WorldWideScience

Sample records for scale energy amplifier

  1. X-ray amplifier energy deposition scaling with channeled propagation

    International Nuclear Information System (INIS)

    Boyer, K.; Luk, T.S.; McPherson, A.

    1991-01-01

    The spatial control of the energy deposited for excitation of an x-ray amplifier plays an important role in the fundamental scaling relationship between the required energy, the gain and the wavelength. New results concerning the ability to establish confined modes of propagation of sort pulse radiation of sufficiently high intensity in plasmas lead to a sharply reduced need for the total energy deposited, since the concentration of deposited power can be very efficiently organized

  2. A tentative programme towards a full scale energy amplifier

    CERN Document Server

    Rubbia, Carlo

    1996-01-01

    We present a proposal of a full scale demonstration plant of the Energy Amplifier (EA), following the conceptual design of Ref. [1]. Unlike the presently on going CERN experiments, reaction rates will be sufficiently massive to permit demonstrating the practical feasibility of energy generation on an industrial scale and to tackle the complete family chains of [1] the breeding process in Thorium fuel, [2] the burning of the self-generated Actinides, [3] the Plutonium (higher Actinides) burning of spent fuel from ordinary Reactors and [4] Fuel reprocessing/regeneration. The accelerator must provide a beam power which is commensurate to the rate of transformations which are sought. No existing accelerator can meet such a performance and a dedicated facility must be built. We describe an alternative based on the superconducting cavities (SC) now in standard use at the LEP \\[e^+-e^-\\] collider which is scheduled to terminate its operation by year 200 After this time, with reasonable modifications, the fully opera...

  3. Cascade energy amplifier

    International Nuclear Information System (INIS)

    Barzilov, A.P.; Gulevich, A.V.; Kukharchuk, O.F.

    2000-01-01

    The technical problem of long-life fission product and minor actinide incineration and production of plutonium fuel in the prospective nuclear systems will arise at significant scales of nuclear power industry development. Subcritical nuclear reactors driven by extemal neutron sources (energy amplifiers) are considered as incinerators of toxicity of complete nuclear industry. In the frames of this concept, the subcritical reactor part consisting of two coupled blanket regions (inner fast neutron spectrum core and outer thermal core) driven by extemal neutron source is discussed. Two types of source are studied: spallation target and 14-MeV fusion bum of micropellets. Liquid metal Pb-Bi is considered as target material and coolant of inner fast core. Thermal core is a heavy-water subcritical reactor of the Candu-type. The fast core is protected from thermal neutrons influence with the boron shield. All reactor technologies used in this concept are tested during years of operation and commercially available. Thus, the cascade energy amplifiers have a set of advantages in comparison with traditional concepts: in energy production, in transmutation efficiency, and in economics. (authors)

  4. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael

    2013-08-15

    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  5. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    International Nuclear Information System (INIS)

    Schulz, Michael

    2013-08-01

    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  6. TARC: Carlo Rubbia's Energy Amplifier

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.

  7. CERN: Energy amplifier

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Even under the heavy burden of responsibility as CERN's Director General from 1989-3 the fertile mind of Carlo Rubbia the scientist was never still. A long-time Rubbia 'hobby' has been the search for new sources of nuclear energy, exploiting knowledge and skills from high energy physics. An initial objective was to adopt heavy ion techniques to induce controlled thermonuclear fusion, but in 1994 this quest changed direction. Putting the problems of thermonuclear fusion aside, Rubbia began to explore an alternative route to energy production through controlled nuclear fission. The idea is to use a particle accelerator producing neutrons by spallation (interaction of particles with a target) to feed a fuel/moderator assembly where the neutrons multiply by fission chain reactions. If the energy liberated becomes substantially greater than that needed to drive the accelerator, the process has a net gain and becomes selfsupporting. Hence the name ''Energy Amplifier'' (EA). Similar systems for energy production or for nuclear waste incineration have been proposed at Los Alamos and in Japan and Russia, but appear to require the prior development of innovative linear accelerators. For Rubbia's Amplifier, the requisite accelerator is a reasonable extrapolation of an existing cyclotron such that at the Swiss Paul Scherrer Institute. Moreover, the EA would require fuel rods very similar to those of conventional reactors, rather than demand-ing new technology using liquid fuel loops (molten salts) with on-line separation of radioactive products. Unlike a reactor, the EA's fission reaction is not self-sustaining: it is sub-critical and needs a continuous supply of neutrons from the accelerator. This makes Chernobyl-type meltdowns unlikely: if the accelerator stops, the reaction stops too. Another major advantage is that the old dream of using thorium as a fuel is now made possible. Thorium is not itself fissile, but under neutron

  8. Fiber Based Optical Amplifier for High Energy Laser Pulses Final Report CRADA No. TC02100.0

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cunningham, P. [Boeing Company, Springfield, VA (United States)

    2017-09-06

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL), and The Boeing Company to develop an optical fiber-based laser amplifier capable of producing and sustaining very high-energy, nanosecond-scale optical pulses. The overall technical objective of this CRADA was to research, design, and develop an optical fiber-based amplifier that would meet specific metrics.

  9. Self-oscillating modulators for direct energy conversion audio power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D audio power amplifier into one compact stage, achieving high efficiency, high level of integration, low component count and eventually low cost. This paper presents how self-oscillating modulators can be used with the direct switching-mode audio power amplifier to improve its performance by providing fast hysteretic control with high power supply rejection ratio, open-loop stability and high bandwidth. Its operation is thoroughly analyzed and simulated waveforms of a prototype amplifier are presented. (au)

  10. A Collaborative Project for the Development of Energy Amplifier

    International Nuclear Information System (INIS)

    Joo, H. K.; Kim, S. J.; Kim, Y. H.; Lee, Y. W.; Cho, C. H.; Song, T. Y.

    2009-11-01

    An energy amplifier can be an option for the future system for electricity generation and for management of spent fuel. An energy amplifier system is composed of a proton accelerator and a proton transportation system, a target system, a subcritical reactor, and a heat transfer system. A development plan for energy amplifier should be individually prepared for each sub-sytem. For the development of a subcritical reactor, a feasibility and conceptual studies is recommended to be carried out till the basic research phase which is performed with the development of the accelerator system. The feasibility study needs 1∼2 years of research period and 1.5 man-year of efforts. The conceptual design for the subcritical reactor will determine a reactor concept, the power of reactor and accelerator, the interface with a target system, fuel design, the performance and safety analysis of the core, and the fuel cycle option including thorium cycle, and it requires 2∼3 years of research period and 6 man-year of man power

  11. Self-oscillating modulators for direct energy conversion audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D audio power amplifier into one compact stage, achieving high efficiency, high level of integration, low component count and eventually low cost. This paper presents how self-oscillating...

  12. High Energy Single Frequency Resonant Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  13. High-energy fibered amplification for large-scale laser facilities

    International Nuclear Information System (INIS)

    Lago, L.

    2011-01-01

    This work concerns the development of a double-clad ytterbium-doped single-mode micro-structured flexible fiber-based amplifier, in the nanosecond, multi-kilohertz and milli-Joule regime, for large-scale laser facilities seeding. We have used a multi-stage master oscillator power amplifier fibered architecture. A numerical model of ytterbium-doped double-clad fiber-based amplification, including amplified spontaneous emission, was developed in order to study the behaviour of such amplifier and to correctly design the experimental set-up. This model was completed by a feed-back algorithm to numerically predict the optimal temporal shape to compensate the gain saturation process. We demonstrated experimental results in good agreement with numerical simulations, with the following performances: 0.5 mJ pulse energy, at a frequency repetition from 1 kHz to 10 kHz, with a narrow bandwidth spectrum centred at 1053 nm wavelength, with 10 ns pulse duration on a perfect super-Gaussian temporal profile, an optical signal-to-noise ratio better than 50 dB and a polarization extinction ratio of 20 dB. We checked that the beam quality was diffraction limited, with an M 2 measurement of 1.1. Moreover, the system can deliver energies up to 1.5 mJ. Then, we took the advantage of such results to amplify chirped pulses. We demonstrated 0.7 mJ pulse energy, with 570 fs duration at 10 kHz repetition frequency. (author) [fr

  14. A low-noise ac-bridge amplifier for ballistocardiogram measurement on an electronic weighing scale

    International Nuclear Information System (INIS)

    Inan, O T; Kovacs, G T A

    2010-01-01

    Ballistocardiography is a non-invasive technique for evaluating cardiovascular health. This note presents an ac-bridge amplifier for low-noise ballistocardiogram (BCG) recording from a modified weighing scale. The strain gauges in a commercial scale were excited by an ac source—square or sine wave—and the differential output voltage resulting from the BCG was amplified and demodulated synchronously with the excitation waveform. A standard BCG amplifier, with a simple dc-bridge excitation, was also built and the performance was compared to both the square- and sine-wave excited ac-bridge amplifiers. The total input-referred voltage noise (rms) integrated over the relevant BCG bandwidth of 0.3–10 Hz was found to be 30 nV (square wave source) or 25 nV (sine-wave source) for the ac-bridge amplifier and 52 nV for the standard amplifier: an improvement of 4.8 dB or 6 dB, respectively. These correspond to input-referred force noise (rms) values of 5 mN, 4 mN and 8.3 mN. The improvement in SNR was also observed in recorded waveforms from a seated subject whose BCG signal was measured with both dc- and ac-bridge circuits. (note)

  15. Operation amplifier

    NARCIS (Netherlands)

    Tetsuya, Saito; Nauta, Bram

    2008-01-01

    To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a differential amplifier circuit 1;

  16. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    International Nuclear Information System (INIS)

    Jin Zhenxing; Wu Yong; Li Baizhan; Gao Yafeng

    2009-01-01

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  17. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenxing; Li, Baizhan; Gao, Yafeng [The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China); Wu, Yong [The Department of Science and Technology, Ministry of Construction, Beijing 100835 (China)

    2009-06-15

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China. (author)

  18. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jin Zhenxing [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China)], E-mail: jinzhenxing33@sina.com; Wu Yong [Department of Science and Technology, Ministry of Construction, Beijing 100835 (China); Li Baizhan; Gao Yafeng [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China)

    2009-06-15

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  19. Power Scaling of Laser Oscillators and Amplifiers Based on Nd:YVO4

    OpenAIRE

    Yarrow, Michael James

    2006-01-01

    This thesis presents a strategy for power and brightness scaling in diode-end-pumped, master-oscillator-power-amplifier laser systems, based on Nd:YVOIssues relating to further power and brightness scaling are discussed as well as the potential applications of these laser sources as pump sources for frequency conversion in optical parametric devices.

  20. Opportunistic Energy-Aware Amplify-and-Forward Cooperative Systems with Imperfect CSI

    KAUST Repository

    Amin, Osama

    2015-07-29

    Recently, much attention has been paid to the green design of wireless communication systems using energy efficiency (EE) metrics that should capture all energy consumption sources to deliver the required data. In this paper, we design an energyefficient relay assisted communication system based on estimated channel state information (CSI). It employs amplify-andforward relaying and switches between different communication schemes, which are known as direct-transmission, two-hop and cooperative-transmission schemes, using the estimated CSI in order to maximize the EE. Two estimation strategies are assumed, namely disintegrated channel estimation and cascaded channel estimation. To formulate an accurate EE metric for the proposed opportunistic amplify-and-forward system, the channel estimation cost is reflected on the EE metric by including its impact in the signal-to-noise ratio term and in the energy consumption during the channels estimation phase. Based on the formulated EE metric, we propose an adaptive power allocation algorithm to maximize the EE of the proposed opportunistic amplify-andforward system with channel estimation. Furthermore, we study the impact of the estimation parameters on the proposed system via simulation examples.

  1. The neutronics of an Accelerator-Driven Energy Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E.; Gudowski, W. [Royal Institute of Technology, Stockholm (Sweden)

    1995-10-01

    This study has been focused on an Accelerator-Driven Energy Amplifier, based on the concept proposed by the CERN-group. To analyze the performance of this system the extensive optimization of the core lattice was done, the temperature coefficients of reactivity were investigated, reactivity budget and power distribution were estimated.

  2. An energy amplifier fluidized bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, F.; Seifritz, W.

    2001-01-01

    The concept of a fluidized bed nuclear reactor driven by an energy amplifier system is described. The reactor has promising characteristics of inherent safety and passive cooling. The reactor can easily operate with any desired spectrum in order to be a plutonium burner or have it operate with thorium fuel cycle. (orig.) [de

  3. Double optimization of Xe(L) amplifier power scaling at λ ∼ 2.9 A

    International Nuclear Information System (INIS)

    Borisov, Alex B; Song, Xiangyang; Zhang Ping; McCorkindale, John C; Khan, Shahab F; Poopalasingam, Sankar; Zhao Ji; Dai Yang; Rhodes, Charles K

    2007-01-01

    The spectral and spatial characteristics of the Xe(L) amplifier at λ ∼ 2.9 A determine an optimum for the scaling of the peak power with channel length. The Xe 31+ and Xe 32+ (3d → 2p) transition arrays represent two identical spectral optima for amplification, a property stemming from the extremum of spectral components (3245) characteristic of their electron configurations. Adroit matching of the spatial distribution of the intensity characteristic of the propagating 248 nm pulse dynamically generating the self-trapped plasma channel with the intensity required to excite selectively and efficiently the Xe 31+ and Xe 32+ arrays can also simultaneously maximize the spatial volume of the excitation. The net outcome of this double maximization is an amplifying channel for the optimal transitions that possesses high gain (∼100 cm -1 ), low losses ( -1 cm -1 ) and a diameter of 15-20 μm, a size sufficient to produce an x-ray pulse energy of ∼50-100 mJ from a channel having an average xenon density of ∼10 20 cm -3 and a length of 1 cm. Since previous studies have experimentally demonstrated the ability to produce a saturated bandwidth of ∼60 eV, a magnitude sufficient to support a pulse duration of ∼30 as, peak powers P x >> 1 PW are clearly within the scaling limits of the Xe(L) system. The corresponding peak brightness scaling limit is accordingly bounded from below by P x /λ 2 ≅ 10 30 W cm -2 sr -1 . (fast track communication)

  4. Pulse distortion, energy extraction, and ASE in an HF amplifier with angular multiplexing

    International Nuclear Information System (INIS)

    McGuire, E.J.

    1976-09-01

    It has been proposed that 1 ns pulses can be efficiently extracted from the e-beam initiated HF laser by angular multiplexing, i.e., filling the amplifier with the 1 ns pulses, 1 ns apart in time, each pulse at a slightly different angle; each pulse has an input intensity of 1 W/cm 2 per line and almost fills the amplifier. We have treated this in a one dimensional model, neglecting transverse amplified spontaneous emission. We conclude that the scheme is efficient, and that most of the pulses are amplified but not distorted. The first few pulses are distorted by transient effects and the last pulse has an enhanced tail. The ratio of peak pulse intensity to forward ASE at the output is 10 4 . We then include transverse ASE and find a drastically different situation. ASE saturates the inversion after a short time depending on pulse intensity (4 ns at I/sub o/ = 1 W/cm 2 , 7 ns at I/sub o/ = 100 W/cm 2 ). The saturation time is only weakly dependent on the transverse reflection coefficient. Calculations were done on an amplifier system designed for 10 KJ output. At an incident peak pulse intensity of 10 4 W/cm 2 -line (.77 MW/cm 2 for 77 lines) 2.5 KJ was obtained in amplified pulse energy, i.e., only 6 pulses of the 24 pulse train were fully amplified. The calculations indicate that double passing the pulse train through the amplifier would enhance the energy extracted

  5. Operation Amplifier

    NARCIS (Netherlands)

    Tetsuya, Saito; Nauta, Bram

    2011-01-01

    PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a

  6. Operation Amplifier

    NARCIS (Netherlands)

    Tetsuya, S.; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. ; SOLUTION: The operation amplifier comprises: a

  7. Cut-off scaling of high-harmonic generation driven by a femtosecond visible optical parametric amplifier

    International Nuclear Information System (INIS)

    Cirmi, Giovanni; Lai, Chien-Jen; Granados, Eduardo; Huang, Shu-Wei; Sell, Alexander; Hong, Kyung-Han; Moses, Jeffrey; Keathley, Phillip; Kärtner, Franz X

    2012-01-01

    We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 µJ energy at the 1 kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping other parameters (energy, duration and beam size) constant, we experimentally studied the scaling law of cut-off energy with the driver wavelength in helium. Our measurements show a λ 1.7+0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source, the high-order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ∼25 and ∼100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  8. Pulsed hydrogen fluoride laser oscillator-amplifier experiments

    International Nuclear Information System (INIS)

    Schott, G.L.

    1975-01-01

    Pulsed HF chemical laser oscillator energies were scaled from millijoules to several kilojoules over the period 1970-1974, reaching approximately 10 J with SF 6 and transverse discharges, and using electron-beam initiation and elemental F 2 above 1000J. This demonstrated scalability to large energy with acceptable electrical efficiency is only one prerequisite for application of this gas laser in fusion; equally important matters are achievement of focusable, approximately 1 ns pulses, couplable to light-element targets, all from an affordable system. Exploratory MOPA experiments are reported which address control of HF laser beam focusability and pulse duration, using SF 6 -based experimental oscillator--amplifier sequences and Pockels' cell switching. Simultaneous multiline lasing with 2.6 less than or equal to lambda less than or equal to 3.1 μm and high specific gain and energy density are particularly important factors encountered with HF, where amplifier pumping and lasing occur in a substantially cw temporal relationship, even in less than 100 ns bursts. Time-resolved SF 6 --HI oscillator spectra contain 27 simultaneous lines from six vibrational bands. An apertured, SF 6 -hydrocarbon pin-discharge oscillator generates approximately 10 mJ of TEM 00 radiation, which is amplified to approximately 1 J in approximately 150 ns by a TEA amplifier and p []opagated tens of meters. A three-stage system coupling these elements through an approximately 1 ns electrooptic gate to a greater than 10 J, e-beam energized amplifier is under development. (auth)

  9. Research on disk amplifiers as polarizer of electro-optical switch

    CERN Document Server

    Zheng Kui Xing; Feng Bin; Zheng Jian; Dong Yun; Peng Zhi Tao; Lu Jing Ping; Jing Feng; Wei Xiao Feng

    2002-01-01

    It benefits to decrease the engineering cost and to debase the technical crisis by the polarizer composed of amplifier Nd sup 3 sup + : glass slabs located with the Brewster angle in large scale multi-passes laser facility. The relationships of the isolation efficiency with the numbers of slab, the growth of the amplifier and the switch efficiency of Pockels cell are calculated theoretically. The experimental results indicated that the output energy ratio of this Pockels cell-amplifier isolation system is 1 : 8 while Pockels cell is on and off

  10. Single-mode operation of a coiled multimode fiber amplifier

    International Nuclear Information System (INIS)

    Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew

    2000-01-01

    We report a new approach to obtaining single-transverse-mode operation of a multimode fiber amplifier in which the gain fiber is coiled to induce significant bend loss for all but the lowest-order mode. We demonstrated this method by constructing a coiled amplifier using Yb-doped, double-clad fiber with a core diameter of 25 μm and a numerical aperture of ∼0.1 (V≅7.4) . When the amplifier was operated as an amplified-spontaneous-emission source, the output beam had an M 2 value of 1.09±0.09 ; when seeded at 1064 nm, the slope efficiency was similar to that of an uncoiled amplifier. This technique will permit scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality. (c) 2000 Optical Society of America

  11. A velocity-amplified electromagnetic energy harvester for small amplitude vibration

    Science.gov (United States)

    Klein, J.; Zuo, L.

    2017-09-01

    Dedicated, self-powered wireless sensors are widely being studied for use throughout many industries to monitor everyday operations, maintain safety, and report performance characteristics. To enable sensors to power themselves, harvesting energy from machine vibration has been studied, however, its overall effectiveness can be hampered due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester architecture in which a compliant mechanism and proof mass system is used to amplify the vibrational velocity of machine vibration for a linear electromagnetic generator. A prototype has been fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 inch (25.4 μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. This method of locally increasing the machine vibrational velocity has been shown to be a viable option for increasing the potential power output of an energy harvester. In addition, a mathematical model is created based on pseudo-rigid-body dynamics and the analysis matches closely with experiments.

  12. Assembly and maintenance of full scale NIF amplifiers in the amplifier module prototype laboratory (AMPLAB)

    International Nuclear Information System (INIS)

    Horvath, J. A.

    1998-01-01

    Mechanical assembly and maintenance of the prototype National Ignition Facility amplifiers in the Amplifier Module Prototype Laboratory (AMPLAB) at Lawrence Livermore National Laboratory requires specialized equipment designed to manipulate large and delicate amplifier components in a safe and clean manner. Observations made during the operation of this assembly and maintenance equipment in AMPLAB provide design guidance for similar tools being built for the National Ignition Facility. Fixtures used for amplifier frame installation, laser slab and flashlamp cassette assembly, transport, and installation, and in-situ blastshield exchange are presented. Examples include a vacuum slab gripper, slab handling clean crane, slab cassette assembly fixture, sealed transport vehicle for slab cassette movement between the cleanroom and amplifier, slab cassette transfer fixture between the cleanroom and transport vehicle, and equipment needed for frame assembly unit, blastshield, an d flashlamp cassette installation and removal. The use of these tools for amplifier assembly, system reconfiguration, reflector replacement, and recovery from an abnormal occurrence such as a flashlamp explosion is described. Observations are made on the design and operation of these tools and their contribution to the final design

  13. Design considerations of a MW-scale, high-efficiency, industrial-use, ultraviolet FEL amplifier

    International Nuclear Information System (INIS)

    Pagani, C.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2000-01-01

    Theoretical and experimental work in free electron laser (FEL) physics, and the physics of particle accelerators over the last 10 years has pointed to the possibility of the generation of MW-level optical beams with laser-like characteristics in the ultraviolet (UV) spectral range. The concept is based on generation of the radiation in the master oscillator-power FEL amplifier (MOPA) configuration. The FEL amplifier concept eliminates the need for an optical cavity. As a result, there are no thermal loading limitations to increase the average output power of this device up to the MW-level. The problem of a tunable master oscillator can be solved with available conventional quantum lasers. The use of a superconducting energy-recovery linac could produce a major, cost-effective facility with wall plug power to output optical power efficiency of about 20% that spans wavelengths from the visible to the deep ultraviolet regime. The stringent electron beam qualities required for UV FEL amplifier operation can be met with a conservative injector design (using a conventional thermionic gun and subharmonic bunchers) and the beam compression and linear acceleration technology, recently developed in connection with high-energy linear collider and X-ray FEL programs

  14. Energy-signal quality trade-offs in a WiMAX mobile station with a booster amplifier

    Science.gov (United States)

    Suherman; Mubarakah, N.; Wiranata, O.; Kasim, S. T.

    2018-02-01

    Worldwide Interoperability for Microwave Access (WiMAX) is a broadband wireless access technology that is able to provide high bit rate mobile internet services. Battery endurance remains a problem in current mobile communication. On the other hand, signal quality determines the successful run of the mobile applications. Energy consumption optimization cannot sacrifice the signal level required by the application to run smoothly. On the contrary, the application should consider battery life time. This paper examines the tradeoffs between energy and signal quality in WiMAX subscriber station by adjusting signal level using a booster amplifier. Simulation evaluations show that an increment of 0.00000104% energy consumption on using amplifier adaptively produces 16.411% signal to noise ratio (SNR) increment and 10.7% bit error rate (BER) decrement. By keeping the amplifier turned on, energy consumption increases up to 0.00000136%, causing the SNR rises to 17.2638% and BER drops to 11.13%. The evaluated application is video streaming, other application may behave differently.

  15. CERN-group conceptual design of a fast neutron operated high power energy amplifier

    International Nuclear Information System (INIS)

    Rubbia, C.; Rubio, J.A.; Buono, S.

    1997-01-01

    The practical feasibility of an Energy Amplifier (EA) with power and power density which are comparable to the ones of the present generation of large PWR is discussed in this paper. This is only possible with fast neutrons. Schemes are described which offer a high gain, a large maximum power density and an extended burn-up, well in excess of 100 GW x d/t corresponding to about five years at full power operation with no intervention on the fuel core. The following topics are discussed: physics considerations and parameter definition, the accelerator complex, the energy amplifier unit, computer simulated operation, and fuel cycle closing

  16. CERN-group conceptual design of a fast neutron operated high power energy amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Rubbia, C; Rubio, J A [European Organization for Nuclear Research, CERN, Geneva (Switzerland); Buono, S [Laboratoire du Cyclotron, Nice (France); and others

    1997-11-01

    The practical feasibility of an Energy Amplifier (EA) with power and power density which are comparable to the ones of the present generation of large PWR is discussed in this paper. This is only possible with fast neutrons. Schemes are described which offer a high gain, a large maximum power density and an extended burn-up, well in excess of 100 GW x d/t corresponding to about five years at full power operation with no intervention on the fuel core. The following topics are discussed: physics considerations and parameter definition, the accelerator complex, the energy amplifier unit, computer simulated operation, and fuel cycle closing. 84 refs, figs, tabs.

  17. Modeling the energy deposition in the Aurora KrF laser amplifier chain

    International Nuclear Information System (INIS)

    Comly, J.C.; Czuchlewski, S.J.; Greene, D.P.; Hanson, D.E.; Krohn, B.J.; McCown, A.W.

    1988-01-01

    Monte Carlo calculations model the energy depositions by highly energetic electron beams into the cavities of the four KrF laser amplifiers in the Aurora chain. Deposited energy density distributions are presented and studied as functions of e-beam energy and gas pressure. Results are useful for analyzing small signal gain (SSG) measurements and optimizing deposition in future experiments. 7 refs., 7 figs., 1 tab

  18. Status Report on the Energy Amplifier

    CERN Document Server

    Rubbia, Carlo

    1994-01-01

    0ne year after its first presentation,the Energy Amplifier (EA) Project holds its promises for a environmentally acceptable form of energy extraction from nuclei, namely to eliminate or at least greatly reduce(i) the environmental impact of the long-lived highly radioactive waste;(ii) the possibility of diversions toward military applications;(iii) the risks of an accidental divergence related to the critical operation of the chain reaction and (iv) make a more efficient use of a fuel which is less radio-toxic to extract and more abundant on Earth than Uranium. In these respects the EA (or equivalent scenarios from Los Alamos and elsewhere) is comparable in performance to Thermonuclear Fusion. Bot h approches offer pratically unl;imited fuel resources: the energetic content of Lithium on the Earth's crust needed by Fusion is estimated to be seven times the one of Thorium and they are both adequate for millions of years of very intensived utilisation.However the EA can be built economically,in a variety of siz...

  19. Study on the E-beam pulse width scaling for a 25-kilojoule KrF amplifier

    International Nuclear Information System (INIS)

    Ramirez, J.J.

    1983-02-01

    The KrF laser is being considered as an ICF driver candidate. Since this laser is not an energy storing system, the output energy of an amplifier is delivered over the entire pulse width of the excitation source. E-beam pumping is preferred for large energy systems. The e-beam pulse width is constrained to a few hundred nanoseconds by laser operation and pulsed power considerations. The target requires pulses of a few nanoseconds. Angular multiplexing of probe beams through the amplifier is a preferred scheme for bridging this difference in timing requirements. Progressively shorter target irradiation times may be obtained by using shorter pulse probe beams and by either increasing the number of angular multiplexed beams or by decreasing the e-beam pulse width. This report documents results of a study on the consequences of following the latter approach

  20. Antares laser power amplifier

    International Nuclear Information System (INIS)

    Stine, R.D.; Ross, G.F.; Silvernail, C.

    1979-01-01

    The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed

  1. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  2. Final amplifier design and mercury

    International Nuclear Information System (INIS)

    Rose, E.A.; Hanson, D.E.

    1991-01-01

    The final amplifier for the Mercury KrF excimer facility is being designed. The design exercise involves extensive modeling to predict amplifier performance. Models of the pulsed-power system, including a Child-Langmuir diode with closure, electron-beam energy deposition, KrF laser kinetics, amplified spontaneous emission (ASE), a time-dependent laser extraction in the presence of ASE are presented as a design package. The design exercise indicates that the energy objective of Phase I -- 100 joules -- will be met

  3. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix

    Science.gov (United States)

    Yang, Dong; Duan, Pengfei; Zhang, Li; Liu, Minghua

    2017-01-01

    Transfer of both chirality and energy information plays an important role in biological systems. Here we show a chiral donor π-gelator and assembled it with an achiral π-acceptor to see how chirality and energy can be transferred in a composite donor–acceptor system. It is found that the individual chiral gelator can self-assemble into nanohelix. In the presence of the achiral acceptor, the self-assembly can also proceed and lead to the formation of the composite nanohelix. In the composite nanohelix, an energy transfer is realized. Interestingly, in the composite nanohelix, the achiral acceptor can both capture the supramolecular chirality and collect the circularly polarized energy from the chiral donor, showing both supramolecular chirality and energy transfer amplified circularly polarized luminescence (ETACPL). PMID:28585538

  4. Optimization of the alignment sensitivity and energy stability of the NIF regenerative amplifier cavity

    International Nuclear Information System (INIS)

    Hopps, N. W.

    1998-01-01

    The work to improve the energy stability of the regenerative amplifier ('regen') for the National Ignition Facility is described. This includes a fast feed-forward system, designed to regulate the output energy of the regen by monitoring how quickly a pulse builds up over many round trips. Shot-to-shot energy fluctuations of all elements prior to (and including) the regen may be compensated for in this way, at the expense of a loss of approximately 50%. Also included is a detailed study into the alignment sensitivity of the regen cavity, with the goal of quantifying the effect of misalignment on the output energy. This is done by calculating the displacement of the eigenmode by augmenting the cavity ABCD matrix with the misalignment matrix elements, E, F. In this way, cavity misalignment issues due to thermal loading of the gain medium are investigated. Alternative cavity designs, which reduce the alignment sensitivity and therefore the energy drift over periods of continuous operation, are considered. Alterations to the amplifier head design are also considered

  5. A Front End for Multipetawatt Lasers Based on a High-Energy, High-Average-Power Optical Parametric Chirped-Pulse Amplifier

    International Nuclear Information System (INIS)

    Bagnoud, V.

    2004-01-01

    We report on a high-energy, high-average-power optical parametric chirped-pulse amplifier developed as the front end for the OMEGA EP laser. The amplifier provides a gain larger than 109 in two stages leading to a total energy of 400 mJ with a pump-to-signal conversion efficiency higher than 25%

  6. submitter Experimental temperature measurements for the energy amplifier test

    CERN Document Server

    Calero, J; Gallego, E; Gálvez, J; García Tabares, L; González, E; Jaren, J; López, C; Lorente, A; Martínez Val, J M; Oropesa, J; Rubbia, C; Rubio, J A; Saldana, F; Tamarit, J; Vieira, S

    1996-01-01

    A uranium thermometer has been designed and built in order to make local power measurements in the First Energy Amplifier Test (FEAT). Due to the experimental conditions power measurements of tens to hundreds of nW were required, implying a sensitivity in the temperature change measurements of the order of 1 mK. A uranium thermometer accurate enough to match that sensitivity has been built. The thermometer is able to determine the absolute energetic gain obtained in a tiny subcritical uranium assembly exposed to a proton beam of kinetic energies between 600 MeV and 2.75 GeV. In addition, the thermometer measurements have provided information about the spatial power distribution and the shape of the neutron spallation cascade.

  7. A CMOS variable gain amplifier for PHENIX electromagnetic calorimeter and RICH energy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wintenberg, A.L.; Simpson, M.L.; Young, G.R. [Oak Ridge National Lab., TN (United States); Palmer, R.L.; Moscone, C.G.; Jackson, R.G. [Tennessee Univ., Knoxville, TN (United States)

    1996-12-31

    A variable gain amplifier (VGA) has been developed equalizing the gains of integrating amplifier channels used with multiple photomultiplier tubes operating from common high-voltage supplies. The PHENIX lead-scintillator electromagnetic calorimeter will operate in that manner, and gain equalization is needed to preserve the dynamic range of the analog memory and ADC following the integrating amplifier. The VGA is also needed for matching energy channel gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5-bit digital control, and the risetime is held between 15 and 23 ns using switched compensation in the VGA. An additional feature is gated baseline restoration. Details of the design and results from several prototype devices fabricated in 1.2-{mu}m Orbit CMOS are presented.

  8. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier.

    Science.gov (United States)

    Tavella, Franz; Nomura, Yutaka; Veisz, Laszlo; Pervak, Vladimir; Marcinkevicius, Andrius; Krausz, Ferenc

    2007-08-01

    We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit. The novel ultrabroad, ultraprecise dispersion control technology presented in this work opens the way to scaling multiterawatt technology to even shorter pulses by optimizing the OPCPA bandwidth.

  9. Investigation of Energy Consumption and Sound Quality for Class-D Audio Amplifiers using Tracking Power Supplies

    DEFF Research Database (Denmark)

    Yamauchi, Akira; Schneider, Henrik; Knott, Arnold

    2015-01-01

    power supply tracking and its influence on power losses, audio performance and environmental impact for a 130 W class-D amplifier prototype as well as a commercialized class-D amplifier. Both modeled and experimental results verify that a large improvement of efficiency can be achieved. The total...... harmonic is found to be unaffected by stepless power supply tracking due the high supply rejection ratio of the used amplifiers under test.......The main advantage of Class-D audio amplifiers is high efficiency which is often stated to be more than 90 % but at idle or low power levels the efficiency is much lower. The waste energy is an environmental concern, a concern in mobile applications where long battery operation is required...

  10. Preliminary design studies for a 100 MW Energy Amplifier prototype

    CERN Document Server

    Abánades, A

    2000-01-01

    The Energy Amplifier (EA) is a new concept of fission system based on a subcritical assembly sustained with the neutrons generated by proton beam impact on a heavy element (spallation). This concept, proposed by the Nobel Laureate C. Rubbia (Rubbia, 1995), has remarkable capabilities in the nuclear energy field. First, it can be used to transmute radioactive wastes with a high efficiency alleviating the requirements of the geological repositories, and, second, it provides a massive energy source with the intrinsic safety derived from the use of a subcritical system and an almost null production of long-lived radioactive wastes. EA concept principles have been successfully tested by two experiments at CERN: FEAT (Andriamonge, 1995), that proved there is a net energy gain, by comparing the energy needed by the accelerator with the generated one by fission in the subcritical system. The second experiment, TARC (Abanades, 1997; Arnould, 1999) demonstrated the capability to transmute radioactive elements. The next...

  11. Low Loss Nanostructured Polymers for Chip-scale Waveguide Amplifiers.

    Science.gov (United States)

    Chen, George F R; Zhao, Xinyu; Sun, Yang; He, Chaobin; Tan, Mei Chee; Tan, Dawn T H

    2017-06-13

    On-chip waveguide amplifiers offer higher gain in small device sizes and better integration with photonic devices than the commonly available fiber amplifiers. However, on-chip amplifiers have yet to make its way into the mainstream due to the limited availability of materials with ideal light guiding and amplification properties. A low-loss nanostructured on-chip channel polymeric waveguide amplifier was designed, characterized, fabricated and its gain experimentally measured at telecommunication wavelength. The active polymeric waveguide core comprises of NaYF 4 :Yb,Er,Ce core-shell nanocrystals dispersed within a SU8 polymer, where the nanoparticle interfacial characteristics were tailored using hydrolyzed polyhedral oligomeric silsesquioxane-graft-poly(methyl methacrylate) to improve particle dispersion. Both the enhanced IR emission intensity from our nanocrystals using a tri-dopant scheme and the reduced scattering losses from our excellent particle dispersion at a high solid loading of 6.0 vol% contributed to the outstanding optical performance of our polymeric waveguide. We achieved one of the highest reported gain of 6.6 dB/cm using a relatively low coupled pump power of 80 mW. These polymeric waveguide amplifiers offer greater promise for integrated optical circuits due to their processability and integration advantages which will play a key role in the emerging areas of flexible communication and optoelectronic devices.

  12. Development of high-power and high-energy 2 µm bulk solid-state lasers and amplifiers

    CSIR Research Space (South Africa)

    Koen, W

    2016-04-01

    Full Text Available 250 300 350 Pulse Repetition Frequency [Hz] P u l s e E n e r g y [ m J ] 0 1 2 3 4 5 6 7 8 9 10 A v e r a g e P o w e r [ W ] Osc Energy Amp Energy Osc average P Amp average P Figure 8: Output energy of the ring laser and amplifier...

  13. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Science.gov (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  14. Energy-Efficient Power Allocation for Fixed-Gain Amplify-and-Forward Relay Networks with Partial Channel State Information

    KAUST Repository

    Zafar, Ammar; Alouini, Mohamed-Slim; Chen, Yunfei; Radaydeh, Redha M.

    2012-01-01

    In this letter, energy-efficient transmission and power allocation for fixed-gain amplify-and-forward relay networks with partial channel state information (CSI) are studied. In the energy-efficiency problem, the total power consumed is minimized

  15. Spot-shadowing optimization to mitigate damage growth in a high-energy-laser amplifier chain.

    Science.gov (United States)

    Bahk, Seung-Whan; Zuegel, Jonathan D; Fienup, James R; Widmayer, C Clay; Heebner, John

    2008-12-10

    A spot-shadowing technique to mitigate damage growth in a high-energy laser is studied. Its goal is to minimize the energy loss and undesirable hot spots in intermediate planes of the laser. A nonlinear optimization algorithm solves for the complex fields required to mitigate damage growth in the National Ignition Facility amplifier chain. The method is generally applicable to any large fusion laser.

  16. The energy amplifier: An analysis and a research proposal

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, Roberto; Atzeni, Stefano; De Marco, Francesco; Valli, Giulio [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Energia; Pierazzi, Luigi [ENEA, Centro Ricerche Brasimone, Bologna (Italy). Dipt. Energia

    1997-05-01

    The fast neutron Energy Amplifier (f-EA) proposed by C. Rubbia et al. [CERN/AT/95-44(ET) and CERN/LHC/96-11(EET)] is viewed in the context of the activities aimed at increasing the public acceptability of nuclear power. A few crucial architectural, technological, and reactor physics issues are pointed out. Areas to which ENEA Fusion Division (ENEA-ERG-FUS) could contribute with its expertise and facilities are identified. Comments are also presented with reference to the comparison between the safety characteristics of the f-EA and of the magnetic fusion reactor concept, published by C. Rubbia in a recent report [CERN/AT/95-58(ET)].

  17. The energy amplifier: An analysis and a research proposal

    International Nuclear Information System (INIS)

    Andreani, Roberto; Atzeni, Stefano; De Marco, Francesco; Valli, Giulio; Pierazzi, Luigi

    1997-05-01

    The fast neutron Energy Amplifier (f-EA) proposed by C. Rubbia et al. [CERN/AT/95-44(ET) and CERN/LHC/96-11(EET)] is viewed in the context of the activities aimed at increasing the public acceptability of nuclear power. A few crucial architectural, technological, and reactor physics issues are pointed out. Areas to which ENEA Fusion Division (ENEA-ERG-FUS) could contribute with its expertise and facilities are identified. Comments are also presented with reference to the comparison between the safety characteristics of the f-EA and of the magnetic fusion reactor concept, published by C. Rubbia in a recent report [CERN/AT/95-58(ET)

  18. Structure of small-scale standing azimuthal Alfven waves interacting with high-energy particles in the magnetosphere

    International Nuclear Information System (INIS)

    Klimushkin, D.Yu.

    1998-01-01

    The effect of bounce-drift instability on the structure of small-scale azimuthal Alfven waves in the magnetosphere is studied with allowance for the curvature of the geomagnetic field lines. The pressure of the background plasma is assumed to be zero. As early as 1993, Leonovich and Mazur showed that Alfven waves with m>>1, being standing waves along magnetic field lines, propagate, at the same time, across the magnetic surfaces. As these waves propagate through the magnetosphere, they interact with a group of high-energy particles and, thereby, are amplified with a growth rate dependent on the radial coordinate, i.e., a coordinate perpendicular to the magnetic sheaths. Near the Alfven resonance surface, the growth rate approaches zero, and the waves are damped completely due to the energy dissipation in the ionosphere. As the growth rate increases, the maximum of the wave amplitude is displaced to the Alfven resonance region and the most amplified waves are those whose magnetic field vectors oscillate in the azimuthal direction. Among the waves excited in a plasma resonator that is formed near the plasmapause, the most amplified are those with radial polarization

  19. Bevalac injector final stage RF amplifier upgrades

    International Nuclear Information System (INIS)

    Howard, D.; Calvert, J.; Dwinell, R.; Lax, J.; Lindner, A.; Richter, R.; Ridgeway, W.

    1991-01-01

    With the assistance of the DOE In-house Energy Management Program, the Bevalac injector final stage RF amplifier systems have been successfully upgraded to reduce energy consumption and operating costs. This recently completed project removed the energy-inefficient plate voltage modulator circuits that were used in conjunction with the final stage RF amplifiers. Construction, design, and operating parameters are described in detail

  20. Millimeter-wave power amplifiers

    CERN Document Server

    du Preez, Jaco

    2017-01-01

    This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.

  1. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced...

  2. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  3. Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier.

    Science.gov (United States)

    Beutler, Marcus; Ghotbi, Masood; Noack, Frank; Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio

    2009-03-15

    We report on the generation of powerful sub-20 fs deep UV pulses with 10 microJ level energy and broadly tunable in the 250-310 nm range. These pulses are produced by frequency doubling a high-power noncollinear optical parametric amplifier and compressed by a pair of MgF2 prisms to an almost transform-limited duration. Our results provide a power scaling by an order of magnitude with respect to previous works.

  4. Design of an 1800nm Raman amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... in transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise...

  5. Power scaling of the Xe(L) amplifier at {lambda} {approx} 2.8 A into the petawatt regime

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Alex B; Racz, Ervin; Khan, Shahab F; Poopalasingam, Sankar; McCorkindale, John C; Zhao Ji; Boguta, John; Longworth, James W; Rhodes, Charles K [Laboratory for x-ray Microimaging and Bioinformatics, Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059 (United States)

    2010-01-14

    Single-pulse and time-integrated spectral measurements of the characteristics of the Xe(L) amplifier at {lambda} {approx} 2.8 A indicate an efficiency of energy extraction of {approx}30% over a bandwidth of {approx}500 eV. These observations, together with data from prior studies, provide a basis for estimating a corresponding set of scaling limits for a laboratory sized {approx}4.5 keV Xe(L) system. Specifically, they are a peak power P{sub x} {approx} 6.0 PW, an unfocused peak intensity I{sub x} {approx} 3.4 x 10{sup 21} W cm{sup -2}, peak brightness figures corresponding to B {approx} 4.1 x 10{sup 34} photons s{sup -1} mm{sup -2} mrad{sup -2} (0.1% bandwidth){sup -1} and P{sub x}/{lambda}{sup 2} {approx} 7.6 x 10{sup 30} W cm{sup -2} sr{sup -1}, and an x-ray pulse length {tau}{sub x} {approx} 5-10 as.

  6. Numerical analysis of amplification of picosecond pulses in a THL-100 laser system with an increase in the pump energy of the XeF(C – A) amplifier

    Science.gov (United States)

    Yastremskii, A. G.; Ivanov, N. G.; Losev, V. F.

    2018-03-01

    Energy characteristics of laser radiation with a pulse width of 50 ps at an elevated pump energy of the XeF(C – A) amplifier of a hybrid THL-100 laser system are analysed numerically. The dynamics of the change in the energy and maximum intensity of laser radiation with an increase in the pump energy of the XeF(C – A) amplifier from 270 to 400 J is investigated. The results of studying the influence of the input beam divergence on the energy characteristics of the output beam are presented. It is shown that, for the existing system of mirrors, an increase in the pump energy to 400 J leads to an increase in the output energy from 3.2 to 5.5 J at a maximum radiation intensity of 57 GW cm-2. A system of amplifier mirrors with 27 laser beam passes and enlarged divergence angle of the amplified beam is considered. Theoretically, the proposed system of mirrors allows one to increase the laser pulse energy to 7.5 J at a maximum intensity of no more than 14.8 GW cm-2. The calculated efficiency of the conversion of the pump energy absorbed in the amplifier gas chamber into the lasing energy exceeds 3% in this regime.

