash-ADC with a sampling frequency of 200 MHz. The features of detecting and recording systems of the multisector scintillation detector (MSD) and the results of its testing are discussed.

  19. Fiber scintillator/streak camera detector for burn history measurement in inertial confinement fusion experiment

    International Nuclear Information System (INIS)

    Miyanaga, N.; Ohba, N.; Fujimoto, K.

    1997-01-01

    To measure the burn history in an inertial confinement fusion experiment, we have developed a new neutron detector based on plastic scintillation fibers. Twenty-five fiber scintillators were arranged in a geometry compensation configuration by which the time-of-flight difference of the neutrons is compensated by the transit time difference of light passing through the fibers. Each fiber scintillator is spliced individually to an ultraviolet optical fiber that is coupled to a streak camera. We have demonstrated a significant improvement of sensitivity compared with the usual bulk scintillator coupled to a bundle of the same ultraviolet fibers. copyright 1997 American Institute of Physics

  20. Performance of multiclad scintillating and clear waveguide fibers read out with visible light photon counters

    Energy Technology Data Exchange (ETDEWEB)

    Baumbaugh, B. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Erdman, J. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Gaskell, D. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Lu, Q. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Marchant, J. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Ruchti, R. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Wayne, M. (Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)); Cooper, C. (Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)); Hinson, J. (Department of Physics, Purdue University, West Lafayette, IN 47907 (United States)); Koltick, D.S. (Department of Physics, Purdue University, West Lafayette, IN 47907 (United State

    1994-06-15

    Measurements have been made of the performance of scintillating fibers read out with visible light photon counters (VLPCs). The light yields of single-clad and multiclad scintillating fibers have been compared. The experiment consisted of 3 m long scintillating fibers of 830 [mu]m diameter optically coupled to 8 m long waveguide fibers of 965 [mu]m diameter read out with HISTE-IV VLPCs. For the case of multiclad scintillating fiber and waveguide, an average of 6.2 photoelectrons was detected from the far end of the scintillating fiber if the fiber end was unmirrored, and 10.2 photoelectrons if the fiber end was mirrored. With this substantial photoelectron yield, minimum-ionizing tracks can be easily detected in fiber arrays, and excellent performance characteristics are expected for the fiber trackers designed for the D0 experiment at the Fermilab Tevatron Collider and the SDC experiment at the SSC Laboratory. ((orig.))

  1. Luminosity Measurement at ATLAS with a Scintillating Fiber Tracker

    CERN Document Server

    Ask, S

    2007-01-01

    We are reporting about a scintillating fiber tracking detector which is proposed for a precise determination of the absolute luminosity of the CERN LHC at interaction point 1 where the ATLAS experiment is located. The detector needs to track protons elastically scattered under micro-radian angles in direct vicinity to the LHC beam. It is based on square shaped scintillating plastic fibers read out by multi-anode photomultiplier tubes and is housed in Roman Pots. We describe the design and construction of prototype detectors and the results of two beam test experiments carried out at DESY and at CERN. The excellent detector performance established in these tests validates the detector design and supports the feasibility of the proposed challenging method of luminosity measurement. All results from the CERN beam test should be considered as preliminary.

  2. Simulation of scintillating fiber gamma ray detectors for medical imaging

    International Nuclear Information System (INIS)

    Chaney, R.C.; Fenyves, E.J.; Antich, P.P.

    1990-01-01

    This paper reports on plastic scintillating fibers which have been shown to be effective for high spatial and time resolution of gamma rays. They may be expected to significantly improve the resolution of current medical imaging systems such as PET and SPECT. Monte Carlo simulation of imaging systems using these detectors, provides a means to optimize their performance in this application, as well as demonstrate their resolution and efficiency. Monte Carlo results are presented for PET and SPECT systems constructed using these detectors

  3. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber.

    Science.gov (United States)

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-05-11

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.

  4. Water-equivalent one-dimensional scintillating fiber-optic dosimeter for measuring therapeutic photon beam

    International Nuclear Information System (INIS)

    Moon, Jinsoo; Won Jang, Kyoung; Jae Yoo, Wook; Han, Ki-Tek; Park, Jang-Yeon; Lee, Bongsoo

    2012-01-01

    In this study, we fabricated a one-dimensional scintillating fiber-optic dosimeter, which consists of 9 scintillating fiber-optic dosimeters, septa, and PMMA blocks for measuring surface and percentage depth doses of a therapeutic photon beam. Each dosimeter embedded in the 1-D scintillating fiber-optic dosimeter is composed of square type organic scintillators and plastic optical fibers. Also black PVC films are used as septa to minimize cross-talk between the scintillating fiber-optic dosimeters. To construct a dosimeter system, a 1-D scintillating fiber-optic dosimeter and a CMOS image sensor were combined with 20 m-length plastic optical fibers. Using the dosimeter system, we measured surface and percentage depth doses of 6 and 15 MV photon beams and compared the results with those of EBT films and an ionization chamber. - Highlights: ► Fabrication of a one-dimensional scintillating fiber-optic dosimeter. ► The one-dimensional scintillating fiber-optic dosimeter has 9 scintillating fiber-optic dosimeters. ► Measurements of surface and percentage depth doses of a therapeutic photon beam. ► The results were compared with those of EBT films and an ionization chamber.

  5. Energy resolution of a lead scintillating fiber electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chirikov-Zorin, I.; Glagolev, V.

    1993-01-01

    A calorimeter module was fabricated using profiled lead plates and scintillating fibers with diameter 1 mm and attenuation length about 80 cm. The absorber-to-fiber volume ratio was 1.17 and the module average radiation length X 0 = 1.05 cm. The energy resolution of the module was investigated using the electron beams of U-70 at Serpukhov and of the SPS at CERN in the energy range 5-70 GeV. The energy resolution at θ = 3 0 (the angle between the fiber axis and the beam direction) may be expressed by the formula σ/E(%) = 13.1/√E ± 1.7. The energy resolution was also simulated by Monte Carlo and good agreement with the experiment has been achieved. 12 refs.; 13 figs.; 4 tabs

  6. SBIR Final Report. Liquid Core Optical Scintillating Fibers

    International Nuclear Information System (INIS)

    Beetz, C.P.; Steinbeck, J.; Buerstler, R.

    2000-01-01

    This Phase I SBIR project focused on developing flexible scintillating liquid core optical fibers, with potential uses in high-energy calorimetry, tracking, preradiators, active targets or other fast detectors. Progress on the six tasks of the project is summarized. The technical developments involve three technology components: (1) highly flexible capillaries or tubes of relatively low n (index of refraction) to serve as cladding and liquid core containment; (2) scintillator (and clear) fluids of relatively high n to serve as a core-- these fluids must have a high light transmission and, for some applications, radiation hardness; (3) optical end plugs, plug insertion, and plug-cladding tube sealing technology to contain the core fluids in the tubes, and to transmit the light

  7. 3D tomodosimetry using long scintillating fibers: A feasibility study

    International Nuclear Information System (INIS)

    Goulet, Mathieu; Archambault, Louis; Beaulieu, Luc; Gingras, Luc

    2013-01-01

    Purpose: 3D dosimetry is recognized as an ideal for patient-specific quality assurance (QA) of highly conformal radiotherapy treatments. However, existing 3D dosimeters are not straightforward to implement in the clinic, as their read-out procedure is often tedious and their accuracy, precision, and/or sample size exhibit limitations. The purpose of this work is to develop a 3D dosimeter based on the concept of tomodosimetry inside concentric cylindrical planes using long scintillating fibers for the QA of modern radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) or intensity-modulated arc therapy (IMAT).Methods: Using a model-based simulation, scintillating fibers were modeled on three concentric cylindrical planes of radii 2.5, 5.0, and 7.5 cm, inside a 10 cm radius water-equivalent cylinder phantom. The phantom was set to rotate around its central axis, made parallel to the linac gantry axis of rotation. Light acquisitions were simulated using the calculated dose from the treatment planning software and reconstructed in each cylindrical plane at a resolution of 1 mm 2 using a total-variation minimization iterative reconstruction algorithm. The 3D dose was then interpolated from the reconstructed cylindrical plane doses at a resolution of 1 mm 3 . Different scintillating fiber patterns were compared by varying the angle of each fiber in its cylindrical plane and introducing a light-tight cut in each fiber. The precision of the reconstructed cylindrical dose distribution was evaluated using a Poisson modeling of the acquired light signals and the accuracy of the interpolated 3D dose was evaluated using an IMRT clinical plan for a prostate case.Results: Straight scintillating fiber patterns with light-tight cuts were the most accurate in cylindrical dose reconstruction, showing less than 0.5 mm distance-to-agreement in dose gradients and a mean local dose difference of less than 0.2% in the high dose region for a 10 × 10 cm 2 field. The

  8. Radiation damage studies of straw tube and scintillating fiber elements

    International Nuclear Information System (INIS)

    Dunn, W.L.; Elleman, T.S.; Goshaw, A.T.; Oh, S.H.; Robertson, W.J.; Grimes, A.; Leedom, I.; Reucroft, S.

    1990-01-01

    The authors report on the results of mixed-field irradiations of straw-tube, plastic scintillating fiber, and avalanche photodiode components. These irradiations are being carried out at the one-MW PULSTAR research reactor facility at North Carolina State University. A special sample holder was designed that allows relatively uniform irradiation of samples up to 5 ft long, without bending or coiling. A systematic irradiation program is underway that allows study of total fluence, fluence-rate, and neutron spectral effects. Samples have been exposed to neutron fluences as high as 2 x 10 16 cm -2

  9. Results of the R and D activity on the NOE scintillating fiber calorimeter

    International Nuclear Information System (INIS)

    Demitri, I.

    2001-01-01

    The NOE scintillating fiber calorimeter has undergone four years of intense R and D activity. Measurements of light attenuation and time resolution have been carried out on a variety of commercially available scintillating fibers. Both these parameters are important for the optimisation of the design of the calorimeter which will be part of the ICANOE detector

  10. Results of the R and D activity on the NOE scintillating fiber calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Demitri, I. E-mail: ivan.demitri@le.infr.it

    2001-04-01

    The NOE scintillating fiber calorimeter has undergone four years of intense R and D activity. Measurements of light attenuation and time resolution have been carried out on a variety of commercially available scintillating fibers. Both these parameters are important for the optimisation of the design of the calorimeter which will be part of the ICANOE detector.

  11. Detection of Beta-rays by using Plastic Scintillating Fibers

    International Nuclear Information System (INIS)

    Park, Chan Hee

    2005-02-01

    Optical fibers have been used as sensing materials in various nuclear applications. Optical fiber sensors have proven to present several advantages as compared with other conventional sensors. They can be prepared in very small sizes and they are light enough to be easily put into very narrow channels such as between nuclear to be easily put into very narrow channels such as between nuclear fuel rods. No electrical power is needed to the sensor part so they are less susceptible to troubles in harsh environments such as underground and underwater. Optical fiber sensors cost relatively cheap to make, so that they are more suitable for multi-point radiation monitoring such as in nuclear power plants, accelerators, fusion study facilities. If one develops radiation sensors using scintillating optical fibers, that can directly measure the concentration of 3 H or 14 C in radioactive liquid, they can be useful tools to substitute the current liquid scintillation counters. They can be also used to measure the radioactivity of liquid radioactive wastes by dipping into the liquid wastes. Recently, several new scintillating materials of high density and low hygroscopicity have been found, and they can be transformed into good radiation-detection tools when they are combined with optical fibers. In this study, we have used commercially available plastic scintillating fibers of Bicron model BCF-12 (0.5mm, 1mm in diameter) to detect beta rays emitted from 3 H, 14 C. Several types of radiation sensors were constructed : each was constructed with thirty strands of the fibers being packed an aluminum tube. The optical signals generated inside the fiber bundle were converted into electrical pluses by a photomultiplier tube(PMT). The pulses were counted either through a non-coincidence circuit or a coincidence circuit. Two types of sensors were constructed for the non-coincidence counting. The open type (sensor A) is a sensor for which one end of the fibers is open and the other end

  12. Scintillating fiber array for tagging post-bremsstrahlung electrons

    Science.gov (United States)

    Cole, Philip; Alef, Stefan; Reitz, Björn-Eric; Schmieden, Hartmut; Hannappel, Jürgen; Jude, Thomas; Sandri, Paolo Levi; BGO-OD Collaboration

    2016-03-01

    We seek to extract the kinematic fingerprints of baryon resonances by making use of a high-quality beam of linearly polarized photons at the BGO-OD experiment at ELSA (Bonn, German). We constructed a unique device for precisely determining the degree of polarization in the coherent bremsstrahlung peak. Deflection of post-bremsstrahlung electrons in the magnetic field of the photon tagger provides precise information on the energy and polarization of the bremsstrahlung photons. And thereby will constrain the overall kinematics of the final-state particles in all decay channels of the photoproduced baryon resonances. We designed, prototyped, built, calibrated, and have been operating a three-layered, multi-stranded, scintillating-fiber detector for ensuring the quality of the linearly polarization of the photon beam. The overlapping 2.00-mm scintillating fibers form an array giving ARGUS over 500 channels. The very befitting name harkens to the mythological all-seeing creature Argus Panoptes, the multi-eyed giant. Our work was supported through a Fulbright Scholarship Award and by the Deutsche Forschungsgemeinschaft through the Collaborative Research Center (Sonderforschungsbereich SFB/TR-16) of the universities in Bonn, Giessen and Bochum, Germany. NSF-PHY-1307340.

  13. Linear position sensitive neutron detector using fiber optic encoded scintillators

    International Nuclear Information System (INIS)

    Davidson, P.L.; Wroe, H.

    1983-01-01

    A linear position sensitive slow neutron detector with 3 mm resolution is described. It uses the fiber optic coding principle in which the resolution elements are separate pieces of lithium loaded glass scintillator each coupled by means of flexible polymer optical fibers to a unique combination of 3 photo multipliers (PM's) out of a bank of 12. A decoder circuit repsponds to a triple coincidence between PM outputs and generates a 12 bit work which identifies the scintillator element which stopped the incident neutron. Some details of the construction and decoding electronics are given together with test results obtained using a laboratory isotope neutron source and a monochomated, collimated neutron beam from a reactor. The count rate in the absence of neutron sources is 2 to 3 c min - 1 per element; the element to element variation in response to a uniform flux is a few percent for 95% of the elements; the resolution as measured by a 1 mm wide prode neutron beam is 3 mm; the relative long term stability is about 0.1% over 3 days and the detection efficiency measured by comparison with an end windowed, high pressure gas counter is about 65% at a neutron wavelength of 0.9A 0

  14. Scintillator manufacture at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  15. H-dibaryon search with a scintillating fiber live target

    International Nuclear Information System (INIS)

    Ahn, J.K.; Aoki, S.; Chung, K.S.; Chung, M.S.; En'yo, H.; Fukuda, T.; Funahashi, H.; Goto, Y.; Higashi, A.; Ieiri, M.; Iijima, T.; Iinuma, M.; Itow, Y.; Lee, J.M.; Makino, S.; Masaike, A.; Matsuda, Y.; Matsuyama, Y.; Mihara, S.; Nakano, T.; Nagoshi, C.; Niwa, K.; Nomura, I.; Park, I.S.; Park, Y.M.; Saito, N.; Sekimoto, M.; Shin, Y.M.; Sim, K.S.

    1995-01-01

    An experiment (E224) searching for the H-dibaryon has been performed at the KEK-PS K2 beam line in 1991∼1992. A new type of visual live target using plastic scintillating fibers has been developed for this experiment. We have been searching for the H produced by the direct process, K - +C→K + +H+X, and also by an atomic capture of Ξ - in carbon atom in the target. More than 4500 (K - , K + ) events on 12 C target have been detected in the quasi-free region, where we expect about 150 Ξ - 's are captured in carbon atom. So far, no positive candidate has been found. The upper limits of the H production through these processes are reported. copyright 1995 American Institute of Physics

  16. Measurement of the neutron detection efficiency of a 80% absorber-20% scintillating fibers calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M.; Bertolucci, S. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy); Bini, C., E-mail: cesare.bini@roma1.infn.i [Dipartimento di Fisica, Sapienza Universita di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); INFN Sezione di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); Branchini, P. [INFN Sezione di Roma Tre, Via della Vasca Navale, 84 I-00146 Roma (Italy); Corradi, G.; Curceanu, C. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy); De Zorzi, G.; Di Domenico, A. [Dipartimento di Fisica, Sapienza Universita di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); INFN Sezione di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); Di Micco, B. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Via della Vasca Navale, 84 I-00146 Roma (Italy); INFN Sezione di Roma Tre, Via della Vasca Navale, 84 I-00146 Roma (Italy); Ferrari, A. [Institute of Safety Research and Institute of Radiation Physics, Forschungszentrum Dresden-Rossendorf, PF 510119, 01314 Dresden (Germany); Fiore, S. [Dipartimento di Fisica, Sapienza Universita di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); INFN Sezione di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); Gauzzi, P., E-mail: paolo.gauzzi@roma1.infn.i [Dipartimento di Fisica, Sapienza Universita di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); INFN Sezione di Roma, P.le A.Moro, 2 I-00185 Roma (Italy); Giovannella, S.; Happacher, F. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy); Iliescu, M. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy); ' Horia Hulubei' National Institute of Physics and Nuclear Engineering, Str. Atomistilor no. 407, P.O. Box MG-6 Bucharest-Magurele (Romania); Luca, A.; Martini, M.; Miscetti, S. [Laboratori Nazionali di Frascati dell' INFN, Via E.Fermi 40, I-00044 Frascati (Italy)

    2011-01-21

    The neutron detection efficiency of a sampling calorimeter made of 1 mm diameter scintillating fibers embedded in a lead/bismuth structure has been measured at the neutron beam of The Svedberg Laboratory at Uppsala. A significant enhancement of the detection efficiency with respect to a bulk organic scintillator detector with the same thickness is observed.

  17. A lead-scintillating fiber calorimeter to increase L3 hermeticity

    CERN Document Server

    Basti, G

    1997-01-01

    A lead-scintillating fiber calorimeter has been built to fill the gap between endcap and barrel of the L3 BGO electromagnetic calorimeter. We report details of the construction, as well as results from test-beam and simulation.

  18. Cosmic ray test results of the DOe prototype scintillating fiber tracker

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D. [Rice Univ., Houston, TX (United States); Adams, M. [University of Illinois at Chicago, IL (United States); Baumbaugh, B. [Notre Dame Univ., IN (United States); Bertram, I. [Rice Univ., Houston, TX (United States); Bross, A. [Fermi National Accelerator Lab., Batavia, IL (United States); Casey, D. [Rochester Univ., NY (United States); Chang, S. [Northeastern Univ., Boston, MA (United States); Chung, M. [University of Illinois at Chicago, IL (United States); Cooper, C. [Purdue Univ., Lafayette, IN (United States); Cretsinger, C. [Rochester Univ., NY (United States); Demina, R. [Northeastern Univ., Boston, MA (United States); Fanourakis, G. [Rochester Univ., NY (United States); Gruenendahl, S. [Rochester Univ., NY (United States); Hinson, J. [Purdue Univ., Lafayette, IN (United States); Howell, B. [Purdue Univ., Lafayette, IN (United States); Johari, H. [Northeastern Univ., Boston, MA (United States); Kang, J.S. [Korea Univ., Seoul (Korea, Republic of); Kim, C.L. [Korea Univ., Seoul (Korea, Republic of); Kim, S.K. [Seoul National Univ. (Korea, Republic of); Koltick, D. [Purdue Univ., Lafayette, IN (United States); Lobkowicz, F. [Rochester Univ., NY (United States); Margulies, S. [University of Illinois at Chicago, IL (United States); Moromisato, J. [Northeastern Univ., Boston, MA (United States); Narain, M. [Fermi National Accelerator Lab., Batavia, IL (United States); Park, C.H. [Fermi National Accelerator Lab., Batavia, IL (United States); Park, Y.M. [Kyungsung Univ., Pusan (Korea, Republic of); Reucroft, S. [Northeastern Univ., Boston, MA (United States); Ruchti, R. [Notre Dame Univ., IN (United States); Solomon, J. [University of Illinois at Chicago, IL (United States); VonGoeler, E. [Northeastern Univ., Boston, MA (United States); Warchol, J. [Notre Dame Univ., IN (United States); Wayne, M. [Notre Dame Univ., IN (United States); Won, E. [Rochester Univ., NY (United States); Yu, Y. [Seoul National Univ. (Korea)

    1995-11-01

    The performance of a large scale scintillating fiber tracker with VLPC readout has been studied in a cosmic-ray test. Approximately 9.6 photoelectrons per single layer per trigger were detected at a VLPC bias voltage of 6.5V. The doublet efficiency was nearly 100% at a 0.1% noise level and a position resolution of about 140{mu}m was measured. We also studied the relationship between VLPC performance and VLPC bias voltage by measuring single fiber efficiency as a function of VLPC bias in the range 6.2V to 7.0V at a fixed temperature of 6.5K. We observed no significant variation in VLPC performance within this bias range. (orig.).

  19. Cosmic ray test results of the DO prototype scintillating fiber tracker

    International Nuclear Information System (INIS)

    Adams, D.; Bertram, I.; Adams, M.; Chung, M.; Baumbaugh, B.; Bross, A.; Casey, D.; Cretsinger, C.; Chang, S.; Cooper, C.

    1995-01-01

    The performance of a large scale scintillating fiber tracker with VLPC readout has been studied in a cosmic-ray test. Approximately 9.6 photoelectrons per single layer per trigger were detected at a VLPC bias voltage of 6.5V. The doublet efficiency was nearly 100% at a 0.1% noise level and a position resolution of about 140μm was measured. The authors also studied the relationship between VLPC performance and VLPC bias voltage by measuring single fiber efficiency as a function of VLPC bias in the range 6.2V to 7.0V at a fixed temperature of 6.5 degrees K. They observed no significant variation in VLPC performance within this bias range

  20. Radiation damage of tile/fiber scintillator modules for the SDC calorimeter

    International Nuclear Information System (INIS)

    Hu, L.; Liu, N.; Mao, H.; Tan, Y.; Wang, G.; Zhang, C.; Zhang, G.; Zhang, L.; Zhang, Z.; Zhao, X.; Zheng, L.; Zhong, X.; Zhou, Y.; Han, S.; Byon, A.; Green, D.; Para, A.; Johnson, K.; Barnes, V.

    1992-02-01

    The measurements of radiation damage of tile/fiber scintillator modules to be used for the SDC calorimeter are described. Four tile/fiber scintillator modules were irradiated up to 6 Mrad with the BEPC 1.1 GeV electron beam. We have studied the light output at different depths in the modules and at different integrated doses, the recovery process and the dependence on the ambient atmosphere

  1. Characterization of scintillating plastic fibers and silicon photomultipliers for their usage in a particle telescope

    Energy Technology Data Exchange (ETDEWEB)

    Pruefer, Lea; Losekamm, Martin; Poeschl, Thomas; Greenwald, Daniel; Paul, Stephan [Technische Universitaet Muenchen, 85748 Garching (Germany)

    2016-07-01

    The Multi-purpose Active-target Particle Telescope (MAPT) is a newly developed compact charged-particle detector. It can be used for space applications, such as radiation monitoring on spacecraft or for stratospheric research balloons. Its core consists of scintillating plastic fibers coupled to silicon photomultiplier (SiPMs). The energy reconstruction of the incoming particles is based on an extended Bragg curve spectroscopy technique, requiring a good measurement of the energy deposition. Therefore, non-linearities of the measured light output -such as quenching effects of the scintillating material or saturation of the SiPMs at high light yields- have to be known quantitatively. To investigate these effects, two scaled-down prototypes were built, consisting of 128 and 16 channels. The first one was tested at a stationary proton beam at Paul Scherrer Institute. We determine Birk's coefficient describing the ionization quenching of the scintillator and calculate the characteristic photon detection efficiency of the SiPMs. We explain the results of the first prototype tests and the characterization of the SiPMs.

  2. Temperature variations as a source of uncertainty in medical fiber-coupled organic plastic scintillator dosimetry

    DEFF Research Database (Denmark)

    Buranurak, Siritorn; Andersen, Claus Erik; Beierholm, Anders Ravnsborg

    2013-01-01

    Fiber-coupled organic plastic scintillators have potential applications in medical dosimetry related to, for example, brachytherapy and external beam radiotherapy with MV photons. As medical dosimetry generally strives for high accuracy, we designed a study to assess if the light yield from...... commonly used scintillating fibers would change with temperature in the clinical range (15–40 °C). The study showed that the light yield in the peak regions of the scintillators studied decreases linearly with increasing temperature. For the blue BCF-12 and the green BCF-60 from Saint-Gobain, France we...

  3. An instrument for the high-statistics measurement of plastic scintillating fibers

    International Nuclear Information System (INIS)

    Buontempo, S.; Ereditato, A.; Marchetti-Stasi, F.; Riccardi, F.; Strolin, P.

    1994-01-01

    There is today widespread use of plastic scintillating fibers in particle physics, mainly for calorimetric and tracking applications. In the case of calorimeters, we have to cope with very massive detectors and a large quantity of scintillating fibers. The CHORUS Collaboration has built a new detector to search for ν μ -ν τ oscillations in the CERN neutrino beam. A crucial task of the detector is ruled by the high-energy resolution calorimeter. For its construction more than 400 000 scintillating plastic fibers have been used. In this paper we report on the design and performance of a new instrument for the high-statistics measurement of the fiber properties, in terms of light yield and light attenuation length. The instrument has been successfully used to test about 3% of the total number of fibers before the construction of the calorimeter. ((orig.))

  4. Scintillation hodoscopes on the basis of hodoscopic photomultipliers using scintillation fibers

    International Nuclear Information System (INIS)

    Alimova, T.V.; Vasil'chenko, V.G.; Vechkanov, G.N.

    1986-01-01

    Scintillation hodoscopes characteristics and their design features have been considered. The space resolution for hodoscopes consisting of 4 layers of scintillation fibres 200 mm long and 1 mm in diameter is 0.4-0.6 mm. With 2 fibres layer 1 m long and 3.8 mm in diameter the space resolution 3 mm has been obtained. A possibility to construct 0.1 mm resolution scintillation hodoscopes is discussed

  5. Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.

    Science.gov (United States)

    Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira

    2018-02-16

    High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.

  6. Evaluation of the Detection Efficiency of LYSO Scintillator in the Fiber-Optic Radiation Sensor

    Directory of Open Access Journals (Sweden)

    Chan Hee Park

    2014-01-01

    Full Text Available The aim of this study was to develop and evaluate fiber-optic sensors for the remote detection of gamma rays in areas that are difficult to access, such as a spent fuel pool. The fiber-optic sensor consists of a light-generating probe, such as scintillators for radiation detection, plastic optical fibers, and light-measuring devices, such as PMT. The (Lu,Y2SiO5:Ce(LYSO:Ce scintillator was chosen as the light-generating probe. The (Lu,Y2SiO5:Ce(LYSO:Ce scintillator has higher scintillation efficiency than the others and transmits light well through an optical fiber because its refraction index is similar to the refractive index of the optical fiber. The fiber-optic radiation sensor using the (Lu,Y2SiO5:Ce(LYSO:Ce scintillator was evaluated in terms of the detection efficiency and reproducibility for examining its applicability as a radiation sensor.

  7. Tests of crossed-wire position sensitive photomultipliers for scintillating fiber particle tracking

    International Nuclear Information System (INIS)

    Perdrisat, C.F.; Koechner, D.; Majewski, S.; Pourang, R.; Wilson, C.D.; Zorn, C.

    1995-01-01

    Several applications of two Hamamatsu position sensitive photomultiplier tubes to the detection of high energy particles with scintillating fibers are discussed. The PMTs are of the multiwire anode grid design, type R2486 and R4135. These tubes were tested with both single samples and arrays of 2 and 3 mm diameter scintillating fibers. Measurements of position resolution of the PMTs using either the charge digitization or the delay line readout techniques were made. The results indicate an intrinsic inability of the technique to reconstruct the actual position of a fiber on the photocathode when its location falls halfway between two grid wires. A way to overcome this limit is suggested. (orig.)

  8. A miniature gamma ray dosimeter with CWO scintillator and plastic optical fiber combination

    International Nuclear Information System (INIS)

    Jae Woo Park, Min Woo Seo

    2008-01-01

    Full text: Fiber-optic scintillation dosimeters possess several favorable characteristics, such as remote measurability and superior spatial resolution. Such a radiation dosimeter model was developed by attaching a small piece of CWO (CdWO 4 ) scintillator to a low attenuation plastic optical fiber. CWO was chosen since the higher atomic numbers of Cd and W would render the size of the scintillator smaller. The size of the scintillator was 4.7x4.7x10 mm 3 . The scintillator was optically glued to the plastic optical fiber of 3 mm diameter and 10 m length. A current-type PMT was optically coupled to the other end of the fiber to convert the lights generated in the scintillator into current signals. The dosimeter model was tested with two 60 Co standard sources of 0.5 mCi and 1 mCi to measure the PMT current as a function of the source-to-detector distance. It was then tested in a 60 Co irradiation chamber with an activity of about 6600 Ci. MCNPX simulations were performed for the source and detector arrangements to calculate the deposited energy in the CWO scintillator. The profiles of the measured current change are compared with those of the calculated energy deposition change. While there is some deviation between the measured and calculated profiles obtained with the lower-activity standard sources, the measured profile accurately coincides with the calculated one obtained in the higher-activity irradiation chamber. This study suggests that the fiber-optic scintillation dosimeter, operated in current mode, can be used to remotely measure radiation doses in high-intensity gamma fields

  9. Test of a Fiber Optic-Based LYSO Scintillator Dosimeter in a 60Co Irradiation Chamber

    International Nuclear Information System (INIS)

    Kim, Tae Hyoung; Kim, Jae Kyung; Park, Jae Woo

    2010-01-01

    Due to its excellent remote measurability and high spatial resolution, the fiber optic-based radiation dosimeter has been extensively explored for its usability in medical applications by several researchers. In the previous work, we reported the result of our investigation on feasibility of a photon dosimeter constructed with a BGO(Bi 4 Ge 3 O 12 ) or GSO(Gd 2 SiO 5 ) scintillator piece coupled to a plastic optical fiber. The plastic optical fiber had a diameter of 3mm and the scintillator piece was in a cylindrical form with 5mm diameter. The size of the scitillator piece as well as the fiber should be as small as possible for higher spatial resolution, and the radiation hardness should be high enough for stable operation in strong radiation fields. Recently, LYSO(Cerium-doped Lutetium Yttrium Orthosilicate) scintillators, which have much higher light yield and radiation hardness than BGO and GSO, have been commercially available. This paper reports the result of our investigation on dosimetric characteristics of a fiber optic-based dosimeter employing a smaller LYSO scintillator piece with 2mm diameter coupled to a silica optical fiber with 1mm core diameter

  10. Improvement in the accuracy of polymer gel dosimeters using scintillating fibers

    International Nuclear Information System (INIS)

    Tremblay, Nicolas M; Hubert-Tremblay, Vincent; Bujold, Rachel; Beaulieu, Luc; Lepage, Martin

    2010-01-01

    We propose a novel method for the absolute calibration of polyacrylamide gel (PAG) dosimeters with one or more reference scintillating fiber dosimeters inserted inside the gel. Four calibrated scintillating fibers were inserted into a cylindrical glass container filled with a PAG dosimeter irradiated with a wedge filtered 6 MV photon beam. Calibration curves using small glass vials containing the same gel as the cylindrical containers were used to obtain a first calibration curve. This calibration curve was then adjusted with the dose measured with one of the scintillating fibers in a low gradient part of the field using different approaches. Among these, it was found that a translation of the gel calibration curve yielded the highest accuracy with PAG dosimeters.

  11. Scintillators

    International Nuclear Information System (INIS)

    Cusano, D.A.; Holub, F.F.; Prochazka, S.

    1979-01-01

    Scintillator bodies comprising phosphor materials and having high optical translucency with low light absorption, and methods of making the scintillator bodies, are described. Fabrication methods include (a) a hot-pressing process, (b) cold-pressing followed by sintering, (c) controlled cooling from a melt, and (d) hot-forging. The scintillator bodies that result are easily machined to desired shapes and sizes. Suitable phosphors include BaFCl:Eu, LaOBr:Tb, CsI:Tl, CaWO 4 and CdWO 4 . (U.K.)

  12. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  13. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Science.gov (United States)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  14. Beam test of a 12-layer scintillating-fiber charged-particle tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, B.; Howell, B.L.; Koltick, D.; McIlwain, R.L.; Schmitz, C.J.; Shibata, E.I.; Zhou, Z.; Baumbaugh, B.; Ivancic, M.; Jaques, J.; Kehoe, R.; Kelley, M.; Mahoney, M.; Marchant, J.; Ruchti, R.; Wayne, M.; Atac, M.; Baumbaugh, A.; Elias, J.E.; Romero, A.; Chrisman, D.; Park, J.; Adams, M.R.; Chung, M.; Goldberg, H.; Margulies, S.; Solomon, J.; Chaney, R.; Orgeron, J.; Armstrong, T.; Lewis, R.A.; Mitchell, G.S.; Moore, R.S.; Passaneau, J.; Smith, G.A.; Corcoran, M.; Adams, D.; Bird, F.; Fenker, H.; Regan, T.; Thomas, J. (Dept. of Physics, Purdue Univ., West Lafayette, IN (United States) Dept. of Physics, Univ. of Notre Dame, IN (United States) Fermilab, Batavia, IL (United States) Dept. of Physics, Univ. of California, Los Angeles, CA (United States) Dept. of Physics, Univ. of Illinois, Chicago, IL (United States) Dept. of Physics, Univ. of Texas, Richardson, TX (United States) Dept. of Physics, Pennsylvania State Univ., University Park, PA (United States) Dept. of Physics, Rice Univ

    1994-02-01

    A 96-channel, 3-superlayer, scintillating-fiber tracking system has been tested in a 5 GeV/c [pi][sup -] beam. The scintillating fibers were 830 [mu]m in diameter, spaced 850 [mu]m apart, and 4.3 m in length. They were coupled to 6 m long, clear fiber waveguides and finally to visible light photon counters. A spatial resolution of [approx]150 [mu]m for a double-layered ribbon was achieved with this tracking system. This first prototype of a charged-particle tracking system configured for the Solenoidal Detector Collaboration at the Superconducting Super Collider is a benchmark in verifying the expected number of photoelectrons from the fibers. (orig.)

  15. The development of a high-resolution scintillating fiber tracker with silicon photomultiplier readout

    International Nuclear Information System (INIS)

    Roper Yearwood, Gregorio

    2013-01-01

    In this work I present the design and test results for a novel, modular tracking detector from scintillating fibers which are read out by silicon photomultiplier (SiPM) arrays. The detector modules consist of 0.25 mm thin scintillating fibers which are closely packed in five-layer ribbons. Two ribbons are fixed to both sides of a carbon-fiber composite structure. Custom made SiPM arrays with a photo-detection efficiency of about 50% read out the fibers. Several 860 mm long and 32 mm wide tracker modules were tested in a secondary 12 GeV/c beam at the PS facilities, CERN in November of 2009. During this test a spatial resolution better than 0.05 mm at an average light yield of about 20 photons for a minimum ionizing particle was determined. This work details the characterization of scintillating fibers and silicon photomultipliers of different make and model. It gives an overview of the production of scintillating fiber modules. The behavior of detector modules during the test-beam is analyzed in detail and different options for the front-end electronics are compared. Furthermore, the implementation of the proposed tracking detector from scintillating fibers within the scope of the PERDaix experiment is discussed. The PERDaix detector is a permanent magnet spectrometer with a weight of 40 kg. It consists of 8 tracking detector layers from scintillating fibers, a time-of-flight detector from plastic scintillator bars with silicon photomultiplier readout and a transition radiation detector from an irregular fleece radiator and Xe/CO 2 filled proportional counting tubes. The PERDaix detector was launched with a helium balloon within the scope of the ''Balloon-Experiments for University Students'' (BEXUS) program from Kiruna, Sweden in November 2010. For a few hours PERDaix reached an altitude of 33 km and measured cosmic rays. In May 2011, the PERDaix detector was characterized during a test-beam at the PS-facilities at CERN. This work introduces methods for event

  16. Test of a position-sensitive photomultiplier for fast scintillating fiber detector read-out

    International Nuclear Information System (INIS)

    Baehr, J.; Hoffmann, B.; Luedecke, H.; Nahnhauer, R.; Pohl, M.; Roloff, H.E.

    1993-01-01

    A position-sensitive photomultiplier with 256 anode pixels has been used to read out scintillating fibers excited by light emitting diodes, electrons from a β-source and a 5 GeV electron beam. Measurements have been done within a magnetic field up to 0.6 T. Tracking and electromagnetic shower detection capabilities of a simple fiber detector have been studied. (orig.)

  17. Fast tracking detector with fiber scintillators and a position sensitive photomultiplier

    International Nuclear Information System (INIS)

    Salomon, M.; Li, V.; Smith, G.; Wu, Y.S.

    1988-11-01

    We have studied the properties of a tracking detector composed of 32 fiber scintillators coupled to a multianode photomultiplier placed in a pion beam at TRIUMF. We measured the efficiency of the detector, as well as its tracking capabilities and double hit resolution

  18. Performance and calibration of the CHORUS scintillating fiber tracker and opto-electronics readout system

    International Nuclear Information System (INIS)

    Annis, P.; Aoki, S.; Brunner, J.; De Jong, M.; Fabre, J.P.; Ferreira, R.; Flegel, W.; Frekers, D.; Gregoire, G.; Herin, J.; Kobayashi, M.; Konijn, J.; Lemaitre, V.; Macina, D.; Meijer Drees, R.; Meinhard, H.; Michel, L.; Mommaert, C.; Nakamura, K.; Nakamura, M.; Nakano, T.; Niwa, K.; Niu, E.; Panman, J.; Riccardi, F.; Rondeshagen, D.; Sato, O.; Stefanini, G.; Vander Donckt, M.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.T.

    1995-01-01

    An essential component of the CERN WA95/CHORUS experiment is a scintillating fiber tracker system for precise track reconstruction of particles. The tracker design, its opto-electronics readout and calibration system are discussed. Performances of the detector are presented. (orig.)

  19. Time-resolved triton burnup measurement using the scintillating fiber detector in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Nishitani, T.; Murakami, S.; Seki, R.; Nakata, M.; Takada, E.; Kawase, H.; Pu, N.; LHD Experiment Group

    2018-03-01

    Time-resolved measurement of triton burnup is performed with a scintillating fiber detector system in the deuterium operation of the large helical device. The scintillating fiber detector system is composed of the detector head consisting of 109 scintillating fibers having a diameter of 1 mm and a length of 100 mm embedded in the aluminum substrate, the magnetic registrant photomultiplier tube, and the data acquisition system equipped with 1 GHz sampling rate analogies to digital converter and the field programmable gate array. The discrimination level of 150 mV was set to extract the pulse signal induced by 14 MeV neutrons according to the pulse height spectra obtained in the experiment. The decay time of 14 MeV neutron emission rate after neutral beam is turned off measured by the scintillating fiber detector. The decay time is consistent with the decay time of total neutron emission rate corresponding to the 14 MeV neutrons measured by the neutron flux monitor as expected. Evaluation of the diffusion coefficient is conducted using a simple classical slowing-down model FBURN code. It is found that the diffusion coefficient of triton is evaluated to be less than 0.2 m2 s-1.

  20. Detection of cosmic ray tracks using scintillating fibers and position sensitive multi-anode photomultipliers

    International Nuclear Information System (INIS)

    Atac, M.; Streets, J.; Wilcer, N.

    1998-02-01

    This experiment demonstrates detection of cosmic ray tracks by using Scintillating fiber planes and multi-anode photomultipliers (MA-PMTs). In a laboratory like this, cosmic rays provide a natural source of high-energy charged particles which can be detected with high efficiency and with nanosecond time resolution

  1. Study of polystyrene scintillators-WLS fiber elements and scintillating tile-WLS prototypes for New CHOD detector of CERN NA-62 experiment

    CERN Document Server

    Semenov, Vitaliy; Gorin, Aleksandr; Khudyakov, Aleksey; Rykalin, Vladimir; Yushchenko, Oleg

    2016-01-01

    We measured the light output and the time resolution of few sets comprised of polystyrene scintillator and wavelength shifting (WLS) fibers as readout. The samples of different thickness (7-30 mm) have been made in the shape of bricks and plates with the areas of 25×80, 108×134 and 108×268 of mm2. In addition to samples of “ordinary” scintillator with additions of 2% p- Terphenyl + 0.05% POPOP, the rapid ultraviolet scintillator with single 2% additive PBD was tested. For the light collection WLS-fibers BCF92, Y11 and scintillation fiber SCSF-78M as reemitting were checked. The fibers were glued into the grooves on the front surface of scintillators. As the photo detectors silicon photomultipliers (SiPM) produced by CPTA (Russia) and SensL (Ireland) were used. It is shown that the dependence of light output on the thickness of scintillator is nonlinear and close to the square root function, which is also confirmed by the calculations carried out by Monte Carlo. The measured value of a light output make...

  2. Scintillating fiber tracking at high luminosities using Visible Light Photon counter readout

    International Nuclear Information System (INIS)

    Atac, M.

    1995-11-01

    This paper reviews the research work on the Visible Light Photon Counters (VLPC) that have been developed for the scintillating fiber tracking at high luminosity colliders and high rate fixed target experiments. The devices originated from the joint work between UCLA and Rockwell International Science Center. The VLPCs are capable of counting photons very efficiently down to a single photon level with high avalanche gain, producing pulses at very high rates with very short rise times. Due to small gain dispersions they can be used in counting photons with high quantum efficiencies, therefore they are excellent devices for charged particle tracking using small diameter scintillating plastic fibers. In this paper, fiber tracking for the CDF and D0 upgrades and a possible usage of the VLPC readout for the experiment E803 at Fermilab will be discussed

  3. Clinical prototype of a plastic water-equivalent scintillating fiber dosimeter array for QA applications

    International Nuclear Information System (INIS)

    Lacroix, Frederic; Archambault, Louis; Gingras, Luc; Guillot, Mathieu; Beddar, A. Sam; Beaulieu, Luc

    2008-01-01

    A clinical prototype of a scintillating fiber dosimeter array for quality assurance applications is presented. The array consists of a linear array of 29 plastic scintillation detectors embedded in a water-equivalent plastic sheet coupled to optical fibers used to guide optical photons to a charge coupled device (CCD) camera. The CCD is packaged in a light-tight, radiation-shielded housing designed for convenient transport. A custom designed connector is used to ensure reproducible mechanical positioning of the optical fibers relative to the CCD. Profile and depth dose characterization measurements are presented and show that the prototype provides excellent dose measurement reproducibility (±0.8%) in-field and good accuracy (±1.6% maximum deviation) relative to the dose measured with an IC10 ionization chamber

  4. Construction and performance of a cylindrical scintillating fiber detector for experiment 835 at FNAL

    International Nuclear Information System (INIS)

    Ambrogiani, M.; Baldini, W.; Bettoni, D.

    1996-01-01

    A tracking detector made of scintillating fibers has been built for the Fermilab experiment E835. The tracker is being used for a high resolution measurement of the polar angle θ and to provide a first level trigger, exploiting the fast response and very good time resolution of the signal from the fibers. The small amount of light from the fibers is detected by solid state devices (VLPC: Visible Light Photon Counters), with very high quantum efficiency. This paper reports about the construction of the tracker and gives the first results on the detector performance: light yield/mip, efficiency, signal homogeneity and time resolution

  5. Single and multichannel scintillating fiber dosimeter for radiotherapic beams with SiPM readout

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.it [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca (Italy); Ferri, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (Italy); Novati, C. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca (Italy); Ostinelli, A. [Ospedale Sant' Anna, Servizio di Fisica Sanitaria (Italy); Paternoster, G.; Piemonte, C. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (Italy); Prest, M. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca (Italy); Vallazza, E. [INFN Sezione di Trieste (Italy)

    2016-12-01

    The treatment of many neoplastic diseases requires the use of radiotherapy, which consists in the irradiation of the tumor, identified as the target volume, with ionizing radiations generated both by administered radiopharmaceuticals or by linear particle accelerators (LINACs). The radiotherapy beam delivered to the patient must be regularly checked to assure the best tumor control probability: this task is performed with dosimeters, i.e. devices able to provide a measurement of the dose deposited in their sensitive volume. This paper describes the development of two scintillator dosimeter prototypes for radiotherapic applications based on plastic scintillating fibers read out by high dynamic range Silicon PhotoMultipliers. The first dosimeter, consisting of a single-channel prototype with a pair of optical fibers, a scintillating and a white one, read out by two SiPMs, has been fully characterized and led to the development of a second multi-channel dosimeter based on an array of scintillating fibers: this device represents the first step towards the assembly of a “one-shot” device, capable to perform some of the daily quality controls in a few seconds. The dosimeters characterization was performed with a Varian Clinac iX linear accelerator at the Radiotherapy Department of the St. Anna Hospital in Como (IT).

  6. High pressure gas scintillation drift chambers with wave-shifter fiber readout

    International Nuclear Information System (INIS)

    Parsons, A.; Edberg, T.K.; Sadoulet, B.; Weiss, S.; Wilkerson, J.; Hurley, K.; Lin, R.P.

    1990-01-01

    The authors present results from a prototype high pressure xenon gas scintillation drift chamber using a novel wave-shifter fiber readout scheme. They have measured the primary scintillation light yield to be one photon per 76 ± 12 eV deposited energy. They present initial results of our chamber for the two-interaction separation (< 4 mm in the drift direction, ∼ 7 mm orthogonal to the drift); for the position resolution (< 400 μm rms in the plane orthogonal to the drift direction); and for the energy resolution (ΔE/E < 6% FWHM at 122 keV)

  7. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ravnsborg Beierholm, A.

