WorldWideScience

Sample records for scalar meson correlator

  1. Scalar mesons and radiative vector meson decays

    International Nuclear Information System (INIS)

    Gokalp, A.; Ylmaz, O

    2002-01-01

    The light scalar mesons with vacuum quantum numbers J p =0 ++ have fundamental importance in understanding low energy QCD phenomenology and the symmetry breaking mechanisms in QCD. The nature and quark substructure of the best known scalar mesons, isoscalar σ(500), f0(980) and isovector a0(980) have been a subject of continuous controversy. The radioactive decay of neutral vector mesons ρ, w and φ into a single photon and a pair of neutral pseudoscalar mesons have been studied in order to obtain information on the nature of these scalar mesons. For such studies, it is essential that a reliable understanding of the mechanisms for these decays should be at hand. In this work, we investigate the particularly interesting mechanism of the exchange of scalar mesons for the radiative vector meson decays by analysing the experimental results such as measured decay rates and invariant mass spectra and compare them with the theoretical prediction of different reaction mechanisms

  2. A theory of scalar mesons

    International Nuclear Information System (INIS)

    Hooft, G. t'; Isidori, G.; Maiani, L.; Polosa, A.D.; Riquer, V.

    2008-01-01

    We discuss the effect of the instanton induced, six-fermion effective Lagrangian on the decays of the lightest scalar mesons in the diquark-antidiquark picture. This addition allows for a remarkably good description of light scalar meson decays. The same effective Lagrangian produces a mixing of the lightest scalars with the positive parity qq-bar states. Comparing with previous work where the qq-bar mesons are identified with the nonet at 1200-1700 MeV, we find that the mixing required to fit the mass spectrum is in good agreement with the instanton coupling obtained from light scalar decays. A coherent picture of scalar mesons as a mixture of tetraquark states (dominating in the lightest mesons) and heavy qq-bar states (dominating in the heavier mesons) emerges

  3. The light scalar mesons as tetraquarks

    Directory of Open Access Journals (Sweden)

    Gernot Eichmann

    2016-02-01

    Full Text Available We present a numerical solution of the four-quark Bethe–Salpeter equation for ground-state scalar tetraquarks with JPC=0++. We find that the four-body equation dynamically generates pseudoscalar-meson poles in the Bethe–Salpeter amplitude. The resulting tetraquarks are genuine four-quark states that are dominated by pseudoscalar meson–meson correlations. Diquark–antidiquark contributions are subleading because of their larger mass scale. In the light quark sector, the sensitivity of the tetraquark wave function to the pion poles leads to an isoscalar tetraquark mass Mσ∼350 MeV which is comparable to that of the σ/f0(500. The masses of its multiplet partners κ and a0/f0 follow a similar pattern. This provides support for a tetraquark interpretation of the light scalar meson nonet in terms of ‘meson molecules’.

  4. Nature of the light scalar mesons

    International Nuclear Information System (INIS)

    Vijande, J.; Valcarce, A.; Fernandez, F.; Silvestre-Brac, B.

    2005-01-01

    Despite the apparent simplicity of meson spectroscopy, light scalar mesons cannot be accommodated in the usual qq structure. We study the description of the scalar mesons below 2 GeV in terms of the mixing of a chiral nonet of tetraquarks with conventional qq states. A strong diquark-antidiquark component is found for several states. The consideration of a glueball as dictated by quenched lattice QCD drives a coherent picture of the isoscalar mesons

  5. Quark-gluon mixing in scalar mesons

    International Nuclear Information System (INIS)

    Eremyan, Sh.S.; Nazaryan, A.E.

    1986-01-01

    Scalar mesons are considered within the quark-gluon mixing model. It is shown that there exists decouplet of scalar particles consisting of S* (975), ε (1400), S*' (1700), δ (980) and κ (1350) resonances. It has turned out that the long ago known S* (975)-resonance is a nearly pure glouball. A good description of all available experimental data on scalar meson decays is obtained

  6. The mixing of scalar mesons and the baryon-baryon interaction

    International Nuclear Information System (INIS)

    Dai, L.R.

    2011-01-01

    By introducing the mixing of scalar mesons in the chiral SU(3) quark model, we dynamically investigate the baryon-baryon interaction. The hyperon-nucleon and nucleon-nucleon interactions are studied by solving the resonating group method (RGM) equation in a coupled-channel calculation. In our present work, the experimental lightest pseudoscalar π, K, η, η' mesons correspond exactly to the chiral nonet pseudoscalar fields π, K, η, η' in the chiral SU(3) quark model. The η, η' mesons are considered as the mixing of singlet and octet mesons, and the mixing angle θ ps is taken to be -23 . For scalar nonet mesons, we suppose that there exists a correspondence between the experimental lightest scalar f 0 (600), κ, a 0 (980), f 0 (980) mesons and the theoretical scalar nonet σ, κ, σ', ε fields in the chiral SU(3) quark model. For scalar mesons, we consider two different mixing cases: one is the ideal mixing and another is the θ s = 19 mixing. The masses of the σ' and ε mesons are taken to be 980MeV, which are just the masses of the experimental a 0 (980), f 0 (980) mesons. The mass of the σ meson is an adjustable parameter and is decided by fitting the binding energy of the deuteron, the masses of 560MeV and 644MeV are obtained for the ideal mixing and the θ s = 19 mixing, respectively. We find that, in order to reasonably describe the YN interactions, the mass of the κ meson is near 780MeV for the ideal mixing. However, we must enhance the mass of the κ meson for the θ s = 19 mixing, the 1050MeV is favorably used in the present work. The experimental σ and κ scalar mesons are very strange, both have larger widths. Hence, no matter what kind of mixing is considered, all the masses of scalar mesons we used in the present work seem to be consistent with the present PDG information. (orig.)

  7. The Rainich problem for coupled gravitational and scalar meson fields

    International Nuclear Information System (INIS)

    Hyde, J.M.

    1975-01-01

    The equations of the coupled gravitational and scalar meson fields in general relativity are considered. It is shown that the wave equation for the scalar meson field which is usually specified explicitly in addition to the Einstein field equations is implied by Einstein's equations. Using this result it is then shown how the scalar field may be eliminated explicitly from the field equations, thus solving the Rainich problem for the coupled gravitational and scalar meson fields. (author) [fr

  8. The mixing of scalar mesons and the baryon-baryon interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dai, L.R. [Liaoning Normal University, Department of Physics, Dalian (China)

    2011-02-15

    By introducing the mixing of scalar mesons in the chiral SU(3) quark model, we dynamically investigate the baryon-baryon interaction. The hyperon-nucleon and nucleon-nucleon interactions are studied by solving the resonating group method (RGM) equation in a coupled-channel calculation. In our present work, the experimental lightest pseudoscalar {pi}, K, {eta}, {eta}' mesons correspond exactly to the chiral nonet pseudoscalar fields {pi}, K, {eta}, {eta}' in the chiral SU(3) quark model. The {eta}, {eta}' mesons are considered as the mixing of singlet and octet mesons, and the mixing angle {theta}{sub ps} is taken to be -23 . For scalar nonet mesons, we suppose that there exists a correspondence between the experimental lightest scalar f{sub 0}(600), {kappa}, a{sub 0}(980), f{sub 0}(980) mesons and the theoretical scalar nonet {sigma}, {kappa}, {sigma}', {epsilon} fields in the chiral SU(3) quark model. For scalar mesons, we consider two different mixing cases: one is the ideal mixing and another is the {theta}{sub s} = 19 mixing. The masses of the {sigma}' and {epsilon} mesons are taken to be 980MeV, which are just the masses of the experimental a{sub 0}(980), f{sub 0}(980) mesons. The mass of the {sigma} meson is an adjustable parameter and is decided by fitting the binding energy of the deuteron, the masses of 560MeV and 644MeV are obtained for the ideal mixing and the {theta}{sub s} = 19 mixing, respectively. We find that, in order to reasonably describe the YN interactions, the mass of the {kappa} meson is near 780MeV for the ideal mixing. However, we must enhance the mass of the {kappa} meson for the {theta}{sub s} = 19 mixing, the 1050MeV is favorably used in the present work. The experimental {sigma} and {kappa} scalar mesons are very strange, both have larger widths. Hence, no matter what kind of mixing is considered, all the masses of scalar mesons we used in the present work seem to be consistent with the present PDG information

  9. Search for scalar mesons

    International Nuclear Information System (INIS)

    Pennington, M.R.

    1989-01-01

    The search for I = 0 0 ++ mesons is described. The crucial role played by the states in the 1 GeV region is highlighted. An analysis program that with unimpeachable data would produce definitive results on these is outlined and shown with present data to provide prima facie evidence for dynamics beyond that of the quark model. The authors briefly speculate on the current status of the lowest mass scalar mesons and discuss how experiment can resolve the unanswered issues. 30 references, 6 figures, 1 table

  10. Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields

    Science.gov (United States)

    Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei

    2018-04-01

    We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.

  11. Scalar mesons in φ radiative decay

    International Nuclear Information System (INIS)

    Close, F.E.; Isgur, N.; Kumano, S.

    1992-06-01

    Existing predictions for the branching ratio for φ → KK γ via φ → S γ (where S denotes one of the scalar mesons f o (975) and a o (980)) vary by several orders of magnitude. Given the importance of these processes for both hadron spectroscopy and charge-parity-violation studies at φ factories (where φ→ K o K-bar o γ poses a possible background problem), this state of affairs is very undesirable. We show that the variety of predictions is due in part to errors and in part to differences in modelling. The latter variation leads us to argue that the radiative decays of these scalar states are interesting in their own right and may offer unique insights into the nature of the scalar mesons. As a byproduct we find that the branching ratio for φ → K o K-bar o γ is approx. -7 ) and will pose no significant background to proposed studies of CP-violation. (Author)

  12. The search for scalar mesons

    International Nuclear Information System (INIS)

    Pennington, M.R.

    1988-09-01

    The search of I = 0 0 ++ mesons is described. We highlight the crucial role played by the states in the 1 GeV region. An analysis program that with unimpeachable data would produce definitive results on these is outlined and shown with present data to provide prima facie evidence for dynamics beyond that of the quark model. We briefly speculate on the current status of the lowest mass scalar mesons and discuss how experiment can resolve the unanswered issues. 30 refs., 6 figs., 1 tab

  13. Cabibbo-Kobayashi-Maskawa-favored B decays to a scalar meson and a D meson

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhi-Tian; Li, Ying [Yantai University, Department of Physics, Yantai (China); Liu, Xin [Jiangsu Normal University, School of Physics and Electronic Engineering, Xuzhou (China)

    2017-12-15

    In this work, we attempt to study the Cabibbo-Kobayashi-Maskawa-favored B → anti DS (''S'' denoting the scalar meson) decays within the perturbative QCD approach at the leading order and the leading power. Although the light scalar mesons are widely perceived as primarily the four-quark bound states, in practice it is hard for us to make quantitative predictions based on the four-quark picture for light scalars. Hence, we calculate the decays with light scalars in the two-quark model. For the decays with scalar mesons above 1 GeV, we have explored two possible scenarios, depending on whether the light scalars are treated as the lowest lying q anti q states or four-quark particles. In total, we calculated the branching fractions of 72 decay modes, and most of them are in the range 10{sup -4}-10{sup -7}, which are measurable in the on-going LHCb experiment and the forthcoming Belle-II experiment. Moreover, since in the standard model these decays occur only through tree operators and have no CP asymmetries, any deviation will be a signal of new physics beyond the standard model. Despite large uncertainties induced by nonperturbative parameters and corrections of high order and high power, our results and discussions will be useful for the on-going LHCb and the forthcoming Belle-II experiments. (orig.)

  14. Heavy Scalar, Vector, and Axial-Vector Mesons in Hot and Dense Nuclear Medium

    Directory of Open Access Journals (Sweden)

    Arvind Kumar

    2014-01-01

    Full Text Available In this work we shall investigate the mass modifications of scalar mesons (D0; B0, vector mesons (D*; B*, and axial-vector mesons (D1; B1 at finite density and temperature of the nuclear medium. The above mesons are modified in the nuclear medium through the modification of quark and gluon condensates. We will find the medium modification of quark and gluon condensates within chiral SU(3 model through the medium modification of scalar-isoscalar fields σ and ζ at finite density and temperature. These medium modified quark and gluon condensates will further be used through QCD sum rules for the evaluation of in-medium properties of the above mentioned scalar, vector, and axial vector mesons. We will also discuss the effects of density and temperature of the nuclear medium on the scattering lengths of the above scalar, vector, and axial-vector mesons. The study of the medium modifications of the above mesons may be helpful for understanding their production rates in heavy-ion collision experiments. The results of present investigations of medium modifications of scalar, vector, and axial-vector mesons at finite density and temperature can be verified in the compressed baryonic matter (CBM experiment of FAIR facility at GSI, Germany.

  15. Scalar meson field and many-body forces. Chapter 23

    International Nuclear Information System (INIS)

    Nyman, E.M.

    1979-01-01

    In applications of field theory to the theory of the nuclear forces, one has frequently assumed that there is a scalar meson. It will then be responsible for most of the medium-range attraction between the nucleons. According to current ideas, however, it is possible to account for the medium-range attraction without an elementary sigma meson. This approach requires a careful treatment of the exchange of interacting pairs of π mesons, such as to include those ππ interactions which are responsible for the formation and decay of the sigma meson. Recently, the scalar field in the nuclear many-body problem has begun to receive more attention. There are two reasons for this change of philosophy. One reason is the discovery of neutron stars. In neutron stars, the nucleon number density can be much higher than in nuclei. One therefore wants to derive the equation of state from a relativistic many-body theory. This forces one to deal explicitly with a set of mesons, such that in the non-relativistic limit one recovers the one-boson-exchange potential. (Auth.)