  7. Power neodymium-glass amplifier of a repetitively pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2011-11-30

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 Multiplication-Sign 25 mm and a {approx}40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 {mu}s. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass {approx}3.2, the linear gain {approx}0.031 cm{sup -1} with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm{sup -3}. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4{lambda} ({lambda} = 0.63 {mu}m is the probing radiation wavelength).

  8. Power neodymium-glass amplifier of a repetitively pulsed laser

    International Nuclear Information System (INIS)

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I

    2011-01-01

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 × 25 mm and a ∼40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 μs. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass ∼3.2, the linear gain ∼0.031 cm -1 with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm -3 . The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4λ (λ = 0.63 μm is the probing radiation wavelength).

  9. Amplified spontaneous emission measurements on the Aurora large aperture module

    International Nuclear Information System (INIS)

    Oertel, J.A.; Czuchlewski, S.J.; Leland, W.T.; Turner, T.P.

    1990-01-01

    The large aperture module (LAM) of the Aurora KrF laser can be used to address a number of issues that relate to the scaling of KrF amplifiers to larger ICF systems. Perhaps foremost among these are the possible effects of amplified spontaneous emission (ASE) on laser performance. To assess this problem a 3-D computer code has been developed to model these ASE effects. The code uses an iterative procedure to arrive at a self-consistent steady state solution to the 3-D distribution of coherent and incoherent fluxes within the amplifier. Two-pass energy extraction, wall reflectivity, and nonuniform excitation are included in the model. The authors previously reported the effects of ASE on the small signal gains measured in the 1- x 1- x 2-m 3 LAM. The code also makes quantitative predictions of the ASE that should be generated in the amplifier. This paper indicates the radiance expected for a medium of uniform gain in terms of the (g - ν)L product and the parameter g/a. The quantity (g - ν)L is the product of the net gain and the path length along the direction of observation. The present experiments compare values of ASE measured at various locations around the LAM with the code predictions. The impact of ASE on amplifier output, is also discussed

  10. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    Science.gov (United States)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  11. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  12. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  13. Dual-range linearized transimpedance amplifier system

    Science.gov (United States)

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  14. Compact Aberration-Free Relay-Imaging Multi-Pass Layouts for High-Energy Laser Amplifiers

    Directory of Open Access Journals (Sweden)

    Jörg Körner

    2016-11-01

    Full Text Available We present the results from a theoretical investigation of laser beam propagation in relay imaging multi-pass layouts, which recently found application in high-energy laser amplifiers. Using a method based on the well-known ABCD-matrix formalism and proven by ray tracing, it was possible to derive a categorization of such systems. Furthermore, basic rules for the setup of such systems and the compensation for low order aberrations are derived. Due to the introduced generalization and parametrization, the presented results can immediately be applied to any system of the investigated kinds for a wide range of parameters, such as number of round-trips, focal lengths and optics sizes. It is shown that appropriate setups allow a close-to-perfect compensation of defocus caused by a thermal lens and astigmatism caused by non-normal incidence on the imaging optics, as well. Both are important to avoid intensity spikes leading to damages of optics in multi-pass laser amplifiers.

  15. Precoding Design of MIMO Amplify-and-Forward Communication System With an Energy Harvesting Relay and Possibly Imperfect CSI

    KAUST Repository

    Benkhelifa, Fatma; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) in a Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication system where the relay is an energy harvesting (EH) node

  16. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj

    2013-12-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20 on 10243 grid using the pseudospectral method. We demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers moves towards lower wave numbers as dynamo evolves, which is the reason why the integral scale of the magnetic field increases with time. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. Copyright © EPLA, 2013.

  17. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  18. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    Science.gov (United States)

    Arnold, N. D.; Attig, J.; Banks, G.; Bechtold, R.; Beczek, K.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Biggs, J. A.; Borland, M.; Boerste, K.; Bosek, M.; Brzowski, W. R.; Budz, J.; Carwardine, J. A.; Castro, P.; Chae, Y.-C.; Christensen, S.; Clark, C.; Conde, M.; Crosbie, E. A.; Decker, G. A.; Dejus, R. J.; DeLeon, H.; Den Hartog, P. K.; Deriy, B. N.; Dohan, D.; Dombrowski, P.; Donkers, D.; Doose, C. L.; Dortwegt, R. J.; Edwards, G. A.; Eidelman, Y.; Erdmann, M. J.; Error, J.; Ferry, R.; Flood, R.; Forrestal, J.; Freund, H.; Friedsam, H.; Gagliano, J.; Gai, W.; Galayda, J. N.; Gerig, R.; Gilmore, R. L.; Gluskin, E.; Goeppner, G. A.; Goetzen, J.; Gold, C.; Gorski, A. J.; Grelick, A. E.; Hahne, M. W.; Hanuska, S.; Harkay, K. C.; Harris, G.; Hillman, A. L.; Hogrefe, R.; Hoyt, J.; Huang, Z.; Jagger, J. M.; Jansma, W. G.; Jaski, M.; Jones, S. J.; Keane, R. T.; Kelly, A. L.; Keyser, C.; Kim, K.-J.; Kim, S. H.; Kirshenbaum, M.; Klick, J. H.; Knoerzer, K.; Koldenhoven, R. J.; Knott, M.; Labuda, S.; Laird, R.; Lang, J.; Lenkszus, F.; Lessner, E. S.; Lewellen, J. W.; Li, Y.; Lill, R. M.; Lumpkin, A. H.; Makarov, O. A.; Markovich, G. M.; McDowell, M.; McDowell, W. P.; McNamara, P. E.; Meier, T.; Meyer, D.; Michalek, W.; Milton, S. V.; Moe, H.; Moog, E. R.; Morrison, L.; Nassiri, A.; Noonan, J. R.; Otto, R.; Pace, J.; Pasky, S. J.; Penicka, J. M.; Pietryla, A. F.; Pile, G.; Pitts, C.; Power, J.; Powers, T.; Putnam, C. C.; Puttkammer, A. J.; Reigle, D.; Reigle, L.; Ronzhin, D.; Rotela, E. R.; Russell, E. F.; Sajaev, V.; Sarkar, S.; Scapino, J. C.; Schroeder, K.; Seglem, R. A.; Sereno, N. S.; Sharma, S. K.; Sidarous, J. F.; Singh, O.; Smith, T. L.; Soliday, R.; Sprau, G. A.; Stein, S. J.; Stejskal, B.; Svirtun, V.; Teng, L. C.; Theres, E.; Thompson, K.; Tieman, B. J.; Torres, J. A.; Trakhtenberg, E. M.; Travish, G.; Trento, G. F.; Vacca, J.; Vasserman, I. B.; Vinokurov, N. A.; Walters, D. R.; Wang, J.; Wang, X. J.; Warren, J.; Wesling, S.; Weyer, D. L.; Wiemerslage, G.; Wilhelmi, K.; Wright, R.; Wyncott, D.; Xu, S.; Yang, B.-X.; Yoder, W.; Zabel, R. B.

    2001-12-01

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations.

  19. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    CERN Document Server

    Arnold, N D; Banks, G; Bechtold, R; Beczek, K; Benson, C; Berg, S; Berg, W; Biedron, S G; Biggs, J A; Boerste, K; Borland, M; Bosek, M; Brzowski, W R; Budz, J; Carwardine, J A; Castro, P; Chae, Y C; Christensen, S; Clark, C; Conde, M; Crosbie, E A; Decker, G A; Dejus, Roger J; Deleon, H; Den Hartog, P K; Deriy, B N; Dohan, D; Dombrowski, P; Donkers, D; Doose, C L; Dortwegt, R J; Edwards, G A; Eidelman, Y; Erdmann, M J; Error, J J; Ferry, R; Flood, R; Forrestal, J; Freund, H; Friedsam, H; Gagliano, J; Gai, W; Galayda, J N; Gerig, R; Gilmore, R L; Gluskin, E; Goeppner, G A; Goetzen, J; Gold, C; Grelick, A E; Hahne, M W; Hanuska, S; Harkay, K C; Harris, G; Hillman, A L; Hogrefe, R; Hoyt, J; Huang, Z; Jagger, J M; Jansma, W G; Jaski, M; Jones, S J; Keane, R T; Kelly, A L; Keyser, C; Kim, K J; Kim, S H; Kirshenbaum, M; Klick, J H; Knoerzer, K; Knott, M; Koldenhoven, R J; Labuda, S; Laird, R; Lang, J; Lenkszus, F R; Lessner, E S; Lewellen, J W; Li, Y; Lill, R M; Lumpkin, Alex H; Makarov, O A; Markovich, G M; McDowell, M; McDowell, W P; McNamara, P E; Meier, T; Meyer, D; Michalek, W; Milton, S V; Moe, H; Moog, E; Morrison, L; Nassiri, A; Noonan, J R; Otto, R; Pace, J; Pasky, S J; Penicka, J M; Pietryla, A F; Pile, G; Pitts, C; Power, J; Powers, T; Putnam, C C; Puttkammer, A J; Reigle, D; Reigle, L; Ronzhin, D; Rotela, E R; Russell, E F; Sajaev, Vadim; Sarkar, S; Scapino, J C; Schröder, K; Seglem, R A; Sereno, N S; Sharma, S K; Sidarous, J F; Singh, O; Smith, T L; Soliday, R; Sprau, G A; Stein, S J; Stejskal, B; Svirtun, V; Teng, L C; Theres, E; Thompson, K; Tieman, B J; Torres, J A; Trakhtenberg, E; Travish, G; Trento, G F; Vacca, J; Vasserman, I B; Vinokurov, N A; Walters, D R; Wang, J; Wang, X J; Warren, J; Wesling, S; Weyer, D L; Wiemerslage, G; Wilhelmi, K; Wright, R; Wyncott, D; Xu, S; Yang, B X; Yoder, W; Zabel, R B

    2001-01-01

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations.

  20. Analysis of the background noise of field effect transistors in MOS complementary technology and application in the construction of a current-sensitive integrated amplifier

    International Nuclear Information System (INIS)

    Beuville, E.

    1989-10-01

    A low noise amplifier for use in high energy physics is developed. The origin and the mechanisms of the noise in MOSFET transistors is carried out with the aim of minimizing such effects in amplifiers. The research is applied in the construction of a current-sensitive integrated amplifier. The time scale continuous filtering principle is used and allows the detection of particles arriving in the counter in a random distribution. The rules which must be taken into account in the construction of an analog integrated circuit are shown [fr

  1. Estimating returns to scale and scale efficiency for energy consuming appliances

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Helcio [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Efficiency Standards Group; Okwelum, Edson O. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Efficiency Standards Group

    2018-01-18

    Energy consuming appliances accounted for over 40% of the energy use and $17 billion in sales in the U.S. in 2014. Whether such amounts of money and energy were optimally combined to produce household energy services is not straightforwardly determined. The efficient allocation of capital and energy to provide an energy service has been previously approached, and solved with Data Envelopment Analysis (DEA) under constant returns to scale. That approach, however, lacks the scale dimension of the problem and may restrict the economic efficient models of an appliance available in the market when constant returns to scale does not hold. We expand on that approach to estimate returns to scale for energy using appliances. We further calculate DEA scale efficiency scores for the technically efficient models that comprise the economic efficient frontier of the energy service delivered, under different assumptions of returns to scale. We then apply this approach to evaluate dishwashers available in the market in the U.S. Our results show that (a) for the case of dishwashers scale matters, and (b) the dishwashing energy service is delivered under non-decreasing returns to scale. The results further demonstrate that this method contributes to increase consumers’ choice of appliances.

  2. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  3. A preliminary estimate of the economic impact of the energy amplifier

    CERN Document Server

    Fernández, R; Rubbia, Carlo; Rubio, Juan Antonio

    1996-01-01

    The basic concept and the applicability of the Energy Amplifier (EA) have been exhaustively described elsewhere (Refs. [1] to [4]). The EA is essentially a source of high quality heat, produced by the nuclear cascades induced by a high intensity proton beam inside an appropriate ³beam dump² arrangement. A fraction of such ³heat² has to be transformed into electricity to run the accelerator, the rest being available for a number of different industrial applications, and in particular commercial electricity production. In this paper the economic aspects are further explored and we attempt a first order estimate of the cost of such an energy source, comparing it critically with more conventional sources. In this task we have been greatly helped by a number of people2) who have specific competence in the industrial aspects of the application. We conclude that in agreement to our previous estimates, the practical cost of high quality heat is about US /GJ, namely and times lower than the one of Coal and Natural...

  4. On the problem of monitoring the neutron parameters of the Fast Energy Amplifier

    International Nuclear Information System (INIS)

    Behringer, K.; Wydler, P.

    1998-10-01

    The conceptual Fast Energy Amplifier, proposed by Rubbia et al. (1995), consists of a combination of a U-233/Th-232 fuelled fast-neutron subcritical facility with a proton accelerator. An intense beam of 1 GeV protons is injected into liquid lead at the core centre and drives the reactor by producing spallation neutrons. The burst of spallation neutrons produced by a single proton alters the basic neutron statistics which are well known for thermal neutrons in conventional nuclear reactors. A short assessment of standard neutron noise analysis methods is made with respect to monitoring neutron parameter data. (author)

  5. Gyrocon: a deflection-modulated, high-power microwave amplifier

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1977-10-01

    A large-signal, relativistic theory of the electron-field interaction in a new class of microwave amplifiers is presented and applied to the analysis of a high-power, 450-MHz amplifier for accelerator applications. The analysis indicates that electronic efficiencies in excess of 90 percent are obtainable and that overall efficiencies of 90 percent are possible. The amplifier is unique in several respects; the electron velocity is perpendicular to the circuit energy flow, the device uses a fast-wave circuit, and the electron beam is deflection modulated

  6. 100J-level nanosecond pulsed Yb:YAG cryo-cooled DPSSL amplifier

    Science.gov (United States)

    Smith, J. M.; Butcher, T. J.; Mason, P. D.; Ertel, K.; Phillips, P. J.; Banerjee, S.; De Vido, M.; Chekhlov, O.; Divoky, M.; Pilar, J.; Shaikh, W.; Hooker, C.; Lucianetti, A.; Hernandez Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.

    2018-02-01

    We report on the successful demonstration of the world's first kW average power, 100 Joule-class, high-energy, nanosecond pulsed diode-pumped solid-state laser (DPSSL), DiPOLE100. Results from the first long-term test for amplification will be presented; the system was operated for 1 hour with 10 ns duration pulses at 10 Hz pulse repetition rate and an average output energy of 105 J and RMS energy stability of approximately 1%. The laser system is based on scalable cryogenic gas-cooled multi-slab ceramic Yb:YAG amplifier technology. The DiPOLE100 system comprises three major sub-systems, a spatially and temporally shaped front end, a 10 J cryo-amplifier and a 100 J cryo-amplifier. The 10 J cryo-amplifier contain four Yb:YAG ceramic gain media slabs, which are diode pumped from both sides, while a multi-pass architecture configured for seven passes enables 10 J of energy to be extracted at 10 Hz. This seeds the 100 J cryo-amplifier, which contains six Yb:YAG ceramic gain media slabs with the multi-pass configured for four passes. Our future development plans for this architecture will be introduced including closed-loop pulse shaping, increased energy, higher repetition rates and picosecond operation. This laser architecture unlocks the potential for practical applications including new sources for industrial materials processing and high intensity laser matter studies as envisioned for ELI [1], HiLASE [2], and the European XFEL [3]. Alternatively, it can be used as a pump source for higher repetition rate PW-class amplifiers, which can themselves generate high-brightness secondary radiation and ion sources leading to new remote imaging and medical applications.

  7. Stimulated Brillouin scattering threshold in fiber amplifiers

    International Nuclear Information System (INIS)

    Liang Liping; Chang Liping

    2011-01-01

    Based on the wave coupling theory and the evolution model of the critical pump power (or Brillouin threshold) for stimulated Brillouin scattering (SBS) in double-clad fiber amplifiers, the influence of signal bandwidth, fiber-core diameter and amplifier gain on SBS threshold is simulated theoretically. And experimental measurements of SBS are presented in ytterbium-doped double-clad fiber amplifiers with single-frequency hundred nanosecond pulse amplification. Under different input signal pulses, the forward amplified pulse distortion is observed when the pulse energy is up to 660 nJ and the peak power is up to 3.3 W in the pulse amplification with pulse duration of 200 ns and repetition rate of 1 Hz. And the backward SBS narrow pulse appears. The pulse peak power equals to SBS threshold. Good agreement is shown between the modeled and experimental data. (authors)

  8. Diode-pumped laser amplifiers: application to 0.946 {mu}m Nd:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Norman P [NASA Langley Research Center, Hampton, VA 23681 (United States); Axenson, Theresa J [Science and Technology Corporation, 10 Basil Sawyer Drive, Hampton, VA 23666 (United States); Jr, Donald J Reichle [NASA Langley Research Center, Hampton, VA 23681 (United States); Walsh, Brian M [NASA Langley Research Center, Hampton, VA 23681 (United States)

    2003-03-14

    A diode-pumped laser amplifier model is derived from first principles and applied to a Nd:YAG amplifier operating on the {sup 4}F{sub 3/2} to {sup 4}I{sub 9/2} transition at 0.946 {mu}m. The effects of amplified spontaneous emission are included in the model and the addition of this effect is shown to produce better agreement with the data. The amplifier model includes effects of the transverse and longitudinal variation of the pump beam, transverse and longitudinal variation of the probe beam, and multiple passes of the probe beam. Experimental results obtained with a quasi four-level Nd:YAG amplifier operating at 0.946 {mu}m are used to validate the model. The amplifier was evaluated as a function of the pump energy, the probe energy, the probe beam radius, the pulse repetition frequency and the temperature. For all of the experimental conditions, the experimental results and the model agree.

  9. Low-cost amplifier for alpha detection with photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Domienikan, Cláudio; Costa, Priscila; Genezini, Frederico A.; Zahn, Guilherme S., E-mail: clanikan@ipen.br, E-mail: pcosta@ipen.br, E-mail: fredzini@ipen.br, E-mail: gzahn@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    A low-cost amplifier for Hamamatsu S3590-09 PIN photodiode to be used in alpha detection is presented. This amplifier consists basically of two circuits: a pulse preamplifier and a shaper-driver. The PIN photodiode is reverse-biased and connected to a charge preamplifier input. Incident alpha particles generate a small current pulse in the photodiode. The integrating circuit of the low noise preamplifier transforms current pulse into a voltage pulse with amplitude proportional to the charge carried by the current pulse. The shaper-driver consists of a differentiator and an integrator and is responsible for filtering and further amplifying the preamplifier signal, generating a NIM-compatible energy pulse. The performance of the set photodiode-amplifier was successively tested through the use of a {sup 243}Am radioactive source. The low-cost photodiode amplifier was designed and constructed at IPEN - CNEN/SP using national components and expertise. (author)

  10. High-power piezo drive amplifier for large stack and PFC applications

    Science.gov (United States)

    Clingman, Dan J.; Gamble, Mike

    2001-08-01

    This paper describes the continuing development of Boeing High Power Piezo Drive Amplifiers. Described is the development and testing of a 1500 Vpp, 8 amp switching amplifier. This amplifier is used to drive a piezo stack driven rotor blade trailing edge flap on a full size helicopter. Also discuss is a switching amplifier designed to drive a Piezo Fiber Composite (PFC) active twist rotor blade. This amplifier was designed to drive the PFC material at 2000 Vpp and 0.5 amps. These amplifiers recycle reactive energy, allowing for a power and weight efficient amplifier design. This work was done in conjunction with the DARPA sponsored Phase II Smart Rotor Blade program and the NASA Langley Research Center sponsored Active Twist Rotor (ATR) blade program.

  11. A real-time control system architecture for industrial power amplifiers

    NARCIS (Netherlands)

    Qureshi, F.; Spinu, V.; Wijnands, C.G.E.; Lazar, M.

    2013-01-01

    Power amplifiers are a highly important component in a range of industrial applications, such as, servo-drives, magnetic resonance imaging, energy systems, and audio. The control system for power amplifiers should satisfy a range of requirements, e.g., offset free tracking, stability margins, and

  12. Prototype disc amplifier for Iskra-6 facility

    International Nuclear Information System (INIS)

    Grigorovich, S.V.; Eroshenko, V.F.; Krotov, V.A.; Demidov, V.L.; Kalinin, N.V.; Kurunov, R.F.; Smirnov, V.G.; Fomin, V.M.

    2006-01-01

    Eight-channel disk amplifiers of the ISKRA-6 facility are made up of sections. An amplifier section consists of eight active elements (2*4) made of KGSS-0180/35-grade neodymium phosphate glass 400*690*40 mm in size located in frames at the Brewster angle. Twenty flash-lamps are arranged in one amplifier module. The flash-lamps have an inter electrode distance of 1600 mm, the tube is 40 mm in inner diameter. The results of numerical investigations into the dynamics of high-current pulse radiation discharge are presented. The investigations were carried out by the 1-dimensional RMHD-model. This model takes into account the transient processes in the electric circuit and the physical processes in the discharge plasma: ionization, Joule heating, thermal conductivity, radiation transfer and plasma motion caused by the non-uniformity of energy introduction into the discharge in case of a non-uniform initial ionization of gas in the pumping lamp. The experimental results of spectral measurements and light efficiency of the flash-lamps depending on specific power and value of energy contribution are presented

  13. Pulse propagation in a two-pass optical amplifier with arbitrary laser beams overlap

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2011-09-01

    Full Text Available An analytical model for two-pass optical amplifier with arbitrary beams overlap has been developed which generalized the classical theory of Frantz-Nodvik for single pass amplifier. The effect of counterpropagating beams on gain and output energy fluence included in the model. Moreover, the appropriate limiting relations for two special cases of weak input signal and saturation state of the amplifier gain have been derived. The results indicate that for complete beams overlap, the gain and output energy have the least values. The model predictions are consistent with experimental observations and exact analytical model for two-pass amplifier when beam propagation paths are coincided.

  14. On the unlimited gain of a nonlinear parametric amplifier

    DEFF Research Database (Denmark)

    Sorokin, Vladislav

    2014-01-01

    The present paper is concerned with analysis of the response of a nonlinear parametric amplifier in abroad range of system parameters, particularly beyond resonance. Such analysis is of particular interestfor micro- and nanosystems, since many small-scale parametric amplifiers exhibit a distinctly...... nonlinearbehavior when amplitude of their response is sufficiently large. The modified method of direct separa-tion of motions is employed to study the considered system. As the result it is obtained that steady-stateamplitude of the nonlinear parametric amplifier response can reach large values in the case...... of arbitrarilysmall amplitude of external excitation, so that the amplifier gain tends to infinity. Very large amplifiergain can be achieved in a broad range of system parameters, in particular when the amplitude of para-metric excitation is comparatively small. The obtained results clearly demonstrate that very...

  15. A Kinetics Model for KrF Laser Amplifiers

    Science.gov (United States)

    Giuliani, J. L.; Kepple, P.; Lehmberg, R.; Obenschain, S. P.; Petrov, G.

    1999-11-01

    A computer kinetics code has been developed to model the temporal and spatial behavior of an e-beam pumped KrF laser amplifier. The deposition of the primary beam electrons is assumed to be spatially uniform and the energy distribution function of the nascent electron population is calculated to be near Maxwellian below 10 eV. For an initial Kr/Ar/F2 composition, the code calculates the densities of 24 species subject to over 100 reactions with 1-D spatial resolution (typically 16 zones) along the longitudinal lasing axis. Enthalpy accounting for each process is performed to partition the energy into internal, thermal, and radiative components. The electron as well as the heavy particle temperatures are followed for energy conservation and excitation rates. Transport of the lasing photons is performed along the axis on a dense subgrid using the method of characteristics. Amplified spontaneous emission is calculated using a discrete ordinates approach and includes contributions to the local intensity from the whole amplifier volume. Specular reflection off side walls and the rear mirror are included. Results of the model will be compared with data from the NRL NIKE laser and other published results.

  16. Amplifier Distortion

    Science.gov (United States)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  17. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  18. Economical scale of nuclear energy application

    International Nuclear Information System (INIS)

    2001-01-01

    The nuclear energy industry is supported by two wheels of radiation and energy applications. When comparing both, they have some different sides, such as numbers of employees and researchers, numbers and scales of works, effect on society, affecting effects and regions of industrial actions, problems on safety, viewpoint on nuclear proliferation protection and safety guarantee, energy security, relationship to environmental problem, efforts on wastes disposal, and so on. Here described on economical scale of radiation application in fields of industry, agriculture, and medicine and medical treatment, and on economical scale of energy application in nuclear power generation and its instruments and apparatus. (G.K.)

  19. BPM ANALOG FRONT-END ELECTRONICS BASED ON THE AD8307 LOG AMPLIFIER

    International Nuclear Information System (INIS)

    R. SHURTER; ET AL

    2000-01-01

    Beam position monitor (BPM) signal-processing electronics utilizing the Analog Devices AD8307 logarithmic amplifier has been developed for the Low Energy Demonstration Accelerator (LEDA), part of the Accelerator Production of Tritium (APT) project at Los Alamos. The low-pass filtered 350 MHz fundamental signal from each of the four microstrip electrodes in a BPM is ''detected'' by an AD8307 log amp, amplified and scaled to accommodate the 0 to +5V input of an analog-to-digital (A/D) converter. The resultant four digitized signals represent a linear power relationship to the electrode signals, which are in turn related to beam current and position. As the AD8307 has a potential dynamic range of approximately 92 dB, much attention must be given to noise reduction, sources of which can be digital signals on the same board, power supplies, inter-channel coupling, stray RF and others. This paper will describe the operational experience of this particular analog front-end electronic circuit design

  20. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.

    Science.gov (United States)

    Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.

  1. Scale and the acceptability of nuclear energy

    International Nuclear Information System (INIS)

    Wilbanks, T.J.

    1984-01-01

    A rather speculative exploration is presented of scale as it may affect the acceptability of nuclear energy. In our utilization of this energy option, how does large vs. small relate to attitudes toward it, and what can we learn from this about technology choices in the United States more generally. In order to address such a question, several stepping-stones are needed. First, scale is defined for the purposes of the paper. Second, recent experience with nuclear energy is reviewed: trends in the scale of use, the current status of nuclear energy as an option, and the social context for its acceptance problems. Third, conventional notions about the importance of scale in electricity generation are summarized. With these preliminaries out of the way, the paper then discusses apparent relationships between scale and the acceptance of nuclear energy and suggests some policy implications of these preliminary findings. Finally, some comments are offered about general relationships between scale and technology choice

  2. Current-Driven Switch-Mode Audio Power Amplifiers

    DEFF Research Database (Denmark)

    Knott, Arnold; Buhl, Niels Christian; Andersen, Michael A. E.

    2012-01-01

    The conversion of electrical energy into sound waves by electromechanical transducers is proportional to the current through the coil of the transducer. However virtually all audio power amplifiers provide a controlled voltage through the interface to the transducer. This paper is presenting...... a switch-mode audio power amplifier not only providing controlled current but also being supplied by current. This results in an output filter size reduction by a factor of 6. The implemented prototype shows decent audio performance with THD + N below 0.1 %....

  3. Financing Energy Services for Small-scale Energy-users - project FINESSE

    International Nuclear Information System (INIS)

    Annan, R.; Saunders, R.J.; Hassing, P.

    1994-01-01

    This paper presents the FINESSE (Financing Energy Services for Small-scale Energy users) launched in 1989 by World Bank 's Energy Sector Assistance Program (ESMAP) in association with the US Department of Energy and the Netherlands Ministry for Development Cooperation, whose purpose is to address financial, institutional and policy issues related to enhancing energy services for residential and commercial energy consumers in the Developing World. It describes the related technology benefits of renewable energy and energy efficiency, as well as a technology overview and outlines the strategies for financing alternatives in the Developing World. It concludes with a description of successful experiences in small-scale energy services, especially in Asia. (TEC). 8 figs

  4. A high-power two stage traveling-wave tube amplifier

    International Nuclear Information System (INIS)

    Shiffler, D.; Nation, J.A.; Schachter, L.; Ivers, J.D.; Kerslick, G.S.

    1991-01-01

    Results are presented on the development of a two stage high-efficiency, high-power 8.76-GHz traveling-wave tube amplifier. The work presented augments previously reported data on a single stage amplifier and presents new data on the operational characteristics of two identical amplifiers operated in series and separated from each other by a sever. Peak powers of 410 MW have been obtained over the complete pulse duration of the device, with a conversion efficiency from the electron beam to microwave energy of 45%. In all operating conditions the severed amplifier showed a ''sideband''-like structure in the frequency spectrum of the microwave radiation. A similar structure was apparent at output powers in excess of 70 MW in the single stage device. The frequencies of the ''sidebands'' are not symmetric with respect to the center frequency. The maximum, single frequency, average output power was 210 MW corresponding to an amplifier efficiency of 24%. Simulation data is also presented that indicates that the short amplifiers used in this work exhibit significant differences in behavior from conventional low-power amplifiers. These include finite length effects on the gain characteristics, which may account for the observed narrow bandwidth of the amplifiers and for the appearance of the sidebands. It is also found that the bunching length for the beam may be a significant fraction of the total amplifier length

  5. The Nike electron-beam-pumped KrF laser amplifiers

    International Nuclear Information System (INIS)

    Sethian, J.D.; Pawley, C.J.; Obenschain, S.P.

    1997-01-01

    Nike is a recently completed multikilojoule krypton-fluoride (KrF) laser that has been built to study the physics of direct-drive inertial confinement fusion. The two final amplifiers of the Nike laser are both electron-beam-pumped systems. This paper describes these two amplifiers, with an emphasis on the pulsed power. The smaller of the two has a 20 x 20 cm aperture, and produces an output laser beam energy in excess of 100 J. This 20 cm Amplifier uses a single 12 kJ Marx generator to inject two 300 kV, 75 kA, 140 ns flat-top electron beams into opposite sides of the laser cell. The larger amplifier in Nike has a 60 x 60 cm aperture, and amplifies the laser beam up to 5 kJ. This 60 cm amplifier has two independent electron beam systems. Each system has a 170 kJ Marx generator that produces a 670 kV, 540 kA, 240 ns flat-top electron beam. Both amplifiers are complete, fully integrated into the laser, meet the Nike system requirements, and are used routinely for laser-target experiments

  6. Deep UV light generation by a fiber/bulk hybrid amplifier at 199 nm

    International Nuclear Information System (INIS)

    Urata, Yoshiharu; Shinozaki, Tatsuya; Wada, Yoshio; Kaneda, Yushi; Wada, Satoshi; Imai, Shinichi

    2009-01-01

    A high-pulse-repetition-frequency (PRF) pulsed light source in the deep ultraviolet region has been realized by a multiple wavelength conversion technique using a hybrid fiber/bulk amplifier system. Output of 199 nm with a power of 50 mW was achieved at 2.4 MHz PRF. The 1 μm amplifier consisted of a Yb-doped fiber amplifier and a Nd-doped YVO4 amplifier. A 1.5 μm fiber master-oscillator power amplifier was employed as the other fundamental source. The amplifiers exhibited good amplification properties in pulse energy, polarization extinction ratio, and spectrum for nonlinear wavelength conversion

  7. A high gain energy amplifier operated with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Rubbia, C. [CERN, Geneva (Switzerland)

    1995-10-01

    The basic concept and the main practical considerations of an Energy Amplifier (EA) have been exhaustively described elsewhere. Here the concept of the EA is further explored and additional schemes are described which offer a higher gain, a larger maximum power density and an extended burn-up. All these benefits stem from the use of fast neutrons, instead of thermal or epithermal ones, which was the case in the original study. The higher gain is due both to a more efficient high energy target configuration and to a larger, practical value of the multiplication factor. The higher power density results from the higher permissible neutron flux, which in turn is related to the reduced rate of {sup 233}Pa neutron captures (which, as is well known, suppress the formation of the fissile {sup 233}U fuel) and the much smaller k variations after switch-off due to {sup 233}Pa decays for a given burn-up rate. Finally a longer integrated burn-up is made possible by reduced capture rate by fission fragments of fast neutrons. In practice a 20 MW proton beam (20 mA @ 1 GeV) accelerated by a cyclotron will suffice to operate a compact EA at the level of {approx} 1 GW{sub e}. The integrated fuel burn-up can be extended in excess of 100 GW d/ton, limited by the mechanical survival of the fuel elements. Radio-Toxicity accumulated at the end of the cycle is found to be largely inferior to the one of an ordinary Reactor for the same energy produced. Schemes are proposed which make a {open_quotes}melt-down{close_quotes} virtually impossible. The conversion ratio, namely the rate of production of {sup 233}U relative to consumption is generally larger than unity, which permits production of fuel for other uses. Alternatively the neutron excess can be used to transform unwanted {open_quotes}ashes{close_quotes} into more acceptable elements.

  8. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  9. Energy-Efficient Power Allocation for Fixed-Gain Amplify-and-Forward Relay Networks with Partial Channel State Information

    KAUST Repository

    Zafar, Ammar

    2012-06-01

    In this report, energy-efficient transmission and power allocation for fixed-gain amplify-and-forward relay networks with partial channel state information (CSI) are studied. In the energy-efficiency problem, the total power consumed is minimized while keeping the signal-to-noise-ratio (SNR) above a certain threshold. In the dual problem of power allocation, the end-to-end SNR is maximized under individual and global power constraints. Closed-form expressions for the optimal source and relay powers and the Lagrangian multiplier are obtained. Numerical results show that the optimal power allocation with partial CSI provides comparable performance as optimal power allocation with full CSI at low SNR.

  10. Energy-Efficient Power Allocation for Fixed-Gain Amplify-and-Forward Relay Networks with Partial Channel State Information

    KAUST Repository

    Zafar, Ammar

    2012-09-16

    In this letter, energy-efficient transmission and power allocation for fixed-gain amplify-and-forward relay networks with partial channel state information (CSI) are studied. In the energy-efficiency problem, the total power consumed is minimized while keeping the signal-to-noise-ratio (SNR) above a certain threshold. In the dual problem of power allocation, the end-to-end SNR is maximized under individual and global power constraints. Closed-form expressions for the optimal source and relay powers and the Lagrangian multiplier are obtained. Numerical results show that the optimal power allocation with partial CSI provides comparable performance as optimal power allocation with full CSI at low SNR. © 2012 IEEE.

  11. A CMOS Integrating Amplifier for the PHENIX Ring Imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Jones, J.P. Jr.; Young, G.R.; Moscone, C.G.

    1997-11-01

    A CMOS integrating amplifier has been developed for use in the PHENIX Ring Imaging Cherenkov (RICH) detector. The amplifier, consisting of a charge-integrating amplifier followed by a variable gain amplifier (VGA), is an element of a photon measurement system comprising a photomultiplier tube, a wideband, gain of 10 amplifier, the integrating amplifier, and an analog memory followed by an ADC and double correlated sampling implemented in software. The integrating amplifier is designed for a nominal full scale input of 160 pC with a gain of 20 mV/pC and a dynamic range of 1000:1. The VGA is used for equalizing gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5 bits digital control, and the risetime is held to approximately 20 ns using switched compensation in the VGA. Details of the design and results from several prototype devices fabricated in 1.2 microm Orbit CMOS are presented. A complete noise analysis of the integrating amplifier and the correlated sampling process is included as well as a comparison of calculated, simulated and measured results

  12. A CMOS Integrating Amplifier for the PHENIX Ring Imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Wintenberg, A.L.; Jones, J.P. Jr.; Young, G.R. [Oak Ridge National Lab., TN (United States); Moscone, C.G. [Tennessee Univ., Knoxville, TN (United States)

    1997-11-01

    A CMOS integrating amplifier has been developed for use in the PHENIX Ring Imaging Cherenkov (RICH) detector. The amplifier, consisting of a charge-integrating amplifier followed by a variable gain amplifier (VGA), is an element of a photon measurement system comprising a photomultiplier tube, a wideband, gain of 10 amplifier, the integrating amplifier, and an analog memory followed by an ADC and double correlated sampling implemented in software. The integrating amplifier is designed for a nominal full scale input of 160 pC with a gain of 20 mV/pC and a dynamic range of 1000:1. The VGA is used for equalizing gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5 bits digital control, and the risetime is held to approximately 20 ns using switched compensation in the VGA. Details of the design and results from several prototype devices fabricated in 1.2 {micro}m Orbit CMOS are presented. A complete noise analysis of the integrating amplifier and the correlated sampling process is included as well as a comparison of calculated, simulated and measured results.

  13. TeV. The dream energy scale

    International Nuclear Information System (INIS)

    Murayama, Hitoshi

    2006-01-01

    In this talk, I'd like to explain why the TeV, 1,000,000,000,00 electron volt, is a particularly interesting energy scale in physics. I being recapitulating what particle physics is all about, citing two big questions: what the Universe is made of, and Einstein's dream of unification. TeV energy appears to be relevant to both questions, suggesting rich and complex physics at this energy. I outline how two facilities, LHC and ILC, will work together with reveal what is going on at this exciting energy scale. (author)

  14. Large-aperture discharges in E-beam sustained CO2 amplifiers

    International Nuclear Information System (INIS)

    Leland, W.T.; Ganley, J.T.; Kircher, M.; York, G.W. Jr.

    1977-01-01

    The very large energy fluxes required for the attainment of scientific breakeven in laser-fusion experiments can only be obtained by the construction of multiple-beam, large-aperture lasers. Accordingly, the next generation CO 2 laser currently being designed at LASL consists of six electron-beam sustained amplifier modules, each module containing 12 large-aperture (approximately 30 x 30 cm) laser discharges sustained by (and surrounding) a single, cylindrical cold-cathode electron gun. The large scale and cylindrical geometry combine to generate substantial electric and magnetic field effects which can affect the uniformity of the electron-beam distribution, causing a number of difficulties including discharge and gain nonuniformities and potential arcing. In an effort to learn the magnitude of the associated difficulties and test various solutions for reducing the effects, a prototype module was constructed. This prototype was constructed full scale in the dimensions which will produce the discharge nonuniformities and measurements were made of the electron beam uniformity, discharge uniformity, and gain uniformity under a wide range of experimental conditions. These results indicate that under worse case conditions and nonuniformities, while severe, are within acceptable limits and can be reduced even further by minor design changes. Perhaps more importantly, calculational models have been developed which agree adequately enough with the data so that they can be used with reasonable confidence as a data base for predicting the performance of the final design of the amplifier modules and the effects of any changes which may be required

  15. Designing the Nuclear Energy Attitude Scale.

    Science.gov (United States)

    Calhoun, Lawrence; And Others

    1988-01-01

    Presents a refined method for designing a valid and reliable Likert-type scale to test attitudes toward the generation of electricity from nuclear energy. Discusses various tests of validity that were used on the nuclear energy scale. Reports results of administration and concludes that the test is both reliable and valid. (CW)

  16. A weak current amplifier and output circuit used in nuclear weighing scales

    International Nuclear Information System (INIS)

    Sun Jinhua; Zheng Mingquan; Wang Mingqian; Jia Changchun; Jin Hanjuan; Shi Qicun; Tang Ke

    1998-01-01

    A weak current amplifier and output circuit with a maximum nonlinear error of +-0.06% has been developed. Experiments show that it can work stably and therefore be used in nuclear industrial instruments

  17. Development and energization of IOT based RF amplifier

    International Nuclear Information System (INIS)

    Mandal, A.; Som, S.; Raj, P.R.; Manna, S.K.; Ghosh, S.; Seth, S.; Thakurta, S.; Thakur, S.K.; Saha, S.; Panda, U.S.

    2013-01-01

    A 704 MHz IOT based CW RF amplifier has been developed in VECC. It can also be used with proper tuning to power cavity modules operating at 650 MHz in high energy high intensity proton linear accelerator proposed to be built for ADSS/SNS programme in India and Project-X at Fermilab, USA. This IOT based amplifier provides up to 60 kW continuous wave RF power at 700 MHz. It required various power supplies, LCW cooling and forced air cooling for its operation. The auxiliary power supplies like Grid, Filament and Ion-pump, are floated and mounted on an isolated frame, i.e., HV deck. The mains inputs are electrically isolated by means of isolation transformer. Also, a Programmable Logic Controller (PLC) based interlocks along with high voltage collector power supply has been designed and developed for the safe operation of the RF amplifier. This paper discusses about various developments and energization of the IOT based RF amplifier with high power dummy load. (author)

  18. Auto-Zero Differential Amplifier

    Science.gov (United States)

    Quilligan, Gerard T. (Inventor); Aslam, Shahid (Inventor)

    2017-01-01

    An autozero amplifier may include a window comparator network to monitor an output offset of a differential amplifier. The autozero amplifier may also include an integrator to receive a signal from a latched window comparator network, and send an adjustment signal back to the differential amplifier to reduce an offset of the differential amplifier.

  19. Conceptual design of an angular multiplexed 50 kJ KrF amplifier for ICF

    International Nuclear Information System (INIS)

    Lowenthal, D.D.; Ewing, J.J.; Center, R.E.; Mumola, P.; Olson, T.

    1981-01-01

    The results of a conceptual design for an angular multiplexed 50 kJ KrF amplifier for ICF are presented. Optical designs, amplifier scaling with a KrF kinetics code and limitations imposed by pulsed power technology are described

  20. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj; Verma, Mahendra K.; Samtaney, Ravi

    2013-01-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20

  1. Battery energy storage systems: Assessment for small-scale renewable energy integration

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Nirmal-Kumar C.; Garimella, Niraj [Power Systems Group, Department of Electrical and Computer Engineering, The University of Auckland, 38 Princes Street, Science Centre, Auckland 1142 (New Zealand)

    2010-11-15

    Concerns arising due to the variability and intermittency of renewable energy sources while integrating with the power grid can be mitigated to an extent by incorporating a storage element within the renewable energy harnessing system. Thus, battery energy storage systems (BESS) are likely to have a significant impact in the small-scale integration of renewable energy sources into commercial building and residential dwelling. These storage technologies not only enable improvements in consumption levels from renewable energy sources but also provide a range of technical and monetary benefits. This paper provides a modelling framework to be able to quantify the associated benefits of renewable resource integration followed by an overview of various small-scale energy storage technologies. A simple, practical and comprehensive assessment of battery energy storage technologies for small-scale renewable applications based on their technical merit and economic feasibility is presented. Software such as Simulink and HOMER provides the platforms for technical and economic assessments of the battery technologies respectively. (author)

  2. Remote optically-tunable transimpedance amplifiers for quantum well diodes

    Energy Technology Data Exchange (ETDEWEB)

    Carraresi, L.; Landi, G.; Rocchi, S.; Vignoli, V

    1999-08-01

    In a previous paper we discussed the advantages in using linear optical transmission systems based on quantum well diodes in modern high energy physics experiments. In this paper, after a short summary of the quantum well theory, the electronics section of the above optical transmission system is presented. In particular the basic configuration of a transimpedance amplifier and the arrangement of an optical remote control system for the amplifier gain and bandwidth tuning are discussed.

  3. Remote optically-tunable transimpedance amplifiers for quantum well diodes

    International Nuclear Information System (INIS)

    Carraresi, L.; Landi, G.; Rocchi, S.; Vignoli, V.

    1999-01-01

    In a previous paper we discussed the advantages in using linear optical transmission systems based on quantum well diodes in modern high energy physics experiments. In this paper, after a short summary of the quantum well theory, the electronics section of the above optical transmission system is presented. In particular the basic configuration of a transimpedance amplifier and the arrangement of an optical remote control system for the amplifier gain and bandwidth tuning are discussed

  4. Fast neutron incineration in the energy amplifier as alternative to geologic storage the case of Spain

    CERN Document Server

    Rubbia, Carlo; Kadi, Y; Rubio, Juan Antonio

    1997-01-01

    In previous reports [1][2] we have presented the conceptual design of a fast neutron driven sub-critical device (Energy Amplifier) designed both for energy amplification (production) and for the incineration of unwanted ³waste² from Nuclear Light Water Reactors (LWR). The latter scheme is here applied to the specific case of Spain, where 9 large LWR¹s are presently in operation. It is shown that a cluster of 5 EA¹s is a very effective and realistic solution to the elimination (in 37 years) of the present and foreseen (till 2029) LWR-Waste stockpiles of Spain, but with major improvements over Geologic Storage, since: (1) only a Low Level Waste (LLW) surface repository of reasonable size is ultimately required; (2) the large amount of energy stored in the trans-Uranics is recovered, amounting for each of the 37 years of incineration to a saving of about 8% of the present primary energy demand of Spain (100 MTep/y); (3) the slightly enriched (1.1%) Uranium, unburned by LWR¹s, can be recovered for further us...