    2011-05-15

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  8. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    International Nuclear Information System (INIS)

    Ravnsborg Beierholm, A.

    2011-05-01

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  9. Development of a cylindrical tracking detector with multichannel scintillation fibers and pixelated photon detector readout

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.

    2015-07-01

    We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm{sup 2}, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.

  10. The development of a single-crystal fiber-array scintillator area detector

    International Nuclear Information System (INIS)

    Loong, Chun; Vitt, Richard; Sayir, Ali; Sayir, Haluk

    2001-01-01

    The scientific output of a neutron instrument is directly proportional to the effectiveness of its detector system-coverage of scattering area, pixel resolution, counting efficiency, signal-to-noise ratio, life time and cost. The current neutron scintillator detectors employ mainly 6 Li-doped glass and ZnS, both of which present well-know limitations such as low light output, high gamma sensitivity in the case of 6 Li-glass and optical opacity in the case of ZnS. We aim to develop a position-sensitive, flight-time differentiable, efficient and cost-effective neutron detector system based on single-crystal scintillator fiber-arrays. The laser-heated melt modulation fiber growth technology developed at NASA provides the means to grow high-purity single-crystal fibers or rods of variable diameters (200 μm to 5 mm) and essentially unlimited length. Arrays of such fibers can be tailored to meet the requirements of pixel size, geometric configuration, and coverage area for a detector system. We report a plan in the growth and characterization of scintillators based on lithium silicates and boron aluminates using Ce as activator. (author)

  11. The scintillating optical fiber isotope experiment: Bevalac calibrations of test models

    International Nuclear Information System (INIS)

    Connell, J.J.; Binns, W.R.; Dowkontt, P.F.; Epstein, J.W.; Israel, M.H.; Klarmann, J.; Washington Univ., St. Louis, MO; Webber, W.R.; Kish, J.C.

    1990-01-01

    The Scintillating Optical Fiber Isotope Experiment (SOFIE) is a Cherenkov dE/dx-range experiment being developed to study the isotopic composition of cosmic rays in the iron region with sufficient resolution to resolve isotopes separated by one mass unit at iron. This instrument images stopping particles with a block of scintillating optical fibers coupled to an image intensified video camera. From the digitized video data the trajectory and range of particles stopping in the fiber bundle can be determined; this information, together with a Cherenkov measurement, is used to determine mass. To facilitate this determination, a new Cherenkov response equation was derived for heavy ions at energies near threshold in thick Cherenkov radiators. Test models of SOFIE were calibrated at the Lawrence Berkeley Laboratory's Bevalac heavy ion accelerator in 1985 and 1986 using beams of iron nuclei with energies of 465 to 515 MeV/nucleon. This paper presents the results of these calibrations and discusses the design of the SOFIE Bevalac test models in the context of the scientific objectives of the eventual balloon experiment. The test models show a mass resolution of σ A ≅0.30 amu and a range resolution of σ R ≅250 μm. These results are sufficient for a successful cosmic ray isotope experiment, thus demonstrating the feasibility of the detector system. The SOFIE test models represent the first successful application in the field of cosmic ray astrophysics of the emerging technology of scintillating optical fibers. (orig.)

  12. Measurement and simulation of neutron detection efficiency in lead-scintillating fiber calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M.; Bertolucci, S. [Laboratori Nazionali di Frascati, INFN (Italy); Bini, C. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Branchini, P. [INFN Sezione di Roma Tre, Roma (Italy); Curceanu, C. [Laboratori Nazionali di Frascati, INFN (Italy); De Zorzi, G.; Di Domenico, A. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Di Micco, B. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Ferrari, A. [Fondazione CNAO, Milano (Italy); Fiore, S.; Gauzzi, P. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Giovannella, S., E-mail: simona.giovannella@lnf.infn.i [Laboratori Nazionali di Frascati, INFN (Italy); Happacher, F. [Laboratori Nazionali di Frascati, INFN (Italy); Iliescu, M. [Laboratori Nazionali di Frascati, INFN (Italy); IFIN-HH, Bucharest (Romania); Martini, M. [Laboratori Nazionali di Frascati, INFN (Italy); Dipartimento di Energetica dell' Universita ' La Sapienza' , Roma (Italy); Miscetti, S. [Laboratori Nazionali di Frascati, INFN (Italy); Nguyen, F. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Passeri, A. [INFN Sezione di Roma Tre, Roma (Italy); Prokofiev, A. [Svedberg Laboratory, Uppsala University (Sweden); Sciascia, B. [Laboratori Nazionali di Frascati, INFN (Italy)

    2009-12-15

    The overall detection efficiency to neutrons of a small prototype of the KLOE lead-scintillating fiber calorimeter has been measured at the neutron beam facility of The Svedberg Laboratory, TSL, Uppsala, in the kinetic energy range [5-175] MeV. The measurement of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 30% to 50%. This value largely exceeds the estimated 8-15% expected if the response were proportional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. First data-MC comparisons are encouraging and allow to disentangle a neutron halo component in the beam.

  13. Measurement and simulation of neutron detection efficiency in lead-scintillating fiber calorimeters

    International Nuclear Information System (INIS)

    Anelli, M.; Bertolucci, S.; Bini, C.; Branchini, P.; Curceanu, C.; De Zorzi, G.; Di Domenico, A.; Di Micco, B.; Ferrari, A.; Fiore, S.; Gauzzi, P.; Giovannella, S.; Happacher, F.; Iliescu, M.; Martini, M.; Miscetti, S.; Nguyen, F.; Passeri, A.; Prokofiev, A.; Sciascia, B.

    2009-01-01

    The overall detection efficiency to neutrons of a small prototype of the KLOE lead-scintillating fiber calorimeter has been measured at the neutron beam facility of The Svedberg Laboratory, TSL, Uppsala, in the kinetic energy range [5-175] MeV. The measurement of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 30% to 50%. This value largely exceeds the estimated 8-15% expected if the response were proportional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. First data-MC comparisons are encouraging and allow to disentangle a neutron halo component in the beam.

  14. Radiation distribution measurement using plastic scintillating optical fibers for survey of radioactive contamination in wide area

    International Nuclear Information System (INIS)

    Ito, Chikara; Ito, Keisuke; Ishikawa, Takashi; Yoshida, Akihiro; Sanada, Yukihisa; Torii, Tatsuo; Nohtomi, Akihiro; Wakabayashi, Genichiro; Miyazaki, Nobuyuki

    2013-01-01

    It is important to examine distribution of environmental contamination due to the accident of Fukushima Daiichi Nuclear Power Station and to confirm the effect of decontamination works. We have applied radiation distribution measurement using plastic scintillating optical fibers (PSFs) in the survey of contamination in wide area including residential, farmland, forests, etc. In the measurements system, two scintillation lights that emitted at an incidence of a radiation transmit to photomultiplier tubes at the both end of PSFs. The position where scintillation light emitted is obtained from the detection time difference of each photomultiplier tube. The distribution of light emission quantity indicates the distribution of radiation incident in a PSF which is corresponds to the distribution of dose-rate. The radiation detection system using the PSFs has been applied to the radiation distribution measurement on grounds, trees, etc. The results show a good agreement with point data measured by survey meters using sodium iodide scintillators. As the PSFs which have water resistance, they have been successfully applied to the radiation distribution measurement in the river. We have also succeeded in measuring two-dimensional distribution of radiation by measuring the count rate while moving to the fiber at a constant speed. (author)

  15. The HERMES recoil detector. Particle identification and determination of detector efficiency of the scintillating fiber tracker

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xianguo

    2009-11-15

    HERMES is a fixed target experiment using the HERA 27.6 GeV polarized electron/positron beams. With the polarized beams and its gas targets, which can be highly polarized, HERMES is dedicated to study the nucleon spin structure. One of its current physics programs is to measure deeply virtual Compton scattering (DVCS). In order to detect the recoiling proton the Recoil Detector was installed in the target region in the winter of 2005, taking data until the HERA-shutdown in the summer of 2007. The Recoil Detector measured energy loss of the traversing particles with its sub-detectors, including the silicon strip detector and the scintillating fiber tracker. This enables particle identification for protons and pions. In this work a systematic particle identification procedure is developed, whose performance is quantified. Another aspect of this work is the determination of the detector efficiency of the scintillating fiber tracker. (orig.)

  16. Optimization of a pinhole collimator in a SPECT scintillating fiber detector system: a Monte Carlo analysis

    International Nuclear Information System (INIS)

    Hademenos, G.J.

    1994-01-01

    Monte Carlo simulations were used to optimize the dimensions of a lead pinhole collimator in a photon emission computed tomography (SPECT) system consisting of a line of equally spaced Tc-99m point sources and a plastic scintillating fiber detector. The optimization was performed by evaluating the spatial resolution and scanner sensitivity for each source distribution location and collimator parameter variation. An optimal spatial resolution of 0.43 cm FWHM was observed for a source distribution positioned 2.0 cm from the collimated scintillating fiber detection system with a pinhole radius of 1.0 mm and a collimator thickness of 3.0 cm for a 10,000 emission photon simulation. The optimal sensitivity occurred for a source distance of 2.0 cm, a radius of 3.0 mm and a thickness of 3.0 cm. (author)

  17. Active target with plastic scintillating fibers for hyperon-proton scattering experiments

    Czech Academy of Sciences Publication Activity Database

    Ahn, J. K.; Akikawa, H.; Arvieux, H.; Bassalleck, B.; Chung, M. S.; En'yo, H.; Fukuda, T.; Funahashi, H.; Golovkin, SV.; Gorin, AM.; Goto, Y.; Hanabata, M.; Hayakawa, T.; Ichikawa, A.; Ieiri, M.; Imai, K.; Ishino, M.; Kanda, H.; Kim, Y. D.; Kondo, Y.; Kozarenko, E. N.; Kreslo, I. E.; Lee, J. M.; Masaike, A.; Mihara, S.; Nakai, K.; Nakazawa, K.; Ozawa, K.; Sato, A.; Sato, H. D.; Sim, K. S.; Tabaru, T.; Takeutchi, F.; Tlustý, Pavel; Torii, H.; Yamamoto, K.; Yokkaichi, S.; Yoshida, M.

    2002-01-01

    Roč. 49, č. 2 (2002), s. 592-596 ISSN 0018-9499 R&D Projects: GA AV ČR IAA1048304; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1048901 Keywords : active target * hyperon-proton scattering * scintillating fibers Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.431, year: 2002

  18. A tower structured scintillator-lead photon calorimeter using a novel fiber optics readout system

    International Nuclear Information System (INIS)

    Fessler, H.; Freund, P.; Gebauer, J.; Glas, K.M.; Pretzl, K.P.; Seyboth, P.; Seyerlein, J.; Thevenin, J.C.

    1984-06-01

    Described is the construction and the performance of a tower structured scintillator-lead photon calorimeter using a novel fiber optics readout system. The calorimeter is divided into 9 individual towers. Each tower has a cross section of 5x5 cm 2 and consists of 60 layers of 2 mm lead plus 5 mm thick scintillator. The four sides of each tower are covered by thin acrylic sheets (1.5 mm thick) doped with a wavelength shifting material. The light produced in each scintillator plate is first converted in these sheets, then converted a second time in a set of polystyrene optical fibers (diameter 2 mm) which run longitudinally through the calorimeter along the corners of each tower. A small diameter photomultiplier was attached to the fibers at the back end of the calorimeter. The obtained energy resolution with incident electrons in the range of 0.25 - 5.0 GeV/c is sigma/E = 0.10/√E. The uniformity of response across the front face of each tower was measured. (orig.)

  19. A simple satellite system to locate gamma-ray bursters using scintillating fiber technology

    International Nuclear Information System (INIS)

    Colavita, A.; Fratnik, F.

    1993-07-01

    We present a study on the feasibility of using a system of small, light, long-lived and simple satellites in order to locate gamma-ray bursters. Each small satellite possesses only electronics to discriminate gamma-rays out of the large background of cosmic rays and to time the arrival of the front of a gamma-ray burst. The arrival of a γ-ray strikes a plane made out of scintillating fibers. A layered structure of thin lead foils and scintillating fibers is used to obtain a low trigger threshold of approximately 20 MeV. To locate the burster applying triangulation methods, we use the time of arrival of the front of the gamma-ray burst and the position of the satellites at that very moment. We review an elementary version of the triangulation method to study the angular error in the determination of the burster position. We show that for almost all non-pathological distances among satellites we can determine the angular location of the source to better than one arc min. This precision allows us to find the visible counterpart of the burster, if it exists. These simple satellites can be made modular in order to customize their sizes or weights in order to use spare space available during major launches. We also propose a block diagram for the satellite architecture as well as a simple and strong detector using scintillating fiber technology. (author). 13 refs, 5 figs

  20. Design and characterization of a real time particle radiography system based on scintillating optical fibers

    International Nuclear Information System (INIS)

    Longhitano, F.; Lo Presti, D.; Bonanno, D.L.; Bongiovanni, D.G.; Leonora, E.; Randazzo, N.; Reito, S.; Sipala, V.; Gallo, G.

    2017-01-01

    The fabrication and characterization of a charged particle imaging system composed of a tracker and a residual range detector (RRD) is described. The tracker is composed of four layers of scintillating fibers (SciFi), 500 μm side square section, arranged to form two planes orthogonal to each other. The fibers are coupled to two Multi-Pixel Photon Counter (MPPC) arrays by means of a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare (INFN) (Presti, 2015) . Sixty parallel layers of the same fibers used in the tracker compose the RRD. The various layers are optically coupled to a MPPC array by means of wavelength shifting (WLS) fibers. The sensitive area of the two detectors is 9×9 cm"2. The results of the measurements, acquired by the prototypes with CATANA (Cirrone, 2008) proton beam, and a comparison with the simulations of the detectors are presented. - Highlights: • A real time charged particle imaging system is described. • The system is composed of a position sensitive and a residual range detectors. • The sensitive area of the system is composed of submillimeter scintillating fibers. • The read-out is based on a patented channel reduction system. • The results of the measurements with proton beam are presented.

  1. A directional fast neutron detector using scintillating fibers and an intensified CCD camera system

    International Nuclear Information System (INIS)

    Holslin, Daniel; Armstrong, A.W.; Hagan, William; Shreve, David; Smith, Scott

    1994-01-01

    We have been developing and testing a scintillating fiber detector (SFD) for use as a fast neutron sensor which can discriminate against neutrons entering at angles non-parallel to the fiber axis (''directionality''). The detector/convertor component is a fiber bundle constructed of plastic scintillating fibers each measuring 10 cm long and either 0.3 mm or 0.5 mm in diameter. Extensive Monte Carlo simulations were made to optimize the bundle response to a range of fast neutron energies and to intense fluxes of high energy gamma-rays. The bundle is coupled to a set of gamma-ray insenitive electro-optic intensifiers whose output is viewed by a CCD camera directly coupled to the intensifiers. Two types of CCD cameras were utilized: 1) a standard, interline RS-170 camera with electronic shuttering and 2) a high-speed (up to 850 frame/s) field-transfer camera. Measurements of the neutron detection efficiency and directionality were made using 14 MeV neutrons, and the response to gamma-rays was performed using intense fluxes from radioisotopic sources (up to 20 R/h). Recently, the detector was constructed and tested using a large 10 cm by 10 cm square fiber bundle coupled to a 10 cm diameter GEN I intensifier tube. We present a description of the various detector systems and report the results of experimental tests. ((orig.))

  2. Design and characterization of a real time particle radiography system based on scintillating optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Longhitano, F., E-mail: fabio.longhitano@ct.infn.it [Istituto Nazionale di Fisica Nucleare (INFN), Sezione Catania (Italy); Lo Presti, D. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione Catania (Italy); Department of Physics and Astronomy, University of Catania (Italy); Bonanno, D.L.; Bongiovanni, D.G.; Leonora, E.; Randazzo, N.; Reito, S. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione Catania (Italy); Sipala, V. [University of Sassari, Sassari (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari (Italy); Gallo, G. [Department of Physics and Astronomy, University of Catania (Italy)

    2017-02-11

    The fabrication and characterization of a charged particle imaging system composed of a tracker and a residual range detector (RRD) is described. The tracker is composed of four layers of scintillating fibers (SciFi), 500 μm side square section, arranged to form two planes orthogonal to each other. The fibers are coupled to two Multi-Pixel Photon Counter (MPPC) arrays by means of a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare (INFN) (Presti, 2015) . Sixty parallel layers of the same fibers used in the tracker compose the RRD. The various layers are optically coupled to a MPPC array by means of wavelength shifting (WLS) fibers. The sensitive area of the two detectors is 9×9 cm{sup 2}. The results of the measurements, acquired by the prototypes with CATANA (Cirrone, 2008) proton beam, and a comparison with the simulations of the detectors are presented. - Highlights: • A real time charged particle imaging system is described. • The system is composed of a position sensitive and a residual range detectors. • The sensitive area of the system is composed of submillimeter scintillating fibers. • The read-out is based on a patented channel reduction system. • The results of the measurements with proton beam are presented.

  3. Scintillating-fiber imaging detector for 14-MeV neutrons

    International Nuclear Information System (INIS)

    Ress, D.; Lerche, R.A.; Ellis, R.J.; Heaton, G.W.; Nelson, M.B.; Mant, G.; Lehr, D.E.

    1994-01-01

    The authors have created a detector to image the neutrons emitted by imploded inertial-confinement fusion targets. The 14-MeV neutrons, which are produced by deuterium-tritium fusion events in the target, pass through an aperture to create an image on the detector. The neutron radiation is converted to blue light (430 nm) with a 20-cm-square array of plastic scintillating fibers. Each fiber is 10-cm long with a 1-mm-square cross section; approximately 35-thousand fibers make up the array. The resulting blue-light image is reduced and amplified by a sequence of fiber-optic tapers and image intensifiers, then acquired by a CCD camera. The fiber-optic readout system was tested optically for overall throughput the resolution. The authors plan to characterize the scintillator array reusing an ion-beam neutron source as well as DT-fusion neutrons emitted by inertial confinement targets. Characterization experiments will measure the light-production efficiency, spatial resolution, and neutron scattering within the detector. Several neutron images of laser-fusion targets have been obtained with the detector. Several neutron images of laser-fusion targets have been obtained with the detector. They describe the detector and their characterization methods, present characterization results, and give examples of the neutron images

  4. Design and characterization of a real time particle radiography system based on scintillating optical fibers

    Science.gov (United States)

    Longhitano, F.; Lo Presti, D.; Bonanno, D. L.; Bongiovanni, D. G.; Leonora, E.; Randazzo, N.; Reito, S.; Sipala, V.; Gallo, G.

    2017-02-01

    The fabrication and characterization of a charged particle imaging system composed of a tracker and a residual range detector (RRD) is described. The tracker is composed of four layers of scintillating fibers (SciFi), 500 μm side square section, arranged to form two planes orthogonal to each other. The fibers are coupled to two Multi-Pixel Photon Counter (MPPC) arrays by means of a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare (INFN) (Presti, 2015) [1]. Sixty parallel layers of the same fibers used in the tracker compose the RRD. The various layers are optically coupled to a MPPC array by means of wavelength shifting (WLS) fibers. The sensitive area of the two detectors is 9×9 cm2. The results of the measurements, acquired by the prototypes with CATANA (Cirrone, 2008) [2] proton beam, and a comparison with the simulations of the detectors are presented.

  5. Characterization of Scintillating X-ray Optical Fiber Sensors

    Science.gov (United States)

    Sporea, Dan; Mihai, Laura; Vâţă, Ion; McCarthy, Denis; O'Keeffe, Sinead; Lewis, Elfed

    2014-01-01

    The paper presents a set of tests carried out in order to evaluate the design characteristics and the operating performance of a set of six X-ray extrinsic optical fiber sensors. The extrinsic sensor we developed is intended to be used as a low energy X-ray detector for monitoring radiation levels in radiotherapy, industrial applications and for personnel dosimetry. The reproducibility of the manufacturing process and the characteristics of the sensors were assessed. The sensors dynamic range, linearity, sensitivity, and reproducibility are evaluated through radioluminescence measurements, X-ray fluorescence and X-ray imaging investigations. Their response to the operating conditions of the excitation source was estimated. The effect of the sensors design and implementation, on the collecting efficiency of the radioluminescence signal was measured. The study indicated that the sensors are efficient only in the first 5 mm of the tip, and that a reflective coating can improve their response. Additional tests were done to investigate the concentricity of the sensors tip against the core of the optical fiber guiding the optical signal. The influence of the active material concentration on the sensor response to X-ray was studied. The tests were carried out by measuring the radioluminescence signal with an optical fiber spectrometer and with a Multi-Pixel Photon Counter. PMID:24556676

  6. Scintillating-Glass-Fiber neutron sensors, their application and performance for plutonium detection and monitoring

    International Nuclear Information System (INIS)

    Seymour, R.S.; Richardson, B.; Morichi, M.; Bliss, M.; Craig, R.A.; Sunberg, D.S.

    1998-01-01

    Most neutron detection sensors presently employ 3 He gas-filled detectors. Despite their excellent performance and widespread use, there are significant limitations to this technology. A significant alternative neutron sensor utilizing neutron-active material incorporated into a glass scintillator is presented that offers novel commercial sensors not possible or practical with gas tube technology. The scintillating optical fiber permits sensors with a multitude of sizes ranging from devices of a single fiber of 150μm to sensors with tens of thousands of fibers with areas as large as 5m 2 depending on the neutron flux to be measured. A second significant advantage is the use of high-speed electronics that allow a greater dynamic range, not possible with gas detectors. These sensors are flexible, conformable and less sensitive to vibration that optimizes the source-to-detector geometry and provides robust performance in field applications. The glass-fibers are sensitive to both gamma rays and neutrons. However the coincidence electronics are optimized for neutron to gamma ray discrimination allowing very sensitive measurements with a low false-alarm rate. Applications include SNM surveillance, material control and accountability (MC and A), safeguard inspections, Pu health physics / bioassay and environmental characterization. (author)

  7. Construction and tests of a fine granularity lead-scintillating fibers calorimeter

    International Nuclear Information System (INIS)

    Branchini, P; Di Micco, B; Passeri, A; Ceradini, F; Corradi, G

    2009-01-01

    We report the construction and the tests of a small prototype of the lead-scintillating fiber calorimeter of the KLOE experiment, instrumented with multianode photomultipliers to obtain a 16 times finer readout granularity. The prototype is 15 cm wide, 15 radiation lengths deep and is made of 200 layers of fibers 50 cm long. On one side it is read out with an array of 3x5 multianode photomultipliers Hamamatsu type R8900-M16, each segmented with 4x4 anodes, the read out granularity being 240 pixels of 11 x 11 mm 2 corresponding to about 64 scintillating fibers each. These are interfaced to the 6 x 6 mm 2 pixeled photocathode with truncated pyramid light guides made of Bicron BC-800 plastic to partially transmit the UV light. Each photomultiplier provides also an OR of the 16 last dynodes that is used for trigger. The response of the individual anodes, their relative gain and cross-talk has been measured with the light (440 nm) of a laser illuminating only few fibers on the side opposite to the readout. We finally present the first results of the calorimeter response to cosmic rays in auto-trigger mode.

  8. Measurement and simulation of the neutron detection efficiency with a Pb-scintillating fiber calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M; Bertolucci, S; Curceanu, C; Giovannella, S; Happacher, F; Iliescu, M; Martini, M; Miscetti, S [Laboratori Nazionali di Frascati, INFN (Italy); Battistoni, G [Sezione INFN di Milano (Italy); Bini, C; Zorzi, G De; Domenico, Adi; Gauzzi, P [Ubiversita degli Studi ' La Sapienza' e Sezine INFN di Roma (Italy); Branchini, P; Micco, B Di; Ngugen, F; Paseri, A [Universita degli di Studi ' Roma Tre' e Sezione INFN di Roma Tre (Italy); Ferrari, A [Fondazione CNAO, Milano (Italy); Prokfiev, A [Svedberg Laboratory, Uppsala University (Sweden); Fiore, S, E-mail: matteo.martino@inf.infn.i

    2009-04-01

    We have measured the overall detection efficiency of a small prototype of the KLOE PB-scintillation fiber calorimeter to neutrons with kinetic energy range [5,175] MeV. The measurement has been done in a dedicated test beam in the neutron beam facility of the Svedberg Laboratory, TSL Uppsala. The measurements of the neutron detection efficiency of a NE110 scintillator provided a reference calibration. At the lowest trigger threshold, the overall calorimeter efficiency ranges from 28% to 33%. This value largely exceeds the estimated {approx}8% expected if the response were proportional only to the scintillator equivalent thickness. A detailed simulation of the calorimeter and of the TSL beam line has been performed with the FLUKA Monte Carlo code. The simulated response of the detector to neutrons is presented together with the first data to Monte Carlo comparison. The results show an overall neutron efficiency of about 35%. The reasons for such an efficiency enhancement, in comparison with the typical scintillator-based neutron counters, are explained, opening the road to a novel neutron detector.

  9. Design and test of a high resolution plastic scintillating fiber detector with intensified CCD readout

    International Nuclear Information System (INIS)

    Rebourgeard, P.

    1991-01-01

    We present the design of a particle detector involving a coherent array of 100 000 plastic scintillating microfibers, with an individual core diameter around 50 micrometers, and an intensified bidimensional CCD array. We investigate both theoretically and experimentally the use of polystyrene based scintillators in optical multimodal fibers. The isotropic excitation of modes and the characteristics of energy transfers between the polystyrene matrix and the added fluorescent dyes are of particular interest. An experimental approach is proposed and applied to the development of a new binary scintillator. In order to study the transmission of the signal from the interaction area to the output face, we specify the loss factors, the resolution and the signal to noise ratio within the fiber array. The low light level at the output face of the detector leads us to use image intensifiers in photon counting mode. This requires a detailed analysis of resolutions, gain, noise and detectivity concepts. We propose to describe these strongly correlated notions by the moment generation formalism. Thus, a previous modelisation of the photoelectronic devices allows us to evaluate the performance of the readout chain. A complete detector has been assembled and tested on a high energy hadron beam; the measurements are in good agreement with the modelisation [fr

  10. Applications of Boron Loaded Scintillating Fibers as NDA Tools for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Mayo, D.R.; Ensslin, N.; Grazioso, R.F.; Heger, A.S.; Mercer, D.J.; Miller, M.C.; Russo, P.A.; Sweet, M.R.

    1997-01-01

    Nuclear safeguards and nonproliferation rely on nondestructive analytical tools for prompt and noninvasive detection, verification, and quantitative analysis of nuclear materials in demanding environments. A new tool based on the detection of correlated neutrons in narrow time windows is being investigated to fill the niche created by the current limitations of the existing methods based on polyethylene moderated 3 He gas proportional tubes. Commercially produced Boron-loaded ( 10 B) plastic scintillating fibers are one such technology under consideration. The fibers can be configured in a system to have high efficiency, short neutron die-away, pulse height sensitivity, and mechanical flexibility. Various configurations of the fibers with high density polyethylene have been considered which calculationally result in high efficiency detectors with short die-away times. A discussion of the design considerations and calculations of the detector efficiency, die-away time, and simulated pulse height spectra along with preliminary test results are presented

  11. Applications of boron-loaded scintillating fibers as NDA tools for nuclear safeguards

    International Nuclear Information System (INIS)

    Mayo, Douglas R.; Ensslin, Norbert; Mercer, David J.; Miller, Michael C.; Russo, Phyllis A.; Sweet, Martin R.; Grazioso, Ronald F.; Heger, A. Sharif

    1998-01-01

    Nuclear safeguards and nonproliferation rely on nondestructive analytical tools for prompt and noninvasive detection, verification, and quantitative analysis of nuclear materials in demanding environments. A new tool based on the detection of correlated neutrons in narrow time windows is being investigated to fill the niche created by the current limitations of the existing methods based on polyethylene moderated 3 He gas proportional tubes. Commercially produced Boron-loaded ( 10 B) plastic scintillating fibers are one such technology under consideration. The fibers can be configured in a system to have high efficiency, short neutron die-away, pulse height sensitivity, and mechanical flexibility. Various configurations of the fibers with high density polyethylene have been considered which calculationally result in high efficiency detectors with short die-away times. A discussion of the design considerations and calculations of the detector efficiency, die-away time, and simulated pulse height spectra along with preliminary test results are presented

  12. New-generation large-area muon scintillation counters with wavelength shifter fiber readout for CDF II

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Chirikov-Zorin, I.

    2006-01-01

    New scintillation counters have been designed and constructed for upgrading of the CDF detector at the Fermilab Tevatron. A novel light collection technique using wavelength shifting fibers, together with a high-quality polystyrene-based scintillator UPS 923A, has resulted in compact counters with good and stable light collection efficiency over their lengths extending up to 320 cm. Design, construction and performance of counters are presented. Properties of the fibers and the scintillator, such as light output, light attenuation, decay time and long-term stability, are investigated. It is found that the polystyrene-based scintillator, unlike the polyvinyltoluene-based one, has better properties adequate for long-term experiments

  13. Development of a tracking detector system with multichannel scintillation fibers and PPD

    Energy Technology Data Exchange (ETDEWEB)

    Honda, R., E-mail: honda@lambda.phys.tohoku.ac.jp [Tohoku University, 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Japan Atomic Energy Agency (JAEA), 2-4, Shirakata, Shirane, Tokai, Ibaraki 319-1195 (Japan); Callier, S. [IN2P3/LAL, 91898 Orsay Cedex (France); Hasegawa, S. [Japan Atomic Energy Agency (JAEA), 2-4, Shirakata, Shirane, Tokai, Ibaraki 319-1195 (Japan); Ieiri, M. [High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba 305-0801 (Japan); Matsumoto, Y.; Miwa, K. [Tohoku University, 6-3, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Nakamura, I. [High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba 305-0801 (Japan); Raux, L.; De La Taille, C. [IN2P3/LAL, 91898 Orsay Cedex (France); Tanaka, M.; Uchida, T.; Yoshimura, K. [High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba 305-0801 (Japan)

    2012-12-11

    For the J-PARC E40 experiment which aims to measure differential cross-sections of {Sigma}p scatterings, a system to detect scattered proton from {Sigma}p scatterings is under development. The detection system consists of scintillation fibers with a MPPC readout. A prototype and a readout electronics for MPPC have already been developed. The prototype consisting of a scintillation fiber tracker and a BGO calorimeter was tested with a proton beam of 80 MeV. Energy resolutions of the tracker of 22.0% ({sigma}) and the calorimeter of 1.0% ({sigma}) were obtained for 1 MeV and 70 MeV energy deposit, respectively. The prototype readout electronics has an ASIC for multichannel operation, EASIROC, and a Silicon TCP (SiTCP) interface to communicate with a DAQ system. Its data transfer rate measured was 14 kHz. Required performances for the prototype system have been achieved except for the energy resolution of the prototype fiber tracker.

  14. LHCb Scintillating Fiber detector front end electronics design and quality assurance

    Science.gov (United States)

    Vink, W. E. W.; Pellegrino, A.; Ietswaard, G. C. M.; Verkooijen, J. C.; Carneiro, U.; Massefferi, A.

    2017-03-01

    The on-detector electronics of the LHCb Scintillating Fiber Detector consists of multiple PCBs assembled in a unit called Read Out Box, capable of reading out 2048 channels with an output rate of 70 Gbps. There are three types of boards: PACIFIC, Clusterization and Master Board. The Pacific Boards host PACIFIC ASICs, with pre-amplifier and comparator stages producing two bits of data per channel. A cluster-finding algorithm is then run in an FPGA on the Clusterization Board. The Master Board distributes fast and slow control, and power. We describe the design, production and test of prototype PCBs.

  15. Ultrafast readout of scintillating fibers using upgraded position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Onel, Y.

    1994-01-01

    Experimental results obtained with commercially available position-sensitive photomultipliers (PSPM) coupled with 0.5 mm diameter scintillating fiber arrays show some promising performances such as space resolution better than 200 μm and time resolution ∼ 1.5 ns with a detection efficiency higher than 90%. Major progress has also been recently achieved with an upgrade of a PSPM based on new grid dynode structures. Two-track spatial resolution has been studied using the upgraded PSPM. Initial studies demonstrate that two tracks separated by a minimum distance of 3 mm are resolved

  16. Design of a 2 x 2 scintillating tile package for the SDC barrel electromagnetic tile/fiber calorimeter

    International Nuclear Information System (INIS)

    Hara, K.; Maekoba, H.; Minato, H.; Miyamoto, Y.; Nakano, I.; Okabe, M.; Seiya, Y.; Takano, T.; Takikawa, K.; Yasuoka, K.

    1996-01-01

    We describe R and D results on optical properties of a scintillating tile/fiber system for the SDC barrel electromagnetic calorimeter. The tile/fiber system uses a wavelength shifting fiber to read out the signal of a scintillating plate (tile) and a clear fiber to transmit the signal to a phototube. In the SDC calorimeter design, four of tile/fiber systems are grouped as a 2 x 2 tile package so that the gap width between and the location of the tiles in the absorber slot can be controlled. Optical properties of the tile package such as the light yield, its uniformity, and cross talk were measured in a test bench with a β-ray source and in a 2-GeV/c π + test beam. The performance as an electromagnetic calorimeter was evaluated by a GEANT simulation using the measured response map. We discuss a method of correction for the calorimeter non-uniformity. (orig.)

  17. Physics studies with ICARUS and a hybrid ionization and scintillation fiber detector

    International Nuclear Information System (INIS)

    Cline, D.B.

    1992-01-01

    We discuss the physics possibilities for the ICARUS detector currently being tested at CERN. The physics potential goes from a massive proton decay detector to the study of solar neutrinos. In addition, the detection of ν μ → ν τ and ν e → ν τ will be possible with such a detector. One major topic involves the possibility of a complete determination of the MSW solar neutrino parameters with the ICARUS. The possibility of detecting WIMPS with a scintillating fiber liquid Argon (Ar) detector or fiber Xenon (Xe) detector doped with Ar is also described. Some comments on the measurement of the 42 Ar level from an experiment at the Gran Sasso will be made

  18. Gross beta determination in drinking water using scintillating fiber array detector.

    Science.gov (United States)

    Lv, Wen-Hui; Yi, Hong-Chang; Liu, Tong-Qing; Zeng, Zhi; Li, Jun-Li; Zhang, Hui; Ma, Hao

    2018-04-04

    A scintillating fiber array detector for measuring gross beta counting is developed to monitor the real-time radioactivity in drinking water. The detector, placed in a stainless-steel tank, consists of 1096 scintillating fibers, both sides of which are connected to a photomultiplier tube. The detector parameters, including working voltage, background counting rate and stability, are tested, and the detection efficiency is calibrated using standard potassium chloride solution. Water samples are measured with the detector and the results are compared with those by evaporation method. The results show consistency with those by evaporation method. The background counting rate of the detector is 38.131 ± 0.005 cps, and the detection efficiency for β particles is 0.37 ± 0.01 cps/(Bq/l). The MDAC of this system can be less than 1.0 Bq/l for β particles in 120 min without pre-concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The Real-Time Dose Measurement Scintillating Fiber Array for Brachytherapy Procedures

    Science.gov (United States)

    Tynes, Lawrence

    2007-03-01

    Brachytherapy is a treatment modality that uses tiny radioactive sources (few mm in length) by delivering enough doses to kill cancer tumors or plaque build-up. The type of sources used in hospitals include both gamma and beta emitters. Presently, the technique suffers from not having a single detector with the capability of providing accurate dose distribution information within sub-mm accuracy. The current standard is based primarily on well chambers and film dosimetry. The Center for Advanced Medical Instrumentation (CAMI) at Hampton University is developing a Scintillating Fiber Based Beta Detector prototype in collaboration with the National Institute for Standards and Technology (NIST) to address this problem. The device is composed of an array of 1x1 mm^2 scintillating fibers optically coupled to photo-multiplier tubes for photon-to-current conversion. A CAMAC LabView based data acquisition system is used for real time data collection and histogramming, data analysis. A set of data were collected at the nearby Bon Secours DePaul Medical Center using a GammaMed 12i HDR after-loader housing a 6.62 mCi Ir-192 source. Preliminary comparison between our device and film dosimetry will be discussed.

  20. A New scintillator tile / fiber preshower detector for the CDF central calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Gallinaro, Michele; /Rockefeller U.; Artikov, A.; Bromberg, C.; Budagov, J.; Byrum, K.; Chang, S.; Chlachidze, G.; Goulianos, K.; Huston, J.; Iori, M.; Kim, M.; Kuhlmann,; Lami, S.; Lindgren, M.; Lytken, E.; Miller, R.; Nodulman, L.; Pauletta, G.; Penzo, A.; Proudfoot, J.; Roser, R.; /Argonne /Dubna, JINR /Fermilab /Kyungpook Natl. U. /Michigan

    2004-11-01

    A detector designed to measure early particle showers has been installed in front of the central CDF calorimeter at the Tevatron. This new preshower detector is based on scintillator tiles coupled to wavelength-shifting fibers read out by multianode photomultipliers and has a total of 3,072 readout channels. The replacement of the old gas detector was required due to an expected increase in instantaneous luminosity of the Tevatron collider in the next few years. Calorimeter coverage, jet energy resolution, and electron and photon identification are among the expected improvements. The final detector design, together with the R&D studies that led to the choice of scintillator and fiber, mechanical assembly, and quality control are presented. The detector was installed in the fall 2004 Tevatron shutdown and is expected to start collecting colliding beam data by the end of 2004. First measurements indicate a light yield of 12 photoelectrons/MIP, a more than two-fold increase over the design goals.

  1. The scintillating fiber focal plane detector for the use of Kaos as a double arm spectrometer

    International Nuclear Information System (INIS)

    Ayerbe Gayoso, Carlos Antonio

    2012-01-01

    The upgrade of the Mainz Mikrotron (MAMI) electron accelerator facility in 2007 which raised the beam energy up to 1.5 GeV, gives the opportunity to study strangeness production channels through electromagnetic process. The Kaon Spectrometer (KAOS) managed by the A1 Collaboration, enables the efficient detection of the kaons associated with strangeness electroproduction. Used as a single arm spectrometer, it can be combined with the existing high-resolution spectrometers for exclusive measurements in the kinematic domain accessible to them. For studying hypernuclear production in the A Z(e,e'K + ) A Λ (Z-1) reaction, the detection of electrons at very forward angles is needed. Therefore, the use of KAOS as a double-arm spectrometer for detection of kaons and the electrons at the same time is mandatory. Thus, the electron arm should be provided with a new detector package, with high counting rate capability and high granularity for a good spatial resolution. To this end, a new state-of-the-art scintillating fiber hodoscope has been developed as an electron detector. The hodoscope is made of two planes with a total of 18432 scintillating double-clad fibers of 0.83 mm diameter. Each plane is formed by 72 modules. Each module is formed from a 60 slanted multi-layer bundle, where 4 fibers of a tilted column are connected to a common read out. The read-out is made with 32 channels of linear array multianode photomultipliers. Signal processing makes use of newly developed double-threshold discriminators. The discriminated signal is sent in parallel to dead-time free time-to-digital modules and to logic modules for triggering purposes. Two fiber modules were tested with a carbon beam at GSI, showing a time resolution of ∝220 ps (FWHM) and a position resolution of ∝270 μm (FWHM) with a detection efficiency ε>99%. The characterization of the spectrometer arm has been achieved through simulations calculating the transfer matrix of track parameters from the fiber

  2. The scintillating fiber focal plane detector for the use of Kaos as a double arm spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ayerbe Gayoso, Carlos Antonio

    2012-05-25

    The upgrade of the Mainz Mikrotron (MAMI) electron accelerator facility in 2007 which raised the beam energy up to 1.5 GeV, gives the opportunity to study strangeness production channels through electromagnetic process. The Kaon Spectrometer (KAOS) managed by the A1 Collaboration, enables the efficient detection of the kaons associated with strangeness electroproduction. Used as a single arm spectrometer, it can be combined with the existing high-resolution spectrometers for exclusive measurements in the kinematic domain accessible to them. For studying hypernuclear production in the {sup A}Z(e,e'K{sup +}){sup A}{sub {lambda}}(Z-1) reaction, the detection of electrons at very forward angles is needed. Therefore, the use of KAOS as a double-arm spectrometer for detection of kaons and the electrons at the same time is mandatory. Thus, the electron arm should be provided with a new detector package, with high counting rate capability and high granularity for a good spatial resolution. To this end, a new state-of-the-art scintillating fiber hodoscope has been developed as an electron detector. The hodoscope is made of two planes with a total of 18432 scintillating double-clad fibers of 0.83 mm diameter. Each plane is formed by 72 modules. Each module is formed from a 60 slanted multi-layer bundle, where 4 fibers of a tilted column are connected to a common read out. The read-out is made with 32 channels of linear array multianode photomultipliers. Signal processing makes use of newly developed double-threshold discriminators. The discriminated signal is sent in parallel to dead-time free time-to-digital modules and to logic modules for triggering purposes. Two fiber modules were tested with a carbon beam at GSI, showing a time resolution of {proportional_to}220 ps (FWHM) and a position resolution of {proportional_to}270 {mu}m (FWHM) with a detection efficiency {epsilon}>99%. The characterization of the spectrometer arm has been achieved through simulations

  3. Completion of the L3 e.m. calorimeter with a lead-scintillating fibers spaghetti calorimeter

    International Nuclear Information System (INIS)

    Basti, G.; Boucham, A.; Campanelli, M.; Cecchi, C.; De Notaristefani, F.; Diemoz, M.; Ferroni, F.; Iaciofano, A.; Janssen, B.; Karyotakis, Y.; Lebeau, M.; Lesueur, J.; Longo, E.; Organtini, G.; Tsipolitis, Y.

    1995-01-01

    We report on the test-beam results for three prototype modules of a lead-scintillating fiber (spaghetti) calorimeter. We studied linearity, energy resolution and light collection. The results are in agreement with expectations from MC simulation. We also report on the studies for the optimal light guide to be used in the final design. (orig.)

  4. Topological trigger device using scintillating fibers and position-sensitive photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Keiichi; Dufournaud, J; Sillou, D [Laboratoire d' Annecy-le-Vieux de Physique des Particules (LAPP), 74 (France); Agoritsas, V [European Organization for Nuclear Research, Geneva (Switzerland); Bystricky, G; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Giacomich, R; Pauletta, G; Penzo, A; Salvato, G; Schiavon, P; Villari, A [INFN, Messina (Italy) INFN, Trieste (Italy) INFN, Udine (Italy); Gorin, A M; Meschanin, A P; Nurushev, S B; Rakhmatov, V E; Rykalin, V L; Solovyanov, V L; Vasiliev, A N; Vasil' chencko, V G [Institute for High Energy Physics, Serpukhov (USSR); Oshima, N; Yamada, R [Fermi National Accelerator Lab., Batavia, IL (USA); Takeutchi, F [Kyoto-Sanyo Univ., Kyoto (Japan); Yoshida, T [Osaka City Univ. (Japan); Akchurin, N; Onel, Y; Newsom, C

    1991-07-01

    An approach to a high quality of the Level-1 Trigger is investigated on the basis of a topological trigger device. It will be realized by using scintillating fibers and position-sensitive photomultipliers, both considered as potential candidates of new detector-components thanks to their excellent time characteristics and high radiation resistances. The device is characterized in particular by its simple concept and reliable operation supported by the mature technologies emploied. The major interests of such a scheme under LHC environments reside in its capability of selcting high pperpendicular to tracks in real time, its optional immunity against low pperpendicular to tracks and loopers, as well as its effective links to other associated devices in the complex of a vertex detector. (orig.).

  5. Monte Carlo modeling of fiber-scintillator flow-cell radiation detector geometry

    International Nuclear Information System (INIS)

    Rucker, T.L.; Ross, H.H.; Tennessee Univ., Knoxville; Schweitzer, G.K.

    1988-01-01

    A Monte Carlo computer calculation is described which models the geometric efficiency of a fiber-scintillator flow-cell radiation detector designed to detect radiolabeled compounds in liquid chromatography eluates. By using special mathematical techniques, an efficiency prediction with a precision of 1% is obtained after generating only 1000 random events. Good agreement is seen between predicted and experimental efficiency except for very low energy beta emission where the geometric limitation on efficiency is overcome by pulse height limitations which the model does not consider. The modeling results show that in the test system, the detection efficiency for low energy beta emitters is limited primarily by light generation and collection rather than geometry. (orig.)