  16. Scalar meson in dynamical and partially quenched two-flavor QCD: Lattice results and chiral loops

    International Nuclear Information System (INIS)

    Prelovsek, S.; Dawson, C.; Izubuchi, T.; Orginos, K.; Soni, A.

    2004-01-01

    This is an exploratory study of the lightest nonsinglet scalar qq state on the lattice with two dynamical quarks. Domain wall fermions are used for both sea and valence quarks on a 16 3 x32 lattice with an inverse lattice spacing of 1.7 GeV. We extract the scalar meson mass 1.58±0.34 GeV from the exponential time dependence of the dynamical correlators with m val =m sea and N f =2. Since this statistical error bar from dynamical correlators is rather large, we analyze also the partially quenched lattice correlators with m val ≠m sea . They are positive for m val ≥m sea and negative for m val sea . In order to understand this striking effect of partial quenching, we derive the scalar correlator within the partially quenched chiral perturbation theory (ChPT) and find it describes lattice correlators well. The leading unphysical contribution in partially quenched ChPT comes from the exchange of the two pseudoscalar fields and is also positive for m val ≥m sea and negative for m val sea at large t. After the subtraction of this unphysical contribution from the partially quenched lattice correlators, the correlators are positive and exponentially falling. The resulting scalar meson mass 1.51±0.19 GeV from the partially quenched correlators is consistent with the dynamical result and has an appreciably smaller error bar

  17. Melting spectral functions of the scalar and vector mesons in a holographic QCD model

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Kikuchi, Toru; Fukushima, Kenji; Misumi, Tatsuhiro; Murata, Masaki

    2010-01-01

    We investigate the finite-temperature spectral functions of heavy quarkonia by using the soft-wall anti-de Sitter/QCD model. We discuss the scalar, the pseudoscalar, the vector, and the axial-vector mesons and compare their qualitative features of the melting temperature and growing width. We find that the axial-vector meson melts earlier than the vector meson, while there appears only a slight difference between the scalar and pseudoscalar mesons, which also melt earlier than the vector meson.

  18. Masses of scalar and axial-vector B mesons revisited

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Yang [Academia Sinica, Institute of Physics, Taipei (China); Yu, Fu-Sheng [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)

    2017-10-15

    The SU(3) quark model encounters a great challenge in describing even-parity mesons. Specifically, the q anti q quark model has difficulties in understanding the light scalar mesons below 1 GeV, scalar and axial-vector charmed mesons and 1{sup +} charmonium-like state X(3872). A common wisdom for the resolution of these difficulties lies on the coupled channel effects which will distort the quark model calculations. In this work, we focus on the near mass degeneracy of scalar charmed mesons, D{sub s0}{sup *} and D{sub 0}{sup *0}, and its implications. Within the framework of heavy meson chiral perturbation theory, we show that near degeneracy can be qualitatively understood as a consequence of self-energy effects due to strong coupled channels. Quantitatively, the closeness of D{sub s0}{sup *} and D{sub 0}{sup *0} masses can be implemented by adjusting two relevant strong couplings and the renormalization scale appearing in the loop diagram. Then this in turn implies the mass similarity of B{sub s0}{sup *} and B{sub 0}{sup *0} mesons. The P{sub 0}{sup *}P{sub 1}{sup '} interaction with the Goldstone boson is crucial for understanding the phenomenon of near degeneracy. Based on heavy quark symmetry in conjunction with corrections from QCD and 1/m{sub Q} effects, we obtain the masses of B{sup *}{sub (s)0} and B{sup '}{sub (s)1} mesons, for example, M{sub B{sub s{sub 0{sup *}}}} = (5715 ± 1) MeV + δΔ{sub S}, M{sub B}{sup {sub '{sub s{sub 1}}}} = (5763 ± 1) MeV + δΔ{sub S} with δΔ{sub S} being 1/m{sub Q} corrections. We find that the predicted mass difference of 48 MeV between B{sup '}{sub s1} and B{sub s0}{sup *} is larger than that of 20-30 MeV inferred from the relativistic quark models, whereas the difference of 15 MeV between the central values of M{sub B}{sup {sub '{sub s{sub 1}}}} and M{sub B}{sup {sub '{sub 1}}} is much smaller than the quark model expectation of 60-100 MeV. Experimentally, it is important to have a precise

  19. Experimental status of scalar and tensor mesons

    International Nuclear Information System (INIS)

    Von Dombrowski, S.

    1997-01-01

    The recent discoveries of a 0 (1450) and f 0 (1370)/f 0 (1500) in antiproton-proton annihilation at rest shed new light on the interpretation of light scalar mesons. The properties of f 0 (1500) match the expectations of a scalar glueball mixed with nearby qq states. New decay modes of the ξ(2230) are reported in radiative J/Ψ decays, pointing also towards a (tensor) glueball nature of this state. Results from different experiments are discussed and compared. (orig.)

  20. Finite nuclei in relativistic models with a light chiral scalar meson

    International Nuclear Information System (INIS)

    Serot, B.D.; Furnstahl, R.J.

    1993-01-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed

  1. Scalar mesons and glueballs in a chiral U(3)xU(3) quark model with 't Hooft interaction

    International Nuclear Information System (INIS)

    Nagy, M.; Volkov, M.K.; Yudichev, V.L.

    2000-01-01

    In a U(3)xU(3) quark chiral model of the Nambu-Jona-Lasino (NJL) type with the 't Hooft interaction, the ground scalar isoscalar mesons and a scalar glueball are described. The glueball (dilaton) is introduced into the effective meson Lagrangian written in a chirally symmetric form on the basis of scale invariance. The singlet-octet mixing of scalar isoscalar mesons and their mixing with the glueball are taken into account. Mass spectra of the scalar mesons and glueball and their strong decays are described

  2. Excited scalar and pseudoscalar mesons in the extended linear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Parganlija, Denis [Technische Universitaet Wien, Institut fuer Theoretische Physik, Vienna (Austria); Giacosa, Francesco [Jan Kochanowski University, Institute of Physics, Kielce (Poland); Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany)

    2017-07-15

    We present an in-depth study of masses and decays of excited scalar and pseudoscalar anti qq states in the Extended Linear Sigma Model (eLSM). The model also contains ground-state scalar, pseudoscalar, vector and axial-vector mesons. The main objective is to study the consequences of the hypothesis that the f{sub 0}(1790) resonance, observed a decade ago by the BES Collaboration and recently by LHCb, represents an excited scalar quarkonium. In addition we also analyse the possibility that the new a{sub 0}(1950) resonance, observed recently by BABAR, may also be an excited scalar state. Both hypotheses receive justification in our approach although there appears to be some tension between the simultaneous interpretation of f{sub 0}(1790)/a{sub 0}(1950) and pseudoscalar mesons η(1295), π(1300), η(1440) and K(1460) as excited anti qq states. (orig.)

  3. Test of scalar meson structure in φ radiative decays

    International Nuclear Information System (INIS)

    Kumano, S.

    1992-12-01

    We show that φ radiative decays into scalar mesons [f 0 (975), a 0 (980) ≡ S] can provide important clues on the internal structures of these mesons. Radiative decay widths vary widely: B.R. = 10 -4 -10 -6 depending on the substructures (qq-bar, qqq-barq-bar, KK-bar, glueball). Hence, we could discriminate among various models by measuring these widths at future φ factories. The understanding of these meson structures is valuable not only in hadron spectroscopy but also in nuclear physics in connection with the widely-used but little-understood σ meson. We also find that the decay φ→S γ →K 0 K-bar 0 γ is not strong enough to pose a significant background problem for studying CP violation via φ→K 0 K-bar 0 at the φ factories. (author)

  4. Radiative decays involving f0(980) and a0(980) and mixing between low and high mass scalar mesons

    International Nuclear Information System (INIS)

    Teshima, T.; Kitamura, I.; Morisita, N.

    2005-01-01

    We analyze the experimental data for φ->f 0 (980)γ, φ->a 0 (980)γ, f 0 (980)->γγ and a 0 (980)->γγ decay widths in a framework where f 0 (980) and a 0 (980) are assumed to be mainly qqq-bar q-bar low mass scalar mesons and mixed with qq-bar high mass scalar mesons. Applied the vector meson dominance model (VDM), these decays amplitudes are expressed by coupling parameters B describing the S (qqq-bar q-bar scalar meson)-V (vector meson)-V (vector meson) coupling and B ' describing the S ' (qq-bar scalar meson)-V-V coupling. Adopting the magnitudes for B and B ' as 3∼2.8 GeV -1 and ∼12 GeV -1 , respectively, the mixing angle between a 0 (980) and a 0 (1450) as ∼9 o , and the mixing parameter λ 01 causing the mixing between I=0 qqq-bar q-bar state and qq-bar state as ∼0.24 GeV 2 , we can interpret these experimental data, consistently

  5. Scalar mesons and the search for the 0++ glueball

    International Nuclear Information System (INIS)

    Thoma, U.

    2003-01-01

    The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular, present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6GeV, which corresponds to the mass region where the scalar q anti q-mesons are expected. Therefore, mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But still many questions remain. (orig.)

  6. Scalar mesons and the search for the 0++ Glueball

    International Nuclear Information System (INIS)

    Ulrike Thoma

    2002-01-01

    The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6 GeV, which corresponds to the mass region where the scalar qq[bar]-mesons are expected. Therefore mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But, still many questions remain

  7. Light Scalar Mesons in Central Production at COMPASS

    CERN Document Server

    Austregesilo, A.

    2016-01-01

    COMPASS is a fixed-target experiment at the CERN SPS that studies the spectrum of light-quark hadrons. In 2009, it collected a large dataset using a $190\\,$GeV$/c$ positive hadron beam impinging on a liquid-hydrogen target in order to measure the central exclusive production of light scalar mesons. One of the goals is the search for so-called glueballs, which are hypothetical meson-like objects without valence-quark content. We study the decay of neutral resonances by selecting centrally produced pion pairs from the COMPASS dataset. The angular distributions of the two pseudoscalar mesons are decomposed in terms of partial waves, where particular attention is paid to the inherent mathematical ambiguities. The large dataset allows us to perform a detailed analysis in bins of the two squared four-momentum transfers carried by the exchange particles in the reaction. Possible parameterisations of the mass dependence of the partial-wave amplitudes in terms of resonances are also discussed.

  8. Perspectives of Scalar- and Vector- Meson Production in Hadron-Nucleus Reactions

    International Nuclear Information System (INIS)

    Cassing, W.

    2000-01-01

    The production and decay of vector mesons (ρ, ω) in pA reactions at COSY energies is studied with particular emphasis on their in-medium spectral functions. It is explored within transport calculations, if hadronic in-medium decays like π + π - or π 0 γ might provide complementary information to their dilepton (e + e - ) decays. Whereas the π + π - signal from the ρ-meson is found to be strongly distorted by pion rescattering, the ω- meson Dalitz decay to π 0 γ appears promising even for more heavy nuclei. The perspectives of scalar meson ( f 0 , a 0 ) production in pp reactions are investigated within a boson-exchange model indicating that the f 0 -meson might hardly be detected in these collisions in the K(anti)K or ππ decay channels whereas the exclusive channel pp→da 0 + looks very promising. (author)

  9. Scalar mesons and the search for the 0{sup ++} glueball

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, U. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2003-11-01

    The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular, present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6GeV, which corresponds to the mass region where the scalar q anti q-mesons are expected. Therefore, mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But still many questions remain. (orig.)

  10. Scalar mesons and the search for the 0{sup ++} Glueball

    Energy Technology Data Exchange (ETDEWEB)

    Ulrike Thoma

    2002-10-01

    The possibility that gluonic excitations of hadronic matter or of the QCD vacuum may exist is perhaps one of the most fascinating topics in hadron spectroscopy. Glueballs are predicted by many models; in particular present-day lattice gauge calculations require their existence. All these models agree that the lightest glueball should have scalar quantum numbers and a mass around 1.6 GeV, which corresponds to the mass region where the scalar qq[bar]-mesons are expected. Therefore mixing effects can complicate the search for the glueball. Experiments indeed show an overpopulation of states, for which many different interpretations exist. This reflects the complexity of the situation. New data from various experiments on scalar states give hints toward an interpretation of the scalar states. But, still many questions remain.

  11. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1998-01-01

    We study the equation of state (EOS) of β-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson (a 0 (980)). A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼30 MeV. We find that the quantity most sensitive to the δ-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the δ-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger δ-meson coupling. (author)

  12. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)

    1998-03-01

    We study the equation of state (EOS) of {beta}-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson (a{sub 0}(980)). A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s}{approx}30 MeV. We find that the quantity most sensitive to the {delta}-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the {delta}-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger {delta}-meson coupling. (author) 8 refs, 6 figs, 2 tabs

  13. The Role of Isospin Components of the Scalar σ-Meson in the Structure of Neutron Stars

    International Nuclear Information System (INIS)

    Vasconcellos, Cesan A.Z.; Luetz, Eduardo; Razeira, Moises; Bodmann, Bardo E. J.; Dillig, Manfred

    2004-01-01

    Based on non-crossed, crossed and correlated ππ exchanges with irreducible N,Δ intermediate states, we predict an isovector component for the δ meson. We study dense hadronic matter in a generalized relativistic mean field approach with nonlinear self-couplings of the I = 0, 1 components of the scalar field and compare its predictions for neutron star properties with results from different models found in the literature

  14. Exclusive central diffractive production of scalar, pseudoscalar and vector mesons

    Directory of Open Access Journals (Sweden)

    Lebiedowicz P.