  5. Compact fibre-laser-pumped Ho:YLF oscillator-amplifier system

    CSIR Research Space (South Africa)

    Bollig, C

    2009-06-01

    Full Text Available -amplifier system. 0 5 10 15 20 25 0 1 2 3 4 5 Repetition Rate [kHz] Pu lse En er gy [m J] 0 50 100 150 200 250 Pu lse Le n gt h [ns ] Simulation Results Amp Pulse Energy Osc Pulse Energy Amp Pulse Length Fig. 2 Output energy...

  6. Energy harvesting: small scale energy production from ambient sources

    Science.gov (United States)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  7. Portable musical instrument amplifier

    Science.gov (United States)

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  8. Gaussian-3 theory using scaled energies

    International Nuclear Information System (INIS)

    Curtiss, Larry A.; Raghavachari, Krishnan; Redfern, Paul C.; Pople, John A.

    2000-01-01

    A modification of Guassian-3 (G3) theory using multiplicative scale factors, instead of the additive higher level correction, is presented. In this method, referred to as G3S, the correlation energy is scaled by five parameters and the Hartree-Fock energy by one parameter. The six parameters are fitted to the G2/97 test set of 299 energies and the resulting mean absolute deviation from experiment is 0.99 kcal/mol compared to 1.01 kcal/mol for G3 theory. The G3S method has the advantage compared to G3 theory in that it can be used for studying potential energy surfaces where the products and reactants have a different number of paired electrons. In addition, versions of the computationally less intensive G3(MP3) and G3(MP2) methods that use scaled energies are also presented. These methods, referred to as G3S(MP3) and G3S(MP2), have mean absolute deviations of 1.16 and 1.35 kcal/mol, respectively. (c) 2000 American Institute of Physics

  9. Laser amplifier based on a neodymium glass rod 150 mm in diameter

    Energy Technology Data Exchange (ETDEWEB)

    Shaykin, A A; Fokin, A P; Soloviev, A A; Kuzmin, A A; Shaikin, I A; Burdonov, K F; Khazanov, E A [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Charukhchev, A V [Public Limited Company " Scientific research Institute for Optoelectronic Instrument Engineering" , Leningrad region (Russian Federation)

    2014-05-30

    A unique large-aperture neodymium glass rod amplifier is experimentally studied. The small-signal gain distribution is measured at different pump energies. The aperture-averaged gain is found to be 2.3. The stored energy (500 J), the maximum possible pump pulse repetition rate, and the depolarisation in a single pulse and in a series of pulses with a repetition rate of one pulse per five minutes are calculated based on the investigations performed. It is shown that the use of this amplifier at the exit of the existing laser can increase the output pulse energy from 300 to 600 J. (lasers)

  10. Scale Dependence of Dark Energy Antigravity

    Science.gov (United States)

    Perivolaropoulos, L.

    2002-09-01

    We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.

  11. First operation of a wiggler-focused, sheet beam free electron laser amplifier

    International Nuclear Information System (INIS)

    Destler, W.W.; Cheng, S.; Zhang, Z.X.; Antonsen, T.M. Jr.; Granatstein, V.L.; Levush, B.; Rodgers, J.

    1994-01-01

    A wiggler-focused, sheet beam free electron laser (FEL) amplifier utilizing a short-period wiggler magnet has been proposed as a millimeter-wave source for current profile modification and/or electron cyclotron resonance heating of tokamak plasmas. As proposed, such an amplifier would operate at a frequency of approximately 100--200 GHz with an output power of 1--10 MW CW. Electron beam energy would be in the range 500--1000 keV. To test important aspects of this concept, an initial sheet beam FEL amplifier experiment has been performed using a 1 mmx2 cm sheet beam produced by a pulse line accelerator with a pulse duration of 100 ns. The 500--570 keV, 4--18 A sheet beam is propagated through a 56 period uniform wiggler (λ w =9.6 mm) with a peak wiggler amplitude of 2--5 kG. Linear amplification of a 5--10 W, 94 GHz signal injected in the TE 01 rectangular mode is observed. All features of the amplified signal, including pulse shape and duration, are in accordance with the predictions of numerical simulation. Amplified signal gain has been measured as a function of injected beam energy, current, and wiggler field amplitude and is also in good agreement with simulation results. Continuation of this experiment will involve studying nonlinear amplifier operation and adding a section of tapered wiggler

  12. Influences of finite gain bandwidth on pulse propagation in parabolic fiber amplifiers with distributed gain profiles

    International Nuclear Information System (INIS)

    Zhao Jia-Sheng; Li Pan; Chen Xiao-Dong; Feng Su-Juan; Mao Qing-He

    2012-01-01

    The evolutions of the pulses propagating in decreasing and increasing gain distributed fiber amplifiers with finite gain bandwidths are investigated by simulations with the nonlinear Schrödinger equation. The results show that the parabolic pulse propagations in both the decreasing and the increasing gain amplifiers are restricted by the finite gain bandwidth. For a given input pulse, by choosing a small initial gain coefficient and gain variation rate, the whole gain for the pulse amplification limited by the gain bandwidth may be higher, which is helpful for the enhancement of the output linearly chirped pulse energy. Compared to the decreasing gain distributed fiber amplifier, the increasing gain distributed amplifier may be more conducive to suppress the pulse spectral broadening and increase the critical amplifier length for achieving a larger output linearly chirped pulse energy

  13. Self-amplifying mRNA vaccines.

    Science.gov (United States)

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Scaling violations at ultra-high energies

    International Nuclear Information System (INIS)

    Tung, W.K.

    1979-01-01

    The paper discusses some of the features of high energy lepton-hadron scattering, including the observed (Bjorken) scaling behavior. The cross-sections where all hadron final states are summed over, are examined and the general formulas for the differential cross-section are examined. The subjects of scaling, breaking and phenomenological consequences are studied, and a list of what ultra-high energy neutrino physics can teach QCD is given

  15. Opportunistic Energy-Aware Amplify-and-Forward Cooperative Systems with Imperfect CSI

    KAUST Repository

    Amin, Osama; Bedeer, Ebrahim; Ahmed, Mohamed Hossam; Dobre, Octavia; Alouini, Mohamed-Slim

    2015-01-01

    an energyefficient relay assisted communication system based on estimated channel state information (CSI). It employs amplify-andforward relaying and switches between different communication schemes, which are known as direct-transmission, two-hop and cooperative

  16. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify design, increase efficiency and integration level, reduce product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented. (au)

  17. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify the design, increase...... efficiency, reduce the product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented....

  18. Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters

    DEFF Research Database (Denmark)

    Wang, Z.; Durhuus, T.; Mikkelsen, Benny

    1994-01-01

    A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....

  19. 1-MHz high power femtosecond Yb-doped fiber chirped-pulse amplifier

    Science.gov (United States)

    Hu, Zhong-Qi; Yang, Pei-Long; Teng, Hao; Zhu, Jiang-Feng; Wei, Zhi-Yi

    2018-01-01

    A practical femtosecond polarization-maintaining Yb-doped fiber amplifier enabling 153 fs transform-limited pulse duration with 32 μJ pulse energy at 1 MHz repetition rate corresponding to a peak power of 0.21 GW is demonstrated. The laser system based on chirped-pulse amplification (CPA) technique is seeded by a dispersion managed, nonlinear polarization evolution (NPE) mode-locked oscillator with spectrum bandwidth of 31 nm at 1040 nm and amplified by three fiber pre-amplifying stages and a rod type fiber main amplifying stage. The laser works with beam quality of M2 of 1.3 and power stability of 0.63% (root mean square, RMS) over 24 hours will be stable sources for industrial micromachining, medical therapy and scientific research.

  20. The automatic test system for the L3 muon drift chamber amplifiers

    International Nuclear Information System (INIS)

    Bove, A.; Caiazzo, L.; Lanzano, S.; Manna, F.; Manto, G.; Parascandolo, L.; Parascandolo, P.; Parmentola, A.; Paternoster, G.

    1987-01-01

    We describe the system we developed to test the linearity of wire chambers amplifiers of the muon spectrometer presently in construction for the L3 experiment at LEP. The system, controlled by an Apple II computer, is capable of localizing both defective components and faults in the printed board. It will be used to perform the large scale quality control of the amplifier cards

  1. Linear pulse amplifier

    International Nuclear Information System (INIS)

    Tjutju, R.L.

    1977-01-01

    Pulse amplifier is standard significant part of spectrometer. Apart from other type of amplification, it's a combination of amplification and pulse shaping. Because of its special purpose the device should fulfill the following : High resolution is desired to gain a high yield comparable to its actual state of condition. High signal to noise is desired to nhν resolution. High linearity to facilitate calibration. A good overload recovery, in order to the device will capable of analizing a low energy radiation which appear joinly on the high energy fields. Other expections of the device are its economical and practical use its extentive application. For that reason it's built on a standard NIM principle. Taking also into account the above mentioned considerations. High quality component parts are used throughout, while its availability in the domestic market is secured. (author)

  2. Energy scaling of terahertz-wave parametric sources.

    Science.gov (United States)

    Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-02-23

    Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.

  3. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  4. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F; Joergensen, P F [KanEnergi, Rud (Norway)

    1998-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  5. Characterisation and setup of a noncollinear optical parametric amplifier and investigation of ultrafast dynamics of Na/Cu(111)

    Energy Technology Data Exchange (ETDEWEB)

    Wegkamp, Daniel; Krenz, Marcel; Wolf, Martin [Fritz Haber Institute of the MPG, Dept. of Physical Chemistry, Berlin (Germany); Freie Universitaet Berlin, Dept. of Physics, Berlin (Germany); Bovensiepen, Uwe [Universitaet Duisburg-Essen, Dept. of Physics, Duisburg (Germany); Freie Universitaet Berlin, Dept. of Physics, Berlin (Germany)

    2010-07-01

    To study ultrafast dynamics on a femtosecond timescale, laser pulses of comparable and shorter scale are used in this work in combination with 2-photon photoemission. Here, we report the principle, setup, and characterisation of a femtosecond light-source based on a noncollinear optical parametric amplifier (NOPA) and its application in studying the dynamics of Na/Cu(111) following. Laser pulses with duration <20 fs have been generated in the visible spectral range using a 300 kHz regenerative amplifier. In a single color scheme (h{nu}=2.3 eV) the NOPA pulses are used to excite and photoemit hot electrons, which are detected with a time of flight (TOF) spectrometer. With time independent measurements the binding energy of the adsorbate-induced resonance at 2 eV is observed in agreement with. As a function of pump-probe delay a time-dependent binding energy shift of the Na resonance with -2 meV/fs is observed. This shift is explained as a pump-induced movement of the sodium adsorbate away from the surface.

  6. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ; SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and

  7. Analysis and evaluation of zig-zag slab laser amplifier with optical diamond geometry

    International Nuclear Information System (INIS)

    Matsumoto, Osamu; Yasuhara, Ryo; Kanabe, Tadashi

    2007-01-01

    In this paper, we describe the development of a high-average-power solid-state laser system and the derivation of equations for the amplification of a laser beam. This laser system is capable of generating an output energy of 10J per pulse at a wavelength of 1,053nm in a 10 Hz operation for scientific and industrial applications. The main amplifier of our system is a laser-diode-pumped solid-state amplifier. A water-cooled Nd:glass slab is pumped with two 803 nm AlGaAs laser-diode modules. The laser beam propagates through zig-zag optical paths four times and is amplified. To estimate laser output energy, we have derived and evaluated equations for the amplification of the laser beam, and designed and constructed a laser system based on the calculated results. Experimental results reveal an output energy of 10.6 J at 1 Hz, which closely fits the results calculated using the derived equations. (author)

  8. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2010-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ;SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and can

  9. Solid state high power amplifier for driving the SLC injector klystron

    International Nuclear Information System (INIS)

    Judkins, J.G.; Clendenin, J.E.; Schwarz, H.D.

    1985-03-01

    The SLC injector klystron rf drive is now provided by a recently developed solid-state amplifier. The high gain of the amplifier permits the use of a fast low-power electronic phase shifter. Thus the SLC computer control system can be used to shift the phase of the high-power rf rapidly during the fill time of the injector accelerator section. These rapid phase shifts are used to introduce a phase-energy relationship in the accelerated electron pulse in conjunction with the operation of the injector bunch compressor. The amplifier, the method of controlling the rf phase, and the operational characteristics of the system are described. 5 refs., 4 figs

  10. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  11. CMOS Current-mode Operational Amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1992-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-range ±700¿A) and a (theoretically) unlimited slew-rate. The amplifier is realized in a standard CMOS 2......A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  12. Energy harvesting with stacked dielectric elastomer transducers: Nonlinear theory, optimization, and linearized scaling law

    Science.gov (United States)

    Tutcuoglu, A.; Majidi, C.

    2014-12-01

    Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.

  13. Operational amplifiers

    CERN Document Server

    Dostal, Jiri

    1993-01-01

    This book provides the reader with the practical knowledge necessary to select and use operational amplifier devices. It presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits.Provides the reader with practical knowledge necessary to select and use operational amplifier devices. Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits

  14. AIDA: A 16-channel amplifier ASIC to read out the advanced implantation detector array for experiments in nuclear decay spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Braga, D. [STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom); Coleman-Smith, P. J. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Davinson, T. [Dept. of Physics and Astronomy, Univ. of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Lazarus, I. H. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Page, R. D. [Dept. of Physics, Univ. of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Thomas, S. [STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)

    2011-07-01

    We have designed a read-out ASIC for nuclear decay spectroscopy as part of the AIDA project - the Advanced Implantation Detector Array. AIDA will be installed in experiments at the Facility for Antiproton and Ion Research in GSI, Darmstadt. The AIDA ASIC will measure the signals when unstable nuclei are implanted into the detector, followed by the much smaller signals when the nuclei subsequently decay. Implant energies can be as high as 20 GeV; decay products need to be measured down to 25 keV within just a few microseconds of the initial implants. The ASIC uses two amplifiers per detector channel, one covering the 20 GeV dynamic range, the other selectable over a 20 MeV or 1 GeV range. The amplifiers are linked together by bypass transistors which are normally switched off. The arrival of a large signal causes saturation of the low-energy amplifier and a fluctuation of the input voltage, which activates the link to the high-energy amplifier. The bypass transistors switch on and the input charge is integrated by the high-energy amplifier. The signal is shaped and stored by a peak-hold, then read out on a multiplexed output. Control logic resets the amplifiers and bypass circuit, allowing the low-energy amplifier to measure the subsequent decay signal. We present simulations and test results, demonstrating the AIDA ASIC operation over a wide range of input signals. (authors)

  15. A linear concatenation strategy to construct 5'-enriched amplified cDNA libraries using multiple displacement amplification.

    Science.gov (United States)

    Gadkar, Vijay J; Filion, Martin

    2013-06-01

    In various experimental systems, limiting available amounts of RNA may prevent a researcher from performing large-scale analyses of gene transcripts. One way to circumvent this is to 'pre-amplify' the starting RNA/cDNA, so that sufficient amounts are available for any downstream analysis. In the present study, we report the development of a novel protocol for constructing amplified cDNA libraries using the Phi29 DNA polymerase based multiple displacement amplification (MDA) system. Using as little as 200 ng of total RNA, we developed a linear concatenation strategy to make the single-stranded cDNA template amenable for MDA. The concatenation, made possible by the template switching property of the reverse transcriptase enzyme, resulted in the amplified cDNA library with intact 5' ends. MDA generated micrograms of template, allowing large-scale polymerase chain reaction analyses or other large-scale downstream applications. As the amplified cDNA library contains intact 5' ends, it is also compatible with 5' RACE analyses of specific gene transcripts. Empirical validation of this protocol is demonstrated on a highly characterized (tomato) and an uncharacterized (corn gromwell) experimental system.

  16. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Keathley P.

    2013-03-01

    Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  17. Energy reduction through voltage scaling and lightweight checking

    Science.gov (United States)

    Kadric, Edin

    As the semiconductor roadmap reaches smaller feature sizes and the end of Dennard Scaling, design goals change, and managing the power envelope often dominates delay minimization. Voltage scaling remains a powerful tool to reduce energy. We find that it results in about 60% geomean energy reduction on top of other common low-energy optimizations with 22nm CMOS technology. However, when voltage is reduced, it becomes easier for noise and particle strikes to upset a node, potentially causing Silent Data Corruption (SDC). The 60% energy reduction, therefore, comes with a significant drop in reliability. Duplication with checking and triple-modular redundancy are traditional approaches used to combat transient errors, but spending 2--3x the energy for redundant computation can diminish or reverse the benefits of voltage scaling. As an alternative, we explore the opportunity to use checking operations that are cheaper than the base computation they are guarding. We devise a classification system for applications and their lightweight checking characteristics. In particular, we identify and evaluate the effectiveness of lightweight checks in a broad set of common tasks in scientific computing and signal processing. We find that the lightweight checks cost only a fraction of the base computation (0-25%) and allow us to recover the reliability losses from voltage scaling. Overall, we show about 50% net energy reduction without compromising reliability compared to operation at the nominal voltage. We use FPGAs (Field-Programmable Gate Arrays) in our work, although the same ideas can be applied to different systems. On top of voltage scaling, we explore other common low-energy techniques for FPGAs: transmission gates, gate boosting, power gating, low-leakage (high-Vth) processes, and dual-V dd architectures. We do not scale voltage for memories, so lower voltages help us reduce logic and interconnect energy, but not memory energy. At lower voltages, memories become dominant

  18. CMOS Current-mode Operational Amplifier

    OpenAIRE

    Kaulberg, Thomas

    1992-01-01

    A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-r...

  19. Preliminary Studies of the Demonstration Plant of the Energy Amplifier (EA) by LAESA

    International Nuclear Information System (INIS)

    Abanades, A.; Nunez-Lagos, R.; Perez-Navarro, A.; Rubio, J.A.

    1998-01-01

    On July 1997, an international company named LAESA has finished its foundational period, with the headquarters in Zaragoza. The main initial goal of the company is, based on the conceptual design of an Energy Amplifier from C. Rubbia and collaborators, to take the necessary steps for developing the engineering design and the construction of a demonstration unit of EA (approx 100 MWt in its first phase and 250 MWt in the second one). The company will be mainly charged of the technical aspects required by the construction of the prototype and its funding comes both from private and public capital, as well as the selling of services. The prototype intends to use a final accelerator current of approx 12 mA and a beam energy close to 400 MeV. The construction period is expected to be 5 to t years and the initial emphasis of the installation is to demonstrate its capability for a massive incineration of long lived radioactive waste, with the corresponding energy generation. The necessary development to prepare de engineering design is being the subject of a R and D programme in Spain. Other countries with or without companies inside LAESA are also carrying on other Rand D programmes. The expected planning foresees an integrated R and D programme, a first version of the engineering design and the initial contacts both with the Spanish Nuclear Regulatory Commission, as well as the Spanish Environmental authorities. During the Conference, the status of the engineering design will be shown. (Author) 3 refs

  20. Inflation in random landscapes with two energy scales

    Science.gov (United States)

    Blanco-Pillado, Jose J.; Vilenkin, Alexander; Yamada, Masaki

    2018-02-01

    We investigate inflation in a multi-dimensional landscape with a hierarchy of energy scales, motivated by the string theory, where the energy scale of Kahler moduli is usually assumed to be much lower than that of complex structure moduli and dilaton field. We argue that in such a landscape, the dynamics of slow-roll inflation is governed by the low-energy potential, while the initial condition for inflation are determined by tunneling through high-energy barriers. We then use the scale factor cutoff measure to calculate the probability distribution for the number of inflationary e-folds and the amplitude of density fluctuations Q, assuming that the low-energy landscape is described by a random Gaussian potential with a correlation length much smaller than M pl. We find that the distribution for Q has a unique shape and a preferred domain, which depends on the parameters of the low-energy landscape. We discuss some observational implications of this distribution and the constraints it imposes on the landscape parameters.

  1. Simplified design of IC amplifiers

    CERN Document Server

    Lenk, John

    1996-01-01

    Simplified Design of IC Amplifiers has something for everyone involved in electronics. No matter what skill level, this book shows how to design and experiment with IC amplifiers. For experimenters, students, and serious hobbyists, this book provides sufficient information to design and build IC amplifier circuits from 'scratch'. For working engineers who design amplifier circuits or select IC amplifiers, the book provides a variety of circuit configurations to make designing easier.Provides basics for all phases of practical design.Covers the most popular forms for amplif

  2. Jet Energy Scale Uncertainties in ATLAS

    International Nuclear Information System (INIS)

    Barillari, Teresa

    2012-01-01

    The first proton-proton collisions at a centre of mass energy of √s = 7TeV have been used by the ATLAS experiment to achieve an accuracy of the jet energy measurement between 2% and 4% for jets transverse momenta between 20 GeV and 2TeV and in the absolute pseudorapidity range up to 4.5. The jet energy scale uncertainty is derived from measurements in situ of the calorimeter single response to hadrons together with systematic variations in the Monte Carlo simulation. The transverse momentum balance between a central and a forward jet in events with two high transverse momenta jets is used to set the jet energy uncertainty in the forward region. The obtained uncertainty is confirmed by in-situ measurements. Jets in the TeV energy range have been tested using a system of well calibrated jets at low transverse momenta against high transverse momenta jets. A further reduction of the jet energy scale uncertainty between 1% and 2% for jets transverse momenta above 30 GeV has been achieved using data from the 2011 run based on an integrated luminosity of 5 fb −1 .

  3. Regenesys utility scale energy storage. Project summary

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed

  4. Regenesys utility scale energy storage. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed.

  5. Development of three channel linear bipolar high voltage amplifier (±2 KV) for electrostatic steerer

    International Nuclear Information System (INIS)

    Rajesh Kumar; Mukesh Kumar; Suman, S.K.; Safvan, C.P.; Mandal, A.

    2011-01-01

    Electrostatic steerers and scanners are planned for low energy ion beam facilities at IUAC to steer and scan the ion beam on target. The power supplies for electrostatic steerers are high voltage bipolar DC amplifiers and for scanners are bipolar AC amplifiers. To fulfil the requirements a common unit has been designed and assembled for AC and DC applications. It can be used with electrostatic devices in scanning, steering and sweeping of low energy ion beams at high frequencies to attain uniform implantation. The unit consist of three independent limited bandwidth high voltage, linear bipolar amplifiers (for X-axis, Y-axis and Y1-dog leg plates). The unit has been provided with both local and remote control. (author)

  6. In-flight auscultation during medical air evacuation: comparison between traditional and amplified stethoscopes.

    Science.gov (United States)

    Fontaine, Emmanuelle; Coste, Sébastien; Poyat, Chrystelle; Klein, Céline; Lefort, Hugues; Leclerc, Thomas; Dubourdieu, Stéphane; Briche, Frédérique; Jost, Daniel; Maurin, Olga; Domanski, Laurent; Tourtier, Jean-Pierre

    2014-01-01

    The aim of this study was to evaluate the capacity of a traditional stethoscope versus an electronically amplified one (expected to reduce background and ambient noise) to assess heart and respiratory sounds during medical transport. It was a prospective, double-blinded, randomized performed study. One traditional stethoscope (Littmann Cardiology III; 3M, St Paul, MN) and 1 electronically amplified stethoscope (Littmann 3200, 3M) were used for our tests. Heart and lung auscultation during real medical evacuations aboard a medically configured Falcon 50 aircrafts were studied. The quality of auscultation was ranged using a numeric rating scale from 0 to 10 (0 corresponding to "I hear nothing" and 10 to "I hear perfectly"). Data collected were compared using a t-test for paired values. A total of 40 comparative evaluations were performed. For cardiac auscultation, the value of the rating scale was 4.53 ± 1.91 and 7.18 ± 1.88 for the traditional and amplified stethoscope, respectively (paired t-test: P auscultation was estimated at 3.1 ± 1.95 for a traditional stethoscope and 5.10 ± 2.13 for the amplified one (paired t-test: P < .0001). This study showed that practitioners would be better helped in hearing cardiac and respiratory sounds with an electronically amplified stethoscope than with a traditional one during air medical transport in a medically configured Falcon 50 aircraft. Copyright © 2014 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  7. Quasi-continuously pumped passively mode-locked 2.4% doped Nd:YAG oscillator-amplifier system in a bounce geometry

    Science.gov (United States)

    Jelínek, Michal; Kubecek, Vaclav; Cech, Miroslav; Hirsl, Petr

    2010-02-01

    We report on oscillator-amplifier system based on two highly doped 2.4 at. % crystalline Czochralski grown Nd:YAG crystals in a diode pumped bounce geometry configuration under quasi-continuous pumping. The oscillator was passively mode-locked by the semiconductor saturable absorber in transmission mode. The output pulse train consisted of 5 pulses with total energy of 270 μJ and pulse duration of 75 ps. The output train from the oscillator was amplified to the energy of 1 mJ by single pass amplifier.

  8. The Effect of Amplifier Bias Drift on Differential Magnitude Estimation in Multiple-Star Systems

    Science.gov (United States)

    Tyler, David W.; Muralimanohar, Hariharan; Borelli, Kathy J.

    2007-02-01

    We show how the temporal drift of CCD amplifier bias can cause significant relative magnitude estimation error in speckle interferometric observations of multiple-star systems. When amplifier bias varies over time, the estimation error arises if the time between acquisition of dark-frame calibration data and science data is long relative to the timescale over which the bias changes. Using analysis, we show that while detector-temperature drift over time causes a variation in accumulated dark current and a residual bias in calibrated imagery, only amplifier bias variations cause a residual bias in the estimated energy spectrum. We then use telescope data taken specifically to investigate this phenomenon to show that for the detector used, temporal bias drift can cause residual energy spectrum bias as large or larger than the mean value of the noise energy spectrum. Finally, we use a computer simulation to demonstrate the effect of residual bias on differential magnitude estimation. A supplemental calibration technique is described in the appendices.

  9. Improved-Bandwidth Transimpedance Amplifier

    Science.gov (United States)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  10. Thermal analysis of the large close packed amplifiers in the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Brown, D.L.; Mannell, G.T.

    1995-05-01

    Flashlamp pumping of the large aperture multi-segment NIF amplifiers will result in large amounts of energy being deposited as heat in the amplifier components. The magnitude of the heating and the nonuniform distribution result in a delay time between shots due to wavefront distortion and steering error. A NEF requirement is that the thermal wavefront recovery must occur in less than six hours. The principal cause of long-term wavefront distortion is the thermal gradient produced in the slab as heat diffuses from the edge cladding into the pumped volume. Thermal equilibrium is established through conduction, convection, and exchange of thermal radiation. Radiative exchange between glass components, such as flashlamps, blast shields, and laser slabs is especially effective because of the large surface areas of these components and the high emissivity of the glass. Free convection within the amplifier enclosure is also important but is on the order of a 10 to 20% effect compared to radiation for the major surfaces. To evaluate the NIF design, the amplifier was modeled to calculate the thermal response of a single laser element. The amplifier is cooled by flowing room-temperature air or nitrogen through the flashlamp cassettes. Active cooling of the flashlamps and blast shields serves two purposes; the energy deposited in these components can be removed before it is transferred to the amplifier optical components, and the cooled blast shield provides a large area heat sink for removal of the residual heat from the laser slabs. Approximately 50 to 60% of the flashlamp energy is deposited in the flashlamps and blast shields. Thus, cooling the flashlamp cassette is a very effective method for removing a substantial fraction of the energy without disturbing the optical elements of the system. Preliminary thermal analysis indicates that active cooling with flow rates of 10 CFM per flashlamp is sufficient to meet the six hour thermal equilibrium requirement

  11. New developments in relativistic klystron amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, M; Colombant, D; Fernsler, R; Hubbard, R; Lampe, M; Serlin, V; Slinker, S [Naval Research Lab., Washington, DC (United States). Plasma Physics Div.

    1997-12-31

    A relativistic klystron amplifier that employed cavities with inductively loaded wide gaps and a novel converter has achieved 50% energy efficiency, a significant advance over the previous state of the art of 20%. The new device was immersed in a 3 kG magnetic field and contained two innovations: (1) Wide gaps which include an inductively loaded return current structure that was opaque to the unmodulated beam space charge but transparent to the RF field. (2) A novel converter that was made of a `leaky` cavity with a radially-converging inductively-loaded structure that was inserted in the output wide-gap. This structure reduced the potential energy residing in the electron beam and maximized RF output energy. (author). 4 figs., 13 refs.

  12. Amplification of picosecond pulse by electron-beam pumped KrF laser amplifiers. Denshi beam reiki KrF laser zofukuki ni yoru piko byo pulse no zofuku

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, I.; Tomie, T.; Owadano, Y.; Yano, M. (Electrotechnical Laboratory, Tsukuba (Japan))

    1991-08-20

    Experiments on the amplification of a picosecond pulse by electron-beam pumped KrF laser amplifiers were carried out for the purpose of its application to the field such as excitation light source for soft X-ray laser which requires large energy besides peak power. The picosecond pulse was amplified by a discharge pumped KrF amplifier and two electron-beam pumped KrF amplifiers(at the middle stage and the final stage). The energy of 4J, which was the largest energy for short pulse excimer laser so far, was obtained by these devices. About 90% of the window area of the final amplifier with 29cm diameter was filled by the input beam, and energy density of the picosecond beam reached 3.9 times saturation energy density. Measured energy of amplified spontaneous emission(ASE) showed good agreement with the theoretically estimated value. Most of ASE was derived from the discharge pumped laser as the first amplifier. As for the focused power density, the power density ratio of the picosecond pulse to ASE was estimated to be as large as 10{sup 5}. 11 refs., 4 figs.

  13. On the Creation of Solitons in Amplifying Optical Fibers

    Directory of Open Access Journals (Sweden)

    Christoph Mahnke

    2018-01-01

    Full Text Available We treat the creation of solitons in amplifying fibers. Strictly speaking, solitons are objects in an integrable setting while in real-world systems loss and gain break integrability. That case usually has been treated in the perturbation limit of low loss or gain. In a recent approach fiber-optic solitons were described beyond that limit, so that it became possible to specify how and where solitons are eventually destroyed. Here we treat the opposite case: in the presence of gain, new solitons can arise from an initially weak pulse. We find conditions for that to happen for both localized and distributed gain, with no restriction to small gain. By tracing the energy budget we show that even when another soliton is already present and copropagates, a newly created soliton takes its energy from radiation only. Our results may find applications in amplified transmission lines or in fiber lasers.

  14. Oscillators and operational amplifiers

    OpenAIRE

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.

  15. FLUIDIC AC AMPLIFIERS.

    Science.gov (United States)

    Several fluidic tuned AC Amplifiers were designed and tested. Interstage tuning and feedback designs are considered. Good results were obtained...corresponding Q’s as high as 12. Element designs and test results of one, two, and three stage amplifiers are presented. AC Modulated Carrier Systems

  16. Additional renewable energy growth through small-scale community orientated energy policies

    International Nuclear Information System (INIS)

    Hain, J.J.; Ault, G.W.; Galloway, S.J.; Cruden, A.; McDonald, J.R.

    2005-01-01

    This paper summarises the energy policies that the UK Government has enacted in order to achieve its renewable targets by 2010. Current policies are designed primarily to support large-scale renewable projects through Renewable Obligation Certificates, Levy Exemption Certificates and capital grant schemes. Non-profit domestic and non-profit community renewable projects are also eligible for grant support. First-hand experience of privately owned renewable projects indicate that existing renewable policy is insufficient in its support of both small-scale and community-based profit oriented renewable energy (RE) schemes. Primary and secondary survey information suggests that people living in regions where RE will be situated may generally be inclined to support broader uses of renewables in these regions. Small-scale renewables can make a significant cumulative contribution to the RE mix. The results reported in this paper support the contention that the Government could go further towards approaching its targets through rural-focused changes to its energy incentive programmes

  17. Stored energy analysis in scale-down test facility

    International Nuclear Information System (INIS)

    Deng Chengcheng; Qin Benke; Fang Fangfang; Chang Huajian; Ye Zishen

    2013-01-01

    In the integral test facilities that simulate the accident transient process of the prototype nuclear power plant, the stored energy in the metal components has a direct influence on the simulation range and the test results of the facilities. Based on the heat transfer theory, three methods analyzing the stored energy were developed, and a thorough study on the stored energy problem in the scale-down test facilities was further carried out. The lumped parameter method and power integration method were applied to analyze the transient process of energy releasing and to evaluate the average total energy stored in the reactor pressure vessel of the ACME (advanced core-cooling mechanism experiment) facility, which is now being built in China. The results show that the similarity requirements for such three methods to analyze the stored energy in the test facilities are reduced gradually. Under the condition of satisfying the integral similarity of natural circulation, the stored energy releasing process in the scale-down test facilities can't maintain exact similarity. The stored energy in the reactor pressure vessel wall of ACME, which is released quickly during the early stage of rapid depressurization of system, will not make a major impact on the long-term behavior of system. And the scaling distortion of integral average total energy of the stored heat is acceptable. (authors)

  18. Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Ancona, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); CNR-INFM Regional Laboratory ' LIT3' , Dipartimento Interuniversitario di Fisica, Bari (Italy); Nodop, D.; Limpert, J.; Nolte, S. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Tuennermann, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena (Germany)

    2009-01-15

    We have investigated the ultra-fast microdrilling of metals using a compact and cheap fiber amplified passively Q-switched microchip laser. This laser system delivers 100-ps pulses with repetition rates higher than 100 kHz and pulse energies up to 80 {mu}J. The ablation process has been studied on metals with quite different thermal properties (copper, carbon steel and stainless steel). The dependence of the ablation depth per pulse on the pulse energy follows the same logarithmic scaling laws governing laser ablation with sub-picosecond pulses. Structures ablated with 100-ps laser pulses are accompanied only by a thin layer of melted material. Despite this, results with a high level of precision are obtained when using the laser trepanning technique. This simple and affordable laser system could be a valid alternative to nanosecond laser sources for micromachining applications. (orig.)

  19. A CMOS current-mode operational amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1993-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain-bandwidth product of 3 MHz, an offset current of 0.8 μA (signal range ±700 μA), and a (theoretically) unlimited slew rate. The amplifier is realized in a standard CMOS 2......A fully differential-input, differential-output, current-mode operational amplifier (COA) is described. The amplifier utilizes three second-generation current conveyors (CCIIs) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  20. Small-Scale Renewable Energy Converters for Battery Charging

    Directory of Open Access Journals (Sweden)

    Mohd Nasir Ayob

    2018-03-01

    Full Text Available This paper presents two wave energy concepts for small-scale electricity generation. In the presented case, these concepts are installed on the buoy of a heaving, point-absorbing wave energy converter (WEC for large scale electricity production. In the studied WEC, developed by Uppsala University, small-scale electricity generation in the buoy is needed to power a tidal compensating system designed to increase the performance of the WEC in areas with high tides. The two considered and modeled concepts are an oscillating water column (OWC and a heaving point absorber. The results indicate that the OWC is too small for the task and does not produce enough energy. On the other hand, the results show that a hybrid system composed of a small heaving point absorber combined with a solar energy system would be able to provide a requested minimum power of around 37.7 W on average year around. The WEC and solar panel complement each other, as the WEC produces enough energy by itself during wintertime (but not in the summer, while the solar panel produces enough energy in the summer (but not in the winter.

  1. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  2. NASA developments in solid state power amplifiers

    Science.gov (United States)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  3. A study of complex scaling transformation using the Wigner representation of wavefunctions.

    Science.gov (United States)

    Kaprálová-Ždánská, Petra Ruth

    2011-05-28

    The complex scaling operator exp(-θ ̂x̂p/ℏ), being a foundation of the complex scaling method for resonances, is studied in the Wigner phase-space representation. It is shown that the complex scaling operator behaves similarly to the squeezing operator, rotating and amplifying Wigner quasi-probability distributions of the respective wavefunctions. It is disclosed that the distorting effect of the complex scaling transformation is correlated with increased numerical errors of computed resonance energies and widths. The behavior of the numerical error is demonstrated for a computation of CO(2+) vibronic resonances. © 2011 American Institute of Physics

  4. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Directory of Open Access Journals (Sweden)

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  5. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  6. Model Scaling of Hydrokinetic Ocean Renewable Energy Systems

    Science.gov (United States)

    von Ellenrieder, Karl; Valentine, William

    2013-11-01

    Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).

  7. Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    Science.gov (United States)

    England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  8. Broadband spectral shaping in regenerative amplifier based on modified polarization-encoded chirped pulse amplification

    Science.gov (United States)

    Wang, Xinliang; Lu, Xiaoming; Liu, Yanqi; Xu, Yi; Wang, Cheng; Li, Shuai; Yu, Linpeng; Liu, Xingyan; Liu, Keyang; Xu, Rongjie; Leng, Yuxin

    2018-06-01

    We present an intra-cavity spectral shaping method to suppress the spectral narrowing in a Ti:sapphire (Ti:Sa) regenerative amplifier. The spectral shaping is realized by manipulating the stored energies of two Ti:Sa crystals with orthogonal c-axes, changing the length of a quartz plate, and rotating a broadband achromatic half-wave plate. Using this method, in our proof-of-concept experiment, an 84-nm-(FWHM)-broadband amplified pulse with an energy gain larger than 106 is obtained, which supports a 17.8 fs Fourier-transform-limited pulse duration. The pulse is compressed to 18.9 fs.

  9. Fast pulse amplifier

    International Nuclear Information System (INIS)

    Lepetit, J.; Poussier, E.

    1984-01-01

    This amplifier comprises an inverter transformer, the primary circuit of which receives a pulse and the secondary circuit of which is connected to several amplifying elements in parallel. The inverter transformer is made of coaxial cable segments winded around a magnetic torus; the cable cores connected in series constitute the primary circuit and the braiding of cables, connected in parallel, are the secondary circuit. The transformer comprises, besides, delay lines in series with each braiding of the secondary circuit, these ones are such that pulses issued from each braiding arrive together to the secondary circuit connectors. This invention applies, noticeably in the case of a high voltage amplifier, to the control of deflection blocks of particles used in medicine or in particle accelerators [fr

  10. Unparticles: Scales and high energy probes

    International Nuclear Information System (INIS)

    Bander, Myron; Feng, Jonathan L.; Rajaraman, Arvind; Shirman, Yuri

    2007-01-01

    Unparticles from hidden conformal sectors provide qualitatively new possibilities for physics beyond the standard model. In the theoretical framework of minimal models, we clarify the relation between energy scales entering various phenomenological analyses. We show that these relations always counteract the effective field theory intuition that higher dimension operators are more highly suppressed, and that the requirement of a significant conformal window places strong constraints on possible unparticle signals. With these considerations in mind, we examine some of the most robust and sensitive probes and explore novel effects of unparticles on gauge coupling evolution and fermion production at high energy colliders. These constraints are presented both as bounds on four-fermion interaction scales and as constraints on the fundamental parameter space of minimal models

  11. A fluidic/pneumatic interface amplifier

    Science.gov (United States)

    Limbert, D. E.; Kegel, T. M.

    The development of a low cost, reliable, linear pressure amplifier to interface Laminar Proportional Amplifiers (LPA) to pneumatic controllers is presented. The amplifier consists of an LPA input stage and an output stage consisting of a venturi in series with a bellows nozzle valve. The LPA output drives the bellows nozzle valve thereby altering the flowrate through the venturi. The pressure within the venturi throat region, which is the amplifier output, changes with the flowrate. Non-linear characteristics, due to supersonic flow within the venturi, are altered through the use of feedback to the LPA input. A computer based model, to aid in optimizing the amplifier design, is developed. This model incorporates the effects of shock waves and boundary layers within the venturi. Good correspondence between the model and an experimental prototype is shown.

  12. Amplifier for nuclear spectrometry

    International Nuclear Information System (INIS)

    Suarez Canner, E.

    1996-01-01

    The spectroscopy amplifier model AE-020 is designed to adjust suitable the pulses coming from nuclear radiation detectors. Due to is capacity and specifications, the amplifier can be used together with high and medium resolution spectroscopy system

  13. Gain recovery dynamics and limitations in quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Bischoff, Svend; Magnúsdóttir, Ingibjörg

    2001-01-01

    gain recovery in a quantum dot amplifier, and it is thus not yet clear what the limiting processes for the device response are. We present the results of a comprehensive theoretical model, which agrees well with the experimental results, and indicates the importance of slow recovery of higher energy...... levels. The model used is of the rate-equation type with three energy levels: ground state (GS) and excited state (ES) dot levels and a wetting layer...

  14. Modeling FWM and impairments aware amplifiers placement technique for an optical MAN/WAN: Inline amplifiers case

    Science.gov (United States)

    Singh, Gurpreet; Singh, Maninder Lal

    2015-08-01

    A new four wave mixing (FWM) model for an optical network with amplifiers and a comparative analysis among three proposed amplifiers placement techniques have been presented in this paper. The FWM model is validated with the experimental measured data. The novelty of this model is its uniqueness that on direct substitutions of network parameters like length, it works even for unequal inter amplifier separations. The novelty of the analysis done among three schemes is that it presents fair choice of amplifiers placement methods for varied total system length. The appropriateness of these three schemes has been analyzed on the basis of critical system length, critical number of amplifiers and critical bit error rate (10-9) in presence of four wave mixing (FWM) and amplified spontaneous emission noise (ASE). The implementation of analysis done has been given with the help of an example of a regenerative metropolitan area network (MAN). The results suggest that the decreasing fiber section scheme should be avoided for placements of amplifiers and schemes IUFS and EFS shows their importance interchangeably for different set of parameters.

  15. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  16. NIF/LMJ prototype amplifier mechanical design

    International Nuclear Information System (INIS)

    Horvath, J.

    1996-10-01

    Amplifier prototypes for the National Ignition Facility and the Laser Megajoule will be tested at Lawrence Livermore National Laboratory. The prototype amplifier, which is an ensemble of modules from LLNL and Centre d'Etudes de Limeil-Valenton, is cassette-based with bottom access for maintenance. A sealed maintenance transfer vehicle which moves optical cassettes between the amplifier and the assembly cleanroom, and a vacuum gripper which holds laser slabs during cassette assembly will also be tested. The prototype amplifier will be used to verify amplifier optical performance, thermal recovery time, and cleanliness of mechanical operations

  17. Stored energy analysis in the scaled-down test facilities

    International Nuclear Information System (INIS)

    Deng, Chengcheng; Chang, Huajian; Qin, Benke; Wu, Qiao

    2016-01-01

    Highlights: • Three methods are developed to evaluate stored energy in the scaled-down test facilities. • The mechanism behind stored energy distortion in the test facilities is revealed. • The application of stored energy analysis is demonstrated for the ACME facility of China. - Abstract: In the scaled-down test facilities that simulate the accident transient process of the prototype nuclear power plant, the stored energy release in the metal structures has an important influence on the accuracy and effectiveness of the experimental data. Three methods of stored energy analysis are developed, and the mechanism behind stored energy distortion in the test facilities is revealed. Moreover, the application of stored energy analysis is demonstrated for the ACME test facility newly built in China. The results show that the similarity requirements of three methods analyzing the stored energy release decrease gradually. The physical mechanism of stored energy release process can be characterized by the dimensionless numbers including Stanton number, Fourier number and Biot number. Under the premise of satisfying the overall similarity of natural circulation, the stored energy release process in the scale-down test facilities cannot maintain exact similarity. The results of the application of stored energy analysis illustrate that both the transient release process and integral total stored energy of the reactor pressure vessel wall of CAP1400 power plant can be well reproduced in the ACME test facility.

  18. A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory

    Science.gov (United States)

    Guo, Jiarong

    2017-04-01

    A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).