  6. Triton burnup study using scintillating fiber detector on JT-60U

    International Nuclear Information System (INIS)

    Harano, Hideki

    1997-09-01

    The DT fusion reactor cannot be realized without knowing how the fusion-produced 3.5 MeV α particles behave. The α particles' behavior can be simulated using the 1 MeV triton. To investigate the 1 MeV triton's behavior, a new type of directional 14 MeV neutron detector, scintillating fiber (Sci-Fi) detector has been developed and installed on JT-60U in the cooperation with LANL as part of a US-Japan collaboration. The most remarkable feature of the Sci-Fi detector is that the plastic scintillating fibers are employed for the neutron sensor head. The Sci-Fi detector measures and extracts the DT neutrons from the fusion radiation field in high time resolution (10 ms) and wide dynamic range (3 decades). Triton burnup analysis code TBURN has been made in order to analyze the time evolution of DT neutron emission rate obtained by the Sci-Fi detector. The TBURN calculations reproduced the measurements fairly well, and the validity of the calculation model that the slowing down of the 1 MeV triton was classical was confirmed. The Sci-Fi detector's directionality indicated the tendency that the DT neutron emission profile became more and more peaked with the time progress. In this study, in order to examine the effect of the toroidal field ripple on the triton burnup, R p -scan and n e -scan experiments have been performed. The R p -scan experiment indicates that the triton's transport was increased as the ripple amplitude over the triton became larger. In the n e -scan experiment, the DT neutron emission showed the characteristic changes after the gas puffing injection. It was theoretically confirmed that the gas puffing was effective for the collisionality scan. (J.P.N.) 127 refs

  7. Triton burnup study using scintillating fiber detector on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Harano, Hideki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-09-01

    The DT fusion reactor cannot be realized without knowing how the fusion-produced 3.5 MeV {alpha} particles behave. The {alpha} particles` behavior can be simulated using the 1 MeV triton. To investigate the 1 MeV triton`s behavior, a new type of directional 14 MeV neutron detector, scintillating fiber (Sci-Fi) detector has been developed and installed on JT-60U in the cooperation with LANL as part of a US-Japan collaboration. The most remarkable feature of the Sci-Fi detector is that the plastic scintillating fibers are employed for the neutron sensor head. The Sci-Fi detector measures and extracts the DT neutrons from the fusion radiation field in high time resolution (10 ms) and wide dynamic range (3 decades). Triton burnup analysis code TBURN has been made in order to analyze the time evolution of DT neutron emission rate obtained by the Sci-Fi detector. The TBURN calculations reproduced the measurements fairly well, and the validity of the calculation model that the slowing down of the 1 MeV triton was classical was confirmed. The Sci-Fi detector`s directionality indicated the tendency that the DT neutron emission profile became more and more peaked with the time progress. In this study, in order to examine the effect of the toroidal field ripple on the triton burnup, R{sub p}-scan and n{sub e}-scan experiments have been performed. The R{sub p}-scan experiment indicates that the triton`s transport was increased as the ripple amplitude over the triton became larger. In the n{sub e}-scan experiment, the DT neutron emission showed the characteristic changes after the gas puffing injection. It was theoretically confirmed that the gas puffing was effective for the collisionality scan. (J.P.N.) 127 refs.

  8. The use of logarithmic pulse height and energy scales in organic scintillator spectroscopy

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-01-01

    The use of logarithmic pulse height and energy scales is advantageous for organic for organic scintillator neutron spectroscopy, providing an expanded dynamic range and economy of computer usage. An experimental logarithmic pulse height analysis system is shown to be feasible. A pulse height spectrum from a neutron measurement has been analysed using linear and logarithmic scales; the latter reduced the computer storage requirements by a factor of 13 and analysis time by 8.7, and there was no degradation of the analysed spectrum. Most of the arguments favouring use of logarithmic scales apply equally well to other types of scintillation spectroscopy. (orig.)

  9. Tests of the new STIC scintillator ring prototype, the photomultipliers and optic fibers cables of the 40 deg C counters

    International Nuclear Information System (INIS)

    Silva, Tatiana da

    1997-01-01

    This paper reports the tests performed on the semicircular prototype of the new scintillator ring with readings obtained by WLS optic fibers. The prototype intends to verify the light collecting and investigate a method for fiber gluing in a circular surface, without the appearing of air bubbles which may restrain the light transmission. Also the optic fiber cables and the photomultipliers used in the 40 deg C counters have been tested in order to verify the electromagnetic energy which may leak from failures in the barrel, aiming the hermeticity enhancement, and also the existence of any damaged cable

  10. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    CERN Document Server

    Sakai, K; Oku, T; Morimoto, K; Shimizu, H M; Tokanai, F; Gorin, A; Manuilov, I V; Ryazantsev, A; Ino, T; Kuroda, K; Suzuki, J

    2002-01-01

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50 x 50 mm sup 2. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of propor to 1.0 mm was obtained. (orig.)

  11. Measurement of neutron detection efficiency between 22 and 174 MeV using two different kinds of Pb-scintillating fiber sampling calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M.; Bertolucci, S. [Laboratori Nazionali di Frascati, INFN (Italy); Bini, C. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Branchini, P. [INFN Sezione di Roma Tre, Roma (Italy); Corradi, G.; Curceanu, C. [Laboratori Nazionali di Frascati, INFN (Italy); De Zorzi, G.; Di Domenico, A. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Di Micco, B. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Ferrari, A. [Fondazione CNAO, Milano (Italy); Fiore, S.; Gauzzi, P. [Dipartimento di Fisica dell' Universita ' La Sapienza' , Roma (Italy); INFN Sezione di Roma, Roma (Italy); Giovannella, S.; Happacher, F. [Laboratori Nazionali di Frascati, INFN (Italy); Iliescu, M. [Laboratori Nazionali di Frascati, INFN (Italy); IFIN-HH, Bucharest (Romania); Luca, A.; Martini, M. [Laboratori Nazionali di Frascati, INFN (Italy); Miscetti, S., E-mail: stefano.miscetti@lnf.infn.i [Laboratori Nazionali di Frascati, INFN (Italy); Nguyen, F. [Dipartimento di Fisica dell' Universita ' Roma Tre' , Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Passeri, A. [INFN Sezione di Roma Tre, Roma (Italy)

    2010-05-21

    We exposed a prototype of the lead-scintillating fiber KLOE calorimeter to neutron beam of 21, 46 and 174 MeV at The Svedberg Laboratory, Uppsala, to study its neutron detection efficiency. This has been found larger than what expected considering the scintillator thickness of the prototype. We show preliminary measurement carried out with a different prototype with a larger lead/fiber ratio, which proves the relevance of passive material to neutron detection efficiency in this kind of calorimeters.

  12. Studies on the construction of a vertex detector of scintillation fibers and a multi-channel photomultiplier XP 4702

    International Nuclear Information System (INIS)

    Pfeiffer, G.

    1991-04-01

    In the last years recent attempts have been made in the development of scintillating fibers and multichannel photomultiplier tubes. A combination of these two components therefore becomes attractive in building a position sensitive detector. For this purpose some investigations were made to prove the capability of such a combination. It has been shown, that both components would be well suited for building a position sensitive detector. (orig.) [de

  13. Scintillating plastic fibers as light pipes for a cosmic ray hodoscope: Feasibility calculations and measured attenuation characteristics

    Science.gov (United States)

    1976-01-01

    A candidate hodoscope uses arrays of scintillator fibers, followed by an image intensifier and imaging system such as that proposed for the X-ray shadowgraph. A literature search was performed to ascertain the experience of other workers with hodoscopes using this or similar principles. Calculations were performed to determine the feasibility of candidate systems and some laboratory experiments were performed to attempt to check these numbers.

  14. Test beam results using scintillating fibers read out by a multianode phototube and visible light photon counters

    International Nuclear Information System (INIS)

    Abbott, B.; Davies, R.; Koltick, D.; McIlwain, R.; Schmitz, C.J.; Shibata, E.I.; Atac, M.; Baumbaugh, B.; Jaques, J.; Kehoe, R.; Marchant, J.; Ruchti, R.; Warchol, J.; Wayne, M.; Binkley, M.; Elias, J.; Goldberg, H.; Margulies, S.; Solomon, J.; Armstrong, T.; Lewis, R.; Smith, G.

    1993-01-01

    The results from a test beam experiment at Fermilab using 830 μm scintillating fibers, a version of a solid state photomultiplier, the VLPC, and a 256 channel multianode phototube are reported. Muon tracks were observed in a combined tracking system read out by VLPCs and the multianode phototube. A tracking algorithm was developed to unfold the complex cross talk pattern observed in the multianode phototube. A spatial resolution of ∝130 μm was obtained. (orig.)

  15. A real time scintillating fiber Time of Flight spectrometer for LINAC photoproduced neutrons

    Science.gov (United States)

    Maspero, M.; Berra, A.; Conti, V.; Giannini, G.; Ostinelli, A.; Prest, M.; Vallazza, E.

    2015-03-01

    The use of high-energy (> 8 MeV) LINear ACcelerators (LINACs) for medical cancer treatments causes the photoproduction of secondary neutrons, whose unwanted dose to the patient has to be calculated. The characterization of the neutron spectra is necessary to allow the dosimetric evaluation of the neutron beam contamination. The neutron spectrum in a hospital environment is usually measured with integrating detectors such as bubble dosimeters, Thermo Luminescent Dosimeters (TLDs) or Bonner Spheres, which integrate the information over a time interval and an energy one. This paper presents the development of a neutron spectrometer based on the Time of Flight (ToF) technique in order to perform a real time characterization of the neutron contamination. The detector measures the neutron spectrum exploiting the fact that the LINAC beams are pulsed and arranged in bunches with a rate of 100-300 Hz depending on the beam type and energy. The detector consists of boron loaded scintillating fibers readout by a MultiAnode PhotoMultiplier Tube (MAPMT). A detailed description of the detector and the acquisition system together with the results in terms of ToF spectra and number of neutrons with a Varian Clinac iX are presented.

  16. Study on the energy response to neutrons for a new scintillating-fiber-array neutron detector

    CERN Document Server

    Zhang Qi; Wang Qun; Xie Zhong Shen

    2003-01-01

    The energy response of a new scintillating-fiber-array neutron detector to neutrons in the energy range 0.01 MeV<=E sub n<=14 MeV was modeled by combining a simplified Monte Carlo model and the MCNP 4b code. In order to test the model and get the absolute sensitivity of the detector to neutrons, one experiment was carried out for 2.5 and 14 MeV neutrons from T(p,n) sup 3 He and T(d,n) sup 4 He reactions at the Neutron Generator Laboratory at the Institute of Modern Physics, the Chinese Academy of Science. The absolute neutron fluence was obtained with a relative standard uncertainty 4.5% or 2.0% by monitoring the associated protons or sup 4 He particles, respectively. Another experiment was carried out for 0.5, 1.0, 1.5, 2.0, 2.5 MeV neutrons from T(p,n) sup 3 He reaction, and for 3.28, 3.50, 4.83, 5.74 MeV neutrons from D(d,n) sup 3 He reaction on the Model 5SDH-2 accelerator at China Institute of Atomic Energy. The absolute neutron fluence was obtained with a relative standard uncertainty 5.0% by usin...

  17. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg

    scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic...... millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising...... for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy....

  18. First scintillating bolometer tests of a CLYMENE R&D on Li2MoO4 scintillators towards a large-scale double-beta decay experiment

    Science.gov (United States)

    Buşe, G.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Poda, D. V.; Redon, T.; Sand, J.-B.; Veber, P.; Velázquez, M.; Zolotarova, A. S.

    2018-05-01

    A new R&D on lithium molybdate scintillators has begun within a project CLYMENE (Czochralski growth of Li2MoO4 crYstals for the scintillating boloMeters used in the rare EveNts sEarches). One of the main goals of the CLYMENE is a realization of a Li2MoO4 crystal growth line to be complementary to the one recently developed by LUMINEU in view of a mass production capacity for CUPID, a next-generation tonne-scale bolometric experiment to search for neutrinoless double-beta decay. In the present paper we report the investigation of performance and radiopurity of 158-g and 13.5-g scintillating bolometers based on a first large-mass (230 g) Li2MoO4 crystal scintillator developed within the CLYMENE project. In particular, a good energy resolution (2-7 keV FWHM in the energy range of 0.2-5 MeV), one of the highest light yield (0.97 keV/MeV) amongst Li2MoO4 scintillating bolometers, an efficient alpha particles discrimination (10 σ) and potentially low internal radioactive contamination (below 0.2-0.3 mBq/kg of U/Th, but 1.4 mBq/kg of 210Po) demonstrate prospects of the CLYMENE in the development of high quality and radiopure Li2MoO4 scintillators for CUPID.

  19. Design and Fabrication of Calibration Device for Scintillating Fibers of Tagger Microscope: For use in GlueX's QCD Experiment

    Science.gov (United States)

    Briere, Emily

    2012-10-01

    For decades, scientists have struggled to understand the chromo-electromagnetic field which confines quarks and gluons within the hadron. GlueX is a QCD experiment centered at Jefferson Lab, Virginia, seeking to better understand this gluonic field by exciting it and mapping the spectrum of exotic hybrid mesons that it generates. The experiment uses coherent bremsstrahlung radiation to produce a beam of photons, which due to their polarity act as virtual vector mesons. When incident on a liquid hydrogen target, these mesons are expected to form exotic hybrid mesons. Such particles quickly decay into new particles which are captured in a solenoid detector. The decays can then be reconstructed to examine the properties of the original exotic hybrid meson, although the initial energy of the photon is required to draw meaningful conclusions. The post-bremsstrahlung degraded electrons are bent from the main beam into the tagger microscope where they strike an array of scintillating optical fibers. Given the correlation between momentum and radial bend, the Silicon Photmultiplier sensors attached to the optical fibers are able to ``tag'' the electrons', and thus the photons', initial energies based on which fibers were hit. Providing central data for GlueX, the tagger microscope must be accurate. This paper details the design and fabrication of a scintillating fiber calibration device that moves horizontally above fiber bundles, using a green laser diode to direct light pulses into the fibers. This calibration method has been tested mechanically and via a Monte Carlo Matlab simulation, and has proven to be effective.

  20. Depth Dose Measurement using a Scintillating Fiber Optic Dosimeter for Proton Therapy Beam of the Passive-Scattering Mode Having Range Modulator Wheel

    Science.gov (United States)

    Hwang, Ui-Jung; Shin, Dongho; Lee, Se Byeong; Lim, Young Kyung; Jeong, Jong Hwi; Kim, Hak Soo; Kim, Ki Hwan

    2018-05-01

    To apply a scintillating fiber dosimetry system to measure the range of a proton therapy beam, a new method was proposed to correct for the quenching effect on measuring an spread out Bragg peak (SOBP) proton beam whose range is modulated by a range modulator wheel. The scintillating fiber dosimetry system was composed of a plastic scintillating fiber (BCF-12), optical fiber (SH 2001), photo multiplier tube (H7546), and data acquisition system (PXI6221 and SCC68). The proton beam was generated by a cyclotron (Proteus-235) in the National Cancer Center in Korea. It operated in the double-scattering mode and the spread out of the Bragg peak was achieved by a spinning range modulation wheel. Bragg peak beams and SOBP beams of various ranges were measured, corrected, and compared to the ion chamber data. For the Bragg peak beam, quenching equation was used to correct the quenching effect. On the proposed process of correcting SOBP beams, the measured data using a scintillating fiber were separated by the Bragg peaks that the SOBP beam contained, and then recomposed again to reconstruct an SOBP after correcting for each Bragg peak. The measured depth-dose curve for the single Bragg peak beam was well corrected by using a simple quenching equation. Correction for SOBP beam was conducted with a newly proposed method. The corrected SOBP signal was in accordance with the results measured with an ion chamber. We propose a new method to correct for the SOBP beam from the quenching effect in a scintillating fiber dosimetry system. This method can be applied to other scintillator dosimetry for radiation beams in which the quenching effect is shown in the scintillator.

  1. Simulation Study of Using High-Z EMA to Suppress Recoil Protons Crosstalk in Scintillating Fiber Array for 14.1 MeV Neutron Imaging

    Science.gov (United States)

    Jia, Qinggang; Hu, Huasi; Zhang, Fengna; Zhang, Tiankui; Lv, Wei; Zhan, Yuanpin; Liu, Zhihua

    2013-12-01

    This paper studies the effect of a high-Z extra mural absorber (EMA) to improve the spatial resolution of a plastic (polystyrene) scintillating fiber array for 14.1 MeV fusion neutron imaging. Crosstalk induced by recoil protons was studied, and platinum (Pt) was selected as EMA material, because of its excellent ability to suppress the recoil protons penetrating the fibers. Three common fiber arrays (cylindrical scintillating fibers in square and hexagonal packing arrangements and square scintillating fibers) were simulated using the Monte Carlo method for evaluating the effect of Pt-EMA in improving spatial resolution. It is found that the resolution of the 100 μm square fiber array can be improved from 1.7 to 3.4 lp/mm by using 10- μm-thick Pt-EMA; comparatively, using an array with thinner square fibers (50 μm) only obtains a resolution of 2.1 lp/mm. The packing fraction decreases with the increase of EMA thickness. Our results recommend the use of 10 μm Pt-EMA for the square and the cylindrical (hexagonal packing) scintillating fiber arrays with fibers of 50-200 μm in the cross-sectional dimension. Besides, the dead-zone material should be replaced by high-Z material for the hexagonal packing cylindrical fiber array with fibers of 50-200 μm in diameter. Tungsten (W) and gold (Au) are also used as EMA in the three fiber arrays as a comparison. The simulation results show that W can be used at a lower cost, and Au does not have any advantages in cost and resolution improvement.

  2. In vivo detection of plutonium in the tracheobronchial lymph nodes with a fiber-optic coupled scintillator

    International Nuclear Information System (INIS)

    Swinth, K.L.; Park, J.F.; Voelz, G.L.; Ewins, J.H.

    1976-01-01

    An intraesophageal probe was developed for measuring plutonium in the tracheobronchial lymph nodes. The probe uses a fiber-optic coupled NaI(Tl) scintillator as a detector and has a detection limit one-tenth that of a solid-state probe previously used for this measurement. The probe, with a projected sensitivity of 1 cpm/nCi, was used to detect plutonium in the lymph nodes of 11 experimentally exposed dogs. Tests on an accidentally exposed human volunteer yielded positive counts from the lymph nodes from an amount estimated at 7 nCi in the tracheobronchial lymph nodes

  3. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J. [Fermilab; Cease, H. [Fermilab; Jaskierny, W. F. [Fermilab; Markley, D. [Fermilab; Pahlka, R. B. [Fermilab; Balakishiyeva, D. [Florida U.; Saab, T. [Florida U.; Filipenko, M. [Erlangen - Nuremberg U., ECAP

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used a conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.

  4. Experimental study of high-energy resolution lead/scintillating fiber calorimetry in the 600-1200 MeV energy region

    International Nuclear Information System (INIS)

    Bellini, V.; Bianco, S.; Capogni, M.; Casano, L.; D'Angelo, A.; Fabbri, F.L.; Ghio, F.; Giardoni, M.; Girolami, B.; Hu, L.; Levi Sandri, P.; Moricciani, D.; Nobili, G.; Passamonti, L.; Russo, V.; Sarwar, S.; Schaerf, C.

    1997-01-01

    An experimental investigation has been carried out on the properties of electromagnetic shower detectors, composed of a uniform array of plastic scintillating fibers and lead (50:35 by volume ratio) for photons in the energy range 600-1200 MeV. When the photon's incidence angle to the fiber axis is within ±2 circle an energy resolution of σ E /E(%)=5.12/√(E[GeV])+1.71 has been observed. (orig.)

  5. Development of intermediate-scale structure at different altitudes within an equatorial plasma bubble: Implications for L-band scintillations

    Science.gov (United States)

    Bhattacharyya, A.; Kakad, B.; Gurram, P.; Sripathi, S.; Sunda, S.

    2017-01-01

    An important aspect of the development of intermediate-scale length (approximately hundred meters to few kilometers) irregularities in an equatorial plasma bubble (EPB) that has not been considered in the schemes to predict the occurrence pattern of L-band scintillations in low-latitude regions is how these structures develop at different heights within an EPB as it rises in the postsunset equatorial ionosphere due to the growth of the Rayleigh-Taylor instability. Irregularities at different heights over the dip equator map to different latitudes, and their spectrum as well as the background electron density determine the strength of L-band scintillations at different latitudes. In this paper, VHF and L-band scintillations recorded at different latitudes together with theoretical modeling of the scintillations are used to study the implications of this structuring of EPBs on the occurrence and strength of L-band scintillations at different latitudes. Theoretical modeling shows that while S4 index for scintillations on a VHF signal recorded at an equatorial station may be >1, S4 index for scintillations on a VHF signal recorded near the crest of the equatorial ionization anomaly (EIA) generally does not exceed the value of 1 because the intermediate-scale irregularity spectrum at F layer peak near the EIA crest is shallower than that found in the equatorial F layer peak. This also explains the latitudinal distribution of L-band scintillations. Thus, it is concluded that there is greater structuring of an EPB on the topside of the equatorial F region than near the equatorial F layer peak.

  6. Development of self-propelled measuring system for 2-dimensional distribution of radiation beam using plastic scintillation fibers

    International Nuclear Information System (INIS)

    Matsumura, Shuji; Kitahara, Sigeo; Yamanishi, Akio; Nose, Hiroyuki; Tisaka, Osamu

    2013-01-01

    Conventional 2-dimensional distribution of radiation beam is usually estimated from dose rates on a lot of dispersed spots, which has two problems. One is that it takes much time to measure distribution in a large area, and another problem is it is difficult to detect a localized hot spot from dispersed measurement results. To solve these problems we have developed a self-propelled measuring system adopting plastic scintillation fibers (PSF) as a detector. Estimating dose distribution in PSF and scanning PSF with self-propelled system give a 2-dimensional distribution of radiation beam in shorter measuring time and better spatial resolution than usual. A global positioning system was also installed to our system to know the absolute position of interest. With this system we have verified that we can estimate the 2-dimensional distribution in area of 2,000 m 2 in an hour. This report describes the overview of our newly developed system. (author)

  7. Wavelength-shifting fiber signal readout from Transparent RUbber SheeT (TRUST) type LiCaAlF{sub 6} neutron scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kenichi, E-mail: k-watanabe@nucl.nagoya-u.ac.jp [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Yamazaki, Takuya; Sugimoto, Dai; Yamazaki, Atsushi; Uritani, Akira; Iguchi, Tetsuo [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Fukuda, Kentaro; Ishidu, Sumito [Tokuyama Corporation, Shunan 745-8648 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka [Kyushu Institute of Technology, Kita-kyushu 808-0196 (Japan)

    2015-06-01

    As an alternative to the standard {sup 3}He neutron detector, we are developing the Transparent RUbber SheeT type (TRUST) Eu doped LiCaAlF{sub 6} (Eu:LiCAF) scintillator. This type of neutron scintillator can easily be fabricated as a large area sheet. In order to take advantage of a large area detector, we try to readout scintillation photons using a wavelength-shifting fiber (WLSF) from a TRUST Eu:LiCAF scintillator. The TRUST Eu:LiCAF scintillator with the size of 50×50×5 mm{sup 3} was mounted on the WLSF plate and the end of the WLSFs was connected with a PMT. In order to reject high pulse height events induced in the WLSFs, we applied the pulse shape discrimination technique. The gamma-ray intrinsic and neutron absolute detection efficiency is evaluated to be 8.8×10{sup −7} and 9×10{sup −3} cps/ng Cf (2 m) for the TRUST Eu:LiCAF scintillator with the size of 50×50×5 mm{sup 3}.

  8. Wavelength-shifting fiber signal readout from Transparent RUbber SheeT (TRUST) type LiCaAlF6 neutron scintillator

    International Nuclear Information System (INIS)

    Watanabe, Kenichi; Yamazaki, Takuya; Sugimoto, Dai; Yamazaki, Atsushi; Uritani, Akira; Iguchi, Tetsuo; Fukuda, Kentaro; Ishidu, Sumito; Yanagida, Takayuki; Fujimoto, Yutaka

    2015-01-01

    As an alternative to the standard 3 He neutron detector, we are developing the Transparent RUbber SheeT type (TRUST) Eu doped LiCaAlF 6 (Eu:LiCAF) scintillator. This type of neutron scintillator can easily be fabricated as a large area sheet. In order to take advantage of a large area detector, we try to readout scintillation photons using a wavelength-shifting fiber (WLSF) from a TRUST Eu:LiCAF scintillator. The TRUST Eu:LiCAF scintillator with the size of 50×50×5 mm 3 was mounted on the WLSF plate and the end of the WLSFs was connected with a PMT. In order to reject high pulse height events induced in the WLSFs, we applied the pulse shape discrimination technique. The gamma-ray intrinsic and neutron absolute detection efficiency is evaluated to be 8.8×10 −7 and 9×10 −3 cps/ng Cf (2 m) for the TRUST Eu:LiCAF scintillator with the size of 50×50×5 mm 3

  9. A feasibility study for the use of BGO scintillator in conjunction with a plastic optical fiber for remote gamma ray dosimetry

    International Nuclear Information System (INIS)

    Kim, Yong Ho; Seo, Min Woo; Park, Jae Woo

    2008-01-01

    A feasibility study has been carried out on a remote radiation dosimeter employing a BGO scintillator as the radiation sensing head and a plastic optical fiber as a light pipe. The sensor head is prepared in two sizes: the larger one has the size 4.7mm x 4.7mm x 10mm and the smaller one has the size 2.2mm x 2.2mm x 10mm. A low attenuation plastic optical fiber with 3mm diameter and 10m length is attached to the square surface of the larger scintillator, and the same optical fiber with 2mm diameter is attached to the smaller one. The polished scintillator is wrapped with white Teflon tape, and the fiber is shielded with a thermal shrink tube to block the ambient light. The lights generated in the sensor head are detected by a pulse-type photomultiplier tube module. Co-60 sources with radioactivity of 50μCi and 1mCi are used to test the performance of the constructed dosimeter models. The total number of pulses is measured as a function of the distance from the sensor head to the source. MCNPX simulation is also carried out for the source and dosimeter arrangements to assess the feasibility of the dosimeter model. The dosimeter model measures fairly well the change in the number of pulses as the source-to-detector distance changes, but shows poor capability to measure the pulse height spectrum and source activity. (author)

  10. Development of a fast, fine-grained, scintillating fiber hodoscope for use in advanced detector systems for high-energy-physics research. Technical progress report, June 1, 1983-May 31, 1984

    International Nuclear Information System (INIS)

    Borenstein, S.R.

    1983-01-01

    This report will indicate the progress made since the last report in the following categories of activity: (1) procurement of a stock of acceptable plastic scintillator perform; (2) improvements in the technique and quality control of drawing and cladding scintillating fibers; (3) fabrication of the bilayer ribbon hodoscope; (4) operation of a prototype hodoscope at the AGS; (5) software development for data acquisition; (6) preparation of an efficient optical coupling between the scintillating fiber and the photo-detector; and (7) determination of the feasibility of the Avalanche Photodiode (APD) as a photo-detector

  11. Construction and performance of a plastic scintillating fiber target for a rare kaon decay experiment

    International Nuclear Information System (INIS)

    Frank, J.S.; Strand, R.C.

    1988-01-01

    A K + stopping target consisting of 2269 plastic fibers, 2 mm diameter and 3.12 m long has been installed in an experiment searching for the rare decay K + to πν/bar nu/ at Brookhaven National Laboratory. The fibers are bundled onto 379 photomultiplier tube and base assemblies with single photoelectron resolution. After routing to the counting room, the signals are amplified and then distributed to TDC's and high-pass filter circuits that provide signals to ADC's and to fan-ins that provide a target energy-sum pulse used in the fast triggering logic. A minimum ionizing particle 3 m from the photomultiplier yields 1 photoelectron/mm path. The target provides transverse spatial resolution of 4 mm (FWHM) for the vertex of the K + decay and 2 ns timing resolution (FWHM) on the difference between the K + stop and the subsequent decay. Details of the target construction and operating performance are provided. 4 refs., 7 figs

  12. Transitioning glass-ceramic scintillators for diagnostic x-ray imaging from the laboratory to commercial scale

    Science.gov (United States)

    Beckert, M. Brooke; Gallego, Sabrina; Elder, Eric; Nadler, Jason

    2016-10-01

    This study sought to mitigate risk in transitioning newly developed glass-ceramic scintillator technology from a laboratory concept to commercial product by identifying the most significant hurdles to increased scale. These included selection of cost effective raw material sources, investigation of process parameters with the most significant impact on performance, and synthesis steps that could see the greatest benefit from participation of an industry partner that specializes in glass or optical component manufacturing. Efforts focused on enhancing the performance of glass-ceramic nanocomposite scintillators developed specifically for medical imaging via composition and process modifications that ensured efficient capture of incident X-ray energy and emission of scintillation light. The use of cost effective raw materials and existing manufacturing methods demonstrated proof-of-concept for economical viable alternatives to existing benchmark materials, as well as possible disruptive applications afforded by novel geometries and comparatively lower cost per volume. The authors now seek the expertise of industry to effectively navigate the transition from laboratory demonstrations to pilot scale production and testing to evince the industry of the viability and usefulness of composite-based scintillators.

  13. Scintillators and other particle optical detectors

    International Nuclear Information System (INIS)

    Chipaux, R.

    2011-01-01

    The author reports and comments his researcher career in the field of particle optical detectors. He addresses the cases of organic scintillators (scintillating fibers, liquid scintillators), inorganic scintillators (crystals for electromagnetic calorimetry, crystals for solar neutrino spectroscopy), and Cherenkov Effect detectors. He also reports his works on Cd Te detectors and their modelling

  14. Basic study of single crystal fibers of Pr:Lu{sub 3}Al{sub 5}O{sub 12} scintillator for gamma-ray imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.jp [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kamada, Kei [Materials Research Laboratory, Furukawa Co., Ltd., 1-25-13 Kannondai, Tukuba Ibaragi 305-0856 (Japan); Kawaguchi, Noriaki [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fujimoto, Yutaka [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Fukuda, Kentaro [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yokota, Yuui; Chani, Valery; Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2011-10-01

    Single-crystalline fibers were grown from 0.25, 0.70, and 1.50 mol% Pr-doped Lu{sub 3}Al{sub 5}O{sub 12} (LuAG) melts by the micro-pulling down ({mu}-PD) method with a diameter of 0.3-0.5 mm and a length of about 200 mm. They were cut to 10 mm long specimens, and their scintillation properties, including light yield and decay time profile, were examined. These results were compared with corresponding properties of the specimens (0.8x0.8x10 mm{sup 3}) cut from the bulk crystals produced by conventional Czochralski (CZ) growth. The {mu}-PD-grown fibers demonstrated relatively low light yield and had the same decay time constant when compared with those of the samples cut from the CZ-grown crystals. The fiber crystals were used to assemble scintillating arrays with dimensions of O 0.5x10 mm{sup 2}x20 pixels and O 0.3x10 mm{sup 2}x30 pixels coated by a BaSO{sub 4} reflector. After optical coupling with a position sensitive photomultiplier tube, the fiber-based arrays demonstrated acceptable imaging capability with a spatial resolution of about 0.5 mm.

  15. Basic study of single crystal fibers of Pr:Lu3Al5O12 scintillator for gamma-ray imaging applications

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kamada, Kei; Kawaguchi, Noriaki; Fujimoto, Yutaka; Fukuda, Kentaro; Yokota, Yuui; Chani, Valery; Yoshikawa, Akira

    2011-01-01

    Single-crystalline fibers were grown from 0.25, 0.70, and 1.50 mol% Pr-doped Lu 3 Al 5 O 12 (LuAG) melts by the micro-pulling down (μ-PD) method with a diameter of 0.3-0.5 mm and a length of about 200 mm. They were cut to 10 mm long specimens, and their scintillation properties, including light yield and decay time profile, were examined. These results were compared with corresponding properties of the specimens (0.8x0.8x10 mm 3 ) cut from the bulk crystals produced by conventional Czochralski (CZ) growth. The μ-PD-grown fibers demonstrated relatively low light yield and had the same decay time constant when compared with those of the samples cut from the CZ-grown crystals. The fiber crystals were used to assemble scintillating arrays with dimensions of O 0.5x10 mm 2 x20 pixels and O 0.3x10 mm 2 x30 pixels coated by a BaSO 4 reflector. After optical coupling with a position sensitive photomultiplier tube, the fiber-based arrays demonstrated acceptable imaging capability with a spatial resolution of about 0.5 mm.

  16. Efficiency studies for a tracking detector based on square 1.5 m long scintillating fibers read out by SiPM

    International Nuclear Information System (INIS)

    Sanchez Majos, S.; Achenbach, P.; Pochodzalla, J.

    2009-01-01

    A tracking detector based on 1.5 m long scintillating fibers is being developed for the electron arm of the KAOS spectrometer at the Mainz Microtron MAMI. Measurements on light attenuation, particle detection efficiencies and accidental coincidence rates with a prototype set-up using 2x2mm 2 fibers read out by silicon photomultipliers (SiPM) are presented. The highest efficiency at the lowest accidental coincidence rate was reached for high trigger thresholds at the largest SiPM bias voltages. The influence of signal attenuation and dispersion on detection efficiencies is discussed. The results are in good agreement with a Monte Carlo model that was used to predict detector characteristics for different fiber geometries.

  17. Cuticle scale measurement of animal fibers by SEM and AFM

    CSIR Research Space (South Africa)

    Notayi, M

    2013-12-01

    Full Text Available -1 51st Microscopy Society of Southern Africa (MSSA) Conference, Farm Inn, Pretoria, 3-6 December 2013 Cuticle scale measurement of animal fibers by SEM and AFM Notayi M, Engelbrechts JAA, Lee ME, Goosen WE, Hunter L and Botha AF Abstract...

  18. Large-scale production of PWO scintillation elements for CMS ECAL

    International Nuclear Information System (INIS)

    Annenkov, A.; Auffray, E.; Drobychev, G.; Korzhik, M.; Kostylev, V.; Kovalev, O.; Lecoq, P.; Ligoun, V.; Missevitch, O.; Zouevski, R.

    2005-01-01

    JSC Bogoroditsk Technical Chemical Plant, BTCP, has produced up to date more than 20,000 lead tungstate scintillation elements for the electromagnetic calorimeter of CMS Collaboration. Here we report on the status of the crystal production and results of the quality insurance program, which is performed by the Collaboration in cooperation with BTCP to keep crystal properties within specifications

  19. Radiation Damage of the CERN CMS HCAL Scintillator/WLS fiber readout during Run1 and Run2 of the LHC

    CERN Document Server

    de Barbaro, Pawel Jan

    2017-01-01

    We present the results of a study of radiation damage of the CERN CMS HCAL Scintillator/WLS Fiber readout. Data were obtained using the Laser calibration system of the CMS hadron endcap detector during the operation of the LHC in 2010-2017. Scintillators used in the CMS hadron endcap calorimeter (HE) were irradiated at dose rates in the range of 0.1 rad/h to 0.1 krad/h. Results indicate that the radiation damage has a strong dose rate dependence. Using data collected in 2017, we have measured the response loss in a single HE section instrumented with Silicon photomultipliers (SiPMs). The results show a much smaller signal loss for the channels read out by SiPMs compared to signal loss for the channels read out by hybrid photodetectors (HPDs). The results imply that a large fraction of the response loss in the CMS HE detector observed in 2010-2017 comes from deterioration of the HPD photodetectors and not from radiation damage of scintillators.

  20. Optimization of the coupling of optical fibers to an SiPM for a scintillator upgrade of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Julian; Bretz, Thomas; Hebbeker, Thomas; Meissner, Rebecca; Middendorf, Lukas; Niggemann, Tim; Peters, Christine; Schumacher, Johannes [III. Physikalisches Institut A, RWTH Aachen University (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The Pierre Auger Observatory successfully measures cosmic-ray air-showers at the highest energies by detecting both the fluorescence light produced in the atmosphere and the particle density of the shower at the ground. Nevertheless, this procedure does not allow for a precise measurement of the muon to electron ratio of a single shower. As this quantity is connected to the mass of the primary particle, it allows for a cosmic-ray mass composition measurement. To improve the ability of separating muons from the electromagnetic component, scintillator based detectors will be added to each surface detector station. The basic design will consist of several scintillator bars feeding the produced light into a bundle of wavelength shifting fibers. The light can be detected by photomultipliers (PMTs) or by silicon photomultipliers (SiPMs). The latter benefit from their higher photon detection efficiency and robustness. Due to the smaller area of the SiPMs compared to a PMT, the light detection efficiency of this system strongly depends on the quality of the optical coupling of the fiber bundle to the SiPM. Possible solutions are compared.

  1. View of the VO prototype made of two sectors of scintillating counters. WLS fibers embedded within connectors appear in green color. Beams of optical fibers inside black sheath collect and transport the emitted light to photo-multipliers a few meters apart.

    CERN Multimedia

    2004-01-01

    View of the VO prototype made of two sectors of scintillating counters. WLS fibers embedded within connectors appear in green color. Beams of optical fibers inside black sheath collect and transport the emitted light to photo-multipliers a few meters apart.

  2. Catastrophic Failure and Critical Scaling Laws of Fiber Bundle Material

    Directory of Open Access Journals (Sweden)

    Shengwang Hao

    2017-05-01

    Full Text Available This paper presents a spring-fiber bundle model used to describe the failure process induced by energy release in heterogeneous materials. The conditions that induce catastrophic failure are determined by geometric conditions and energy equilibrium. It is revealed that the relative rates of deformation of, and damage to the fiber bundle with respect to the boundary controlling displacement ε0 exhibit universal power law behavior near the catastrophic point, with a critical exponent of −1/2. The proportion of the rate of response with respect to acceleration exhibits a linear relationship with increasing displacement in the vicinity of the catastrophic point. This allows for the prediction of catastrophic failure immediately prior to failure by extrapolating the trajectory of this relationship as it asymptotes to zero. Monte Carlo simulations are completed and these two critical scaling laws are confirmed.

  3. Scintillator structures

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1978-01-01

    Distributed phosphor scintillator structures providing superior optical coupling to photoelectrically responsive devices together with methods for fabricating said scintillator structures are disclosed. In accordance with one embodiment of the invention relating to scintillator structures, the phosphor is distributed in a 'layered' fashion with certain layers being optically transparent so that the visible wavelength output of the scintillator is better directed to detecting devices. In accordance with another embodiment of the invention relating to scintillator structures, the phosphor is distributed throughout a transparent matrix in a continuous fashion whereby emitted light is more readily transmitted to a photodetector. Methods for fabricating said distributed phosphor scintillator structures are also disclosed. (Auth.)

  4. A multi-scale investigation of the mechanical behavior of durable sisal fiber cement composites

    OpenAIRE

    Silva, Flávio de Andrade; Toledo Filho, Romildo D.; Mobasher, Barzin; Chawla, Nikhilesh

    2010-01-01

    Durable sisal fiber cement composites reinforced with long unidirectional aligned fibers were developed and their mechanical behavior was characterized in a multi-scale level. Tensile tests were performed in individual sisal fibers. Weibull statistics were used to quantify the degree of variability in fiber strength at different gage lengths. The fiber-matrix pull-out behavior was evaluated at several curing ages and embedded lengths. The composite's mechanical response was measured under dir...

  5. Detector for the FSD Fourier-diffractometer based on ZnS(Ag)/6LiF scintillation screen and wavelength shifting fibers readout

    International Nuclear Information System (INIS)

    Kuz'min, E.S.; Balagurov, A.M.; Bokuchava, G.D.; Zhuk, V.V.; Kudryashev, V.A.; Bulkin, A.P.; Trunov, V.A.

    2001-01-01

    At the IBR-2 pulsed reactor (FLNP, JINR, Dubna), a specialized time-of-flight instrument Fourier-Stress-Diffractometer (FSD) intended for the measurement of internal stresses in bulk samples by using high-resolution neutron diffraction is under construction. One of the main components of the diffractometer is a new-type detector with combined electronic - geometrical focusing uniting a large solid angle and a small geometry contribution to the instrumental resolution. The first two modules of the detector, based on scintillation screen ZnS(Ag)/ 6 LiF with wavelength shifting fibers readout have been developed and tested. The design of the detector and associated electronics are described. The method of time focusing surface approximation, using the screen flexibility is proposed. Characteristics of the tested modules in comparison with a detector of the previous generation are presented and advantages of the new detector design for high-resolution diffractometry are discussed

  6. Characterization of a fiber-taper charge-coupled device system for plastic scintillation dosimetry and comparison with the traditional lens system

    International Nuclear Information System (INIS)

    Gagnon, Louis-Philippe; Beddar, Sam; Beaulieu, Luc

    2015-01-01

    Purpose: To compare the signal-to-noise ratio (SNR), dose sensitivity and stability, and reproducibility of a lens-less charge-coupled device (CCD) photon-counting system with those of a traditional CCD + lens photon-counting system for plastic scintillation detectors (PSDs). Methods: The PSD used in this study was made from a 1-mm diameter, 2-mm long BCF60 scintillating fiber (emission peak at 530 nm) coupled to a 2.6-m Eska GH-4001 clear plastic fiber. This PSD was coupled to either a fiber-taper-based photon-counting system (FTS) or a lens-based photon-counting system (LS). In the FTS, the fiber-taper was attached to a 2048 × 2048 pixel, uncooled Alta 4020 polychromatic CCD camera. The LS consisted of a 1600 × 1200 pixel Alta 2020 polychromatic CCD camera (cooled to −18 °C) with a 50-mm lens with f/# = 1. Dose measurements were made under the same conditions for each system (isocentric setup; depth of 1.5 cm in solid water using a 10 × 10 cm 2 field size and 6-MV photon beam). The performance of each system was determined and compared, using the chromatic Čerenkov removal method to account for the stem effects produced in the clear plastic fiber. Results: The FTS increased the light collected by a factor of 4 compared with the LS, for the same dose measurements. This gain was possible because the FTS was not limited by the optical aberration that comes with a lens system. Despite a 45 °C operating temperature difference between the systems, the SNR was 1.8–1.9 times higher in the FTS than in the LS, for blue and green channels respectively. Low-dose measurements of 1.0 and 0.5 cGy were obtained with an accuracy of 3.4% and 5.6%, respectively, in the FTS, compared with 5.8% and 15.9% in the LS. The FTS provided excellent dose measurement stability as a function of integration time, with at most a 1% difference at 5 cGy. Under the same conditions, the LS system produced a measurement difference between 2 and 3%. Conclusion: Our results showed that

  7. Scintillation scanner

    International Nuclear Information System (INIS)

    Mehrbrodt, A.W.; Mog, W.F.; Brunnett, C.J.

    1977-01-01

    A scintillation scanner having a visual image producing means coupled through a lost motion connection to the boom which supports the scintillation detector is described. The lost motion connection is adjustable to compensate for such delays as may occur between sensing and recording scintillations. 13 claims, 5 figures

  8. Development of radiation monitoring and visualization systems for Fukushima. GPS monitoring system, Dose3DMap system, and LED-coupled scintillating fiber detector

    International Nuclear Information System (INIS)

    Nakao, Noriaki; Kosako, Kazuaki; Kinoshita, Norikazu; Kawaguchi, Masato

    2016-01-01

    Lands that were contaminated with radioactive elements following the Fukushima Daiichi Nuclear Power Plant accident in 2011 have been decontaminated, and the construction of an interim storage facility for radioactive waste is planned. A GPS monitoring system was developed to concomitantly determine a location and measure the radiation level at the location. Moreover, a mapping system that produces radiation maps at the measurement locations and also predicts post-decontamination radiation maps using the compiled Monte Carlo simulation program was constructed. These systems were used for decontamination planning and estimation of the decontamination effect. An LED-coupled scintillating fiber detector was developed for visually monitoring radiation in real time at the interim storage facility. The LEDs display different colors corresponding to different radiation levels at the measurement locations along the fiber detector, the maximum length of which is 50 m. Thus, the radiation levels at all positions along the length of the detector can be visually monitored in real time. Moreover, it is useful for radiation safety and for risk communication with radiation workers and residents close to the site. (author)

  9. Scintillating plate calorimeter optical design

    International Nuclear Information System (INIS)

    McNeil, R.; Fazely, A.; Gunasingha, R.; Imlay, R.; Lim, J.

    1990-01-01

    A major technical challenge facing the builder of a general purpose detector for the SSC is to achieve an optimum design for the calorimeter. Because of its fast response and good energy resolution, scintillating plate sampling calorimeters should be considered as a possible technology option. The work of the Scintillating Plate Calorimeter Collaboration is focused on compensating plate calorimeters. Based on experimental and simulation studies, it is expected that a sampling calorimeter with alternating layers of high-Z absorber (Pb, W, DU, etc.) and plastic scintillator can be made compensating (e/h = 1.00) by suitable choice of the ratio of absorber/scintillator thickness. Two conceptual designs have been pursued by this subsystem collaboration. One is based on lead as the absorber, with read/out of the scintillator plates via wavelength shifter fibers. The other design is based on depleted uranium as the absorber with wavelength shifter (WLS) plate readout. Progress on designs for the optical readout of a compensating scintillator plate calorimeter are presented. These designs include readout of the scintillator plates via wavelength shifter plates or fiber readout. Results from radiation damage studies of the optical components are presented

  10. Fiber optically coupled radioluminescence detectors: A short review of key strengths and weaknesses of BCF-60 and Al2O3:C scintillating-material based systems in radiotherapy dosimetry applications

    DEFF Research Database (Denmark)

    Buranurak, Siritorn; Andersen, Claus E.

    2017-01-01

    the years, developments and research of the fiber detector systems have undergone in several groups worldwide. In this article, the in-house developed fiber detector systems based on two luminescence phosphors of (i) BCF-60 polystyrene-based organic plastic scintillator and (ii) carbon-doped aluminum oxide...... in the new hybrid MRI LINAC/cobalt systems, and (iii) in vivo measurements due to safety-issues related to the high operating voltage. Fiber optically coupled luminescence detectors provide a promising supplement to ionization chambers by offering the capability of real-time in vivo dose monitoring with high...... time resolution. In particular, the all-optical nature of these detectors is an advantage for in vivo measurements due to the absence of high voltage supply or electrical wire that could cause harm to the patient or disturb the treatment. Basically, fiber-coupled luminescence detector systems function...

  11. Scintillation Counters

    Science.gov (United States)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  12. Studies of the LHC detection systems: scintillating fibers projective electromagnetic calorimeter prototype and light reading by avalanche photodiodes

    International Nuclear Information System (INIS)

    Bouhemaid, N.

    1995-01-01

    In this thesis a study concerning the hardware detection system of ATLAS experiment in preparation for L.H.C. is presented. The study is divided in two parts. After a general introduction of the L.H.C. and the ATLAS detector, the first part concerning the electromagnetic calorimeter, and the second part concerning the readout with avalanche photodiodes, are discussed. For both subjects the basic principles are presented before various test results are described. Within the RD1 program three different electromagnetic calorimeter prototypes, which all use the lead scintillating fibres technique, have been built. The first is a non-projective, compensating calorimeter called ''500μm'', the second is a pseudo projective, non-compensating, called ''1 mm'', and the third is fully projective, called ''Radial''. The last prototype is discussed in more detail. Avalanches photodiodes which are used as readout of the ''1 mm'' calorimeter, have been exposed to both, a dedicated test bench in the laboratory as well as to test beams. The results of these tests are also presented. (author). 35 refs., 96 figs., 30 tabs

  13. Scintillation camera

    International Nuclear Information System (INIS)

    Zioni, J.; Klein, Y.; Inbar, D.