    2014-01-01

    Full Text Available We discuss exclusive central diffractive production of scalar (ƒ0(980, ƒ0(1370, ƒ0(1500, pseudoscalar (η, η′(958, and vector (ρ0 mesons in proton-proton collisions. The amplitudes are formulated in terms of effective vertices required to respect standard rules of Quantum Field Theory and propagators for the exchanged pomeron and reggeons. Different pomeron-pomeron-meson tensorial (vectorial coupling structures are possible in general. In most cases two lowest orbital angular momentum - spin couplings are necessary to describe experimental differential distributions. For the ƒ0(980 and η production the reggeon-pomeron, pomeron-reggeon, and reggeon-reggeon exchanges are included in addition, which seems to be necessary at relatively low energies. The theoretical results are compared with the WA102 experimental data, in order to determine the model parameters. For the ρ0 production the photon-pomeron and pomeron-photon exchanges are considered. The coupling parameters of tensor pomeron and/or reggeon are fixed from the H1 and ZEUS experimental data of the γp → ρ0 p reaction. We present first predictions of this mechanism for pp → ppπ+π− reaction being studied at COMPASS, RHIC, Tevatron, and LHC. Correlation in azimuthal angle between outgoing protons and distribution in pion rapidities at √s = 7 TeV are presented. We show that high-energy central production of mesons could provide crucial information on the spin structure of the soft pomeron.

  15. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)]. A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼ 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the δ-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing δmeson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab

  16. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)]. A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s} {approx} 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the {delta}-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing {delta}meson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab.

  17. Exotic nature of scalar G(1590) meson and possibilities for its further experimental study

    International Nuclear Information System (INIS)

    Gershtejn, S.S.

    1987-01-01

    It is pointed out that exotic properties of the scalar G(1590)-meson (an enchancement of the G → η'η decay probability as compared with G → ηη and of the GG → ηη decay probability as compared with G → ππ, KK) may be explained if an account is made of the strong coupling between two gluons with η'(η)-mesons in the framework of two different models, I.E. a) G-meson is a glueball, b) G-meson is a hybrid state (an eight component of the SU(3) f octet). Experimental predictions of both models are discussed

  18. Nuclear matter in relativistic mean field theory with isovector scalar meson.

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)] is studied. While the {delta}-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to {delta}-field to the nuclear symmetry energy is negative. To fit the empirical value, E{sub s}{approx}30 MeV, a stronger {rho}-meson coupling is required than in absence of the {delta}-field. The energy per particle of neutron star matter is than larger at high densities than the one with no {delta}-field included. Also, the proton fraction of {beta}-stable matter increases. Splitting of proton and neutron effective masses due to the {delta}-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs.

  19. Nuclear matter in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1996-12-01

    Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)] is studied. While the δ-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to δ-field to the nuclear symmetry energy is negative. To fit the empirical value, E s ∼30 MeV, a stronger ρ-meson coupling is required than in absence of the δ-field. The energy per particle of neutron star matter is than larger at high densities than the one with no δ-field included. Also, the proton fraction of β-stable matter increases. Splitting of proton and neutron effective masses due to the δ-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs

  20. Goldstone pion and other mesons using a scalar confining interaction

    International Nuclear Information System (INIS)

    Gross, F.; Milana, J.

    1994-01-01

    A covariant wave equation for q bar q interactions with an interaction kernel composed of the sum of constant vector and linear scalar confining interactions is solved for states with two quarks with identical mass. The model includes an NJL-like mechanism which links the dynamical breaking of chiral symmetry to the spontaneous generation of quark mass and the appearance of a low mass Goldstone pion. A novel feature of this approach is that it automatically explains the small mass of the pion even though the linear potential is a scalar interaction in Dirac space, and hence breaks chiral symmetry. Solutions for mesons composed of light quarks (π,ρ, and low lying excited states) and heavy quarks (ρ c , J/Ψ, and low lying excited states) are presented and discussed

  1. Scalar mesons as a mixing of two and four quark states

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Vijande, J.; Fernandez, F.; Valcarce, A.

    2005-01-01

    The scalar mesons are a puzzling problem in meson spectroscopy: they appear to be too numerous and with a mass often incompatible with usual quark-quark potentials. In this paper, we study the possibility to describe them as a mixing of states composed of one and two quark-antiquark pairs. A potential containing confinement, gluon exchange and boson exchange, as expected from chiral symmetry, is used in a consistent way to calculate the two and four quark states separately. Then, a coupling between these states is introduced as a constant term depending only on the flavour of the created pair. The description is largely improved. To refine the treatment, a coupling with a glueball is also considered. All the experimental resonances seem to fit correctly in this scheme. (author)

  2. Scalar mesons as a mixing of two and four quark states

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, B. [Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Grenoble (France); Vijande, J.; Fernandez, F.; Valcarce, A. [Universidad de Salamanca, Salamanca (Spain). Grupo de Fisica Nuclear

    2005-07-01

    The scalar mesons are a puzzling problem in meson spectroscopy: they appear to be too numerous and with a mass often incompatible with usual quark-quark potentials. In this paper, we study the possibility to describe them as a mixing of states composed of one and two quark-antiquark pairs. A potential containing confinement, gluon exchange and boson exchange, as expected from chiral symmetry, is used in a consistent way to calculate the two and four quark states separately. Then, a coupling between these states is introduced as a constant term depending only on the flavour of the created pair. The description is largely improved. To refine the treatment, a coupling with a glueball is also considered. All the experimental resonances seem to fit correctly in this scheme. (author)

  3. Instantons in QCD 2. Correlators of pseudoscalar and scalar currents

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1988-01-01

    The instanton-induced contributions to correlation functions in the QCD vacuum using numerical data on the ensemble of pseudoparticles (PPs) obtained previously are calculated. The hierarchy of the π, K, η, η' masses are explained, as well as the sign and (approximately) the magnitude of the η-η' mixing. All octet members have about the same coupling constants, while that for η' seems to be larger by about 50%. The results for the I=1 scalar channel is consistent with the meson mass around 1 GeV and the coupling close to that of the pion

  4. Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations

    International Nuclear Information System (INIS)

    Zakout, I.; Jaqaman, H.R.

    2000-01-01

    Short-range quark-quark correlations in hot nuclear matter are examined within the modified quark-meson coupling (MQMC) model by adding repulsive scalar and vector quark-quark interactions. Without these correlations, the bag radius increases with the baryon density. However, when the correlations are introduced the bag size shrinks as the bags overlap. Also as the strength of the scalar quark-quark correlation is increased, the decrease of the effective nucleon mass M* N with the baryonic density is slowed down and tends to saturate at high densities. Within this model we study the phase transition from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the latter modelled as an ideal gas of quarks and gluons inside a bag. Two models for the QGP bag parameter are considered. In one case, the bag is taken to be medium-independent and the phase transition from the hadron phase to QGP is found to occur at five to eight times ordinary nuclear matter density for temperatures less than 60 MeV. For lower densities, the transition takes place at a higher temperature, reaching up to 130 MeV at zero density. In the second case, the QGP bag parameter is considered to be medium-dependent as in the MQMC model for the hadronic phase. In this case, it is found that the phase transition occurs at much lower densities. (author)

  5. In-medium meson properties and screening correlators

    International Nuclear Information System (INIS)

    Bazavov, A; Karsch, F; Mukherjee, Swagato; Petreczky, P; Maezawa, Y

    2014-01-01

    We study spatial meson correlation functions consisting of strange quarks, strange and charm quarks and charm quarks in (2 + 1)-flavor QCD using the highly improved staggered quark action. We find that the in-medium modification of the meson correlators decreases with increasing charm quark content and decreasing size. In particular, we find strong in-medium modification of φ and D s meson correlators around the chiral transition temperature T c , while J/ψ and η c correlators show strong in-medium modification only at temperatures of 1.4T c .

  6. Meson Correlators in Finite Temperature Lattice QCD

    CERN Document Server

    De Forcrand, Philippe; Hashimoto, T; Hioki, S; Matsufuru, H; Miyamura, O; Nakamura, A; Takaishi, T; Umeda, T; Stamatescu, I O; CERN. Geneva; Forcrand, Ph. de

    2001-01-01

    We analyze temporal and spatial meson correlators in quenched lattice QCD at T>0. Below T_c we observe little change in the meson properties as compared with T=0. Above T_c we observe new features: chiral symmetry restoration and signals of plasma formation, but also indication of persisting mesonic (metastable) states and different temporal and spatial masses in the mesonic channels. This suggests a complex picture of QGP in the region 1 - 1.5 T_c.

  7. Scalar resonances as two-quark states

    International Nuclear Information System (INIS)

    Shabalin, E.P.

    1984-01-01

    On the base of the theory with U(3)xU(3) symmetric chiral Lagrangian the properties of the two-quark scalar mesons are considered. It is shown, that the scalar resonances delta (980) and K(1240) may be treated as the p-wave states of anti qq system. The properties of the isovector and strange scalar mesons, obtained as a propetrties of the two-quark states, turn out to be very close to the properties of the isovector scalar resonance delta (980) and strange resonance K(1240)

  8. Polarization observables in the longitudinal basis for pseudo-scalar meson photoproduction using a density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Biplab Dey, Michael E. McCracken, David G. Ireland, Curtis A. Meyer

    2011-05-01

    The complete expression for the intensity in pseudo-scalar meson photoproduction with a polarized beam, target, and recoil baryon is derived using a density matrix approach that offers great economy of notation. A Cartesian basis with spins for all particles quantized along a single direction, the longitudinal beam direction, is used for consistency and clarity in interpretation. A single spin-quantization axis for all particles enables the amplitudes to be written in a manifestly covariant fashion with simple relations to those of the well-known CGLN formalism. Possible sign discrepancies between theoretical amplitude-level expressions and experimentally measurable intensity profiles are dealt with carefully. Our motivation is to provide a coherent framework for coupled-channel partial-wave analysis of several meson photoproduction reactions, incorporating recently published and forthcoming polarization data from Jefferson Lab.

  9. Properties of the scalar glueball

    International Nuclear Information System (INIS)

    Lanik, J.

    1984-01-01

    A detailed analysis of an effective Lagrangian model for cupling between a scalar glueball and pseudoscalar mesons is given. This coupling is shown to satisfy the SU(2)xSU(2) rule. The model is consistent with the glueball assignment for the scalar gsub(s)(1240) particle. Moreover, the SU(2)xSU(2) coupling rule explained also the existing experimental data for decays of the tensor glueball candidate THETA(1640) into pseudoscalar mesons

  10. Glueball-meson mixing

    Energy Technology Data Exchange (ETDEWEB)

    Vento, Vicente [Consejo Superior de Investigaciones Cientificas, Departamento de Fisica Teorica y Instituto de Fisica Corpuscular, Universidad de Valencia, Burjassot (Spain)

    2016-01-15

    Calculations in unquenched QCD for the scalar glueball spectrum have confirmed previous results of Gluodynamics finding a glueball at ∝1750 MeV. I analyze the implications of this discovery from the point of view of glueball-meson mixing in light of the experimental scalar spectrum. (orig.)

  11. Meson-mass generation by instantons, 2

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1979-05-01

    In a previous work we discussed how pseudo-scalar mesons and scalar mesons acquire their masses by instantons in the colored gauge field. We considered there the two-flavor model with chiral U(2) x U(2) symmetry. In the present paper the same problem is discussed, including the chiral flavor U(3) x U(3) symmetry. An importance of non-local effects due to instantons is emphasized.

  12. Photoproduction of scalar mesons at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, M. L. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-090, Pelotas, RS (Brazil); Machado, M. V. [High Energy Physics Phenomenology Group, GFPAE IF-UFRGS, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS (Brazil)

    2013-03-25

    In this work we will focus on photoproduction of mesons states a{sub 0}(980), f{sub 0}(1500) and f{sub 0}(1710). The f{sub 0}(1500) and f{sub 0}(1710) mesons will be considered in distinct mixing possibilities and assuming that a{sub 0}(980) is member of the ground-state nonet. The theoretical formalism is the Regge approach with reggeized {rho} and {omega} exchange. The differential and integrated total cross section are computed for the cases of the mesons a{sub 0}(980), f{sub 0}(1500) and f{sub 0}(1710) focusing the GlueX energy regime with photon energy E = 9 GeV.

  13. ON SCALAR MESONS FROM THE COMBINED ANALYSIS OF MULTI-CHANNEL pi pi SCATTERING AND J/psi DECAYS

    Czech Academy of Sciences Publication Activity Database

    Surovtsev, Yu .S.; Bydžovský, Petr; Gutsche, T.; Lyubovitskij, V. E.

    2011-01-01

    Roč. 26, 3-4 (2011), s. 610-612 ISSN 0217-751X. [11th International Workshop on Meson Production , Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/08/0984 Institutional research plan: CEZ:AV0Z10480505 Keywords : Multi-channel pion-pion scattering * scalar-isoscalar resonances * multichannel analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  14. Meson-induced correlations of nucleons in nuclear Compton scattering

    International Nuclear Information System (INIS)

    Huett, M.; Milstein, A.I.

    1998-01-01

    The nonresonant (seagull) contribution to the nuclear Compton amplitude at low energies is strongly influenced by nucleon correlations arising from meson exchange. We study this problem in a modified Fermi gas model, where nuclear correlation functions are obtained with the help of perturbation theory. The dependence of the mesonic seagull amplitude on the nuclear radius is investigated and the influence of a realistic nuclear density on this amplitude is discussed. We found that different form factors appear for the static part (proportional to the enhancement constant κ) of the mesonic seagull amplitude and for the parts, which contain the contribution from electromagnetic polarizabilities. copyright 1998 The American Physical Society

  15. Three channel model of meson-meson scattering and scalar meson spectroscopy

    International Nuclear Information System (INIS)

    Kaminski, R.; Lesniak, L.; Loiseau, B.