  19. Amplifier channel for a fission fragment semiconductor detector

    International Nuclear Information System (INIS)

    Tyurin, G.P.

    1981-01-01

    To compensate the decrease of the transformation coefficient of fission fragment semiconductor detector (SCD) developed is a special amplification channel with controlled transfer coefficient. The block diagram of the channel is presented, the main functional units of which are as follows: preamplifying head with charge-sensitive and timing preamplifiers, linear amplifier and the circuit of spectrum position stabilization, which includes a differential discriminator, integrator and reference signal generator. The amplification channel is made in the CAMAC standard and has the following specifications: dinamical input capacitance of charge-sensitive amplifier c=10000 n PHI, signal amplitude at output of the linear amplifier at energy of fission fragments of 120 MeV has negative polarity and is equal to 5 V. Pulse amplitude change at SCD sensitivity decrease to 50% constitutes not more than 1%. Timing preamplifier has the gain factor at voltage of K=80 at front duration of 3.5 nc. Time resolution of the amplification channel is not worse than 1 nc. Dimensions of preamplifying head are 40x40x15 mm. The amplification channel permitted to use SCD for long-term measurements of fission fragment spectra [ru

  20. Energy partitioning constraints at kinetic scales in low-β turbulence

    Science.gov (United States)

    Gershman, Daniel J.; F.-Viñas, Adolfo; Dorelli, John C.; Goldstein, Melvyn L.; Shuster, Jason; Avanov, Levon A.; Boardsen, Scott A.; Stawarz, Julia E.; Schwartz, Steven J.; Schiff, Conrad; Lavraud, Benoit; Saito, Yoshifumi; Paterson, William R.; Giles, Barbara L.; Pollock, Craig J.; Strangeway, Robert J.; Russell, Christopher T.; Torbert, Roy B.; Moore, Thomas E.; Burch, James L.

    2018-02-01

    Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here, we present observations of plasma fluctuations in low-β turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance is highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.

  1. Scalings of energy confinement and density limit in stellarator/heliotron

    International Nuclear Information System (INIS)

    Sudo, S.; Takeiri, Y.; Zushi, H.; Sano, F.; Itoh, K.; Kondo, K.; Iiyoshi, A.

    1989-04-01

    Empirical scaling of energy confinement observed experimentally in stellarator/heliotron (Heliotron E, Wendelstein 7A, L2, Heliotron DR) under the condition that plasmas are heated by ECH and/or NbI is proposed. Empirical scaling of density limit obtainable under the optimum condition is proposed. These scalings are compared with those of tokamaks. The energy confinement scaling has similar power dependence as 'L mode scaling' of tokamaks. The density limit scaling seems also to indicate the upper limit of achievable density in many tokamaks. Combining the energy confinement time and the density limit scaling a transport-limited beta value is also deduced. Thus, from the viewpoint of designing a machine, there should be some compromise in determing magnetic field strength on plasma axis, average minor radius and major radius, because their dependence on confinement time and transport-limited beta value is contradicting. (J.P.N.)

  2. Scale transformations, the energy-momentum tensor, and the equation of state

    International Nuclear Information System (INIS)

    Carruthers, P.

    1989-01-01

    The Equation of State (EOS) relates diagonal elements of the energy-momentum tensor θ μν . The first moment of the energy-momentum tensor generates scale transformations. The virial theorem, a consequence of the behavior of the energy density under scale transformations, allows one to eliminate the kinetic energy in terms of the potential terms. The trace theorem for the energy-momentum tensor expresses ε-3p in terms of ensemble averages of scale-breaking operators, allowing a new approach to the EOS. 10 refs

  3. Optical architecture for a multi-megajoule ICF driver incorporating megajoule class KrF amplifiers

    International Nuclear Information System (INIS)

    McLeod, J.

    1989-01-01

    A gaseous amplifying medium should be scalable to any arbitrary size. A system architecture is reported which will produce 10 MJ with only four amplifiers in the last stage by making use of this scalability. The system described uses optical angular multiplexing for efficient utilization of such large KrF amplifiers. For such large amplifiers, each multiplex beamline carries 16 kJ toward the target chamber. This is because the pump duration need only be increased as the cube root of the output energy and is only 2050 ns. While the use of angular multiplexing does not increase the total count of beamlines, it does increase their length since space has to be provided for the temporal decoder; a possible site plan is shown. Optical beam tubes are filled with He to avoid propagation problems and to promote cleanliness. Single shot sacrificial windows are proposed for large amplifiers. Relatively large multiplexing angles reduce crosstalk to a manageable level

  4. Testing of inductive output tube based RF amplifier for 650 MHz SRF cavities

    International Nuclear Information System (INIS)

    Mandal, A.; Som, S.; Manna, S.K.; Ghosh, S.; Seth, S.; Thakur, S.K.; Saha, S.; Panda, U.S.

    2012-01-01

    A 650 MHz IOT based RF amplifier has been developed in VECC. It can be used to power several cavity modules in high energy high current proton linear accelerator to be built for ADSS programme in India and in Project-X at Fermilab, USA. The IOT based amplifier requires different powers supplies, water cooling and forced air cooling for its operation. A Programmable Logic Controller (PLC) based interlocks has been incorporated to take care of systematic on/off of the power supplies and driver amplifier, water flow, air flow and other interlocks for the safe operation of the RF System. In addition to that EPICS based RF operating console and data logging/monitoring system has been added. (author)

  5. Scaling of gain with energy spread and energy in the PEP FEL

    International Nuclear Information System (INIS)

    Fisher, A.S.

    1992-01-01

    The Sag Harbor paper on the PEP FEL discusses the scaling of various FEL parameters with energy spread σ var-epsilon . I will repeat some of this material here and then examine the benefit of increasing the energy spread. How much energy spread can be achieved with damping wigglers is the next topic. Finally, I consider the dependence of gain and saturation length on beam energy and undulator field

  6. European Research on THz Vacuum Amplifiers

    DEFF Research Database (Denmark)

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.

    2010-01-01

    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players...... of the European research, academy and industry in vacuum electronics. This paper describes the status of the project and progress towards the THz amplifier realization....

  7. Integrated amplifying circuit with MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Baylac, B; Merckel, G; Meunier, P

    1974-01-25

    The invention relates to a feedback-pass-band amplifier with MOS-transistors. The differential stage of conventional amplifiers is changed into an adding state, whereas the differential amplification stages are changed into amplifier inverter stages. All MOS transistors used in that amplifier are of similar configuration and are interdigitized, whereby the operating speed dispersion is reduced. This can be applied to obtaining a measurement channel for proportional chambers.

  8. Precocious scaling in antiproton-proton scattering at low energies

    International Nuclear Information System (INIS)

    Ion, D.B.; Petrascu, C.; Topor Pop, V.; Popa, V.

    1993-08-01

    The scaling of the diffraction peak in antiproton-proton scattering has been investigated from nera threshold up to 3 GeV/c laboratory momenta. It was shown that the scaling of the differential cross sections are evidentiated with a surprising accuracy not only at high energies, but also at very low ones (e.g. p LAB = 0.1 - 0.5 GeV/c), beyond the resonance and exotic resonance regions. This precocious scaling strongly suggests that the s-channel helicity conservation (SCHC) can be a peculiar property that should be tested in antiproton-proton interaction not only at high energies but also at low energy even below p LAB = 1 GeV/c. (author). 36 refs, 9 figs

  9. Optical oscillator-amplifier laser configuration

    International Nuclear Information System (INIS)

    McAllister, G.L.

    1975-01-01

    A laser is described that has incorporated therein an oscillator formed by a pair of mirrors, at least one of the mirrors being positioned outside of the envelope. The mirrors are dimensioned and spaced from each other so that the resonator has a relatively low Fresnel number and is operated unstably. The entire surface of one of these mirrors is convex and diffracts a portion of the energy outside of the oscillator region. Also incorporated into the laser is an amplifier region defined by a separate pair of mirrors which receive the energy diffracted from the oscillator region. The second pair of mirrors form an optical system with a high Fresnel number. A filter, modulator or other control for the laser signal may be placed outside the laser envelope in the optical path of the oscillator

  10. Economic Investigation of Community-Scale Versus Building Scale Net-Zero Energy

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas; Katipamula, Srinivas; Brambley, Michael R.; Reddy, T. A.

    2009-12-31

    The study presented in this report examines issues concerning whether achieving net-zero energy performance at the community scale provides economic and potentially overall efficiency advantages over strategies focused on individual buildings.

  11. How to interpret Methylation Sensitive Amplified Polymorphism (MSAP) profiles?

    OpenAIRE

    Fulneček, Jaroslav; Kovařík, Aleš

    2014-01-01

    Background DNA methylation plays a key role in development, contributes to genome stability, and may also respond to external factors supporting adaptation and evolution. To connect different types of stimuli with particular biological processes, identifying genome regions with altered 5-methylcytosine distribution at a genome-wide scale is important. Many researchers are using the simple, reliable, and relatively inexpensive Methylation Sensitive Amplified Polymorphism (MSAP) method that is ...

  12. Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy

    Directory of Open Access Journals (Sweden)

    Leandros Perivolaropoulos

    2014-01-01

    Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.

  13. Geometrical scaling in high energy hadron collisions

    International Nuclear Information System (INIS)

    Kundrat, V.; Lokajicek, M.V.

    1984-06-01

    The concept of geometrical scaling for high energy elastic hadron scattering is analyzed and its basic equations are solved in a consistent way. It is shown that they are applicable to a rather small interval of momentum transfers, e.g. maximally for |t| 2 for pp scattering at the ISR energies. (author)

  14. LED-pumped Alexandrite laser oscillator and amplifier

    Science.gov (United States)

    Pichon, Pierre; Blanchot, Jean-Philippe; Balembois, François; Druon, Frédéric; Georges, Patrick

    2018-02-01

    In this paper, we report the first LED-pumped transition-metal-doped laser oscillator and amplifier based on an alexandrite crystal (Cr3+:BeAl2O4). A Ce:YAG luminescent concentrator illuminated by blue LEDs is used to reach higher pump powers than with LEDs alone. The luminescent 200-mm-long-composit luminescent concentrator involving 2240 LEDs can delivers up to 268 mJ for a peak irradiance of 8.5 kW/cm2. In oscillator configuration, an LED-pumped alexandrite laser delivering an energy of 2.9 mJ at 748 nm in free running operation is demonstrated. In the cavity, we measured a double pass small signal gain of 1.28, in good agreement with numerical simulations. As amplifier, the system demonstrated to boost a CW Ti:sapphire laser by a factor of 4 at 750 nm in 8 passes with a large tuning range from 710 nm to 800 nm.

  15. Power Amplifiers in CMOS Technology: A contribution to power amplifier theory and techniques

    NARCIS (Netherlands)

    Acar, M.

    2011-01-01

    In order to meet the demands from the market on cheaper, miniaturized mobile communications devices realization of RF power amplifiers in the mainstream CMOS technology is essential. In general, CMOS Power Amplifiers (PAs) require high voltage to decrease the matching network losses and for high

  16. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    International Nuclear Information System (INIS)

    Sujingqin; Lanqin, L; Wenyi, W; Feng, J; Xiaofeng, W; Xiaomin, Z; Bin, L

    2008-01-01

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP

  17. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sujingqin; Lanqin, L; Wenyi, W; Feng, J; Xiaofeng, W; Xiaomin, Z [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-988, Mianyang, China, 621900 (China); Bin, L [School of Computer and Communication Engineering, Southwest Jiaotong University, Chengdu. China, 610031 (China)], E-mail: sujingqin@tom.com

    2008-05-15

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP.

  18. High efficiency RF amplifier development over wide dynamic range for accelerator application

    Science.gov (United States)

    Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber

    2017-10-01

    Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.

  19. Energy partition, scale by scale, in magnetic Archimedes Coriolis weak wave turbulence.

    Science.gov (United States)

    Salhi, A; Baklouti, F S; Godeferd, F; Lehner, T; Cambon, C

    2017-02-01

    Magnetic Archimedes Coriolis (MAC) waves are omnipresent in several geophysical and astrophysical flows such as the solar tachocline. In the present study, we use linear spectral theory (LST) and investigate the energy partition, scale by scale, in MAC weak wave turbulence for a Boussinesq fluid. At the scale k^{-1}, the maximal frequencies of magnetic (Alfvén) waves, gravity (Archimedes) waves, and inertial (Coriolis) waves are, respectively, V_{A}k,N, and f. By using the induction potential scalar, which is a Lagrangian invariant for a diffusionless Boussinesq fluid [Salhi et al., Phys. Rev. E 85, 026301 (2012)PLEEE81539-375510.1103/PhysRevE.85.026301], we derive a dispersion relation for the three-dimensional MAC waves, generalizing previous ones including that of f-plane MHD "shallow water" waves [Schecter et al., Astrophys. J. 551, L185 (2001)AJLEEY0004-637X10.1086/320027]. A solution for the Fourier amplitude of perturbation fields (velocity, magnetic field, and density) is derived analytically considering a diffusive fluid for which both the magnetic and thermal Prandtl numbers are one. The radial spectrum of kinetic, S_{κ}(k,t), magnetic, S_{m}(k,t), and potential, S_{p}(k,t), energies is determined considering initial isotropic conditions. For magnetic Coriolis (MC) weak wave turbulence, it is shown that, at large scales such that V_{A}k/f≪1, the Alfvén ratio S_{κ}(k,t)/S_{m}(k,t) behaves like k^{-2} if the rotation axis is aligned with the magnetic field, in agreement with previous direct numerical simulations [Favier et al., Geophys. Astrophys. Fluid Dyn. (2012)] and like k^{-1} if the rotation axis is perpendicular to the magnetic field. At small scales, such that V_{A}k/f≫1, there is an equipartition of energy between magnetic and kinetic components. For magnetic Archimedes weak wave turbulence, it is demonstrated that, at large scales, such that (V_{A}k/N≪1), there is an equipartition of energy between magnetic and potential components

  20. A third-order class-D amplifier with and without ripple compensation

    Science.gov (United States)

    Cox, Stephen M.; du Toit Mouton, H.

    2018-06-01

    We analyse the nonlinear behaviour of a third-order class-D amplifier, and demonstrate the remarkable effectiveness of the recently introduced ripple compensation (RC) technique in reducing the audio distortion of the device. The amplifier converts an input audio signal to a high-frequency train of rectangular pulses, whose widths are modulated according to the input signal (pulse-width modulation) and employs negative feedback. After determining the steady-state operating point for constant input and calculating its stability, we derive a small-signal model (SSM), which yields in closed form the transfer function relating (infinitesimal) input and output disturbances. This SSM shows how the RC technique is able to linearise the small-signal response of the device. We extend this SSM through a fully nonlinear perturbation calculation of the dynamics of the amplifier, based on the disparity in time scales between the pulse train and the audio signal. We obtain the nonlinear response of the amplifier to a general audio signal, avoiding the linearisation inherent in the SSM; we thereby more precisely quantify the reduction in distortion achieved through RC. Finally, simulations corroborate our theoretical predictions and illustrate the dramatic deterioration in performance that occurs when the amplifier is operated in an unstable regime. The perturbation calculation is rather general, and may be adapted to quantify the way in which other nonlinear negative-feedback pulse-modulated devices track a time-varying input signal that slowly modulates the system parameters.

  1. Enhanced performance CCD output amplifier

    Science.gov (United States)

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  2. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    Science.gov (United States)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  3. Repeated Evolution of Power-Amplified Predatory Strikes in Trap-Jaw Spiders.

    Science.gov (United States)

    Wood, Hannah M; Parkinson, Dilworth Y; Griswold, Charles E; Gillespie, Rosemary G; Elias, Damian O

    2016-04-25

    Small animals possess intriguing morphological and behavioral traits that allow them to capture prey, including innovative structural mechanisms that produce ballistic movements by amplifying power [1-6]. Power amplification occurs when an organism produces a relatively high power output by releasing slowly stored energy almost instantaneously, resulting in movements that surpass the maximal power output of muscles [7]. For example, trap-jaw, power-amplified mechanisms have been described for several ant genera [5, 8], which have evolved some of the fastest known movements in the animal kingdom [6]. However, power-amplified predatory strikes were not previously known in one of the largest animal classes, the arachnids. Mecysmaucheniidae spiders, which occur only in New Zealand and southern South America, are tiny, cryptic, ground-dwelling spiders that rely on hunting rather than web-building to capture prey [9]. Analysis of high-speed video revealed that power-amplified mechanisms occur in some mecysmaucheniid species, with the fastest species being two orders of magnitude faster than the slowest species. Molecular phylogenetic analysis revealed that power-amplified cheliceral strikes have evolved four times independently within the family. Furthermore, we identified morphological innovations that directly relate to cheliceral function: a highly modified carapace in which the cheliceral muscles are oriented horizontally; modification of a cheliceral sclerite to have muscle attachments; and, in the power-amplified species, a thicker clypeus and clypeal apodemes. These structural innovations may have set the stage for the parallel evolution of ballistic predatory strikes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Transmission characteristics of acoustic amplifier in thermoacoustic engine

    International Nuclear Information System (INIS)

    Sun Daming; Qiu Limin; Wang Bo; Xiao Yong

    2008-01-01

    Thermoacoustic engines are promising in practical applications for the merits of simple configuration, reliable operation and environmentally friendly working gas. An acoustic amplifier can increase the output pressure amplitude of a thermoacoustic engine (TE) and improve the matching between the engine and its load. In order to make full use of an acoustic amplifier, the transmission characteristics are studied based on linear thermoacoustic theory. Computational and experimental results show that the amplifying ability of an acoustic amplifier is mainly determined by its geometry parameters and output resistance impedance. The amplifying ability of an acoustic amplifier with appropriate length and diameter reaches its maximum when the output resistance impedance is infinite. It is also shown that the acoustic amplifier consumes an amount of acoustic power when amplifying pressure amplitude and the acoustic power consumption increases with amplifying ratio. Furthermore, a novel cascade acoustic amplifier is proposed, which has a much stronger amplifying ability with reduced acoustic power consumption. In experiments, a two-stage cascade acoustic amplifier amplifies the pressure ratio from 1.177 to 1.62 and produces a pressure amplitude of 0.547 MPa with nitrogen of 2.20 MPa as working gas. Good agreements are obtained between the theoretical analysis and experimental results. This research is instructive for comprehensively understanding the mechanism and making full use of the acoustic amplifier

  5. The Design of Operational Amplifier for Low Voltage and Low Current Sound Energy Harvesting System

    Science.gov (United States)

    Fang, Liew Hui; Rahim, Rosemizi Bin Abd; Isa, Muzamir; Idris Syed Hassan, Syed; Ismail, Baharuddin Bin

    2018-03-01

    The objective of this paper is to design a combination of an operational amplifier (op-amp) with a rectifier used in an alternate current (ac) to direct current (dc) power conversion. The op-amp was designed to specifically work at low voltage and low current for a sound energy harvesting system. The goal of the op-amp design with adjustable gain was to control output voltage based on the objectives of the experiment conducted. The op-amp was designed for minimum power dissipation performance, with the means of increasing the output current when receiving a large amount of load. The harvesting circuits which designed further improved the power output efficiency by shortening the fully charged time needed by a supercapacitor bank. It can fulfil the long-time power demands for low power device. Typically, a small amount of energy sources were converted to electricity and stored in the supercapacitor bank, which was built by 10 pieces of capacitors with 0.22 F each, arranged in parallel connection. The highest capacitance was chosen based on the characteristic that have the longest discharging time to support the applications of a supercapacitor bank. Testing results show that the op-amp can boost the low input ac voltage (∼3.89 V) to high output dc voltage (5.0 V) with output current of 30 mA and stored the electrical energy in a big supercapacitor bank having a total of 2.2 F, effectively. The measured results agree well with the calculated results.

  6. On the cooperativity of association and reference energy scales in thermodynamic perturbation theory

    Science.gov (United States)

    Marshall, Bennett D.

    2016-11-01

    Equations of state for hydrogen bonding fluids are typically described by two energy scales. A short range highly directional hydrogen bonding energy scale as well as a reference energy scale which accounts for dispersion and orientationally averaged multi-pole attractions. These energy scales are always treated independently. In recent years, extensive first principles quantum mechanics calculations on small water clusters have shown that both hydrogen bond and reference energy scales depend on the number of incident hydrogen bonds of the water molecule. In this work, we propose a new methodology to couple the reference energy scale to the degree of hydrogen bonding in the fluid. We demonstrate the utility of the new approach by showing that it gives improved predictions of water-hydrocarbon mutual solubilities.

  7. Relevant energy scale of color confinement from lattice QCD

    International Nuclear Information System (INIS)

    Yamamoto, Arata; Suganuma, Hideo

    2009-01-01

    We propose a new lattice framework to extract the relevant gluonic energy scale of QCD phenomena which is based on a 'cut' on link variables in momentum space. This framework is expected to be broadly applicable to all lattice QCD calculations. Using this framework, we quantitatively determine the relevant energy scale of color confinement, through the analyses of the quark-antiquark potential and meson masses. The relevant energy scale of color confinement is found to be below 1.5 GeV in the Landau gauge. In fact, the string tension is almost unchanged even after cutting off the high-momentum gluon component above 1.5 GeV. When the relevant low-energy region is cut, the quark-antiquark potential is approximately reduced to a Coulomb-like potential, and each meson becomes a quasifree quark pair. As an analytical model calculation, we also investigate the dependence of the Richardson potential on the cut, and find the consistent behavior with the lattice result.

  8. Ultralow-Energy Wireless Smart-Scales System with Micropower Generator

    Science.gov (United States)

    Kitamura, Kazuma; Yano, Hironori; Mochizuki, Misako; Takano, Tomoaki; Yamauchi, Hironori; Douseki, Takakuni

    A wireless smart-scales system with a face recognition function has been developed as an application for wireless sensor networks. The face recognition employs a wireless camera; and the system automatically identifies a person and stores the weights of all the people that use the system on a server. Two key ultralow-energy circuit techniques were devised for the smart scales. One is a nearly-zero-standby-current circuit that combines a mechanical switch and an electrical CPU-controlled power switch; it reduces the standby power dissipation of the CPU from 1.5 mW to less than 0.1 μW. The other is a super-intermittently-operating circuit with a power-switch transistor and a small resistance; it suppresses the energy dissipation of the wireless camera to just 1/4 of the total energy dissipation. Furthermore, an electromechanical micropower generator with electromagnetic induction further reduces the energy dissipation. It is located under the scales and supplies a power of 75 mW during one second.

  9. Revisiting the density scaling of the non-interacting kinetic energy.

    Science.gov (United States)

    Borgoo, Alex; Teale, Andrew M; Tozer, David J

    2014-07-28

    Scaling relations play an important role in the understanding and development of approximate functionals in density functional theory. Recently, a number of these relationships have been redefined in terms of the Kohn-Sham orbitals [Calderín, Phys. Rev. A: At., Mol., Opt. Phys., 2013, 86, 032510]. For density scaling the author proposed a procedure involving a multiplicative scaling of the Kohn-Sham orbitals whilst keeping their occupation numbers fixed. In the present work, the differences between this scaling with fixed occupation numbers and that of previous studies, where the particle number change implied by the scaling was accommodated through the use of the grand canonical ensemble, are examined. We introduce the terms orbital and ensemble density scaling for these approaches, respectively. The natural ambiguity of the density scaling of the non-interacting kinetic energy functional is examined and the ancillary definitions implicit in each approach are highlighted and compared. As a consequence of these differences, Calderín recovered a homogeneity of degree 1 for the non-interacting kinetic energy functional under orbital scaling, contrasting recent work by the present authors [J. Chem. Phys., 2012, 136, 034101] where the functional was found to be inhomogeneous under ensemble density scaling. Furthermore, we show that the orbital scaling result follows directly from the linearity and the single-particle nature of the kinetic energy operator. The inhomogeneity of the non-interacting kinetic energy functional under ensemble density scaling can be quantified by defining an effective homogeneity. This quantity is shown to recover the homogeneity values for important approximate forms that are exact for limiting cases such as the uniform electron gas and one-electron systems. We argue that the ensemble density scaling provides more insight into the development of new functional forms.

  10. Free electron laser amplifier driven by an induction linac

    International Nuclear Information System (INIS)

    Neil, V.K.

    1986-01-01

    This paper discusses the use of a free-electron laser amplifier as a means of converting the kinetic energy of an electron beam into coherent radiation. In particular, the use of an induction linear accelerator is discussed. The motion of the elections in the tapered and untapered wiggler magnets is discussed as well as the beam emittance, and the radiation fields involved

  11. Ultrashort-pulse laser machining system employing a parametric amplifier

    Science.gov (United States)

    Perry, Michael D.

    2004-04-27

    A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.

  12. A pulse amplifier for nuclear instrumentation

    International Nuclear Information System (INIS)

    Martin, D.; Cliff, P.

    1987-01-01

    A Class-A 1 Watt amplifier has been designed and optimized for nanosecond pulses. Spanning .01MHz to 1300Mhz, signal gain is 26dB with gain flatness of 1dB. The amplifier drive +- 10 volts across 500 with 350ps risetime. Each amplifier is housed in a 2-wide NIM

  13. Spatial Power Combining Amplifier for Ground and Flight Applications

    Science.gov (United States)

    Velazco, J. E.; Taylor, M.

    2016-11-01

    Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross

  14. MVA amplifier used for plasma position control in the WEGA tokamak

    International Nuclear Information System (INIS)

    Schenk, G.

    1982-02-01

    A new amplifier has been developed for the control of the plasma positron in the WEGA III tokomak acting on the vertical magnetic field. In the high power domain thyristor choppers are usually applied. Unfortunately their response time is quite long and does not yet correspond to the WEGA demand. Therefore transistors have been used to build a fast switching amplifier of the H-bridge type, delivering a power of 1 MVA, by switching 2500 A at 400 V. Because of the duty cycle of the plasma (0,12 s every 240 s) the necessary average power to the amplifier supply is only 500 VA. An intermediate energy storage in an electrolytic capacitor bank is therefore used. As the switching transistors must operate under extreme conditions of voltage and current, precautions must be taken to limit the overvoltage and the overcurrent, to prevent oscillations and to assure power and control equilibrium among the transistors

  15. Precoding Design of MIMO Amplify-and-Forward Communication System With an Energy Harvesting Relay and Possibly Imperfect CSI

    KAUST Repository

    Benkhelifa, Fatma

    2017-03-02

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) in a Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication system where the relay is an energy harvesting (EH) node and harvests the energy the signals transmitted from the source. The harvested energy is partially used to forward signals from the source to the destination, and the remaining energy is stored for other usages. The SWIPT in relay-assisted communication is interesting as long as the relay stores energy from the source and the destination receives successfully the data from the source. In this context, we propose to investigate the source and relay precoders that characterize the relationship between the achievable stored energy at the relay and the achievable sourceto- destination rate, namely the rate-stored energy (R-E) tradeo region. First, we consider the ideal scheme where there is the simultaneous operation of the EH and ID receivers at the relay. Then, we consider practical schemes such as the power splitting (PS) and the time switching (TS) that separate the operation of EH and information decoding (ID) receivers over power domain or time domain, respectively. Moreover, we study the case of imperfect channel state information (CSI) at the relay and the destination and characterize its impact on the achievable R-E region. Through the simulation results, we show the eect of the position of the relay and the channel uncertainty on the achievable R-E regions of all the schemes when the used energy at the relay is constant or variable. We also show that, although it provides an outer bound on the achievable rate-energy region in one-hop MIMO systems, the ideal scheme provides only an upper bound on the maximum achievable end-to-end rate and not an outer bound on the R-E region.

  16. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2003-01-01

    In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. The amplifier is constructed in a fully differential topology to maximize noise rejection. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved....... A continuous-time current-steering offset-compensation technique is utilized in order to minimize the noise contribution and to minimize dynamic impact on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0...

  17. A review on technology maturity of small scale energy storage technologies★

    Directory of Open Access Journals (Sweden)

    Nguyen Thu-Trang

    2017-01-01

    Full Text Available This paper reviews the current status of energy storage technologies which have the higher potential to be applied in small scale energy systems. Small scale energy systems can be categorized as ones that are able to supply energy in various forms for a building, or a small area, or a limited community, or an enterprise; typically, they are end-user systems. Energy storage technologies are classified based on their form of energy stored. A two-step evaluation is proposed for selecting suitable storage technologies for small scale energy systems, including identifying possible technical options, and addressing techno-economic aspects. Firstly, a review on energy storage technologies at small scale level is carried out. Secondly, an assessment of technology readiness level (TRL is conducted. The TRLs are ranked according to information gathered from literature review. Levels of market maturity of the technologies are addressed by taking into account their market development stages through reviewing published materials. The TRLs and the levels of market maturity are then combined into a technology maturity curve. Additionally, market driving factors are identified by using different stages in product life cycle. The results indicate that lead-acid, micro pumped hydro storage, NaS battery, NiCd battery, flywheel, NaNiCl battery, Li-ion battery, and sensible thermal storage are the most mature technologies for small scale energy systems. In the near future, hydrogen fuel cells, thermal storages using phase change materials and thermochemical materials are expected to become more popular in the energy storage market.

  18. Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier

    Science.gov (United States)

    O'Brien, Kevin

    Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.

  19. Fast logarithmic amplifier

    International Nuclear Information System (INIS)

    Tai, I.; Hasegawa, K.

    1975-01-01

    This paper reports on the improvement of frequency characteristics of a logarithmic amplifier with a Paterson transdiode connection. The improvement of the response speed has been achieved by using a phase compensation technique. Small signal response analyses of the logging circuit revealed the effects of a series resistor Rsub(p) and a parallel capacitance Csub(p) on the response of the circuit. The improvement of the frequency characteristics are remarkable at higher current levels. These facts were proved by the practical logarithmic amplifier. (auth.)

  20. Determination of the jet energy scale at the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, A.; Hatakeyama, K. [Rockefeller Univ., New York, NY 10021 (United States); Canelli, F. [Univ. of California at Los Angeles, Los Angeles, CA 90024 (United States)]. E-mail: canelli@fnal.gov; Heinemann, B. [Univ. of Liverpool, Liverpool L69 7ZE (United Kingdom); Adelman, J.; Hoffman, D.; Kwang, S.; Malkus, A.; Shochet, M. [Enrico Fermi Inst., Univ. of Chicago, Chicago, IL 60637 (United States); Ambrose, D. [Univ. of Pennsylvania, Philadelphia, PA 19104 (United States); Arguin, J.-F. [Univ. of Toronto, Toronto, Canada M5S 1A7 (Canada); Barbaro-Galtieri, A.; Currat, C.; Gibson, A.; Movilla-Fernandez, P.A. [Ernest Orlando Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); Budd, H.; Chung, Y.S.; Sakumoto, W.; Yun, G. [Univ. of Rochester, Rochester, NY 14627 (United States); Chung, K. [Carnegie Mellon Univ., Pittsburgh, PA 15213 (United States); Cooper, B. [Univ. College London, London WC1E 6BT (United Kingdom); D' Onofrio, M. [Univ. of Geneva, CH-1211 Geneva 4 (Switzerland); Dorigo, T. [Univ. of Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova (Italy); Erbacher, R. [Fermi National Accelerator Lab., Batavia, IL 60510 (United States); Field, R. [Univ. of Florida, Gainesville, FL 32611 (United States); Flanagan, G. [Michigan State Univ., East Lansing, MI 48824 (United States); Happacher, F. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati (Italy); Introzzi, G. [Univ. of Pavia, Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, I-27100 Pavia (Italy); Kuhlmann, S.; Nodulman, L.; Proudfoot, J. [Argonne National Lab., Argonne, IL 60439 (United States); Jun, S.; Paulini, M.; Tiwari, V. [Carnegie Mellon Univ., Pittsburgh, PA 15213 (United States); Latino, G. [Istituto Nazionale di Fisica Nucleare Pisa, Univ. of Pisa, Siena and Scuola Normale Superiore of Pisa, I-56127 Pisa (Italy)] [and others

    2006-10-15

    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron pp-bar collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50GeV the jet energy scale is determined with a 3% systematic uncertainty.

  1. Flashlamp excited fluid laser amplified

    International Nuclear Information System (INIS)

    1976-01-01

    The patent describes a laser amplifier with chambers for containing and amplifying an intensifier medium. It serves the need for a large impulse repetition rate and high intensities as required e.g. for laser isotope separation

  2. Design considerations for RF power amplifiers demonstrated through a GSM/EDGE power amplifier module

    NARCIS (Netherlands)

    Baltus, P.G.M.; Bezooijen, van A.; Huijsing, J.H.; Steyaert, M.; Roermund, van A.H.M.

    2002-01-01

    This paper describes the design considerations for RF power amplifiers in general, including trends in systems, linearity and efficiency, the PA environment, implementation is sues and technology. As an example a triple-band (900/1800/1900MHz) dual mode (GSMIEdge) power amplifier module is described

  3. Sensitivity to Nuclear Data and Neutron Source Type in Calculations of Transmutation Capabilities of the Energy Amplifier Demonstration Facility

    International Nuclear Information System (INIS)

    Dahlfors, Marcus

    2003-05-01

    This text is a summary of two studies the author has performed within the field of 3-D Monte Carlo calculations of Accelerator Driven Systems (ADS) for transmutation of nuclear waste. The simulations were carried out with the state-of-the-art computer code package EA-MC, developed by C. Rubbia and his group at CERN. The concept studied is ANSALDOs 80 MWth Energy Amplifier Demonstration Facility based on classical MOX-fuel technology and on molten Lead-Bismuth Eutectic cooling. A review of neutron cross section sensitivity in numerical calculations of an ADS and a comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ADS are presented

  4. Sensitivity to Nuclear Data and Neutron Source Type in Calculations of Transmutation Capabilities of the Energy Amplifier Demonstration Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dahlfors, Marcus

    2003-05-01

    This text is a summary of two studies the author has performed within the field of 3-D Monte Carlo calculations of Accelerator Driven Systems (ADS) for transmutation of nuclear waste. The simulations were carried out with the state-of-the-art computer code package EA-MC, developed by C. Rubbia and his group at CERN. The concept studied is ANSALDOs 80 MWth Energy Amplifier Demonstration Facility based on classical MOX-fuel technology and on molten Lead-Bismuth Eutectic cooling. A review of neutron cross section sensitivity in numerical calculations of an ADS and a comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ADS are presented.

  5. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    Science.gov (United States)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  6. Geometric scaling in ultrahigh energy neutrinos and nonlinear perturbative QCD

    International Nuclear Information System (INIS)

    Machado, Magno V.T.

    2011-01-01

    The ultrahigh energy neutrino cross section is a crucial ingredient in the calculation of the event rate in high energy neutrino telescopes. Currently there are several approaches which predict different behaviors for its magnitude for ultrahigh energies. In this contribution is presented a summary of current predictions based on the non-linear QCD evolution equations, the so-called perturbative saturation physics. In particular, predictions are shown based on the parton saturation approaches and the consequences of geometric scaling property at high energies are discussed. The scaling property allows an analytical computation of the neutrino scattering on nucleon/nucleus at high energies, providing a theoretical parameterization. (author)

  7. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  8. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Koptev, M Yu; Anashkina, E A; Lipatov, D S; Andrianov, A V; Muravyev, S V; Kim, A V [Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (Russian Federation); Bobkov, K K; Likhachev, M E; Levchenko, A E; Aleshkina, S S; Semjonov, S L; Denisov, A N; Bubnov, M M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Laptev, A Yu; Gur' yanov, A N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2015-05-31

    We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm range and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)

  9. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    Science.gov (United States)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  10. Amplification of UV ultrashort pulse laser in e-beam pumped KrF amplifier

    CERN Document Server

    Tang Xiu Zhang; Gong Kun; Ma Wei Yi; Shan Yu Sheng; Wang Nai Yan

    2002-01-01

    Experimental investigations were performed for amplification of ultrashort pulse laser with Heaven-I e-beam pumped KrF amplifier in CIAE. A 50 mJ, 420 fs UV ultrashort pulse was amplified to 2-3 J energy, 1.2 ps pulse duration, and 2TW laser power. Experimental technique such as synchronization were describe, some parameters such as nonlinear absorb coefficient were measured in experiment. As a result, it is possible to achieve ultra-strong UV laser with intensity higher than 10 sup 1 sup 9 W/cm sup 2 in recently years

  11. Amplification of UV ultrashort pulse laser in e-beam pumped KrF amplifier

    International Nuclear Information System (INIS)

    Tang Xiuzhang; Zhang Haifeng; Gong Kun; Ma Weiyi; Shan Yusheng; Wang Naiyan

    2002-01-01

    Experimental investigations were performed for amplification of ultrashort pulse laser with Heaven-I e-beam pumped KrF amplifier in CIAE. A 50 mJ, 420 fs UV ultrashort pulse was amplified to 2-3 J energy, 1.2 ps pulse duration, and 2TW laser power. Experimental technique such as synchronization were describe, some parameters such as nonlinear absorb coefficient were measured in experiment. As a result, it is possible to achieve ultra-strong UV laser with intensity higher than 10 19 W/cm 2 in recently years

  12. Small signal microwave amplifier design

    CERN Document Server

    Grosch, Theodore

    2000-01-01

    This book explains techniques and examples for designing stable amplifiers for high-frequency applications in which the signal is small and the amplifier circuit is linear. An in-depth discussion of linear network theory provides the foundation needed to develop actual designs. Examples throughout the book will show you how to apply the knowledge gained in each chapter leading to the complex design of low noise amplifiers. Many exercises at the end of each chapter will help students to practice their skills. The solutions to these design problems are available in an accompanying solutions book

  13. Pelamis wave energy converter. Verification of full-scale control using a 7th scale model

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The Pelamis Wave Energy Converter is a new concept for converting wave energy for several applications including generation of electric power. The machine is flexibly moored and swings to meet the water waves head-on. The system is semi-submerged and consists of cylindrical sections linked by hinges. The mechanical operation is described in outline. A one-seventh scale model was built and tested and the outcome was sufficiently successful to warrant the building of a full-scale prototype. In addition, a one-twentieth scale model was built and has contributed much to the research programme. The work is supported financially by the DTI.

  14. Combining high-scale inflation with low-energy SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Basel Univ. (Switzerland). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Dutta, Koushik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Halter, Sebastian [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut

    2011-12-15

    We propose a general scenario for moduli stabilization where low-energy supersymmetry can be accommodated with a high scale of inflation. The key ingredient is that the stabilization of the modulus field during and after inflation is not associated with a single, common scale, but relies on two different mechanisms. We illustrate this general scenario in a simple example, where during inflation the modulus is stabilized with a large mass by a Kaehler potential coupling to the field which provides the inflationary vacuum energy via its F-term. After inflation, the modulus is stabilized, for instance, by a KKLT superpotential. (orig.)

  15. AMPLIFIED FRAGMENT LENGTH POLYMORPHISM ANALYSIS OF MYCOBACTERIUM AVIUM COMPLEX ISOLATES RECOVERED FROM SOUTHERN CALIFORNIA

    Science.gov (United States)

    Fine-scale genotyping methods are necessary in order to identify possible sources of human exposure to opportunistic pathogens belonging to the Mycobacterium avium complex (MAC). In this study, amplified fragment length polymorphism (AFLP) analysis was evaluated for fingerprintin...

  16. Grid scale energy storage in salt caverns

    Energy Technology Data Exchange (ETDEWEB)

    Crotogino, Fritz; Donadei, Sabine [KBB Underground Technologies GmbH, Hannover (Germany)

    2009-07-01

    Fossil energy sources require some 20% of the annual consumption to be stored to secure emergency cover, peak shaving, seasonal balancing, etc. Today the electric power industry benefits from the extreme high energy density of fossil fuels. This is one important reason why the German utilities are able to provide highly reliable grid operation at a electric power storage capacity at their pumped hydro power stations of less then 1 hour (40 GWh) related to the total load in the grid - i.e. only 0,06% related to natural gas. Along with the changeover to renewable wind based electricity production this ''outsourcing'' of storage services to fossil fuels will decline. One important way out will be grid scale energy storage. The present discussion for balancing short term wind and solar power fluctuations focuses primarily on the installation of Compressed Air Energy Storages (CAES) in addition to existing pumped hydro plants. Because of their small energy density, these storage options are, however, generally not suitable for balancing for longer term fluctuations in case of larger amounts of excess wind power or even seasonal fluctuations. Underground hydrogen storages, however, provide a much higher energy density because of chemical energy bond - standard practice since many years. The first part of the article describes the present status and performance of grid scale energy storages in geological formations, mainly salt caverns. It is followed by a compilation of generally suitable locations in Europe and particularly Germany. The second part deals with first results of preliminary investigations in possibilities and limits of offshore CAES power stations. (orig.)

  17. Energy scale of the Big Bounce

    International Nuclear Information System (INIS)

    Malkiewicz, Przemyslaw; Piechocki, Wlodzimierz

    2009-01-01

    We examine the nature of the cosmological Big Bounce transition within the loop geometry underlying loop quantum cosmology at classical and quantum levels. Our canonical quantization method is an alternative to the standard loop quantum cosmology. An evolution parameter we use has a clear interpretation. Our method opens the door for analyses of spectra of physical observables like the energy density and the volume operator. We find that one cannot determine the energy scale specific to the Big Bounce by making use of the loop geometry without an extra input from observational cosmology.

  18. Modeling of Mid-IR Amplifier Based on an Erbium-Doped Chalcogenide Microsphere

    Directory of Open Access Journals (Sweden)

    P. Bia

    2012-01-01

    Full Text Available An optical amplifier based on a tapered fiber and an Er3+-doped chalcogenide microsphere is designed and optimized. A dedicated 3D numerical model, which exploits the coupled mode theory and the rate equations, is used. The main transitions among the erbium energy levels, the amplified spontaneous emission, and the most important secondary transitions pertaining to the ion-ion interactions have been considered. Both the pump and signal beams are efficiently injected and obtained by a suitable design of the taper angle and the fiber-microsphere gap. Moreover, a good overlapping between the optical signals and the rare-earth-doped region is also obtained. In order to evaluate the amplifier performance in reduced computational time, the doped area is partitioned in sectors. The obtained simulation results highlight that a high-efficiency midinfrared amplification can be obtained by using a quite small microsphere.

  19. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  20. Scaling of surface energy fluxes using remotely sensed data

    Science.gov (United States)

    French, Andrew Nichols

    Accurate estimates of evapotranspiration (ET) across multiple terrains would greatly ease challenges faced by hydrologists, climate modelers, and agronomists as they attempt to apply theoretical models to real-world situations. One ET estimation approach uses an energy balance model to interpret a combination of meteorological observations taken at the surface and data captured by remote sensors. However, results of this approach have not been accurate because of poor understanding of the relationship between surface energy flux and land cover heterogeneity, combined with limits in available resolution of remote sensors. The purpose of this study was to determine how land cover and image resolution affect ET estimates. Using remotely sensed data collected over El Reno, Oklahoma, during four days in June and July 1997, scale effects on the estimation of spatially distributed ET were investigated. Instantaneous estimates of latent and sensible heat flux were calculated using a two-source surface energy balance model driven by thermal infrared, visible-near infrared, and meteorological data. The heat flux estimates were verified by comparison to independent eddy-covariance observations. Outcomes of observations taken at coarser resolutions were simulated by aggregating remote sensor data and estimated surface energy balance components from the finest sensor resolution (12 meter) to hypothetical resolutions as coarse as one kilometer. Estimated surface energy flux components were found to be significantly dependent on observation scale. For example, average evaporative fraction varied from 0.79, using 12-m resolution data, to 0.93, using 1-km resolution data. Resolution effects upon flux estimates were related to a measure of landscape heterogeneity known as operational scale, reflecting the size of dominant landscape features. Energy flux estimates based on data at resolutions less than 100 m and much greater than 400 m showed a scale-dependent bias. But estimates

  1. Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Wu,Q.