    1975-01-01

    The scintillation camera is to make pictures of the density distribution of radiation fields created by the injection or administration radioactive medicaments into the body of the patient. It contains a scintillation crystal, several photomultipliers and computer circuits to obtain an analytical function at the exits of the photomultiplier which is dependent on the position of the scintillations at the time in the crystal. The scintillation crystal is flat and spatially corresponds to the production site of radiation. The photomultipliers form a pattern whose basic form consists of at least three photomultipliers. They are assigned to at least two crossing parallel series groups where a vertical running reference axis in the crystal plane belongs to each series group. The computer circuits are each assigned to a reference axis. Each series of a series group assigned to one of the reference axes in the computer circuit has an adder to produce a scintillation dependent series signal. Furthermore, the projection of the scintillation on this reference axis is calculated. A series signal is used for this which originates from a series chosen from two neighbouring photomultiplier series of this group. The scintillation must have appeared between these chosen series. They are termed as basic series. The photomultiplier can be arranged hexagonally or rectangularly. (GG/LH) [de

  14. Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan

    2007-09-28

    The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.

  15. Scintillation device of X-ray detection

    International Nuclear Information System (INIS)

    Polack, F.; Bigler, E.

    1985-01-01

    The detection device comprises a screen made of microtubes transparent to the light emitted by a scintillator material in the microtube channels. The scintillator material optical index is greater than the microtube material index, so as to constitute optical fiber, with index rise, guiding the light toward the outside [fr

  16. Liquid crystals in micron-scale droplets, shells and fibers

    Science.gov (United States)

    Urbanski, Martin; Reyes, Catherine G.; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P. F.

    2017-04-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  17. Liquid crystals in micron-scale droplets, shells and fibers

    International Nuclear Information System (INIS)

    Urbanski, Martin; Reyes, Catherine G; Noh, JungHyun; Sharma, Anshul; Geng, Yong; Subba Rao Jampani, Venkata; Lagerwall, Jan P F

    2017-01-01

    The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of

  18. POSSuMUS: a position sensitive scintillating muon SiPM detector

    CERN Document Server

    Ruschke, Alexander

    The development of a modular designed large scale scintillation detector with a two-dimensional position sensitivity is presented in this thesis. This novel POsition Sensitive Scintillating MUon SiPM Detector is named POSSuMUS. The POSSuMUS detector is capable to determine the particle’s position in two space dimensions with a fast trigger capability. Each module is constructed from two trapezoidal shaped plastic scintillators to form one rectangular shaped detector module. Both trapezoids are optically insulated against each other. In both trapezoids the scintillation light is collected by plastic fibers and guided towards silicon photomultipliers (SiPMs). SiPMs are light sensors which are capable to detect even smallest amounts of light. By combining several detector modules, position sensitive areas from 100 cm2 to few m2 are achievable with few readout channels. Therefore, POSSuMUS provides a cost effective detector concept. The position sensitivity along the trapezoidal geometry of one detector module ...

  19. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    Science.gov (United States)

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  20. Plastic scintillator

    International Nuclear Information System (INIS)

    Andreeshchev, E.A.; Kilin, S.F.; Kavyrzina, K.A.

    1978-01-01

    A plastic scintillator for ionizing radiation detectors with high time resolution is suggested. To decrease the scintillation pulse width and to maintain a high light yield, the 4 1 , 4 5 -dibromo-2 1 , 2 5 , 5 1 , 5 5 -tetramethyl-n-quinquiphenyl (Br 2 Me 4 Ph) in combination with n-terphenyl (Ph 3 ) or 2, 5-diphenyloxadiazol-1, 3, 4 (PPD) is used as a luminescent addition. Taking into consideration the results of a special study, it is shown, that the following ratio of ingradients is the optimum one: 3-4 mass% Ph 3 or 4-7 mas% PPD + 2-5 mass% Br 2 Me 4 Ph + + polymeric base. The suggested scintillator on the basis of polystyrene has the light yield of 0.23-0.26 arbitrary units and the scintillation pulse duration at half-height is 0.74-0.84 ns

  1. Temperature sensing of micron scale polymer fibers using fiber Bragg gratings

    KAUST Repository

    Zhou, Jian

    2015-07-02

    Highly conductive polymer fibers are key components in the design of multifunctional textiles. Measuring the voltage/temperature relationships of these fibers is very challenging due to their very small diameters, making it impossible to rely on classical temperature sensing techniques. These fibers are also so fragile that they cannot withstand any perturbation from external measurement systems. We propose here, a non-contact temperature measurement technique based on fiber Bragg gratings (FBGs). The heat exchange is carefully controlled between the probed fibers and the sensing FBG by promoting radiation and convective heat transfer rather than conduction, which is known to be poorly controlled. We demonstrate our technique on a highly conductive Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS)-based fiber. A non-phenomenological model of the sensing system based on meaningful physical parameters is validated towards experimental observations. The technique reliably measures the temperature of the polymer fibers when subjected to electrical loading. © 2015 IOP Publishing Ltd.

  2. Surface preparation and coupling in plastic scintillator dosimetry

    International Nuclear Information System (INIS)

    Ayotte, Guylaine; Archambault, Louis; Gingras, Luc; Lacroix, Frederic; Beddar, A. Sam; Beaulieu, Luc

    2006-01-01

    One way to improve the performance of scintillation dosimeters is to increase the light-collection efficiency at the coupling interfaces of the detector system. We performed a detailed study of surface preparation of scintillating fibers and their coupling with clear optical fibers to minimize light loss and increase the amount of light collected. We analyzed fiber-surface polishing with aluminum oxide sheets, coating fibers with magnesium oxide, and the use of eight different coupling agents (air, three optical gels, an optical curing agent, ultraviolet light, cyanoacrylate glue, and acetone). We prepared 10 scintillating fiber and clear optical fiber light guide samples to test different coupling methods. To test the coupling, we first cut both the scintillating fiber and the clear optical fiber. Then, we cleaned and polished both ends of both fibers. Finally, we coupled the scintillating fiber with the clear optical fiber in either a polyethylene jacket or a V-grooved support depending on the coupling agent used. To produce more light, we used an ultraviolet lamp to stimulate scintillation. A typical series of similar couplings showed a standard deviation in light-collection efficiency of 10%. This can be explained by differences in the surface preparation quality and alignment of the scintillating fiber with the clear optical fiber. Absence of surface polishing reduced the light collection by approximately 40%, and application of magnesium oxide on the proximal end of the scintillating fiber increased the amount of light collected from the optical fiber by approximately 39%. Of the coupling agents, we obtained the best results using one of the optical gels. Because a large amount of the light produced inside a scintillator is usually lost, better light-collection efficiency will result in improved sensitivity

  3. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.; Johnson, J. R.; Williams, P. J.; Koros, W. J.

    2012-01-01

    research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system

  4. Temperature dependence of plastic scintillators

    Science.gov (United States)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  5. Temperature sensing of micron scale polymer fibers using fiber Bragg gratings

    KAUST Repository

    Zhou, Jian; Zhang, Y.; Mulle, Matthieu; Lubineau, Gilles

    2015-01-01

    Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS)-based fiber. A non-phenomenological model of the sensing system based on meaningful physical parameters is validated towards experimental observations. The technique reliably measures

  6. Waveshifters and Scintillators for Ionizing Radiation Detection

    International Nuclear Information System (INIS)

    Baumgaugh, B.; Bishop, J.; Karmgard, D.; Marchant, J.; McKenna, M.; Ruchti, R.; Vigneault, M.; Hernandez, L.; Hurlbut, C.

    2007-01-01

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments

  7. A 16-ch module for thermal neutron detection using ZnS:{sup 6}LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mosset, J.-B., E-mail: jean-baptiste.mosset@psi.ch; Stoykov, A.; Greuter, U.; Gromov, A.; Hildebrandt, M.; Panzner, T.; Schlumpf, N.

    2017-02-11

    A scalable 16-ch thermal neutron detection system has been developed in the framework of the upgrade of a neutron diffractometer. The detector is based on a ZnS:{sup 6}LiF scintillator with embedded WLS fibers which are read out with SiPMs. In this paper, we present the 16-ch module, the dedicated readout electronics, a direct comparison between the performance of the diffractometer obtained with the current {sup 3}He detector and with the 16-ch detection module, and the channel-to-channel uniformity.

  8. A 16-ch module for thermal neutron detection using ZnS:6LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics

    Science.gov (United States)

    Mosset, J.-B.; Stoykov, A.; Greuter, U.; Gromov, A.; Hildebrandt, M.; Panzner, T.; Schlumpf, N.

    2017-02-01

    A scalable 16-ch thermal neutron detection system has been developed in the framework of the upgrade of a neutron diffractometer. The detector is based on a ZnS:6LiF scintillator with embedded WLS fibers which are read out with SiPMs. In this paper, we present the 16-ch module, the dedicated readout electronics, a direct comparison between the performance of the diffractometer obtained with the current 3He detector and with the 16-ch detection module, and the channel-to-channel uniformity.

  9. General considerations for SSC scintillator calorimeters (For the scintillator general subgroup)

    International Nuclear Information System (INIS)

    Nodulman, L.

    1989-01-01

    The Scintillator Calorimetry group divided into three subgroups: a conventional uranium and plate design ala ZEUS, fiber design, and a group on general considerations. The considerations of the third group are reported here on geometrical and technical issues. 1 fig

  10. Large-scale fabrication of bioinspired fibers for directional water collection.

    Science.gov (United States)

    Bai, Hao; Sun, Ruize; Ju, Jie; Yao, Xi; Zheng, Yongmei; Jiang, Lei

    2011-12-16

    Spider-silk inspired functional fibers with periodic spindle-knots and the ability to collect water in a directional manner are fabricated on a large scale using a fluid coating method. The fabrication process is investigated in detail, considering factors like the fiber-drawing velocity, solution viscosity, and surface tension. These bioinspired fibers are inexpensive and durable, which makes it possible to collect water from fog in a similar manner to a spider's web. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Liquid scintillation solutions

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The liquid scintillation solution described includes a mixture of: a liquid scintillation solvent, a primary scintillation solute, a secondary scintillation solute, a variety of appreciably different surfactants, and a dissolving and transparency agent. The dissolving and transparency agent is tetrahydrofuran, a cyclic ether. The scintillation solvent is toluene. The primary scintillation solute is PPO, and the secondary scintillation solute is dimethyl POPOP. The variety of appreciably different surfactants is composed of isooctylphenol-polyethoxyethanol and sodium dihexyl sulphosuccinate [fr

  12. Scaling the Raman gain coefficient: Applications to Germanosilicate fibers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Bromage, J.; Stentz, A.J.

    2003-01-01

    This paper presents a comprehensive analysis of the temperature dependence of a Raman amplifier and the scaling of the Raman gain coefficient with wavelength, modal overlap, and material composition. The temperature dependence is derived by applying a quantum theoretical description, whereas...... the scaling of the Raman gain coefficient is derived using a classical electromagnetic model. We also present experimental verification of our theoretical findings....

  13. Scintillating camera

    International Nuclear Information System (INIS)

    Vlasbloem, H.

    1976-01-01

    The invention relates to a scintillating camera and in particular to an apparatus for determining the position coordinates of a light pulse emitting point on the anode of an image intensifier tube which forms part of a scintillating camera, comprising at least three photomultipliers which are positioned to receive light emitted by the anode screen on their photocathodes, circuit means for processing the output voltages of the photomultipliers to derive voltages that are representative of the position coordinates; a pulse-height discriminator circuit adapted to be fed with the sum voltage of the output voltages of the photomultipliers for gating the output of the processing circuit when the amplitude of the sum voltage of the output voltages of the photomultipliers lies in a predetermined amplitude range, and means for compensating the distortion introduced in the image on the anode screen

  14. Scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1979-01-01

    A scintillator structure comprises at least one layer of transparent fused quartz with a phosphor coating on one or both sides adjacent to at least one transparent layer of epoxy resin which directs light from the phosphor to a detector. The phosphor layer may be formed from a powder optionally with a binder, a single crystal or a melt, or by evaporation or sintering. A plurality of multiple layers may be used or the structure tilted for greater absorption. The structure may be surrounded by another such structure optionally operating in cascade with the first. Many phosphors are specified. A scintillator structure comprises phosphor particles dispersed in epoxy resin or copoly imide-silicone and cast in a multi-compartment box with long sides transparent to X-rays and dividers opaque to X-rays. (UK)

  15. Scintillating fibres

    International Nuclear Information System (INIS)

    Nahnhauer, R.

    1990-01-01

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry

  16. Scintillating fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nahnhauer, R. [IHEP Zeuthen (Germany)

    1990-11-15

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry.

  17. Contact angle goniometry on single micron-scale fibers for composites

    DEFF Research Database (Denmark)

    Hansen, Daniel; Bomholt, Niels; Jeppesen, Jonas Camillus

    2017-01-01

    Probing the wetting properties of microfibers by polymer resins is of significant interest for the rational design of composite materials. Here, we demonstrate the measurement of contact angles on wetted micron scale fibers by imaging the fluid meniscus with telecentric optics at a spatial...... resolution of 4 um followed by automated image analysis. The meniscus is described as a catenary in the zero gravity approximation and by fitting this to the measured profile, the contact angle is obtained at the intersection between the fluid and the fiber surface. The method is validated by measuring...... agreement between con-tact angles for the PMMA/H2O system for fibers with diameters 20–800 um and for sessile drops. The ability of the method to discriminate contact angles for a series of commercial glass fibers against epoxy resin is successfully demonstrated. AFM imaging shows that the surface...

  18. Scaling the Raman Gain Coefficient of Optical Fibers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Bromage, J; Leng, L

    2002-01-01

    Scaling rules for the Raman gain coefficient are provided with emphasis on the effective area and wavelength dependence. Translation from measurements made at one pump wavelength to other pump wavelengths is demonstrated....

  19. Testing of the scintillation sandwich prototype

    International Nuclear Information System (INIS)

    Vashkevich, V.

    1995-06-01

    The 3 m 2 prototype of the surface detector using optical fiber readout was completely prepared for testing measurements in February 1995 at Fermilab. Two 25 mm thick, 3 m 2 acrylic scintillation plates (1.2 x 2.5 m 2 ) are used for light collection in the upper (above the 25 mm steel plate) and lower (below the steel) counters of the sandwich. The light is collected with the help of 1 mm diameter wavelength shifter fiber loops 3 m long inserted in the grooves on the top surface of the scintillator, 3 fibers per groove. We used Kurary Y11, 200 ppm of shifter dye, and double clad fibers. 1.5 m of clear fibers spliced to each end of the shifter fiber transport the light to the phototube. Spacing between the grooves is 5 cm. The counter's edges were painted with BICRON (BC620) white reflective paint. The scintillation plates were wrapped with Dupont Tyvek. The glued bundle of fibers is connected to an EMI-9902KB 38 mm phototube through the simple light mixer bar. Used PM has a ''green extended'' rubidium bialkali photocathode. The report contains information on the testing of the scintillation sandwich

  20. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    Science.gov (United States)

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Analysis of Scaling Law and Figure of Merit of Fiber-Based Biosensor

    Directory of Open Access Journals (Sweden)

    Jui-Teng Lin

    2012-01-01

    Full Text Available This paper presents a normalized transmitted signal (NTS of a fiber-based sensor using gold nanorods as the plasmon excitation medium of the evanescent wave. The NTS and the refractive index (RI sensitivity is calculated as a function of the gold aspect ratio (R, the RI of the sensing medium, and a scaling parameter given by the ratio of the fiber length and its diameter. Finally, the optimal value of gold aspect ratio is calculated to be R = (3.0–4.0 for maximum figure of merits (FOMs defined by the ratio of the refractive index sensitivity and the full width at half maximum. The scaling laws and the FOM presented in this paper may serve as the guidelines for optimal designs in fiber-based nanosensors.

  2. Test beam studies of the light yield, time and coordinate resolutions of scintillator strips with WLS fibers and SiPM readout

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab, Batavia IL (United States); Evdokimov, Valery [Institute for High Energy Physics, Protvino (Russian Federation); Lukić, Strahinja; Ujić, Predrag [Vinča Institute, University of Belgrade (Serbia)

    2017-03-11

    Prototype scintilator+WLS strips with SiPM readout for large muon detection systems were tested in the muon beam of the Fermilab Test Beam Facility. Light yield of up to 137 photoelectrons per muon per strip has been observed , as well as time resolution of 330 ps and position resolution along the strip of 5.4 cm.

  3. Scaling relations for soliton compression and dispersive-wave generation in tapered optical fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2018-01-01

    In this paper, scaling relations for soliton compression in tapered optical fibers are derived and discussed. The relations allow simple and semi-accurate estimates of the compression point and output noise level, which is useful, for example, for tunable dispersive-wave generation with an agile ...

  4. Optimization of compositions of multicomponent fine-grained fiber concretes modified at different scale levels.

    Directory of Open Access Journals (Sweden)

    NIZINA Tatyana Anatolevna,

    2017-04-01

    Full Text Available The paper deals with perspectives of modification of cement composites at different scale levels (nano-, micro-, macro-. Main types of micro- and nanomodifiers used in modern concrete technology are presented. Advantages of fullerene particles applied in nanomodification of cement concretes have been shown. Use of complex modifiers based on dispersed fibers, mineral additives and nanoparticles is proposed. These are the basic components of the fiber fine-grained concretes: cement of class CEM I 42,5R produced by JSC «Mordovcement», river sand of Novostepanovskogo quarry (Smolny settlement, Ichalkovsky district, Republic of Mordovia, densified condensed microsilica (DCM-85 produced by JSC «Kuznetskie Ferrosplavy» (Novokuznetsk, highly active metakaolin white produced by LLC «D-Meta» (Dneprodzerzhinsk, waterproofing additive in concrete mix «Penetron Admix» produced by LLC «Waterproofing materials plant «Penetron» (Ekaterinburg, polycarboxylate superplasticizer Melflux 1641 F (Construction Polymers BASF, Germany. Dispersed reinforcement of concretes was provided by injection of the fibers of three types: polypropylene multifilament fiber with cutting length of 12 mm, polyacrylonitrile synthetic fiber FibARM Fiber WВ with cutting length of 12 mm and basalt microfiber «Astroflex-MBM» modified by astralene with length about 100÷500 microns. Analysis of results of the study focused on saturated D-optimal plan was carried out by polynomial models «mixture I, mixture II, technology – properties» that considers the impact of six variable factors. Optimum fields of variation of fine-grained modified fiber concrete components have been identified by the method of experimental-statistical modeling. Polygons of distribution levels of factors of modified cement fiber concretes are constructed, that allowed tracing changes in fields of tensile in compressive strength and tensile strength in bending at age of 28 days depending on target

  5. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.

    1977-01-01

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222 Rn and 226 Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  6. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  7. A fiber-optic ice detection system for large-scale wind turbine blades

    Science.gov (United States)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-09-01

    Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.

  8. Digital signal processing for a thermal neutron detector using ZnS(Ag):{sup 6}LiF scintillating layers read out with WLS fibers and SiPMs

    Energy Technology Data Exchange (ETDEWEB)

    Mosset, J.-B., E-mail: jean-baptiste.mosset@psi.ch; Stoykov, A.; Greuter, U.; Hildebrandt, M.; Schlumpf, N.

    2016-07-11

    We present a digital signal processing system based on a photon counting approach which we developed for a thermal neutron detector consisting of ZnS(Ag):{sup 6}LiF scintillating layers read out with WLS fibers and SiPMs. Three digital filters have been evaluated: a moving sum, a moving sum after differentiation and a digital CR-RC{sup 4} filter. The performances of the detector with these filters are presented. A full analog signal processing using a CR-RC{sup 4} filter has been emulated digitally. The detector performance obtained with this analog approach is compared with the one obtained with the best performing digital approach. - Highlights: • Application of digital signal processing for a SiPM-based ZnS:6LiF neutron detector. • Optimisation of detector performances with 3 different digital filters. • Comparison with detector performances with a full analog signal processing.

  9. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Functionality enhancement of industrialized optical fiber sensors and system developed for full-scale pavement monitoring.

    Science.gov (United States)

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-05-19

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  11. Scaling effects in resonant coupling phenomena between fundamental and cladding modes in twisted microstructured optical fibers.

    Science.gov (United States)

    Napiorkowski, Maciej; Urbanczyk, Waclaw

    2018-04-30

    We show that in twisted microstructured optical fibers (MOFs) the coupling between the core and cladding modes can be obtained for helix pitch much greater than previously considered. We provide an analytical model describing scaling properties of the twisted MOFs, which relates coupling conditions to dimensionless ratios between the wavelength, the lattice pitch and the helix pitch of the twisted fiber. Furthermore, we verify our model using a rigorous numerical method based on the transformation optics formalism and study its limitations. The obtained results show that for appropriately designed twisted MOFs, distinct, high loss resonance peaks can be obtained in a broad wavelength range already for the fiber with 9 mm helix pitch, thus allowing for fabrication of coupling based devices using a less demanding method involving preform spinning.

  12. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring

    Directory of Open Access Journals (Sweden)

    Huaping Wang

    2014-05-01

    Full Text Available Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  13. Hierarchical fiber-optic-based sensing system: impact damage monitoring of large-scale CFRP structures

    International Nuclear Information System (INIS)

    Minakuchi, Shu; Banshoya, Hidehiko; Takeda, Nobuo; Tsukamoto, Haruka

    2011-01-01

    This study proposes a novel fiber-optic-based hierarchical sensing concept for monitoring randomly induced damage in large-scale composite structures. In a hierarchical system, several kinds of specialized devices are hierarchically combined to form a sensing network. Specifically, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with an optical fiber network through transducing mechanisms. The distributed devices detect damage, and the fiber-optic network gathers the damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of a hierarchical sensing system through comparison with existing fiber-optic-based systems, and an impact damage detection system was then proposed to validate the new concept. The sensor devices were developed based on comparative vacuum monitoring (CVM), and Brillouin-based distributed strain measurement was utilized to identify damaged areas. Verification tests were conducted step-by-step, beginning with a basic test using a single sensor unit, and, finally, the proposed monitoring system was successfully verified using a carbon fiber reinforced plastic (CFRP) fuselage demonstrator. It was clearly confirmed that the hierarchical system has better repairability, higher robustness, and a wider monitorable area compared to existing systems

  14. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1977-01-01

    A liquid scintillation solution is described which includes (1) a scintillation solvent (toluene and xylene), (2) a primary scintillation solute (PPO and Butyl PBD), (3) a secondary scintillation solute (POPOP and Dimethyl POPOP), (4) a plurality of substantially different surfactants and (5) a filter dissolving and/or transparentizing agent. 8 claims

  15. Scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Swank, R.K.; White, P.J.

    1978-01-01

    Scintillator structures are described in which the phosphor is embedded or suspended in an optically transparent matrix which is selected or adjusted to have an index of refraction which is approximately equal to that of the phosphor at the wavelength of the light emitted by the phosphor. The matrix may be glass, copoly 2-vinyl naphthalene/vinyl toluene or a liquid e.g. Br-naphthalene and optionally CH 3 I, the ratio of components being adjusted to give the desired refractive index. The polymer may be made in situ or a mixture of phosphor and polymer formed e.g. by freeze drying a solution and pulverizing, and then heating. Specified dyes may be used for converting the emitted light to other wavelengths. (author)

  16. The new RD52 (DREAM) fiber calorimeter

    International Nuclear Information System (INIS)

    Wigmans, Richard

    2012-01-01

    Simultaneous detection of the Cerenkov light and scintillation light produced in hadron showers makes it possible to measure the electromagnetic shower fraction event by event and thus eliminate the detrimental effects of fluctuations in this fraction on the performance of calorimeters. In the RD52 (DREAM) project, the possibilities of this dual-readout calorimetry are investigated and optimized. In this talk, the first test results of prototype modules for the new full-scale fiber calorimeter are presented.

  17. Evaluation of two thermal neutron detection units consisting of ZnS/{sup 6}LiF scintillating layers with embedded WLS fibers read out with a SiPM

    Energy Technology Data Exchange (ETDEWEB)

    Mosset, J.-B., E-mail: jean-baptiste.mosset@a3.epfl.ch [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Stoykov, A.; Greuter, U.; Hildebrandt, M.; Schlumpf, N. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Van Swygenhoven, H. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2014-11-11

    Two single channel detection units for thermal neutron detection are investigated in a neutron beam. They consist of two ZnS/{sup 6}LiF scintillating layers sandwiching an array of WLS fibers. The pattern of these units can be repeated laterally and vertically in order to build up a one-dimensional position sensitive multi-channel detector with the needed sensitive surface and with the required neutron absorption probability. The originality of this work arises from the fact that the WLS fibers are read out with SiPMs instead of the traditionally used PMTs or MaPMTs. The signal processing system is based on a photon counting approach. For SiPMs with a dark count rate as high as 0.7 MHz, a trigger efficiency of 80% is achieved together with a system background rate lower than 10{sup −3}Hz and a dead time of 30μs. No change of performance is observed for neutron count rates of up to 3.6 kHz.

  18. Structural Foaming at the Nano-, Micro-, and Macro-Scales of Continuous Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    2012-10-29

    structural porosity at MNM scales could be introduced into the matrix, the carbon fiber reinforcement, and during prepreg lamination processing, without...areas, including fibers. Furthermore, investigate prepreg thickness and resin content effects on the thermomechanical performance of laminated ...Accomplishment 4) 5 Develop constitutive models for nano- foamed and micro- foamed PMC systems from single ply prepreg to multilayer laminated

  19. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  20. Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Chaogang; Ge, Suxiang; Huang, Baojun; Bo, Yingying [Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000 (China); Zhang, Di [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zheng, Zhi, E-mail: zhengzhi9999@yahoo.com.cn [Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000 (China)

    2012-06-15

    Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.

  1. Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

    International Nuclear Information System (INIS)

    Xing, Chaogang; Ge, Suxiang; Huang, Baojun; Bo, Yingying; Zhang, Di; Zheng, Zhi

    2012-01-01

    Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 , HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.

  2. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  3. Gypsum (CaSO42H2O) scaling on polybenzimidazole and cellulose acetate hollow fiber membranes under forward osmosis

    KAUST Repository

    Chen, Si Cong; Su, Jincai; Fu, Feng-Jiang; Mi, Baoxia; Chung, Neal Tai-Shung

    2013-01-01

    We have examined the gypsum (CaSO42H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI

  4. Experiment-Based Sensitivity Analysis of Scaled Carbon-Fiber-Reinforced Elastomeric Isolators in Bonded Applications

    Directory of Open Access Journals (Sweden)

    Farshad Hedayati Dezfuli

    2016-01-01

    Full Text Available Fiber-reinforced elastomeric isolators (FREIs are a new type of elastomeric base isolation systems. Producing FREIs in the form of long laminated pads and cutting them to the required size significantly reduces the time and cost of the manufacturing process. Due to the lack of adequate information on the performance of FREIs in bonded applications, the goal of this study is to assess the performance sensitivity of 1/4-scale carbon-FREIs based on the experimental tests. The scaled carbon-FREIs are manufactured using a fast cold-vulcanization process. The effect of several factors including the vertical pressure, the lateral cyclic rate, the number of rubber layers, and the thickness of carbon fiber-reinforced layers are explored on the cyclic behavior of rubber bearings. Results show that the effect of vertical pressure on the lateral response of base isolators is negligible. However, decreasing the cyclic loading rate increases the lateral flexibility and the damping capacity. Additionally, carbon fiber-reinforced layers can be considered as a minor source of energy dissipation.

  5. Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions.

    Science.gov (United States)

    Heng, Sabrina; McDevitt, Christopher A; Kostecki, Roman; Morey, Jacqueline R; Eijkelkamp, Bart A; Ebendorff-Heidepriem, Heike; Monro, Tanya M; Abell, Andrew D

    2016-05-25

    Sensing platforms that allow rapid and efficient detection of metal ions would have applications in disease diagnosis and study, as well as environmental sensing. Here, we report the first microstructured optical fiber-based biosensor for the reversible and nanoliter-scale measurement of metal ions. Specifically, a photoswitchable spiropyran Zn(2+) sensor is incorporated within the microenvironment of a liposome attached to microstructured optical fibers (exposed-core and suspended-core microstructured optical fibers). Both fiber-based platforms retains high selectivity of ion binding associated with a small molecule sensor, while also allowing nanoliter volume sampling and on/off switching. We have demonstrated that multiple measurements can be made on a single sample without the need to change the sensor. The ability of the new sensing platform to sense Zn(2+) in pleural lavage and nasopharynx of mice was compared to that of established ion sensing methodologies such as inductively coupled plasma mass spectrometry (ICP-MS) and a commercially available fluorophore (Fluozin-3), where the optical-fiber-based sensor provides a significant advantage in that it allows the use of nanoliter (nL) sampling when compared to ICP-MS (mL) and FluoZin-3 (μL). This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modification and presents an opportunity for the development of new and highly specific ion sensors for real time sensing applications.

  6. A large liquid scintillator detector for a long baseline neutrino oscillation experiment

    International Nuclear Information System (INIS)

    Border, P.; Cushman, P.; Heller, K.; Maxam, D.; Nelson, J.K.; Ruddick, K.; Rusack, R.; Schwienhorst, R.; Berg, T.; Chase, T.; Hansen, M.; Bower, C.; Hatcher, R.; Heinz, R.; Miller, L.; Mufson, S.

    2001-01-01

    We present the concept and design of a liquid scintillator detector for a long-baseline neutrino oscillation experiment. Neutrinos interact in 2.5 cm thick steel plates alternating with 2.0 cm thick planes of liquid scintillator. The scintillator is contained in multicell PVC extrusions containing individual 2 cmx3 cm cells up to 8 m long. Readout of the scintillation light is via wavelength-shifting fibers which transport light to pixellated photodetectors at one end of the cells

  7. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing.

    Science.gov (United States)

    Hu, Chenyuan; Bai, Wei

    2018-02-24

    A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG) sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM) and one semiconductor optical amplifier (SOA) were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD). Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.

  8. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Paul [General Electric Global Research, Niskayuna, NY (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, NY (United States); Narang, Kristi [General Electric Global Research, Niskayuna, NY (United States); McCloskey, Pat [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); Ananthasayanam, Balajee [General Electric Global Research, Niskayuna, NY (United States); Howson, Paul [General Electric Global Research, Niskayuna, NY (United States); Lee, Julia [General Electric Global Research, Niskayuna, NY (United States); Wroczynski, Ron [General Electric Global Research, Niskayuna, NY (United States); Stewart, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); McNally, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rownaghi, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Lu, Liu [Georgia Inst. of Technology, Atlanta, GA (United States); Koros, William [Georgia Inst. of Technology, Atlanta, GA (United States); Goizueta, Roberto [Georgia Inst. of Technology, Atlanta, GA (United States); Sethi, Vijay [Western Research Inst., Laramie, WY (United States)

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  9. A variety of neutron sensors based on scintillating glass waveguides

    International Nuclear Information System (INIS)

    Bliss, M.; Craig, R.A.

    1995-05-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated, lithium-silicate glass scintillating fiber neutron sensors via a hot-downdraw process. These fibers typically have a transmission length (e -1 length) of greater than 2 meters. The underlying physics of, the properties of, and selected devices incorporating these fibers are described. These fibers constitute an enabling technology for a wide variety of neutron sensors

  10. Scintillation counting apparatus

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1978-01-01

    Apparatus is described for the accurate measurement of radiation by means of scintillation counters and in particular for the liquid scintillation counting of both soft beta radiation and gamma radiation. Full constructional and operating details are given. (UK)

  11. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The invention deals with a liquid scintillation solution which contains 1) a scintillation solvent (toluol), 2) a primary scintillation solute (PPO), 3) a secondary scintillation solute (dimethyl POPOP), 4) several surfactants (iso-octyl-phenol polyethoxy-ethanol and sodium di-hexyl sulfosuccinate) essentially different from one another and 5) a filter resolution and/or transparent-making agent (cyclic ether, especially tetrahydrofuran). (HP) [de

  12. Recycled fiber quality from a laboratory-scale blade separator/blender

    Science.gov (United States)

    Bei-Hong Liang; Stephen M. Shaler; Laurence Mott; Leslie Groom

    1994-01-01

    A simple and inexpensive fiber separator/blender was developed to generate useful secondary fibers from hydropulped waste paper. Processing wet hydropulped fiber resulted in a furnish with no change in average fiber length in three out of four types of recycled fibers tested. In all cases, the canadian standard freeness increased after processing compared to...

  13. Recycled fiber quality from a laboratory-scale blade separator/blend

    Science.gov (United States)

    Bei-Hong Liang; Stephen M. Shaler; Laurence Mott; Leslie Groom

    1994-01-01

    A simple and inexpensive fiber separator/blender was developed to generate useful secondary fibers from hydropulped waste paper. Processing wet hydropulped fiber resulted in a furnish with no change in average fiber length in three out of four types of recycled fibers tested. In all cases, the Canadian Standard freeness increased after processing compared to...

  14. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  15. Liquid scintillation measurement. I

    International Nuclear Information System (INIS)

    Rexa, R.; Tykva, R.

    1983-01-01

    The individual components of scintillation solutions and their tasks are listed. Explained briefly is the scintillation process in a liquid scintillator. Factors are discussed which influence this process as are methods applied to supress their influence. They include: ionization quenching, quenching by dilution and concentration, chemical, colour, phase and photon quenching and single-photon events causing an undesirable backgorund. (M.D.)

  16. A lens-coupled scintillation counter in cryogenic environment

    International Nuclear Information System (INIS)

    Stoykov, A; Scheuermann, R; Amato, A; Bartkowiak, M; Konter, J A; Rodriguez, J; Sedlak, K

    2011-01-01

    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8 mm diameter multiclad fiber and a 1 mm active area G-APD the coupling efficiency of the 'lens light guide' is about 50%. A reliable performance of the detector down to 3 K is demonstrated.

  17. Scintillation response of organic and inorganic scintillators

    CERN Document Server

    Papadopoulos, L M

    1999-01-01

    A method to evaluate the scintillation response of organic and inorganic scintillators to different heavy ionizing particles is suggested. A function describing the rate of the energy consumed as fluorescence emission is derived, i.e., the differential response with respect to time. This function is then integrated for each ion and scintillator (anthracene, stilbene and CsI(Tl)) to determine scintillation response. The resulting scintillation responses are compared to the previously reported measured responses. Agreement to within 2.5% is observed when these data are normalized to each other. In addition, conclusions regarding the quenching parameter kB dependence on the type of the particle and the computed values of kB for certain ions are included. (author)

  18. Field Strain Measurement on the Fiber Scale in Carbon Fiber Reinforced Polymers Using Global Finite-Element Based Digital Image Correlation

    KAUST Repository

    Tao, Ran

    2015-01-01

    is aimed to accurately measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. First, the theories of both local subset-based digital image correlation (DIC) and global finite-element based DIC are outlined. Second, in

  19. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    Directory of Open Access Journals (Sweden)

    Jonathan Sheu

    Full Text Available Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs, we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s and in 10-layer cell factories (CF10s, while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation.

  20. Systematic studies of small scintillators for new sampling calorimeter

    International Nuclear Information System (INIS)

    Jacosalem, E.P.; Sanchez, A.L.C.; Bacala, A.M.; Iba, S.; Nakajima, N.; Ono, H.; Miyata, H.

    2007-01-01

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R and D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are systematically studied. The scintillation light due to beta rays from a collimated 90 Sr source are collected from the scintillator by wavelength-shifting (WLS) fiber and converted into electrical signals at the PMT. The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 x 40 x 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an average of 9.2 photoelectrons. It is observed that light yield slightly increases with scintillator length, but increases to about 100% when WLS fiber diameter is increased from 1.0 mm to 1.6 mm. The position dependence measurement along the strip scintillator showed the uniformity of light transmission from the sensor to the PMT. A dip across the strip is observed which is 40% of the maximum pulse height. The block type scintillator pulse height, on the other hand, is found to be almost proportional to scintillator thickness. (author)

  1. Field Strain Measurement on the Fiber-Epoxy Scale in CFRPs

    KAUST Repository

    Tao, Ran

    2015-06-08

    Laminated composites are materials with complex architecture made of continuous fibers (usually glass or carbon) embedded within a polymeric resin. The properties of the raw materials can vary from one point to another due to different local processing conditions or complex geometrical features for example. A first step towards the identification of these spatially varying material parameters is to image with precision the displacement fields in this complex microstructure when subjected to mechanical loading. Secondary electron images obtained by scanning electron microscopy (SEM) and then numerically deformed are post-processed by either local subset-based digital image correlation (DIC) or global finite-element based DIC to measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. It is shown that when global DIC is applied with a conformal mesh, it can capture more accurate local variations in the strain fields as it takes into account the underlying microstructure. In comparison to subset DIC, global DIC is better suited for capturing gradients across the fiber-matrix interfaces.

  2. Latest developments on fibered MOPA in mJ range with hollow-core fiber beam delivery and fiber beam shaping used as seeder for large scale laser facilities (Conference Presentation)

    Science.gov (United States)

    Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel

    2017-05-01

    The Laser Megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion and plasma physics research. LMJ front-ends are based on fiber laser technology at nanojoule range [1]. Scaling the energy of those fiber seeders to the millijoule range is a way to upgrade LMJ's front ends architecture and could also be used as seeder for lasers for ELI project for example. However, required performances are so restrictive (optical-signal-to-noise ratio higher than 50 dB, temporally-shaped nanosecond pulses and spatial single-mode top-hat beam output) that such fiber systems are very tricky to build. High-energy fiber amplifiers In 2015, we have demonstrated, an all-fiber MOPA prototype able to produce a millijoule seeder, but unfortunately not 100% conform for all LMJ's performances. A major difficulty was to manage the frequency modulation used to avoid stimulated Brillouin scattering, to amplitude modulation (FM-AM) conversion, this limits the energy at 170µJ. For upgrading the energy to the millijoule range, it's necessary to use an amplifier with a larger core fiber. However, this fiber must still be flexible; polarization maintaining and exhibit a strictly single-mode behaviour. We are thus developing a new amplifier architecture based on an Yb-doped tapered fiber: its core diameter is from a narrow input to a wide output (MFD 8 to 26 µm). A S² measurement on a 2,5m long tapered fiber rolled-up on 22 cm diameter confirmed that this original geometry allows obtaining strictly single-mode behaviour. In a 1 kHz repetition rate regime, we already obtain 750 µJ pulses, and we are on the way to mJ, respecting LMJ performances. Beam delivery In LMJ architecture the distance between the nanojoule fiber seeder and the amplifier stages is about 16 m. Beam delivery is achieved with a standard PM fiber, such a solution is no longer achievable with hundreds of kilowatt peak powers. An efficient way to minimize nonlinear effects is to use hollow-core (HC

  3. The fast trigger electronics of the lead/scintillating fiber calorimeter SpaCal of the H1 experiment at HERA: accomplishment, results of test beam measurements at CERN and first results at HERA

    International Nuclear Information System (INIS)

    Spielmann, Stephan

    1996-01-01

    The studies presented in this thesis cover parts of the project to improve the H1 detector at the electron-proton collider HERA. The main goal of this improvement was to build a lead/scintillating fiber calorimeter (SpaCal) and its associate trigger and read-out electronics. The description and the analysis of measurements with a calorimeter prototype and its electronics are presented with respect to the performance requirements for the project. This measurement realized at a CERN test beam facility have shown that an on-line selection of physics events out of background events can be achieved with a time-of-flight measurement. The efficiency of the trigger is higher than 99 percent independent of the particles' impact points. The feasibility of electron/pion separation on the one percent level is also shown. In 1995 the SpaCal calorimeter was integrated in the H1 detector. A detailed description of its associate electronics is given and the results on the trigger's performance for the first year of data taking are presented. (author) [fr

  4. Fabrication and a Study on the Tapered Scintillator Radiation Sensors

    International Nuclear Information System (INIS)

    Kim, Gye Hong

    2003-02-01

    Optical fibers have been investigated for their uses as sensor materials in various nuclear applications. Comprehensive overviews of their potential usages in nuclear environments can be found in the literatures. Optical fibers with doped scintillating elements in the core have drawn special interests as nuclear radiation detectors. The two important functions of a scintillating optical fiber, as a radiation detector, are scintillator (light emitter) and light transmitter. When radiation interacts with the core material, scintillation occurs and resultant lights are transmitted through the fiber to an opto-electronic device such as a photomultiplier tube. Optical fiber sensors have several advantages as compared to other sensors of conventional material. Since they do not require electric power in the sensor part, they are less susceptible to trouble in harsh environments such as underground or underwater. At relatively low cost a multi-point distributed radiation monitoring system could be made using the fiber sensors. Furthermore, unlike the conventional scintillating counters they are not influenced by any magnetic field surrounding them. This study has been conducted to investigate the feasibility of using scintillating optical fibers for the detection of gamma rays emitted by 137 Cs. Several types of gamma-ray sensors have been constructed by packing different numbers of fibers into aluminum tubes, and tested to detect the 137 Cs gamma ray. During the study it has been found that a tapered fibers might be more efficient to collect the lights produced inside the sensor and transfer them into the transmitting fiber. In order to investigate the effectiveness of the tapered fiber, tapered plastic scintillators, composed of polystyrene with minute amount of dPOPOP and PPO or bPBD, have been fabricated and tested for the detection of gamma rays from 1.0, 1.5, 3.0 and 5.0 μCi 137 Cs sources. The pulse height spectra and the relationship between the radioactivity and

  5. Elpasolite scintillators.

    Energy Technology Data Exchange (ETDEWEB)

    Doty, F. Patrick; Zhou, Xiao Wang; Yang, Pin; Rodriguez, Mark A

    2012-12-01

    This work was funded by the U.S. Department of Energy Office of Nonproliferation Research to develop elpasolite materials, with an emphasis on high-atomic-number rare-earth elpasolites for gamma-ray spectrometer applications. Low-cost, high-performance gamma-ray spectrometers are needed for detection of nuclear proliferation. Cubic materials, such as some members of the elpasolite family (A2BLnX6; Ln-lanthanide and X-halogen), hold promise due to their high light output, proportionality, and potential for scale-up. Using both computational and experimental studies, a systematic investigation of the compositionstructureproperty relationships of these high-atomic-number elpasolite halides was performed. The results reduce the barrier to commercialization of large single crystals or transparent ceramics, and will facilitate economical scale-up of elpasolites for high-sensitivity gamma-ray spectroscopy.

  6. Eu-activated fluorochlorozirconate glass-ceramic scintillators

    International Nuclear Information System (INIS)

    Johnson, J. A.; Schweizer, S.; Henke, B.; Chen, G.; Woodford, J.; Newman, P. J.; MacFarlane, D. R.

    2006-01-01

    Rare-earth-doped fluorochlorozirconate (FCZ) glass-ceramic materials have been developed as scintillators and their properties investigated as a function of dopant level. The paper presents the relative scintillation efficiency in comparison to single-crystal cadmium tungstate, the scintillation intensity as a function of x-ray intensity and x-ray energy, and the spatial resolution (modulation transfer function). Images obtained with the FCZ glass-ceramic scintillator and with cadmium tungstate are also presented. Comparison shows that the image quality obtained using the glass ceramic is close to that from cadmium tungstate. Therefore, the glass-ceramic scintillator could be used as an alternative material for image formation resulting from scintillation. Other inorganic scintillators such as single crystals or polycrystalline films have limitations in resolution or size, but the transparent glass-ceramic can be scaled to any shape or size with excellent resolution

  7. Assessing soil erosion at landscape level: A step forward in the up-scaling of 137Cs measurements through the use of in-situ lanthanum bromide scintillator

    Science.gov (United States)

    Gonsalves, Basil C.; Darby, Iain G.; Toloza, Arsenio; Mabit, Lionel; Kaiser, Ralf B.; Dercon, Gerd

    2014-05-01

    Measuring Fallout Radionuclides (FRN), in particular 137Cs, is a well-established method to estimate soil erosion and deposition in agricultural landscapes. While extremely sensitive, laboratory based gamma-ray spectrometry requires careful handling and preparation of measurement samples with a lengthy measuring time (~1 day), In-situ gamma-ray spectrometry can give near instantaneous results, allowing prompt decisions to be made and identification of critical spots of soil erosion, while the equipment is in the field. The aim of this investigation was to compare the precision of the in-situ FRN measurements, made by a cost-effective lanthanum bromide (LaBr3 (Ce)) scintillation detector of 137Cs against those from conventional (high-purity germanium HPGe detector) but laborious laboratory based gamma-ray spectrometry for assessing soil erosion. As preliminary test, five cores of a gleyic Cambisol - per increments of 5 cm until 1 m depth - were collected at the experimental research station of the Austrian Agency for Health and Food Safety located in Grabenegg 130 km west of Vienna. Three soil cores were sampled at the study site and, in the vicinity of this experimental site, two additional cores were collected at two different undisturbed reference sites. Laboratory gamma analyses were carried out during 50 000 seconds using a HPGe coaxial detector. The gamma measurements performed at the laboratory confirmed the undisturbed status of the two selected reference sites (i.e. exponential decrease with depth of the 137Cs content). Using the surface area of the sampling tool, the 137Cs areal activities of the cores sampled in the study site have been established at 2134±465 Bq m-2, 1835±356 Bq m-2 and 2553±340 Bq m-2, and, for the two reference sites at 3221±444 Bq m-2 and 3946±527 Bq m-2. At the same location and prior to collect the five soil cores, in-situ measurements using a lanthanum bromide (LaBr3 (Ce)) scintillator were performed. The detector was placed

  8. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    International Nuclear Information System (INIS)

    Zhou, Gengji

    2017-11-01

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  9. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gengji

    2017-11-15

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  10. Geophysical analysis of coherent satellite scintillation data

    Science.gov (United States)

    Fremouw, E. J.; Lansinger, J. M.; Miller, D. A.