    1997-07-01

    New solutions on the scalar - isoscalar ππ phase shifts are analysed together with previous K anti-K results using a separable potential model of three coupled channels (ππ, K anti-K and an effective 2π2π system). Model parameters are fitted to two sets of solutions obtained in a recent analysis of the CERN-Cracow-Munich measurements of the π - p →π + π'-n reaction on a polarized target. A relatively narrow (90-180 MeV) scalar resonance f 0 (1400-1460) is found, in contrast to a much broader (Γ ∼ 500 MeV) state emerging from the analysis of previous unpolarized target data. (author)

  16. Medium modifications of mesons. Chiral symmetry restoration, in-medium QCD sum rules for D and ρ mesons, and Bethe-Salpeter equations

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, Thomas Uwe

    2012-04-11

    The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes D{sub s} and D{sup *}{sub 0} mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.

  17. Vector mesons on the light front

    International Nuclear Information System (INIS)

    Naito, K.; Maedan, S.; Itakura, K.

    2004-01-01

    We apply the light-front quantization to the Nambu-Jona-Lasinio model with the vector interaction, and compute vector meson's mass and light-cone wavefunction in the large N limit. Following the same procedure as in the previous analyses for scalar and pseudo-scalar mesons, we derive the bound-state equations of a qq-bar system in the vector channel. We include the lowest order effects of the vector interaction. The resulting transverse and longitudinal components of the bound-state equation look different from each other. But eventually after imposing an appropriate cutoff, one finds these two are identical, giving the same mass and the same (spin-independent) light-cone wavefunction. Mass of the vector meson decreases as one increases the strength of the vector interaction

  18. Partial twisting for scalar mesons

    International Nuclear Information System (INIS)

    Agadjanov, Dimitri; Meißner, Ulf-G.; Rusetsky, Akaki

    2014-01-01

    The possibility of imposing partially twisted boundary conditions is investigated for the scalar sector of lattice QCD. According to the commonly shared belief, the presence of quark-antiquark annihilation diagrams in the intermediate state generally hinders the use of the partial twisting. Using effective field theory techniques in a finite volume, and studying the scalar sector of QCD with total isospin I=1, we however demonstrate that partial twisting can still be performed, despite the fact that annihilation diagrams are present. The reason for this are delicate cancellations, which emerge due to the graded symmetry in partially quenched QCD with valence, sea and ghost quarks. The modified Lüscher equation in case of partial twisting is given

  19. Meson spectroscopy at the Serpukhov accelerator

    International Nuclear Information System (INIS)

    Prokoshkin, Yu.D.

    1987-01-01

    At present meson spectroscopy is a dominating direction of experimental studies at the IHEP accelerator. The main attention is paid to the search and study of exotic meson states. This report presents some new results obtained recently at the IHEP accelerator. First, observation is made of a narrow 1750 MeV meson decays into ηη. Above |t| ∼ 0.2 (GeV-c) 2 (t: a square of 4-momentum transferred to a neutron), a clear narrow peak appears in Mηη mass spectrum at a mass of 1750 MeV. Second, 2.22 GeV narrow meson decaying into η'η is described. At present only premature conclusions have been obtained in this area and the situation with ζ is not clear. Third, a study is made on new exotic tensor meson χ(1810) decaying into 4π deg and ηη channels. The decay M deg → 4π deg is a very promissing instrument in search for exotic mesons. Next, G(1590)-meson as a scalar glueball is discussed. BR(G → 4π deg) has a large value, an independent evidence of the exotic nature of G(1590)-meson. Experimental data obtained on all essential decay channels of G(1590)-meson allows to give a selfconsistent description of its production and decay as the scalar glueball, a particle with the dominating gluon component. The final two parts deal with exotic vector meson C(1480) decaying into ψπ deg and observation of D(1285) → ψγ decay. (Nogami, K.)

  20. Subtracted Dispersion Relations for In-medium Meson Correlators in QCD Sum Rules

    Energy Technology Data Exchange (ETDEWEB)

    Florkowski, W; Broniowski, W [The H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)

    1999-01-01

    We analyze subtracted dispersion relations for meson correlators at finite baryon density and temperature. Such relations are needed for QCD sum rules. We point out that importance of scattering terms, as well as finite, well-defined subtraction constants. Both are necessary for consistency, in particular for the equality of the longitudinal and transverse correlators in the limit of the vanishing three-momentum of mesons relative to the medium. We present detailed calculations in various mesonic channels of the Fermi gas of nucleons. (author)

  1. Time dependence of the field energy densities surrounding sources: Application to scalar mesons near point sources and to electromagnetic fields near molecules

    International Nuclear Information System (INIS)

    Persico, F.; Power, E.A.

    1987-01-01

    The time dependence of the dressing-undressing process, i.e., the acquiring or losing by a source of a boson field intensity and hence of a field energy density in its neighborhood, is considered by examining some simple soluble models. First, the loss of the virtual field is followed in time when a point source is suddenly decoupled from a neutral scalar meson field. Second, an initially bare point source acquires a virtual meson cloud as the coupling is switched on. The third example is that of an initially bare molecule interacting with the vacuum of the electromagnetic field to acquire a virtual photon cloud. In all three cases the dressing-undressing is shown to take place within an expanding sphere of radius r = ct centered at the source. At each point in space the energy density tends, for large times, to that of the ground state of the total system. Differences in the time dependence of the dressing between the massive scalar field and the massless electromagnetic field are discussed. The results are also briefly discussed in the light of Feinberg's ideas on the nature of half-dressed states in quantum field theory

  2. Higgs scalar in heavy-vector-meson decays

    International Nuclear Information System (INIS)

    Frampton, P.H.; Wada, W.W.

    1979-01-01

    For both UPSILON (9.5,b-barb) and T (t-bart), the decay into Higgs scalar plus photon is calculated, employing a triangle-diagram estimate for the dependence of this decay matrix element on the Higgs-scalar mass. This mass dependence gives a significant supression, but the decay should still be readily observable, if energetically allowed

  3. Photoproduction of vector mesons off nucleons near threshold

    International Nuclear Information System (INIS)

    Friman, B.

    1995-01-01

    A simple meson-exchange model is proposed for the photoproduction of ρ- and ω-mesons off protons near threshold. This model provides a good description of the available data and implies a large ρ-nucleon interaction in the scalar channel (σ-exchange). This phenomenological interaction is applied to estimate the leading contribution to the self-energy of ρ-mesons in matter. The implications of our calculation for experimental studies of the ρ-meson mass in nuclei are discussed. (author)

  4. Leptonic decay of light vector mesons in an independent quark model

    International Nuclear Information System (INIS)

    Barik, N.; Dash, P.C.; Panda, A.R.

    1993-01-01

    Leptonic decay widths of light vector mesons are calculated in a framework based on the independent quark model with a scalar-vector harmonic potential. Assuming a strong correlation to exist between the quark-antiquark momenta inside the meson, so as to make their total momentum identically zero in the center-of-mass frame of the meson, we extract the quark and antiquark momentum distribution amplitudes from the bound quark eigenmode. Using the model parameters determined from earlier studies, we arrive at the leptonic decay widths of (ρ,ω,φ) as (6.26 keV, 0.67 keV, 1.58 keV) which are in very good agreement with the respective experimental data (6.77±0.32 keV, 0.6±0.02 keV, 1.37±0.05 keV)

  5. Scalar mesons and kaons in φ radiative decay and their implications for studies of CP violation at DAφNE

    International Nuclear Information System (INIS)

    Brown, N.; Close, F.E.

    1991-12-01

    We had become interested in the possibility that radiative decays of the φ meson might be so prominent that they would undermine the primary aim of the φ factory, namely the study of (CP) charge-parity violation. As a result of previous work we can now be confident that the CP programme will not be significantly affected by this possibility. At the same time, the DAφNE facility will create opportunities for studying φ radiative processes, in particular the production of the enigmatic scalar resonances, in their own right. (author)

  6. Modified quark-meson coupling model for nuclear matter

    International Nuclear Information System (INIS)

    Jin, X.; Jennings, B.K.

    1996-01-01

    The quark-meson coupling model for nuclear matter, which describes nuclear matter as nonoverlapping MIT bags bound by the self-consistent exchange of scalar and vector mesons, is modified by introducing medium modification of the bag constant. We model the density dependence of the bag constant in two different ways: One invokes a direct coupling of the bag constant to the scalar meson field, and the other relates the bag constant to the in-medium nucleon mass. Both models feature a decreasing bag constant with increasing density. We find that when the bag constant is significantly reduced in nuclear medium with respect to its free-space value, large canceling isoscalar Lorentz scalar and vector potentials for the nucleon in nuclear matter emerge naturally. Such potentials are comparable to those suggested by relativistic nuclear phenomenology and finite-density QCD sum rules. This suggests that the reduction of bag constant in nuclear medium may play an important role in low- and medium-energy nuclear physics. copyright 1996 The American Physical Society

  7. Central production of two-pseudoscalar meson systems at the COMPASS experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Austregesilo, Alexander

    2014-10-20

    COMPASS is a fixed-target experiment at the CERN SPS which recorded a data set with an incident proton beam impinging on a liquid hydrogen target in order to study the central production of light scalar mesons. We select events with two protons and two pseudo-scalar mesons in the final state and decompose their angular distribution in terms of partial-wave amplitudes. Fits to the mass-dependence of these amplitudes are used to determine the Breit-Wigner parameters of scalar resonances.

  8. Study of temporal quantum correlations in decohering B and K meson systems

    Science.gov (United States)

    Naikoo, Javid; Alok, Ashutosh Kumar; Banerjee, Subhashish

    2018-03-01

    In this work we study temporal quantum correlations, quantified by Leggett-Garg (LG) and LG-type inequalities, in the B and K meson systems. We use the tools of open quantum systems to incorporate the effect of decoherence which is quantified by a single phenomenological parameter. The effect of C P violation is also included in our analysis. We find that the LG inequality is violated for both B and K meson systems, the violation being most prominent in the case of K mesons and least for Bs system. Since the systems with no coherence do not violate LGI, incorporating decoherence is expected to decrease the extent of violation of LGI and is clearly brought out in our results. We show that the expression for the LG functions depends upon an additional term, apart from the experimentally measurable meson transition probabilities. This term vanishes in the limit of zero decoherence. On the other hand, the LG-type parameter can be directly expressed in terms of transition probabilities, making it a more appropriate observable for studying temporal quantum correlations in neutral meson systems.

  9. Properties of vector and axial-vector mesons from a generalized Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Bernard, V.; Meissner, U.G.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1988-01-01

    We construct a generalized Nambu-Jona-Lasinio lagrangian including scalar, pseudoscalar, vector and axial-vector mesons. We specialize to the two-flavor case. The properties of the structured vacuum as well as meson masses and coupling constants are calculated giving an overall agreement within 20% of the experimental data. We investigate the meson properties at finite density. In contrast to the mass of the scalar σ-meson, which decreases sharply with increasing density, the vector meson masses are almost independent of density. Furthermore, the vector-meson-quark coupling constants are also stable against density changes. We point out that these results imply a softening of the nuclear equation of state at high densities. Furthermore, we discuss the breakdown of the KFSR relation on the quark level as well as other deviations from phenomenological concepts such as universality and vector meson dominance. (orig.)

  10. Shell model for time-correlated random advection of passive scalars

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Muratore-Ginanneschi, P.

    1999-01-01

    We study a minimal shell model for the advection of a passive scalar by a Gaussian time-correlated velocity field. The anomalous scaling properties of the white noise limit are studied analytically. The effect of the time correlations are investigated using perturbation theory around the white...... noise limit and nonperturbatively by numerical integration. The time correlation of the velocity field is seen to enhance the intermittency of the passive scalar. [S1063-651X(99)07711-9]....

  11. Photoproduction of vector mesons off nucleons near threshold

    International Nuclear Information System (INIS)

    Friman, B.; Soyeur, M.

    1995-11-01

    We propose a simple meson-exchange model of the photoproduction of ρ-and ω-mesons off protons near threshold (E γ < or∼2 GeV). We show that this model provides a good description of the available data and implies a large ρ-nucleon interaction in the scalar channel (σ-exchange). We use this phenomenological interaction to estimate the leading contribution to the self-energy of ρ-mesons in matter. We discuss the implications of our calculation for experimental studies of the ρ-meson mass in nuclei. (orig.)

  12. Analysis of soft wall AdS/QCD potentials to obtain the melting temperature of scalar hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Alfredo; Ibanez, Adolfo [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile)

    2017-11-15

    We consider an analysis of potentials related to Schroedinger-type equations for scalar fields in a 5D AdS black hole background with dilaton in order to obtain melting temperatures for different hadrons in a thermal bath. The approach does not consider calculations of spectral functions, and it is easy to yield results for hadrons with an arbitrary number of constituents. We present results for scalar mesons, glueballs, hybrid mesons and tetraquarks, and we show that mesons are more resistant to being melted in a thermal bath than other scalar hadrons, and in general the melting temperature increases when hadrons contain heavy quarks. (orig.)

  13. Masses and widths of scalar-isoscalar multi-channel resonances from data analysis

    Czech Academy of Sciences Publication Activity Database

    Surovtsev, Yu .S.; Bydžovský, Petr; Kaminski, R.; Lyubovitskij, V. E.; Nagy, M.