    2008-10-01

    experiments were carried out to determine the transport of the electrons within the diamond and their emission at the surface. In transmission mode measurements, the diamond amplifier was coated with metal on both sides, so results simply depend only on the electron transport within the diamond. The SEY for this mode provides one secondary electron per 20eV energy, which gives the gain of more than 200 for 4.7keV (effective energy) primary electrons under 2MV/m. Laser detrapping can help the signal maintain the gain with lops pulse and duty cycle of 1.67 x 10{sup -7}. In emission mode measurements, in which the diamond is prepared as in the actual application, the SEY is {approx}20 for 700eV (effective energy) primary electrons under 1.21MV/m. The electric field applied and the primary electron energy is limited by the experiment setup, but the results show good trend toward large gain under high field. Thermal emittance of the diamond secondary emission is critical for the beam application. A careful design is setup to measure with very fine precision and accuracy of 0.01eV.

  2. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  3. Amplified spontaneous emissions in a high-gain laser amplifier

    International Nuclear Information System (INIS)

    Osada, Hidenori; Gamo, Hideya.

    1978-01-01

    The gain and line-narrowing of the amplified spontaneous emissions(ASE) in a partially homogeneous high-gain Xe 3.51 μm laser amplifier were studied theoretically and experimentally with emphasis of saturation effect. The unidirectionally travelling ASE was generated by conveniently using optical isolators and used as a broadband radiation source. It has properties of 10 μW/mm 2 in intensity with fluctuation of less than 1% in 5 hours, 43.5 MHz of the linewidth and 1.0 x 10 -3 radians of beam divergence. The measured saturation intensity was 4.85 μW/mm 2 and a small signal gain was 0.1 cm -1 . The theoretical prediction of the line-narrowing shows reasonablly good agreement with the measured one. (author)

  4. Detection of Non-Amplified Genomic DNA

    CERN Document Server

    Corradini, Roberto

    2012-01-01

    This book offers a state-of-the-art overview on non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. The importance of non-amplified DNA sequencing technologies will be also discussed. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specifi...

  5. Is there a role for amplifiers in sexual selection?

    Science.gov (United States)

    Gualla, Filippo; Cermelli, Paolo; Castellano, Sergio

    2008-05-21

    The amplifier hypothesis states that selection could favour the evolution of traits in signallers that improve the ability of receivers to extract honest information from other signals or cues. We provide a formal definition of amplifiers based on the receiver's mechanisms of signal perception and we present a game-theoretical model in which males advertise their quality and females use sequential-sampling tactics to choose among prospective mates. The main effect of an amplifier on the female mating strategy is to increase her mating threshold, making the female more selective as the effectiveness of the amplifier increases. The effects of the amplifier on male advertising strategy depends both on the context and on the types of the amplifier involved. We consider two different contexts for the evolution of amplifiers (when the effect of amplifiers is on signals and when it is on cues) and two types of amplifiers (the 'neutral amplifier', when it improves quality assessment without altering male attractiveness, and the 'attractive amplifier', when it improves both quality assessment and male attractiveness). The game-theoretical model provides two main results. First, neutral and attractive amplifiers represent, respectively, a conditional and an unconditional signalling strategy. In fact, at the equilibrium, neutral amplifiers are displayed only by males whose advertising level lays above the female acceptance threshold, whereas attractive amplifiers are displayed by all signalling males, independent of their quality. Second, amplifiers of signals increase the differences in advertising levels between amplifying and not-amplifying males, but they decrease the differences within each group, so that the system converges towards an 'all-or-nothing' signalling strategy. By applying concepts from information theory, we show that the increase in information transfer at the perception level due to the amplifier of signals is contrasted by a decrease in information

  6. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    OpenAIRE

    Robert Petroski; Lowell Wood

    2012-01-01

    A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole d...

  7. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2001-01-01

    In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved. A continuous-time offset-compensation technique is utilized in order to minimize impact...... on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0.5 μm CMOS single poly, n-well process. The prototype amplifier features a gain of 80 dB over a 3.6 kHz bandwidth, a CMRR of more than 87 dB and a PSRR...

  8. Operational amplifiers theory and design

    CERN Document Server

    Huijsing, Johan

    2017-01-01

    This proven textbook guides readers to a thorough understanding of the theory and design of operational amplifiers (OpAmps). The core of the book presents systematically the design of operational amplifiers, classifying them into a periodic system of nine main overall configurations, ranging from one gain stage up to four or more stages. This division enables circuit designers to recognize quickly, understand, and choose optimal configurations. Characterization of operational amplifiers is given by macro models and error matrices, together with measurement techniques for their parameters. Definitions are given for four types of operational amplifiers depending on the grounding of their input and output ports. Many famous designs are evaluated in depth, using a carefully structured approach enhanced by numerous figures. In order to reinforce the concepts introduced and facilitate self-evaluation of design skills, the author includes problems with detailed solutions, as well as simulation exercises. Provides te...

  9. Wideband Low Noise Amplifiers Exploiting Thermal Noise Cancellation

    NARCIS (Netherlands)

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    2005-01-01

    Low Noise Amplifiers (LNAs) are commonly used to amplify signals that are too weak for direct processing for example in radio or cable receivers. Traditionally, low noise amplifiers are implemented via tuned amplifiers, exploiting inductors and capacitors in resonating LC-circuits. This can render

  10. Energy scales and magnetoresistance at a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a Chernova street, Syktyvkar, 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole, 45-052 (Poland)

    2009-03-02

    The magnetoresistance (MR) of CeCoIn{sub 5} is notably different from that in many conventional metals. We show that a pronounced crossover from negative to positive MR at elevated temperatures and fixed magnetic fields is determined by the scaling behavior of quasiparticle effective mass. At a quantum critical point (QCP) this dependence generates kinks (crossover points from fast to slow growth) in thermodynamic characteristics (like specific heat, magnetization, etc.) at some temperatures when a strongly correlated electron system transits from the magnetic field induced Landau-Fermi liquid (LFL) regime to the non-Fermi liquid (NFL) one taking place at rising temperatures. We show that the above kink-like peculiarity separates two distinct energy scales in QCP vicinity - low temperature LFL scale and high temperature one related to NFL regime. Our comprehensive theoretical analysis of experimental data permits to reveal for the first time new MR and kinks scaling behavior as well as to identify the physical reasons for above energy scales.

  11. Phoenix II energy extraction and angular multiplexing experiments

    International Nuclear Information System (INIS)

    Hoffman, J.M.; Hays, G.N.

    1981-08-01

    The energy extraction efficiency as a function of input intensity has been determined from a large-volume HF amplifier. For an input intensity of 4 x 10 6 W/cm 2 , 1080 Joules was extracted from the amplifier. This corresponded to an energy extraction efficiency of 0.90. At the highest H 2 /F 2 /O 2 pressures used, 1700 Joules was obtained from this system when used in an oscillator configuration. These results also show evidence that energy extraction at low input intensities in large-volume HF amplifiers is strongly influenced by parasitic oscillations. The results also indicate that, for a long-pulse HF amplifier (60-nsec electron beam), the timing between the amplifier and oscillator to achieve optimum operating conditions is not very critical. This same amplifier, used in conjunction with a short-pulse, good-beam-quality oscillator-preamplifier chain, has also been used to evaluate pulse compression using angular multiplexing. Using two sequential 24-nsec pulses, the essential elements of angular multiplexing have been evaluated as a function of interpulse separation time. Included are energy extraction efficiency, overall temporal pulse distortion, leading-edge contrast-ratio distortion, and suppression of amplified spontaneous emission relative to a single, long-duration input pulse. For appropriate interpulse delay time, we show that distortionless amplification is possible with energy-extraction efficiency the same as is obtained using a single input beam having a pulse width equal to the duration of the amplifier gain

  12. Phase noise in RF and microwave amplifiers.

    Science.gov (United States)

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  13. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann

    2012-01-01

    We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission....... These results are promising for short and efficient semiconductor optical amplifiers. This effect will also benefit other devices, such as mode locked lasers....

  14. Characterization and Scaling of Heave Plates for Ocean Wave Energy Converters

    Science.gov (United States)

    Rosenberg, Brian; Mundon, Timothy

    2016-11-01

    Ocean waves present a tremendous, untapped source of renewable energy, capable of providing half of global electricity demand by 2040. Devices developed to extract this energy are known as wave energy converters (WECs) and encompass a wide range of designs. A somewhat common archetype is a two-body point-absorber, in which a surface float reacts against a submerged "heave" plate to extract energy. Newer WEC's are using increasingly complex geometries for the submerged plate and an emerging challenge in creating low-order models lies in accurately determining the hydrodynamic coefficients (added mass and drag) in the corresponding oscillatory flow regime. Here we present experiments in which a laboratory-scale heave plate is sinusoidally forced in translation (heave) and rotation (pitch) to characterize the hydrodynamic coefficients as functions of the two governing nondimensional parameters, Keulegan-Carpenter number (amplitude) and Reynolds number. Comparisons against CFD simulations are offered. As laboratory-scale physical model tests remain the standard for testing wave energy devices, effects and implications of scaling (with respect to a full-scale device) are also investigated.

  15. Design and study of photomultiplier pulse-shaping amplifier powered by the current flowing through a voltage divider

    International Nuclear Information System (INIS)

    Vladimir Popov

    2003-01-01

    A new version of Photomultiplier Tube (PMT) pulse amplifier, entirely powered by the current flowing through the base voltage divider, was designed and tested. This amplifier was designed for application in the JLAB G0 Experiment E00-006 as a part of high voltage base for XP2262 Photonis PMT. According to JLAB G0 experiment requirement, these PMT's operate with plastic scintillators at high counting rate (about MHz). Tests in JLAB experimental Hall C indicate that low energy gamma background cause up to 0.1 mA of PMT average anode current (without amplifier). At this radiation condition, PMT gain decreases by 50% within about 1 month of operation. The amplifier needs to reduce PMT anode current and to shape PMT anode pulse prior to sending it through a long cable line (more then 400 ft of RG-213 and RG-58 coax cables). Shaping of the PMT output pulse helps to reduce attenuation effect of the long cable line without significant reduction of timing accuracy. The results of this study of designed amplifier and PMT plus amplifier system are presented

  16. Up-scaling, formative phases, and learning in the historical diffusion of energy technologies

    International Nuclear Information System (INIS)

    Wilson, Charlie

    2012-01-01

    The 20th century has witnessed wholesale transformation in the energy system marked by the pervasive diffusion of both energy supply and end-use technologies. Just as whole industries have grown, so too have unit sizes or capacities. Analysed in combination, these unit level and industry level growth patterns reveal some consistencies across very different energy technologies. First, the up-scaling or increase in unit size of an energy technology comes after an often prolonged period of experimentation with many smaller-scale units. Second, the peak growth phase of an industry can lag these increases in unit size by up to 20 years. Third, the rate and timing of up-scaling at the unit level is subject to countervailing influences of scale economies and heterogeneous market demand. These observed patterns have important implications for experience curve analyses based on time series data covering the up-scaling phases of energy technologies, as these are likely to conflate industry level learning effects with unit level scale effects. The historical diffusion of energy technologies also suggests that low carbon technology policies pushing for significant jumps in unit size before a ‘formative phase’ of experimentation with smaller-scale units are risky. - Highlights: ► Comparative analysis of energy technology diffusion. ► Consistent pattern of sequential formative, up-scaling, and growth phases. ► Evidence for conflation of industry level learning effects with unit level up-scaling. ► Implications for experience curve analyses and technology policy.

  17. Comprehensive energy transport scalings derived from DIII-D similarity experiments

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baity, F.W.

    1998-12-01

    The dependences of heat transport on the dimensionless plasma physics parameters has been measured for both L-mode and H-mode plasmas on the DIII-D tokamak. Heat transport in L-mode plasmas has a gyroradius scaling that is gyro-Bohm-like for electrons and worse than Bohm-like for ions, with no measurable beta or collisionality dependence; this corresponds to having an energy confinement time that scales like τ E ∝ n 0.5 P -0.5 . H-mode plasmas have gyro-Bohm-like scaling of heat transport for both electrons and ions, weak beta scaling, and moderate collisionality scaling. In addition, H-mode plasmas have a strong safety factor scaling (χ ∼ q 2 ) at all radii. Combining these four dimensionless parameter scalings together gives an energy confinement time scaling for H-mode plasmas like τ E ∝ B -1 ρ -3.15 β 0.03 v -0.42 q 95 -1.43 ∝ I 0.84 B 0.39 n 0.18 P -0.41 L 2.0 , which is similar to empirical scalings derived from global confinement databases

  18. Comprehensive energy transport scalings derived from DIII-D similarity experiments

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baity, F.W.

    1999-01-01

    The dependences of heat transport on the dimensionless plasma physics parameters has been measured for both L-mode and H-mode plasmas on the DIII-D tokamak. Heat transport in L-mode plasmas has a gyroradius scaling that is gyro-Bohm-like for electrons and worse than Bohm-like for ions, with no measurable beta or collisionality dependence; this corresponds to having an energy confinement time that scales like τ E ∝ n 0.5 P -0.5 . H-mode plasmas have gyro-Bohm-like scaling of heat transport for both electrons and ions, weak beta scaling, and moderate collisionality scaling. In addition, H-mode plasmas have a strong safety factor scaling (χ ∼ q 2 ) at all radii. Combining these four dimensionless parameter scalings together gives an energy confinement time scaling for H-mode plasmas like τ E ∝ B -1 ρ -3.15 β 0.03 ν -0.42 q 95 -1.43 ∝ I 0.84 B 0.39 n 0.18 P -0.41 L 2.0 , which is similar to empirical scalings derived from global confinement databases. (author)

  19. Comprehensive energy transport scalings derived from DIII-D similarity experiments

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baker, D.R.

    2001-01-01

    The dependences of heat transport on the dimensionless plasma physics parameters has been measured for both L-mode and H-mode plasmas on the DIII-D tokamak. Heat transport in L-mode plasmas has a gyroradius scaling that is gyro-Bohm-like for electrons and worse than Bohm-like for ions, with no measurable beta or collisionality dependence; this corresponds to having an energy confinement time that scales like τ E ∝n 0.5 P -0.5 . H-mode plasmas have gyro-Bohm-like scaling of heat transport for both electrons and ions, weak beta scaling, and moderate collisionality scaling. In addition, H-mode plasmas have a strong safety factor scaling (χ∼q 2 ) at all radii. Combining these four dimensionless parameter scalings together gives an energy confinement time scaling for H-mode plasmas like τ E ∝ B -1 ρ -3.15 β 0.03 ν -0.42 q 95 -1.43 ∝ I 0.84 B 0.39 n 0.18 P -0.41 L 2.0 , which is similar to empirical scalings derived from global confinement databases. (author)

  20. Energy issues in microwave food processing: A review of developments and the enabling potentials of solid-state power delivery.

    Science.gov (United States)

    Atuonwu, J C; Tassou, S A

    2018-01-23

    The enormous magnitude and variety of microwave applications in household, commercial and industrial food processing creates a strong motivation for improving the energy efficiency and hence, sustainability of the process. This review critically assesses key energy issues associated with microwave food processing, focusing on previous energy performance studies, energy performance metrics, standards and regulations. Factors affecting energy-efficiency are categorised into source, load and source-load matching factors. This highlights the need for highly-flexible and controllable power sources capable of receiving real-time feedback on load properties, and effecting rapid control actions to minimise reflections, heating non-uniformities and other imperfections that lead to energy losses. A case is made for the use of solid-state amplifiers as alternatives to conventional power sources, magnetrons. By a full-scale techno-economic analysis, including energy aspects, it is shown that the use of solid-state amplifiers as replacements to magnetrons is promising, not only from an energy and overall technical perspective, but also in terms of economics.

  1. The importance of the time scale in radiation detection exemplified by comparing conventional and avalache semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tove, P A; Cho, Z H; Huth, G C [California Univ., Los Angeles (USA). Lab. of Nuclear Medicine and Radiation Biology

    1976-02-01

    The profound importance of the time scale of a radiation detection process is discussed in an analysis of limitations in energy resolution and timing, with emphasis on semiconductor detectors used for X-ray detection. The basic event detection time involves stopping of the particle and creating a distribution of free electrons and holes containing all desired information (energy, time position) about the particle or quantum, in a time approximately equal to 10/sup -12/s. The process of extracting this information usually involves a much longer time because the signal is generated in the relatively slow process of charge collection, and further prolongation may be caused by signal processing required to depress noise for improving energy resolution. This is a common situation for conventional semiconductor detectors with external amplifiers where time constants of 10/sup -5/-10/sup -4/s may be optimum, primarily because of amplifier noise. A different situation applies to the avalanche detector where internal amplification helps in suppressing noise without expanding the time scale of detections, resulting in an optimum time of 10/sup -9/-10/sup -8/s. These two cases are illustrated by plotting energy resolution vs. time constant, for different magnitudes of the parallel and series type noise sources. The effects of the inherent energy spread due to statistips and spatial inhomogeneities are also discussed to illustrate the potential of these two approaches for energy and time determination. Two constructional approaches for avalanche detectors are briefly compared.

  2. Coherent combination of ultrafast fiber amplifiers

    International Nuclear Information System (INIS)

    Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N

    2016-01-01

    We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)

  3. A system for biasing a differential amplifier

    International Nuclear Information System (INIS)

    Barbier, Daniel; Ittel, J.M.; Poujois, Robert

    1975-01-01

    This invention concerns a system for biasing a differential amplifier. It particularly applies to the integrated differential amplifiers designed with MOS field effect transistors. Variations in the technological parameters may well cause the amplifying transistors to work outside their usual operational area, in other words outside the linear part of the transfer characteristic. To ensure that these transistors function correctly, it is necessary that the value of the voltage difference at the output be equally null. To do this and to centre on the so called 'rest' point of the amplifier transfer charateristic, the condition will be set that the output potentials of each amplifier transistor should have a zero value or a constant value as sum. With this in view, the bias on the source (generally a transistor powered by its grid bias voltage) supplying current to the two amplifying transistors fitted in parallel, is permanently adjusted in a suitable manner [fr

  4. Nuclear criticality safety and time reactivity enhancement aspects of energy amplifier system devices

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, F [ENEA, Centro Ricerche Trisaia, Rotondelle, Matera (Italy). Direzione INFO

    1995-12-01

    As far as the Rubbia`s and colleagues proposal of innovating Energy Amplifier system (E.A.s.) device driven by a particle beam accelerator is concerned, four basic topics are comprised in the present paper: (1) A short outline of the nuclear aspects of Th-U and U-Pu fuel cycles regarding their general breeding and efficiency features. (2) The needed nuclear criticality control requirements have been studied in terms of safety regulating parameters on the basis of the ThO2 mixed oxides selected as fuel kind for the E.A.s. device technology development. Particular attention is devoted to time evolution of neutron multiplication factor since delayed development of the 233U buildup and so system reactivity are expected in the Th-U cycle. (3) Code E.A.s. device irradiation and post-irradiation modelling for determining higher actinides buildup, fission products formation and fuel consumption trends as function of time, system enrichment degree and flux level parameters. (4) The confirmation, on the basis of the same specific power irradiation, of expected actinides waste obtainment cleaner than the one deriving from the U-Pu cycle utilization. For this end, a model comparison of equivalent enriched fissile nuclides in both cycles has been devised as having, within the range of 0-700 days, ten irradiation periods of about 53 MW/ton specific power and equivalent cooling time post-irradiation periods.

  5. Sustainability of utility-scale solar energy: Critical environmental concepts

    Science.gov (United States)

    Hernandez, R. R.; Moore-O'Leary, K. A.; Johnston, D. S.; Abella, S.; Tanner, K.; Swanson, A.; Kreitler, J.; Lovich, J.

    2017-12-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists - including those from academia, industry, and government agencies - have only recently begun to quantify trade-off in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥ 1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  6. Solid-state disk amplifiers for fusion-laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.E.; Trenholme, J.B.; Linford, G.J.; Yarema, S.M.; Hurley, C.A.

    1981-09-01

    We review the design, performance, and operation of large-aperture (10 to 46 cm) solid-state disk amplifiers for use in laser systems. We present design data, prototype tests, simulations, and projections for conventional cylindrical pump-geometry amplifiers and rectangular pump-geometry disk amplifiers. The design of amplifiers for the Nova laser system is discussed.

  7. An ultra-low-power pulse oximeter implemented with an energy-efficient transimpedance amplifier.

    Science.gov (United States)

    Tavakoli, M; Turicchia, L; Sarpeshkar, R

    2010-02-01

    Pulse oximeters are ubiquitous in modern medicine to noninvasively measure the percentage of oxygenated hemoglobin in a patient's blood by comparing the transmission characteristics of red and infrared light-emitting diode light through the patient's finger with a photoreceptor. We present an analog single-chip pulse oximeter with 4.8-mW total power dissipation, which is an order of magnitude below our measurements on commercial implementations. The majority of this power reduction is due to the use of a novel logarithmic transimpedance amplifier with inherent contrast sensitivity, distributed amplification, unilateralization, and automatic loop gain control. The transimpedance amplifier, together with a photodiode current source, form a high-performance photoreceptor with characteristics similar to those found in nature, which allows LED power to be reduced. Therefore, our oximeter is well suited for portable medical applications, such as continuous home-care monitoring for elderly or chronic patients, emergency patient transport, remote soldier monitoring, and wireless medical sensing. Furthermore, our design obviates the need for an A-to-D and digital signal processor and leads to a small single-chip solution. We outline how extensions of our work could lead to submilliwatt oximeters.

  8. Jet Energy Scale Uncertainties in ATLAS

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2012-01-01

    About one year after the first proton-proton collisions at a centre of mass energy of $sqrt(s) = 7,TeV$, the ATLAS experiment has achieved an accuracy of the jet energy measurement between $2-4%$ for jet transverse momenta from $20,GeV$ to $2,TeV$ in the pseudorapidity range up to $4.5$. The jet energy scale uncertainty is derived from in-situ single hadron response measurement along with systematic variations in the Monte Carlo simulation. In addition, the transverse momentum balance between a central and a forward jet in events with only two jets at high transverse momentum is used to set the jet energy uncertainty in the forward region. The obtained uncertainty is confirmed by in-situ measurements exploiting the transverse momentum balance between a jet and a well measured reference object like the photon transverse momentum in photon-jet events. Jets in the TeV-energy regime were tested using a system of well calibrated jets at low transverse momenta against a high-pt jet. Preliminary results from the 201...

  9. Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement

    Science.gov (United States)

    Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu

    2017-02-01

    Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.

  10. Numerical simulation of cross field amplifiers

    International Nuclear Information System (INIS)

    Eppley, K.

    1990-01-01

    Cross field amplifiers (CFA) have been used in many applications where high power, high frequency microwaves are needed. Although these tubes have been manufactured for decades, theoretical analysis of their properties is not as highly developed as for other microwave devices such as klystrons. One feature distinguishing cross field amplifiers is that the operating current is produced by secondary emission from a cold cathode. This removes the need for a heater and enables the device to act as a switch tube, drawing no power until the rf drive is applied. However, this method of generating the current does complicate the simulation. We are developing a simulation model of cross field amplifiers using the PIC code CONDOR. We simulate an interaction region, one traveling wavelength long, with periodic boundary conditions. An electric field with the appropriate phase velocity is imposed on the upper boundary of the problem. Evaluation of the integral of E·J gives the power interchanged between the wave and the beam. Given the impedance of the structure, we then calculate the change in the traveling wave field. Thus we simulate the growth of the wave through the device. The main advance of our model over previous CFA simulations is the realistic tracking of absorption and secondary emission. The code uses experimental curves to calculate secondary production as a function of absorbed energy, with a theoretical expression for the angular dependence. We have used this code to model the 100 MW X-band CFA under construction at SLAC, as designed by Joseph Feinstein and Terry Lee. We are examining several questions of practical interest, such as the power and spectrum of absorbed electrons, the minimum traveling wave field needed to initiate spoke formation, and the variation of output power with dc voltage, anode-cathode gap, and magnetic field. 5 refs., 8 figs

  11. Multi-pass amplifier architecture for high power laser systems

    Science.gov (United States)

    Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C

    2014-04-01

    A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.

  12. Z-scaling in proton-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.V.; Panebrattsev, Yu.A.; Skoro, G.P.

    1997-01-01

    New scaling, z-scaling, in the inclusive particle production in pA collisions is studied. The scaling function H A (z) is expressed via the inclusive cross section of particle production Ed 3 σ/dq 3 and the particle multiplicity density dN/dη at pseudorapidity η=0 in the corresponding nucleon-nucleon (NN) center-of-mass (CMS) system. The dependence of H A (z) on scaling variable z, the center-of-mass energy √, and the detection angle θ is investigated. The available experimental data on inclusive particle production (π ± , K ± ) in pA interactions at high energies are used to verify the universality of z-scaling found in hadron-hadron collisions. The A-dependence of H A (z) for π + -meson production is studied. It is shown that the experimental data >from pd collisions confirm the scaling properties of the function H d (z). Some predictions for H au (z) concerning production of π + -mesons in pAu interaction using the HIJING Monte Carlo code have been made. The obtained results can be of interest for future experiments at RHI and LHC in searching the signals of quark-gluon plasma formation

  13. Radar Waveform Pulse Analysis Measurement System for High-Power GaN Amplifiers

    Science.gov (United States)

    Thrivikraman, Tushar; Perkovic-Martin, Dragana; Jenabi, Masud; Hoffman, James

    2012-01-01

    This work presents a measurement system to characterize the pulsed response of high-power GaN amplifiers for use in space-based SAR platforms that require very strict amplitude and phase stability. The measurement system is able to record and analyze data on three different time scales: fast, slow, and long, which allows for greater detail of the mechanisms that impact amplitude and phase stability. The system is fully automated through MATLAB, which offers both instrument control capability and in-situ data processing. To validate this system, a high-power GaN HEMT amplifier operated in saturation was characterized. The fast time results show that variations to the amplitude and phase are correlated to DC supply transients, while long time characteristics are correlated to temperature changes.

  14. Remote Acquisition Amplifier For 50-Ohm Cable

    Science.gov (United States)

    Amador, Jose J.

    1995-01-01

    Buffer-amplifier unit designed to drive 50-Ohm cables up to 100 ft. (30 m) long, compensating for attenuation in cables and enabling remote operation of oscilloscopes. Variable resistor provides for adjustment of gain of amplifier, such that overall gain from input terminals of amplifier to output end of cable set to unity.

  15. Noise-driven neuromorphic tuned amplifier

    Science.gov (United States)

    Fanelli, Duccio; Ginelli, Francesco; Livi, Roberto; Zagli, Niccoló; Zankoc, Clement

    2017-12-01

    We study a simple stochastic model of neuronal excitatory and inhibitory interactions. The model is defined on a directed lattice and internodes couplings are modulated by a nonlinear function that mimics the process of synaptic activation. We prove that such a system behaves as a fully tunable amplifier: the endogenous component of noise, stemming from finite size effects, seeds a coherent (exponential) amplification across the chain generating giant oscillations with tunable frequencies, a process that the brain could exploit to enhance, and eventually encode, different signals. On a wider perspective, the characterized amplification process could provide a reliable pacemaking mechanism for biological systems. The device extracts energy from the finite size bath and operates as an out of equilibrium thermal machine, under stationary conditions.

  16. Efficient and Compact Optical Amplifier Using EYDF

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2010-09-01

    Full Text Available An efficient Erbium/Ytterbium doped fiber amplifier (EYDFA is demonstrated using a 1058nm pumping wavelength, where the amplification is assisted by energy transfer between Yb and Er ions. The energy transfer increases the limit of erbium doping concentration that is imposed by concentration quenching in Erbium-doped fiber (EDF. Therefore, the gain and noise figure are severely degraded with 1480 nm pumping, where the energy transfer cannot be achieved. The use of optical isolator improves the small signal gain and noise figure by about 4.8 dB and 1.6 dB, respectively. By employing a double-pass configuration, a higher gain can be obtained with an expense of a noise figure penalty. The gain improvement of 17.0 dB is obtained at 20 mW and -50 dBm of pump and input signal powers. This shows that the double-pass configuration is an important aspect to consider when designing an efficient EYDFA.

  17. Electronuclear amplifiers with low-energy proton beams

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Shelaev, I.A.

    1998-01-01

    The use of proton accelerators with energy 200-300 MeV in subcritical electronuclear systems seems more preferable in comparison with more complicated and expensive machines with energy about 1 GeV, which are considered as favourite now. Such an approach allows one to build comparatively simple electronuclear plants in particular, for a safety and profitable incineration of plutonium from power plants and spells, in fact, a new strategy of electronuclear technology. Potentialities of the use of low-energy accelerators are illustrated by an electronuclear arrangements designed now in Dubna

  18. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression

    Science.gov (United States)

    Su, Rongtao; Tao, Rumao; Wang, Xiaolin; Zhang, Hanwei; Ma, Pengfei; Zhou, Pu; Xu, Xiaojun

    2017-08-01

    We demonstrate an experimental study on scaling mode instability (MI) threshold in fiber amplifiers based on fiber coiling. The experimental results show that coiling the active fiber in the cylindrical spiral shape is superior to the coiling in the plane spiral shape. When the polarization maintained Yb-doped fiber (PM YDF: with a core/inner-cladding diameter of 20/400 µm) is coiled on an aluminous plate with a bend diameter of 9-16 cm, the MI threshold is ~1.55 kW. When such a PM YDF is coiled on an aluminous cylinder with diameter of 9 cm, no MI is observed at the output power of 2.43 kW, which is limited by the available pump power. The spectral width and polarization extinction ratio is 0.255 nm and 18.3 dB, respectively, at 2.43 kW. To the best of our knowledge, this is the highest output power from a linear polarized narrow linewidth all-fiberized amplifier. By using a theoretical model, the potential MI-free scaling capability in such an amplifier is estimated to be 3.5 kW.

  19. Multiple excitation regenerative amplifier inertial confinement system

    International Nuclear Information System (INIS)

    George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.

    1980-01-01

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation

  20. A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging

    Science.gov (United States)

    Coyle, Barry; Poulios, Demetrios

    2013-01-01

    A fiber/solid-state hybrid seeded regenerative amplifier, capable of achieving high output energy with tunable pulse widths, has been developed for satellite laser ranging applications. The regenerative amplifier cavity uses a pair of Nd:YAG zigzag slabs oriented orthogonally to one another in order to make thermal lensing effects symmetrical and simplify optical correction schemes. The seed laser used is a fiber-coupled 1,064-nm narrowband (pumped by a single 120-W, pulsed 808-nm laser diode array. In this configuration, the average pump beam distribution in the slabs had a 1-D Gaussian shape, which matches the estimated cavity mode size. A half-wave plate between the slabs reduces losses from Fresnel reflections due to the orthogonal slabs Brewster-cut end faces. Successful "temporal" seeding of the regenerative amplifier cavity results in a cavity Q-switch pulse envelope segmenting into shorter pulses, each having the width of the input seed, and having a uniform temporal separation corresponding to the cavity round-trip time of approx. =10 ns. The pulse energy is allowed to build on successive passes in the regenerative amplifier cavity until a maximum is reached, (when cavity gains and losses are equal), after which the pulse is electro- optically switched out on the next round trip The overall gain of the amplifier is approx. =82 dB (or a factor of 1.26 million). After directing the amplified output through a LBO frequency doubling crystal, approx. = 2.1 W of 532-nm output (>1 mJ) was measured. This corresponds to a nonlinear conversion efficiency of >60%. Furthermore, by pulse pumping this system, a single pulse per laser shot can be created for the SLR (satellite laser ranging) measurement, and this can be ejected into the instrument. This is operated at the precise frequency needed by the measurement, as opposed to commercial short-pulsed, mode-locked systems that need to operate in a continuous fashion, or CW (continuous wave), and create pulses at many

  1. Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: Comparison with bulk amplifiers

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Hvam, Jørn Märcher

    2001-01-01

    The ultrafast gain dynamics in an electrically pumped InAs/InGaAs/GaAs quantum-dot amplifier are measured at room temperature with femtosecond resolution, and compared with results on an InGaAsP bulk amplifier. The role of spectral hole burning and carrier heating in the recovery of the gain...

  2. A multi-scale energy demand model suggests sharing market risks with intelligent energy cooperatives

    NARCIS (Netherlands)

    G. Methenitis (Georgios); M. Kaisers (Michael); J.A. La Poutré (Han)

    2015-01-01

    textabstractIn this paper, we propose a multi-scale model of energy demand that is consistent with observations at a macro scale, in our use-case standard load profiles for (residential) electric loads. We employ the model to study incentives to assume the risk of volatile market prices for

  3. Relativistic jets without large-scale magnetic fields

    Science.gov (United States)

    Parfrey, K.; Giannios, D.; Beloborodov, A.

    2014-07-01

    The canonical model of relativistic jets from black holes requires a large-scale ordered magnetic field to provide a significant magnetic flux through the ergosphere--in the Blandford-Znajek process, the jet power scales with the square of the magnetic flux. In many jet systems the presence of the required flux in the environment of the central engine is questionable. I will describe an alternative scenario, in which jets are produced by the continuous sequential accretion of small magnetic loops. The magnetic energy stored in these coronal flux systems is amplified by the differential rotation of the accretion disc and by the rotating spacetime of the black hole, leading to runaway field line inflation, magnetic reconnection in thin current layers, and the ejection of discrete bubbles of Poynting-flux-dominated plasma. For illustration I will show the results of general-relativistic force-free electrodynamic simulations of rotating black hole coronae, performed using a new resistivity model. The dissipation of magnetic energy by coronal reconnection events, as demonstrated in these simulations, is a potential source of the observed high-energy emission from accreting compact objects.

  4. The OPTHER Project: Progress toward the THz Amplifier

    DEFF Research Database (Denmark)

    Paoloni, C; Brunetti, F; Di Carlo, A

    2011-01-01

    This paper describes the status of the OPTHER (OPtically driven TeraHertz AmplifiERs) project and progress toward the THz amplifier realization. This project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within...... this project is a consolidation of efforts at the international level from the leading scientific and industrial European organizations working with vacuum electronics....

  5. Amplified Spontaneous Emission of Organic Pyridinium Dye doped Polymeric Waveguide

    International Nuclear Information System (INIS)

    Jun, Xi; Li-Hua, Ye; Qiong, Wang; Deng, Xu; Chang-Gui, Lu; Guo-Hua, Hu; Yi-Ping, Cui

    2009-01-01

    An organic dye salt trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methylpyridinium iodide (ASPI) is doped with an electron transport organic molecule tris(8-hydroxyquinoline) aluminium (Alq3) in a host matrix of poly(methylmethacrylate) (PMMA), and the amplified spontaneous emission (ASE) is studied. By efficient Forster energy transfer from Alq3 to ASPI, it is demonstrated that the ASE threshold of ASPI:Alq3:PMMA waveguide (about 11μJ/pulse) is much lower than that of ASPI:PMMA system (about 38μJ/pulse). Meanwhile, the peak position of ASE can be controlled by the effect of film thickness on waveguide modes. We show that the ASE peak position can be tuned over 37nm. These characteristics indicate the ASPI:Alq3 system as a promising gain medium for optical amplifiers and organic semiconductor lasers

  6. Spectroscopic amplifier for pin diode

    International Nuclear Information System (INIS)

    Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R.

    2014-10-01

    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)

  7. Efficient temporal compression of coherent nanosecond pulses in compact SBS generator-amplifier setup

    OpenAIRE

    Schiemann, S.; Ubachs, W.M.G.; Hogervorst, W.

    1997-01-01

    A pulse compressor based on stimulated Brillouin scattering (SBS) in liquids is experimentally and theoretically investigated. It allows for the compression of Fourier-transform limited nanosecond pulses of several hundreds of millijoules of energy with both high conversion efficiency and a high temporal compression factor. The two-cell generator-amplifier arrangement is of a compact design not requiring external attenuation of the generator cell input energy. Pulses from an injection-seeded,...

  8. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    Science.gov (United States)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  9. Automatic error compensation in dc amplifiers

    International Nuclear Information System (INIS)

    Longden, L.L.

    1976-01-01

    When operational amplifiers are exposed to high levels of neutron fluence or total ionizing dose, significant changes may be observed in input voltages and currents. These changes may produce large errors at the output of direct-coupled amplifier stages. Therefore, the need exists for automatic compensation techniques. However, previously introduced techniques compensate only for errors in the main amplifier and neglect the errors induced by the compensating circuitry. In this paper, the techniques introduced compensate not only for errors in the main operational amplifier, but also for errors induced by the compensation circuitry. Included in the paper is a theoretical analysis of each compensation technique, along with advantages and disadvantages of each. Important design criteria and information necessary for proper selection of semiconductor switches will also be included. Introduced in this paper will be compensation circuitry for both resistive and capacitive feedback networks

  10. Power law scaling for rotational energy transfer

    International Nuclear Information System (INIS)

    Pritchard, D.E.; Smith, N.; Driver, R.D.; Brunner, T.A.

    1979-01-01

    We have applied a new scaling law to several sets of rotational energy transfer cross sections. The new law asserts that the square of the T-matrix depends on the amount of energy transferred as a power law. Two different kinds of angular momentum statistics are assumed, one corresponding to m/sub j/ being conserved and the other corresponding to m/sub j/ being completely randomized. Numerical fits are presented which demonstrate that the data follow the power law better than the widely used exponential gap law

  11. Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale

    Directory of Open Access Journals (Sweden)

    Robert Petroski

    2012-11-01

    Full Text Available A nuclear fission-based energy system is described that is capable of supplying the energy needs of all of human civilization for a full range of human energy use scenarios, including both very high rates of energy use and strikingly-large amounts of total energy-utilized. To achieve such “planetary scale sustainability”, this nuclear energy system integrates three nascent technologies: uranium extraction from seawater, manifestly safe breeder reactors, and deep borehole disposal of nuclear waste. In addition to these technological components, it also possesses the sociopolitical quality of manifest safety, which involves engineering to a very high degree of safety in a straightforward manner, while concurrently making the safety characteristics of the resulting nuclear systems continually manifest to society as a whole. Near-term aspects of this nuclear system are outlined, and representative parameters given for a system of global scale capable of supplying energy to a planetary population of 10 billion people at a per capita level enjoyed by contemporary Americans, i.e., of a type which might be seen a half-century hence. In addition to being sustainable from a resource standpoint, the described nuclear system is also sustainable with respect to environmental and human health impacts, including those resulting from severe accidents.

  12. Energy transition is an opportunity to be seized. Proposals and actual measures to speed up energy transition in France - May 2017

    International Nuclear Information System (INIS)

    2017-05-01

    After having outlined that energy transition could bring actual answers to essential concerns perceived by French people (economy revitalisation, purchasing power, employment, safety, life quality, democracy), this publication contains proposals and suggests measures which aim at making the energy sector evolve, can be either transverse, sector-based or specific, and could give an impulse to the French energy transition. More particularly, these measures and proposals aim at amplifying and speeding up the evolutions of the legal framework, at setting the initiative of economic actors free, at organising the financing of energy transition, at improving the quality of life for all citizen, at ensuring the sharing of benefits, and at considering the different relevant scales (from the local one to the global one)

  13. A High-Energy, 100 Hz, Picosecond Laser for OPCPA Pumping

    Directory of Open Access Journals (Sweden)

    Hongpeng Su

    2017-09-01

    Full Text Available A high-energy diode-pumped picosecond laser system centered at 1064 nm for optical parametric chirped pulse amplifier (OPCPA pumping was demonstrated. The laser system was based on a master oscillator power amplifier configuration, which contained an Nd:YVO4 mode-locked seed laser, an LD-pumped Nd:YAG regenerative amplifier, and two double-pass amplifiers. A reflecting volume Bragg grating with a 0.1 nm reflective bandwidth was used in the regenerative amplifier for spectrum narrowing and pulse broadening to suit the pulse duration of the optical parametric amplifier (OPA process. Laser pulses with an energy of 316.5 mJ and a pulse duration of 50 ps were obtained at a 100 Hz repetition rate. A top-hat beam distribution and a 0.53% energy stability (RMS were achieved in this system.

  14. Quantum electronics maser amplifiers and oscillators

    CERN Document Server

    Fain, V M; Sanders, J H

    2013-01-01

    Quantum Electronics, Volume 2: Maser Amplifiers and Oscillators deals with the experimental and theoretical aspects of maser amplifiers and oscillators which are based on the principles of quantum electronics. It shows how the concepts and equations used in quantum electronics follow from the basic principles of theoretical physics.Comprised of three chapters, this volume begins with a discussion on the elements of the theory of quantum oscillators and amplifiers working in the microwave region, along with the practical achievements in this field. Attention is paid to two-level paramagnetic ma

  15. Class-E Amplifier Design Improvements for GSM Frequencies

    Directory of Open Access Journals (Sweden)

    Z. Nadir

    2011-06-01

    Full Text Available Efficient power amplifiers are essential in portable battery-operated systems such as mobile phones. Also, the power amplifier (PA is the most power-consuming building block in the transmitter of a portable system. This paper investigates how the efficiency of the power amplifier (which is beneficial for multiple applications in communcation sector can be improved by increasing the efficiency of switching mode class E power amplifiers for frequencies of 900 MHz and 1800 MHz. The paper tackles modeling, design improvements and verification through simulation for higher efficiencies. This is the continuation of previous work by the authors. These nonlinear power amplifiers can only amplify constant-envelope RF signals without introducing significant distortion. Mobile systems such as Advanced Mobile Phone System (AMPS and Global System for Mobile communications (GSM use modulation schemes which generate constant amplitude RF outputs in order to use efficient but nonlinear power amplifiers. Improvements in designs are suggested and higher efficiencies are achieved, to the tune of 67.1% (for 900 MHz and 67.0% (1800 MHz.

  16. The energy metabolism of megacities

    International Nuclear Information System (INIS)

    Facchini, Angelo; Kennedy, Chris; Stewart, Iain; Mele, Renata

    2017-01-01

    Highlights: • Energy metabolism leads to a better management of energy use in megacities. • Insights on strategies to improve energy efficiency and reduce resource consumption. • We find a regionalization of energy flows and sectoral energy use. • Scaling law for energy Vs density suggests strategies for compact cities planning. • Supports development of models to reduce GHG emissions and increase resilience. - Abstract: Due to their sheer size and complexity, megacities are extreme examples in which both negative and positive aspects of urbanization co-exist and are amplified. Especially in emerging countries they are becoming the dominant paradigm of the future urbanization, representing a sustainability challenge both from the point of view of energy and resource consumption, and from the point of view of climate change adaptation and mitigation. In this paper we compare the energy metabolism in 27 of the world’s megacities including details of mobile and stationary energy consumption patterns, fuels used, as well as end-use patterns and electricity generation mix. Our results show that per capita total energy consumption scales with urban population density according to a power law characterized by the universal −3/4 scaling, pointing out that compact cities are more energy efficient with respect to dispersed cities. By comparing energy sources and sectoral end use, also focusing on electricity use and generation source, we found a significant regionalization of energy metabolism, and we discuss the implication for resilience, infrastructure planning, GHG emissions, and policies for infrastructure decarbonization. The comparison of the energy metabolism can lead to a more appropriate management of energy use patterns and electricity generation mix in megacities, giving insights on strategies to improve urban energy efficiency and reducing environmental pressure of megacities.