    1981-11-01

    In May of 1976, Air Force Satellite P76-5 was launched with the Defense Nuclear Agency's Wideband beacon, DNA-002, as its sole payload. Several researchers have employed the resulting data in studies of ionospheric structure and its effect on transionospheric radio communications. In the present work, recordings of amplitude and phase scintillation imposed on Wideband's VHF and UHF signals by the ionosphere have been used to study medium-scale structures in the auroral-zone F layer. Results include quantitative identification of a very close relationship between scintillation and solar/geomagnetic activity, together with lack of a seasonal variation in scintillation activity in the Alaskan sector. A surprisingly high correlation (90%) was found between monthly means of phase-scintillation index, on the one hand, and sunspot number and 10-cm solar radio flux, on the other. The high-latitude scintillation boundary was found to be very similar to the soft-electron precipitation boundary, including similarity in expansion rates with increasing magnetic activity. Interestingly, it is systematically shifted poleward of the precipitation boundary on the day side of the earth and equatorward on the night side. Taken together, the results of this research disclose a rather direct relationship between scintillation and soft-electron precipitation, with plasma convection likely playing an important role in generation of the scintillation-producing irregularities.

  11. High-energy fibered amplification for large-scale laser facilities

    International Nuclear Information System (INIS)

    Lago, L.

    2011-01-01

    This work concerns the development of a double-clad ytterbium-doped single-mode micro-structured flexible fiber-based amplifier, in the nanosecond, multi-kilohertz and milli-Joule regime, for large-scale laser facilities seeding. We have used a multi-stage master oscillator power amplifier fibered architecture. A numerical model of ytterbium-doped double-clad fiber-based amplification, including amplified spontaneous emission, was developed in order to study the behaviour of such amplifier and to correctly design the experimental set-up. This model was completed by a feed-back algorithm to numerically predict the optimal temporal shape to compensate the gain saturation process. We demonstrated experimental results in good agreement with numerical simulations, with the following performances: 0.5 mJ pulse energy, at a frequency repetition from 1 kHz to 10 kHz, with a narrow bandwidth spectrum centred at 1053 nm wavelength, with 10 ns pulse duration on a perfect super-Gaussian temporal profile, an optical signal-to-noise ratio better than 50 dB and a polarization extinction ratio of 20 dB. We checked that the beam quality was diffraction limited, with an M 2 measurement of 1.1. Moreover, the system can deliver energies up to 1.5 mJ. Then, we took the advantage of such results to amplify chirped pulses. We demonstrated 0.7 mJ pulse energy, with 570 fs duration at 10 kHz repetition frequency. (author) [fr

  12. Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations

    CERN Document Server

    Sótér, A.; Kobayashi, T.; Barna, D.; Horváth, D.; Hori, M.

    2014-01-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 x 1 mm^2. The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ~ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen a...

  13. Scintillating Quantum Dots for Imaging X-rays (SQDIX) for Aircraft Inspection

    Science.gov (United States)

    Burke, Eric (Principal Investigator); Williams, Phillip (Principal Investigator); Dehaven, Stan

    2015-01-01

    Scintillation is the process currently employed by conventional x-ray detectors to create x-ray images. Scintillating quantum dots or nano-crystals (StQDs) are a novel, nanometer-scale material that upon excitation by x-rays, re-emit the absorbed energy as visible light. StQDs theoretically have higher output efficiency than conventional scintillating materials and are more environmental friendly. This paper will present the characterization of several critical elements in the use of StQDs that have been performed along a path to the use of this technology in wide spread x-ray imaging. Initial work on the SQDIX system has shown great promise to create state-of-the-art sensors using StQDs as a sensor material. In addition, this work also demonstrates a high degree of promise using StQDs in microstructured fiber optics. Using the microstructured fiber as a light guide could greatly increase the capture efficiency a StQDs based imaging sensor.

  14. Investigation of organic liquid-scintillator optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen; Feilitzsch, Franz von; Goeger-Neff, Marianne; Lewke, Timo; Meindl, Quirin; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Wurm, Michael [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Marrodan Undagoitia, Teresa [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland)

    2009-07-01

    The characterization of different organic liquid-scintillator mixtures is an important step towards the design of a large-scale detector such as LENA (Low Energy Neutrino Astronomy). Its physics goals, extending from particle and geological to astrophysical issues, set high demands on the optical properties of the liquid scintillator. Therefore, small-scale experiments are carried out in order to optimize the final scintillator mixture. PXE, LAB, and dodecane are under consideration as solvents. Setups for the determination of scintillator properties are presented, such as attenuation length, light yield, emission spectra, fluorescence decay times, and quenching factors. Furthermore, results are discussed.

  15. Properties of the ukrainian polystyrene-based plastic scintillator UPS 923A

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Chirikov-Zorin, I.; Lyablin, M.; Chokheli, D.; Bellettini, G.; Mensione, A.; Tokar, S; Giokaris, N.; Manousakis-Katsikakis, A.

    2005-01-01

    The polystyrene-based scintillator UPS 923A was chosen for upgrading of the muon system for the CDF detector at the Fermilab Tevatron. Properties of this scintillator such as light output, light attenuation, long-term stability and also timing characteristics of the scintillator and wavelength shifting fibers were investigated. The method for the Bulk Attenuation Length measurements of the scintillator to its own light emitted was proposed. Comparative measurements of the characteristics of the UPS 923A and the polyvinyltoluene-based scintillator NE 114 were performed. It was found that natural aging of the NE 114 was two times faster than that of the UPS 923A

  16. Investigating the effects of streamline-based fiber tractography on matrix scaling in brain connective network.

    Science.gov (United States)

    Jan, Hengtai; Chao, Yi-Ping; Cho, Kuan-Hung; Kuo, Li-Wei

    2013-01-01

    Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.

  17. Fabrication and Characterization of Polymeric Hollow Fiber Membranes with Nano-scale Pore Sizes

    International Nuclear Information System (INIS)

    Amir Mansourizadeh; Ahmad Fauzi Ismail

    2011-01-01

    Porous polyvinylidene fluoride (PVDF) and polysulfide (PSF) hollow fiber membranes were fabricated via a wet spinning method. The membranes were characterized in terms of gas permeability, wetting pressure, overall porosity and water contact angle. The morphology of the membranes was examined by FESEM. From gas permeation test, mean pore sizes of 7.3 and 9.6 nm were obtained for PSF and PVDF membrane, respectively. Using low polymer concentration in the dopes, the membranes demonstrated a relatively high overall porosity of 77 %. From FESEM examination, the PSF membrane presented a denser outer skin layer, which resulted in significantly lower N 2 permeance. Therefore, due to the high hydrophobicity and nano-scale pore sizes of the PVDF membrane, a good wetting pressure of 4.5x10 -5 Pa was achieved. (author)

  18. High-efficiency organic glass scintillators

    Science.gov (United States)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  19. (Alpha-) quenching temperature dependence in liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Arnd; Lozza, Valentina; Krosigk, Belina von; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, TU Dresden (Germany)

    2015-07-01

    Liquid scintillator (LS) is an effective and promising detector material, which is and will be used by many small and large scale experiments. In order to perform correct signal identification and background suppression, a very good knowledge of LS properties is crucial. One of those is the light yield from alpha particles in liquid scintillator. This light output strongly quenched, approx. 10 times compared to that of electrons, and has been precisely studied at room temperature for various LS. Big scintillator experiments, such as SNO+ and maybe future large scale detectors, will operate at different temperatures. While a strong temperature dependence is well known for solid state scintillators, due to the different scintillation process, a quenching temperature dependence in LS is usually assumed negligible. On the other hand, inconsistencies in between measurements are often explained by potential temperature effects. This study investigates LAB based liquid scintillator with an intrinsic, dissolved alpha emitter and its behaviour with temperature change. In a small, cooled and heated setup, a stabilized read-out with two PMTs is realised. First results are presented.

  20. A Scintillator Purification System for the Borexino Solar Neutrino Detector

    OpenAIRE

    Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; Harding, E.; Ianni, Aldo; Ianni, Andrea; Kidner, S.; Leung, M.

    2007-01-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector was performed with a system that combined distillation, water extraction, gas stripping and filtration. The purification of the scintillator achieved unprecedented low backgrounds for the large scale liquid scintillation detector. This paper describes the principles of operation, design, construction and commissioning of the purification system, and reviews the require...

  1. Long-term operation of a multi-channel cosmic muon system based on scintillation counters with MRS APD light readout

    CERN Document Server

    Akindinov, A.; Grigoriev, E.; Grishuk, Yu.; Kuleshov, S.; Mal'kevich, D.; Martemiyanov, A.; Nedosekin, A.; Ryabinin, M.; Voloshin, K.

    2009-01-01

    A Cosmic Ray Test Facility (CRTF) is the first large-scale implementation of a scintillation triggering system based on a new scintillation technique known as START. In START, the scintillation light is collected and transported by WLS optical fibers, while light detection is performed by pairs of avalanche photodiodes with the Metal-Resistor-Semiconductor structure operated in the Geiger mode (MRS APD). START delivers 100% efficiency of cosmic muon detection, while its intrinsic noise level is less than 10^{-2} Hz. CRTF, consisting of 160 START channels, has been continuously operated by the ALICE TOF collaboration for more than 25 000 hours, and has demonstrated a high level of stability. Fewer than 10% of MRS APDs had to be replaced during this period.

  2. Microstructured Optical Fiber for X-ray Detection

    Science.gov (United States)

    DeHaven, Stanton L.

    2009-01-01

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  3. Scintillator material. Szintillatormaterial

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, M; Bendig, J; Regenstein, W

    1987-11-25

    A scintillator material for detection and quantitative determination of ionizing radiation is discussed consisting of an acridone dissolved in a fluid or solid medium. Solvent mixtures with at least one protogenic component or polymers and copolymers are used. The scintillator material is distinguished by an excellent stability at high energy doses.

  4. Optical fiber-applied radiation detection system

    International Nuclear Information System (INIS)

    Nishiura, Ryuichi; Uranaka, Yasuo; Izumi, Nobuyuki

    2001-01-01

    A technique to measure radiation by using plastic scintillation fibers doped radiation fluorescent (scintillator) to plastic optical fiber for a radiation sensor, was developed. The technique contains some superiority such as high flexibility due to using fibers, relatively easy large area due to detecting portion of whole of fibers, and no electromagnetic noise effect due to optical radiation detection and signal transmission. Measurable to wide range of and continuous radiation distribution along optical fiber cable at a testing portion using scintillation fiber and flight time method, the optical fiber-applied radiation sensing system can effectively monitor space radiation dose or apparatus operation condition monitoring. And, a portable type scintillation optical fiber body surface pollution monitor can measure pollution concentration of radioactive materials attached onto body surface by arranging scintillation fiber processed to a plate with small size and flexibility around a man to be tested. Here were described on outline and fundamental properties of various application products using these plastic scintillation fiber. (G.K.)

  5. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  6. SCALE FACTOR DETERMINATION METHOD OF ELECTRO-OPTICAL MODULATOR IN FIBER-OPTIC GYROSCOPE

    Directory of Open Access Journals (Sweden)

    A. S. Aleynik

    2016-05-01

    Full Text Available Subject of Research. We propose a method for dynamic measurement of half-wave voltage of electro-optic modulator as part of a fiber optic gyroscope. Excluding the impact of the angular acceleration o​n measurement of the electro-optical coefficient is achieved through the use of homodyne demodulation method that allows a division of the Sagnac phase shift signal and an auxiliary signal for measuring the electro-optical coefficient in the frequency domain. Method. The method essence reduces to decomposition of step of digital serrodyne modulation in two parts with equal duration. The first part is used for quadrature modulation signals. The second part comprises samples of the auxiliary signal used to determine the value of the scale factor of the modulator. Modeling is done in standalone model, and as part of a general model of the gyroscope. The applicability of the proposed method is investigated as well as its qualitative and quantitative characteristics: absolute and relative accuracy of the electro-optic coefficient, the stability of the method to the effects of angular velocities and accelerations, method resistance to noise in actual devices. Main Results. The simulation has showed the ability to measure angular velocity changing under the influence of angular acceleration, acting on the device, and simultaneous measurement of electro-optical coefficient of the phase modulator without interference between these processes. Practical Relevance. Featured in the paper the ability to eliminate the influence of the angular acceleration on the measurement accuracy of the electro-optical coefficient of the phase modulator will allow implementing accurate measurement algorithms for fiber optic gyroscopes resistant to a significant acceleration in real devices.

  7. Ionospheric scintillation observations over Kenyan region - Preliminary results

    Science.gov (United States)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  8. Construction and test of a scintillator hodoscope for the CREAM experiment

    International Nuclear Information System (INIS)

    Marrocchesi, P.S.; Bagliesi, M.G.; Basti, A.; Bigongiari, G.; Lomtadze, T.; Maestro, P.; Meucci, M.; Millucci, V.; Morsani, F.; Ahn, H.S.; Ganel, O.; Lee, M.H.; Lutz, L.; Seo, E.S.; Zinn, S.Y.

    2004-01-01

    CREAM (Cosmic Ray Energetics And Mass) is a balloon-borne experiment being prepared for the first flight which is scheduled for the end of 2004 from Antarctica. It is designed to perform direct measurements of cosmic ray composition over the elemental range from proton to iron to the supernova energy scale of 10 15 eV in a series of balloon flights using the new Ultra Long Duration Balloon (ULDB) capability under development by NASA. The instrument includes a sampling tungsten/scintillating fiber calorimeter preceded by a graphite target with scintillating fiber hodoscopes, a pixelated silicon charge detector, a transition radiation detector and a segmented timing-based particle-charge detector. The hodoscope system provides track reconstruction capability by means of 4 orthogonal layers of fibers (S0,S1) on top of the carbon target and 2 additional layers (S2) located in between the upper and lower target sections. Its construction technique and beam test results are presented

  9. Field Strain Measurement on the Fiber Scale in Carbon Fiber Reinforced Polymers Using Global Finite-Element Based Digital Image Correlation

    KAUST Repository

    Tao, Ran

    2015-05-01

    Laminated composites are materials with complex architecture made of continuous fibers embedded within a polymeric resin. The properties of the raw materials can vary from one point to another due to different local processing conditions or complex geometrical features for example. A first step towards the identification of these spatially varying material parameters is to image with precision the displacement fields in this complex microstructure when subjected to mechanical loading. This thesis is aimed to accurately measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. First, the theories of both local subset-based digital image correlation (DIC) and global finite-element based DIC are outlined. Second, in-situ secondary electron tensile images obtained by scanning electron microscopy (SEM) are post-processed by both DIC techniques. Finally, it is shown that when global DIC is applied with a conformal mesh, it can capture more accurately sharp local variations in the strain fields as it takes into account the underlying microstructure. In comparison to subset-based local DIC, finite-element based global DIC is better suited for capturing gradients across the fiber-matrix interfaces.

  10. Understanding the risk of scaling and fouling in hollow fiber forward osmosis membrane application

    KAUST Repository

    Majeed, Tahir; Phuntsho, Sherub; Jeong, Sanghyun; Zhao, Yanxia; Gao, Baoyu; Shon, Ho Kyong

    2016-01-01

    Fouling studies of forward osmosis (FO) were mostly conducted based on fouling evaluation principals applied to pressure membrane processes such as reverse osmosis (RO)/nanofiltration (NF)/microfiltration (MF)/ultrafiltration (UF). For RO/NF/MF/UF processes, the single flux driving force (hydraulic pressure) remains constant, thus the fouling effect is easily evaluated by comparing flux data with the baseline. Whilst, the scenario of fouling effects for FO process is entirely different from RO/NF/MF/UF processes. Continuously changing driving force (osmotic pressure difference), the changes in concentration polarization associated with the varying draw solution/feed solution concentration and the fouling layer effects collectively influence the FO flux. Thus, usual comparison of the FO flux outcome with the baseline results can not exactly indicate the real affect of membrane fouling, rather presents a misleading cumulative effect. This study compares the existing FO fouling technique with an alternate fouling evaluation approach using two FO set-ups. Scaling and fouling risk for hollow fiber FO was separately investigated using synthetic water samples and model organic foulants as alginate, humic acid and bovine serum albumin. Results indicated that FO flux declines up to 5% and 49% in active layer-feed solution and active layer-draw solution orientations respectively.

  11. Understanding the risk of scaling and fouling in hollow fiber forward osmosis membrane application

    KAUST Repository

    Majeed, Tahir

    2016-06-23

    Fouling studies of forward osmosis (FO) were mostly conducted based on fouling evaluation principals applied to pressure membrane processes such as reverse osmosis (RO)/nanofiltration (NF)/microfiltration (MF)/ultrafiltration (UF). For RO/NF/MF/UF processes, the single flux driving force (hydraulic pressure) remains constant, thus the fouling effect is easily evaluated by comparing flux data with the baseline. Whilst, the scenario of fouling effects for FO process is entirely different from RO/NF/MF/UF processes. Continuously changing driving force (osmotic pressure difference), the changes in concentration polarization associated with the varying draw solution/feed solution concentration and the fouling layer effects collectively influence the FO flux. Thus, usual comparison of the FO flux outcome with the baseline results can not exactly indicate the real affect of membrane fouling, rather presents a misleading cumulative effect. This study compares the existing FO fouling technique with an alternate fouling evaluation approach using two FO set-ups. Scaling and fouling risk for hollow fiber FO was separately investigated using synthetic water samples and model organic foulants as alginate, humic acid and bovine serum albumin. Results indicated that FO flux declines up to 5% and 49% in active layer-feed solution and active layer-draw solution orientations respectively.

  12. Prescribed 3-D Direct Writing of Suspended Micron/Sub-micron Scale Fiber Structures via a Robotic Dispensing System.

    Science.gov (United States)

    Yuan, Hanwen; Cambron, Scott D; Keynton, Robert S

    2015-06-12

    A 3-axis dispensing system is utilized to control the initiating and terminating fiber positions and trajectory via the dispensing software. The polymer fiber length and orientation is defined by the spatial positioning of the dispensing system 3-axis stages. The fiber diameter is defined by the prescribed dispense time of the dispensing system valve, the feed rate (the speed at which the stage traverses from an initiating to a terminating position), the gauge diameter of the dispensing tip, the viscosity and surface tension of the polymer solution, and the programmed drawing length. The stage feed rate affects the polymer solution's evaporation rate and capillary breakup of the filaments. The dispensing system consists of a pneumatic valve controller, a droplet-dispensing valve and a dispensing tip. Characterization of the direct write process to determine the optimum combination of factors leads to repeatedly acquiring the desired range of fiber diameters. The advantage of this robotic dispensing system is the ease of obtaining a precise range of micron/sub-micron fibers onto a desired, programmed location via automated process control. Here, the discussed self-assembled micron/sub-micron scale 3D structures have been employed to fabricate suspended structures to create micron/sub-micron fluidic devices and bioengineered scaffolds.

  13. On the possibilities of large-scale radio and fiber optics detectors in cosmic rays

    Science.gov (United States)

    Gusev, G. A.; Markov, M. A.; Zheleznykh, I. M.

    1985-01-01

    Different variants of radio and fiber optics detectors for registration of super high energy cascades in the atmosphere and in dense media are discussed. Particularly the possibilities for investigation of quasi horizontal cosmic ray showers (CRS) and simulated muons from these CRS with the help of radio detectors and fiber optics detectors located on the ice surface are considered.

  14. Scintillating optical fibres and the detection of very short lived particles

    International Nuclear Information System (INIS)

    Fisher, C.M.

    1985-01-01

    The application of scintillating fiber optics to the problem of heavy flavour particle detection in both fixed target and collider experiments is reviewed. Brief specifications for both fibres and read-out systems are given. (orig.)

  15. Phosphor scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1980-01-01

    A method of fabricating scintillators is described in which the phosphor is distributed within the structure in such a way as to enhance the escape of the visible wavelength radiation that would otherwise be dissipated within the scintillator body. Two embodiments of the present invention are disclosed: one in which the phosphor is distributed in a layered structure and another in which the phosphor is dispersed throughout a transparent matrix. (U.K.)

  16. Scintillating ribbon x-ray detector

    International Nuclear Information System (INIS)

    Kinchen, B.E.; Rogers, A.

    1995-01-01

    A patent in the early 1970's by Aerojet Corporation in Sacramento, CA put forth the idea of using an array of scintillating fibers for x-ray detection and imaging. In about 1975, Pratt and Whitney Aircraft in East Hartford, CT designed and manufactured an imaging system based on the patent. The device was 1.75 in thick in the direction of the x-ray beam and about 4 in. by 4 in. square. The device was used with a 8 MeV x-ray source to image and measure internal clearances within operating aircraft, gas turbines engines. There are significant advantages of fiber optic detectors in x-ray detection. However, the advantages are often outweighed by the disadvantages. Two of the advantages of scintillating fiber optic x-ray detectors are: (1) high limiting spatial frequency -- between 20 and 25 lp/mm; and (2) excellent x-ray stopping power -- they can be made thick and retain spatial resolution. In traditional fiber optic detectors the x-rays are oriented parallel to the long axis of the fiber. For the scintillating ribbon x-ray sensor, the x-rays are oriented normal to the fiber long axis. This ribbon sensor technique has a number of advantages over the two current radiographic techniques digital x-radiography and x-ray film: The main advantage the ribbon has is size and shape. It can be as thin as 0.05 in., virtually any width or length, and flexible. Once positioned in a given location, 20 to 100 square inches of the object being inspected can be imaged with a single x-ray beam sweep. It is clear that conventional digital cameras do not lend themselves to placement between walls of aircraft structures or similar items requiring x-ray inspections. A prototype scintillating ribbon x-ray sensor has been fabricated and tested by Synergistic Detector Designs. Images were acquired on corrosion test panels of aluminum fabricated by Iowa State University

  17. Scintillating properties of frozen new liquid scintillators

    CERN Document Server

    Britvich, G I; Golovkin, S V; Martellotti, G; Medvedkov, A M; Penso, G; Soloviev, A S; Vasilchenko, V G

    1999-01-01

    The light emission from scintillators which are liquid at room temperature was studied in the interval between $+20$~$^{\\circ}$C and $-120$~$^{\\circ}$C, where the phase transition from liquid to solid takes place. The light yield measured at $-120$~$^{\\circ}$C is about twice as much as that observed at $+20$~$^{\\circ}$C. By cooling the scintillator from $+20$~$^{\\circ}$C to $-120$~$^{\\circ}$C and then heating it from $-120$~$^{\\circ}$C to $+20$~$^{\\circ}$C, the light yield varies in steps at well defined temperatures, which are different for the cooling and heating processes. These hysteresis phenomena appear to be related to the solvent rather than to the dopant. The decay time of scintillation light was measured at $+20$~$^{\\circ}$C and $-120$~$^{\\circ}$C. Whilst at room temperature most of the light is emitted with a decay time of 6--8 ns, at $-120$~$^{\\circ}$C a slower component, with a decay time of 25--35 ns, becomes important.

  18. Radiation effects in polymers for plastic scintillation detectors

    International Nuclear Information System (INIS)

    Pla-Dalmau, A.; Bross, A.D.; Hurlbut, C.R.; Moser, S.W.

    1994-01-01

    Recent developments in both scintillating plastic optical fibers and photon detection devices have spawned new applications for plastic scintillator detectors. This renewed attention has encouraged research that addresses the radiation stability of plastic scintillators. The optical quality of the polymer degrades with exposure to ionizing radiation and thus the light yield of the detector decreases. A complete understanding of all the mechanisms contributing to this radiation-induced degradation of the polymer can lead to techniques that will extend the radiation stability of these materials. Various radiation damage studies have been performed under different atmospheres and dose rates. Currently, the use of additives to preserve the optical properties of the polymer matrix under radiation is being investigated. The authors discuss the effect of certain antioxidants, plasticizers, and cross-linking agents on the radiation resilience of plastic scintillators

  19. Machining of scintillator tiles for the SDC calorimeter

    International Nuclear Information System (INIS)

    Bertoldi, M.; Bartosz, E.; Davis, C.; Hagopian, V.; Hernandez, E.; Hu, K.; Immer, C.; Thomaston, J.

    1992-01-01

    This research and development on the grooving methods for the scintillating tiles of the SDC calorimeter was done to maximize the light output of scintillator plates and improve the uniformity among tiles through machining procedures. Grooves for wavelength shifting fibers in SCSN-81 can be machined from 10,000 to 60,000 RPM with a feed rate of more than 30cm/min if the plate is kept cool and the chips are removed quickly by blowing dry, cold, clean air over the cutting tool. BC499-27, a polystyrene-based scintillator, is softer and more difficult to machine. It allows a maximum rotation speed of 20,000 RPM and a maximum feed rate of 15 cm/min. A new half-keyhole shape was used for grooves, allowing safer, faster top-loading of the fibers. Three hundred tiles were machined, achieving a standard deviation of the light output of less than 7%. (Author)

  20. Application of an automatic yarn dismantler to track changes in cotton fiber properties during full scale processing of cotton into carded yarn

    CSIR Research Space (South Africa)

    Fassihi, A

    2016-08-01

    Full Text Available Changes in Upland cotton fiber properties from lint to carded yarn, during full scale processing, were tracked, using a newly developed automatic yarn dismantler for dismantling short staple ring-spun yarns. Opening and cleaning increased fiber neps...

  1. Field Strain Measurement on the Fiber-Epoxy Scale in CFRPs

    KAUST Repository

    Tao, Ran; Moussawi, Ali; Zhou, Jian; Lubineau, Gilles; Pan, Bing

    2015-01-01

    Laminated composites are materials with complex architecture made of continuous fibers (usually glass or carbon) embedded within a polymeric resin. The properties of the raw materials can vary from one point to another due to different local

  2. Optical fibers and their applications for radiation measurements

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi

    1998-01-01

    As a new method of radiation measurements, several optical methods using optical fiber sensors have been developed. One is the application of 'radio-luminescence' from the optical fiber itself such as plastic scintillating fibers. Other researches are made to develop the 'combined-sensors' by combination of optical fibers and scintillating materials. Using the time domain method of optical fiber sensors, the profile of radiation distribution along the optical fiber can be easily determined. A multi-parameter sensing system for measurement of radiation, temperature, stress, etc, are also expected using these optical fiber sensors. (author)

  3. Inorganic liquid scintillator

    International Nuclear Information System (INIS)

    Pavlicek, Z.; Barta, C.; Jursova, L.

    1986-01-01

    An inorganic liquid scintillator is designed which contains 1 to 30 wt.% of an inorganic molecular compound as the basic active component; the compound contains a cation with an atomic number higher than 47 and a halogen anion. The basic inorganic component is dissolved in water or in an organic solvent in form of non-dissociated molecules or self-complexes in which the bond is preserved between the cation and anion components. The light yield from these scintillators ranges between 70 and 150% of the light yield of a standard organic scintillator based on toluene. They are advantageous in that that they allow to increase the water content in the sample to up to 100%. (M.D.)

  4. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  5. Scintillator plate calorimetry

    International Nuclear Information System (INIS)

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin

  6. Evaluation of hollow fiber and mini perm bioreactors as an alternative to murine ascites for small scale monoclonal antibody production

    International Nuclear Information System (INIS)

    Abdalla, O. M.

    2006-12-01

    The objective of this study was to compare monoclonal antibody production in hollow fiber, mini perm bioreactor systems and murine ascites to determine the feasibility of the bioreactor system as a potential alternative to the use of mice. One hybridoma cell line was grown in hollow fiber, mini perm bioreactor systems and in groups of 5 mice. Mice were primed with 0.5 ml pristane intraperitoneally 14 days prior to inoculation of 1x10 7 hybridoma cells. Each mouse was tapped a maximum of three times for collection of ascites. Bioreactors were harvested three times weekly for 30 days and were monitored by cell counts, cell viability and media consumption. Time and materials logs were maintained. The total quantity of monoclonal antibody produced in 5 mice versus the total production for the two different bioreactors (hollow fiber and mini perm) in 30 days was as follows: cell line 2AC10E6C7 produce 158 mg vs.97.5 mg, vs 21.54 mg respectively. Mean monoclonal antibody concentration ranged from 4.07 to 8.37 mg/ml in murine ascites, from 0.71 to 3.8 mg/ml in hollow fiber bioreactor system, and from 0.035 to 1.06 in mini perm. Although time and material costs were generally greater for the bioreactors, these results suggest that hollow fiber and mini perm bioreactor systems merit further investigations as potentially viable in vitro alternatives to the use of mice for small scale (<1mg) monoclonal antibody production.(Author)

  7. Evaluation of Hollow Fiber And Miniperm Bioreactors as An Alternative to Murine Ascites for Small Scale Monoclonal Antibody Production

    International Nuclear Information System (INIS)

    Abedalla, O. M.

    2007-01-01

    The objective of this study was to compare monoclonal antibody production in hollow fiber, miniPERM bioreactor systems and murine ascites to determine the feasibility of the bioreactor system as a potential alternative to the use of mice. One hybridoma cell line was grown in hollow fiber, miniPERM bioreactor systems and in groups of 5 mice. Mice were primed with 0.5 ml pristane intraperitoneally 14 days prior to inoculation of 1X10 7 hybridoma cells. Each mouse was tapped a maximum of three times for collection of ascites. Bioreactors were harvested three times weekly for 30 days and were monitored by cell counts, cell viability and media consumption. Time and materials logs were maintained. The total quantity of monoclonal antibody produced in 5 mice versus the total production for the two different bioreactors (hollow fiber and miniPERM) in 30 days was as follows: cell line 2AC10E6C7 produce 158 mg vs.97.5 mg; vs 21.54 mg respectively. Mean monoclonal antibody concentration ranged from 4.07 to 8.37 mg/ml in murine ascites, from 0.71 to 3.8 mg/ml in hollow fiber bioreactor system, and from 0.035 to 1.06 in miniPERM. Although time and material costs were generally greater for the bioreactors, these results suggest that hollow fiber and miniPERM bioreactor systems merit further investigations as potentially viable in vitro alternatives to the use of mice for small scale (< 1 g) monoclonal antibody production.

  8. Scale-up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Mark A [The Dow Chemical Company

    2014-08-27

    The project started in September, 2012 with the goal of scaling up from the existing laboratory scale process for producing carbon fiber (CF) from polyolefin (PO) based precursor fiber using a Dow proprietary sulfonation-desulfonation stabilization process. The award was used to develop a process that was capable of producing market development quantities of CF from PO precursor fiber at a rate of 4 kg/h of CF. The CF would target properties that met or exceeded the Department of Energy (DOE) Vehicles Technology [1] standard; i.e., 172 GPa modulus and 1.72 GPa strength at greater than or equal to 1% strain. The Dow proprietary process was capable of meeting and exceeding these targets properties. Project DE-EE0005760 resulted from a Collaborative Research and Development Agreement (CRADA) between Dow and Oak Ridge National Laboratory (ORNL) with support from the Michigan Economic Development Corporation (MEDC) and DOE. In the first budget period, the main goal was to design a sulfonation-desulfonation market development plant capable of stabilizing PO precursor fiber at a rate of 5 kg/h using a sulfonation solution. The detailed design, location, and cost estimate were determined as scheduled in the Project Management Plan (PMP). In parallel with this DOE award project was a fundamentals and economic evaluation funded by The Dow Chemical Company (Dow). The goal of the Dow sponsored project was to finalize the mass balances, energy balances, and levelized cost to produce CF using the Dow process. A Go-No-Go decision was scheduled in June, 2013 based on the findings of the DOE sponsored scale up project and the Dow sponsored project. In June, 2013, Dow made the No-Go decision to halt and abandon the Dow proprietary sulfonation-desulfonation process for stabilizing PO precursor fibers for the manufacturing of CF. This No-Go decision was identified in the original proposal and at the start of this project, and the decision was made as scheduled. The decision was based

  9. Scintillation proximity assay

    International Nuclear Information System (INIS)

    Hart, H.

    1980-01-01

    In a method of immunological assay two different classes of particles which interact at short distances to produce characteristic detectable signals are employed in a modification of the usual latex fixation test. In one embodiment an aqueous suspension of antigen coated tritiated latex particles (LH) and antigen coated polystyrene scintillant particles (L*) is employed to assay antibody in the aqueous medium. The amount of (LH) (L*) dimer formation and higher order aggregation induced and therefore the concentration of antibody (or antigen) present which caused the aggregation can be determined by using standard liquid scintillation counting equipment. (author)

  10. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  11. Liquid scintillation, counting, and compositions

    International Nuclear Information System (INIS)

    Sena, E.A.; Tolbert, B.M.; Sutula, C.L.

    1975-01-01

    The emissions of radioactive isotopes in both aqueous and organic samples can be measured by liquid scintillation counting in micellar systems. The micellar systems are made up of scintillation solvent, scintillation solute and a mixture of surfactants, preferably at least one of which is relatively oil-soluble water-insoluble and another which is relatively water-soluble oil-insoluble

  12. Ion induced scintillation in organic solids: development of an average track model,degradation of the scintillation intensity and dosimetric applications

    International Nuclear Information System (INIS)

    Broggio, D.

    2004-12-01

    This work deals with a specific aspect of the ion-matter interaction: the scintillation induced by ions in organic materials. In the first chapter we tackle the issue in a theoretical way by proposing a method to compute the radial doses within the framework of the mean track model. We have developed a model based on the Lewis transport equation and on the Spencer distribution of the loss energy in order to take into account the transport of secondary electrons in a more realistic way. In the second chapter we study the physical mechanisms that trigger ion-induced scintillation. Ion-induced scintillation is featured by the dependence in charge number of the intensity of scintillation for ions with same energy loss and by the saturation of the scintillation efficiency for ions with high stopping-power. We have applied our model of radial doses to ion-induced scintillation. In the third chapter we study the gradual degradation of the scintillation intensity and ion-induced chemical damages. In the last chapter we propose a prototype of dosimeters based on the combination of scintillators and optical fibers that allows the real-time measurement of the dose delivered by a carbon ion beam in therapeutical use conditions. This dosimeter gives the relationship between the dose and the scintillation intensity but its accuracy is not yet sufficient for uses in radiotherapy. (A.C.)

  13. Scintillation properties of acrylate based plastic scintillator by photoploymerization method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan [Dept. of Radiological Science, Cheongju University, Cheongju (Korea, Republic of); Lee, Joo Il [Dept. of of Radiology, Daegu Health College, Daegu (Korea, Republic of)

    2016-12-15

    In this study, we prepared and characterized a acrylate based UV-curable plastic scintillator. It was used co-polymers TMPTA, DHPA and Ultima GoldTM LLT organic scintillator. The emission spectrum of the plastic scintillator was located in the range of 380⁓520 nm, peaking at 423 nm. And the scintillator is more than 50% transparent in the range of 400⁓ 800 nm. The emission spectrum is well match to the quantum efficiency of photo-multiplier tube and the fast decay time of the scintillation is 12 ns, approximately. This scintillation material provides the possibility of combining 3D printing technology, and then the applications of the plastic scintillator may be expected in human dosimetry etc.

  14. Fine grained hodoscopes based on scintillating optical fibres

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Strand, R.C.

    1985-01-01

    This is a description of the development and testing of scintillating optical fibers for use in a fine grained hodoscope for experiments in High Energy Physics. After a brief discussion of the need for such a device in experiments in high rate environments, a description is given of the process of drawing and cladding plastic scintillator to form scintillating optical fibers. This is followed by a description of the test procedures used to evaluate the resultant fibers both in the laboratory and at the accelerator. A discussion of three possible readout schemes then follows. These are individual photomultiplier tubes, avalanche photo-diodes and microchannel plates with segmented anodes. The results of this study are then presented. The present status of the project is then summarized, in which it is pointed out that significant improvement in useful fiber length has been achieved as a result of this development program. The difficulty of quality control in fiber production remains a serious limitation, and a satisfactory readout scheme with good optical coupling between many hodoscope elements and photodetectors has yet to be achieved. (orig.)

  15. A meso-scale model to study the compressive strength of woven carbon fiber reinforced plastics

    NARCIS (Netherlands)

    Schormans, J.M.J.; Remmers, J.J.C.; Wilson, W.; Deshpande, V.S.

    2016-01-01

    Modeling kink-band formation in woven composites using a detailed micro-model is numerically expensive. In order to reduce the computational resources, a method to homogenize fiber-tows is proposed which uses a rules of mixture approach. The method is tested by comparing the stiffness and

  16. Polysiloxane scintillator composition

    Science.gov (United States)

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  17. WORKSHOP: Scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-12-15

    Scintillating crystals are one of the big spinoff success stories of particle physics, and from 22-26 September an international workshop in Chamonix in the French Alps looked at the increasing role of these materials in pure and applied science and in industry.

  18. Radiopharmaceuticals for bone scintillators

    International Nuclear Information System (INIS)

    Rey, A.M.

    1994-01-01

    One of the diagnostic techniques used in nuclear medicine is the bone scintiscanning with labelled compounds for obtain skeletal images. The main sections in this work are: (1) bone composition and anatomy;(2)skeletal radiopharmaceutical development;(3)physical properties of radionuclides;(4)biological behaviour and chemical structures;(5)radiopharmaceuticals production for skeletal scintillation;(6)kits;(7)dosimetry and toxicity.tabs

  19. WORKSHOP: Scintillating crystals

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Scintillating crystals are one of the big spinoff success stories of particle physics, and from 22-26 September an international workshop in Chamonix in the French Alps looked at the increasing role of these materials in pure and applied science and in industry

  20. Economical stabilized scintillation detector

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Chudakov, V.A.; Gurinovich, V.I.

    1983-01-01

    An economical scintillation detector with the stabilization system of an integral type is described. Power consumed by the photomultiplier high-voltage power source is 40 mW, energy resolution is not worse than 9%. The given detector is used in a reference detector of a digital radioisotope densimeter for light media which is successfully operating for several years

  1. Uranium-scintillator device

    International Nuclear Information System (INIS)

    Smith, S.D.

    1979-01-01

    The calorimeter subgroup of the 1977 ISABELLE Summer Workshop strongly recommended investigation of the uranium-scintillator device because of its several attractive features: (1) increased resolution for hadronic energy, (2) fast time response, (3) high density (i.e., 16 cm of calorimeter per interaction length), and, in comparison with uranium--liquid argon detectors, (4) ease of construction, (5) simple electronics, and (6) lower cost. The AFM group at the CERN ISR became interested in such a calorimeter for substantially the same reasons, and in the fall of 1977 carried out tests on a uranium-scintillator (U-Sc) calorimeter with the same uranium plates used in their 1974 studies of the uranium--liquid argon (U-LA) calorimeter. The chief disadvantage of the scintillator test was that the uranium plates were too small to fully contain the hadronic showers. However, since the scintillator and liquid argon tests were made with the plates, direct comparison of the two types of devices could be made

  2. Developments of scintillator-based soft x-ray diagnostic in LHD with CsI:Tl and P47 scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bando, T., E-mail: bando.takahiro@nifs.ac.jp [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Ohdachi, S.; Suzuki, Y. [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2016-11-15

    Multi-channel soft x-ray (SX) diagnostic has been used in the large helical device (LHD) to research magnetohydrodynamic equilibria and activities. However, in the coming deuterium plasma experiments of LHD, it will be difficult to use semiconductor systems near LHD. Therefore, a new type of SX diagnostic, a scintillator-based type diagnostic, has been investigated in order to avoid damage from the radiation. A fiber optic plate coated by P47 scintillator will be used to detect SX emission. Scintillation light will be transferred by pure silica core optical fibers and detected by photomultiplier tubes. A vertically elongated section of LHD will be covered by a 13 ch. array. Effects from the Deuterium Deuterium neutrons can be negligible when the scintillator is covered by a Pb plate 4 cm in thickness to avoid gamma-rays.

  3. Topography on a subcellular scale modulates cellular adhesions and actin stress fiber dynamics in tumor associated fibroblasts

    Science.gov (United States)

    Azatov, Mikheil; Sun, Xiaoyu; Suberi, Alexandra; Fourkas, John T.; Upadhyaya, Arpita

    2017-12-01

    Cells can sense and adapt to mechanical properties of their environment. The local geometry of the extracellular matrix, such as its topography, has been shown to modulate cell morphology, migration, and proliferation. Here we investigate the effect of micro/nanotopography on the morphology and cytoskeletal dynamics of human pancreatic tumor-associated fibroblast cells (TAFs). We use arrays of parallel nanoridges with variable spacings on a subcellular scale to investigate the response of TAFs to the topography of their environment. We find that cell shape and stress fiber organization both align along the direction of the nanoridges. Our analysis reveals a strong bimodal relationship between the degree of alignment and the spacing of the nanoridges. Furthermore, focal adhesions align along ridges and form preferentially on top of the ridges. Tracking actin stress fiber movement reveals enhanced dynamics of stress fibers on topographically patterned surfaces. We find that components of the actin cytoskeleton move preferentially along the ridges with a significantly higher velocity along the ridges than on a flat surface. Our results suggest that a complex interplay between the actin cytoskeleton and focal adhesions coordinates the cellular response to micro/nanotopography.

  4. Scintillation Detector for the Measurement of Ultra-Heavy Cosmic Rays on the Super-TIGER Experiment

    Science.gov (United States)

    Link, Jason

    2011-01-01

    We discuss the design and construction of the scintillation detectors for the Super-TIGER experiment. Super-TIGER is a large-area (5.4sq m) balloon-borne experiment designed to measure the abundances of cosmic-ray nuclei between Z= 10 and Z=56. It is based on the successful TIGER experiment that flew in Antarctica in 2001 and 2003. Super-TIGER has three layers of scintillation detectors, two Cherenkov detectors and a scintillating fiber hodoscope. The scintillation detector employs four wavelength shifter bars surrounding the edges of the scintillator to collect the light from particles traversing the detector. PMTs are optically coupled at both ends of the bars for light collection. We report on laboratory performance of the scintillation counters using muons. In addition we discuss the design challenges and detector response over this broad charge range including the effect of scintilator saturation.

  5. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  6. Scintillation counter with MRS APD light readout

    International Nuclear Information System (INIS)

    Akindinov, A.; Bondarenko, G.; Golovin, V.; Grigoriev, E.; Grishuk, Yu.; Mal'kevich, D.; Martemiyanov, A.; Ryabinin, M.; Smirnitskiy, A.; Voloshin, K.

    2005-01-01

    START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor Structure), operated in the Geiger mode, which have 1mm 2 sensitive areas. START is assembled from a 15x15x1cm 3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10 -2 Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3kUSD/m 2

  7. Design and test of a scintillation dosimeter for dosimetry measurements of high energy radiotherapy beams

    International Nuclear Information System (INIS)

    Fontbonne, J.M.

    2002-12-01

    This work describes the design and evaluation of the performances of a scintillation dosimeter developed for the dosimetry of radiation beams used in radiotherapy. The dosimeter consists in a small plastic scintillator producing light which is guided by means of a plastic optical fiber towards photodetectors. In addition to scintillation, high energy ionizing radiations produce Cerenkov light both in the scintillator and the optical fiber. Based on a wavelength analysis, we have developed a deconvolution technique to measure the scintillation light in the presence of Cerenkov light. We stress the advantages that are anticipated from plastic scintillator, in particular concerning tissue or water equivalence (mass stopping power, mass attenuation or mass energy absorption coefficients). We show that detectors based on this material have better characteristics than conventional dosimeters such as ionisation chambers or silicon detectors. The deconvolution technique is exposed, as well as the calibration procedure using an ionisation chamber. We have studied the uncertainty of our dosimeter. The electronics noise, the fiber transmission, the deconvolution technique and the calibration errors give an overall combined experimental uncertainty of about 0,5%. The absolute response of the dosimeter is studied by means of depth dose measurements. We show that absolute uncertainty with photons or electrons beams with energies ranging from 4 MeV to 25 MeV is less than ± 1 %. Last, at variance with other devices, our scintillation dosimeter does not need dose correction with depth. (author)

  8. Building a digital scale using optical fiber sensors for teaching shift

    International Nuclear Information System (INIS)

    Diaz, L.; Torres, C.