    2014-01-01

    Roč. 41, č. 2 (2014), 025006 ISSN 0954-3899 R&D Projects: GA ČR(CZ) GAP203/12/2126; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : coupled-channel formalism * meson-meson scattering * scalar and pseudoscalar mesons Subject RIV: BE - Theoretical Physics Impact factor: 2.777, year: 2014

  14. J/Ψ decays, quark-gluon mixing in light mesons and glueball interpretation of L(1440), Θ(1720) and S*(980)-mesons

    International Nuclear Information System (INIS)

    Eremyan, Sh.S.; Nazaryan, A.Eh.

    1987-01-01

    The mixing angles for pseudoscalar, tensor and scalar meson multiplets are obtained in assumption on existence of a glueball component. The results are shown to be independent on the kind of the mixing matrix. It turned out that L(1440), Θ(1720) and S*(980) mesons are quite real candidates for glueballs. All the available experimental data on two-particle decays of 0 - , 2 + and 0 + -mesons are described and predictions for a large of such decays are given. 13 refs.; 6 figs.; 9 tabs

  15. Suppression and Two-Particle Correlations of Heavy Mesons in Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shanshan [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Qin, Guang-You [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, 430079 (China); Bass, Steffen A. [Department of Physics, Duke University, Durham, NC 27708 (United States)

    2016-12-15

    We study the medium modification of heavy quarks produced in heavy-ion collisions. The evolution of heavy quarks inside the QGP is described using a modified Langevin framework that simultaneously incorporates their collisional and radiative energy loss. Within this framework, we provide good descriptions of the heavy meson suppression and predictions for the two-particle correlation functions of heavy meson pairs.

  16. Meson effective mass in the isospin medium in hard-wall AdS/QCD model

    Energy Technology Data Exchange (ETDEWEB)

    Mamedov, Shahin [Gazi University, Department of Physics, Ankara (Turkey); Baku State University, Institute for Physical Problems, Baku (Azerbaijan); Azerbaijan National Academy of Sciences, Institute of Physics, Baku (Azerbaijan)

    2016-02-15

    We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ, a{sub 1}, an π mesons. (orig.)

  17. Azimuthal correlations of D-mesons in p+p and p+Pb collisions at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Younus, M.; Sahu, P.K. [Institute of Physics, Bhubaneswar (India); Tripathy, S.K. [Institute of Physics, Bhubaneswar (India); Sambalpur University, Burla (India); Naik, Z. [Sambalpur University, Burla (India)

    2017-05-15

    We study the correlations of D mesons produced in p+p and p+Pb collisions. These are found to be sensitive to the effects of the cold nuclear medium and the transverse momentum (p{sub T}) regions we are looking into. In order to put this on a quantitative footing, as a first step we analyse the azimuthal correlations of D meson-charged hadron (Dh), and then predict the same for D meson-anti D meson (D anti D) pairs in p+p and p+Pb collisions with strong coupling at leading order O(α{sub s}{sup 2}) and next-to-leading order O(α{sub s}{sup 3}), which includes space-time evolution (in both systems) as well as cold nuclear matter effects (in p+Pb). This also sets the stage and baseline for the identification and study of medium modification of azimuthal correlations in relativistic collision of heavy nuclei at the Large Hadron Collider. (orig.)

  18. Universal Behavior in Excited Heavy-Light and Light-Light Mesons

    OpenAIRE

    Olsson, M. G.

    1996-01-01

    A common pattern of large orbital and radial excitations in heavy-light and light-light mesons is demonstrated. Within a general potential model the Regge slopes of the light degrees of freedom for these mesons are shown to be in the ratio of two. The possibility of ``tower'' degeneracy occurs only with pure scalar confinement.

  19. Temperature, chemical potential and the ρ meson

    International Nuclear Information System (INIS)

    Roberts, C. D.; Schmidt, S. M.

    2000-01-01

    Models of QCD must confront nonperturbative phenomena such as confinement, dynamical chiral symmetry breaking (DCSB) and the formation of bound states. In addition, a unified approach should describe the deconfinement and chiral symmetry restoring phase transition exhibited by strongly-interacting matter under extreme conditions of temperature and density. Nonperturbative Dyson-Schwinger equation (DSE) models provide insight into a wide range of zero temperature hadronic phenomena; e.g., non-hadronic electroweak interactions of light- and heavy-mesons, and diverse meson-meson and meson-nucleon form factors. This is the foundation for their application at nonzero-(T, μ). Herein the authors describe the calculation of the reconfinement and chiral symmetry restoring phase boundary, and the medium dependence of ρ-meson properties. They also introduce an extension to describe the time-evolution in the plasma of the quark's scalar and vector self energies based on a Vlasov equation

  20. Inclusive rapidity correlations of π- mesons in pp interactions

    International Nuclear Information System (INIS)

    Golokhvastov, A.I.

    1994-01-01

    The simple single-parameter approximation of one-particle semi-inclusive rapidity distributions of negative particles (π - mesons) in pp interactions at various multiplicities over the investigated range of primary momenta 6.6 -400 GeV/c is presented. Assuming the lack of any kind of correlations in semi-inclusive events, a good description of experimental data on two-particle inclusive rapidity correlations (pseudocorrelations) is obtained. Data on forward-backward, right-left correlations and multiplicity distributions in rapidity intervals and intervals separated by empty gaps do not contradict independent π - production either. (orig.)

  1. Meson-meson scattering in lattice QED2+1

    International Nuclear Information System (INIS)

    Fiebig, H.R.; Woloshyn, R.M.

    1993-01-01

    Scattering phase shifts of a meson-meson system in staggered 3-dimensional lattice QED are computed. The main task of the simulation is to obtain a discrete set of two-body energy levels. These are extracted from a 4-point time correlation matrix and then used to obtain scattering phase shifts. The results for the l = 0 and l = 2 partial waves are consistent with short-range repulsion and intermediate-range attraction of the residual meson-meson interaction. (orig.)

  2. Lifetime of rho meson in correlation with magnetic-dimensional reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Mamiya [Nagoya University, Department of Physics, Nagoya (Japan); Matsuzaki, Shinya [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Institute for Advanced Research, Nagoya (Japan)

    2017-04-15

    It is naively expected that in a strong magnetic configuration, the Landau quantization ceases the neutral rho meson to decay to the charged pion pair, so the neutral rho meson will be long-lived. To closely access this naive observation, we explicitly compute the charged pion loop in the magnetic field at the one-loop level, to evaluate the magnetic dependence of the lifetime for the neutral rho meson as well as its mass. Due to the dimensional reduction induced by the magnetic field (violation of the Lorentz invariance), the polarization (spin s{sub z} = 0, ±1) modes of the rho meson, as well as the corresponding pole mass and width, are decomposed in a nontrivial manner compared to the vacuum case. To see the significance of the reduction effect, we simply take the lowest Landau level approximation to analyze the spin-dependent rho masses and widths. We find that the ''fate'' of the rho meson may be more complicated because of the magnetic-dimensional reduction: as the magnetic field increases, the rho width for the spin s{sub z} = 0 starts to develop, reaches a peak, then vanishes at the critical magnetic field to which the folklore refers. On the other side, the decay rates of the other rhos for s{sub z} = ±1 monotonically increase as the magnetic field develops. The correlation between the polarization dependence and the Landau level truncation is also addressed. (orig.)

  3. Study of correlations of positive and negative charged particles

    International Nuclear Information System (INIS)

    Takahashi, Y.; Chan, C.H.; Dong, B.L.; Duthie, J.G.; Gregory, J.C.; Hayashi, T.; Yokomi, H.; Christl, M.J.; Derrickson, J.H.; Eby, P.B.; Fountain, W.F.; Parnell, T.A.; Roberts, F.E.; Nagamiya, S.; Dake, S.; Tominaga, T.; Fuki, M.; Iyono, A.; Ogata, T.; Miyamura, O.

    1991-01-01

    Particle correlations of the central collision events of 32 S + Pb at 200 GeV/AMU have been studied by utilizing a Magnetic-Interferomagnetic-Emulsion-Chamber (MAGIC) detector. Particle angles, momentum, and charge-signs are measured for all produced charged tracks for each event. Two-particle correlation functions, C 2 = dN (vertical strokep 1 - p 2 vertical stroke = q)/dp 1 dp 2 , for (++), (--) and (+-) particles are examined. A source radius around 4 - 6 fm is observed for overall identical particle correlations, while unexpected short-range correlations of unlike-sign pairs are observed in the high rapidity region. An analysis of unlike-sign pairs in terms of resonance decays indicated that a large amount (40% relative to pions) of η or ω mesons (decaying into 3 π), or of scalar iso-scalar σ mesons (decaying into 2 π) would be required to explain some of the data. Multi-particle charge-sign clusters are recognized; however, their 'run-test' and 'conjugate-test' show small deviations from statistical fluctuations. (orig.)

  4. A unitarized meson model including color Coulomb interaction

    International Nuclear Information System (INIS)

    Metzger, Kees.

    1990-01-01

    Ch. 1 gives a general introduction into the problem field of the thesis. It discusses in how far the internal structure of mesons is understood theoretically and which models exist. It discusses from a phenomenological point of view the problem of confinement indicates how quark models of mesons may provide insight in this phenomenon. In ch. 2 the formal theory of scattering in a system with confinement is given. It is shown how a coupled channel (CC) description and the work of other authors fit into this general framework. Explicit examples and arguments are given to support the CC treatment of such a system. In ch. 3 the full coupled-channel model as is employed in this thesis is presented. On the basis of arguments from the former chapters and the observed regularities in the experimental data, the choices underlying the model are supported. In this model confinement is described with a mass-dependent harmonic-oscillator potential and the presence of open (meson-meson) channels plays an essential role. In ch. 4 the unitarized model is applied to light scalar meson resonances. In this regime the contribution of the open channels is considerable. It is demonstrated that the model parameters as used for the description of the pseudo-scalar and vector mesons, unchanged can be used for the description of these mesons. Ch. 5 treats the color-Coulomb interaction. There the effect of the Coulomb interaction is studied in simple models without decay. The results of incorporating the color-Coulomb interaction into the full CC model are given in ch.6. Ch. 7 discusses the results of the previous chapters and the present status of the model. (author). 182 refs.; 16 figs.; 33 tabs

  5. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  6. Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II

    Science.gov (United States)

    Salam, Abdus; Delbourgo, Robert

    1964-01-01

    The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).

  7. Universal behavior in excited heavy-light and light-light mesons

    International Nuclear Information System (INIS)

    Olsson, M.G.

    1997-01-01

    A common pattern of large orbital and radial excitations in heavy-light and light-light mesons is demonstrated. For a general potential model with linear confinement the Regge slopes of the light degrees of freedom for these mesons are shown to be in the ratio of 2. The possibility of 'tower' degeneracy occurs only with pure scalar confinement. copyright 1997 The American Physical Society

  8. Mass spectrum of vector mesons in the relativistic model of quasi-independent quarks

    International Nuclear Information System (INIS)

    Savrin, V.I.; Khrushchev, V.V.; Semenov, S.V.

    1988-01-01

    Mass values of mesons with J PC =1 -- built of u-, d-, s-, c-, b-quarks in S-states have been found with the help of numerical solutions of Dirac equation. The potential entering the equation consists of the scalar linear potential and the Coulomb vector one. The main contribution into spectra dependence on the radial quantum number for light quarks is shown to give the cnfinement scalar flavour independent potential: V c (r)=κ 2 r, at parameter value κ∼ 0.42 GeV. The calculated mass values are in agreement with ∼ 5% accuracy with the data for well established mesons

  9. Observation of the scalar meson at 1260 MeV in the reaction Π-p→Π+Π-n at 17.2 GeV/c

    International Nuclear Information System (INIS)

    Rybicki, K.; Sakrejda, I.; Turnau, J.

    1984-01-01

    An analysis of the reaction Π - p↑→Π + Π - n at 17.2 GeV/c for |t|>0.2 GeV 2 yields relatively narrow scalar resonance well fitted by the Breit-Wigner formula. A fit to low and high |t| S-wave needs a new object which we call G (1260) with a width of (160+-10) MeV in addition to a broader Σ(1300) resonance. Unusual production properties of the former are tentatively explained in terms of a hybrid meson trajectory. An importance of the polarized target information is also discussed. (author)

  10. Squeezed condensate and confinement in a scalar model

    International Nuclear Information System (INIS)

    Blaschke, D.; Pavel, H.P.; Roepke, G.; Peradze, G.; Pervushin, V.N.

    1996-01-01

    The generating functional of a free scalar field theory is generalized to the case of a squeezed vacuum. The squeezed vacuum is prepared by macroscopically populating the original vacuum with pairs of zero energy particles. It is shown that the corresponding quark propagator has no poles on the real-k 2 axis which can be interpreted as quark confinement. In contrast, a scalar meson-like bound state exists as solution of the corresponding Bethe-Salpeter equation. 20 refs

  11. Pion-pion and pion-kaon interaction in the meson exchange picture

    International Nuclear Information System (INIS)

    Lohse, D.