  17. Software framework and jet energy scale calibration in the ATLAS experiment

    International Nuclear Information System (INIS)

    Binet, Sebastien

    2006-01-01

    This thesis presents the work achieved to instrument the ATLAS software framework, ATHENA, with a library of tools and utensils for the physics analysis as well as the extraction of the jet energy scale using physics events (in-situ calibration). The software part presents the various components of the ATHENA framework which handles the simulated and reconstructed data flow as well as the different stages of this process, before and during the data taking. The building of a library of tools easing the reconstruction of physics objects, their association with Monte-Carlo particles and their API is then explained. The need for common language and collaboration-wide utensils is emphasised as it allows to share the workload of validating these tools and to get reproducible physics results. The analysis part deals with the implementation of a light jet energy scale calibration algorithm within the C++ framework. This calibration algorithm makes use of W bosons decaying into light jets within semileptonic t t-bar events. From the processing of fast and full simulation data with this algorithm, it seems possible to reach a percent level knowledge of the light jet energy scale. Finally, the feasibility study of the b-jet energy scale calibration using γZ 0 → γb b-bar events is presented. It is shown that a purely sequential approach is not sufficient to extract the signal nor to collect a sufficient amount of Z 0 to calibrate the b-jet energy scale. (author)

  18. Generalized Scaling of Urban Heat Island Effect and Its Applications for Energy Consumption and Renewable Energy

    Directory of Open Access Journals (Sweden)

    T.-W. Lee

    2014-01-01

    Full Text Available In previous work from this laboratory, it has been found that the urban heat island intensity (UHI can be scaled with the urban length scale and the wind speed, through the time-dependent energy balance. The heating of the urban surfaces during the daytime sets the initial temperature, and this overheating is dissipated during the night-time through mean convection motion over the urban surface. This may appear to be in contrast to the classical work by Oke (1973. However, in this work, we show that if the population density is used in converting the population data into urbanized area, then a good agreement with the current theory is found. An additional parameter is the “urban flow parameter,” which depends on the urban building characteristics and affects the horizontal convection of heat due to wind. This scaling can be used to estimate the UHI intensity in any cities and therefore predict the required energy consumption during summer months. In addition, all urbanized surfaces are expected to exhibit this scaling, so that increase in the surface temperature in large energy-consumption or energy-producing facilities (e.g., solar electric or thermal power plants can be estimated.

  19. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    Science.gov (United States)

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  20. Bandwidth tunable amplifier for recording biopotential signals.

    Science.gov (United States)

    Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer

    2010-01-01

    This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.

  1. Marketing strategy for retailing small-scale wind energy turbines in Indian markets

    OpenAIRE

    Harjula, Nina

    2009-01-01

    The study analyzes the small-scale wind energy markets in Mumbai, focusing on questions: How feasible is the wind energy for SME businesses in Mumbai, and what are the main challenges and opportunities of small-scale wind energy in Mumbai? The study is a qualitative case study, in which, the data has been collected through observing the markets by visiting wind energy sites and companies, interviewing and meeting potential customers and other stakeholders in the market. Theoretical frame...

  2. Amplifier with time-invariant trapezoidal shaping and shape-sensitive pileup rejector for high-rate spectroscopy

    International Nuclear Information System (INIS)

    Drndarevic, V.; Ryge, P.; Gozani, T.

    1989-01-01

    An amplifier with trapezoidal pulse shaping was developed for high-rate high-energy gamma spectroscopy using NaI(T1) scintillation detectors. It employs a double delay-line technique for producing a nearly triangular pulse shape combined with a linear circuit for producing a flattopped pulse. Good energy resolution and short resolving time make this amplifier especially suitable for high count rate gamma ray spectroscopy. To provide a versatile high-performance system, it includes a pileup rejector based on inspection of a pileup signal obtained by combining the slow output signal and fast-shaped input signal. The trapezoidal shape provides a short resolving time for minimal occurrence of pileup with a width suitable for presentation to a standard multichannel analyzer. The performance of the system was tested, and the results are presented

  3. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  4. BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER

    DEFF Research Database (Denmark)

    2010-01-01

    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...

  5. Calculation of the output power in self-amplified spontaneous radiation using scaling of power with number of simulation particles

    International Nuclear Information System (INIS)

    Yu, L.H.

    1998-01-01

    Recent advances in self-amplified spontaneous emission (SASE) experiments stimulate interest in quantitative comparison of measurements with theory. In this paper we show that the widely used simulation code TDA3D, developed by Tran and Wurtele [Comput. Phys. Commun. 54, 263 (1989)] even though a single frequency code, can be used to determine the output power in the SASE process with excellent approximation in the exponential growth regime. The method applies when the gain is not very high, which is a special advantage, because when the gain is not very high, the analytical calculation is particularly difficult since the exponential growing term does not dominate. The analysis utilizes a scaling relation between the output power and the number of simulation particles in the code TDA3D: left-angle P right-angle=N λ ' /N λ left-angle P ' right-angle, where left-angle P right-angle is the output power and N λ is the line density of the electrons, while left-angle P ' right-angle is the calculated output power using a line density N λ ' of the number of simulation particles in the code TDA3D. Because of the scaling property, the number of simulation particles can be taken to be many orders of magnitude less than the actual experiment. Comparison of our results with experiment yields new insight into the SASE process. copyright 1998 The American Physical Society

  6. A modular positive feedback-based gene amplifier

    Directory of Open Access Journals (Sweden)

    Bhalerao Kaustubh D

    2010-02-01

    Full Text Available Abstract Background Positive feedback is a common mechanism used in the regulation of many gene circuits as it can amplify the response to inducers and also generate binary outputs and hysteresis. In the context of electrical circuit design, positive feedback is often considered in the design of amplifiers. Similar approaches, therefore, may be used for the design of amplifiers in synthetic gene circuits with applications, for example, in cell-based sensors. Results We developed a modular positive feedback circuit that can function as a genetic signal amplifier, heightening the sensitivity to inducer signals as well as increasing maximum expression levels without the need for an external cofactor. The design utilizes a constitutively active, autoinducer-independent variant of the quorum-sensing regulator LuxR. We experimentally tested the ability of the positive feedback module to separately amplify the output of a one-component tetracycline sensor and a two-component aspartate sensor. In each case, the positive feedback module amplified the response to the respective inducers, both with regards to the dynamic range and sensitivity. Conclusions The advantage of our design is that the actual feedback mechanism depends only on a single gene and does not require any other modulation. Furthermore, this circuit can amplify any transcriptional signal, not just one encoded within the circuit or tuned by an external inducer. As our design is modular, it can potentially be used as a component in the design of more complex synthetic gene circuits.

  7. Geometric scaling in ultrahigh-energy neutrino scattering and nonlinear perturbative QCD

    International Nuclear Information System (INIS)

    Machado, Magno V.T.

    2005-01-01

    It is shown that in ultrahigh-energy inelastic neutrino-nucleon(nucleus) scattering the cross sections for the boson-hadron(nucleus) reactions should exhibit geometric scaling on the single variable τ A =Q 2 /Q sat,A 2 . The dependence on energy and atomic number of the charged/neutral current cross sections are encoded in the saturation momentum Q sat,A . This fact allows an analytical computation of the neutrino scattering on nucleon/nucleus at high energies, providing a theoretical parameterization based on the scaling property

  8. Realization of OFCC based Transimpedance Mode Instrumentation Amplifier

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2016-01-01

    Full Text Available The paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three Operational Floating Current Conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematicThe paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three operational floating current conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematic.

  9. Quantum-Limited Directional Amplifiers with Optomechanics

    Science.gov (United States)

    Malz, Daniel; Tóth, László D.; Bernier, Nathan R.; Feofanov, Alexey K.; Kippenberg, Tobias J.; Nunnenkamp, Andreas

    2018-01-01

    Directional amplifiers are an important resource in quantum-information processing, as they protect sensitive quantum systems from excess noise. Here, we propose an implementation of phase-preserving and phase-sensitive directional amplifiers for microwave signals in an electromechanical setup comprising two microwave cavities and two mechanical resonators. We show that both can reach their respective quantum limits on added noise. In the reverse direction, they emit thermal noise stemming from the mechanical resonators; we discuss how this noise can be suppressed, a crucial aspect for technological applications. The isolation bandwidth in both is of the order of the mechanical linewidth divided by the amplitude gain. We derive the bandwidth and gain-bandwidth product for both and find that the phase-sensitive amplifier has an unlimited gain-bandwidth product. Our study represents an important step toward flexible, on-chip integrated nonreciprocal amplifiers of microwave signals.

  10. Cell damage evaluation of mammalian cells in cell manipulation by amplified femtosecond ytterbium laser

    Science.gov (United States)

    Hong, Z.-Y.; Iino, T.; Hagihara, H.; Maeno, T.; Okano, K.; Yasukuni, R.; Hosokawa, Y.

    2018-03-01

    A micrometer-scale explosion with cavitation bubble generation is induced by focusing a femtosecond laser in an aqueous solution. We have proposed to apply the explosion as an impulsive force to manipulate mammalian cells especially in microfluidic chip. Herein, we employed an amplified femtosecond ytterbium laser as an excitation source for the explosion and evaluated cell damage in the manipulation process to clarify the application potential. The damage of C2C12 myoblast cell prepared as a representative mammalian cell was investigated as a function of distance between cell and laser focal point. Although the cell received strong damage on the direct laser irradiation condition, the damage sharply decreased with increasing distance. Since the threshold distance, above which the cell had no damage, was consistent with radius of the cavitation bubble, impact of the cavitation bubble would be a critical factor for the cell damage. The damage had strong nonlinearity in the pulse energy dependence. On the other hand, cell position shift by the impact of the cavitation bubble was almost proportional to the pulse energy. In balance between the cell viability and the cell position shift, we elucidated controllability of the cell manipulation in microfluidic chip.

  11. Noise Suppression and Enhanced Focusability in Plasma Raman Amplifier with Multi-frequency Pump

    International Nuclear Information System (INIS)

    Balakin, A.A.; Fraiman, G.M.; Fisch, N.J.; Malkin, V.M.

    2003-01-01

    Laser pulse compression/amplification through Raman backscattering in plasmas can be facilitated by using multi-frequency pump laser beams. The efficiency of amplification is increased by suppressing the Raman instability of thermal fluctuations and seed precursors. Also the focusability of the amplified radiation is enhanced due to the suppression of large-scale longitudinal speckles in the pump wave structure

  12. A 30 KW RF power amplifier for the RFQ accelerator (Paper No. CP 27)

    International Nuclear Information System (INIS)

    Luktuke, R.D.; Garud, A.N.; Murthy, P.N.K.; Sethi, R.C.

    1990-01-01

    A radio frequency quadrupole (RFQ) accelerator, to accelerate deuterons to an energy of 150 keV with beam current of 20 mA, has been designed and is under construction. This accelerator needs approximately 30 kW of RF power to generate the desired voltage of 55 kV on the electrodes, at a frequency of 45 MHz. The power amplifier is designed with four stages of RF amplification using vacuum tubes. The first two stages are built with the tubes 6146 and BEL 250 CX, to deliver about 100 watts power to the grid circuit of the pre driver. The pre driver (EIMAC 5 CX 1500 A) and the driver (BEL 4000 CX) give an output power of about 5kW, at the grid of the high power amplifier. All the four tubes operate in class A/AB mode. The high power amplifier has been designed and is being built around the BEL power tetrode tube CQK-50-2. The output from the high power amplifier is fed to the RFQ, via a matching network to tranform the plate impedance to 50 ohm loop impedeance at the RFQ. The paper presents the design aspects of the high power amplifier, matching network and the results obtained for the earlier stages. (author). 3 refs., 3 tabs., 2 figs

  13. Integrated wide-band low-background amplifiers

    International Nuclear Information System (INIS)

    Il'yushchenko, I.I.

    1980-01-01

    Ways of increasing stability and reproduction of characteristics of wide-band integral amplifiers that would to the least extent increase their background noises, are discussed. Considered are some certain flowsheets of integral wide-band amplifiers with low background noise of foreign production which differ from one another by construction of inlet cascades as well as by the applied feedback type. The principal flowsheets of the amplifiers and their main performances are presented. The analysis of the data obtained has revealed that microcircuits made of cascades with a common emitter and local combined feedback are most wide-band among all the considered microcircuits [ru

  14. Is small beautiful? A multicriteria assessment of small-scale energy technology applications in local governments

    International Nuclear Information System (INIS)

    Burton, Jonathan; Hubacek, Klaus

    2007-01-01

    In its 2003 White Paper the UK government set ambitious renewable energy targets. Local governments and households have an increasing role in the overall energy system as consumers, suppliers of smaller-scale applications and citizens discussing energy projects. In this paper, we consider if small-scale or large-scale approaches to renewable energy provision can achieve energy targets in the most socially, economically and environmentally (SEE) effective way. We take a local case study of renewable energy provision in the Metropolitan Borough of Kirklees in Yorkshire, UK, and apply a multi-criteria decision analysis methodology to compare the small-scale schemes implemented in Kirklees with large-scale alternatives. The results indicate that small-scale schemes are the most SEE effective, despite large-scale schemes being more financially viable. The selection of the criteria on which the alternatives are assessed and the assigned weights for each criterion are of crucial importance. It is thus very important to include the relevant stakeholders to elicit this information

  15. Development and applications of femtosecond monolithic Yb-doped fiber chirped-pulse amplifiers

    International Nuclear Information System (INIS)

    Zhu, L.

    2011-01-01

    In the past few years, compact and environmentally stable high-energy ultrashort pulse laser sources have been broadly utilized in many different applications. Fiber lasers offer big practical advantages over bulk solid-state laser systems in terms of flexibility, compactness, reliability, cost effectiveness and turn-key operability. Moreover, thermal effects are dramatically reduced due to the large surface-to-volume ratio of an optical fiber, and good spatial mode quality can be ensured by its waveguiding property. Therefore, a fiber-based laser system is considered to be the preferred laser architecture. The main theme of this thesis is the development of various femtosecond monolithic Yb-doped fiber chirped-pulse-amplification (FCPA) system and their applications. We demonstrate an ultrafast high-energy monolithic Yb-doped FCPA system in which the pulse fidelity is preserved by weakening the nonlinear effects via a substantial level of temporal stretching of the seed pulses and by using highly doped active fibers as amplifying media. The presented monolithic FCPA delivers up to ∼ 25 μJ diffraction-limited pulses that can be recompressed to sub-200 fs duration, and the pulse quality has been confirmed through the second-harmonic-generation (SHG) conversion efficiency of over 52%. Improved dispersion and nonlinearity management schemes of the FCPA system allowing substantial pulse energy scaling in the monolithic format as well as methods for overcoming a series of technological challenges are reported. Three different types of Yb-doped fiber oscillators have been developed and built in the course of this PhD work. First, we compare two oscillator types that are based on the all-normal-dispersion (ANDi) regime and the dispersion-managed (DM) regime. Both of them have been tested as the seed-pulse source of the monolithic Yb-doped FCPA system. Then we introduce another novel design based on higher-order-mode (HOM) dispersion management that competes with a

  16. Environmental impacts of utility-scale solar energy

    Science.gov (United States)

    Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M. L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M.F.

    2014-01-01

    Renewable energy is a promising alternative to fossil fuel-based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, we review direct and indirect environmental impacts – both beneficial and adverse – of utility-scale solar energy (USSE) development, including impacts on biodiversity, land-use and land-cover change, soils, water resources, and human health. Additionally, we review feedbacks between USSE infrastructure and land-atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co-benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change.

  17. Advances in high-power rf amplifiers

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1979-01-01

    Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems

  18. Class D audio amplifiers for high voltage capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis

    of high volume, weight, and cost. High efficient class D amplifiers are now widely available offering power densities, that their linear counterparts can not match. Unlike the technology of audio amplifiers, the loudspeaker is still based on the traditional electrodynamic transducer invented by C.W. Rice......Audio reproduction systems contains two key components, the amplifier and the loudspeaker. In the last 20 – 30 years the technology of audio amplifiers have performed a fundamental shift of paradigm. Class D audio amplifiers have replaced the linear amplifiers, suffering from the well-known issues...... with the low level of acoustical output power and complex amplifier requirements, have limited the commercial success of the technology. Horn or compression drivers are typically favoured, when high acoustic output power is required, this is however at the expense of significant distortion combined...

  19. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    International Nuclear Information System (INIS)

    Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F

    2015-01-01

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)

  20. Synergies of scale - A vision of Mongolia and China's common energy future

    Energy Technology Data Exchange (ETDEWEB)

    Borgford-Parnell, Nathan

    2010-09-15

    Energy consumption in China is expected to double over the next 20 years. Addressing the enormous scale of China's energy need and attendant increases in greenhouse gas emissions requires dramatic and rapid rollout of renewable energy technologies. Mongolia has some of the world's best renewable energy resources but the scale of its market cannot tap them efficiently. Developing Mongolia into a significant exporter of renewable energy to China will create synergies of scale moving both countries towards their energy goals, creating jobs, and fostering growth while significantly reducing GHG emissions in the region.

  1. Minnesota wood energy scale-up project 1994 establishment cost data

    Energy Technology Data Exchange (ETDEWEB)

    Downing, M. [Oak Ridge National Lab., TN (United States); Pierce, R. [Champion International, Alexandria, MN (United States); Kroll, T. [Minnesota Department of Natural Resources-Forestry, St. Cloud, MN (United States)

    1996-03-18

    The Minnesota Wood Energy Scale-up Project began in late 1993 with the first trees planted in the spring of 1994. The purpose of the project is to track and monitor economic costs of planting, maintaining and monitoring larger scale commercial plantings. For 15 years, smaller scale research plantings of hybrid poplar have been used to screen for promising, high-yielding poplar clones. In this project 1000 acres of hybrid poplar trees were planted on Conservation Reserve Program (CRP) land near Alexandria, Minnesota in 1994. The fourteen landowners involved re-contracted with the CRP for five-year extensions of their existing 10-year contracts. These extended contracts will expire in 2001, when the plantings are 7 years old. The end use for the trees planted in the Minnesota Wood Energy Scale-up Project is undetermined. They will belong to the owner of the land on which they are planted. There are no current contracts in place for the wood these trees are projected to supply. The structure of the wood industry in the Minnesota has changed drastically over the past 5 years. Stumpage values for fiber have risen to more than $20 per cord in some areas raising the possibility that these trees could be used for fiber rather than energy. Several legislative mandates have forced the State of Minnesota to pursue renewable energy including biomass energy. These mandates, a potential need for an additional 1700 MW of power by 2008 by Northern States Power, and agricultural policies will all affect development of energy markets for wood produced much like agricultural crops. There has been a tremendous amount of local and international interest in the project. Contractual negotiations between area landowners, the CRP, a local Resource Conservation and Development District, the Minnesota Department of Natural Resources and others are currently underway for additional planting of 1000 acres in spring 1995.

  2. Amplified Policymaking

    Science.gov (United States)

    Prince, Katherine; Woempner, Carolyn

    2010-01-01

    This brief examines the policy implications of two drivers of change presented in the "2020 Forecast: Creating the Future of Learning"-- Pattern Recognition and Amplified Organization. These drivers point toward a series of cultural shifts and illuminate how we are developing new ways of organizing, constructing, and managing knowledge.…

  3. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influencedby the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled. (semiconductor devices)

  4. CARM and harmonic gyro-amplifier experiments at 17 GHz

    International Nuclear Information System (INIS)

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.

    1993-01-01

    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE 31 mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE 11 mode is also discussed

  5. Technology scale and supply chains in a secure, affordable and low carbon energy transition

    International Nuclear Information System (INIS)

    Hoggett, Richard

    2014-01-01

    Highlights: • Energy systems need to decarbonise, provide security and remain affordable. • There is uncertainty over which technologies will best enable this to happen. • A strategy to deal with uncertainty is to assess a technologies ability to show resilience, flexibility and adaptability. • Scale is important and smaller scale technologies are like to display the above characteristics. • Smaller scale technologies are therefore more likely to enable a sustainable, secure, and affordable energy transition. - Abstract: This research explores the relationship between technology scale, energy security and decarbonisation within the UK energy system. There is considerable uncertainty about how best to deliver on these goals for energy policy, but a focus on supply chains and their resilience can provide useful insights into the problems uncertainty causes. Technology scale is central to this, and through an analysis of the supply chains of nuclear power and solar photovoltaics, it is suggested that smaller scale technologies are more likely to support and enable a secure, low carbon energy transition. This is because their supply chains are less complex, show more flexibility and adaptability, and can quickly respond to changes within an energy system, and as such they are more resilient than large scale technologies. These characteristics are likely to become increasingly important in a rapidly changing energy system, and prioritising those technologies that demonstrate resilience, flexibility and adaptability will better enable a transition that is rapid, sustainable, secure and affordable

  6. Scaling of energy deposition in fast ignition targets

    International Nuclear Information System (INIS)

    Welch, Dale R.; Slutz, Stephen A.; Mehlhorn, Thomas Alan; Campbell, Robert B.

    2005-01-01

    We examine the scaling to ignition of the energy deposition of laser generated electrons in compressed fast ignition cores. Relevant cores have densities of several hundred g/cm 3 , with a few keV initial temperature. As the laser intensities increase approaching ignition systems, on the order of a few 10 21 W/cm 2 , the hot electron energies expected to approach 100MeV. Most certainly anomalous processes must play a role in the energy transfer, but the exact nature of these processes, as well as a practical way to model them, remain open issues. Traditional PIC explicit methods are limited to low densities on current and anticipated computing platforms, so the study of relevant parameter ranges has received so far little attention. We use LSP to examine a relativistic electron beam (presumed generated from a laser plasma interaction) of legislated energy and angular distribution is injected into a 3D block of compressed DT. Collective effects will determine the stopping, most likely driven by magnetic field filamentation. The scaling of the stopping as a function of block density and temperature, as well as hot electron current and laser intensity is presented. Sub-grid models may be profitably used and degenerate effects included in the solution of this problem.

  7. Characterization of a Common-Gate Amplifier Using Ferroelectric Transistors

    Science.gov (United States)

    Hunt, Mitchell; Sayyah, Rana; MacLeod, Todd C.; Ho, Fat D.

    2011-01-01

    In this paper, the empirical data collected through experiments performed using a FeFET in the common-gate amplifier circuit is presented. The FeFET common-gate amplifier was characterized by varying all parameters in the circuit, such as load resistance, biasing of the transistor, and input voltages. Due to the polarization of the ferroelectric layer, the particular behavior of the FeFET common-gate amplifier presents interesting results. Furthermore, the differences between a FeFET common-gate amplifier and a MOSFET common-gate amplifier are examined.

  8. The design of high performance weak current integrated amplifier

    International Nuclear Information System (INIS)

    Chen Guojie; Cao Hui

    2005-01-01

    A design method of high performance weak current integrated amplifier using ICL7650 operational amplifier is introduced. The operating principle of circuits and the step of improving amplifier's performance are illustrated. Finally, the experimental results are given. The amplifier has programmable measurement range of 10 -9 -10 -12 A, automatic zero-correction, accurate measurement, and good stability. (authors)

  9. Electron transport in solid targets and in the active mixture of a CO2 laser amplifier

    Science.gov (United States)

    Galkowski, A.

    The paper examines the use of the NIKE code for the Monte Carlo computation of the deposited energy profile and other characteristics of the absorption process of an electron beam in a solid target and the spatial distribution of primary ionization in the active mixture of a CO2 laser amplifier. The problem is considered in connection with the generation of intense electron beams and the acceleration of thin metal foils, as well as in connection with the electric discharge pumping of a CO2 laser amplifier.

  10. Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications

    DEFF Research Database (Denmark)

    Berg, Tommy Winther

    2004-01-01

    This thesis describes the physics and applications of quantum dot semiconductor optical amplifiers based on numerical simulations. These devices possess a number of unique properties compared with other types of semiconductor amplifiers, which should allow enhanced performance of semiconductor...... respects is comparable to those of fiber amplifiers. The possibility of inverting the optically active states to a large degree is essential in order to achieve this performance. Optical signal processing through cross gain modulation and four wave mixing is modeled and described. For both approaches...... and QW devices and to experiments on quantum dot amplifiers. These comparisons outline the qualitative differences between the different types of amplifiers. In all cases focus is put on the physical processes responsible the differences....

  11. High rate amplifier-digitizer system for liquid argon calorimeters

    International Nuclear Information System (INIS)

    Droege, T.F.; Lobkowicz, F.; Fukushima, Y.

    1978-01-01

    A low-cost charge amplifier for a liquid argon photon detector and a new method for pulse height analysis are described. This scheme is suitable for high-energy photon detection with high counting rate. Samples of preamplifer output are taken just before and just after the arrival of the charge from the detector. The difference of these samples provides a stable pedestal and rejects low frequency noise. Short two-pulse resolving time (approximately equal to 200ns) is achieved. 6 refs

  12. Sustainability of utility-scale solar energy – critical ecological concepts

    Science.gov (United States)

    Moore-O'Leary, Kara A.; Hernandez, Rebecca R.; Johnston, Dave S.; Abella, Scott R.; Tanner, Karen E.; Swanson, Amanda C.; Kreitler, Jason R.; Lovich, Jeffrey E.

    2017-01-01

    Renewable energy development is an arena where ecological, political, and socioeconomic values collide. Advances in renewable energy will incur steep environmental costs to landscapes in which facilities are constructed and operated. Scientists – including those from academia, industry, and government agencies – have only recently begun to quantify trade-offs in this arena, often using ground-mounted, utility-scale solar energy facilities (USSE, ≥1 megawatt) as a model. Here, we discuss five critical ecological concepts applicable to the development of more sustainable USSE with benefits over fossil-fuel-generated energy: (1) more sustainable USSE development requires careful evaluation of trade-offs between land, energy, and ecology; (2) species responses to habitat modification by USSE vary; (3) cumulative and large-scale ecological impacts are complex and challenging to mitigate; (4) USSE development affects different types of ecosystems and requires customized design and management strategies; and (5) long-term ecological consequences associated with USSE sites must be carefully considered. These critical concepts provide a framework for reducing adverse environmental impacts, informing policy to establish and address conservation priorities, and improving energy production sustainability.

  13. Prospects for charge sensitive amplifiers in scaled CMOS

    Science.gov (United States)

    O'Connor, Paul; De Geronimo, Gianluigi

    2002-03-01

    Due to its low cost and flexibility for custom design, monolithic CMOS technology is being increasingly employed in charge preamplifiers across a broad range of applications, including both scientific research and commercial products. The associated detectors have capacitances ranging from a few tens of fF to several hundred pF. Applications call for pulse shaping from tens of ns to tens of μs, and constrain the available power per channel from tens of μW to tens of mW. At the same time a new technology generation, with changed device parameters, appears every 2 years or so. The optimum design of the front-end circuitry is examined taking into account submicron device characteristics, weak inversion operation, the reset system, and power supply scaling. Experimental results from recent prototypes will be presented. We will also discuss the evolution of preamplifier topologies and anticipated performance limits as CMOS technology scales down to the 0.1 μm/1.0 V generation in 2006.

  14. Prospects for charge sensitive amplifiers in scaled CMOS

    International Nuclear Information System (INIS)

    O'Connor, Paul; De Geronimo, Gianluigi

    2002-01-01

    Due to its low cost and flexibility for custom design, monolithic CMOS technology is being increasingly employed in charge preamplifiers across a broad range of applications, including both scientific research and commercial products. The associated detectors have capacitances ranging from a few tens of fF to several hundred pF. Applications call for pulse shaping from tens of ns to tens of μs, and constrain the available power per channel from tens of μW to tens of mW. At the same time a new technology generation, with changed device parameters, appears every 2 years or so. The optimum design of the front-end circuitry is examined taking into account submicron device characteristics, weak inversion operation, the reset system, and power supply scaling. Experimental results from recent prototypes will be presented. We will also discuss the evolution of preamplifier topologies and anticipated performance limits as CMOS technology scales down to the 0.1 μm/1.0 V generation in 2006

  15. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  16. Extreme-scale Algorithms and Solver Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, Jack [Univ. of Tennessee, Knoxville, TN (United States)

    2016-12-10

    A widening gap exists between the peak performance of high-performance computers and the performance achieved by complex applications running on these platforms. Over the next decade, extreme-scale systems will present major new challenges to algorithm development that could amplify this mismatch in such a way that it prevents the productive use of future DOE Leadership computers due to the following; Extreme levels of parallelism due to multicore processors; An increase in system fault rates requiring algorithms to be resilient beyond just checkpoint/restart; Complex memory hierarchies and costly data movement in both energy and performance; Heterogeneous system architectures (mixing CPUs, GPUs, etc.); and Conflicting goals of performance, resilience, and power requirements.

  17. Developing A Renewable Energy Awareness Scale For Pre-service Chemistry Teachers

    Directory of Open Access Journals (Sweden)

    Soner YAVUZ

    2006-01-01

    Full Text Available Developing A Renewable Energy Awareness Scale For Pre-service Chemistry Teachers Inci MORGIL Nilgün SECKEN A. Seda YUCEL Ozge OZYALCIN OSKAY Soner YAVUZ and Evrim URAL Hacettepe University, Faculty of Education, Department of Chemistry Education, 06800 Beytepe, Ankara, TURKEY ABSTRACT In times when human beings used to live in a natural environment, their needs were also provided by natural resources. With the increases in population in time, human beings started to look for new resources willing to get “the more” and “the fastest”. Just like the invention of steam, firstly, they increased the density of the resources and produced “more” energy. However, instead of working on the density of water, which spreads with the solar energy, they chose an easier way, which was fuel that produced more energy when burnt. Unfortunately, the damages these fuel products create in the atmosphere and environment shaded their benefits. It did not take so long for the earth to run out of energy resources and to threaten environmental and human health. As a result of that, new energy resources were started to be sought and the studies enlightened the concepts of sustainable, renewable energy. Renewable energy is defined as “the energy source, which continues its existence for the following days within the evolution of nature”. Educators pointed out a need in students for gaining consciousness on renewable energy resources. In the light of the importance of renewable and sustainable energy, a “Renewable Energy Awareness Scale” that questioned to what extent the individuals were aware of renewable energy was developed. The Renewable Energy Awareness Scale, which consisted of 50 items, was administered as a pilot study. The factor analysis concluded with a scale of 39 items with a reliability coefficient of 0.944 was developed.

  18. Micro-scale energy valorization of grape marcs in winery production plants

    International Nuclear Information System (INIS)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia

    2015-01-01

    Highlights: • BioMethane Potential of grape marcs was investigated. • Grape marcs were characterized to realize a micro-scale energy recovery. • Comparative BMP batch-tests utilizing lab-scale reactors were performed. • Biogas valorization by grape marcs anaerobic digestion at small scale is evaluated. - Abstract: The BiochemicalMethanePotential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year −1 electrical and 8900 kW h year −1 thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective

  19. High power X-band coaxial amplifier experiments

    International Nuclear Information System (INIS)

    Davis, T.J.; Nation, J.A.

    1991-01-01

    Studies are continuing on the development of X-band coaxial microwave amplifiers as a source for next generation linear colliders. Coaxial amplifiers employ an annular electron beam propagating between inner and outer drift tube conductors, a configuration which allows large increases in beam current over standard pencil beam amplifiers. Large average diameter systems may still be used without mode competition since TM mode cutoff frequencies are controlled by the separation between conductors. A number of amplifier configurations are being studied, all primed by a driven initial cavity which resonates around 9 GHz. Simple theory of coaxial systems and particle-in-cell simulations are presented, as well as initial experimental results using a 420 keV, 7-8 kA, 9 cm diameter annular beam

  20. Wideband multi-element Er-doped fiber amplifier

    International Nuclear Information System (INIS)

    Thipparapu, N K; Jain, S; May-Smith, T C; Sahu, J K

    2014-01-01

    A multi-element Er-doped fiber amplifier (MEEDFA) is demonstrated in which the gain profile is extended into the S and L bands. Each fiber element of the MEEDFA is found to provide a maximum gain of 37 dB and a noise figure of < 4 dB in the C-band. The gain profile of the amplifier is shifted towards longer wavelength by cascading fiber elements. The novel geometry of the multi-element fiber (MEF) could allow for the development of a broadband amplifier in a split-band configuration. The proposed amplifier can operate in the wavelength band of 1520 to 1595 nm (75 nm), with a minimum gain of 20 dB. (letter)

  1. Green smartphone GPUs: Optimizing energy consumption using GPUFreq scaling governors

    KAUST Repository

    Ahmad, Enas M.

    2015-10-19

    Modern smartphones are limited by their short battery life. The advancement of the graphical performance is considered as one of the main reasons behind the massive battery drainage in smartphones. In this paper we present a novel implementation of the GPUFreq Scaling Governors, a Dynamic Voltage and Frequency Scaling (DVFS) model implemented in the Android Linux kernel for dynamically scaling smartphone Graphical Processing Units (GPUs). The GPUFreq governors offer users multiple variations and alternatives in controlling the power consumption and performance of their GPUs. We implemented and evaluated our model on a smartphone GPU and measured the energy performance using an external power monitor. The results show that the energy consumption of smartphone GPUs can be significantly reduced with a minor effect on the GPU performance.

  2. A parallel input composite transimpedance amplifier

    Science.gov (United States)

    Kim, D. J.; Kim, C.

    2018-01-01

    A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.

  3. Unconditionally stable microwave Si-IMPATT amplifiers

    International Nuclear Information System (INIS)

    Seddik, M.M.

    1986-07-01

    The purpose of this investigation has been the development of an improved understanding of the design and analysis of microwave reflection amplifiers employing the negative resistance property of the IMPATT devices. Unconditionally stable amplifier circuit using a Silicon IMPATT diode is designed. The problems associated with the design procedures and the stability criterion are discussed. A computer program is developed to perform the computations. The stable characteristics of a reflection-type Si-IMPATT amplifier, such as gain, frequency and bandwidth are examined. It was found that at large signal drive levels, 7 dB gain with bandwidth of 800 MHz at 22,5 mA was obtained. (author)

  4. Low noise amplifier for ZnS(Ag) scintillation chamber

    International Nuclear Information System (INIS)

    Do Hoang Cuong

    1998-01-01

    A new pulse amplifier that can be used with standard photomultiplier tubes coupled with Zn(Ag) scintillation chamber is presented. The amplifier based on an IC operational amplifier LF 356N consists of a low-noise charge sensitive preamplifier and pulse shaping circuits for optimization of signal to noise ratio. Temperature instability is ≤ 0.05%/ o C. Dynamic range for linear output signals is equal +7 V. The presented amplifier is used in a measuring head for 0.17 L Lucas chambers developed in Department of Nuclear Instruments and Methods of the INCT in laboratory investigations aimed to develop methods and instruments for measurement of radon concentration in the air. The amplifier can also be employed for measurement of ionizing radiation by means of other scintillators coupled to PM tube. The amplifier is followed by a pulse discriminator with adjustable discrimination level. The amplifier output signal and discriminator output pulses are fed to external devices. (author)

  5. A manganese-hydrogen battery with potential for grid-scale energy storage

    Science.gov (United States)

    Chen, Wei; Li, Guodong; Pei, Allen; Li, Yuzhang; Liao, Lei; Wang, Hongxia; Wan, Jiayu; Liang, Zheng; Chen, Guangxu; Zhang, Hao; Wang, Jiangyan; Cui, Yi

    2018-05-01

    Batteries including lithium-ion, lead-acid, redox-flow and liquid-metal batteries show promise for grid-scale storage, but they are still far from meeting the grid's storage needs such as low cost, long cycle life, reliable safety and reasonable energy density for cost and footprint reduction. Here, we report a rechargeable manganese-hydrogen battery, where the cathode is cycled between soluble Mn2+ and solid MnO2 with a two-electron reaction, and the anode is cycled between H2 gas and H2O through well-known catalytic reactions of hydrogen evolution and oxidation. This battery chemistry exhibits a discharge voltage of 1.3 V, a rate capability of 100 mA cm-2 (36 s of discharge) and a lifetime of more than 10,000 cycles without decay. We achieve a gravimetric energy density of 139 Wh kg-1 (volumetric energy density of 210 Wh l-1), with the theoretical gravimetric energy density of 174 Wh kg-1 (volumetric energy density of 263 Wh l-1) in a 4 M MnSO4 electrolyte. The manganese-hydrogen battery involves low-cost abundant materials and has the potential to be scaled up for large-scale energy storage.

  6. ICC Experiment Performance Improvement through Advanced Feedback Controllers for High-Power Low-Cost Switching Power Amplifiers

    International Nuclear Information System (INIS)

    Nelson, Brian A.

    2006-01-01

    Limited resources force most smaller fusion energy research experiments to have little or no feedback control of their operational parameters, preventing achievement of their full operational potential. Recent breakthroughs in high-power switching technologies have greatly reduced feedback-controlled power supply costs, primarily those classified as switching power amplifiers. However, inexpensive and flexible controllers for these power supplies have not been developed. A uClinux-based micro-controller (Analog Devices Blackfin BF537) was identified as having the capabilities to form the base of a digital control system for switching power amplifiers. A control algorithm was created, and a Linux character device driver was written to realize the algorithm. The software and algorithm were successfully tested on a switching power amplifier and magnetic field coil using University of Washington (subcontractor) resources

  7. Transpermeance Amplifier Applied to Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Jossana Ferreira

    2017-02-01

    Full Text Available The most conventional approach of controlling magnetic forces in active magnetic bearings (AMBs is through current feedback amplifiers: transconductance. This enables the operation of the AMB to be understood in terms of a relatively simple current-based model as has been widely reported on in the literature. The alternative notion of using transpermeance amplifiers, which approximate the feedback of gap flux rather than current, has been in commercial use in some form for at least thirty years, however is only recently seeing more widespread acceptance as a commercial standard. This study explores how such alternative amplifiers should be modeled and then examines the differences in behavior between AMBs equipped with transconductance and transpermeance amplifiers. The focus of this study is on two aspects. The first is the influence of rotor displacement on AMB force, commonly modeled as a constant negative equivalent mechanical stiffness, and it is shown that either scheme actually leads to a finite bandwidth effect, but that this bandwidth is much lower when transpermeance is employed. The second aspect is the influence of eddy currents. Using a very simple model of eddy currents (a secondary short-circuited coil, it is demonstrated that transpermeance amplifiers can recover significant actuator bandwidth compared with transconductance, but at the cost of needing increased peak current headroom.

  8. Photonic-band-gap gyrotron amplifier with picosecond pulses

    Science.gov (United States)

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.; Shapiro, Michael A.; Temkin, Richard J.

    2017-12-01

    We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

  9. A Multi-Scale Energy Food Systems Modeling Framework For Climate Adaptation

    Science.gov (United States)

    Siddiqui, S.; Bakker, C.; Zaitchik, B. F.; Hobbs, B. F.; Broaddus, E.; Neff, R.; Haskett, J.; Parker, C.

    2016-12-01

    Our goal is to understand coupled system dynamics across scales in a manner that allows us to quantify the sensitivity of critical human outcomes (nutritional satisfaction, household economic well-being) to development strategies and to climate or market induced shocks in sub-Saharan Africa. We adopt both bottom-up and top-down multi-scale modeling approaches focusing our efforts on food, energy, water (FEW) dynamics to define, parameterize, and evaluate modeled processes nationally as well as across climate zones and communities. Our framework comprises three complementary modeling techniques spanning local, sub-national and national scales to capture interdependencies between sectors, across time scales, and on multiple levels of geographic aggregation. At the center is a multi-player micro-economic (MME) partial equilibrium model for the production, consumption, storage, and transportation of food, energy, and fuels, which is the focus of this presentation. We show why such models can be very useful for linking and integrating across time and spatial scales, as well as a wide variety of models including an agent-based model applied to rural villages and larger population centers, an optimization-based electricity infrastructure model at a regional scale, and a computable general equilibrium model, which is applied to understand FEW resources and economic patterns at national scale. The MME is based on aggregating individual optimization problems for relevant players in an energy, electricity, or food market and captures important food supply chain components of trade and food distribution accounting for infrastructure and geography. Second, our model considers food access and utilization by modeling food waste and disaggregating consumption by income and age. Third, the model is set up to evaluate the effects of seasonality and system shocks on supply, demand, infrastructure, and transportation in both energy and food.

  10. Large-scale wind energy application. Transporting wind energy over long distances using an HVDC transmission line, in combination with hydro energy or biomass energy

    International Nuclear Information System (INIS)

    Coelingh, J.P.; Van Wijk, A.J.M.; Betcke, J.W.H.; Geuzendam, C.; Gilijamse, W.; Westra, C.A.; Curvers, A.P.W.M.; Beurskens, H.J.M.

    1995-08-01

    The main objective of the study on the title subject is to assess the long-term prospects for large-scale application of wind energy, in combination with hydro energy in Norway and in combination with biomass energy in Scotland. These countries have high wind resource areas, however they are located far away from load centres. The development of new transmission technologies as High Voltage Direct Current (HVDC) transmission lines, in combination with highly suitable places for wind energy in Norway and Scotland, forms the driving force behind this study. The following two cases are being considered: (1) a large-scale wind farm (1,000 MW) in Norway from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with hydro energy. Hydro energy already makes a large contribution to the energy supply of Norway. Wind farms can contribute to the electricity production and save hydro energy generated electricity and make the export of electricity profitable; and (2) a large-scale wind farm (1,000 MW) in Scotland from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with biomass energy. Scotland has a large potential for biomass production such as energy crops and forestry. Poplars and willows cultivated on set-aside land can be gasified and fed into modern combined-cycle plants to generate electricity. In Scotland the usable potential of wind energy may be limited in the short and medium term by the capacity of the grid. New connections can overcome this constraint and allow wind energy to be treated as a European Union resource rather than as a national resource. Thus, the concept of this study is to look at the possibilities of making a 1,000 MW link from The Netherlands to Norway or to Scotland, in order to supply electricity at competitive costs generated with renewable energy sources. 16 figs., 24 tabs., 80 refs

  11. Investigation of pump-to-seed beam matching on output features of Rb and Cs vapor laser amplifiers

    Science.gov (United States)

    Shen, Binglin; Huang, Jinghua; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2018-05-01

    Taking into account the beam radii of pump light and seed laser along the entire length of the cell and their intensities in the cross section, a physical model with ordinary differential equation methods for alkali vapor amplifiers is established. Applied to the reported optically pumped Rb and diode-pumped Cs vapor amplifiers, the model shows good agreement between the calculated and measured dependence of amplified power on the seed power. A larger width of the spontaneous emission region as compared to the widths of pump absorption and laser emission regions, which will result in very high energy losses, is observed in the cell. Influence of pump and seed beam waists on output performance is calculated, showing that the pump and seed beam should match each other not only in shape but also in size, thus an optimal combination of beam radii is very important for efficient operation of alkali vapor amplifiers.

  12. Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.

    Science.gov (United States)

    Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong

    2017-10-11

    The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.

  13. Pre-Amplifier Module for Laser Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Heebner, J E; Bowers, M W

    2008-02-06

    The Pre-Amplifier Modules (PAMs) are the heart of the National Ignition Facility (NIF), providing most of the energy gain for the most energetic laser in the world. Upon completion, NIF will be the only laboratory in which scientists can examine the fusion processes that occur inside stars, supernovae, and exploding nuclear weapons and that may someday serve as a virtually inexhaustible energy source for electricity. Consider that in a fusion power plant 50 cups of water could provide the energy comparable to 2 tons of coal. Of paramount importance for achieving laser-driven fusion ignition with the least energy input is the synchronous and symmetric compression of the target fuel--a condition known as laser power balance. NIF's 48 PAMs thus must provide energy gain in an exquisitely stable and consistent manner. While building one module that meets performance requirements is challenging enough, our design has already enabled the construction and fielding of 48 PAMs that are stable, uniform, and interchangeable. PAM systems are being tested at the University of Rochester's Laboratory for Laser Energetics, and the Atomic Weapons Enterprise of Great Britain has purchased the PAM power system.

  14. Characterization of a Common-Source Amplifier Using Ferroelectric Transistors

    Science.gov (United States)

    Hunt, Mitchell; Sayyah, Rana; MacLeond, Todd C.; Ho, Pat D.

    2010-01-01

    This paper presents empirical data that was collected through experiments using a FeFET in the established common-source amplifier circuit. The unique behavior of the FeFET lends itself to interesting and useful operation in this widely used common-source amplifier. The paper examines the effect of using a ferroelectric transistor for the amplifier. It also examines the effects of varying load resistance, biasing, and input voltages on the output signal and gives several examples of the output of the amplifier for a given input. The difference between a commonsource amplifier using a ferroelectric transistor and that using a MOSFET is addressed.

  15. Status report of the energy amplifier concept

    CERN Document Server

    Rubbia, Carlo

    1997-01-01

    We report the main results of study performed at CERN over the last three years by few people and with shoe-string funding on the potential impact of new Accelerators technologies in the field of Energy production from nuclei. Accelerators have been universal tools to nuclear reactions : why not using them to produce practical, sizeable amounts of nuclear transmutations, i.e. to: 1. eliminate unwanted long-lived, radioactive Waste from LWR's; 2. (eventually to produce energy in non-critical conditions, similar to the promises of Fusion and 3. as a substitution of Reactors for the neutron activation of short-lived radioactive elements for industrial and medical applications. - We have studied at the CERN-PS both the energy (heat) produced in nuclear cascades in a sub-critical environment (k=0.90) and the transmutation of unwanted waste in a small lethargy, transparent medium (lead). These experiments have been driven by conceptual studies and elaborate computer simulations of nuclear cascades and extend the we...