    2016-01-01

    In this article is show the implementation of an electronic balance using Optics fibers for teaching displacement sensors. The system is based on displacement detections using an fiber optical bifurcated as active optical medium, commercial pointers of power lesser 10mW, a converter sensor of light intensities at electric, a PIC for signal processing and LCD to display the data. The importance of the implemented prototype lies in having an electronic device developed by students of the electives of optoelectronic, applying displacement sensing, also, the balance built could be used in zones classified with electromagnetic interference and in the areas hazardous by not using or storing sufficient electrical or thermal energy it can ignite a flammable atmosphere environment. (Author

  9. Thermal energy harvesting for large-scale applications using MWCNT-grafted glass fibers and polycarbonate-MWCNT nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Tzounis, L., E-mail: ltzounis@physics.auth.gr [Leibniz-Institut für Polymerforschung Dresden e.V., IPF, Hohe Str. 6, D-01069 Dresden (Germany); Technische Universität Dresden, Helmholtzstraße 10, 01069 Dresden (Germany); Laboratory for Thin Films-Nanosystems and Nanometrolo (Greece); Liebscher, M.; Stamm, M. [Leibniz-Institut für Polymerforschung Dresden e.V., IPF, Hohe Str. 6, D-01069 Dresden, Germany and Technische Universität Dresden, Helmholtzstraße 10, 01069 Dresden (Germany); Mäder, E.; Pötschke, P. [Leibniz-Institut für Polymerforschung Dresden e.V., IPF, Hohe Str. 6, D-01069 Dresden (Germany); Logothetidis, S., E-mail: logot@auth.gr [Laboratory for Thin Films-Nanosystems and Nanometrology (LTFN), Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2015-02-17

    The thermoelectric properties of multi-wall carbon nanotube (MWCNT) -grafted glass fiber yarns (GF-CNT) and their epoxy model composites, as well as of polymer nanocomposites consisting of a polycarbonate (PC) matrix filled with differently functionalized MWCNTs have been examined. The GF-CNT hierarchical multi-scale structures were prepared by dip coating glass fiber yarns in a solution of carbonyl chloride modified MWCNTs; MWCNT-COCl (at a concentration of 0.5 mg/ml) under Ar atmosphere. The resulting GF-CNT exhibited high electrical conductivity (σ = 2.1×10{sup 3} S/m) due to the dense MWCNT deposited networks. The fiber surface morphology was investigated by scanning electron microscopy (SEM). The GF-CNT showed Seebeck coefficient (S); S = 16.8 μV/K, and power factor (P.F); P.F = 0.59 μW/mK−2. The high electrical conductivity of the GF-CNT is a key parameter for an optimum thermoelectric performance, since it can facilitate the flow of the thermally induced charge carriers upon being exposed to a temperature gradient. Polycarbonate/MWCNT nanocomposites were prepared by small-scale melt-mixing process using a microcompounder. Unfunctionalized, carboxyl (-COOH) and hydroxyl (-OH) modified MWCNTs were incorporated in PC at a constant amount of 2.5 wt.%, concentration above the electrical percolation threshold. The amount of MWCNTs was kept low to understand the fundamental aspects of their physical properties and their correlation to the composite morphology, as revealed by transmission electron microscopy (TEM). It was found that different functional groups can affect the thermoelectric performance and the conductivity of the nanocomposites. Namely, the highest Seebeck coefficient (S) was found for the composite containing carboxyl functionalized MWCNTs (11.3 μV/K), due to the highest oxygen content of MWCNTs proven by X-Ray Photoelectron spectroscopy (XPS). It is believed that MWCNT-grafted glass fibers as reinforcements in composite structural

  10. Thermal energy harvesting for large-scale applications using MWCNT-grafted glass fibers and polycarbonate-MWCNT nanocomposites

    International Nuclear Information System (INIS)

    Tzounis, L.; Liebscher, M.; Stamm, M.; Mäder, E.; Pötschke, P.; Logothetidis, S.

    2015-01-01

    The thermoelectric properties of multi-wall carbon nanotube (MWCNT) -grafted glass fiber yarns (GF-CNT) and their epoxy model composites, as well as of polymer nanocomposites consisting of a polycarbonate (PC) matrix filled with differently functionalized MWCNTs have been examined. The GF-CNT hierarchical multi-scale structures were prepared by dip coating glass fiber yarns in a solution of carbonyl chloride modified MWCNTs; MWCNT-COCl (at a concentration of 0.5 mg/ml) under Ar atmosphere. The resulting GF-CNT exhibited high electrical conductivity (σ = 2.1×10 3 S/m) due to the dense MWCNT deposited networks. The fiber surface morphology was investigated by scanning electron microscopy (SEM). The GF-CNT showed Seebeck coefficient (S); S = 16.8 μV/K, and power factor (P.F); P.F = 0.59 μW/mK−2. The high electrical conductivity of the GF-CNT is a key parameter for an optimum thermoelectric performance, since it can facilitate the flow of the thermally induced charge carriers upon being exposed to a temperature gradient. Polycarbonate/MWCNT nanocomposites were prepared by small-scale melt-mixing process using a microcompounder. Unfunctionalized, carboxyl (-COOH) and hydroxyl (-OH) modified MWCNTs were incorporated in PC at a constant amount of 2.5 wt.%, concentration above the electrical percolation threshold. The amount of MWCNTs was kept low to understand the fundamental aspects of their physical properties and their correlation to the composite morphology, as revealed by transmission electron microscopy (TEM). It was found that different functional groups can affect the thermoelectric performance and the conductivity of the nanocomposites. Namely, the highest Seebeck coefficient (S) was found for the composite containing carboxyl functionalized MWCNTs (11.3 μV/K), due to the highest oxygen content of MWCNTs proven by X-Ray Photoelectron spectroscopy (XPS). It is believed that MWCNT-grafted glass fibers as reinforcements in composite structural materials

  11. Characteristics of ionospheric irregularities causing scintillations at VHF/UHF

    International Nuclear Information System (INIS)

    Vats, H.O.; Deshpande, M.R.; Rastogi, R.G.

    1978-01-01

    Some properties of ionization irregularities using amplitude scintillation records of radio beacons from ATS-6 (phase II) at Ootacamund, India have been investigated. For the estimation of scale-size and strength of the irregularities a simple diffraction model has been used which explains only weak and moderate equatorial scintillation observations. It was found that the scale sizes of day time E-region irregularities are smaller than those in the F-region during night time in addition, irregularities are generated initially at large scale sizes which later break up into smaller scale sizes

  12. Scintillator detector array

    International Nuclear Information System (INIS)

    Cusano, D.A.; Dibianca, F.A.

    1981-01-01

    This patent application relates to a scintillator detector array for use in computerized tomography and comprises a housing including a plurality of chambers, the said housing having a front wall transmissive to x-rays and side walls opaque to x-rays, such as of tungsten and tantalum, a liquid scintillation medium including a soluble fluor, the solvent for the fluor being disposed in the chambers. The solvent comprises either an intrinsically high Z solvent or a solvent which has dissolved therein a high Z compound e.g. iodo or bromonaphthalene; or toluene, xylene or trimethylbenzene with a lead or tin alkyl dissolved therein. Also disposed about the chambers are a plurality of photoelectric devices. (author)

  13. DETECTORS: scintillating fibres

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the continual search for improved detection techniques, new materials are continually proving profitable. A good example is scintillating plastic fibres - tiny transparent threads sometimes finer than a human hair which transmit light. The narrowness and flexibility of these fibres was a major breakthrough for endoscopy - non-invasive techniques for viewing the otherwise inaccessible in surgery or machine inspection. In a more sophisticated form, these fibres find ready application in communications technology, where the goal is to transmit information rather than electrical power, replacing conventional and unwieldy current-carrying wire conductors. In particle physics, fibres have long been used to take the tiny scintillations produced when high energy particles hit fluorescent materials and 'conduct' them to photosensitive detectors some distance away

  14. Spatial beam shaping using a micro-structured optical fiber and all-fiber laser amplification system for large-scale laser facilities seeding

    International Nuclear Information System (INIS)

    Calvet, Pierre

    2014-01-01

    Spatial beam shaping is an important topic for the lasers applications. For various industrial areas (marking, drilling, laser-matter interaction, high-power laser seeding...) the optical beam has to be flattened. Currently, the state of the art of the beam shaping: 'free-space' solutions or highly multimode fibers, are not fully suitable. The first ones are very sensitive to any perturbations and the maintenance is challenging, the second ones cannot deliver a coherent beam. For this reason, we present in this manuscript a micro-structured optical single-mode fiber delivering a spatially flattened beam. This 'Top-Hat' fiber can shape any beam in a spatially coherent beam what is a progress with respect to the highly multimode fibers used in the state of the art. The optical fibers are easy to use and very robust, what is a strong benefit with respect to the 'free-space' solutions. Thanks to this fiber, we could realize an all-fiber multi-stage laser chain to amplify a 10 ns pulse to 100 μJ. Moreover the temporal, spectral and spatial properties were preserved. We adapted this 'Top-Hat' fiber to this multi-stage laser chain, we proved the capability and the interest of this fiber for the spatial beam shaping of the laser beams in highly performing and robust laser systems. (author) [fr

  15. A gamma scintillation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Symbalisty, S

    1952-07-01

    A scintillation type gamma ray spectrometer employing coincidence counting, designed and built at the Physics Department of the University of Western Ontario is described. The spectrometer is composed of two anthracene and photomultiplier radiation detectors, two pulse analyzing channels, a coincidence stage, three scalers and a high voltage stabilized supply. A preliminary experiment to test the operation of the spectrometer was performed and the results of this test are presented. (author)

  16. Modular scintillation camera

    International Nuclear Information System (INIS)

    Barrett, H. H.

    1985-01-01

    Improved optical coupling modules to be used in coded-aperture-type radiographic imaging systems. In a first system, a rotating slit coded-aperture is employed between the radioactive object and the module. The module consists of one pair of side-by-side photomultipliers receiving light rays from a scintillation crystal exposed to the object via the coded-aperture. The light rays are guided to the photomultipliers by a mask having a central transverse transparent window, or by a cylindrical lens, the mask or lens being mounted in a light-conveying quartz block assembly providing internal reflections at opposite faces of the assembly. This generates output signals from the photomultipliers which can be utilized to compute one-dimensional coordinate values for restoring the image of the radioactive object on a display screen. In another form of optical coupling module, usable with other types of coded-apertures, four square photomultipliers form a substantially square block and receive light rays from scintillations from a scintillation crystal exposed to the radioactive object via the coded-aperture. The light rays are guided to the photomultipliers by a square mask or a centrally transparent square lens configuration mounted in a light-conveying assembly formed by internally reflecting quartz blocks, the optical rays being directed to the respective photomultipliers so as to generate resultant output signals which can be utilized to compute image coordinate values for two-dimensional representation of the radioactive object being examined

  17. Liquid scintillator calorimetry for the LHC

    International Nuclear Information System (INIS)

    Artamonov, A.; Buontempo, S.; Epstein, V.; Ereditato, A.; Fiorillo, G.; Garufi, F.; Golovkin, S.; Gorbunov, P.; Jemanov, V.; Khovansky, V.; Kruchinin, S.; Maslennikov, A.; Medvedkov, A.; Vasilchenko, V.; Zaitsev, V.; Zuckerman, I.

    1995-01-01

    We report on the beam tests of full scale liquid scintillator modules designed for a very forward calorimeter for an experiment at the CERN Large Hadron Collider (LHC). Tests were performed in the electron beams of the SPS at CERN within the 20 and 150 GeV energy range. The response as a function of the beam impact point and incidence angle was measured. (orig.)

  18. The manufacturing engineering of a hermetic cast fiber calorimeter

    International Nuclear Information System (INIS)

    Coan, T.; Higby, D.; Sulak, L.; Worstell, W.; Winn, D.; Ayer, F.; Elder, C.; Sullivan, D.

    1990-01-01

    The authors have made the first pass at designing and engineering a cast lead calorimeter with a rapidity coverage to η = 5.5. The design preserves detector hermeticity. Plastic scintillating fibers provide a fast, hadronically compensated, high-resolution device. A lead-eutectic, which melts below the softening point of the plastic, provides an easily manufactured high Z absorber. This calorimeter, designed with the TEXAS SSC detector as a baseline, is easily scaled in size and in segmentation without major design changes

  19. Liquid scintillation counting of chlorophyll

    International Nuclear Information System (INIS)

    Fric, F.; Horickova, B.; Haspel-Horvatovic, E.

    1975-01-01

    A precise and reproducible method of liquid scintillation counting was worked out for measuring the radioactivity of 14 C-labelled chlorophyll a and chlorophyll b solutions without previous bleaching. The spurious count rate caused by luminescence of the scintillant-chlorophyll system is eliminated by using a suitable scintillant and by measuring the radioactivity at 4 to 8 0 C after an appropriate time of dark adaptation. Bleaching of the chlorophyll solutions is necessary only for measuring of very low radioactivity. (author)

  20. Soil Water Measurement Using Actively Heated Fiber Optics at Field Scale.

    Science.gov (United States)

    Vidana Gamage, Duminda N; Biswas, Asim; Strachan, Ian B; Adamchuk, Viacheslav I

    2018-04-06

    Several studies have demonstrated the potential of actively heated fiber optics (AHFO) to measure soil water content (SWC) at high spatial and temporal resolutions. This study tested the feasibility of the AHFO technique to measure soil water in the surface soil of a crop grown field over a growing season using an in-situ calibration approach. Heat pulses of five minutes duration were applied at a rate of 7.28 W m -1 along eighteen fiber optic cable transects installed at three depths (0.05, 0.10 and 0.20 m) at six-hour intervals. Cumulative temperature increase (T cum ) during heat pulses was calculated at locations along the cable. While predicting commercial sensor measurements, the AHFO showed root mean square errors (RMSE) of 2.8, 3.7 and 3.7% for 0.05, 0.10 and 0.20 m depths, respectively. Further, the coefficients of determination (R²) for depth specific relationships were 0.87 (0.05 m depth), 0.46 (0.10 m depth), 0.86 (0.20 m depth) and 0.66 (all depths combined). This study showed a great potential of the AHFO technique to measure soil water at high spatial resolutions (<1 m) and to monitor soil water dynamics of surface soil in a crop grown field over a cropping season with a reasonable compromise between accuracy and practicality.

  1. Neutron crosstalk between liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J.M., E-mail: verbeke2@llnl.gov; Prasad, M.K., E-mail: prasad1@llnl.gov; Snyderman, N.J., E-mail: snyderman1@llnl.gov

    2015-09-11

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  2. Neutron crosstalk between liquid scintillators

    International Nuclear Information System (INIS)

    Verbeke, J.M.; Prasad, M.K.; Snyderman, N.J.

    2015-01-01

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction

  3. Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser

    International Nuclear Information System (INIS)

    Lin, Y-H; Lin, G-R

    2012-01-01

    The free-standing graphite nano-particle located between two FC/APC fiber connectors is employed as the saturable absorber to passively mode-lock the ring-type Erbium-doped fiber laser (EDFL). The host-solvent-free graphite nano-particles with sizes of 300 – 500 nm induce a comparable modulation depth of 54%. The interlayer-spacing and lattice fluctuations of polished graphite nano-particles are observed from the weak 2D band of Raman spectrum and the azimuth angle shift of –0.32 ° of {002}-orientation dependent X-ray diffraction peak. The graphite nano-particles mode-locked EDFL generates a 1.67-ps pulsewidth at linearly dispersion-compensated regime with a repetition rate of 9.1 MHz. The time-bandwidth product of 0.325 obtained under a total intra-cavity group-delay-dispersion of –0.017 ps 2 is nearly transform-limited. The extremely high stability of the nano-scale graphite saturable absorber during mode-locking is observed at an intra-cavity optical energy density of 7.54 mJ/cm 2 . This can be attributed to its relatively high damage threshold (one order of magnitude higher than the graphene) on handling the optical energy density inside the EDFL cavity. The graphite nano-particle with reduced size and sufficient coverage ratio can compete with other fast saturable absorbers such as carbon nanotube or graphene to passively mode-lock fiber lasers with decreased insertion loss and lasing threshold

  4. Gypsum (CaSO42H2O) scaling on polybenzimidazole and cellulose acetate hollow fiber membranes under forward osmosis

    KAUST Repository

    Chen, Si Cong

    2013-11-08

    We have examined the gypsum (CaSO42H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI)/polyethersulfone (PES) and (3) PBI-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM) force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42 14.85 after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  5. Final LDRD report : advanced plastic scintillators for neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Mascarenhas, Nicholas; O' Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  6. Recent developments in plastic scintillators with pulse shape discrimination

    Science.gov (United States)

    Zaitseva, N. P.; Glenn, A. M.; Mabe, A. N.; Carman, M. L.; Hurlbut, C. R.; Inman, J. W.; Payne, S. A.

    2018-05-01

    The paper reports results of studies conducted to improve scintillation performance of plastic scintillators capable of neutron/gamma pulse-shape discrimination (PSD). Compositional modifications made with the polymer matrix improved physical stability, allowing for increased loads of the primary dye that, in combination with selected secondary dyes, provided enhanced PSD especially important for the lower energy ranges. Additional measurements were made with a newly-introduced PSD plastic EJ-276, that replaces the first commercially produced EJ-299. Comparative studies conducted with the new materials and EJ-309 liquids at large scale (up to 10 cm) show that current plastics may provide scintillation and PSD performance sufficient for the replacement of liquid scintillators. Comparison to stilbene single crystals compliments the information about the status of the solid-state materials recently developed for fast neutron detection applications.

  7. Water-equivalent plastic scintillation detectors for radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Beddar, A.S.

    1995-01-01

    Plastic scintillation dosimetry is a promising new method of measuring absorbed dose for high energy radiotherapy beams. The theory behind this concept will be presented along with the many advantages that it offers over conventional dosimetry. A variety of plastic scintillation detector systems have been recently developed for photon and electron dosimetry. These new water-equivalent detectors use small to miniature plastic scintillators. Their attractive feature lies in their use for field mapping in water, particularly for small fields, high dose gradient regions, and near inhomogeneous interfaces, or for in-vivo insertions. The physical characteristics and the dosimetric properties of these scintillators will be presented, discussed, and compared to the commonly used detectors in radiation dosimetry. The system first used successfully for multi-purpose radiotherapy field mapping, as well as other systems, will be described. The technical challenges of the design of these detectors including the optical coupling to small fibers will be discussed. One of the limitations, at the present time, is the radiation-induced light produced in the optical fibers that are used to transmit the signal to the photodetectors. The mechanisms of these spurious effects will be identified and discussed with emphasis on signal-to-noise improvements

  8. Deformed Shape Calculation of a Full-Scale Wing Using Fiber Optic Strain Data from a Ground Loads Test

    Science.gov (United States)

    Jutte, Christine V.; Ko, William L.; Stephens, Craig A.; Bakalyar, John A.; Richards, W. Lance

    2011-01-01

    A ground loads test of a full-scale wing (175-ft span) was conducted using a fiber optic strain-sensing system to obtain distributed surface strain data. These data were input into previously developed deformed shape equations to calculate the wing s bending and twist deformation. A photogrammetry system measured actual shape deformation. The wing deflections reached 100 percent of the positive design limit load (equivalent to 3 g) and 97 percent of the negative design limit load (equivalent to -1 g). The calculated wing bending results were in excellent agreement with the actual bending; tip deflections were within +/- 2.7 in. (out of 155-in. max deflection) for 91 percent of the load steps. Experimental testing revealed valuable opportunities for improving the deformed shape equations robustness to real world (not perfect) strain data, which previous analytical testing did not detect. These improvements, which include filtering methods developed in this work, minimize errors due to numerical anomalies discovered in the remaining 9 percent of the load steps. As a result, all load steps attained +/- 2.7 in. accuracy. Wing twist results were very sensitive to errors in bending and require further development. A sensitivity analysis and recommendations for fiber implementation practices, along with, effective filtering methods are included

  9. Evaluation of hollow fiber culture for large-scale production of mouse embryonic stem cell-derived hematopoietic stem cells.

    Science.gov (United States)

    Nakano, Yu; Iwanaga, Shinya; Mizumoto, Hiroshi; Kajiwara, Toshihisa

    2018-03-03

    Hematopoietic stem cells (HSCs) have the ability to differentiate into all types of blood cells and can be transplanted to treat blood disorders. However, it is difficult to obtain HSCs in large quantities because of the shortage of donors. Recent efforts have focused on acquiring HSCs by differentiation of pluripotent stem cells. As a conventional differentiation method of pluripotent stem cells, the formation of embryoid bodies (EBs) is often employed. However, the size of EBs is limited by depletion of oxygen and nutrients, which prevents them from being efficient for the production of HSCs. In this study, we developed a large-scale hematopoietic differentiation approach for mouse embryonic stem (ES) cells by applying a hollow fiber (HF)/organoid culture method. Cylindrical organoids, which had the potential for further spontaneous differentiation, were established inside of hollow fibers. Using this method, we improved the proliferation rate of mouse ES cells to produce an increased HSC population and achieved around a 40-fold higher production volume of HSCs in HF culture than in conventional EB culture. Therefore, the HF/organoid culture method may be a new mass culture method to acquire pluripotent stem cell-derived HSCs.

  10. Size Scaling and Bursting Activity in Thermally Activated Breakdown of Fiber Bundles

    KAUST Repository

    Yoshioka, Naoki

    2008-10-03

    We study subcritical fracture driven by thermally activated damage accumulation in the framework of fiber bundle models. We show that in the presence of stress inhomogeneities, thermally activated cracking results in an anomalous size effect; i.e., the average lifetime tf decreases as a power law of the system size tf ∼L-z, where the exponent z depends on the external load σ and on the temperature T in the form z∼f(σ/T3/2). We propose a modified form of the Arrhenius law which provides a comprehensive description of thermally activated breakdown. Thermal fluctuations trigger bursts of breakings which have a power law size distribution. © 2008 The American Physical Society.

  11. Nano-scale Biophysical and Structural Investigations on Intact and Neuropathic Nerve Fibers by Simultaneous Combination of Atomic Force and Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Gonzalo Rosso

    2017-08-01

    Full Text Available The links between neuropathies of the peripheral nervous system (PNS, including Charcot-Marie-Tooth1A and hereditary neuropathy with liability to pressure palsies, and impaired biomechanical and structural integrity of PNS nerves remain poorly understood despite the medical urgency. Here, we present a protocol describing simultaneous structural and biomechanical integrity investigations on isolated nerve fibers, the building blocks of nerves. Nerve fibers are prepared from nerves harvested from wild-type and exemplary PNS neuropathy mouse models. The basic principle of the designed experimental approach is based on the simultaneous combination of atomic force microscopy (AFM and confocal microscopy. AFM is used to visualize the surface structure of nerve fibers at nano-scale resolution. The simultaneous combination of AFM and confocal microscopy is used to perform biomechanical, structural, and functional integrity measurements at nano- to micro-scale. Isolation of sciatic nerves and subsequent teasing of nerve fibers take ~45 min. Teased fibers can be maintained at 37°C in a culture medium and kept viable for up to 6 h allowing considerable time for all measurements which require 3–4 h. The approach is designed to be widely applicable for nerve fibers from mice of any PNS neuropathy. It can be extended to human nerve biopsies.

  12. Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum.

    Science.gov (United States)

    Diakaridia, Sanogo; Pan, Yue; Xu, Pengbai; Zhou, Dengwang; Wang, Benzhang; Teng, Lei; Lu, Zhiwei; Ba, Dexin; Dong, Yongkang

    2017-07-24

    In distributed Brillouin optical fiber sensor when the length of the perturbation to be detected is much smaller than the spatial resolution that is defined by the pulse width, the measured Brillouin gain spectrum (BGS) experiences two or multiple peaks. In this work, we propose and demonstrate a technique using differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA) based on double-peak BGS to enhance small-scale events detection capability, where two types of single mode fiber (main fiber and secondary fiber) with 116 MHz Brillouin frequency shift (BFS) difference have been used. We have realized detection of a 5-cm hot spot at the far end of 24-km single mode fiber by employing a 50-cm spatial resolution DPP-BOTDA with only 1GS/s sampling rate (corresponding to 10 cm/point). The BFS at the far end of 24-km sensing fiber has been measured with 0.54 MHz standard deviation which corresponds to a 0.5°C temperature accuracy. This technique is simple and cost effective because it is implemented using the similar experimental setup of the standard BOTDA, however, it should be noted that the consecutive small-scale events have to be separated by a minimum length corresponding to the spatial resolution defined by the pulse width difference.

  13. Fiber Strength of Hi Nicalon(TM) S After Oxidation and Scale Crystallization in Si(OH)4 Saturated Steam (Postprint)

    Science.gov (United States)

    2017-02-06

    transmission electron microscopy. At 700°C and higher, if SiO2 glass scales got too thick they often dewetted the SiC fibers and would spheroidize... SiO2 glass wicked to the spheroids as fast as it formed on the dewetted SiC surface, causing faster oxidation. SiO2 crystallization to cristobalite... glass scales got too thick they often dewetted the SiC fibers and would spheroidize. SiO2 glass wicked to the spheroids as fast as it formed on the

  14. Large scale model experimental analysis of concrete containment of nuclear power plant strengthened with externally wrapped carbon fiber sheets

    International Nuclear Information System (INIS)

    Yang Tao; Chen Xiaobing; Yue Qingrui

    2005-01-01

    Concrete containment of Nuclear Power Station is the last shield structure in case of nuclear leakage during an accident. The experiment model in this paper is a 1/10 large-scale model of a real-sized prestressed reinforced concrete containment. The model containment was loaded by hydraulic pressure which simulated the design pressure during the accident. Hundreds of sensors and advanced data-collect systems were used in the test. The containment was first loaded to the damage pressure then strengthened with externally wrapping Carbon fiber sheet around the outer surface of containment structure. Experimental results indicate that CFRP system can greatly increase the capacity of concrete containment to endure the inner pressure. CFRP system can also effectively confine the deformation and the cracks caused by loading. (authors)

  15. POSSuMUS. A position sensitive scintillating muon SiPM detector

    International Nuclear Information System (INIS)

    Ruschke, Alexander

    2014-01-01

    The development of a modular designed large scale scintillation detector with a two-dimensional position sensitivity is presented in this thesis. This novel POsition Sensitive Scintillating MUon SiPM Detector is named POSSuMUS. The POSSuMUS detector is capable to determine the particle's position in two space dimensions with a fast trigger capability. Each module is constructed from two trapezoidal shaped plastic scintillators to form one rectangular shaped detector module. Both trapezoids are optically insulated against each other. In both trapezoids the scintillation light is collected by plastic fibers and guided towards silicon photomultipliers (SiPMs). SiPMs are light sensors which are capable to detect even smallest amounts of light. By combining several detector modules, position sensitive areas from 100 cm 2 to few m 2 are achievable with few readout channels. Therefore, POSSuMUS provides a cost effective detector concept. The position sensitivity along the trapezoidal geometry of one detector module is achieved by the path length dependent amount of detected light for crossing particles. The ratio of the light yields in both trapezoids is calculated. This value corresponds to the position of the particle traversing the detector. A spatial resolution in the order of several mm is foreseen. The position sensitivity along the scintillator module is determined by the propagation time of light to the SiPMs located on opposite sides of the detector. A spatial resolution of few cm is expected for this direction. The POSSuMUS detector is applicable as large area trigger detector with a two dimensional position information of crossing particles. This is suitable in detector tests of large area precesion detectors or for measuring the small angle scattering of cosmic muons. At the beginning of this thesis, the determination of important SiPM characteristics like the breakdown voltage is presented. In the course of this work the detector principle is proven by

  16. Study of micro pixel photon counters for a high granularity scintillator-based hadron calorimeter

    International Nuclear Information System (INIS)

    D'Ascenzo, N.; Eggemann, A.; Garutti, E.

    2007-11-01

    A new Geiger mode avalanche photodiode, the Micro Pixel Photon Counter (MPPC), was recently released by Hamamatsu. It has a high photo-detection efficiency in the 420 nm spectral region. This product can represent an elegant candidate for the design of a high granularity scintillator based hadron calorimeter for the International Linear Collider. In fact, the direct readout of the blue scintillation photons with a MPPC is a feasible techological solution. The readout of a plastic scintillator by a MPPC, both mediated by the traditional wavelength shifting fiber, and directly coupled, has been systematically studied. (orig.)

  17. Scintillating-fibre calorimetry

    International Nuclear Information System (INIS)

    Livan, M.; Vercesi, V.; Wigmans, R.

    1995-01-01

    In the past decade, calorimetry based on scintillating plastic fibres as active elements was developed from a conceptual idea to a mature detector technology, which is nowadays widely applied in particle physics experiments. This development and the performance characteristics of representative calorimeters, both for the detection of electromagnetic and hadronic showers, are reviewed. We also discuss new information on shower development processes in dense matter and its application to calorimetric principles that has emerged from some very thorough studies that were performed in the framework of this development. (orig.)

  18. Using Distributed Fiber Optic Sensing to Monitor Large Scale Permafrost Transitions: Preliminary Results from a Controlled Thaw Experiment

    Science.gov (United States)

    Ajo Franklin, J. B.; Wagner, A. M.; Lindsey, N.; Dou, S.; Bjella, K.; Daley, T. M.; Freifeld, B. M.; Ulrich, C.; Gelvin, A.; Morales, A.; James, S. R.; Saari, S.; Ekblaw, I.; Wood, T.; Robertson, M.; Martin, E. R.

    2016-12-01

    In a warming world, permafrost landscapes are being rapidly transformed by thaw, yielding surface subsidence and groundwater flow alteration. The same transformations pose a threat to arctic infrastructure and can induce catastrophic failure of the roads, runways, and pipelines on which human habitation depends. Scalable solutions to monitoring permafrost thaw dynamics are required to both quantitatively understand biogeochemical feedbacks as well as to protect built infrastructure from damage. Unfortunately, permafrost alteration happens over the time scale of climate change, years to decades, a decided challenge for testing new sensing technologies in a limited context. One solution is to engineer systems capable of rapidly thawing large permafrost units to allow short duration experiments targeting next-generation sensing approaches. We present preliminary results from a large-scale controlled permafrost thaw experiment designed to evaluate the utility of different geophysical approaches for tracking the cause, precursors, and early phases of thaw subsidence. We focus on the use of distributed fiber optic sensing for this challenge and deployed distributed temperature (DTS), strain (DSS), and acoustic (DAS) sensing systems in a 2D array to detect thaw signatures. A 10 x 15 x 1 m section of subsurface permafrost was heated using an array of 120 downhole heaters (60 w) at an experimental site near Fairbanks, AK. Ambient noise analysis of DAS datasets collected at the plot, coupled to shear wave inversion, was utilized to evaluate changes in shear wave velocity associated with heating and thaw. These measurements were confirmed by seismic surveys collected using a semi-permanent orbital seismic source activated on a daily basis. Fiber optic measurements were complemented by subsurface thermistor and thermocouple arrays, timelapse total station surveys, LIDAR, secondary seismic measurements (geophone and broadband recordings), timelapse ERT, borehole NMR, soil

  19. Multifrequency techniques for studying interplanetary scintillations

    International Nuclear Information System (INIS)

    Woo, R.

    1975-01-01

    Rytov's approximation or the method of smooth perturbations is utilized to derive the temporal frequency spectra of the amplitude and phase fluctuations of multifrequency plane and spherical waves propagating in the interplanetary medium and solar corona. It is shown that multifrequency observations of interplanetary scintillations using either compact radio stars or spacecraft radio signals are desirable because the correlation of the multifrequency waves yields additional independent measurements of the solar wind and turbulence. Measurements of phase fluctuations are also desirable because, unlike amplitude fluctuations, they provide information on the full range of scale sizes for the electron density fluctuations. It is shown that a coherent dual-frequency radio system is particularly useful in making such measurements. In addition to providing a means for interpreting observations of multifrequency interplanetary scintillations, the analysis is also essential for estimating the effects of solar corona turbulence on the communications and navigation of a spacecraft whose line-of-sight path passes close to the Sun

  20. Plastic scintillator detector for pulsed flux measurements

    Science.gov (United States)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  1. Plastic scintillator detector for pulsed flux measurements

    International Nuclear Information System (INIS)

    Kadilin, V V; Kaplun, A A; Taraskin, A A

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6 LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results. (paper)

  2. Test of long scintillating counter prototypes for CDF-II

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chirikov-Zorin, I.; Pukhov, O.; Incagli, M.; Leone, S.; Menzione, A.; Pauletta, G.; Tokar, S.

    2000-01-01

    New type long (up to 3 m) scintillating counter prototypes, developed for CDF-II, have been tested. The shift-spectrum fiber ribbons were used for light collection, and modern ultra compact photomultipliers R5600 were used for light detection. The efficiency for m.i.p. was excellent for all prototypes. The light yield from the far end of the counters was found to be more than 20 photoelectrons

  3. Hybrid scintillators for neutron discrimination

    Science.gov (United States)

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  4. Liquid scintillation in medical diagnosis

    International Nuclear Information System (INIS)

    Painter, K.

    1976-01-01

    With the tremendous increase in the application of radioassay, particularly radioimmunoassay, in the clinical laboratory liquid scintillation counting became an indispensable tool in diagnostic medicine. Few publications, however, have concerned themselves with problem areas which occur with the method in the clinical laboratory. The purpose of this presentation is to summarize our experiences with the liquid scintillation technique in the clinical situation

  5. A user's guide to scintillation

    International Nuclear Information System (INIS)

    Hewish, A.

    1989-01-01

    During the past four decades scintillation methods have been used for remote-sensing distant plasmas and for providing high angular resolution in radioastronomy. This brief review illustrates some of the techniques employed and explains the underlying theory in simple physical terms; it is not intended to be a complete survey of all applications of scintillation. (author)

  6. Laser Beam Scintillation with Applications

    CERN Document Server

    Andrews, Larry C; Young, Cynthia

    2001-01-01

    Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.

  7. Scintillation light transport and detection

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Lillie, R.A.

    1986-08-01

    The MORSE neutron gamma-ray transport code has been modified to allow for the transport of scintillation light. This modified code is used to analyze the light collection characteristics of a large liquid scintillator module (18 x 18 x 350 cm 3 )

  8. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  9. Scintillation properties of GSO

    International Nuclear Information System (INIS)

    Melcher, C.L.; Schweitzer, J.S.; Utsu, T.; Akiyama, S.

    1990-01-01

    The timing properties of Gd 2 SiO 5 :Ce (GSO) single crystal scintillators have previously been evaluated for positron emission tomography applications. The measured time resolution, however, was worse than expected from calculations based on photoelectron yield and a 60 nanosecond exponential decay constant, leading us to further investigate GSO's basic properties. With a time-correlated-single-photon technique, the authors have found two decay components, one of 56 ns and one of 600 ns, the latter containing 10--15% of the total scintillation output. This may explain the difference between the experimental and theoretical time resolutions and confirms a previous hypothesis of a long decay component. In addition, the authors have found that each component's decay constant strongly depends on the cerium concentration. The primary component varies from ∼ 20 ns to ∼ 190 ns and the secondary component varies from ∼ 70 ns to ∼ 1200 ns as the cerium concentration is varied from 5.0 mol% to 0.1 mol%

  10. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera

    Science.gov (United States)

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G.; Nagarkar, Vivek V.

    2011-06-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99 m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional “straight-cut” (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

  11. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera.

    Science.gov (United States)

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G; Nagarkar, Vivek V

    2011-06-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional "straight-cut" (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

  12. Study and understanding of n/γ discrimination processes in organic plastic scintillators

    International Nuclear Information System (INIS)

    Hamel, Matthieu; Blanc, Pauline; Rocha, Licinio; Normand, Stephane; Pansu, Robert

    2013-01-01

    For 50 years, it was assumed that unlike liquid scintillators or organic crystals, plastic scintillators were not able to discriminate fast neutrons from gamma. In this work, we will demonstrate that triplet-triplet annihilations (which are responsible of n/γ discrimination) can occur even in plastic scintillators, following certain conditions. Thus, the presentation will deal with the chemical preparation, the characterization and the comparison of n/γ pulse shape discrimination of various plastic scintillators. To this aim, scale-up of the process allowed us to prepare a O 100 mm x*110 mm thick. (authors)

  13. Hollow fiber membrane contactors for CO2 capture: modeling and up-scaling to CO2 capture for an 800 MWe coal power station

    NARCIS (Netherlands)

    Kimball, E.; Al-Azki, A.; Gomez, A.; Goetheer, E.L.V.; Booth, N.; Adams, D.; Ferre, D.

    2014-01-01

    A techno-economic analysis was completed to compare the use of Hollow Fiber Membrane Modules (HFMM) with the more conventional structured packing columns as the absorber in amine-based CO2capture systems for power plants. In order to simulate the operation of industrial scale HFMMsystems, a

  14. Newly invented biobased materials from low-carbon, diverted waste fibers: research methods, testing, and full-scale application in a case study structure

    Science.gov (United States)

    Julee A Herdt; John Hunt; Kellen Schauermann

    2016-01-01

    This project demonstrates newly invented, biobased construction materials developed by applying lowcarbon, biomass waste sources through the Authors’ engineered fiber processes and technology. If manufactured and applied large-scale the project inventions can divert large volumes of cellulose waste into high-performance, low embodied energy, environmental construction...

  15. Basic study on radiation distribution sensing with normal optical fiber

    International Nuclear Information System (INIS)

    Naka, R.; Kawarabayashi, J.; Uritani, A.; Iguchi, T.; Kaneko, J.; Takeuchi, H.; Kakuta, T.

    2000-01-01

    Recently, some methods of radiation distribution sensing with optical fibers have been proposed. These methods employ scintillating fibers or scintillators with wavelength-shifting fibers. The positions of radiation interactions are detected by applying a time-of-flight (TOF) technique to the scintillation photon propagation. In the former method, the attenuation length for the scintillation photons in the scintillating fiber is relatively short, so that the operating length of the sensor is limited to several meters. In the latter method, a radiation distribution cannot continuously be obtained but discretely. To improve these shortcomings, a normal optical fiber made of polymethyl methacrylate (PMMA) is used in this study. Although the scintillation efficiency of PMMA is very low, several photons are emitted through interaction with a radiation. The fiber is transparent for the emitted photons to have a relatively long operating length. A radiation distribution can continuously be obtained. This paper describes a principle of the position sensing method based on the time of flight technique and preliminary results obtained for 90 Sr- 90 Y beta rays, 137 Cs gamma rays, and 14 MeV neutrons. The spatial resolutions for the above three kinds of radiations are 0.30 m, 0.37 m, 0.13 m, and the detection efficiencies are 1.1 x 10 -3 , 1.6 x 10 -7 , 5.4 x 10 -6 , respectively, with 10 m operation length. The results of a spectroscopic study on the optical property of the fiber are also described. (author)

  16. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    Science.gov (United States)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of

  17. In Situ Strength Model for Continuous Fibers and Multi-Scale Modeling the Fracture of C/SiC Composites

    Science.gov (United States)

    Zhang, Sheng; Gao, Xiguang; Song, Yingdong

    2018-04-01

    A new in situ strength model of carbon fibers was developed based on the distribution of defects to predict the stress-strain response and the strength of C/SiC composites. Different levels of defects in the fibers were considered in this model. The defects in the fibers were classified by their effects on the strength of the fiber. The strength of each defect and the probability that the defect appears were obtained from the tensile test of single fibers. The strength model of carbon fibers was combined with the shear-lag model to predict the stress-strain responses and the strengths of fiber bundles and C/SiC minicomposites. To verify the strength model, tensile tests were performed on fiber bundles and C/SiC minicomposites. The predicted and experimental results were in good agreement. Effects of the fiber length, the fiber number and the heat treatment on the final strengths of fiber bundles and C/SiC minicomposites were also discussed.

  18. Density gradients in the solar plasma observed by interplanetary scintillation

    International Nuclear Information System (INIS)

    Gapper, G.R.; Hewish, A.

    1981-01-01

    A new technique is described which overcomes the limitation set by Fresnel filtering in previous IPS studies of the small-scale density irregularities in the solar plasma. Phase gradients introduced by irregularities larger than the Fresnel limit cause transverse displacements of the small-scale scintillation pattern. In the presence of the solar wind, such refraction effects may be revealed by simultaneous measurements of intensity scintillation at two radio frequencies. Observations show that the structure corresponding to temporal frequencies approximately 0.02 Hz is in agreement with an extrapolation of the Kolmogorov spectrum derived from spacecraft data at lower frequencies. (author)

  19. Buried plastic scintillator muon telescope (BATATA)

    International Nuclear Information System (INIS)

    Alfaro, R.; De Donato, C.; D'Olivo, J.C.; Guzman, A.; Medina-Tanco, G.; Moreno Barbosa, E.; Paic, G.; Patino Salazar, E.; Salazar Ibarguen, H.; Sanchez, F.A.; Supanitsky, A.D.; Valdes-Galicia, J.F.; Vargas Trevino, A.D.; Vergara Limon, S.; Villasenor, L.M.

    2010-01-01

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm 2 . Each layer is 4m 2 and is composed by 49 rectangular strips of 4cmx2m, oriented at a 90 0 angle with respect to its companion layer, which gives an xy-coincidence pixel of 4x4cm 2 . The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2μs data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  20. Buried plastic scintillator muon telescope (BATATA)

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro, R. [Inst. de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); De Donato, C.; D' Olivo, J.C.; Guzman, A.; Medina-Tanco, G. [Inst. de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Moreno Barbosa, E. [Fac. de Ciencias Fisico Matematicas, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Paic, G.; Patino Salazar, E. [Inst. de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Salazar Ibarguen, H. [Fac. de Ciencias Fisico Matematicas, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Sanchez, F.A., E-mail: federico.sanchez@nucleares.unam.m [Inst. de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Supanitsky, A.D. [Inst. de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Valdes-Galicia, J.F. [Inst. de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F., C.P. 04510 (Mexico); Vargas Trevino, A.D.; Vergara Limon, S. [Fac. de Ciencias de la Electronica, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Villasenor, L.M. [Inst. de Fisica y Matematicas, Universidad Michoacana de San Nicolas Hidalgo Morelia (Mexico); Observatorio Pierre Auger, Av. San Martin Norte 304 (5613) Malarguee, Prov. Mendoza (Argentina)

    2010-05-21

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm{sup 2}. Each layer is 4m{sup 2} and is composed by 49 rectangular strips of 4cmx2m, oriented at a 90{sup 0} angle with respect to its companion layer, which gives an xy-coincidence pixel of 4x4cm{sup 2}. The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2{mu}s data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  1. Temperature quenching in LAB based liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, A.; Zuber, K. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); Hans, S.; Yeh, M. [Brookhaven National Laboratory, Chemistry Devision, Upton, NY (United States); Junghans, A.R.; Koegler, T.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Krosigk, B. v. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); University of British Columbia, Department of Physics and Astronomy, Vancouver, BC (Canada); Lozza, V. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa (Portugal)

    2018-01-15

    The effect of temperature changes on the light output of LAB based liquid scintillator is investigated in a range from -5 to 30 C with α-particles and electrons in a small scale setup. Two PMTs observe the scintillator liquid inside a cylindrically shaped aluminum cuvette that is heated or cooled and the temperature dependent PMT sensitivity is monitored and corrected. The α-emitting isotopes in dissolved radon gas and in natural Samarium (bound to a LAB solution) excite the liquid scintillator mixtures and changes in light output with temperature variation are observed by fitting light output spectra. Furthermore, also changes in light output by compton electrons, which are generated from external calibration γ-ray sources, is analysed with varying temperature. Assuming a linear behaviour, a combined negative temperature coefficient of (-0.29 ± 0.01)%/ C is found. Considering hints for a particle type dependency, electrons show (-0.17 ± 0.02)%/ C, whereas the temperature dependency seems stronger for α-particles, with (-0.35 ± 0.03)%/ C. Due to a high sampling rate, a pulse shape analysis can be performed and shows an enhanced slow decay component at lower temperatures, pointing to reduced non-radiative triplet state de-excitations. (orig.)

  2. Scintillation 1024-channel hodoscope

    International Nuclear Information System (INIS)

    Kotov, I.V.; Krasnokutskij, R.N.; Kurbakov, V.I.; Shchukin, A.V.

    1993-01-01

    Flow diagram of voltage divider for photomultiplier used in scintillation multichannel hodoscope is described. The suggested diagram of the divider allows to optimize potential distribution at the innput chamber (photocathode - modulator - first dynode) and in the tail segment of the divider (the nineth dynode-anode). Adjustment of high voltage is conducted using multirotational potentiometer switched in series with the divider. Amplifier-limiter with 80 mkA threshold set at voltage comparator is placed at divide plate. Threshold of its sensitivity constitutes 80 mkA. Hodoscope supply system consists of supply sources of comparators (+-6V) four sources of auxiliary supply sources of the last dynodes of photomultipliers and high-voltage source. Current consumption constitutes 25 A by - 6V, 23 A by + 6 V for the whole hodoscope and up to 200 mA from high-voltage source for one plane. Additional charging sources have constant consumption equal to ∼ 20 mA

  3. Encapsulated scintillation detector

    International Nuclear Information System (INIS)

    Toepke, I.L.

    1982-01-01

    A scintillation detector crystal is encapsulated in a hermetically sealed housing having a glass window. The window may be mounted in a ring by a compression seal formed during cooling of the ring and window after heating. The window may be chemically bonded to the ring with or without a compression seal. The ring is welded to the housing along thin weld flanges to reduce the amount of weld heat which must be applied. A thin section is provided to resist the flow of welding heat to the seal between the ring and the window thereby forming a thermal barrier. The thin section may be provided by a groove cut partially through the wall of the ring. A layer of PTFE between the tubular body and the crystal minimizes friction created by thermal expansion. Spring washers urge the crystal towards the window. (author)

  4. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    Olson, R.E.; Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  5. Properties of scintillator solutes

    International Nuclear Information System (INIS)

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, λ avg , at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, λ max , and emission λ avg values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs

  6. Radiation damage in plastic scintillators

    International Nuclear Information System (INIS)

    Majewski, S.

    1990-01-01

    Results of radiation damage studies in plastic scintillators are reviewed and critically analyzed from the point of view of applications of plastic scintillators in calorimetric detectors for the SSC. Damage to transmission and to fluorescent yield in different conditions is discussed. New directions in R ampersand D are outlined. Several examples are given of the most recent data on the new scintillating materials made with old and new plastics and fluors, which are exhibiting significantly improved radiation resistance. With a present rate of a vigorous R D programme, the survival limits in the vicinity of 100 MRad seem to be feasible within a couple of years

  7. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1977-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  8. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1976-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  9. Applications of liquid scintillation tubes

    International Nuclear Information System (INIS)

    Broga, D.W.

    1977-01-01

    A new cocktail containing device for liquid scintillation counting, the scintillation tube, consists of a two-layered plastic bag which is heatsealed after the cocktail and sample have been placed in it. It is then placed in a carrying vial and counted in a conventional liquid scintillation counter. These tubes have proved to be a practical and economical alternative to vials. Some of their advantages are elimination of absorption problems, transparency, lower background and higher counting efficiency, low breakage danger and savings in waste disposal costs. Two applications for which the tubes are particularly suitable are the counting of laboratory swipes and urine analysis. (author)

  10. An organic dye in a polymer matrix – A search for a scintillator with long luminescent lifetime

    DEFF Research Database (Denmark)

    Lindvold, Lars René; Beierholm, Anders Ravnsborg; Andersen, Claus Erik

    2010-01-01

    Fiber-coupled organic plastic scintillators enable dose rate monitoring in conjunction with pulsed radiation sources like linear medical accelerators. The accelerator, however, generates a significant amount of stray ionizing radiation. This radiation excites the long optical fiber cable (15–20 m...