    1989-10-01

    Following the general line of the Bonn NN-interaction, a model for pseudoscalar-pseudoscalar meson interaction has been constructed and applied consistently to ππ and Kπ scattering. The phases can be reproduced with vector meson t- and s-channel exchange up to 1 GeV. The bare masses of the vector mesons turn out to be in the range of 1.1 GeV, depending on the form factor. We use a coupled channel formalism, which is crucial to explain the S * (975) resonance as a bound anti KK state. Beyond 1 GeV the data require a pseudoscalar-pseudoscalar coupling to a scalar octet (J P =0 + ) to fit the s-wave phases in the isospin-0 π and isospin-1/2 Kπ channels. We apply both scalar coupling and derivative coupling. The latter avoids introducing additional degrees of freedom and produces an acceptable fit to the J=0 phase shift data. (orig.) [de

  12. SU(2) with fundamental fermions and scalars

    Science.gov (United States)

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio; Toniato, Arianna

    2018-03-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness models featuring strongly interacting scalar fields in addition to fermions. Here we describe the lattice setup for our study of this class of models and a first exploration of the lattice phase diagram. In particular we then investigate how the presence of a strongly coupled scalar field affects the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90

  13. Correlations between D and D-bar mesons in high energy photoproduction

    International Nuclear Information System (INIS)

    Gottschalk, Erik E.; Link, J.; Reyes, M.; Yager, P.M.; Anjos, J.; Bediaga, I.; Gobel, C.; Magnin, J.; Massafferri, A.; Miranda, J.M. de; Pepe, I.M.; Reis, A.C. dos; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vasquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P.; O'Reilly, B.; Ramirez, J.E.; Segoni, I.; Butler, J.N.; Cheung, H.W.K.; Chiodini, G.; Gaines, I.; Garbincius, P.H.; Garren, L.A.; Gottschalk, E.E.; Kasper, P.H.; Kreymer, A.E.; Kutschke, R.; Benussi, L.; Bianco, S.; Fabbri, F.L.; Zallo, A.; Cawlfield, C.; Kim, D.Y.; Park, K.S.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chang, K.H.; Chung, Y.S.; Kang, J.S.; Ko, B.R.; Kwak, J.W.; Lee, K.B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Cerutti, A.; Boschini, M.; D'Angelo, P.; DiCorato, M.; Dini, P.; Edera, L.; Erba, S.; Giammarchi, M.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T.F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Merlo, M.M.; Pantea, D.; Ratti, S.P.; Vitulo, P.; Hernandez, H.; Lopez, A.M.; Mendez, H.; Mendez, L.; Montiel, E.; Olaya, D.; Paris, A.; Quinones, J.; Rivera, C.; Xiong, W.; Zhang, Y.; Wilson, J.R.; Handler, T.; Mitchell, R.; Engh, D.; Hosack, M.; Johns, W.E.; Nehring, M.; Sheldon, P.D.; Stenson, K.; Vaadering, E.W.; Webster, M.; Sheaff, M.

    2003-01-01

    Over 7000 events containing a fully reconstructed D D-bar pair have been extracted from data recorded by the FOCUS photoproduction experiment at Fermilab. Preliminary results from a study of correlations between D and D-bar mesons are presented. Correlations are used to study perturbative QCD predictions and investigate non-perturbative effects. We also present a preliminary result on the production of Ψ(3770)

  14. Meson and baryon correlation studies using the PEP-TPC/2γ Facility

    International Nuclear Information System (INIS)

    Ronan, M.T.

    1991-03-01

    Results on vector meson, and strange and charmed-baryon production are presented for data taken during the period 1982--1986 using the TPC/2γ detector at PEP. Vector mesons (ρ 0 , K * and φ) with 0, 1 and 2 strange quarks are used to obtain redundant measures of strange-quark suppression and of the vector to pseudoscalar ratio in hadronization. Measurements of the production rates of Λ, Ξ - , Ω and Ξ *0 hyperons and for the Λ c and of rapidity correlations between Λ bar Λ pairs provide sensitive tests of baryon production in fragmentation models. In addition, two- and three-particle correlations between like sign pions provide further evidence for the Bose-Einstein effect in e + e - interactions including the relativistic motion of particle sources. 9 refs., 7 figs

  15. Mesons, PANDA and the scalar glueball

    International Nuclear Information System (INIS)

    Parganlija, Denis

    2014-01-01

    The non-perturbative nature of Quantum Chromodynamics (QCD) at low energies has prompted the expectation that the gauge-bosons of QCD – gluons – might give rise to compound objects denoted as glueballs. Experimental signals for glueballs have represented a matter of research for various collaborations in the last decades; future research in this direction is a main endeavour planned by the PANDA Collaboration at FAIR. Hence in this article I review some of the outstanding issues in the glueball search, particularly with regard to the ground state – the scalar glueball, and discuss the relevance for PANDA at FAIR.

  16. Inclusive D* Meson Cross Sections and D* Jet Correlations in Photoproduction at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truoel, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, Marcel; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    Differential photoproduction cross sections are measured for events containing D* mesons. The data were taken with the H1 detector at the ep collider HERA and correspond to an integrated luminosity of 51.1 pb-1. The kinematic region covers small photon virtualities Q^2 < 0.01 GeV^2 and photon-proton centre-of-mass energies of 171 < W_gammap < 256 GeV. The details of the heavy quark production process are further investigated in events with one or two jets in addition to the D* meson. Differential cross sections for D* jet production are determined and the correlations between the D* meson and the jet(s) are studied. The results are compared with perturbative QCD predictions applying collinear- or kt -factorisation.

  17. The effect of the scalar-isovector meson field on hyperon-rich neutron star matter

    International Nuclear Information System (INIS)

    Mi, Aijun; Zuo, Wei; Li, Ang

    2008-01-01

    We investigate the effect of the scalar-isovector δ-meson field on the equation of state (EOS) and composition of hyperonic neutron star matter, and the properties of hyperonic neutron stars within the framework of the relativistic mean field theory. The influence of the δ-field turns out to be quite different and generally weaker for hyperonic neutron star matter as compared to that for npeμ neutron star matter. We find that inclusion of the δ-field enhances the strangeness content slightly and consequently moderately softens the EOS of neutron star matter in its hyperonic phase. As for the composition of hyperonic star matter, the effect of the δ-field is shown to shift the onset of the negatively-charged (positively-charged) hyperons to slightly lower (higher) densities and to enhance (reduce) their abundances. The influence of the δ-field on the maximum mass of hyperonic neutron stars is found to be fairly weak, whereas inclusion of the δ-field turns out to enhance sizably both the radii and the moments of inertia of neutron stars with given masses. It is also shown that the effects of the δ-field on the properties of hyperonic neutron stars remain similar in the case of switching off the Σ hyperons. (author)

  18. Meson-baryon coupling constants from a chiral-invariant SU(3) Lagrangian and application to NN scattering

    International Nuclear Information System (INIS)

    Stoks, V.G.J.

    1997-01-01

    We present a chiral-invariant meson-baryon Lagrangian which describes the interactions of the baryon octet with the lowest-mass meson nonets. The nonlinear realization of the chiral symmetry generates pair-meson interaction vertices. The corresponding pair-meson coupling constants can all be expressed in terms of the meson-nucleon-nucleon pseudovector, scalar, and vector coupling constants, and their corresponding F/(F+D) ratios, and for which empirical estimates are given. We show that it is possible to construct an NN potential of reasonable quality satisfying these theoretical and empirical constraints. (orig.)

  19. Relativistic meson spectroscopy in momentum space

    International Nuclear Information System (INIS)

    Hersbach, H.

    1994-01-01

    In this paper a relativistic constituent-quark model based on the Ruijgrok--de Groot formalism is presented. The quark model is not defined in configuration space, but in momentum space. The complete meson spectrum, with the exception of the self-conjugate light unflavored mesons, is calculated. The potential used consists of a one-gluon exchange (OGE) part and a confining part. For the confining part a relativistic generalization of the linear plus constant potential was used, which is well defined in momentum space without introducing any singularities. For the OGE part several potentials were investigated. Retardations were included at all places. By the use of a fitting procedure involving 52 well-established mesons, but results were obtained for a potential consisting of a purely vector Richardson potential and a purely scalar confining potential. Reasonable results were also obtained for a modified Richardson potential. Most meson masses, with the exception of the π, the K, and the K 0 * , were found to be quite well described by the model

  20. Decays of open charmed mesons in the extended Linear Sigma Model

    Directory of Open Access Journals (Sweden)

    Eshraim Walaa I.

    2014-01-01

    Full Text Available We enlarge the so-called extended linear Sigma model (eLSM by including the charm quark according to the global U(4r × U(4l chiral symmetry. In the eLSM, besides scalar and pseudoscalar mesons, also vector and axial-vector mesons are present. Almost all the parameters of the model were fixed in a previous study of mesons below 2 GeV. In the extension to the four-flavor case, only three additional parameters (all of them related to the bare mass of the charm quark appear.We compute the (OZI dominant strong decays of open charmed mesons. The results are compatible with the experimental data, although the theoretical uncertainties are still large.

  1. Scalar Glueball-Quarkonium Mixing and the Structure of the QCD Vacuum

    CERN Document Server

    Ellis, Jonathan Richard; Kharzeev, Dima E

    1999-01-01

    We use Ward identities of broken scale invariance to infer the amount of scalar glueball--$\\bar{q}q$ meson mixing from the ratio of quark and gluon condensates in the QCD vacuum. Assuming dominance by a single scalar state, as suggested by a phase-shift analysis, we find a mixing angle $\\gamma \\sim 36^{\\circ}$, corresponding to near-maximal mixing of the glueball and

  2. Photoproduction of scalar mesons at CLAS

    Science.gov (United States)

    Chandavar, Shloka; Hicks, Kenneth; Weygand, Dennis; CLAS Collaboration

    2013-10-01

    A single gluon, which carries color charge, cannot exist independently outside a hadron. Lattice QCD calculations in pure SU(3), however, predict the existence of glueballs which are bound states of two or more gluons. In the real world, the challenge to identify glueballs experimentally is the fact they mix with meson states. The f0 (1500) is one of several candidates for the lightest glueball, with JPC =0++ . We investigate the presence of this particle in photoproduction by analyzing the reaction γp -->fJ p -->KS0KS0 p --> 2 (π+π-) p . This reaction was studied using data from the g12 experiment performed using the CLAS detector at Jefferson Lab. A preliminary partial wave analysis, performed on the KS0KS0 invariant mass spectrum, will be presented. These results update those presented for this reaction channel at previous conferences. This work is supported by grant from NSF.

  3. Quantum field theory approaches to meson structure

    International Nuclear Information System (INIS)

    Branz, Tanja

    2011-01-01

    Meson spectroscopy became one of the most interesting topics in particle physics in the last ten years. In particular, the discovery of new unexpected states in the charmonium spectrum which cannot be simply explained by the constituent quark model attracted the interest of many theoretical efforts. In the present thesis we discuss different meson structures ranging from light and heavy quark-antiquark states to bound states of hadrons-hadronic molecules. Here we consider the light scalar mesons f 0 (980) and a 0 (980) and the charmonium-like Y(3940), Y(4140) and Z ± (4430) states. In the discussion of the meson properties like mass spectrum, total and partial decay widths and production rates we introduce three different theoretical methods for the treatment and description of hadronic structure. For the study of bound states of mesons we apply a coupled channel approach which allows for the dynamical generation of meson-meson resonances. The decay properties of meson molecules are further on studied within a second model based on effective Lagrangians describing the interaction of the bound state and its constituents. Besides hadronic molecules the effective Lagrangian approach is also used to study the radiative and strong decay properties of ordinary quark-antiquark (q anti q) states. The AdS/QCD model forms the completion of the three theoretical methods introduced in the present thesis. This holographic model provides a completely different ansatz and is based on extra dimensions and string theory. Within this framework we calculate the mass spectrum of light and heavy mesons and their decay constants.

  4. δ meson effects in the Nolen-Schiffer anomaly

    International Nuclear Information System (INIS)

    Menezes, D.P.; Avancini, S.S.; Vasconcellos, C.Z.; Razeira, M.

    2009-01-01

    In this work we revisit the Okamoto-Nolen-Schiffer (ONS) anomaly in the context of four parametrizations of effective hadronic models, two of them with constant couplings between the nucleons and the mesons and two with density-dependent couplings. A Thomas-Fermi approximation is performed and the effects of the isovector-scalar virtual δ (a 0 (980)) mesons are investigated since they influence directly the proton and neutron effective masses in opposite ways. The ρ-ω mixing term is claimed to be important in the explanation of the ONS anomaly and is added in our calculations. We have concluded that as far as the ρ-ω mixing term is included, Δ M(Z, N) is clearly larger in models with δ than in models where this meson is not considered, which is not always the case if the coupling is discarded. None of the models is good enough to describe all experimental data, but the models that better describe the experimental values include the δ mesons. (orig.)

  5. Studies of phi meson radiative decays with KLOE

    International Nuclear Information System (INIS)

    Aloisio, A.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Bacci, C.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Caloi, R.; Campana, P.; Capon, G.; Carboni, G.; Casarsa, M.; Casavola, V.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; De Lucia, E.; De Robertis, G.; De Simone, P.; De Zorzi, G.; Dell'Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Dreucci, M.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gatt, C.; Gauzzi, P.; Giovannella, S.; Gorini, E.; Grancagnolo, F.; Graziani, E.; Han, S.W.; Incagli, M.; Ingrosso, L.; Kluge, W.; Kuo, C.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Leone, D.; Lu, F.; Martemianov, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nedosekin, A.; Nguyen, F.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Patera, V.; Petrolo, E.; Pontecorvo, L.; Primavera, M.; Ruggieri, F.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Spadaro, T.; Spiriti, E.; Tong, G.L.; Tortora, L.; Valente, E.; Valente, P.; Valeriani, B.; Vernanzoni, G.; Veneziano, S.; Ventura, A.; Xu, G.; Yu, G.W.