  16. Class-D audio amplifiers with negative feedback

    OpenAIRE

    Cox, Stephen M.; Candy, B. H.

    2006-01-01

    There are many different designs for audio amplifiers. Class-D, or switching, amplifiers generate their output signal in the form of a high-frequency square wave of variable duty cycle (ratio of on time to off time). The square-wave nature of the output allows a particularly efficient output stage, with minimal losses. The output is ultimately filtered to remove components of the spectrum above the audio range. Mathematical models are derived here for a variety of related class-D amplifier de...

  17. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  18. Differential transimpedance amplifier circuit for correlated differential amplification

    Science.gov (United States)

    Gresham, Christopher A [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger P [Tucson, AZ

    2008-07-22

    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  19. Ring cavity for a Raman capillary waveguide amplifier

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  20. Large-scale building energy efficiency retrofit: Concept, model and control

    International Nuclear Information System (INIS)

    Wu, Zhou; Wang, Bo; Xia, Xiaohua

    2016-01-01

    BEER (Building energy efficiency retrofit) projects are initiated in many nations and regions over the world. Existing studies of BEER focus on modeling and planning based on one building and one year period of retrofitting, which cannot be applied to certain large BEER projects with multiple buildings and multi-year retrofit. In this paper, the large-scale BEER problem is defined in a general TBT (time-building-technology) framework, which fits essential requirements of real-world projects. The large-scale BEER is newly studied in the control approach rather than the optimization approach commonly used before. Optimal control is proposed to design optimal retrofitting strategy in terms of maximal energy savings and maximal NPV (net present value). The designed strategy is dynamically changing on dimensions of time, building and technology. The TBT framework and the optimal control approach are verified in a large BEER project, and results indicate that promising performance of energy and cost savings can be achieved in the general TBT framework. - Highlights: • Energy efficiency retrofit of many buildings is studied. • A TBT (time-building-technology) framework is proposed. • The control system of the large-scale BEER is modeled. • The optimal retrofitting strategy is obtained.

  1. Molecular markers. Amplified fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2005-01-01

    Full Text Available Amplified Fragment Length Polymorphism molecular markers (AFLPs has been developed combining procedures of RFLPs and RAPDs molekular markers, i.e. the first step is restriction digestion of the genomic DNA that is followed by selective amplification of the restricted fragments. The advantage of the AFLP technique is that it allows rapid generation of a large number of reproducible markers. The reproducibility of AFLPs markers is assured by the use of restriction site-specific adapters and adapter-specific primers for PCR reaction. Only fragments containing the restriction site sequence plus the additional nucleotides will be amplified and the more selected nucleotides added on the primer sequence the fewer the number of fragments amplified by PCR. The amplified products are normally separated on a sequencing gel and visualized after exposure to X-ray film or by using fluorescent labeled primers. AFLP shave proven to be extremely proficient in revealing diversity at below the species level. A disadvantage of AFLP technique is that AFLPs are essentially a dominant marker system and not able to identify heterozygotes.

  2. Comparison of Power Supply Pumping of Switch-Mode Audio Power Amplifiers with Resistive Loads and Loudspeakers as Loads

    DEFF Research Database (Denmark)

    Knott, Arnold; Petersen, Lars Press

    2013-01-01

    Power supply pumping is generated by switch-mode audio power amplifiers in half-bridge configuration, when they are driving energy back into their source. This leads in most designs to a rising rail voltage and can be destructive for either the decoupling capacitors, the rectifier diodes...... in the power supply or the power stage of the amplifier. Therefore precautions are taken by the amplifier and power supply designer to avoid those effects. Existing power supply pumping models are based on an ohmic load attached to the amplifier. This paper shows the analytical derivation of the resulting...... waveforms and extends the model to loudspeaker loads. Measurements verify, that the amount of supply pumping is reduced by a factor of 4 when comparing the nominal resistive load to a loudspeaker. A simplified and more accurate model is proposed and the influence of supply pumping on the audio performance...

  3. Design of e-gun for large KrF amplifiers

    International Nuclear Information System (INIS)

    Reilly, D.A.; Von Rosenberg, C.W.

    1985-01-01

    The design of very large single-aperture laser amplifier for an angular multiplexed laser fusion system requires advances in excimer laser e-gun technology beyond existing designs. Scaling considerations dictate the use of multiple e-guns to pump a single laser; in the present case the authors will discuss the scaling and design features of one of the ten e-guns being developed to pump the Los Alamos Polaris Power Amplifier Module. Multiple e-guns minimize the diode self-magnetic field, lowering the size of the imposed guide magnetic field, and reducing the diode impendance collapse. Multiple guns also result in lowered current rise times, reduce the development cost of the technology at the prototype stage, and, of course, limit the cost due to operation failures in the e-gun. The present design utilizes the expanding electron flow diode to provide uniform electron flow into the gas from a high-current density cold cathode (approx. =50 A/cm 2 ). Laminated iron and an imposed dipole field are utilized for B-field shaping. The applied B field lines trace from the anode, terminate on the cathode, and are then conducted through the shank to beyond the bushing. This feature not only provides for fully expanded electron flow from cathode to anode, but it also allows for self-magnetic field insulation of the shank and bushing, thus minimizing voltage standoff distances, inductance, and rise time. A single large aspect ratio racetrack-shaped bushing on each e-gun is provided with robust grading to limit field concentration at the ends

  4. A high-efficiency superconductor distributed amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Q P, E-mail: quentin.herr@ngc.co [Northrop Grumman Corporation, 7323 Aviation Boulevard, Baltimore, MD 21240 (United States)

    2010-02-15

    A superconductor output amplifier that converts single-flux-quantum signals to a non-return-to-zero pattern is reported using a twelve-stage distributed amplifier configuration. The output amplitude is measured to be 1.75 mV over a wide bias current range of {+-} 12%. The bit error rate is measured using a Delta-Sigma data pattern to be less than 1 x 10{sup -9} at 10 Gb s{sup -1} per channel. Analysis of the eye diagram suggests that the actual bit error rate may be much lower. The amplifier has power efficiency of 12% neglecting the termination resistor, which may be eliminated from the circuit with a small modification. (rapid communication)

  5. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  6. Design And Construction Of 300W Audio Power Amplifier For Classroom

    Directory of Open Access Journals (Sweden)

    Shune Lei Aung

    2015-07-01

    Full Text Available Abstract This paper describes the design and construction of 300W audio power amplifier for classroom. In the construction of this amplifier microphone preamplifier tone preamplifier equalizer line amplifier output power amplifier and sound level indicator are included. The output power amplifier is designed as O.C.L system and constructed by using Class B among many types of amplifier classes. There are two types in O.C.L system quasi system and complementary system. Between them the complementary system is used in the construction of 300W audio power amplifier. The Multisim software is utilized for the construction of audio power amplifier.

  7. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  8. Computer-Aided Design of Microstrip GaAs Mesfet Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Niels Ole

    1976-01-01

    Results on computer-aided design of broadband GaAs MESFET amplifiers in microstrip is presented. The analysis of an amplifier is based on measured scattering parameters and a model of the microstrip structure, which includes parasitics and junction effects. The optimized performance of one stage...... amplifiers with lossless distributed matching elements is presented. Realized amplifiers are in good agreement with the theory. One stage amplifiers with a 1 ¿m FET in chip form exhibit 5.8 dB of gain in the range 8-12 GHz, while a gain of 4.5 dB from 4-8 GHz has been obtained with a packaged 1 ¿m FET....

  9. Note: A high dynamic range, linear response transimpedance amplifier.

    Science.gov (United States)

    Eckel, S; Sushkov, A O; Lamoreaux, S K

    2012-02-01

    We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.

  10. A regional-scale assessment of local renewable energy resources in Cumbria, UK

    International Nuclear Information System (INIS)

    Gormally, A.M.; Whyatt, J.D.; Timmis, R.J.; Pooley, C.G.

    2012-01-01

    There is increasing focus on the role small-scale decentralised renewable energy developments could play in helping the UK meet its target of over 15% renewable energy by the year 2020 and alter energy behaviours through active community engagement. Upland areas are considered key areas where such community-based developments could occur due to their natural resources and range of community scales. This study uses GIS-based techniques to develop a methodology that assesses the regional-scale potential for community-based renewable electricity across Cumbria and whether a combination of these developments at the community-scale could make a significant contribution to local electricity consumption. This methodology looks at a range of technologies including hydro-power, wind-power, solar PV and bioenergy. The results suggest there is ample resource available for small communities by combining a mix of localised renewable electricity developments, which is highlighted through energy scenarios for a selected community. Further work will investigate whether this potential can be realised in reality by looking at resource resilience and community-level acceptability. - Highlights: ► A mix of wind, solar, bioenergy and hydro-power options are presented for Cumbria, UK. ► High resolution spatial analysis is conducted focussing on localised developments. ► Locations with sufficient renewable electricity potential were identified. ► Renewable options are explored further through a town case study. ► Scenarios consider different scales, mixes and contributions to local energy demand.

  11. Characterization of transimpedance amplifier as optical to electrical converter on designing optical instrumentation

    International Nuclear Information System (INIS)

    Hanto, D; Ula, R K

    2017-01-01

    Optical to electrical converter is the main components for designing of the optical instrumentations. In addition, this component is also used as signal conditioning. This component usually consists of a photo detector and amplifier. In this paper, characteristics of commercial amplifiers from Thorlabs PDA50B-EC has been observed. The experiment was conducted by diode laser with power of -5 dBm and wavelength 1310 nm; the optical attenuator to vary optical power from 0 to 60 dB, optical to electrical converter from Thorlabs Amplifier PDA50B-EC; multimode optical fiber to guide the laser; and digital voltmeter to measure the output of converter. The results of the characterization indicate that each channel amplification has a non-linear correlation between optical and electrical parameter; optical conversion measurement range of 20-23 dB to full scale; and different measurement coverage area. If this converter will be used as a part component of optical instrumentation so it should be adjusted suitably with the optical power source. Then, because of the correlation equation is not linear so calculation to determine the interpretation also should be considered in addition to the transfer function of the optical sensor. (paper)

  12. Characterization of transimpedance amplifier as optical to electrical converter on designing optical instrumentation

    Science.gov (United States)

    Hanto, D.; Ula, R. K.

    2017-05-01

    Optical to electrical converter is the main components for designing of the optical instrumentations. In addition, this component is also used as signal conditioning. This component usually consists of a photo detector and amplifier. In this paper, characteristics of commercial amplifiers from Thorlabs PDA50B-EC has been observed. The experiment was conducted by diode laser with power of -5 dBm and wavelength 1310 nm; the optical attenuator to vary optical power from 0 to 60 dB, optical to electrical converter from Thorlabs Amplifier PDA50B-EC; multimode optical fiber to guide the laser; and digital voltmeter to measure the output of converter. The results of the characterization indicate that each channel amplification has a non-linear correlation between optical and electrical parameter; optical conversion measurement range of 20-23 dB to full scale; and different measurement coverage area. If this converter will be used as a part component of optical instrumentation so it should be adjusted suitably with the optical power source. Then, because of the correlation equation is not linear so calculation to determine the interpretation also should be considered in addition to the transfer function of the optical sensor.

  13. Micro-scale energy valorization of grape marcs in winery production plants

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2015-02-15

    Highlights: • BioMethane Potential of grape marcs was investigated. • Grape marcs were characterized to realize a micro-scale energy recovery. • Comparative BMP batch-tests utilizing lab-scale reactors were performed. • Biogas valorization by grape marcs anaerobic digestion at small scale is evaluated. - Abstract: The BiochemicalMethanePotential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year{sup −1} electrical and 8900 kW h year{sup −1} thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective.

  14. Gallium nitride based transistors for high-efficiency microwave switch-mode amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Maroldt, Stephan

    2012-07-01

    Highly-efficient switch-mode power amplifiers form key elements in future fully-digital base stations for mobile communication. This novel digital base station concept reduces system energy consumption, complexity, size and costs, while the flexibility in terms of multi-band operation and signal modulation improves. In this work, innovative core circuits for digital high-efficiency class-D and class-S power amplifiers based on gallium nitride (GaN) technology were developed for the application in digital base stations. A combination of optimized GaN devices and improvements in circuit design allow a highly-efficient switch-mode operation at mobile communication frequencies between 0.45 GHz and 2 GHz. Transistor device modeling for switch-mode operation, the simulation environment, and a broadband measurement system were established for the design and evaluation of digital switchmode power amplifiers. The design of broadband core circuits for switch-mode amplifier concepts was analyzed for dual-stage amplifier circuits, using an initial GaN technology with a gate length of 0.25 {mu}m. A speed-enhanced driver stage improved the circuit switching speed sufficiently above 1 GHz. Speed and efficiency of the amplifier core circuits were studied related to transistor parameters like cut-off frequency or gate capacitance. A reduced gate length was found to improve the switching speed, while a lower on-resistance allows the reduction of the inherent static losses of the GaN-based switches. Apart from this, the restriction of a 50 Ohm environment was found to be a major output power and switching speed limitation, due to a poor switching drive capability of the input capacitance of the GaN circuit. Finally, the optimized transistor and circuit design with an output gate width of 1.2 mm were effectively implemented in the given environment for an operation up to 2 GHz with a high drain efficiency of >65% and a digital output power of 5 W. A maximum output power of 9.7 W and a

  15. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  16. Simulations of longitudinally pumped dye laser amplifier

    International Nuclear Information System (INIS)

    Takehisa, Kiwamu; Takemori, Satoshi

    1995-01-01

    Simulations of a copper laser pumped dye laser amplifier and new designs of the longitudinally pumped dye laser amplifier are presented. The simulations take the consideration of the amplified spontaneous emission (ASE). The new designs utilize a center-hole reflector instead of a dichroic mirror. The simulation results indicate that the poor spatial overlap between the pump beam and the dye beam in the transverse pumping not only reduces the laser output power, but also generates ASE strongly. The results also indicate that the longitudinal pumping is as efficient as the transverse pumping. (author)

  17. Pulse shaping amplifier (PSA) for nuclear spectroscopy system

    International Nuclear Information System (INIS)

    Lombigit, L.; Maslina Mohd Ibrahim; Nolida Yusup; Nur Aira Abdul Rahman; Yong, C.F.

    2014-01-01

    Pulse Shaping Amplifier (PSA) is an essential components in nuclear spectroscopy system. This networks have two functions; to shape the output pulse and performs noise filtering. In this paper, we describes procedure for design and development of a pulse shaping amplifier which can be used for nuclear spectroscopy system. This prototype was developed using high performance electronics devices and assembled on a FR4 type printed circuit board. Performance of this prototype was tested by comparing it with an equivalent commercial spectroscopy amplifier (Model SILENA 7611). The test results show that the performance of this prototype is comparable to the commercial spectroscopic amplifier. (author)

  18. Phoenix I energy extraction experiment

    International Nuclear Information System (INIS)

    Hoffman, J.M.; Patterson, E.L.; Tisone, G.C.; Moreno, J.B.

    1980-07-01

    Energy extraction experiments are reported for the Phoenix I amplifier driven by a discharge-initiated oscillator-preamplifier system operating on mixtures of either SF 6 -HI or SF 6 -C 2 H 6 and an electron-beam-initiated intermediate amplifer (lambda-3) fueled with H 2 and F 2 mixtures. When the oscillator-preamplifier system operated with mixtures of SF 6 -HI the input spectrum to the Phoenix I amplifier contained approx. 28 P-branch vibrational-rotational lines which were almost identical to the input spectrum from the H 2 -F 2 fueled oscillator. In this case the energy extraction measurements were essentially the same as the results obtained with the spectrum produced using H 2 and F 2 mixtures. For an input intensity of 10 7 W/cm 2 , 170 J were extracted from the amplifier. With the SF 6 -C 2 H 6 spectrum, extraction was only obtained from the first three excited vibrational levels. This result indicates that most of the energy in the amplifier could be extracted on the first three excited vibrational levels. It is shown that the extraction results can be fit with a simple two level model. The radius of curvature of the beam was estimated using a lateral shearing interferometer. It was found that the Phoenix I amplifier altered the radius of curvature

  19. GaN-based Power amplifiers for microwave applications

    Directory of Open Access Journals (Sweden)

    Jorge Julián Moreno-Rubio

    2016-01-01

    Full Text Available This paper presents a discussion about the design strategies of different kind of power amplifiers for RF/Microwave appli- cations, such as the tuned load power amplifier, class F, class F-1 and Doherty. Furthermore, it is shown the continuous wave characterization of the amplifiers above mentioned. A comparison between the obtained results, in terms of gain, efficiency and output power is presented.

  20. Two-scale correlation and energy cascade in three-dimensional turbulent flows

    International Nuclear Information System (INIS)

    Huang, Y X; Schmitt, F G; Gagne, Y

    2014-01-01

    In this paper, we propose a high-order harmonic-free methodology, namely arbitrary-order Hilbert spectral analysis, to estimate the two-scale correlation (TSC). When applied to fully developed turbulent velocity, we find that the scale-dependent Hilbert energy satisfies a lognormal distribution on both the inertial and dissipation ranges. The maximum probability density function of the logarithm of the Hilbert energy obeys a power law with a scaling exponent γ ≃ 0.33 in the inertial range. For the measured TSC, we observe a logarithmic correlation law with an experimental exponent α ≃ 0.37 on both the inertial and dissipation ranges. The correlation itself is found to be self-similar with respect to the distance between the two considered scales and a central frequency ω c in the logarithm space. An empirical nonlinear and nonlocal triad-scale interaction formula is proposed to describe the observed TSC. This triadic interaction can be interpreted as experimental evidence of a small-scale nonlinear and nonlocal coupling inside the self-similarity of the Richardson–Kolmogorov phenomenological cascade picture. (paper)

  1. A small-scale dynamo in feedback-dominated galaxies - III. Cosmological simulations

    Science.gov (United States)

    Rieder, Michael; Teyssier, Romain

    2017-12-01

    Magnetic fields are widely observed in the Universe in virtually all astrophysical objects, from individual stars to entire galaxies, even in the intergalactic medium, but their specific genesis has long been debated. Due to the development of more realistic models of galaxy formation, viable scenarios are emerging to explain cosmic magnetism, thanks to both deeper observations and more efficient and accurate computer simulations. We present here a new cosmological high-resolution zoom-in magnetohydrodynamic (MHD) simulation, using the adaptive mesh refinement technique, of a dwarf galaxy with an initially weak and uniform magnetic seed field that is amplified by a small-scale dynamo (SSD) driven by supernova-induced turbulence. As first structures form from the gravitational collapse of small density fluctuations, the frozen-in magnetic field separates from the cosmic expansion and grows through compression. In a second step, star formation sets in and establishes a strong galactic fountain, self-regulated by supernova explosions. Inside the galaxy, the interstellar medium becomes highly turbulent, dominated by strong supersonic shocks, as demonstrated by the spectral analysis of the gas kinetic energy. In this turbulent environment, the magnetic field is quickly amplified via a SSD process and is finally carried out into the circumgalactic medium by a galactic wind. This realistic cosmological simulation explains how initially weak magnetic seed fields can be amplified quickly in early, feedback-dominated galaxies, and predicts, as a consequence of the SSD process, that high-redshift magnetic fields are likely to be dominated by their small-scale components.

  2. Ignition in net for different energy confinement time scalings

    International Nuclear Information System (INIS)

    Johner, J.; Prevot, F.

    1988-06-01

    A zero-dimensional profile dependent model is used to assess the feasibility of ignition in the extended version of NET. Five recent scalings for the energy confinement time (Goldston, Kaye All, Kaye Big, Shimomura-Odajima, Rebut-Lallia) are compared in the frame of two different scenarii, i.e., H-mode with a flat density profile or L-mode with a peaked density profile. For the flat density H-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the peaked density L-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the two Kaye's scalings, ignition is forbidden in H-mode even with the peaked density profile. For the Rebut-Lallia scaling, ignition is allowed in L-mode even with the flat density profile

  3. An Interdisciplinary Approach to Developing Renewable Energy Mixes at the Community Scale

    Science.gov (United States)

    Gormally, Alexandra M.; Whyatt, James D.; Timmis, Roger J.; Pooley, Colin G.

    2013-04-01

    Renewable energy has risen on the global political agenda due to concerns over climate change and energy security. The European Union (EU) currently has a target of 20% renewable energy by the year 2020 and there is increasing focus on the ways in which these targets can be achieved. Here we focus on the UK context which could be considered to be lagging behind other EU countries in terms of targets and implementation. The UK has a lower overall target of 15% renewable energy by 2020 and in 2011 reached only 3.8 % (DUKES, 2012), one of the lowest progressions compared to other EU Member States (European Commission, 2012). The reticence of the UK to reach such targets could in part be due to their dependence on their current energy mix and a highly centralised electricity grid system, which does not lend itself easily to the adoption of renewable technologies. Additionally, increasing levels of demand and the need to raise energy awareness are key concerns in terms of achieving energy security in the UK. There is also growing concern from the public about increasing fuel and energy bills. One possible solution to some of these problems could be through the adoption of small-scale distributed renewable schemes implemented at the community-scale with local ownership or involvement, for example, through energy co-operatives. The notion of the energy co-operative is well understood elsewhere in Europe but unfamiliar to many UK residents due to its centralised approach to energy provision. There are many benefits associated with engaging in distributed renewable energy systems. In addition to financial benefits, participation may raise energy awareness and can lead to positive responses towards renewable technologies. Here we briefly explore how a mix of small-scale renewables, including wind, hydro-power and solar PV, have been implemented and managed by a small island community in the Scottish Hebrides to achieve over 90% of their electricity needs from renewable

  4. Object-oriented wavefront correction in an asymmetric amplifying high-power laser system

    Science.gov (United States)

    Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo

    2018-05-01

    An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.

  5. LIDAR-based urban metabolism approach to neighbourhood scale energy and carbon emissions modelling

    Energy Technology Data Exchange (ETDEWEB)

    Christen, A. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Geography; Coops, N. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences; Canada Research Chairs, Ottawa, ON (Canada); Kellet, R. [British Columbia Univ., Vancouver, BC (Canada). School of Architecture and Landscape Architecture

    2010-07-01

    A remote sensing technology was used to model neighbourhood scale energy and carbon emissions in a case study set in Vancouver, British Columbia (BC). The study was used to compile and aggregate atmospheric carbon flux, urban form, and energy and emissions data in a replicable neighbourhood-scale approach. The study illustrated methods of integrating diverse emission and uptake processes on a range of scales and resolutions, and benchmarked comparisons of modelled estimates with measured energy consumption data obtained over a 2-year period from a research tower located in the study area. The study evaluated carbon imports, carbon exports and sequestration, and relevant emissions processes. Fossil fuel emissions produced in the neighbourhood were also estimated. The study demonstrated that remote sensing technologies such as LIDAR and multispectral satellite imagery can be an effective means of generating and extracting urban form and land cover data at fine scales. Data from the study were used to develop several emissions reduction and energy conservation scenarios. 6 refs.

  6. 47 CFR 97.315 - Certification of external RF power amplifiers.

    Science.gov (United States)

    2010-10-01

    .... (2) The amplifier was manufactured before April 28, 1978, and has been issued a marketing waiver by... that operator's station. (3) The amplifier is sold to an amateur radio operator or to a dealer, the amplifier is purchased in used condition by a dealer, or the amplifier is sold to an amateur radio operator...

  7. Pump to signal noise transfer in parametric fiber amplifiers

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe

    2010-01-01

    Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....

  8. Method for reducing snap in magnetic amplifiers

    Science.gov (United States)

    Fischer, R. L. E.; Word, J. L.

    1968-01-01

    Method of reducing snap in magnetic amplifiers uses a degenerative feedback circuit consisting of a resistor and a separate winding on a magnetic core. The feedback circuit extends amplifier range by allowing it to be used at lower values of output current.

  9. Linear-scaling evaluation of the local energy in quantum Monte Carlo

    International Nuclear Information System (INIS)

    Austin, Brian; Aspuru-Guzik, Alan; Salomon-Ferrer, Romelia; Lester, William A. Jr.

    2006-01-01

    For atomic and molecular quantum Monte Carlo calculations, most of the computational effort is spent in the evaluation of the local energy. We describe a scheme for reducing the computational cost of the evaluation of the Slater determinants and correlation function for the correlated molecular orbital (CMO) ansatz. A sparse representation of the Slater determinants makes possible efficient evaluation of molecular orbitals. A modification to the scaled distance function facilitates a linear scaling implementation of the Schmidt-Moskowitz-Boys-Handy (SMBH) correlation function that preserves the efficient matrix multiplication structure of the SMBH function. For the evaluation of the local energy, these two methods lead to asymptotic linear scaling with respect to the molecule size

  10. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  11. Large-Scale Power Production Potential on U.S. Department of Energy Lands

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, Alicen J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgqvist, Emma M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagne, Douglas A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hillesheim, Michael B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Walker, H. A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Jeff [Colorado School of Mines, Golden, CO (United States); Boak, Jeremy [Colorado School of Mines, Golden, CO (United States); Washington, Jeremy [Colorado School of Mines, Golden, CO (United States); Sharp, Cory [Colorado School of Mines, Golden, CO (United States)

    2017-11-03

    This report summarizes the potential for independent power producers to generate large-scale power on U.S. Department of Energy (DOE) lands and export that power into a larger power market, rather than serving on-site DOE loads. The report focuses primarily on the analysis of renewable energy (RE) technologies that are commercially viable at utility scale, including photovoltaics (PV), concentrating solar power (CSP), wind, biomass, landfill gas (LFG), waste to energy (WTE), and geothermal technologies. The report also summarizes the availability of fossil fuel, uranium, or thorium resources at 55 DOE sites.

  12. Amplifier Design for Proportional Ionization Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W. H.

    1950-08-24

    This paper presents the requirements of a nuclear amplifier of short resolving time, designed to accept pulses of widely varying amplitudes. Data are given which show that a proportional ionization chamber loaded with a 1,000-ohm resistor develops pulses of 0.5 microsecond duration and several volts amplitude. Results indicate that seven basic requirements are imposed on the amplifier when counting soft beta and gamma radiation in the presence of alpha particles, without absorbers. It should, (1) have a fast recovery time, (2) have a relatively good low frequency response, (3) accept pulses of widely varying heights without developing spurious pulsed, (4) have a limiting output stage, (5) preserve the inherently short rise time of the chamber, (6) minimize pulse integration, and (7) have sufficient gain to detect the weak pulses well below the chamber voltage at which continuous discharge takes place. The results obtained with an amplifier which meets these requirements is described. A formula is derived which indicates that redesign of the proportional ionization chamber might eliminate the need for an amplifier. This may be possible if the radioactive particles are collimated parallel to the collecting electrode.

  13. Power Amplifier Design for E-band Wireless System Communications

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan; Krozer, Viktor; Johansen, Tom Keinicke

    2008-01-01

    E-band wireless communications will become important as the microwave backhaul for high-speed data transmission. One of the most critical components is the front-end power amplifier in this system. The paper analyzes different technologies with potential in the E-band frequency range and present...... a power amplifier design satisfying the E-band system specifications. The designed power amplifier achieves a maximum output power of ges 20 dBm with a state-of-the-art power-added efficiency of 15%. The power is realized using InP DHBT technology. To the best of our knowledge it is the highest output...... power and efficiency reported for an InP HBT power amplifier in this frequency range. The predicted power-added efficiency is higher than that of power amplifiers based on SiGe HBT and GaAs pHEMT technologies. The design shows the capabilities of InP DHBT for power amplifier applications...

  14. Reset charge sensitive amplifier for NaI(Tl) gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Zeng, Guoqiang; Tan, Chengjun; Li, Qiang; Ge, Liangquan; Liu, Xiyao; Luo, Qun

    2015-01-01

    The time constant of the output signal of the front-end readout circuit of a traditional gamma-ray spectrometer with a NaI(Tl)+PMT structure is affected by temperature, measurement environment and the signal transmission cable, so it is difficult to get a good resolution spectrum, especially at higher counting rates. In this paper, a reset charge sensitive amplifier (RCSA) is designed for the gamma-ray spectrometer with a NaI(Tl)+PMT structure. The designed RCSA outputs a step signal, thus enabling the acquisition of double-exponential signals with a stable time constant by using the next stage of a CR differentiating circuit. The designed RCSA is mainly composed of a basic amplifying circuit, a reset circuit and a dark current compensation circuit. It provides the output step signal through the integration of the PMT output charge signal. When the amplitude of the step signal exceeds a preset voltage threshold, it triggers the reset circuit to generate a reset pulse (about 5 µs pulse width) to reset the output signal. Experimental results demonstrated that the designed RCSA achieves a charge sensitivity of 4.26×10 10 V/C, with a zero capacitance noise of 51.09 fC and a noise slope of 1.98 fC/pF. Supported by the digital shaping algorithm of the digital multi-channel analyzer (DMCA), it can maintain good energy resolution with high counting rates up to 150 kcps and with a temperature range from −19 °C to 50 °C. - Highlights: • A new reset type charge sensitive amplifier for gamma-ray spectrometer based on a photomultiplier tube is proposed. • Reset circuit formed by constant current source output a fixed width pulse to reset charge sensitive amplifier. • Photomultiplier tube dark current compensation circuit could increase the pulse through rate by decreasing reset frequency. • This amplifier outputs a step function signal that could match next stage circuit easily

  15. A simplified, improved method for making amplifier equivalent noise charge measurements using a new generation digitizing oscilloscope

    International Nuclear Information System (INIS)

    Zimmerman, T.

    1990-10-01

    Historically a variety of methods have been used to measure the equivalent noise charge (ENC) of amplifier/shaper systems for high energy physics. Some of these methods require several pieces of special test equipment and a fair amount of effort. The advent of digitizing oscilloscopes with statistics capabilities makes it possible to perform certain types of noise measurements accurately with very little effort. This paper describes the noise measurement method of a time invariant amplifier/shaper and of a time variant correlated sampling system, using a Tektronix DSA602 Digitizing Signal Analyzer. 4 figs

  16. A new semicustom integrated bipolar amplifier for silicon strip detectors

    International Nuclear Information System (INIS)

    Zimmerman, T.

    1989-01-01

    The QPA02 is a four channel DC coupled two stage transimpedance amplifier designed at Fermilab on a semicustom linear array (Quickchip 2S) manufactured by Tektronix. The chip was developed as a silicon strip amplifier but may have other applications as well. Each channel consists of a preamplifier and a second stage amplifier/sharper with differential output which can directly drive a transmission line (90 to 140 ohms). External bypass capacitors are the only discrete components required. QPA02 has been tested and demonstrated to be an effective silicon strip amplifier. Other applications may exist which can use this amplifier or a modified version of this amplifier. For example, another design is now in progress for a wire chamber amplifier, QPA03, to be reported later. Only a relatively small effort was required to modify the design and layout for this application. 11 figs

  17. Power Take-Off Simulation for Scale Model Testing of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Scott Beatty

    2017-07-01

    Full Text Available Small scale testing in controlled environments is a key stage in the development of potential wave energy conversion technology. Furthermore, it is well known that the physical design and operational quality of the power-take off (PTO used on the small scale model can have vast effects on the tank testing results. Passive mechanical elements such as friction brakes and air dampers or oil filled dashpots are fraught with nonlinear behaviors such as static friction, temperature dependency, and backlash, the effects of which propagate into the wave energy converter (WEC power production data, causing very high uncertainty in the extrapolation of the tank test results to the meaningful full ocean scale. The lack of quality in PTO simulators is an identified barrier to the development of WECs worldwide. A solution to this problem is to use actively controlled actuators for PTO simulation on small scale model wave energy converters. This can be done using force (or torque-controlled feedback systems with suitable instrumentation, enabling the PTO to exert any desired time and/or state dependent reaction force. In this paper, two working experimental PTO simulators on two different wave energy converters are described. The first implementation is on a 1:25 scale self-reacting point absorber wave energy converter with optimum reactive control. The real-time control system, described in detail, is implemented in LabVIEW. The second implementation is on a 1:20 scale single body point absorber under model-predictive control, implemented with a real-time controller in MATLAB/Simulink. Details on the physical hardware, software, and feedback control methods, as well as results, are described for each PTO. Lastly, both sets of real-time control code are to be web-hosted, free for download, modified and used by other researchers and WEC developers.

  18. Catchment scale water resource constraints on UK policies for low-carbon energy system transition

    Science.gov (United States)

    Konadu, D. D.; Fenner, R. A.

    2017-12-01

    Long-term low-carbon energy transition policy of the UK presents national scale propositions of different low-carbon energy system options that lead to meeting GHG emissions reduction target of 80% on 1990 levels by 2050. Whilst national-scale assessments suggests that water availability may not be a significant constrain on future thermal power generation systems in this pursuit, these analysis fail to capture the appropriate spatial scale where water resource decisions are made, i.e. at the catchment scale. Water is a local resource, which also has significant spatio-temporal regional and national variability, thus any policy-relevant water-energy nexus analysis must be reflective of these characteristics. This presents a critical challenge for policy relevant water-energy nexus analysis. This study seeks to overcome the above challenge by using a linear spatial-downscaling model to allocate nationally projected water-intensive energy system infrastructure/technologies to the catchment level, and estimating the water requirements for the deployment of these technologies. The model is applied to the UK Committee on Climate Change Carbon Budgets to 2030 as a case study. The paper concludes that whilst national-scale analyses show minimal long-term water related impacts, catchment level appraisal of water resource requirements reveal significant constraints in some locations. The approach and results presented in this study thus, highlights the importance of bringing together scientific understanding, data and analysis tools to provide better insights for water-energy nexus decisions at the appropriate spatial scale. This is particularly important for water stressed regions where the water-energy nexus must be analysed at appropriate spatial resolution to capture the full water resource impact of national energy policy.

  19. Financing small scale wind energy projects in the UK

    International Nuclear Information System (INIS)

    Mitchell, Catherine

    1993-01-01

    This paper shows how wind energy projects in the UK have obtained finance. It attempts to list the financing options open to small scale developments and to note any likely problems which may occur. (UK)

  20. Pulse amplifier with high 'common mode rejection'

    International Nuclear Information System (INIS)

    Ijlst, P.

    1987-01-01

    The input signal of a pulse amplifier contains large 'common-mode' signals which have to be suppressed. A transformer, especially constructed for this purpose, is described. It has been tried to optimize the signal to noise ratio of the pulse amplifier by means of noise analysis. (Auth.)

  1. Behavior of MOSFET Amplifier in Radiation Fields

    International Nuclear Information System (INIS)

    Sharshar, K.A.A.; Ashry, M.

    2000-01-01

    MOSFET type 2 N 3823 characteristics and its application as an amplifier are analyzed including the effects of gamma, electron beam 1.5 MeV 25 m A and neutron flux. The 1-V characteristics, transfer curve, and the frequency response of the amplifier, and the amplification factor(A v 0 are discussed with MOSFET circuit parameters. The drain current and the amplitude of the output signal decrease as the absorbed dose increases. The measured values of the amplified signal are attenuated by 30% and 6% after exposing the MOSFET to gamma radiation and electron beam at the same dose respectively. Also for exposure to 4x10 13 N/cm 3 neutrons decreased the measured value of the amplified signal by 73% of the initial values. The decrease in the gain of the MOSFET is due to the degradation of the transconductance. It is also noticed that percentage of the decrease depends on the type of radiation

  2. Resonant Wave Energy Converters: Small-scale field experiments and first full-scale prototype

    International Nuclear Information System (INIS)

    Arena, Felice; Fiamma, Vincenzo; Iannolo, Roberto; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati Federica Maria

    2015-01-01

    The Resonant Wave Energy Converter 3 (REWEC3) is a device belonging to the family of Oscillating Water Columns (OWCs), that can convert the energy of incident waves into electrical energy via turbines. In contrast to classical OWCs, it incorporates a small vertical U-shaped duct to connect the water column to the open wave field. This article shows the results of a small-scale field experiment involving a REWEC3 designed for working with a 2 kW turbine. Then, the next experimental activity on a REWEC3 installed in the NOEL laboratory with the collaboration of ENEA, is presented. Finally, the first prototype of ReWEC3 under construction in Civitavecchia (Rome, Italy) is shown. The crucial features of the construction stage are discussed and some initial performances are provided. [it

  3. Low-noise audio amplifiers and preamplifier for use with intrinsic thermocouples

    International Nuclear Information System (INIS)

    Langner, G.C.; Sachs, R.D.; Stewart, F.L.

    1979-03-01

    Two simple, low-noise audio amplifiers and one low-noise preamplifier for use with intrinsic thermocouples were designed, built, and tested. The amplifiers and the preamplifier have different front end designs. One amplifier uses ultralow-noise operational amplifiers; the other amplifier uses a hybrid component. The preamplifier uses ultralow-noise discrete components. The amplifiers' equivalent noise inputs, at maximum gain, are 4.09 nV and 50 nV; the preamplifier's input is 4.05 μV. Their bandwidths are 15 600 Hz, 550 Hz, and 174 kHz, respectively. the amplifiers' equivalent noise inputs were measured from approx. 0 to 100 Hz, whereas the preamplifier's equivalent noise input was measured from approx. 0 to 174 kHz

  4. Regional Scale Modelling for Exploring Energy Strategies for Africa

    International Nuclear Information System (INIS)

    Welsch, M.

    2015-01-01

    KTH Royal Institute of Technology was founded in 1827 and it is the largest technical university in Sweden with five campuses and Around 15,000 students. KTH-dESA combines an outstanding knowledge in the field of energy systems analysis. This is demonstrated by the successful collaborations with many (UN) organizations. Regional Scale Modelling for Exploring Energy Strategies for Africa include Assessing renewable energy potentials; Analysing investment strategies; ) Assessing climate resilience; Comparing electrification options; Providing web-based decision support; and Quantifying energy access. It is conclude that Strategies required to ensure a robust and flexible energy system (-> no-regret choices); Capacity investments should be in line with national & regional strategies; Climate change important to consider, as it may strongly influence the energy flows in a region; Long-term models can help identify robust energy investment strategies and pathways that Can help assess future markets and profitability of individual projects

  5. Free-electron laser system with Raman amplifier outcoupling

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.

    1988-05-03

    A free-electron laser system is described comprising: a free-electron laser pump beam generator producing a high-power optical output beam in a vacuum environement; a Raman amplifier cell located in the path of the output beam from the pump beam generator; means for generating and introducing a Stokes seed beam into the Raman amplifier cell, a pair of gaseous windows through which the output beam enters and leaves the Raman amplifier cell, each window having a stream of gas moving continuously in a direction generally perpendicular to the beam; and a mirror positioned in the path of the output beam from the Raman amplifier, the mirror functioning to reflect and further direct the output beam, but not the unwanted spectral components.

  6. Modeling and design techniques for RF power amplifiers

    CERN Document Server

    Raghavan, Arvind; Laskar, Joy

    2008-01-01

    The book covers RF power amplifier design, from device and modeling considerations to advanced circuit design architectures and techniques. It focuses on recent developments and advanced topics in this area, including numerous practical designs to back the theoretical considerations. It presents the challenges in designing power amplifiers in silicon and helps the reader improve the efficiency of linear power amplifiers, and design more accurate compact device models, with faster extraction routines, to create cost effective and reliable circuits.

  7. Efficient trigger signal generation from wasted backward amplified stimulated emission at optical amplifiers for optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Kim Seung Taek

    2015-01-01

    Full Text Available This paper propose an optical structure to generate trigger signals for optical coherence tomography (OCT using backward light which is usually disposed. The backward light is called backward amplified stimulated emission generated from semiconductor optical amplifier (SOA when using swept wavelength tunable laser (SWTL. A circulator is applied to block undesirable lights in the SWTL instead of an isolator in common SWTL. The circulator also diverts backward amplified spontaneous lights, which finally bring out trigger signals for a high speed digitizer. The spectra of the forward lights at SOA and the waveform of the backward lights were measured to check the procedure of the trigger formation in the experiment. The results showed that the trigger signals from the proposed SWTL with the circulator was quite usable in OCT.

  8. Two-stage, high power X-band amplifier experiment

    International Nuclear Information System (INIS)

    Kuang, E.; Davis, T.J.; Ivers, J.D.; Kerslick, G.S.; Nation, J.A.; Schaechter, L.

    1993-01-01

    At output powers in excess of 100 MW the authors have noted the development of sidebands in many TWT structures. To address this problem an experiment using a narrow bandwidth, two-stage TWT is in progress. The TWT amplifier consists of a dielectric (e = 5) slow-wave structure, a 30 dB sever section and a 8.8-9.0 GHz passband periodic, metallic structure. The electron beam used in this experiment is a 950 kV, 1 kA, 50 ns pencil beam propagating along an applied axial field of 9 kG. The dielectric first stage has a maximum gain of 30 dB measured at 8.87 GHz, with output powers of up to 50 MW in the TM 01 mode. In these experiments the dielectric amplifier output power is about 3-5 MW and the output power of the complete two-stage device is ∼160 MW at the input frequency. The sidebands detected in earlier experiments have been eliminated. The authors also report measurements of the energy spread of the electron beam resulting from the amplification process. These experimental results are compared with MAGIC code simulations and analytic work they have carried out on such devices

  9. Amplifying genetic logic gates.

    Science.gov (United States)

    Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew

    2013-05-03

    Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

  10. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  11. Wideband pulse amplifiers for the NECTAr chip

    International Nuclear Information System (INIS)

    Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J-F.; Naumann, C.L.; Nayman, P.; Ribó, M.

    2012-01-01

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1–3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  12. Wideband pulse amplifiers for the NECTAr chip

    Science.gov (United States)

    Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribó, M.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  13. Traveling-Wave Tube Amplifier for THz Frequencies

    DEFF Research Database (Denmark)

    Kotiranta, Mikko; Krozer, Viktor; Zhurbenko, Vitaliy

    tubes and gas lasers, but the ones available are too expensive or large for many applications. This work is related to the European project OPTHER (Optically driven terahertz amplifiers) which aims to realise a compact, powerful and efficient vacuum tube amplifier for the frequency range of 0.3 – 2...