  11. Development of a large area thermal neutron detector based on a scintillator

    International Nuclear Information System (INIS)

    Engels, Ralf

    2012-01-01

    In the present work, the development and construction of a detector prototype based on wavelength shifting fiber in combination with a scintillator has been investigated and optimized. This development aims at an alternative for large area neutron detectors based on "3He detectors, which was the main construction in the past. After the study of the components and assemblies, such as: the scintillator, the wavelength-shifting-fibers and available photomultiplier tubes, the construction of the first prototype module begun. The neutron converter was selected as a "6LiF/ZnS scintillator, which produces a big light yield per absorbed neutron. The prototype itself is square and has an edge length of 30 cm in combination with two orthogonal layers of crossed wavelength-shifting-fibers. The top fiber layer, which is closer to the "6LiF/ZnS top scintillator produces the x-coordinates and the lower layer produces the y-coordinates for each event. In the prototype, MSJ-fibers from the company Kuraray were used with 1 mm diameter and spacing in the top layer of 1.5 mm and 1 mm in the lower layer. Due to the orthogonal arrangement of the wires in the two layers, one may identify where the neutron was absorbed in the scintillator and produced the light yield. In order to reduce the light loss of the absorbed photons inside the fibers, a bending radius of greater than 20 mm was used and achieved by warming up the fibers to 80 C during the bending process. The increased temperature reduces the crack formation in the fibers which increases the light loss. At this time it is expected that a photomultiplier from Hamamatsu with 256 individual pixels for readout will be used. This H9500 flat panel photomultiplier has the advantage of readout of all fibers of the prototype in one photomultiplier housing. In combination with integrated readout electronics one can minimize the homogeneity/gain differences of the photocathode pixels, the different light loss in each fiber, and the gain

  12. Photon statistics in scintillation crystals

    Science.gov (United States)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  13. Radiation Damage in Scintillating Crystals

    CERN Document Server

    Zhu Ren Yuan

    1998-01-01

    Crystal Calorimetry in future high energy physics experiments faces a new challenge to maintain its precision in a hostile radiation environment. This paper discusses the effects of radiation damage in scintillating crystals, and concludes that the predominant radiation damage effect in crystal scintillators is the radiation induced absorption, or color center formation, not the loss of the scintillation light yield. The importance of maintaining crystal's light response uniformity and the feasibility to build a precision crystal calorimeter under radiation are elaborated. The mechanism of the radiation damage in scintillating crystals is also discussed. While the damage in alkali halides is found to be caused by the oxygen or hydroxyl contamination, it is the structure defects, such as oxygen vacancies, cause damage in oxides. Material analysis methods used to reach these conclusions are presented in details.

  14. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Jagiello, J.; Lipinska, L. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2015-04-07

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (F{sub rep}) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest F{sub rep} was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PM fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.

  15. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  16. Alkali metal hafnium oxide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward

    2018-05-08

    The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A2HfO3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  17. Ionospheric Scintillation Effects on GPS

    Science.gov (United States)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  18. Scintillation counter based radiation dosimeter

    International Nuclear Information System (INIS)

    Shin, Jeong Hyun

    2009-02-01

    The average human exposure per year is about 240mrem which is come from Radon and human body and terrestrial and cosmic radiation and man-made source. Specially radiation exposure through air from environmental radiation sources is 80mrem/yr(= 0.01mR/hr) which come from Terrestrial and cosmic radiation. Radiation dose is defined as energy deposit/mass. There are two major methods to detect radiation. First method is the energy integration using Air equivalent material like GM counter wall material. Second method is the spectrum to dose conversion method using NaI(Tl), HPGe. These two methods are using generally to detect radiation. But these methods are expensive. So we need new radiation detection method. The research purpose is the development of economical environmental radiation dosimeter. This system consists of Plastic/Inorganic scintillator and Si photo-diode based detector and counting based circuitry. So count rate(cps) can be convert to air exposure rate(R/hr). There are three major advantages in this system. First advantages is no high voltage power supply like GM counter. Second advantage is simple electronics. Simple electronics system can be achieved by Air-equivalent scintillation detector with Al filter for the same detection efficiency vs E curve. From former two advantages, we can know the most important advantages of the this system. Third advantage is economical system. The price of typical GM counter is about $1000. But the price of our system is below $100 because of plastic scintillator and simple electronics. The role of scintillation material is emitting scintillation which is the flash of light produced in certain materials when they absorb ionizing radiation. Plastic scintillator is organic scintillator which is kind of hydrocarbons. The special point are cheap price, large size production(∼ton), moderate light output, fast light emission(ns). And the role of Al filter is equalizing counting efficiency of air and scintillator for

  19. Test of multi-anode photomultiplier tubes for the LHCb scintillator pad detector

    CERN Document Server

    Aguiló, Ernest; Comerma-Montells, A; Garrido, Lluis; Gascon, David; Graciani, Ricardo; Grauges, Eugeni; Vilasis Cardona, Xavier; Xirgu, Xavier; Bohner, Gerard; Bonnefoy, Romeo; Borras, David; Cornat, Remi; Crouau, Michel; Deschamps, Olivier; Jacquet, Philippe; Lecoq, Jacques; Monteil, Stephane; Perret, Pascal; Reinmuth, Guy

    2005-01-01

    The LHCb experiment (The LHCb Technical Proposal, CERN/LHCC 98-4) is designed to study B meson physics in the LHC proton-proton collider at CERN. The Scintillator Pad Detector (SPD) has been designed to complete the calorimeter information performing an e/gamma identification for the experiment level-0 trigger system. The detection technology consists in transmitting scintillation light by means of both Wavelength Shifting and clear fibers to fast multi- anode photomultiplier tubes. In this paper, it is described the instrumentation and setup used to characterize the baseline photomultiplier solution (Hamamatsu R5900-00-M64) together with the scintillators and optical fibers for the SPD at LHCb.

  20. Interstellar Scintillation and Scattering of Micro-arc-second AGN

    Directory of Open Access Journals (Sweden)

    David L. Jauncey

    2016-11-01

    Full Text Available The discovery of the first quasar 3C 273 led directly to the discovery of their variability at optical and radio wavelengths. We review the radio variability observations, in particular the variability found at frequencies below 1 GHz, as well as those exhibiting intra-day variability (IDV at cm wavelengths. Observations have shown that IDV arises principally from scintillation caused by scattering in the ionized interstellar medium of our Galaxy. The sensitivity of interstellar scintillation towards source angular sizes has provided a powerful tool for studying the most compact components of radio-loud AGN at microarcsecond and milliarcsecond scale resolution.

  1. PROTVINO: Mass-production of scintillator tiles by injection moulding

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The technique of the segmented sandwich-calorimeters with wavelength-shifting readout, especially its large-scale application in big detectors, requires enormous quantities of a cheap scintillator tiles of moderate dimensions (20 x 20 cm 2 ). Initial trials carried out in the Institute for High Energy Physics (IHEP), Protvino, Russia almost ten years ago showed that manufacturing such scintillator tiles was possible using an ordinary commercially-available granulated optical polystyrene, an existing technology of plastic dyeing, and a well-known process of the injection moulding, used to produce plastic goods (like buttons!)

  2. Gaseous photomultipliers for the readout of scintillators and detection Cherenkov radiation

    International Nuclear Information System (INIS)

    Peskov, V.; Borovik-Romanov, A.

    1993-11-01

    The latest achievements in the development of gaseous detectors for registering UV and visible photons are described. Possible modifications of their design for some particular applications such as the readout of crystal scintillators. noble liquids, fibers and for large area Cherenkov detectors are discussed

  3. Neutrons detection by scintillation; Detection de neutrons par scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Giraudon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-01-15

    The absence of charge of neutrons and their elevated penetration power make difficult their detection. Techniques vary otherwise with the energy of the particle. The author proposes the realization of a scintillation detector with a big volume of liquid scintillator and containing boron for the detection of slowing-down neutrons in the domain of intermediate energies from 1 to 10{sup 5} eV about. (M.B.) [French] L'absence de charge du neutron et son pouvoir de penetration eleve rendent difficile sa detection. Les techniques par ailleurs varient avec l'energie de cette particule. L'auteur propose la realisation d'un detecteur a scintillations comprenant un grand volume de scintillateur liquide et contenant du bore pour la detection des neutrons en ralentissement dans le domaine des energies intermediaires de 1 a 10{sup 5} eV environ. (M.B.)

  4. Cherenkov and scintillation light separation in organic liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D. [University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Yeh, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-12-15

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ{sub r} = 0.72 ± 0.33 ns. (orig.)

  5. Cherenkov and scintillation light separation in organic liquid scintillators

    International Nuclear Information System (INIS)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D.; Yeh, M.

    2017-01-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns. (orig.)

  6. Neutrons detection by scintillation; Detection de neutrons par scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Giraudon, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-01-15

    The absence of charge of neutrons and their elevated penetration power make difficult their detection. Techniques vary otherwise with the energy of the particle. The author proposes the realization of a scintillation detector with a big volume of liquid scintillator and containing boron for the detection of slowing-down neutrons in the domain of intermediate energies from 1 to 10{sup 5} eV about. (M.B.) [French] L'absence de charge du neutron et son pouvoir de penetration eleve rendent difficile sa detection. Les techniques par ailleurs varient avec l'energie de cette particule. L'auteur propose la realisation d'un detecteur a scintillations comprenant un grand volume de scintillateur liquide et contenant du bore pour la detection des neutrons en ralentissement dans le domaine des energies intermediaires de 1 a 10{sup 5} eV environ. (M.B.)

  7. Hollow Fiber Membrane Contactors for CO2 Capture: Modeling and Up-Scaling to CO2 Capture for an 800 MWe Coal Power Station

    Directory of Open Access Journals (Sweden)

    Kimball Erin

    2014-11-01

    Full Text Available A techno-economic analysis was completed to compare the use of Hollow Fiber Membrane Modules (HFMM with the more conventional structured packing columns as the absorber in amine-based CO2 capture systems for power plants. In order to simulate the operation of industrial scale HFMM systems, a two-dimensional model was developed and validated based on results of a laboratory scale HFMM. After successful experiments and validation of the model, a pilot scale HFMM was constructed and simulated with the same model. The results of the simulations, from both sizes of HFMM, were used to assess the feasibility of further up-scaling to a HFMM system to capture the CO2 from an 800 MWe power plant. The system requirements – membrane fiber length, total contact surface area, and module volume – were determined from simulations and used for an economic comparison with structured packing columns. Results showed that a significant cost reduction of at least 50% is required to make HFMM competitive with structured packing columns. Several factors for the design of industrial scale HFMM require further investigation, such as the optimal aspect ratio (module length/diameter, membrane lifetime, and casing material and shape, in addition to the need to reduce the overall cost. However, HFMM were also shown to have the advantages of having a higher contact surface area per unit volume and modular scale-up, key factors for applications requiring limited footprints or flexibility in configuration.

  8. Search for missing baryons through scintillation

    International Nuclear Information System (INIS)

    Habibi, F.

    2011-06-01

    Cool molecular hydrogen H 2 may be the ultimate possible constituent to the Milky-Way missing baryon. We describe a new way to search for such transparent matter in the Galactic disc and halo, through the diffractive and refractive effects on the light of background stars. By simulating the phase delay induced by a turbulent medium, we computed the corresponding illumination pattern on the earth for an extended source and a given passband. We show that in favorable cases, the light of a background star can be subjected to stochastic fluctuations of the order of a few percent at a characteristic time scale of a few minutes. We have searched for scintillation induced by molecular gas in visible dark nebulae as well as by hypothetical halo clumpuscules of cool molecular hydrogen (H 2 -He) during two nights, using the NTT telescope and the IR SOFI detector. Amongst a few thousands of monitored stars, we found one light-curve that is compatible with a strong scintillation effect through a turbulent structure in the B68 nebula. Because no candidate were found toward the SMC (Small Magellan Cloud), we are able to establish upper limits on the contribution of gas clumpuscules to the Galactic halo mass. We show that the short time-scale monitoring of a few 10 6 star*hour in the visible band with a >4 m telescope and a fast readout camera should allow one to interestingly quantify or constrain the contribution of turbulent molecular gas to the Galactic halo. (author)

  9. Feasibility Study on Fiber-optic Radiation Sensor for Remote Gamma-ray Spectroscopy

    International Nuclear Information System (INIS)

    Jeon, Hyesu; Jang, Kyoung Won; Shin, Sang Hun and others

    2014-01-01

    In this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors. As a result, the BGO was suitable for the sensing probe of fiber-optic radiation sensor due to its high scintillation output and exact photoelectric peak for the gamma-ray energy. The basic principle of radiation detection is to detect the signals caused by interactions between radiations and materials. There are various types of radiation detectors depending on types of radiation to be detected and physical quantities to be measured. As one of the radiation detectors, a fiber-optic radiation sensor using a scintillator and an optical fiber has two advantages such as no space restraint and remote sensing. Moreover, in nuclear environments, this kind of sensor has immunities for electromagnetic field, temperature, and pressure. Thus, the fiber-optic radiation sensor can be used in various fields including nondestructive inspection, radioactive waste management, nuclear safety, radiodiagnosis and radiation therapy. As a fundamental study of the fiber-optic radiation sensor for remote gamma-ray spectroscopy, in this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors

  10. Study of New FNAL-NICADD Extruded Scintillator as Active Media of Large EMCal of ALICE at LHC

    CERN Document Server

    Grachov, Oleg A.; Pla-Dalmau, A.; Bross, A.; Rykalin, V.

    2006-01-01

    The current conceptual design of proposed Large EMCal of ALICE at LHC is based largely on the scintillating mega-tile/fiber technology implemented in CDF Endplug upgrade project and in both barrel and endcap electromagnetic calorimeters of the STAR. The cost of scintillating material leads us to the choice of extruded polystyrene based scintillator, which is available in new FNAL-NICADD facility. Result of optical measurements, such as light yield and light yield variation, show that it is possible to use this material as active media of Large EMCal of ALICE at LHC.

  11. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    Energy Technology Data Exchange (ETDEWEB)

    Prange, Micah P. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Xie, YuLong [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Campbell, Luke W. [National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Gao, Fei [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA; Kerisit, Sebastien [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

    2017-12-21

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of the model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. Details of the Monte Carlo model are presented along with results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.

  12. Collection of scintillation light from small BGO crystals

    International Nuclear Information System (INIS)

    Cherry, S.R.; Shao, Y.; Tornai, M.P.; Siegel, S.; Ricci, A.R.; Phelps, M.E.

    1995-01-01

    The authors propose to develop a high resolution positron emission tomography (PET) detector designed for animal imaging. The detector consists of a 2-D array of small bismuth germanate (BGO) crystals coupled via optical fibers to a multi-channel photomultiplier tube (MC-PMT). Though this approach offers several advantages over the conventional BGO block design, it does require that a sufficient number of scintillation photons be transported from the crystal, down the fiber and into the PMT. In this study the authors use simulations and experimental data to determine how to maximize the signal reaching the PMT. This involves investigating factors such as crystal geometry, crystal surface treatment, the use of reflectors, choice of optical fiber, coupling of crystals to the optical fiber and optical fiber properties. Their results indicate that using 2 x 2 x 10 mm BGO crystals coupled to 30 cm of clad optical fiber, roughly 50 photoelectrons are produced at the PMT photocathode for a 511 keV interaction. This is sufficient to clearly visualize the photopeak and provide adequate timing resolution for PET. Based on these encouraging results, a prototype detector will now be constructed

  13. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  14. Development of radiation hard scintillators

    International Nuclear Information System (INIS)

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G.; Blackburn, R.

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro

  15. Comparative evaluation of efficacy of three treatment modalities – tetracycline fibers, scaling and root planing, and combination therapy: A clinical study

    Directory of Open Access Journals (Sweden)

    Aashima Bajaj Dang

    2016-01-01

    Full Text Available Background: Tetracycline is one of the primary antibiotics prescribed for antimicrobial therapy in periodontics. It has a broad spectrum of activity being effective against most bacteria as well as spirochetes. Due to limitations of systemic drug therapy, recent formulations of the drug for local administration in the subgingival area have been introduced, including collagen fibers impregnated with tetracycline. Aims and Objective: To compare the effectiveness of tetracycline fibers alone or in combination with scaling and root planing (SRP on clinical parameters in chronic periodontitis patients. Materials and Methods: A total of twenty patients comprising of both sexes in the age group of 35-60 years with chronic periodontitis were selected. Split-mouth design was used, and three teeth from each patient with periodontal pocket measuring > 5 mm were selected which were treated with different treatment modality. They were randomly divided into site A (SRP, site B (tetracycline fibers only, and site C (combination therapy. Clinical parameters of plaque index (PI, gingival index (GI, pocket probing depth, and clinical attachment level (CAL were recorded at 0, 30, and 45 days. The data obtained was compiled and put to statistical analysis. Results: All the three groups showed improvement in PI, GI, probing pocket depth, and CAL. Results of the study showed greater improvements in clinical parameters in Group C compared to Group A and Group B. Conclusion: The results indicate that the adjunctive use of tetracycline fibers with SRP is a clinically effective and simple nonsurgical treatment method to improve periodontal health.

  16. VHF Scintillation in an Artificially Heated Ionosphere

    Science.gov (United States)

    Suszcynsky, D. M.; Layne, J.; Light, M. E.; Pigue, M. J.; Rivera, L.

    2017-12-01

    As part of an ongoing project to characterize very-high-frequency (VHF) radio wave propagation through structured ionospheres, Los Alamos National Laboratory has been conducting a set of experiments to measure the scintillation effects of VHF transmissions under a variety of ionospheric conditions. Previous work (see 2015 Fall AGU poster by D. Suszcynsky et al.) measured the S4 index and ionospheric coherence bandwidth in the 32 - 44 MHz frequency range under naturally scintillated conditions in the equatorial region at Kwajalein Atoll during three separate campaigns centered on the 2014 and 2015 equinoxes. In this paper, we will present preliminary results from the February and September, 2017 High Altitude Auroral Research Project (HAARP) Experimental Campaigns where we are attempting to make these measurements under more controlled conditions using the HAARP ionospheric heater in a twisted-beam mode. Two types of measurements are made by transmitting VHF signals through the heated ionospheric volume to the Radio Frequency Propagation (RFProp) satellite experiment. The S4 scintillation index is determined by measuring the power fluctuations of a 135-MHz continuous wave signal and the ionospheric coherence bandwidth is simultaneously determined by measuring the delay spread of a frequency-modulated continuous wave (FMCW) signal in the 130 - 140 MHz frequency range. Additionally, a spatial Fourier transform of the CW time series is used to calculate the irregularity spectral density function. Finally, the temporal evolution of the time series is used to characterize spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities. All results are compared to theory and scaled for comparison to the 32 - 44 MHz Kwajalein measurements.

  17. Nanophosphor composite scintillator with a liquid matrix

    Science.gov (United States)

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  18. Improvements to well scintillation counters

    International Nuclear Information System (INIS)

    Farukhi, M.R.; Mataraza, G.A.; Wimer, O.D.

    1977-01-01

    This invention relates to the field of ionising radiation detection. It concerns in particular scintillation detectors of the type that is commonly used in conjunction with a photomultiplier tube and that is used for monitoring radiation, for instance in the clinical measurements of isotopes. This invention enables well scintillation counters to be made, characterised by a high efficiency in measuring the thindown rate of radio-pharmaceutical solutions and to resolve the distribution of energy emanating from the radioactive source. It particularly consists in improving the uniformity of the luminous efficiency, the quality of the resolution and the efficiency whilst improving the reception of light [fr

  19. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  20. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    International Nuclear Information System (INIS)

    Bircher, Chad; Shao Yiping

    2012-01-01

    Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 x 1.5 and 2.0 x 2.0 mm 2 cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be used to

  1. Time resolution research in liquid scintillating detection

    International Nuclear Information System (INIS)

    He Hongkun; Shi Haoshan

    2006-01-01

    The signal processing design method is introduced into liquid scintillating detection system design. By analyzing the signal of liquid scintillating detection, improving time resolution is propitious to upgrade efficiency of detecting. The scheme of realization and satisfactory experiment data is demonstrated. Besides other types of liquid scintillating detection is the same, just using more high speed data signal processing techniques and elements. (authors)

  2. Composite scintillators for detection of ionizing radiation

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  3. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  4. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    International Nuclear Information System (INIS)

    Santiago, L.M.; Bagán, H.; Tarancón, A.; Garcia, J.F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3 H, 51.2% for 14 C, 180.6% for 90 Sr/ 90 Y and 76.7% for 241 Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition

  5. Atmospheric pressure plasma assisted calcination by the preparation of TiO2 fibers in submicron scale

    Science.gov (United States)

    Medvecká, Veronika; Kováčik, Dušan; Zahoranová, Anna; Černák, Mirko

    2018-01-01

    Atmospheric pressure plasma assisted calcination by the preparation of TiO2 submicron fibers as a low-temperature alternative to the conventional thermal annealing was studied. A special type of dielectric barrier discharge was used for plasma treatment of hybrid titanium butoxide/polyvinylpyrrolidone (Ti(Bu)/PVP) fibers prepared by forcespinning to decompose and oxidize the base polymer and precursor. The obtained fibers were characterized by changes in chemical bonds on the surface using Fourier Transform Infrared Spectroscopy (FTIR), chemical composition by using Energy-Dispersive X-Ray Spectroscopy (EDX), X-ray Photoelectron Spectroscopy (XPS). The morphology of fibers was investigated by Scanning Electron Microscopy (SEM). A significant decrease of organic components was reached by short plasma exposure times less than 1 h. The obtained fibers exhibit a high surface porosity without degradation of the fibrous structure. The results obtained indicate that atmospheric pressure plasma assisted calcination can be a viable low-temperature, energy- and time-saving alternative or pre-treatment method for the conventional high-temperature thermal calcination.

  6. Gammastic: towards a pseudo-gamma spectrometry in plastic scintillators

    International Nuclear Information System (INIS)

    Hamel, Matthieu; Dehe-Pittance, Chrystele; Coulon, Romain; Carrel, Frederick; Pillot, Philippe; Barat, Eric; Dautremer, Thomas; Montagu, Thierry; Normand, Stephane

    2013-06-01

    War against CBRN-E threats needs to continuously develop sensors with improved detection efficiency. More particularly, this topic concerns the NR controls for homeland security. A first analysis requires indeed a fast gamma spectrometry so as to detect potential special nuclear materials (SNM). To this aim, plastic scintillators could represent the best alternative for the production of large-scale, low-cost radiation portal monitors to be deployed on boarders, tolls, etc. Although they are known to be highly sensitive to gamma rays, due to their poor resolution, information relative to the nature of the SNM is tricky. Thus, only the Compton edge is obtained after interaction, and no information of the photoelectric peak is observed. This project concerns new developments on a possible pseudo-gamma spectrometry performed with plastic scintillators. This project is articulated on a combination of two developments: - The design of new materials most suitable for recovering the photoelectric peak after gamma interaction with the scintillator. This work concerns mainly plastic scintillators loading with heavy elements, such as lead or bismuth. - The analysis of the resulting signal with smart algorithms. This work is thus a pluri-disciplinary work performed at CEA LIST and embeds 4 main disciplines: MCNPX simulations (simulated spectra), chemistry of materials (preparation of various plastic scintillators with different properties), instrumentation (lab experiments) and smart algorithms. Really impressive results were obtained with the unfolding of simulated spectra at various energies (from 241 Am to 60 Co) and an innovative approach was proposed to counter-balance the quenching effect of luminescence by heavy elements in plastic scintillators. (authors)

  7. Alpha-2-Macroglobulin Levels in Gingival Crevicular Fluid Pre- and Post-scaling and Root Planing with Adjunctive Tetracycline Fibers in Chronic Periodontitis: A Randomized Controlled Trial.

    Science.gov (United States)

    Chhina, Shivjot; Rathore, Ajit Singh; Juneja, Saurabh

    2015-06-01

    This split-mouth clinical study aimed to investigate levels of alpha-2-macroglobulin (a2M) in gingival crevicular fluid (GCF) of chronic periodontitis patients pre- and post-scaling and root planing (SRP) with or without adjunctive use of tetracycline fibers. In 30 patients of chronic periodontitis, samples of GCF were collected from the gingival sulcus before SRP. Recording of clinical parameters was conducted. This was followed by local drug delivery (LDD) of tetracycline fibers in test sites. In control sites, no LDD was done. Second samples of GCF were taken 90 days after treatment. Samples of crevicular fluid were analyzed to determine the levels of a2m. A gain of clinical attachment (CAL) of 3.30 mm for SRP and LDD and for SRP alone was 1.62 mm (p chronic periodontitis.

  8. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    Science.gov (United States)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  9. Shock-resistant scintillation detector

    International Nuclear Information System (INIS)

    Novak, W.P.

    1979-01-01

    A unique scintillation detector unit is disclosed which employs a special light transfer and reflector means that encases and protects the scintillator crystal against high g forces. The light transfer means comprises a flexible silicon rubber optical material bonded between the crystal and the optical window and having an axial thickness sufficient to allow the scintillator to move axially inside the container under high g forces without destroying the bonds. The reflector means comprises a soft elastic silicone rubber sleeve having a multiplicity of closely arranged tapered protrusions radiating toward and engaging the periphery of the scintillator crystal to cushion shocks effectively and having a reflective material, such as aluminum oxide powder, in the spaces between the protrusions. The reflector means provides improved shock absorption because of the uniform support and cushioning action of the protrusions and also provides the detector with high efficiency. The silicon rubber composition is specially compounded to include a large amount of aluminum oxide which enables the rubber to function effectively as a light reflector

  10. Extruded plastic scintillator for MINERvA

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alan D.; FermilabRykalin, Victor V.; Wood, Brian M.; NICADD, DeKalb

    2005-01-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here

  11. Scintillators for positron emission tomography

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ''ultimate'' scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length (≤ 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times ≤ 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so ≤5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ''fully-3D'' cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm

  12. Energy resolution of scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Moszyński, M., E-mail: M.Moszynski@ncbj.gov.pl; Syntfeld-Każuch, A.; Swiderski, L.; Grodzicka, M.; Iwanowska, J.; Sibczyński, P.; Szczęśniak, T.

    2016-01-01

    According to current knowledge, the non-proportionality of the light yield of scintillators appears to be a fundamental limitation of energy resolution. A good energy resolution is of great importance for most applications of scintillation detectors. Thus, its limitations are discussed below; which arise from the non-proportional response of scintillators to gamma rays and electrons, being of crucial importance to the intrinsic energy resolution of crystals. The important influence of Landau fluctuations and the scattering of secondary electrons (δ-rays) on intrinsic resolution is pointed out here. The study on undoped NaI and CsI at liquid nitrogen temperature with a light readout by avalanche photodiodes strongly suggests that the non-proportionality of many crystals is not their intrinsic property and may be improved by selective co-doping. Finally, several observations that have been collected in the last 15 years on the influence of the slow components of light pulses on energy resolution suggest that more complex processes are taking place in the scintillators. This was observed with CsI(Tl), CsI(Na), ZnSe(Te), and undoped NaI at liquid nitrogen temperature and, finally, for NaI(Tl) at temperatures reduced below 0 °C. A common conclusion of these observations is that the highest energy resolution, and particularly intrinsic resolution measured with the scintillators, characterized by two or more components of the light pulse decay, is obtainable when the spectrometry equipment integrates the whole light of the components. In contrast, the slow components observed in many other crystals degrade the intrinsic resolution. In the limiting case, afterglow could also be considered as a very slow component that spoils the energy resolution. The aim of this work is to summarize all of the above observations by looking for their origin.

  13. Performance and calibration of wave length shifting fibers for K2K SciBar detector

    International Nuclear Information System (INIS)

    Morita, Taichi

    2004-01-01

    The wave length shifting (WLS) fibers (Kuraray Y11 (200) MS) are used for light collection from scintillators in the SciBar detector. The performance of WLS fibers was measured before installation. Because the number of WLS fibers is about 15,000, it is necessary to make a system to measure attenuation length of WLS fibers efficiently. I will report the pre-calibration method for measurement and the performance of the WLS fibers in SciBar detector. (author)

  14. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  15. The quest for the ideal inorganic scintillator

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Weber, M.J.; Bourret-Courchesne, E.; Klintenberg, M.K.

    2002-01-01

    The past half century has witnessed the discovery of many new inorganic scintillator materials and numerous advances in our understanding of the basic physical processes governing the transformation of ionizing radiation into scintillation light. Whereas scintillators are available with a good combination of physical properties, none provides the desired combination of stopping power, light output, and decay time. A review of the numerous scintillation mechanisms of known inorganic scintillators reveals why none of them is both bright and fast. The mechanisms of radiative recombination in wide-bandgap direct semiconductors, however, remain relatively unexploited for scintillators. We describe how suitably doped semiconductor scintillators could provide a combination of high light output, short decay time, and linearity of response that approach fundamental limits

  16. The KLOE fiber electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Incagli, Marco

    1998-01-01

    The construction and equipment of the KLOE electromagnetic calorimeter has ended in March 1997. In parallel to the construction, all modules have been tested at the Cosmic Ray Test Stand (CRTS) facility, in Frascati National Laboratories (Rome). The construction technique, based on scintillating fibers alternated to very thin (0.5 mm) grooved lead planes, is described and the main results both from the CRTS and from a preliminary Test Beam with low energy electrons and muons are reported in this note

  17. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Ley, J.-L. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Abellan, C.; Cachemiche, J.-P. [Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille (France); Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Joly, B.; Lambert, D.; Lestand, L. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Létang, J.M. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Magne, M. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); and others

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm{sup 3}, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm{sup 3}, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  18. Investigation of linear accelerator pulse delivery using fast organic scintillator measurements

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Andersen, Claus Erik; Lindvold, Lars René

    2010-01-01

    Fiber-coupled organic plastic scintillators present an attractive method for time-resolved dose measurements during radiotherapy. Most organic scintillators exhibit a fast response, making it possible to use them to measure individual high-energy X-ray pulses from a medical linear accelerator...... performed on Varian medical linear accelerators, delivering 6 MV X-ray beams. The dose delivery per radiation pulse was found to agree with expectations within roughly 1%, although minor discrepancies and transients were evident in the measurements....

  19. Lithium indium diselenide: A new scintillator for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lukosi, Eric, E-mail: elukosi@utk.edu [University of Tennessee, Knoxville, TN (United States); Herrera, Elan; Hamm, Daniel; Lee, Kyung-Min [University of Tennessee, Knoxville, TN (United States); Wiggins, Brenden [Y-12 National Security Complex, Oak Ridge, TN (United States); Trtik, Pavel [Paul Scherrer Institut, Villigen CH-5232 (Switzerland); Penumadu, Dayakar; Young, Stephen [University of Tennessee, Knoxville, TN (United States); Santodonato, Louis; Bilheux, Hassina [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Burger, Arnold; Matei, Liviu [Fisk University, Nashville, TN (United States); Stowe, Ashley C. [University of Tennessee, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-09-11

    Lithium indium diselenide, {sup 6}LiInSe{sub 2} or LISe, is a newly developed neutron detection material that shows both semiconducting and scintillating properties. This paper reports on the performance of scintillating LISe crystals for its potential use as a converter screen for cold neutron imaging. The spatial resolution of LISe, determined using a 10% threshold of the Modulation Transfer Function (MTF), was found to not scale linearly with thickness. Crystals having a thickness of 450 µm or larger resulted in an average spatial resolution of 67 µm, and the thinner crystals exhibited an increase in spatial resolution down to the Nyquist frequency of the CCD. The highest measured spatial resolution of 198 µm thick LISe (27 µm) outperforms a commercial 50 µm thick ZnS(Cu):{sup 6}LiF scintillation screen by more than a factor of three. For the LISe dimensions considered in this study, it was found that the light yield of LISe did not scale with its thickness. However, absorption measurements indicate that the {sup 6}Li concentration is uniform and the neutron absorption efficiency of LISe as a function of thickness follows general nuclear theory. This suggests that the differences in apparent brightness observed for the LISe samples investigated may be due to a combination of secondary charged particle escape, scintillation light transport in the bulk and across the LISe-air interface, and variations in the activation of the scintillation mechanism. Finally, it was found that the presence of {sup 115}In and its long-lived {sup 116}In activation product did not result in ghosting (memory of past neutron exposure), demonstrating potential of LISe for imaging transient systems.

  20. Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering.

    Science.gov (United States)

    Mohebbi-Kalhori, Davod; Behzadmehr, Amin; Doillon, Charles J; Hadjizadeh, Afra

    2012-09-01

    The use of hollow-fiber membrane bioreactors (HFMBs) has been proposed for three-dimensional bone tissue growth at the clinical scale. However, to achieve an efficient HFMB design, the relationship between cell growth and environmental conditions must be determined. Therefore, in this work, a dynamic double-porous media model was developed to determine nutrient-dependent cell growth for bone tissue formation in a HFMB. The whole hollow-fiber scaffold within the bioreactor was treated as a porous domain in this model. The domain consisted of two interpenetrating porous regions, including a porous lumen region available for fluid flow and a porous extracapillary space filled with a collagen gel that contained adherent cells for promoting long-term growth into tissue-like mass. The governing equations were solved numerically and the model was validated using previously published experimental results. The contributions of several bioreactor design and process parameters to the performance of the bioreactor were studied. The results demonstrated that the process and design parameters of the HFMB significantly affect nutrient transport and thus cell behavior over a long period of culture. The approach presented here can be applied to any cell type and used to develop tissue engineering hollow-fiber scaffolds.

  1. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  2. Borehole instrument for scintillation gamma spectrometer

    International Nuclear Information System (INIS)

    Sinitsyn, A.Ya.; Gabitov, R.M.

    1979-01-01

    Described are a schematic diagram and main specifications of a borehole instrument with autostabilization of energy scale measure by gamma bench-mark of 137 Cs, intended for the application in a logging gamma spectrometer to determine separately the concentrations of nature radioactive elements. The instrument may be connected to the KOBDFM-2 cable of 600 m length. It contains a scintillation counter for gamma quanta consisting of 30x70 mm NaI(Tl) crystal and a FEU-85 photoamplifier, an input conforming stage, a diagram of threshold pulse formation and regulating high-voltage generator. The borehole instrument has been proved under laboratory and field conditions at 10-40 deg C

  3. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  4. Silicon photomultipliers for scintillating trackers

    Energy Technology Data Exchange (ETDEWEB)

    Rabaioli, S., E-mail: simone.rabaioli@gmail.com [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Berra, A.; Bolognini, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Bosisio, L. [Universita degli Studi di Trieste and INFN sezione di Trieste (Italy); Ciano, S.; Iugovaz, D. [INFN sezione di Trieste (Italy); Lietti, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Penzo, A. [INFN sezione di Trieste (Italy); Prest, M. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Rashevskaya, I.; Reia, S. [INFN sezione di Trieste (Italy); Stoppani, L. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2012-12-11

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain ({approx}10{sup 6}). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  5. Silicon photomultipliers for scintillating trackers

    Science.gov (United States)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  6. LHCb Upgrade: Scintillating Fibre Tracker

    International Nuclear Information System (INIS)

    Tobin, Mark

    2016-01-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  7. Hollow Fiber Membrane Contactors for Post-Combustion CO2 Capture: A Scale-Up Study from Laboratory to Pilot Plant

    Directory of Open Access Journals (Sweden)

    Chabanon E.

    2014-11-01

    Full Text Available Membrane contactors have been proposed for decades as a way to achieve intensified mass transfer processes. Post-combustion CO2 capture by absorption into a chemical solvent is one of the currently most intensively investigated topics in this area. Numerous studies have already been reported, unfortunately almost systematically on small, laboratory scale, modules. Given the level of flue gas flow rates which have to be treated for carbon capture applications, a consistent scale-up methodology is obviously needed for a rigorous engineering design. In this study, the possibilities and limitations of scale-up strategies for membrane contactors have been explored and will be discussed. Experiments (CO2 absorption from a gas mixture in a 30%wt MEA aqueous solution have been performed both on mini-modules and at pilot scale (10 m2 membrane contactor module based on PTFE hollow fibers. The results have been modelled utilizing a resistance in series approach. The only adjustable parameter is in fitting the simulations to experimental data is the membrane mass transfer coefficient (km, which logically plays a key role. The difficulties and uncertainties associated with scaleup computations from lab scale to pilot scale modules, with a particular emphasis on the km value, are presented and critically discussed.

  8. Optical properties of quantum-dot-doped liquid scintillators

    International Nuclear Information System (INIS)

    Aberle, C; Winslow, L; Li, J J; Weiss, S

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO

  9. Radiation hardness of new Kuraray double cladded optical fibers

    International Nuclear Information System (INIS)

    Bedeschi, F.; Menzione, A.; Budagov, Yu.; Chirikov-Zorin, I.; Solov'ev, A.; Turchanovich, L.; Vasil'chenko, V.

    1996-01-01

    The radiation hardness of the new plastic scintillating and clear fibers irradiated by 137 Cs γ-flux and by pulsed reactor fast neutrons were investigated. All the studied fibers were of S-type (with S=70) and had a double cladding. Optical fibers degradation study after irradiation shows that the level of radiation hardness lower that what is expected from results of previous studies. 9 refs., 6 figs

  10. Studies of novel plastic scintillators

    International Nuclear Information System (INIS)

    McInally, I.D.

    1979-08-01

    The general aim of this study was to synthesize fluorescent compounds which are capable of polymerisation, to prepare polymers and co-polymers from these compounds and to study the photophysical properties of these materials. In this way it is hoped to produce plastic scintillators exhibiting improved energy transfer efficiency. Materials studied included POS(2-phenyl-5-(p vinyl) phenyloxazole) vinyl naphthalene, methyl anthracene terminated poly vinyl toluene) and derivatives of BuPBD. (author)

  11. Optimizing the use of bamboo biomass for energy and fiber from small-scale plantations in Thailand

    Science.gov (United States)

    Darabant, András; Haruthaithanasan, Maliwan; Atkla, Wanida; Phudphong, Tepa; Thanavat, Eakpong; Haruthaithanasan, Kasem

    2014-05-01

    Farmers in Thailand have recently started to establish bamboo plantations on marginal land, aiming at utilizing them for bioenergy and fiber. On two sites in eastern Thailand, first-year yield data of Bambusa beecheyana and Dendrocalamus membranaceus plantations indicated vast differences between sites (1 vs. 18 t*ha-1*a-1), but none between species. In terms of feedstock quality for power plants, High Heating Values (19.2 to 19.5 MJ*t-1) did not, but culm moisture contents did differ between species (51% for B. beecheyana vs. 45% for D. membranaceus), and culm sections (38% wet base at top vs. 55% at bottom). This gradient was stronger in D. membranaceus, which additionally showed significantly higher moisture content in internodes, as compared to nodes (46% vs. 43%). Analysis of fiber yield and quality indicated better suitability of D. membranaceus as opposed to B. beecheyana to be used in the textile industry. Our results provide guidance on increasing value addition to bamboo biomass by optimizing the allotment of different species and biomass compartments to different uses (bioenergy, fibers).

  12. Osmotic Power Generation by Inner Selective Hollow Fiber Membranes: An investigation of thermodynamics, mass transfer, and module scale modelling

    KAUST Repository

    Xiong, Jun Ying

    2016-12-29

    A comprehensive analysis of fluid motion, mass transport, thermodynamics and power generation during pressure retarded osmotic (PRO) processes was conducted. This work aims to (1) elucidate the fundamental relationship among various membrane properties and operation parameters and (2) analyse their individual and combined impacts on PRO module performance. A state-of-the-art inner-selective thin-film composite (TFC) hollow fiber membrane was employed in the modelling. The analyses of mass transfer and Gibbs free energy of mixing indicate that the asymmetric nature of hollow fibers results in more significant external concentration polarization (ECP) in the lumen side of the inner-selective hollow fiber membranes. In addition, a trade-off relationship exists between the power density (PD) and the specific energy (SE). The PD vs. SE trade-off upper bound may provide a useful guidance whether the flowrates of the feed and draw solutions should be further optimized in order to (1) minimize the boundary thickness and (2) maximize the osmotic power generation. Two new terms, mass transfer efficiency and power harvesting efficiency for osmotic power generation, have been proposed. This work may provide useful insights to design and operate PRO modules with enhanced performance so that the PRO process becomes more promising in real applications in the near future.

  13. First light from a kilometer-baseline Scintillation Auroral GPS Array.

    Science.gov (United States)

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-05-28

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.

  14. Charged particle scintillation mass spectrometer

    International Nuclear Information System (INIS)

    Baranov, P.S.; Zhuravlev, E.E.; Nafikov, A.A.; Osadchi , A.I.; Raevskij, V.G.; Smirnov, P.A.; Cherepnya, S.N.; Yanulis, Yu.P.

    1982-01-01

    A scintillation mass-spectrometer for charged particle identification by the measured values of time-of-flight and energy operating on line with the D-116 computer is described. Original time detectors with 100x100x2 mm 3 and 200x2 mm 2 scintillators located on the 1- or 2 m path length are used in the spectrometer. The 200x200x200 mm 3 scintillation unit is used as a E-counter. Time-of-flight spectra of the detected particles on the 2 m path length obtained in spectrometer test in the beam of charged particles escaping from the carbon target at the angle of 130 deg under 1.2 GeV bremsstrahlung beam of the ''Pakhra'' PIAS synchrotron are presented. Proton and deuteron energy spectra as well as mass spectrum of all the particles detected by the spectrometer are given. Mass resolution obtained on the 2 m path length for π-mesons is +-25%, for protons is +-5%, for deuterons is +-3%

  15. Liquid scintillation alpha spectrometry techniques

    International Nuclear Information System (INIS)

    McKlveen, J.W.; McDowell, W.J.

    1984-01-01

    Accurate, quantitative determinations of alpha emitting nuclides by conventional plate counting methods are difficult, because of sample self-absorption problems in counting and because of non-reproducible losses in conventional sample separation methods. Liquid scintillation alpha spectrometry offers an attractive alternative with no sample self-absorption or geometry problems and with 100% counting efficiency. Sample preparation may include extraction of the alpha emitter of interest by a specific organic phase-soluble compound directly into the liquid scintillation counting medium. Detection electronics use energy and pulse-shape discrimination, to yield alpha spectra without beta and gamma background interference. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium and colonium assay. Possibilities for a large number of other applications exist. Accuracy and reproducibility are typically in the 1% range. Backgrounds of the order of 0.01 cpm are readily achievable. The paper will present an overview of liquid scintillation alpha counting techniques and some of the results achieved for specific applications. (orig.)

  16. Ionospheric scintillation monitoring and modelling

    Directory of Open Access Journals (Sweden)

    Mariusz Pozoga

    2009-06-01

    Full Text Available

    This paper presents a review of the ionospheric scintillation monitoring and modelling by the European groups

    involved in COST 296. Several of these groups have organized scintillation measurement campaigns at low and

    high latitudes. Some characteristic results obtained from the measured data are presented. The paper also addresses the modeling activities: four models, based on phase screen techniques, with different options and application domains are detailed. Finally some new trends for research topics are given. This includes the wavelet analysis, the high latitudes analysis, the construction of scintillation maps and the mitigation techniques.


  17. SU-F-T-239: Evaluation of Plastic Scintillator Light Output for Various Lead Doping Concentrations: Towards LET Detection

    International Nuclear Information System (INIS)

    Nusrat, H; Pang, G; Sarfehnia, A

    2016-01-01

    Purpose: This work seeks to develop a beam quality meter using multiple differently doped plastic scintillators that are thus intrinsically beam-quality dependent. Plastic scintillators spontaneously emit visible light upon irradiation; the amount of light produced is dependent on stopping power (closely related to LET) according to Birks’ law. Doping plastic scintillators can be used to tune their sensitivity to specific LET ranges. Methods: GEANT4.10.1 Monte Carlo (MC) was used to evaluate the response of various scintillator dopant combinations. MC radiation transport and scintillator light response were validated against previously published literature. Current work involves evaluating detector response experimentally; to that end, a detector prototype with interchangeable scintillator housing was constructed. Measurement set-up guides light emitted by the scintillator to a photomultiplier tube via a glass taper junction coupled to an optical fiber. The resulting signal is measured by an electrometer, and normalized to dose readout from a diode. Measurements have been done using clinical electron and orthovoltage beams. MC response (simulated scintillator light normalized to dose scored inside the scintillating volume) was evaluated for four different LET radiations for an undoped and 1%Pb doped scintillator (σ=0.85%). Simulated incident electrons included: 0.05, 0.1, 0.2, 6, 12, and 18 MeV; these energies correspond to a range of stopping power (related to LET) values ranging from 1.824 to 11.09 MeVcm"2g"−"1 (SCOL from NIST-ESTAR). Results: Initial MC results show a distinct divergence in scintillator response as LET increases. The response for undoped plastic scintillator indicated a 35.0% increase in signal when going from 18 MeV (low LET) to 0.05 MeV (high LET) while 1%-Pb doped scintillator indicated a 100.9% increase. Conclusion: After validating MC against measurement, simulations will be used to test various concentrations (2%, 4%, 6%) of different

  18. SU-F-T-239: Evaluation of Plastic Scintillator Light Output for Various Lead Doping Concentrations: Towards LET Detection

    Energy Technology Data Exchange (ETDEWEB)

    Nusrat, H [Ryerson University, Toronto, ON (Canada); Pang, G; Sarfehnia, A [Sunnybrook Health Sciences Centre, Toronto, ON (Canada)

    2016-06-15

    Purpose: This work seeks to develop a beam quality meter using multiple differently doped plastic scintillators that are thus intrinsically beam-quality dependent. Plastic scintillators spontaneously emit visible light upon irradiation; the amount of light produced is dependent on stopping power (closely related to LET) according to Birks’ law. Doping plastic scintillators can be used to tune their sensitivity to specific LET ranges. Methods: GEANT4.10.1 Monte Carlo (MC) was used to evaluate the response of various scintillator dopant combinations. MC radiation transport and scintillator light response were validated against previously published literature. Current work involves evaluating detector response experimentally; to that end, a detector prototype with interchangeable scintillator housing was constructed. Measurement set-up guides light emitted by the scintillator to a photomultiplier tube via a glass taper junction coupled to an optical fiber. The resulting signal is measured by an electrometer, and normalized to dose readout from a diode. Measurements have been done using clinical electron and orthovoltage beams. MC response (simulated scintillator light normalized to dose scored inside the scintillating volume) was evaluated for four different LET radiations for an undoped and 1%Pb doped scintillator (σ=0.85%). Simulated incident electrons included: 0.05, 0.1, 0.2, 6, 12, and 18 MeV; these energies correspond to a range of stopping power (related to LET) values ranging from 1.824 to 11.09 MeVcm{sup 2}g{sup −1} (SCOL from NIST-ESTAR). Results: Initial MC results show a distinct divergence in scintillator response as LET increases. The response for undoped plastic scintillator indicated a 35.0% increase in signal when going from 18 MeV (low LET) to 0.05 MeV (high LET) while 1%-Pb doped scintillator indicated a 100.9% increase. Conclusion: After validating MC against measurement, simulations will be used to test various concentrations (2%, 4%, 6%) of

  19. A directional gamma-ray detector based on scintillator plates

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, D., E-mail: hanna@physics.mcgill.ca; Sagnières, L.; Boyle, P.J.; MacLeod, A.M.L.