    2003-01-01

    A sample of 5.3 x 10 7 phi mesons, produced at the Frascati phi-factory DAPHINE, has been used by the KLOE Collaboration to study the phi radiative decays. The decays phi → ηπ 0 γ and phi → π o π o γ have been exploited to study the scalar mesons a o (980) and f o (980). Furthermore a new determination of the η - η' mixing angle has been obtained from the measurement of the ratio of the decay rates of phi → η'γ to phi → ηγ to phi → ηγ

  6. Semileptonic decays of the Bc meson

    International Nuclear Information System (INIS)

    Barik, N.; Naimuddin, Sk.; Dash, P. C.; Kar, Susmita

    2009-01-01

    We study the semileptonic transitions B c →η c ,J/Ψ,D,D*,B,B*,B s ,B s * in the leading order in the framework of a relativistic independent quark model based on a confining potential in the equally mixed scalar-vector harmonic form. We compute relevant weak form factors as overlap integrals of the meson-wave functions obtained in the relativistic independent quark model in the whole accessible kinematical range. We predict that the semileptonic transitions of the B c meson are mostly dominated by two Cabibbo-Kobayashi-Maskawa (CKM)-favored modes, B c →B s (B s *)eν, contributing about 77% of the total decay width, and its decays to vector meson final states take place in the predominantly transverse mode. Our predicted values for the total decay rates, branching ratios, polarization ratios, the forward-backward asymmetry factor, etc., are broadly in agreement with other model predictions.

  7. Off-shell pairing correlations from meson-exchange theory of nuclear forces

    International Nuclear Information System (INIS)

    Sedrakian, Armen

    2003-01-01

    We develop a model of off-mass-shell pairing correlations in nuclear systems, which is based on the meson-exchange picture of nuclear interactions. The temporal retardations in the model are generated by the Fock-exchange diagrams. The kernel of the complex gap equation for baryons is related to the in-medium spectral function of mesons, which is evaluated nonperturbatively in the random phase approximation. The model is applied to the low-density neutron matter in neutron star crusts by separating the interaction into a long-range one-pion-exchange component and a short-range component parametrized in terms of Landau Fermi liquid parameters. The resulting Eliashberg-type coupled nonlinear integral equations are solved by an iterative procedure. We find that the self-energies extend to off-shell energies of the order of several tens of MeV. At low energies the damping of the neutron pair correlations due to the coupling to the pionic modes is small, but becomes increasingly important as the energy is increased. We discuss an improved quasiclassical approximation under which the numerical solutions are obtained

  8. Conformal scalar field on the hyperelliptic curve and critical Ashkin-Teller multipoint correlation functions

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1987-01-01

    A multipoint conformal block of Ramond states of the two-dimensional free scalar field is calculated. This function is related to the free energy of the scalar field on the hyperelliptic Riemann surface under a particular choice of boundary conditions. Being compactified on the circle this field leads to the crossing symmetric correlation functions with a discrete spectrum of scale dimensions. These functions are supposed to describe multipoint spin correlations of the critical Ashkin-Teller model. (orig.)

  9. Baryon and meson phenomenology in the extended Linear Sigma Model

    Energy Technology Data Exchange (ETDEWEB)

    Giacosa, Francesco; Habersetzer, Anja; Teilab, Khaled; Eshraim, Walaa; Divotgey, Florian; Olbrich, Lisa; Gallas, Susanna; Wolkanowski, Thomas; Janowski, Stanislaus; Heinz, Achim; Deinet, Werner; Rischke, Dirk H. [Institute for Theoretical Physics, J. W. Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Kovacs, Peter; Wolf, Gyuri [Institute for Particle and Nuclear Physics, Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525 Budapest (Hungary); Parganlija, Denis [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2014-07-01

    The vacuum phenomenology obtained within the so-called extended Linear Sigma Model (eLSM) is presented. The eLSM Lagrangian is constructed by including from the very beginning vector and axial-vector d.o.f., and by requiring dilatation invariance and chiral symmetry. After a general introduction of the approach, particular attention is devoted to the latest results. In the mesonic sector the strong decays of the scalar and the pseudoscalar glueballs, the weak decays of the tau lepton into vector and axial-vector mesons, and the description of masses and decays of charmed mesons are shown. In the baryonic sector the omega production in proton-proton scattering and the inclusion of baryons with strangeness are described.

  10. D meson-hadron angular correlations in pp and p-Pb collisions with ALICE at the LHC

    CERN Document Server

    Colamaria, Fabio

    2014-01-01

    The comparison of angular correlations between charmed mesons and charged hadrons produced in pp, p-Pb and Pb-Pb collisions can give insight into charm quark energy loss mechanisms in hot nuclear medium formed in heavy-ion collisions and can help to spot possible modifications of charm quark hadronization induced by the presence of the medium. The analysis of pp and p-Pb data and the comparison with predictions from pQCD calculations, besides constituting the necessary baseline for the interpretation of Pb-Pb results, can provide relevant information on charm production and fragmentation processes. We present a study of azimuthal correlations between D$^0$ and D$^{\\ast +}$ mesons and charged hadrons measured by the ALICE experiment in pp collisions at $\\sqrt{s} = 7$ TeV and p-Pb collisions at $\\sqrt{s_{\\rm NN}} = 5.02$ TeV. D mesons were reconstructed from their hadronic decays at central rapidity and in the transverse momentum range $2 < p_{_{\\rm T}} < 16$ GeV/$c$, and they were correlated to charged h...

  11. Photoproduction of scalar mesons using CLAS at JLab

    Science.gov (United States)

    Chandavar, Shloka; Hicks, Kenneth; Weygand, Dennis; CLAS Collaboration

    2014-09-01

    The search for glueballs has been ongoing for decades. The lightest glueball has been predicted by quenched lattice QCD to have a mass in the range of 1.0-1.7 GeV and JPC =0++ . The mixing of glueball states with neighbouring meson states complicates their identification. The f0 (1500) is one of several candidates for the lightest glueball, whose presence in the Ks0 Ks0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. This is done by studying the reaction, γp -->fJ p -->Ks0> Ks0p --> 2 (π+π-) p using data from the g12 experiment. A brief description of this analysis, along with a preliminary partial wave analysis results will be presented. The search for glueballs has been ongoing for decades. The lightest glueball has been predicted by quenched lattice QCD to have a mass in the range of 1.0-1.7 GeV and JPC =0++ . The mixing of glueball states with neighbouring meson states complicates their identification. The f0 (1500) is one of several candidates for the lightest glueball, whose presence in the Ks0Ks0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. This is done by studying the reaction, γp -->fJ p -->Ks0 Ks0p --> 2 (π+π-) p using data from the g12 experiment. A brief description of this analysis, along with a preliminary partial wave analysis results will be presented. NSF.

  12. Spin O decay angular distribution for interfering mesons in electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Funsten, H.; Gilfoyle, G.

    1994-04-01

    Self analyzing meson electroproduction experiments are currently being planned for the CEBAF CLAS detector. These experiments deduce the spin polarization of outgoing unstable spin s (?)0 mesons from their decay angular distribution, W({theta},{psi}). The large angular acceptance of the CLAS detector permits kinematic tracking of a sufficient number of these events to accurately determine electroproduction amplitudes from the deduced polarization. Maximum polarization information is obtained from W({theta},{psi}) for decay into spin 0 daughters. The helicity of the decaying meson is transferred to the daughter`s relative orbital angular momentum m-projection; none is {open_quotes}absorbed{close_quotes} into daughter helicities. The decaying meson`s helicity maximally appears in W({theta},{psi}). W({theta},{psi}) for spin 0 daughters has been derived for (1) vector meson electroproduction and (2) general interfering mesons produced by incident pions. This paper derives W({theta},{psi}) for electroproduction of two interfering mesons that decay into spin 0 daughters. An application is made to the case of interfering scalar and vector mesons. The derivation is an extension of work by Schil using the general decay formalism of Martin. The expressions can be easily extended to the case of N interfering mesons since interference occurs pairwise in the observable W ({theta},{psi}), a quadratic function of the meson amplitudes. The derivation uses the virtual photon density matrix of Schil which is transformed by a meson electroproduction transition operator, T. The resulting density matrix for the interfering mesons is then converted into a corresponding statistical tensor and contracted into the efficiency tensor for spin 0 daughters.

  13. Rare B-meson decays in SU(2)LxSU(2)RxU(1) model

    International Nuclear Information System (INIS)

    Asatryan, H.M.; Ioannissian, A.N.

    1989-01-01

    Rare B-meson decays are investigated in the left-right synmmetric models. The scalar particle contribution to the amplitude of the b → s γ decay is calculated. It is shown that this contribution can be essential even for the scalar particles masses of about several TeV. The effects due to the left-right symmetry and scalar particles can be detected by measuring the photon polarization in the decay B → K * γ. 9 refs.; 1 fig.; 1 tab

  14. The role of meson dynamics in nuclear matter saturation

    International Nuclear Information System (INIS)

    Goncalves, E.

    1988-01-01

    The problem of the saturation of nuclea matter in the non-relativistic limit of the model proposed by J.D. Walecka is studied. In the original context nuclear matter saturation is obtained as a direct consequence of relativistic effects and both scalar and vector mesons are treated statically. In the present work we investigate the effect of the meson dynamics for the saturation using a Born-Oppenheimer approximation for the ground state. An upper limit for the saturation curve of nuclear matter and are able to decide now essential is the relativistic treatment of the nucleons for this problem, is obtained. (author) [pt

  15. Inclusive D*± meson cross sections and D*±-jet correlations in photoproduction at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-04-01

    Differential photoproduction cross sections are measured for events containing D*± mesons. The data were taken with the H1 detector at the ep collider HERA and correspond to an integrated luminosity of 51.1 pb-1. The kinematic region covers small photon virtualities Q2 < 0.01 GeV2 and photon proton centre-of-mass energies of 171 < Wγ p < 256 GeV. The details of the heavy quark production process are further investigated in events with one or two jets in addition to the D*± meson. Differential cross sections for D*+jet production are determined and the correlations between the D*± meson and the jet(s) are studied. The results are compared with perturbative QCD predictions applying collinear- or kt-factorisation.

  16. In a search for scalar gluonium

    International Nuclear Information System (INIS)

    Novikov, V.A.; Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.

    1979-01-01

    The problem of a scalar meson coupled strongly to gluons is discussed. Radiative decays of the J/psi are taken as a source of gluons. The aim of the paper is to calculate the GITA(J/psi→σγ) decay width where σ is the presumed scalar luonium. QCD sum rules was used to find both , (where Gsub(μν)sup(a) is the gluon field strength tensor and αsub(s) is the quark-gluon coupling constant) and GITA(J/psi→σγ) in terms of . The final prediction for the width is expected to be valid within a factor of two and gives GITA(J/psi→σγ→ two pions in S wave + γ) approximately equal to 25 eV for Msub(σ)=700 MeV. Nonperturbative QCD naturally explains the observed asymmetry between scalar and pseudoscalar states in the radiative decays of the J/psi. Some general remarks on gluonium in QCD are made

  17. Scalar isoscalar part of the hyperon-nucleon interaction

    International Nuclear Information System (INIS)

    Sasaki, K.; Oset, E.; Vicente Vacas, M.J.

    2007-01-01

    We study the central part of the ΛN potential by considering the correlated and uncorrelated two-meson exchange besides the ω exchange contribution. The correlated two-meson is evaluated in a chiral unitary approach. We find that a short-range repulsion is generated by the correlated two-meson potential which also produces an attraction in the intermediate distance region. The uncorrelated two-meson exchange produces a sizeable attraction in all cases which is counterbalanced by ω exchange contribution. (orig.)

  18. SU (2) with fundamental fermions and scalars

    DEFF Research Database (Denmark)

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio

    2018-01-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness...... the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90...

  19. Astrophysical constraints on singlet scalars at LHC

    Science.gov (United States)

    Hertzberg, Mark P.; Masoumi, Ali

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ~ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  20. Astrophysical constraints on singlet scalars at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hertzberg, Mark P.; Masoumi, Ali, E-mail: mark.hertzberg@tufts.edu, E-mail: ali@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ∼ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  1. Heavy quark fragmentation functions for D-wave quarkonium and charmed beauty mesons

    International Nuclear Information System (INIS)

    Cheung, K.; Yuan, T.C.

    1995-09-01

    At the large transverse momentum region, the production of heavy-heavy bound-states such as charmonium, bottomonium, and anti bc mesons in high energy e + e - and hadronic collisions is dominated by parton fragmentation. The authors calculate the heavy quark fragmentation functions into the D-wave quarkonium and anti bc mesons to leading order in the strong coupling constant and in the non-relativistic expansion. In the anti bc meson case, one set of its D-wave states is expected to lie below the open flavor threshold. The total fragmentation probability for a anti b antiquark to split into the D-wave anti bc mesons is about 2 x 10 -5 , which implies that only 2% of the total pseudo-scalar ground state B c comes from the cascades of these orbitally excited states

  2. Observation of π - B meson charge-flavor correlations and measurement of time dependent B0 Bbar0 mixing in p bar p collisions

    International Nuclear Information System (INIS)

    1996-09-01

    We present evidence for charge correlations of B mesons with charged particles produced in p anti p Collisions at 1.8 TeV. Such correlations are expected to arise from pious produced in the fragmentation chain and from B ** decays. We measure the efficiency and purity of this flavor tagging method for both charged and neutral B mesons. We apply these correlations to B mesons reconstructed in 110 pb -1 of data collected with the CDF detector at the Fermilab Tevatron Collider. B mesons are either partially reconstructed, using the semileptonic decays B 0 → l + D (*)- X and B + → l + anti DX, or fully reconstructed, using the decay modes B 0 → J/ΨK *0 and B + → J/ΨK + . Application of this new flavor tagging method to neutral B mesons yields a measurement of the frequency of the oscillation B 0 → anti B 0 . We obtain Δm d = 0.446 ± 0.057 +0.034 -0.031

  3. Applications of the EPR effect in the particle physics correlated decays of kaon and b-meson pairs with CP violation

    International Nuclear Information System (INIS)

    Lipkin, H. J.