  14. Introduction to RF power amplifier design and simulation

    CERN Document Server

    Eroglu, Abdullah

    2015-01-01

    Introduction to RF Power Amplifier Design and Simulation fills a gap in the existing literature by providing step-by-step guidance for the design of radio frequency (RF) power amplifiers, from analytical formulation to simulation, implementation, and measurement. Featuring numerous illustrations and examples of real-world engineering applications, this book:Gives an overview of intermodulation and elaborates on the difference between linear and nonlinear amplifiersDescribes the high-frequency model and transient characteristics of metal-oxide-semiconductor field-effect transistorsDetails activ

  15. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    International Nuclear Information System (INIS)

    Chen, Zukun

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode R , a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  16. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zukun [Los Alamos National Laboratory

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode{sup R}, a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  17. Audio power amplifier techniques with energy efficient power conversion. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Karsten

    1998-04-01

    A fundamental study of both analog and digital pulse modulation methods is carried out. A novel class of multi-level pulse modulation methods - Phase Shifted Carrier Pulse Width Modulation (PSCPWM) - is introduced and show to have several advantageous features, primarily caused by the much improved synthesis of the modulating signal. Enhanced digital pulse modulation methods for digital Pulse Modulation Amplifier (PMA) systems are investigated, and a simple methodology for digital PWM modulator synthesis is devised. It is concluded, that the modulator performance is not a limitation in the system, regardless of the domain of modulator implementation. Power conversion in PMA systems is adressed from the perspective of both linearity and efficienty optimization. Based on detailed studies of the distortion mechanisms in the power conversion stage it is concluded, that this is the fundamental limitation on system performance due to several physical limitations. The analysis of general power stage efficiency concludes that dramatic improvements in energy efficiency are possible with PMA systems that are optimized for efficiency. A control system design methodology is devised as a platform for synthesis of robust control systems. Investigations of three fundamental control structures show that even simple control systems offer a remarkable value, although the considered topologies also have their limitations which is verified by practical evaluation in hardware. A novel control method is introduced - Multivariable Enhanced Cascade Control (MECC). MECC provides flexible control over all essential system parameters and is furthermore simple in realization. Practical evaluation of a MECC based PMA shows state-of-the-art performance. The application of non-linear control methods is investigated with the introduction of an enhanced non-linear control/modulator topology. Although the non-linear controller is theoretically interesting, the method proves to suffer from various

  18. Assessment of renewable energy resources potential for large scale and standalone applications in Ethiopia

    NARCIS (Netherlands)

    Tucho, Gudina Terefe; Weesie, Peter D.M.; Nonhebel, Sanderine

    2014-01-01

    This study aims to determine the contribution of renewable energy to large scale and standalone application in Ethiopia. The assessment starts by determining the present energy system and the available potentials. Subsequently, the contribution of the available potentials for large scale and

  19. Distributed CMOS Bidirectional Amplifiers Broadbanding and Linearization Techniques

    CERN Document Server

    El-Khatib, Ziad; Mahmoud, Samy A

    2012-01-01

    This book describes methods to design distributed amplifiers useful for performing circuit functions such as duplexing, paraphrase amplification, phase shifting power splitting and power combiner applications.  A CMOS bidirectional distributed amplifier is presented that combines for the first time device-level with circuit-level linearization, suppressing the third-order intermodulation distortion. It is implemented in 0.13μm RF CMOS technology for use in highly linear, low-cost UWB Radio-over-Fiber communication systems. Describes CMOS distributed amplifiers for optoelectronic applications such as Radio-over-Fiber systems, base station transceivers and picocells; Presents most recent techniques for linearization of CMOS distributed amplifiers; Includes coverage of CMOS I-V transconductors, as well as CMOS on-chip inductor integration and modeling; Includes circuit applications for UWB Radio-over-Fiber networks.

  20. Resistor-less charge sensitive amplifier for semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pelczar, K., E-mail: krzysztof.pelczar@doctoral.uj.edu.pl; Panas, K.; Zuzel, G.

    2016-11-01

    A new concept of a Charge Sensitive Amplifier without a high-value resistor in the feedback loop is presented. Basic spectroscopic parameters of the amplifier coupled to a coaxial High Purity Germanium detector (HPGe) are discussed. The amplifier signal input is realized with an n-channel J-FET transistor. The feedback capacitor is discharged continuously by the second, forward biased n-channel J-FET, driven by an RC low–pass filter. Both the analog—with a standard spectroscopy amplifier and a multi-channel analyzer—and the digital—by applying a Flash Analog to Digital Converter—signal readouts were tested. The achieved resolution in the analog and the digital readouts was 0.17% and 0.21%, respectively, at the Full Width at Half Maximum of the registered {sup 60}Co 1332.5 keV gamma line.

  1. Protein homology model refinement by large-scale energy optimization.

    Science.gov (United States)

    Park, Hahnbeom; Ovchinnikov, Sergey; Kim, David E; DiMaio, Frank; Baker, David

    2018-03-20

    Proteins fold to their lowest free-energy structures, and hence the most straightforward way to increase the accuracy of a partially incorrect protein structure model is to search for the lowest-energy nearby structure. This direct approach has met with little success for two reasons: first, energy function inaccuracies can lead to false energy minima, resulting in model degradation rather than improvement; and second, even with an accurate energy function, the search problem is formidable because the energy only drops considerably in the immediate vicinity of the global minimum, and there are a very large number of degrees of freedom. Here we describe a large-scale energy optimization-based refinement method that incorporates advances in both search and energy function accuracy that can substantially improve the accuracy of low-resolution homology models. The method refined low-resolution homology models into correct folds for 50 of 84 diverse protein families and generated improved models in recent blind structure prediction experiments. Analyses of the basis for these improvements reveal contributions from both the improvements in conformational sampling techniques and the energy function.

  2. Generalized z-scaling in proton-proton collisions at high energies

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.

    2006-01-01

    New generalization of z-scaling in inclusive particle production is proposed. The scaling variable z is a fractal measure which depends on kinematical characteristics of the underlying subprocess expressed in terms of the momentum fractions x 1 and x 2 of the incoming protons. In the generalized approach, the x 1 and x 2 are functions of the momentum fractions y a and y b of the scattered and recoil constituents carried out by the inclusive particle and recoil object, respectively. The scaling function ψ(z) for charged and identified hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of the produced medium entering definition of the z are established to obtain energy, angular and multiplicity independence of the ψ(z). The scheme allows unique description of data on inclusive cross sections of charged particles, pions, kaons, antiprotons, and lambdas at high energies. The obtained results are of interest to use z-scaling as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at the proton-proton colliders RHIC and LHC

  3. Simultaneous Wireless Information and Power Transfer for MIMO Amplify-and-Forward Relay Systems

    KAUST Repository

    Benkhelifa, Fatma; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) for the two-hop Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication systems with the multiantenna energy harvesting relay. We derive the optimal source and relay covariance matrices to characterize the achievable region between the sourcedestination rate and the harvested energy at the relay, namely Rate-Energy (R-E) region. In this context, we consider the ideal scenario where the energy harvester (EH) receiver and the information decoder (ID) receiver at the relay can simultaneously decode the information and harvest the energy at the relay. Then, we consider more practical schemes which are the power splitting (PS) and the time switching (TS) which separate the EH and ID transfer over the power domain and the time domain, respectively.

  4. Simultaneous Wireless Information and Power Transfer for MIMO Amplify-and-Forward Relay Systems

    KAUST Repository

    Benkhelifa, Fatma

    2016-01-06

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) for the two-hop Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication systems with the multiantenna energy harvesting relay. We derive the optimal source and relay covariance matrices to characterize the achievable region between the sourcedestination rate and the harvested energy at the relay, namely Rate-Energy (R-E) region. In this context, we consider the ideal scenario where the energy harvester (EH) receiver and the information decoder (ID) receiver at the relay can simultaneously decode the information and harvest the energy at the relay. Then, we consider more practical schemes which are the power splitting (PS) and the time switching (TS) which separate the EH and ID transfer over the power domain and the time domain, respectively.

  5. External Peltier Cooler For Low-Noise Amplifier

    Science.gov (United States)

    Soper, Terry A.

    1990-01-01

    Inexpensive Peltier-effect cooling module made of few commercially available parts used to reduce thermal noise in microwave amplifier. Retrofitted to almost any microwave low-noise amplifier or receiver preamplifier used in communication, telemetry, or radar. Includes copper or aluminum cold plate held tightly against unit to be cooled by strap-type worm-gear clamps.

  6. Spectroscopic properties and thermal stability of Er3+-doped tungsten-tellurite glass for waveguide amplifier application

    International Nuclear Information System (INIS)

    Zhao Shilong; Wang Xiuli; Fang Dawei; Xu Shiqing; Hu Lili

    2006-01-01

    Tungsten-tellurite glass with molar composition of 60TeO 2 -30WO 3 -10Na 2 O has been investigated for developing planar broadband waveguide amplifier application. Spectroscopic properties and thermal stability of Er 3+ -doped tungsten-tellurite glass have been discussed. The results show that the introduction of WO 3 increases significantly the glass transition temperature and the maximum phonon energy. Er 3+ -doped tungsten-tellurite glass exhibits high glass transition temperature (377 deg. C), large emission cross-section (0.91 x 10 -20 cm 2 ) at 1532 nm and broad full width at half maximum (FWHM), which make it preferable for broadband Er 3+ -doped waveguide amplifier application

  7. Charge-sensitive and shaping amplifier microassemblies for dosimetry and spectrometry on CZT-detectors

    International Nuclear Information System (INIS)

    Perevertaylo, V.L.; Zaitsevsky, I.L.; Tarasenko, L.I.; Perevertaylo, A.V.; Shkirenko, E.A.

    2012-01-01

    Developments of new spectrometric channel electronics on the basis of microassemblies, which allowed to reduce the noise and increase of signal-to-noise ratio, lowering power consumption and dimensions. The complete line of front-end electronics for CZT detectors implemented as micro-assemblies is described, the design concept, operation details and application features of charge sensitive amplifier and shaping amplifier microassemblies are discussed, and the results obtained when registering low energy X-ray spectra are shown. It has a high energy resolution δE at the level of the leading companies. For direct detection with silicon p-i-n-diode new electronic channel can resolve 241 Am peaks up to 8 keV with a resolution of about 2 keV at room temperature. New electronics is universal and can be used with different semiconductor detectors - Si, CdZnTe, Scintillator-photodiode, as shown in the spectra. Low power consumption and reduced dimensions allows the using in portable equipment. Manufacturability of micro assembly opens up the possibility for mass production and low cost opens up the possibility to supply them with detectors as S tart kit f or the construction of radiometric and spectrometric devices

  8. Conversion of the random amplified polymorphic DNA (RAPD ...

    African Journals Online (AJOL)

    Conversion of the random amplified polymorphic DNA (RAPD) marker UBC#116 linked to Fusarium crown and root rot resistance gene (Frl) into a co-dominant sequence characterized amplified region (SCAR) marker for marker-assisted selection of tomato.

  9. With a 2k-ADC to 4k-spectrometry via two biased amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Goerner, W; Kleeberg, H [Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic)

    1978-01-12

    In order to obtain the double digital spread in high resolution nuclear spectrometry, two biased amplifiers were linked in parallel mode to the 10 V-input of a 2k-ADC. The arrangement works like a hybrid (1 bit scale - 11 bits Wilkinson) converter. A careful adjustment of the two bias levels (approximately 0V and approximately 6V) and the post-amplification (approximately 2) delivered a good linearity of the 4k-spectrum.

  10. Efficiency Optimization in Class-D Audio Amplifiers

    DEFF Research Database (Denmark)

    Yamauchi, Akira; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2015-01-01

    This paper presents a new power efficiency optimization routine for designing Class-D audio amplifiers. The proposed optimization procedure finds design parameters for the power stage and the output filter, and the optimum switching frequency such that the weighted power losses are minimized under...... the given constraints. The optimization routine is applied to minimize the power losses in a 130 W class-D audio amplifier based on consumer behavior investigations, where the amplifier operates at idle and low power levels most of the time. Experimental results demonstrate that the optimization method can...... lead to around 30 % of efficiency improvement at 1.3 W output power without significant effects on both audio performance and the efficiency at high power levels....

  11. Wideband pulse amplifiers for the NECTAr chip

    Energy Technology Data Exchange (ETDEWEB)

    Sanuy, A., E-mail: asanuy@ecm.ub.es [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Gascon, D. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Sieiro, X. [Departament d' Electronica, Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, CC072, bat. 13, place Eugene Bataillon, 34095 Montpellier (France); Glicenstein, J-F. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Ribo, M. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); and others

    2012-12-11

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  12. Density-scaling exponents and virial potential-energy correlation ...

    Indian Academy of Sciences (India)

    This paper investigates the relation between the density-scaling exponent γ and the virial potential energy correlation coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ system in two,three, and ...

  13. Beam Energy Scan at RHIC and z-Scaling

    Czech Academy of Sciences Publication Activity Database

    Tokarev, M. V.; Zborovský, Imrich

    2013-01-01

    Roč. 245, DEC (2013), s. 231-238 ISSN 0920-5632. [7th Joint International Hadron Structure'13 Conference (HS 13). Tatranské Matliare, 30.06.2013-04.07.2013] R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : energy loss * nucleus-nucleus collisions * phase transition * scaling Subject RIV: BE - Theoretical Physics

  14. The Dynamics of Semiconductor Optical Amplifiers – Modeling and Applications

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Mads Lønstrup; Berg, Tommy Winther

    2003-01-01

    The importance of semiconductor optical amplifiers is discussed. A semiconductor optical amplifier (SOA) is a semiconductor laser with anti-reflection coated facets that amplifies an injected light signal by means of stimulated emission. SOAs have a number of unique properties that open up...

  15. Fast iterative technique for the calculation of frequency dependent gain in excimer laser amplifiers

    International Nuclear Information System (INIS)

    Sze, R.C.

    1991-01-01

    The motivation in initiating these calculations is to allow us to observe the frequency evolution of a laser pulse as it propagates through an amplifier and then through a sequence of amplifiers. The question we seek to answer is what pulse shape do we need to produce out of a front-end oscillator so that after it propagates through the whole Aurora KrF fusion amplifier chain will result in high energy, broad-band laser fields of a given bandwidth that can be focussed onto a fusion target. The propagation of a single frequency source through an amplifier with distributed loss was considered by Rigrod and was significantly expanded by Hunter and Hunter. The latter included amplified spontaneous emission [ASE] considerations both in the direction of and transverse to the coherent field. Analytic solutions that include forward and backward prapagating fields and ASE were derived which were transcendental in nature but allowed for fairly easy computer calculations. Transverse ASE were calculated using the unsaturated gain resulting from longitudinal fields and were used to compare this with the longitudinal field equations. Large computer programs are now available at LANL which include the influence of transverse ASE on the longitudinal fields. However, none of these considerations have worried about the changes in the frequency characteristics of the propagating field or of how each of the frequency field components contributes to the saturation of the gain. The inclusion of full frequency characteristics to the analytic solutions of Hunter and Hunter proved impossible at least for this author and a new calculational technique was developed and is the subject of this talk

  16. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  17. Manhattan equation for the operational amplifier

    OpenAIRE

    Mishonov, Todor M.; Danchev, Victor I.; Petkov, Emil G.; Gourev, Vassil N.; Dimitrova, Iglika M.; Varonov, Albert M.

    2018-01-01

    A differential equation relating the voltage at the output of an operational amplifier $U_0$ and the difference between the input voltages ($U_{+}$ and $U_{-}$) has been derived. The crossover frequency $f_0$ is a parameter in this operational amplifier master equation. The formulas derived as a consequence of this equation find applications in thousands of specifications for electronic devices but as far as we know, the equation has never been published. Actually, the master equation of oper...

  18. Scaling of chaotic multiplicity: A new observation in high-energy interactions

    International Nuclear Information System (INIS)

    Ghosh, D.; Ghosh, P.; Roy, J.

    1990-01-01

    We analyze high-energy-interaction data to study the dependence of chaotic multiplicity on the pseudorapidity window and propose a new scaling function bar Ψ(bar z)=left-angle n 1 right-angle/left-angle n right-angle max where left-angle n 1 right-angle is the chaotic multiplicity and bar z=left-angle n right-angle/left-angle n right-angle max is the reduced multiplicity, following the quantum-optical concept of particle production. It has been observed that the proposed ''chaotic multiplicity scaling'' is obeyed by pp, p bar p, and AA collisions at different available energies

  19. Nuclear-Recoil Energy Scale in CDMS II Silicon Dark-Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; et al.

    2018-03-07

    The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. The resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrum $^{252}$Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is $4.8^{+0.7}_{-0.9}$% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at $\\sim$4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to $\\sim$75% at 100 keV. The impact of these measurements on previously published CDMS II silicon results is small.

  20. Integrated circuit amplifiers for multi-electrode intracortical recording.

    Science.gov (United States)

    Jochum, Thomas; Denison, Timothy; Wolf, Patrick

    2009-02-01

    Significant progress has been made in systems that interpret the electrical signals of the brain in order to control an actuator. One version of these systems senses neuronal extracellular action potentials with an array of up to 100 miniature probes inserted into the cortex. The impedance of each probe is high, so environmental electrical noise is readily coupled to the neuronal signal. To minimize this noise, an amplifier is placed close to each probe. Thus, the need has arisen for many amplifiers to be placed near the cortex. Commercially available integrated circuits do not satisfy the area, power and noise requirements of this application, so researchers have designed custom integrated-circuit amplifiers. This paper presents a comprehensive survey of the neural amplifiers described in publications prior to 2008. Methods to achieve high input impedance, low noise and a large time-constant high-pass filter are reviewed. A tutorial on the biological, electrochemical, mechanical and electromagnetic phenomena that influence amplifier design is provided. Areas for additional research, including sub-nanoampere electrolysis and chronic cortical heating, are discussed. Unresolved design concerns, including teraohm circuitry, electrical overstress and component failure, are identified.

  1. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  2. Functional Blocks and Biquadratic ARC Filters using Transimpedance Amplifiers

    Directory of Open Access Journals (Sweden)

    R. Sarman

    1997-04-01

    Full Text Available The aims of the article are design and analysis of modern circuits including high performance functional blocks and biquadratic filters using transimpedance amplifiers. Here are given various types of these circuits, that works in classical voltage, current or hybrid mode. In this paper are also compared various possibilities of connection of single amplifier filters as for reduction of influence of transimpedance amplifier parasitic elements.

  3. Functional Blocks and Biquadratic ARC Filters using Transimpedance Amplifiers

    OpenAIRE

    R. Sarman; R. Prokop; T. Dostal

    1997-01-01

    The aims of the article are design and analysis of modern circuits including high performance functional blocks and biquadratic filters using transimpedance amplifiers. Here are given various types of these circuits, that works in classical voltage, current or hybrid mode. In this paper are also compared various possibilities of connection of single amplifier filters as for reduction of influence of transimpedance amplifier parasitic elements.

  4. Measurement of spectral phase noise in a cryogenically cooled Ti:Sa amplifier (Conference Presentation)

    Science.gov (United States)

    Nagymihaly, Roland S.; Jójárt, Péter; Börzsönyi, Ádám.; Osvay, Károly

    2017-05-01

    In most of cases the drift of the carrier envelope phase (CEP) of a chirped pulse amplifier (CPA) system is determined only [1], being the relevant parameter at laser-matter interactions. The need of coherent combination of multiple amplifier channels to further increase the peak power of pulses requires interferometric precision [2]. For this purpose, the stability of the group delay of the pulses may become equally important. Further development of amplifier systems requires the investigation of phase noise contributions of individual subsystems, like amplifier stages. Spectrally resolved interferometry (SRI), which is a completely linear optical method, makes the measurement of spectral phase noise possible of basically any part of a laser system [3]. By utilizing this method, the CEP stability of water-cooled Ti:Sa based amplifiers was investigated just recently, where the effects of seed and pump energy, repetition rate, and the cooling crystal mounts were thoroughly measured [4]. We present a systematic investigation on the noise of the spectral phase, including CEP, of laser pulses amplified in a cryogenically-cooled Ti:Sa amplifier of a CPA chain. The double-pass amplifier was built in the sample arm of a compact Michelson interferometer. The Ti:Sa crystal was cooled below 30 °K. The inherent phase noise was measured for different operation modes, as at various repetition rates, and pump depletion. Noise contributions of the vacuum pumps and the cryogenic refrigerator were found to be 43 and 47 mrad, respectively. We have also identified CEP noise having thermal as well as mechanical origin. Both showed a monotonically decreasing tendency towards higher repetition rates. We found that the widths of the noise distributions are getting broader towards lower repetition rates. Spectral phase noise with and without amplification was measured, and we found no significant difference in the phase noise distributions. The mechanical vibration was also measured in

  5. Philippines: Small-scale renewable energy update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  6. Modeling the impact of large-scale energy conversion systems on global climate

    International Nuclear Information System (INIS)

    Williams, J.

    There are three energy options which could satisfy a projected energy requirement of about 30 TW and these are the solar, nuclear and (to a lesser extent) coal options. Climate models can be used to assess the impact of large scale deployment of these options. The impact of waste heat has been assessed using energy balance models and general circulation models (GCMs). Results suggest that the impacts are significant when the heat imput is very high and studies of more realistic scenarios are required. Energy balance models, radiative-convective models and a GCM have been used to study the impact of doubling the atmospheric CO 2 concentration. State-of-the-art models estimate a surface temperature increase of 1.5-3.0 0 C with large amplification near the poles, but much uncertainty remains. Very few model studies have been made of the impact of particles on global climate, more information on the characteristics of particle input are required. The impact of large-scale deployment of solar energy conversion systems has received little attention but model studies suggest that large scale changes in surface characteristics associated with such systems (surface heat balance, roughness and hydrological characteristics and ocean surface temperature) could have significant global climatic effects. (Auth.)

  7. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    OpenAIRE

    Danson John; Plett Calvin; Tait Niall

    2006-01-01

    A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA) operating at GHz and GHz, and a tunable power amplifier (PA) at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB no...

  8. Scales, strategies and actions for effective energy planning: A review

    International Nuclear Information System (INIS)

    Pasimeni, Maria Rita; Petrosillo, Irene; Aretano, Roberta; Semeraro, Teodoro; De Marco, Antonella; Zaccarelli, Nicola; Zurlini, Giovanni

    2014-01-01

    This paper is a review of the most recent literature on the interaction between climate change, land-use and energy, based on the analysis of papers collected through the most relevant scientific literature databases. A total of 114 papers published between 2000 and 2011 were reviewed. The aims of this review are: in general (1) to identify the different research topics that have been developed related to the interaction between climate change, land-use and energy; more specifically, (2) to analyze what are the most suitable spatial and temporal scales of investigation to focus on for actions and strategies to reduce critical issues in the field of energy and environment; (3) to identify which actions and strategies are deemed as the most appropriate to mitigate critical issues in energy and environment; and given the research gaps found in the review, (4) to propose research recommendations in the context of effective climate-energy planning. We argue that there are certain gaps and needs for a “nested” environmental governance. It is necessary to understand how different environmental policies overlap and how they can be integrated in order to verify whether there are conflicting targets that may negate each other in the long term. - Highlights: • Energy production and consumption can directly or indirectly affect climate change. • Energy sector is influenced directly and indirectly by changes in climate conditions. • Energy sector and climate change affect and limit alternative uses of land, causing land-use changes. • The most suitable spatial scale for energy planning is the municipal level requiring short-term perspectives. • Several research recommendations to deal with the complexity of energy-land-use-climate change issue are proposed

  9. Study of the transverse lasing in big size crystals of Ti:Sa. Application to the design of the peta-watt high-energy amplifier of the pilot laser of the LASERIX facility; Etude de l'amplification parasite transverse de la fluorescence dans les cristaux de Ti:Sa de grandes dimensions. Application a la realisation de l'amplificateur petawatt haute energie du laser pilote de la station LASERIX

    Energy Technology Data Exchange (ETDEWEB)

    Ple, F

    2007-11-15

    This manuscript presents experimental and theoretical works accomplished for the development of the LASERIX laser driver. The main goal of this thesis work was to design a high energy and high repetition rate titanium doped sapphire amplifier (Ti:Sa) allowing to reach an energy of 40 J at a repetition rate of 0.1 Hz before compression. After a general description of amplification in chirped pulse amplification Ti:Sa laser systems (Chapter 1), I present the two particular developments we made during this work for high energy amplification (Chapter 2). First, the spatial shaping and the homogenization based on micro-lens array (MLA) systems of the eight Nd-Glass pump lasers dedicated to the pumping of the last booster amplifier.Secondly, the suppression of parasitic effects due to transverse amplification of the fluorescence in the last booster amplifier Ti:Sa crystal. The developments performed as part of this thesis allowed us to amplify an impulsion of 2 J of energy up to 39 J in a crystal of 10 cm diameter. I also present the simulation program I developed (Chapter 3) in order to simulate the three dimensional parasitic lasing effect and fluorescence transverse amplification phenomena in large Ti:Sa crystals. A parametric study of these parasitic effects is also presented. Finally, the last part of this manuscript (Chapter 4) gives prospects of this work as part of the large future ELI and ILE projects. (author)

  10. Grid scale energy storage in salt caverns

    Energy Technology Data Exchange (ETDEWEB)

    Crotogino, F.; Donadei, S.

    2011-05-15

    Fossil energy sources require some 20% of the annual consumption to be stored to secure emergency cover, cold winter supply, peak shaving, seasonal swing, load management and energy trading. Today the electric power industry benefits from the extreme high energy density of fossil and nuclear fuels. This is one important reason why e.g. the German utilities are able to provide highly reliable grid operation at a electric power storage capacity at their pumped hydro power stations of less then 1 hour (40 GWh) related to the total load in the grid - i.e. only 0,06% compared to 20% for natural gas. Along with the changeover to renewable wind-and to a lesser extent PV-based electricity production this 'outsourcing' of storage services to fossil and nuclear fuels will decline. One important way out will be grid scale energy storage in geological formations. The present discussion, research projects and plans for balancing short term wind and solar power fluctuations focus primarily on the installation of Compressed Air Energy Storages (CAES) if the capacity of existing pumped hydro plants cannot be expanded, e.g. because of environmental issues or lack of suitable topography. Because of their small energy density, these storage options are, however, generally less suitable for balancing for longer term fluctuations in case of larger amounts of excess wind power, wind flaws or even seasonal fluctuations. One important way out are large underground hydrogen storages which provide a much higher energy density because of chemical energy bond. Underground hydrogen storage is state of the art since many years in Great Britain and in the USA for the (petro-) chemical industry. (Author)

  11. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    International Nuclear Information System (INIS)

    Xie, M.; Kim, K.J.

    1995-01-01

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4π. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY

  12. How covalence breaks adsorption-energy scaling relations and solvation restores them

    DEFF Research Database (Denmark)

    Vallejo, Federico Calle; Krabbe, Alexander; García Lastra, Juan Maria

    2017-01-01

    It is known that breaking the scaling relations between the adsorption energies of *O, *OH, and *OOH is paramount in catalyzing more efficiently the reduction of O2 in fuel cells and its evolution in electrolyzers. Taking metalloporphyrins as a case study, we evaluate here the adsorption energies...

  13. Small scale renewable solar energy and the best result project

    Energy Technology Data Exchange (ETDEWEB)

    Bilbao, J.; Miguel, A.H.; Perez-Burgos, A.M. [Valladolid Univ. (Spain)

    2008-07-01

    The European Community has established programmes with different Projects in relation with the develop of an energy system according to de Kyoto objectives, improving energy efficiency, maintaining security supply and doubling the share of renewable energy use. The Best Result Project (Building and Energy Systems and Technology in Renewable Energy Sources Update and Linked Training), is financed by the European Commission, Intelligent Energy Agency (EIE) and the project objectives are to develop training and diffusion activities in the field of Renewable Energy Technology. The project aims to raise the renewable energy knowledge among suppliers and general public. The project activities are: basis and specialized training events, workshops, meetings, visits and e-learning common platform. The final objective is to extend the market of small scale RES applications in the building and energy sector through common and local activities addressing RES suppliers and consumers. (orig.)

  14. Some general scaling rules in high energy heavy ion reactions

    International Nuclear Information System (INIS)

    Andersson, B.; Idh, J.; Otterlund, I.; Stenlund, E.

    1988-09-01

    We show, using the Fritiof model scenario that the wide variation in the number of participating nucleons tend to drown other dynamical variations in the measurables of high energy ion collisions. We propose a set if general scaling laws for inclusive distributions in which it is the mean multiplicity and the mean transverse energy from each source which are the measurables in the interactions. (authors)

  15. GAME EDUKASI PERAKITAN AMPLIFIER BERBASIS ANDROID UNTUK USER UMUM

    Directory of Open Access Journals (Sweden)

    Fundhi Fanju Hafili

    2015-04-01

    Full Text Available ABSTRAK Seiring dengan perkembangan dan kebutuhan teknologi saat ini pembelajaran elektro dapat dibuat menjadi lebih praktis dan menarik di ponsel berbasis android Mempelajari elektronika juga memerlukan usaha-usaha nyata yang ber-kesinambungan dan mengarah kepada tumbuhnya kesadaran untuk menjadikan elektronika sebagai perkembangan teknologi. Dengan adanya metode game, merupakan salah satu metode belajar merakit amplifier yang disusun secara praktis dan sistematis sehingga memudahkan setiap orang untuk belajar maupun mengajarkan merancang amplifier. Sementara itu metode pembelajaran yang ada saat ini yaitu melalui buku maupun dengan cara bertatap muka langsung dengan tentor dirasa masih kurang efektif. Untuk mengatasi masalah tersebut maka penulis membuat game edukasi elektro merancang amplifier, karena mudah dipahami dan memudahkan para calon teknisi elektro dalam belajar merancang amplifier. Perancangan ini dilakukan dengan pendekatan metode Research and Development adalah metode penelitian yang digunakan untuk menghasilkan produk tertentu dan menguji keefektifan produk tersebut. Dengan aplikasi ini diharapkan dapat membantu para pengguna yang ingin belajar merakit amplifier berbasis android. . Kata kunci: elektro, game, research and development.

  16. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    Science.gov (United States)

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard

    2009-01-01

    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  17. Energy confinement scaling from the international stellarator database

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Murakami, M; Dory, R A; Yamada, H; Okamura, S; Sano, F; Obiki, T

    1995-09-01

    An international stellarator database on global energy confinement is presented comprising data from the ATF, CHS and Heliotron E heliotron/torsatrons and the W7-A and W7-AS shearless stellarators. Regression expressions for the energy confinement time are given for the individual devices and the combined dataset. A comparison with tokamak L mode confinement is discussed on the basis of various scaling expressions. In order to make this database available to interested colleagues, the structure of the database and the parameter list are explained in detail. More recent confinement results incorporating data from enhanced confinement regimes such as H mode are reported elsewhere. (author).

  18. Effects of entanglement in an ideal optical amplifier

    Science.gov (United States)

    Franson, J. D.; Brewster, R. A.

    2018-04-01

    In an ideal linear amplifier, the output signal is linearly related to the input signal with an additive noise that is independent of the input. The decoherence of a quantum-mechanical state as a result of optical amplification is usually assumed to be due to the addition of quantum noise. Here we show that entanglement between the input signal and the amplifying medium can produce an exponentially-large amount of decoherence in an ideal optical amplifier even when the gain is arbitrarily close to unity and the added noise is negligible. These effects occur for macroscopic superposition states, where even a small amount of gain can leave a significant amount of which-path information in the environment. Our results show that the usual input/output relation of a linear amplifier does not provide a complete description of the output state when post-selection is used.

  19. Design of a high-gain laser diode-array pumped Nd:YAG Alternating Precessive Slab Amplifier (APS-Amplifier)

    Science.gov (United States)

    Coyle, D. Barry

    1991-01-01

    In the design of space qualifiable laser systems for ranging and altimetry, such as NASA's Geodynamic Laser Ranging System (GLRS), the transmitter must be kept small, powerful yet efficient, and must consist of as few components as possible. A novel preamplifier design is examined which requires no external beam steering optics, yielding a compact component with simple alignment procedures. The gains achieved are comparable to multipass zigzag amplifiers using two or more sets of external optics for extra passes through the amplifying medium.

  20. Design of a high-gain laser diode-array pumped Nd:YAG alternating precessive slab amplifier (APS amplifier)

    Science.gov (United States)

    Coyle, D. B.

    1991-01-01

    In the design of space-qualifiable laser systems for ranging and altimetry, such as NASA's Geodynamic Laser Ranging System (GLRS), the transmitter must be kept small, powerful yet efficient, and must consist of as few components as possible. A novel preamplifier design is examined which requires no external beam steering optics, yielding a compact component with simple alignment procedures. The gains achieved are comparable to multipass zigzag amplifiers using two or more sets of external optics for extra passes through the amplifying medium.

  1. Amplified spontaneous emission in solar-pumped iodine laser

    Science.gov (United States)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  2. Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Poel, Mike van der; Hvam, Jørn Märcher

    2007-01-01

    We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...

  3. Monitoring of the energy scale in the KATRIN neutrino experiment

    CERN Document Server

    AUTHOR|(CDS)2083282

    The question of the absolute mass scale of neutrinos is of particular interest for particle physics, astrophysics, and cosmology. The KATRIN experiment (KArlsruhe TRItium Neutrino experiment) aims to address the effective electron antineutrino mass from the shape of the tritium $\\beta$-spectrum with an unprecedented sensitivity of 0.2 eV/c$^2$. One of the major systematic effects concerns the experimental energy scale, which has to be stable at the level of only a few parts in a million. For its calibration and monitoring the monoenergetic electrons emitted in the internal conversion of $\\gamma$-transition of the metastable isotope $^{83\\mathrm{m}}$Kr will be extensively applied. The aim of this thesis is to address the problem of KATRIN energy scale distortions and its monitoring in detail. The source of electrons based on $^{83\\mathrm{m}}$Kr embedded in a solid as well as the source based on gaseous $^{83\\mathrm{m}}$Kr are studied. Based on the experimental results an approach for the continuous stability m...

  4. Small-scale dynamo at low magnetic Prandtl numbers

    Science.gov (United States)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S.

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓϑ, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm(1-ϑ)/(1+ϑ). We furthermore discuss the critical magnetic Reynolds number Rmcrit, which is required for small-scale dynamo action. The value of Rmcrit is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rmcrit provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  5. Small-scale dynamo at low magnetic Prandtl numbers.

    Science.gov (United States)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  6. Thermal System Analysis and Optimization of Large-Scale Compressed Air Energy Storage (CAES

    Directory of Open Access Journals (Sweden)

    Zhongguang Fu

    2015-08-01

    Full Text Available As an important solution to issues regarding peak load and renewable energy resources on grids, large-scale compressed air energy storage (CAES power generation technology has recently become a popular research topic in the area of large-scale industrial energy storage. At present, the combination of high-expansion ratio turbines with advanced gas turbine technology is an important breakthrough in energy storage technology. In this study, a new gas turbine power generation system is coupled with current CAES technology. Moreover, a thermodynamic cycle system is optimized by calculating for the parameters of a thermodynamic system. Results show that the thermal efficiency of the new system increases by at least 5% over that of the existing system.

  7. Ignition energy scaling of inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Johner, J.

    1998-01-01

    Scaling of the ignition energy threshold Ε ig with the implosion velocity v im and isentrope parameter α of imploding spherical deuterium-tritium shells is investigated by performing one-dimensional hydrodynamic simulations of the implosion and hot spot formation dynamics. We find that the a and b exponents in the power-law approximation Ε ig ∝ α a v im -b depend crucially on the subset of initial configurations chosen to establish the scaling law. When we generate the initial states in the same way as in the Livermore study [W.K. Levedahl and J. D. Lindl, Nucl. Fusion 37 (1997) 165 ], we recover the same scaling, Ε ig ∝ α 1.7 v im -5.5 . If, however, the initial states are generated by rescaling the parent configuration according to the hydrodynamic similarity laws, we obtain a different scaling, Ε ig ∝ α 3 v im -9 , which is very close to the αv im -10 dependence predicted by the simple isobaric model for assembled fuel states. The latter is more favourable that the Livermore scaling when rescaling the fusion capsules to higher implosion velocities, but requires the peak drive pressure to be increased as P ∝ v im 5 . (authors)

  8. Design and development of digital seismic amplifier recorder

    Energy Technology Data Exchange (ETDEWEB)

    Samsidar, Siti Alaa; Afuar, Waldy; Handayani, Gunawan, E-mail: gunawanhandayani@gmail.com [Department of Physics, ITB (Indonesia)

    2015-04-16

    A digital seismic recording is a recording technique of seismic data in digital systems. This method is more convenient because it is more accurate than other methods of seismic recorders. To improve the quality of the results of seismic measurements, the signal needs to be amplified to obtain better subsurface images. The purpose of this study is to improve the accuracy of measurement by amplifying the input signal. We use seismic sensors/geophones with a frequency of 4.5 Hz. The signal is amplified by means of 12 units of non-inverting amplifier. The non-inverting amplifier using IC 741 with the resistor values 1KΩ and 1MΩ. The amplification results were 1,000 times. The results of signal amplification converted into digital by using the Analog Digital Converter (ADC). Quantitative analysis in this study was performed using the software Lab VIEW 8.6. The Lab VIEW 8.6 program was used to control the ADC. The results of qualitative analysis showed that the seismic conditioning can produce a large output, so that the data obtained is better than conventional data. This application can be used for geophysical methods that have low input voltage such as microtremor application.

  9. Operational amplifier circuits analysis and design

    CERN Document Server

    Nelson, J C C

    1995-01-01

    This book, a revised and updated version of the author's Basic Operational Amplifiers (Butterworths 1986), enables the non-specialist to make effective use of readily available integrated circuit operational amplifiers for a range of applications, including instrumentation, signal generation and processing.It is assumed the reader has a background in the basic techniques of circuit analysis, particularly the use of j notation for reactive circuits, with a corresponding level of mathematical ability. The underlying theory is explained with sufficient but not excessive, detail. A range of compu

  10. Spaceflight 2 um Tm Fiber MOPA Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to design, develop, and test a spaceflight prototype 2051 nm thulium (Tm)-doped fiber amplifier (TDFA) optical master oscillator power amplifier...

  11. Next generation molten NaI batteries for grid scale energy storage

    Science.gov (United States)

    Small, Leo J.; Eccleston, Alexis; Lamb, Joshua; Read, Andrew C.; Robins, Matthew; Meaders, Thomas; Ingersoll, David; Clem, Paul G.; Bhavaraju, Sai; Spoerke, Erik D.

    2017-08-01

    Robust, safe, and reliable grid-scale energy storage continues to be a priority for improved energy surety, expanded integration of renewable energy, and greater system agility required to meet modern dynamic and evolving electrical energy demands. We describe here a new sodium-based battery based on a molten sodium anode, a sodium iodide/aluminum chloride (NaI/AlCl3) cathode, and a high conductivity NaSICON (Na1+xZr2SixP3-xO12) ceramic separator. This NaI battery operates at intermediate temperatures (120-180 °C) and boasts an energy density of >150 Wh kg-1. The energy-dense NaI-AlCl3 ionic liquid catholyte avoids lifetime-limiting plating and intercalation reactions, and the use of earth-abundant elements minimizes materials costs and eliminates economic uncertainties associated with lithium metal. Moreover, the inherent safety of this system under internal mechanical failure is characterized by negligible heat or gas production and benign reaction products (Al, NaCl). Scalability in design is exemplified through evolution from 0.85 to 10 Ah (28 Wh) form factors, displaying lifetime average Coulombic efficiencies of 99.45% and energy efficiencies of 81.96% over dynamic testing lasting >3000 h. This demonstration promises a safe, cost-effective, and long-lifetime technology as an attractive candidate for grid scale storage.

  12. Compact solid state radio frequency amplifiers in kW regime for ...

    Indian Academy of Sciences (India)

    RF amplifier; solid state amplifier; power combiner and divider; .... was designed using planar and coaxial transmission line baluns with minimum lumped variable ..... Cripps S C 1999 RF power amplifiers for wireless communication. Norwood: ...

  13. Distributed amplifier using Josephson vortex flow transistors

    International Nuclear Information System (INIS)

    McGinnis, D.P.; Beyer, J.B.; Nordman, J.E.

    1986-01-01

    A wide-band traveling wave amplifier using vortex flow transistors is proposed. A vortex flow transistor is a long Josephson junction used as a current controlled voltage source. The dual nature of this device to the field effect transistor is exploited. A circuit model of this device is proposed and a distributed amplifier utilizing 50 vortex flow transistors is predicted to have useful gain to 100 GHz

  14. Frequency-asymmetric gain profile in a seeded Raman amplifier

    International Nuclear Information System (INIS)

    Repasky, K.S.; Carlsten, J.L.

    1996-01-01

    This paper examines the effect of index guiding on Raman gain. The slowly varying Maxwell wave equation including both the real and imaginary parts of the Raman susceptibility for a seeded Raman amplifier is explored. Using a Gauss-Laguerre mode expansion for the Stokes field, the output Stokes energy is numerically studied as a function of gain and detuning from the Raman resonance. The calculations indicate that the real part of the Raman susceptibility causes the Raman medium to act as a lens when the Stokes seed is detuned from the Raman resonance. This focusing effect leads to higher peak Stokes energy when the Stokes seed is tuned to the blue side of the Raman resonance. Specifically for Raman scattering in H 2 with a pump laser at 532 nm and an input seed near 683 nm, the peak Stokes energy can shift by as much as 300 MHz from the Raman resonance. An experiment which confirms these predictions is also presented. copyright 1996 The American Physical Society

  15. PHEMT Distributed Power Amplifier Adopting Broadband Impedance Transformer

    DEFF Research Database (Denmark)

    Narendra, K.; Limiti, E.; Paoloni, C.

    2013-01-01

    A non-uniform drain line distributed power amplifier (DPA) employing a broadband impedance transformer is presented. The DPA is based on GaAs PHEMT technology. The impedance transformer employs asymmetric coupled lines and transforms a low output impedance of the amplifier to a standard 50 Ω...

  16. Amplifiers dedicated for large area SiC photodiodes

    Science.gov (United States)

    Doroz, P.; Duk, M.; Korwin-Pawlowski, M. L.; Borecki, M.

    2016-09-01

    Large area SiC photodiodes find applications in optoelectronic sensors working at special conditions. These conditions include detection of UV radiation in harsh environment. Moreover, the mentioned sensors have to be selective and resistant to unwanted signals. For this purpose, the modulation of light at source unit and the rejection of constant current and low frequency component of signal at detector unit are used. The popular frequency used for modulation in such sensor is 1kHz. The large area photodiodes are characterized by a large capacitance and low shunt resistance that varies with polarization of the photodiode and can significantly modify the conditions of signal pre-amplification. In this paper two pre-amplifiers topology are analyzed: the transimpedance amplifier and the non-inverting voltage to voltage amplifier with negative feedback. The feedback loops of both pre-amplifiers are equipped with elements used for initial constant current and low frequency signals rejections. Both circuits are analyzed and compared using simulation and experimental approaches.

  17. Spatial chirp in Ti:sapphire multipass amplifier

    International Nuclear Information System (INIS)

    Li Wenkai; Lu Jun; Li Yanyan; Guo Xiaoyang; Wu Fenxiang; Yu Linpeng; Wang Pengfei; Xu Yi; Leng Yuxin

    2017-01-01

    The spatial chirp generated in the Ti:sapphire multipass amplifier is numerically investigated based on the one-dimensional (1D) and two-dimensional (2D) Frantz–Nodvik equations. The simulation indicates that the spatial chirp is induced by the spatially inhomogeneous gain, and it can be almost eliminated by utilization of proper beam profiles and spot sizes of the signal and pump pulses, for example, the pump pulse has a top-hatted beam profile and the signal pulse has a super-Gaussian beam profile with a relatively larger spot size. In this way, a clear understanding of spatial chirp mechanisms in the Ti:sapphire multipass amplifier is proposed, therefore we can effectively almost eliminate the spatial chirp and improve the beam quality of a high-power Ti:sapphire chirped pulse amplifier system. (paper)

  18. An automated test facility for neutronic amplifiers

    International Nuclear Information System (INIS)

    Beattie, W.J.

    1997-01-01

    Neutronic amplifiers are used at the Chalk River Laboratory in applications such as neutron flux monitoring and reactor control systems. Routine preventive maintenance of control and safety systems included annual calibration and characterization of the neutronic amplifiers. An investigation into the traditional methods of annual routine maintenance of amplifiers concluded that frequency and phase response measurements in particular were labour intensive and subject to non-repeatable errors. A decision was made to upgrade testing methods and facilities by using programmable test equipment under the control of a computer. In order to verify the results of the routine measurements, expressions for the transfer functions were derived from the circuit diagrams. Frequency and phase responses were then calculated and plotted thus providing a bench-mark to which the test results can be compared. (author)

  19. Research on High Efficient Single-Phase Multi-Stage Interleaved Bridgeless PFC Frontend for Class-D Amplifiers

    DEFF Research Database (Denmark)

    Li, Qingnan; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a 3.5kW single-phase high efficient interleaved Bridgeless PFC (IBPFC) is proposed for class-D amplifiers. This topology achieves a relatively higher efficiency in a wide output power range, which helps to reduce the energy consuming of the whole system. In addition, a detailed...

  20. Propagation delay of femtosecond pulses in an optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    of 2.6 THz, through a quantum-dot (QD) semiconductor amplifier (SOA) at room temperature. This extremely large bandwidth, on the other hand, is at the cost of a rather small group index change of ?ng=4*10-3. We have performed two types of femtosecond pulse slow-down and advancement experiments....... In the first experiment, we prepare a narrow peak or dip in the SOA gain spectrum by injection of a strong pump pulse4. The resulting dispersion feature is then probed by a weak pulse. In the second experiment, we measure self-slowdown or advancement as pulse energy isincreased5. In both cases, we perform...