    2015-10-11

    A simple device for determining the azimuthal location of a source of gamma radiation, using ideas from astrophysical gamma-ray burst detection, is described. A compact and robust detector built from eight identical modules, each comprising a plate of CsI(Tl) scintillator coupled to a photomultiplier tube, can locate a point source of gamma rays with degree-scale precision by comparing the count rates in the different modules. Sensitivity to uniform environmental background is minimal.

  20. Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu A; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; Davidek, M; David, T; Dawson, J; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Lapin, V; Le Compte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Russakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovianov, J; Silva, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tr...

  1. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  2. Multi element high resolution scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.

    1980-01-01

    A gamma camera scintillator structure, suitable for detecting high energy gamma photons which, in a single scintillator camera, would require a comparatively thick scintillator crystal, so resulting in unacceptable dispersion of light photons, comprises a collimator array of a high Z material with elongated, parallel wall channels with the scintillator material being disposed in one end of the channels so as to form an integrated collimator/scintillator structure. The collimator channel walls are preferably coated with light reflective material and further light reflective surfaces being translucent to gamma photons, may be provided in each channel. The scintillators may be single crystals or preferably comprise a phosphor dispersed in a thermosetting translucent matrix as disclosed in GB2012800A. The light detectors of the assembled camera may be photomultiplier tubes charge coupled devices or charge injection devices. (author)

  3. 4 GHz ionospheric scintillations observed at Taipei

    International Nuclear Information System (INIS)

    Huang, Y.N.; Jeng, B.S.

    1978-01-01

    In a study of ionospheric scintillations 3950 MHz beacon signals from geostationary communication satellites Intelsat-IV-F8 and Intelsat-IV-F1 were recorded on a strip chart and magnetic tape at the Taipei Earth Station. While the strip charts were used to monitor the occurrence of the scintillation, the magnetic tape output was digitized and processed by a computerized system to yield a detailed analysis of scintillation events. It was found that diurnal variations were similar to the diurnal patterns of sporadic E at greater than 5 MHz and VHF band ionospheric scintillations during daytime as reported by Huang (1978). Eight typical scintillation events were selected for the calculation of the scintillation index, S4, and other parameters. The mean S4 index for the 8 events was found to be 0.15. Numerical and graphic results are presented for the cumulative amplitude distributions, message reliability, autocorrelation functions and power spectra

  4. A Review of Ionospheric Scintillation Models.

    Science.gov (United States)

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  5. Morphology of auroral zone radio wave scintillation

    International Nuclear Information System (INIS)

    Rino, C.L.; Matthews, S.J.

    1980-01-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effect due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation

  6. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    International Nuclear Information System (INIS)

    Park, J.M.; Kim, H.J.; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-01-01

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator

  7. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.M.; Kim, H.J., E-mail: hongjooknu@gmail.com; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-02-15

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator.

  8. Measurements of energy resolution with hemispheric scintillators

    International Nuclear Information System (INIS)

    Mendonca, A.C.S.; Binns, D.A.C.; Tauhata, L.; Poledna, R.

    1980-01-01

    The hemispheric configuration is used for plastic scintillators type NE 102 with the aiming to optimize the light collect. Scintillators at this configuration, with radii of 3,81 cm and 2,54 cm, are showing improvement about 16-17% in the energy resolution, on cilyndric scintillators with the same volume, for gamma rays of 511-1275 KeV. (E.G.) [pt

  9. Design and test of a scintillation dosimeter for dosimetry measurements of high energy radiotherapy beams; Conception et realisation d'un dosimetre a scintillation adapte a la dosimetrie de faisceaux de rayonnements ionisants en faisceaux de rayonnements ionisants en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Fontbonne, J.M

    2002-12-01

    This work describes the design and evaluation of the performances of a scintillation dosimeter developed for the dosimetry of radiation beams used in radiotherapy. The dosimeter consists in a small plastic scintillator producing light which is guided by means of a plastic optical fiber towards photodetectors. In addition to scintillation, high energy ionizing radiations produce Cerenkov light both in the scintillator and the optical fiber. Based on a wavelength analysis, we have developed a deconvolution technique to measure the scintillation light in the presence of Cerenkov light. We stress the advantages that are anticipated from plastic scintillator, in particular concerning tissue or water equivalence (mass stopping power, mass attenuation or mass energy absorption coefficients). We show that detectors based on this material have better characteristics than conventional dosimeters such as ionisation chambers or silicon detectors. The deconvolution technique is exposed, as well as the calibration procedure using an ionisation chamber. We have studied the uncertainty of our dosimeter. The electronics noise, the fiber transmission, the deconvolution technique and the calibration errors give an overall combined experimental uncertainty of about 0,5%. The absolute response of the dosimeter is studied by means of depth dose measurements. We show that absolute uncertainty with photons or electrons beams with energies ranging from 4 MeV to 25 MeV is less than {+-} 1 %. Last, at variance with other devices, our scintillation dosimeter does not need dose correction with depth. (author)

  10. Random wave fields and scintillated beams

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available F. Stef Roux CSIR National Laser Centre PO Box 395, Pretoria 0001, South Africa CSIR National Laser Centre – p.1/29 Contents . Scintillated beams and adaptive optics . Detecting a vortex — Shack-Hartmann . Remove optical vortices . Random vortex... beam. CSIR National Laser Centre – p.3/29 Weak scintillation If the scintillation is weak the resulting phase function of the optical beam is still continuous. Such a weakly scintillated beam can be corrected by an adaptive optical system. CSIR National...

  11. High-symmetry organic scintillator systems

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L.

    2018-03-13

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  12. Designing an optimally proportional inorganic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai, E-mail: jai.singh@cdu.edu.au [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia); Koblov, Alexander [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia)

    2012-09-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  13. Designing an optimally proportional inorganic scintillator

    International Nuclear Information System (INIS)

    Singh, Jai; Koblov, Alexander

    2012-01-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  14. High-symmetry organic scintillator systems

    Science.gov (United States)

    Feng, Patrick L.

    2017-07-18

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  15. Some adsorption characteristics of polysterene base scintillators

    International Nuclear Information System (INIS)

    Seredenko, T.N.; Ehkkerman, V.M.; Solomonov, V.M.; Gen, N.S.

    1980-01-01

    It is necessary to account for the adsorption on the surface of a scintillator when measuring nuclide activity in solutions by submerging into these solutions plastic scintillators. Dependences of 144 Ce, 90 Y, 137 Cs adsorption on specific activities (α) and pH value of solution were investigated. It is shown that K-α ratio is described by the equation K=Casup(p), where K is the specific surface activity of the polystyrene scintillator. Values of C and p are presented for investigated nuclides. The criterion estimating the possibility for repeated usage of scintillator are considered

  16. Design of Fluorescent Compounds for Scintillation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Pla-Dalmau, Anna [Northern Illinois U.

    1990-01-01

    Plastic scintillation detectors for high energy physics applications require the development of new fluorescent compounds to meet the demands set by the future generation of particle accelerators such as the Superconducting Supercollider (SSe). Plastic scintillators are commonly based on a polymer matrix doped with two fluorescent compounds: the primary dopant and the wavelength shifter. Their main characteristics are fast response time and high quantum efficiency. The exposure to larger radiation doses and demands for larger light output questions their survivability in the future experiments. A new type of plastic scintillator - intrinsic scintillator - has been suggested. It uses a single dopant as primary and wavelength shifter, and should be less susceptible to radiation damage....

  17. High-symmetry organic scintillator systems

    Science.gov (United States)

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  18. Effect of cellulosic fiber scale on linear and non-linear mechanical performance of starch-based composites.

    Science.gov (United States)

    Karimi, Samaneh; Abdulkhani, Ali; Tahir, Paridah Md; Dufresne, Alain

    2016-10-01

    Cellulosic nanofibers (NFs) from kenaf bast were used to reinforce glycerol plasticized thermoplastic starch (TPS) matrices with varying contents (0-10wt%). The composites were prepared by casting/evaporation method. Raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The aim of study was to investigate the effects of filler dimension and loading on linear and non-linear mechanical performance of fabricated materials. Obtained results clearly demonstrated that the NF-reinforced composites had significantly greater mechanical performance than the RF-reinforced counterparts. This was attributed to the high aspect ratio and nano dimension of the reinforcing agents, as well as their compatibility with the TPS matrix, resulting in strong fiber/matrix interaction. Tensile strength and Young's modulus increased by 313% and 343%, respectively, with increasing NF content from 0 to 10wt%. Dynamic mechanical analysis (DMA) revealed an elevational trend in the glass transition temperature of amylopectin-rich domains in composites. The most eminent record was +18.5°C shift in temperature position of the film reinforced with 8% NF. This finding implied efficient dispersion of nanofibers in the matrix and their ability to form a network and restrict mobility of the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Day and nighttime L-Band amplitude scintillations during low solar activity at a low latitude station in the South Pacific region

    Science.gov (United States)

    Prasad, Ramendra; Kumar, Sushil

    2017-12-01

    A morphological study of GPS L-band amplitude scintillations observed at a low latitude station, Suva (18.1°S, 178.4°E), Fiji, during low solar activity year 2010 of solar cycle 24, has been presented. Out of a total of 480 scintillation events recorded during 2010, 84.4% were weak (0.2 ≤ S4 < 0.3), 14.6% moderate (0.3 ≤ S4 < 0.45) and only 1% strong (0.45 ≤ S4). The amplitude scintillations were most pronounced in the local daytime with January registering the highest occurrence. Seasonal analysis revealed maximum scintillation occurrence during summer as compared to winter and equinox seasons. The daytime scintillation with a maximum in the summer is consistent with localized blanketing sporadic E observations and could also be possibly due to lightning activity around the observing station. Annual percentage occurrence shows that scintillations occurred mostly in the daytime with peak occurrence at around 05:00-09:00 LT. The daytime strong scintillation events were not associated with vTEC depletions and phase scintillations, but the signal to noise ratio during the scintillation events decreased with increase in scintillation index (S4). However, the post-midnight strong amplitude scintillations were associated with vTEC depletions and phase scintillations indicative of large scale irregularities (spread-F). The geomagnetic activity effect showed enhanced occurrence on geomagnetically disturbed days as compared to quite conditions. The geomagnetic storm effect on scintillations for 17 storms of different strengths (Dst ≤ 50 nT) during 2010-2011 showed an increase in the occurrence of post-storm scintillations, on the days following the storm.

  20. Gypsum (CaSO4·2H2O) Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis

    Science.gov (United States)

    Chen, Si Cong; Su, Jincai; Fu, Feng-Jiang; Mi, Baoxia; Chung, Tai-Shung

    2013-01-01

    We have examined the gypsum (CaSO4·2H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI)/polyethersulfone (PES) and (3) PBI-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM) force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42° ± 14.85° after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 °C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface. PMID:24957062

  1. Effect of DS Concentration on the PRO Performance Using a 5-Inch Scale Cellulose Triacetate-Based Hollow Fiber Membrane Module

    Directory of Open Access Journals (Sweden)

    Masahiro Yasukawa

    2018-05-01

    Full Text Available In this study, pressure-retarded osmosis (PRO performance of a 5-inch scale cellulose triacetate (CTA-based hollow fiber (HF membrane module was evaluated under a wide range of operating conditions (0.0–6.0 MPa of applied pressure, 0.5–2.0 L/min feed solution (FS inlet flow rate, 1.0–6.0 L/min DS inlet flow rate and 0.1–0.9 M draw solution (DS concentration by using a PRO/reverse osmosis (RO hybrid system. The subsequent RO system for DS regeneration enabled the evaluation of the steady-stated module performance. In the case of pilot-scale module operation, since the DS dilution and the feed solution (FS up-concentration had occurred and was not negligible, unlike the lab-scale experiment, PRO performance strongly depended on operating conditions such as inlet flow rates of both the DS and FS concentration. To compare the module performance with different configurations, we proposed a converted parameter in which a difference of the packing density between the spiral wound (SW and the HF module was fairly considered. In the case of HF configuration, because of high packing density, volumetric-based performance was higher than that of SW module, that is, the required number of the module would be less than that of SW module in a full-scale PRO plant.

  2. Scaling down of a clinical three-dimensional perfusion multicompartment hollow fiber liver bioreactor developed for extracorporeal liver support to an analytical scale device useful for hepatic pharmacological in vitro studies.

    Science.gov (United States)

    Zeilinger, Katrin; Schreiter, Thomas; Darnell, Malin; Söderdahl, Therese; Lübberstedt, Marc; Dillner, Birgitta; Knobeloch, Daniel; Nüssler, Andreas K; Gerlach, Jörg C; Andersson, Tommy B

    2011-05-01

    Within the scope of developing an in vitro culture model for pharmacological research on human liver functions, a three-dimensional multicompartment hollow fiber bioreactor proven to function as a clinical extracorporeal liver support system was scaled down in two steps from 800 mL to 8 mL and 2 mL bioreactors. Primary human liver cells cultured over 14 days in 800, 8, or 2 mL bioreactors exhibited comparable time-course profiles for most of the metabolic parameters in the different bioreactor size variants. Major drug-metabolizing cytochrome P450 activities analyzed in the 2 mL bioreactor were preserved over up to 23 days. Immunohistochemical studies revealed tissue-like structures of parenchymal and nonparenchymal cells in the miniaturized bioreactor, indicating physiological reorganization of the cells. Moreover, the canalicular transporters multidrug-resistance-associated protein 2, multidrug-resistance protein 1 (P-glycoprotein), and breast cancer resistance protein showed a similar distribution pattern to that found in human liver tissue. In conclusion, the down-scaled multicompartment hollow fiber technology allows stable maintenance of primary human liver cells and provides an innovative tool for pharmacological and kinetic studies of hepatic functions with small cell numbers.

  3. Collimator changer for scintillation camera

    International Nuclear Information System (INIS)

    Jupa, E.C.; Meeder, R.L.; Richter, E.K.

    1976-01-01

    A collimator changing assembly mounted on the support structure of a scintillation camera is described. A vertical support column positioned proximate the detector support column with a plurality of support arms mounted thereon in a rotatable cantilevered manner at separate vertical positions. Each support arm is adapted to carry one of the plurality of collimators which are interchangeably mountable on the underside of the detector and to transport the collimator between a store position remote from the detector and a change position underneath said detector

  4. New shaper of scintillation signals

    International Nuclear Information System (INIS)

    Brovchenko, V.G.

    2001-01-01

    Summation of the exponential shape pulse (abrupt front, exponential fall-off) with the pulse, proportional to its integral (the integration time constant is equal to the exponent fall-off constant), results in the pulse, the apex whereof is horizontal (parallel to the base line). Such a pulse is suitable for registration through standard analog-to-digital converters of the consecutive binary approximation, The described scheme is accomplished for verification of the basic principle of the shaper action. The parameters of the scheme are approximated to those ones, necessary for processing scintillation signals NaI(Tl) [ru

  5. Scintillating fibre tracking neutron detector

    International Nuclear Information System (INIS)

    Karlsson, Joakim.

    1995-04-01

    A detector for measurements of collimated fluxes of neutrons in the energy range 2-20 MeV is proposed. It utilizes (n.p) elastic scattering in scintillating optical fibres placed in successive orthogonal layers perpendicular to the neutron flux. A test module has been designed, constructed and tested with respect to separation of neutron and gamma events. The pulse height measurements show the feasibility to discriminate between neutron, gamma and background events. Application to measurements of fusion neutrons is considered. 18 refs, 22 figs, 4 tabs

  6. Pulsar scintillation patterns and strangelets

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-García, M. Ángeles, E-mail: mperezga@usal.es [Department of Fundamental Physics and IUFFyM, University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Silk, Joseph, E-mail: silk@iap.fr [Institut d' Astrophysique, UMR 7095, CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, 75014 Paris (France); Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore MD 21218 (United States); Beecroft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Pen, Ue-Li, E-mail: pen@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, 0N M5S 3H8 (Canada)

    2013-12-18

    We propose that interstellar extreme scattering events, usually observed as pulsar scintillations, may be caused by a coherent agent rather than the usually assumed turbulence of H{sub 2} clouds. We find that the penetration of a flux of ionizing, positively charged strangelets or quark nuggets into a dense interstellar hydrogen cloud may produce ionization trails. Depending on the specific nature and energy of the incoming droplets, diffusive propagation or even capture in the cloud are possible. As a result, enhanced electron densities may form and constitute a lens-like scattering screen for radio pulsars and possibly for quasars.

  7. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  8. Lower bounds on scintillation detector timing performance

    International Nuclear Information System (INIS)

    Clinthorne, N.H.; Rogers, W.L.; Hero, A.O. III.; Petrick, N.A.

    1990-01-01

    Fundamental method-independent limits on the timing performance of scintillation detectors are useful for identifying regimes in which either present timing methods are nearly optimal or where a considerable performance gain might be realized using better pulse processing techniques. Several types of lower bounds on mean-squared timing error (MSE) performance have been developed and applied to scintillation detectors. The simple Cramer-Rao (CR) bound can be useful in determining the limiting MSE for scintillators having a relatively high rate of photon problction such as BaF 2 and NaI(Tl); however, it tends to overestimate the achievalbe performance for scintillators with lower rates such as BGO. For this reason, alternative bounds have been developed using rate-distortion theory or by assuming that the conversion of energy to scintillation light must pass through excited states which have exponential lifetime densities. The bounds are functions of the mean scintillation pulse shape, the scintillation intensity, and photodetector characteristics; they are simple to evaluate and can be used to conveniently assess the limiting timing performance of scintillation detectors. (orig.)

  9. Status of timing with plastic scintillation detectors

    International Nuclear Information System (INIS)

    Moszynski, M.; Bengtson, B.

    1979-01-01

    Timing properties of scintillators and photomultipliers as well as theoretical and experimental studies of time resolution of scintillation counters are reviewed. Predictions of the theory of the scintillation pulse generation processes are compared with the data on the light pulse shape from small samples, in which the light pulse shape depends only on the composition of the scintillator. For larger samples the influence of the light collection process and the self-absorption process on the light pulse shape are discussed. The data on rise times, fwhm's, decay times and light yield of several commercial scintillators used in timing are collected. The next part of the paper deals with the properties of photomultipliers. The sources of time uncertainties in photomultipliers as a spread of the initial velocity of photoelectrons, emission of photoelectrons under different angles and from different points at the photocathode, the time spread and the gain dispersion introduced by electron photomultiplier are reviewed. The experimental data on the time jitter, single electron response and photoelectron yield of some fast photomultipliers are collected. As the time resolution of the timing systems with scintillation counters depends also on time pick-off units, a short presentation of the timing methods is given. The discussion of timing theories is followed by a review of experimental studies of the time resolution of scintillation counters. The paper is ended by an analysis of prospects on further progress of the subnanosecond timing with scintillation counters. (Auth.)

  10. Current status of liquid scintillation counting

    International Nuclear Information System (INIS)

    Klingler, G.W.

    1981-01-01

    Scintillation counting of alpha particles has been used since the turn of the century. The advent of pulse shape discrimination has made this method of detection accurate and reliable. The history, concepts and development of scintillation counting and pulse shape discrimination are discussed. A brief look at the ongoing work in the consolidation of components now used for pulse shape discrimination is included

  11. Some possible improvements in scintillation calorimeters

    International Nuclear Information System (INIS)

    Lorenz, E.

    1985-03-01

    Two ideas for improvements of scintillation calorimeters will be presented: a) improved readout of scintillating, totally active electromagnetic calorimeters with combinations of silicon photodiodes and fluorescent panel collectors, b) use of time structure analysis on calorimetry, both for higher rate applications and improved resolution for hadron calorimeters. (orig.)

  12. Performance and characteristics of a new scintillator

    CERN Document Server

    Czirr, J B; MacGillivray, R R; Seddon, P J

    1999-01-01

    A new class of scintillators for neutron imaging, based upon lithium gadolinium borate, is described. These scintillators offer the ability to tailor their response to the neutron spectrum by varying the relative absorption of neutrons by the key constituents (lithium, gadolinium and boron). The isotopic compositions of each constituent can be varied in order to change the spectral response.

  13. TH-CD-BRA-12: Impact of a Magnetic Field On the Response From a Plastic Scintillation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Therriault-Proulx, F; Wen, Z; Ibbott, G; Beddar, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To study the effect of a strong magnetic field on the scintillation and the stem effect from a plastic scintillation detector (PSD) and evaluate its accuracy to measure dose. Methods: A plastic scintillation detector and a bare plastic fiber were placed inside a magnet of adjustable field strength (B=0−1.5T) and irradiated by a 6-MV photon beam (Elekta Versa HD LINAC). The PSD was built in-house using a scintillating fiber (BCF-60, 3-mm long × 1-mm diameter) coupled to an optical fiber similar to the bare fiber (PMMA, 12-m long, 1-mm diameter). Light output spectra were acquired with a spectrometer. Intensity and shape of the output spectra were compared as a function of the magnetic field strength. The bare fiber was used to study the behavior of the stem effect (composed of Cerenkov and fluorescence). The spectrometry setup allowed to perform a previously demonstrated hyperspectral stem-effect removal and calculated dose was studied as a function of the magnetic field strength. Results: Signal intensities were shown to increase with the magnetic field strength by up to 19% and 79% at 1.5T in comparison to the irradiation without a magnetic field, for respectively the PSD and the bare fiber. The light produced by Cerenkov effect in the optical fiber was shown to be the major component affected by the magnetic field. Effect of the magnetic field on the electrons trajectory may explain this behavior. Finally, accounting for the stem effect using the hyperspectral approach led to accuracy in dose measurement within 2.6%. Interestingly, variations in accuracy were negligible for values over 0.3T. Conclusion: Dependence of PSDs to magnetic field is mainly due to the Cerenkov light. When accounting for it, PSDs become a candidate of choice for both quality assurance and in vivo dosimetry of therapy under strong magnetic fields (e.g. for MRI-Linacs).

  14. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  15. Development of scintillation materials for PET scanners

    CERN Document Server

    Korzhik, Mikhail; Annenkov, Alexander N; Borissevitch, Andrei; Dossovitski, Alexei; Missevitch, Oleg; Lecoq, Paul

    2007-01-01

    The growing demand on PET methodology for a variety of applications ranging from clinical use to fundamental studies triggers research and development of PET scanners providing better spatial resolution and sensitivity. These efforts are primarily focused on the development of advanced PET detector solutions and on the developments of new scintillation materials as well. However Lu containing scintillation materials introduced in the last century such as LSO, LYSO, LuAP, LuYAP crystals still remain the best PET species in spite of the recent developments of bright, fast but relatively low density lanthanum bromide scintillators. At the same time Lu based materials have several drawbacks which are high temperature of crystallization and relatively high cost compared to alkali-halide scintillation materials. Here we describe recent results in the development of new scintillation materials for PET application.

  16. Detector construction for a scintillation camera

    International Nuclear Information System (INIS)

    Ashe, J.B.

    1977-01-01

    An improved transducer construction for a scintillation camera in which a light conducting element is equipped with a layer of moisture impervious material is described. A scintillation crystal is thereafter positioned in optical communication with the moisture impervious layer and the remaining surfaces of the scintillation crystal are encompassed by a moisture shield. Affixing the moisture impervious layer to the light conducting element prior to attachment of the scintillation crystal reduces the requirement for mechanical strength in the moisture impervious layer and thereby allows a layer of reduced thickness to be utilized. Preferably, photodetectors are also positioned in optical communication with the light conducting element prior to positioning the scintillation crystal in contact with the impervious layer. 13 claims, 4 figures

  17. Fabrication and optimization of a fiber-optic radiation sensor for proton beam dosimetry

    International Nuclear Information System (INIS)

    Jang, K.W.; Yoo, W.J.; Seo, J.K.; Heo, J.Y.; Moon, J.; Park, J.-Y.; Hwang, E.J.; Shin, D.; Park, S.-Y.; Cho, H.-S.; Lee, B.

    2011-01-01

    In this study, we fabricated a fiber-optic radiation sensor for proton therapy dosimetry and measured the output and the peak-to-plateau ratio of scintillation light with various kinds of organic scintillators in order to select an organic scintillator appropriate for measuring the dose of a proton beam. For the optimization of an organic scintillator, the linearity between the light output and the stopping power of a proton beam was evaluated for two different diameters of the scintillator, and the angular dependency and standard deviation of the light pulses were investigated for four different scintillator lengths. We also evaluated the linearity between the light output and the dose rate and monitor units of a proton generator, respectively. The relative depth-dose curve of the proton beam was obtained and corrected using Birk's theory.

  18. Pulsed beam dosimetry using fiber-coupled radioluminescence detectors

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2012-01-01

    The objective of this work was to review and discuss the potential application of fiber-coupled radioluminescence detectors for dosimetry in pulsed MV photon beams. Two types of materials were used: carbon-doped aluminium oxide (Al2O3:C) and organic plastic scintillators. Special consideration...... was given to the discrimination between radioluminescence signals from the phosphors and unwanted light induced in the optical fiber cables during irradiation (Cerenkov and fluorescence). New instrumentation for dose-per-pulse measurements with organic plastic scintillators was developed....

  19. Liquid mixtures for scintillation counters

    International Nuclear Information System (INIS)

    Kauffmann, J.M.

    1975-01-01

    Liquid scintillators contain emulsifiers or combinations of these which can be used over a wide temperature range for a multitude of aqueous samples. These emulsifiers are block-polymerides with a nonhygroscopic center part of the chain of oxypropylene combinations recieved by addition of propylene oxide to both hydroxyl groups of a propylene-glycol nucleus and both ends of the center part of the chain terminating in hygroscopic poly(oxyethylene) groups. The length of the nonhygroscopic center part of the chain varies from about 800 to 3,000 or 4,000 in molecular weight. The hygroscopic poly(oxyethylene) end groups have a controlled length constituting about 10 to 80wt.% of the finished molecule. The most useful members of this group of co-polymerides possess a length of their poly(oxypropylene) chains corresponding to a value of y of about 15 to 56 and a length of their poly(oxyethylene)chains corresponding to values of x and z between 1 and 35 . All known fluorines can be used. With the scintillators the radioimmunoassay can also be carried through. (DG/PB) [de

  20. Inorganic-organic rubbery scintillators

    CERN Document Server

    Gektin, A V; Pogorelova, N; Neicheva, S; Sysoeva, E; Gavrilyuk, V

    2002-01-01

    Spectral-kinetic luminescence properties of films, containing homogeneously dispersed scintillation particles of CsI, CsI:Tl, CsI:Na, and NaI:Tl in optically transparent organosiloxane matrix, are presented. Material is flexible and rubbery and in consequence the detectors of convenient shapes can be produced. It is found that luminescence spectra of the received films are identical whereas decay times are much shorter compared to the same ones of the corresponding single crystals. Layers with pure CsI demonstrate only the fast UV emission (307 nm, 10 ns) without blue microsecond afterglow typical for crystals. The films containing NaI:Tl are non-hygroscopic and preserve scintillation properties for a long time in humid atmosphere unlike single crystals. Organosiloxane layers with CsI:Tl particles provide high light output with good energy resolution for sup 5 sup 5 Fe, sup 1 sup 0 sup 9 Cd, sup 2 sup 4 sup 1 Am sources, and are capable of detecting both X-rays and alpha-, beta-particles.

  1. Liquid scintillator mixable with water

    International Nuclear Information System (INIS)

    Benson, R.H.

    1976-01-01

    A liquid scintillator mixable with water is described consisting of an aromatic solvent (xylene), a scintillation material and an ethoxylated alkyl phenol (as surface-active substance). So far such kinds of system have not given good measurements on counting samples with high water content. Due to the invention's composition one gets good results even with counting samples having a water content of over 30% if the alkyl substituent of the alkyl phenol contains 7, 10, 11, 13, 14, 15 or 16 C atoms and the ratio n/x of the number n of C atoms of the alkyl substituents to the average number x of the ethoxy groups of the ethoxylated alkyl phenols lie between 0.83 and 1.67. The following alkyl phenols are mentioned: heptyl phenol (n/x between 0.83 and 1.08), decyl phenol (n/x between 0.90 and 1.17), hendecyl phenol (n/x between 0.93 and 1.22), tridecyl phenol (n/x between 0.97 and 1.34), tetradecyl phenol (n/x between 1.08 and 1.55), pentadecyl phenol (n/x between 1.15 and 1.67), hexadecyl phenol (n/x between 1.33 and 1.51). (UWI) [de

  2. Present development of scintillator counters in France; Etat actuel du developpement des compteurs a scintillation en France

    Energy Technology Data Exchange (ETDEWEB)

    Koechlin, Y; Koch, L; Lansiart, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Pietri, G [Laboratoire d' Electronique et de Physique Appliquee (France)

    1958-07-01

    For a number of years photomultipliers and scintillators have been produced on an industrial scale in France. The AEC has accepted the task of testing their performance, and advising the industry in consequence. This combined effort has resulted in the wide range of photomultipliers and scintillators summarised in the following paper. (author)Fren. [French] La france fabrique industriellement depuis quelques annees des photomultiplicateurs et des scintillateurs. Le Commissariat a l'Energie atomique s'est charge de mesurer leurs performances et de conseiller l'industrie fran ise a ce sujet. C'est ainsi que nous disposons actuellement de toute une gamme de photomultiplicateurs et de scintillateurs fran is dont nous donnons ci-dessous un apercu. (auteur)

  3. Design and construction of a scintillating fibre tracker for measuring hard exclusive reactions at HERMES

    International Nuclear Information System (INIS)

    Hoek, M.

    2006-07-01

    In the framework of this thesis the planning and the construction of a track-reconstruction detector consisting of scintillating fibers (SFT) for the HERMES recoil detector is described. The SFT as one of the main components of the recoil detector serves for the momentum determination for charged particles in the momentum range of 250-1400 MeV/c. Furthermore it contributes to the particle identification of protons and charged pions. The optical readout of the fibers pursues with secondary-electron multipliers, which must be positioned beyond the magnetic field of the recoil-detector magnet

  4. Design and construction of a scintillating fibre tracker for measuring hard exclusive reactions at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, M.

    2006-09-15

    In the framework of this thesis the planning and the construction of a track-reconstruction detector consisting of scintillating fibers (SFT) for the HERMES recoil detector is described. The SFT as one of the main components of the recoil detector serves for the momentum determination for charged particles in the momentum range of 250-1400 MeV/c. Furthermore it contributes to the particle identification of protons and charged pions. The optical readout of the fibers pursues with secondary-electron multipliers, which must be positioned beyond the magnetic field of the recoil-detector magnet.

  5. SU-E-T-782: Using Light Output From Doped Plastic Scintillators to Resolve the Linear Energy Transfer Spectrum of Clinical Electron Beams

    International Nuclear Information System (INIS)

    Nusrat, H; Pang, G; Ahmad, S; Keller, B; Sarfehnia, A

    2015-01-01

    Purpose: This research seeks to develop a portable, clinically-suitable linear energy transfer (LET) detector. In radiotherapy, absorbed dose is commonly used to measure the amount of delivered radiation, though, it is not a good indicator of actual biological damage. LET is the energy absorbed per unit length by a medium along charged particle’s pathway; studies have shown that LET correlates well with relative biological effectiveness (RBE). Methods: According to Birks’ law, light output of plastic scintillators is stopping-power dependent. This dependency can be varied through doping by various high-Z elements. By measuring light output signals of differently doped plastic scintillators (represented by column vector S, where each row corresponds to different scintillator material), the fluence of charged particles of a given LET (represented by column vector Φ, where each row corresponds to different LET bins) can be unfolded by S=R*Φ where R is system response matrix (each row represents a different scintillator, each column corresponds to different electron LET). Monte Carlo (MC) GEANT4.10.1 was used to evaluate ideal detector response of BC408 scintillating material doped with various concentrations of several high Z dopants. Measurements were performed to validate MC. Results: Signal for 1%-lead doped BC408 and the non-doped scintillator was measured experimentally by guiding light emitted by the scintillator (via in-house made taper, fiber system) to a PMT and then an electrometer. Simulations of 1%Pb-doped scintillator to non-doped scintillator revealed 9.3% reduction in light output for 6 MeV electrons which compared well (within uncertainty) with measurements showing 10% reduction (6MeV electrons). Conclusion: Measurements were used to validate MC simulation of light output from doped scintillators. The doping of scintillators is a viable technique to induce LET dependence. Our goal is to use this effect to resolve the LET spectrum of an incident

  6. Scales

    Science.gov (United States)

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that ...

  7. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    Directory of Open Access Journals (Sweden)

    Marques Haroldo Antonio

    2018-01-01

    Full Text Available GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP, where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  8. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    Science.gov (United States)

    Marques, Haroldo Antonio; Marques, Heloísa Alves Silva; Aquino, Marcio; Veettil, Sreeja Vadakke; Monico, João Francisco Galera

    2018-02-01

    GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  9. Optimization of {sup 6}LiF:ZnS(Ag) Scintillator Light Yield Using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Yehuda-Zada, Y. [Nuclear Research Center Negev, Beer-Sheva (Israel); Ben-Gurion University (Israel); Pritchard, K.; Ziegler, J.B.; Cooksey, C.; Siebein, K. [National Institute of Standards and Technology, Gaithersburg, Maryland (United States); Jackson, M.; Hurlbut, C. [Eljen Technology, Sweetwater Texas (United States); Kadmon, Y.; Cohen, Y.; Maliszewskyj, N.C. [Nuclear Research Center Negev, Beer-Sheva (Israel); Ibberson, R.M.; Majkrzak, C.F. [National Institute of Standards and Technology, Gaithersburg, Maryland (United States); Orion, Y. [Ben-Gurion University (Israel); Osovizky, A. [National Institute of Standards and Technology, Gaithersburg, Maryland (United States); Rotem Industries Ltd, Rotem Industrial Park (Israel); University of Maryland (United States)

    2015-07-01

    Neutrons provide an effective tool to probe materials structure. Neutron diffraction is a method to determine the atomic and magnetic structure of a material based on neutron scattering. By this method a collimated incident beam of thermal neutrons heat the examined sample and based on the obtained diffraction pattern information on the structure of the material is provided. Research for developing a novel cold neutron detector for Chromatic Analysis Neutron Diffractometer Or Reflectometer (CANDOR) is underway at the NIST center for neutron research. The system unique design is aimed to provide over ten times fold faster analysis of materials than conventional system. In order to achieve the fast analysis a large number of neutron detectors is required. A key design constraint for this detector is the thickness of the neutron sensitive element. This is met using {sup 6}LiF:ZnS(Ag) scintillation material with embedded wavelength shifting (WLS) fibers conducting scintillation light to silicon photomultiplier photo-sensors. The detector sensitivity is determined by both the neutron capture probability ({sup 6}Li density) and the detectable light output produced by the ZnS(Ag) ionization, the latter of which is hindered by the fluorescence absorption of the scintillation light by the ZnS. Tradeoffs between the neutron capture probability, stimulated light production and light attenuation for determining the optimal stoichiometry of the {sup 6}LiF and ZnS(Ag) as well as the volume ratio of scintillator and fiber. Simulations performed using the GEANT4 Monte Carlo package were made in order to optimize the detector design. GEANT4 enables the investigation of the neutron interaction with the detector, the ionization process and the light transfer process following the nuclear process. The series of conversions required for this detector were modelled: - A cold neutron enters the sensor and is captured by {sup 6}Li in the scintillator mixture ({sup 6}Li (n,α) {sup 3}H

  10. Estimation of Fano factor in inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Vaibhav, E-mail: bora.vaibhav@gmail.com [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Barrett, Harrison H., E-mail: barrett@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Fastje, David, E-mail: dfastje@gmail.com [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Clarkson, Eric, E-mail: clarkson@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Furenlid, Lars, E-mail: furen@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Bousselham, Abdelkader, E-mail: abousselham@qf.org.qa [Qatar Foundation, QEERI, P.O. Box 5825, Doha (Qatar); Shah, Kanai S., E-mail: kanaishah@yahoo.com [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States); Glodo, Jarek, E-mail: jglodo@rmdinc.com [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States)

    2016-01-01

    The Fano factor of an integer-valued random variable is defined as the ratio of its variance to its mean. Correlation between the outputs of two photomultiplier tubes on opposite faces of a scintillation crystal was used to estimate the Fano factor of photoelectrons and scintillation photons. Correlations between the integrals of the detector outputs were used to estimate the photoelectron and photon Fano factor for YAP:Ce, SrI{sub 2}:Eu and CsI:Na scintillator crystals. At 662 keV, SrI{sub 2}:Eu was found to be sub-Poisson, while CsI:Na and YAP:Ce were found to be super-Poisson. An experiment setup inspired from the Hanbury Brown and Twiss experiment was used to measure the correlations as a function of time between the outputs of two photomultiplier tubes looking at the same scintillation event. A model of the scintillation and the detection processes was used to generate simulated detector outputs as a function of time for different values of Fano factor. The simulated outputs from the model for different Fano factors was compared to the experimentally measured detector outputs to estimate the Fano factor of the scintillation photons for YAP:Ce, LaBr{sub 3}:Ce scintillator crystals. At 662 keV, LaBr{sub 3}:Ce was found to be sub-Poisson, while YAP:Ce was found to be close to Poisson.

  11. Liquid scintillation counting system with automatic gain correction

    International Nuclear Information System (INIS)

    Frank, R.B.

    1976-01-01

    An automatic liquid scintillation counting apparatus is described including a scintillating medium in the elevator ram of the sample changing apparatus. An appropriate source of radiation, which may be the external source for standardizing samples, produces reference scintillations in the scintillating medium which may be used for correction of the gain of the counting system

  12. Feasibility of Ultra-Thin Fiber-Optic Dosimeters for Radiotherapy Dosimetry.

    Science.gov (United States)

    Lee, Bongsoo; Kwon, Guwon; Shin, Sang Hun; Kim, Jaeseok; Yoo, Wook Jae; Ji, Young Hoon; Jang, Kyoung Won

    2015-11-17

    In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types of sensors cannot only be used to measure skin or surface doses but also provide depth dose measurements with high spatial resolution. With the ultra-thin fiber-optic dosimeters, surface doses for gamma rays generated from a Co-60 therapy machine were measured. Additionally, percentage depth doses in the build-up regions were obtained by using the ultra-thin fiber-optic dosimeters, and the results were compared with those of external beam therapy films and a conventional fiber-optic dosimeter.

  13. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  14. WE-DE-201-10: Pitfalls When Using Ruby as An Inorganic Scintillator Detector for Ir-192 Brachytherapy Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kertzscher, G; Beddar, S [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To study the promising potential of inorganic scintillator detectors (ISDs) and investigate various unwanted luminescence properties which may compromise their accuracy. Methods: The ISDs were comprised of a ruby crystal coupled to a polymethyl methacrylate (PMMA) fiber-optic cable and a charged coupled device camera. A new type of ISD was manufactured and included a long-pass filter that was sandwiched between the crystal and the fiber-optic cable. The purpose of the filter was to suppress the Cerenkov and fluorescence background light induced in the PMMA (the stem signal) from striking the ruby crystal, generating unwanted ruby excitation. A variety of experiments were performed to characterize the ruby based ISDs. The relative contribution of the induced ruby signal and the stem signal were quantified while exposing the detector and a bare fiber-optic cable to a high dose rate (HDR) brachytherapy (BT) source, respectively. The unwanted ruby excitation was quantified while irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and a comparison to other commonly used organic scintillator detectors (BCF-12, BCF-60). Results: When the BT source dwelled 0.5 cm away from the fiber-optic cable, the unwanted ruby excitation amounted to >5% of the total signal if the source-distance from the scintillator was >7 cm. However, the unwanted excitation was suppressed to <1% if the ISD incorporated an optic filter. The stem signal was suppressed with a 20 nm band-pass filter and was <3% as long as the source-distance was <7 cm. The ruby based ISDs generated signal up to 20(40) times that of BCF-12(BCF-60). Conclusion: The study presents solutions to unwanted luminescence properties of ruby based ISDs for HDR BT. An optic filter should be sandwiched between the scintillator volume and the fiber-optic cable to prevent the stem signal to excite the ruby crystal.

  15. Scintillation counter: photomultiplier tube alignment

    International Nuclear Information System (INIS)

    Olson, R.E.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  16. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  17. TH-C-19A-10: Systematic Evaluation of Photodetectors Performances for Plastic Scintillation Dosimetry

    International Nuclear Information System (INIS)

    Boivin, J; Beaulieu, L; Beddar, S; Guillemette, M

    2014-01-01

    Purpose: To assess and compare the performance of different photodetectors likely to be used in a plastic scintillation detector (PSD). Methods: The PSD consists of a 1 mm diameter, 10 mm long plastic scintillation fiber (BCF-60) which is optically coupled to a clear 10 m long optical fiber of the same diameter. A light-tight plastic sheath covers both fibers and the scintillator end is sealed. The clear fiber end is connected to one of the following six studied photodetectors: two polychromatic cameras (one with an optical lens and one with a fiber optic taper replacing the lens); a monochromatic camera with the same optical lens; a PIN photodiode; an avalanche photodiode (APD); and a photomultiplier tube (PMT). Each PSD is exposed to both low energy beams (120, 180, and 220 kVp) from an orthovoltage unit, and high energy beams (6 MV and 23 MV) from a linear accelerator. Various dose rates are explored to identify the photodetectors operating ranges and accuracy. Results: For all photodetectors, the relative uncertainty remains under 5 % for dose rates over 3 mGy/s. The taper camera collects four times more signal than the optical lens camera, although its standard deviation is higher since it could not be cooled. The PIN, APD and PMT have higher sensitivity, suitable for low dose rate and out-of-field dose monitoring. PMT's relative uncertainty remains under 1 % at the lowest dose rate achievable (50 μGy/s), suggesting optimal use for live dosimetry. Conclusion: A set of 6 photodetectors have been studied over a broad dose rate range at various energies. For dose rate above 3 mGy/s, the PIN diode is the most effective photodetector in term of performance/cost ratio. For lower dose rate, such as those seen in interventional radiology, PMTs are the optimal choice. FQRNT Doctoral Research Scholarship

  18. Performance of the LAr scintillation veto of Gerda Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wiesinger, Christoph [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Collaboration: GERDA-Collaboration

    2016-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay in {sup 76}Ge. Results of Phase I have been published in summer 2013 and Gerda has been upgraded to Phase II. To reach the aspired background index of ∝10{sup -3} cts/(keV.kg.yr) for Phase II active background-suppression techniques are applied, including an active liquid argon (LAr) veto. It has been demonstrated with the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium detectors, which simultaneously deposit energy in the LAr. The light instrumentation consisting of photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon photomultipliers (SiPM) has been installed in Gerda. In this talk the low background design of the LAr veto and its performance during Phase II start-up is reported.

  19. Performance of the LAr scintillation veto of GERDA Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wiesinger, Christoph [Technische Universitaet Muenchen, Physik Dept. E15, James-Franck-Strasse, 85748 Garching (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay in {sup 76}Ge. Results of Phase I have been published in summer 2013 and Gerda is upgraded to Phase II. To reach the aspired background index of ≤ 10{sup -3} cts/(keV.kg.yr) for Phase II active background-suppression techniques are applied, including an active liquid argon (LAr) veto. It has been demonstrated with the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in the LAr. The light instrumentation consisting of photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon multipliers (SiPM) has been installed in Gerda. In this talk the low background design of the LAr veto and its performance during the commissioning runs are reported.

  20. A new plastic scintillator with large Stokes shift

    International Nuclear Information System (INIS)

    Destruel, P.; Taufer, M.

    1989-01-01

    We have developed a new plastic scintillator with the novel characteristic of highly localized light emission; scintillation and wavelength shifting take place within a few tens of micrometers of the primary ionization. The new scintillator consists of a scintillating polymer base [polyvinyl toluene (PVT) or polystyrene (PS)] doped with a single wavelength shifter, 1-phenyl-3-mesityl-2-pyrazoline (PMP), which has an exceptionally large Stokes shift and therefore a comparatively small self-absorption of its emitted light. In other characteristics (e.g. scintillation efficiency and decay time) the performance of the new scintillator is similar to a good quality commercial plastic scintillator such as NE110. (orig.)