    1989-11-01

    The Einstein-Podolsky-Rosen effect arises in particle physics when pairs of neutral K, D or B mesons are created in a definite quantum state, and the decays of the two mesons are correlated. Choosing the decay mode to be detected for one of the two mesons creates a 'polarized beam' on the other side which has interesting and usfull properties. Application to nvestigations of CP violation are discussed. (author)

  4. Exclusive semileptonic decays of charmed and b-flavored mesons

    International Nuclear Information System (INIS)

    Barik, N.; Tripathy, S.K.; Kar, S.; Dash, P.C.

    1997-01-01

    We investigate the exclusive semileptonic decays of (B,B s ;D,D s ) mesons into less heavy as well as light mesons in a field-theoretic framework based on the independent quark model with a confining potential in scalar-vector-harmonic form. With the recoil effect properly taken into account, the present model describes consistently the semileptonic decays of charmed and b-flavored mesons, agreeing well with the experimental data. The transition form factors in the heavy to heavy decays, in particular, comply with the heavy quark symmetry relations expected from HQET. The CKM parameters extracted in this formalism are close to the existing data. The model prediction also satisfies the Isgur-Wise relation connecting the form factors of the semileptonic (B→ρeν) and that of rare radiative decay (B→ργ). copyright 1997 The American Physical Society

  5. Review of Scalar Meson Production at $\\sqrt{s}$ = 7 TeV in CMS, U(1)$'$ Gauge Extensions of the MSSM and Calorimetry for Future Colliders

    CERN Document Server

    AUTHOR|(CDS)2075377; Onel, Yasar

    2011-01-01

    The three main parts of this thesis demonstrate our current understanding of certain physics but mostly go beyond our understanding and present novel approaches, both technically and physically. The first part concentrates on the scalar mesons and presents search methodology to enable a better understanding of their existence and structures. The second part discusses one step further on beyond the standard model physics searches. Emphasis is given to discriminating factors between the MSSM and the U(1)0 gauge extended models. The last part discusses a specific readout problem in calorimetry together with its solution and presents the digital hadron calorimetry, which will be an essential part of calorimeter systems of future colliders.

  6. Relativistic treatment of mesonic contributions to quasielastic (e,e')

    International Nuclear Information System (INIS)

    Blunden, P.G.; Butler, M.N.

    1988-03-01

    Meson exchange currents play an important role in the description of observables in electron scattering. The authors use a relativistic model with pseudovector pion coupling to study the exchange current contributions, with emphasis on quasielastic kinematics. Starting with the Lagrangian for nucleons interacting with a scalar and vector mason along with pseudovector coupling to pions, they derive the one and two-body electromagnetic currents. They then calculate the longitudinal and transverse pieces of the quasielastic cross section for various nuclei and kinematics. The effects of meson exchange currents are found to be much more important in a relativistic model than in a non-relativistic one

  7. Vector mesons in meson-baryon scattering and large-N_c quantum chromodynamics

    International Nuclear Information System (INIS)

    Fuhrmann, Hans-Friedrich

    2016-01-01

    We examined strong interactions in the low-energy regime in terms of two complementary non-perturbative approaches: the interplay of large-N_c QCD and chiral perturbation theory was studied. While the expansion in the parameter 1/N_c is based on quark and gluon degrees of freedom, chiral perturbation theory uses hadrons as effective degrees of freedom. The focus of our work was the investigation of mesons and baryons composed from up-, down- and strange quarks. We used the chiral SU(3) Lagrangian with (J"P=(1)/(2)"+)- and (J"P=(3)/(2)"+)-baryon ground states as building blocks. In the SU(3)-flavour limit the latter form an octet and a decuplet, respectively. Studies in chiral perturbation theory hold a challenge: the chiral Lagrangian consists of an infinite number of terms. The treatment of low-energy QCD physics via a perturbation theory requires the ordering of these terms according to their relevance. We used the interplay between large-N_c QCD and chiral perturbation theory to shed light on the structure of the chiral Lagrangian. In the limit of large-N_c the low-energy parameters of the chiral Lagrangian are correlated. For instance the masses of the two baryon multiplets turn degenerate in the SU(3)-flavour limit. This serves as the starting point of our investigations. In this work we analysed the time-ordered product of two scalar and two vector currents in the baryon ground state. The examination of these matrix elements at large-N_c was compared to corresponding results derived in chiral perturbation theory. From this we obtained sum rules for some low-energy parameters of the chiral Lagrangian. The results for the vector correlation function were used to constrain a phenomenological interaction of light vector mesons with the baryon ground states. In the second part of this thesis we addressed a formal problem which arises in a partial wave decomposition of reaction amplitudes for particles with non-vanishing spin. In particular we considered the vector

  8. Non-self-conjugate mesons in a potential model with vacuum-polarization corrections

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1980-01-01

    We present a unified approach to the study of non-self-conjugate mesons including both light and heavy mesons in the framework of the vacuum-polarization-corrected flavor-independent potential. We have found that the quark-confining potential in the form of an almost equal admixture of vector and scalar parts successfully explains the S-wave hyperfine levels of the observed light and heavy mesons. Finally we calculate the electromagnetic mass differences of the heavy-quark mesons and obtain (K-bar* 0 -K* - )=3.79 MeV, (K-bar 0 -K - )=6 MeV, (D* + /sub c/-D* 0 /sub c/)=2.4 MeV, (D + /sub c/-D 0 /sub c/)=5.8 MeV, (D* 0 /sub b/-D* - /sub b/)=3.547 MeV, and (D 0 /sub b/-D - /sub b/)=3.558 MeV

  9. Semileptonic decays of the B{sub c} meson

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N [Department of Physics, Utkal University, Bhubaneswar-751004 (India); Naimuddin, Sk [Department of Physics, Maharishi College of Natural Law, Bhubaneswar-751007 (India); Dash, P C [Department of Physics, Prananath Autonomous College, Khurda-752057 (India); Kar, Susmita [Department of Physics, North Orissa University, Baripada-757003 (India)

    2009-10-01

    We study the semileptonic transitions B{sub c}{yields}{eta}{sub c},J/{psi},D,D*,B,B*,B{sub s},B{sub s}* in the leading order in the framework of a relativistic independent quark model based on a confining potential in the equally mixed scalar-vector harmonic form. We compute relevant weak form factors as overlap integrals of the meson-wave functions obtained in the relativistic independent quark model in the whole accessible kinematical range. We predict that the semileptonic transitions of the B{sub c} meson are mostly dominated by two Cabibbo-Kobayashi-Maskawa (CKM)-favored modes, B{sub c}{yields}B{sub s}(B{sub s}*)e{nu}, contributing about 77% of the total decay width, and its decays to vector meson final states take place in the predominantly transverse mode. Our predicted values for the total decay rates, branching ratios, polarization ratios, the forward-backward asymmetry factor, etc., are broadly in agreement with other model predictions.

  10. Parity violating nuclear force by meson mixing

    International Nuclear Information System (INIS)

    Iqbal, M.J.; Niskanen, J.A.

    1990-01-01

    We study a mechanism for parity violation in the two nucleon meson-exchange interaction by way of the mixing of mesons of opposite parities. This mixing arises from parity violating W ± and Z exchange between the q bar q pair in the meson. Numerically its effect turns out to be as important as vector meson exchange with a weak meson-nucleon vertex and may partly be used to model this vertex. The calculation is performed using both the standard Born approximation adding the amplitude phases by Watson's theorem and also using the exact correlated two-nucleon wave functions. The effect of correlations and form factors is found to be crucially important at intermediate energies

  11. Studies on the correlation between π-mesons in π--p-interaction with generation of particle of high transverse momenta

    International Nuclear Information System (INIS)

    Penev, V.N.; Shklovskaya, A.I.

    1980-01-01

    The results of additional studies on the production of secondary particles having large transverse momentum (main secondary particles) in π - -p-interactions at 40 GeV/c are presented. Correlations between secondary particles are investigated in two channels: (1) π - p→πsub(psub(T)>0.8 +- )+...; (2) π - p→πsub(psub(T)>0.8 +- )+πsub(psub(T)>0.8 +- )+..., where πsub(psub(T)>0.8 +- ) are π-mesons having transverse momentum larger than 0.8 GeV/c. For the first type events (1) the rapidity distribution and the average rapidity of the particles accompanying the main particle are obtained. The rapidity distribution depends on the transverse momentum of the accompanying particles. The asimuthal asymmetry increases with increasing of this momentum. The average rapidity is independent of the asimuthal angle, but very strongly depends on the rapidity of the main particle - it decreases with the increase of rapidity. It is also shown, that the average difference between the averaae rapidities of the main particle and the accompanying particles are influenced by the combination of their charges. The average difference is minimum for identical charges and very strongly increases for the opposite charges. The obtained rapidity distribution is studied for events, in which two π +- -mesons of large momentum psub(T)>0.8 GeV/c are produced (type 2). The rapidity distribution of each of the π +- -mesons is broader than the center of mass rapidity distribution. This fact could be an indication of a presence of correlations in the production of two π +- -mesons. The distribution of the absolute difference between the rapidity of the π +- -mesons is given as well and its peak is at zero difference. These results indicate, that the possibility is highest for production of two π +- -mesons of almost equal transverse momentum. The obtained charge particle multiplicity distribution shows that the average multiplicity is lower than the corresponding values for all inelastic

  12. Mesons above the deconfining transition

    International Nuclear Information System (INIS)

    De Forcrand, P.; Garcia Perez, M.; Hashimoto, T.

    1999-01-01

    We analyze temporal and spatial meson correlators in quenched lattice QCD at T > 0. Above T c we find different masses and (spatial) 'screening masses', signals of plasma formation, and indication of persisting 'mesonic' excitations. (author)

  13. Meson theory and nuclear matter

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    An attempt is made to justify the use of the concept of a 'mesic fluid' in connection with the structure of nuclear matter. A transformation is made of the usual symmetric pseudo-scalar meson theory to bring into evidence certain saturation properties, which provide a natural basis for the use of a 'self-consistent' field in the discussion of nuclear structure. Fluctuations about this semi-classical saturated state will give rise to residual interparticle forces within the nucleus, and are also briefly considered in relation to electromagnetic interactions. (author). 5 refs

  14. D mesons in asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mishra, Amruta; Mazumdar, Arindam

    2009-01-01

    We calculate the in-medium D and D meson masses in isospin-asymmetric nuclear matter in an effective chiral model. The D and D mass modifications arising from their interactions with the nucleons and the scalar mesons in the effective hadronic model are seen to be appreciable at high densities and have a strong isospin dependence. These mass modifications can open the channels of the decay of the charmonium states (Ψ ' ,χ c ,J/Ψ) to DD pairs in dense hadronic matter. The isospin asymmetry in the doublet D=(D 0 ,D + ) is seen to be particularly appreciable at high densities and should show in observables such as their production and flow in asymmetric heavy-ion collisions in the compressed baryonic matter experiments in the future facility of FAIR, GSI. The results of the present work are compared to calculations of the D(D) in-medium masses in the literature using the QCD sum rule approach, quark meson coupling model, and coupled channel approach as well as to those from studies of quarkonium dissociation using heavy-quark potentials from lattice QCD at finite temperatures

  15. Phenomenology of a very light scalar (100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Jackson D.; Foot, Robert; Volkas, Raymond R. [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, VIC 3010 (Australia)

    2014-02-27

    In this paper we investigate the phenomenology of a very light scalar, h, with mass 100 MeV scalar extension of the SM. We point out apparently unresolved uncertainties in the branching ratios and lifetime of h in a crucial region of parameter space for LHC phenomenology. Bounds from LEP, meson decays and fixed target experiments are reviewed. We also examine prospects at the LHC. For m{sub h}≲m{sub B} the dominant production mechanism is via meson decay; our main result is the calculation of the differential p{sub T} spectrum of h scalars originating from B mesons and the subsequent prediction of up to thousands of moderate (triggerable) p{sub T} displaced dimuons possibly hiding in the existing dataset at ATLAS/CMS or at LHCb. We also demonstrate that the subdominant Vh production channel has the best sensitivity for m{sub h}≳m{sub B} and that future bounds in this region could conceivably compete with those of LEP.

  16. Low energy parameters of the K K-bar and ππ scalar-isoscalar interactions

    International Nuclear Information System (INIS)

    Kaminski, R.; Lesniak, L.

    1994-06-01

    Threshold expansions of the ππ and K K-bar spin 0 and isospin 0 scattering amplitudes are performed. Scattering lengths, effective ranges and so-called volume parameters are evaluated. Good agreement with the existing experimental data for the ππ scalar-isoscalar amplitude is found. An importance of future accurate measurements of the K K-bar threshold parameters is stressed. New data are needed to understand the basic features of the scalar mesons. (author). 31 refs, 3 tabs

  17. Photoproduction of pseudo-scalar mesons on proton - Use of CLAS detector for E{sub {gamma}}< 1.8 GeV -; Photoproduction de mesons pseudo-scalaires sur le proton - Avec le detecteur CLAS pour E{sub {gamma}}< 1.8 GeV -

    Energy Technology Data Exchange (ETDEWEB)

    Girard, P

    2000-04-19

    The subject of this thesis is an experimental study of the pseudo-scalar mesons photoproduction on the proton in an energy range from {radical}S=1450 MeV to 2100 MeV. It has been realized with the 4{pi} CLAS detector of Th. Jefferson Laboratory. A software has been developed in order to perform the time calibration of the tagging system, and allowed us to measure a time resolution of 150 ps (FWHM). Gla Data have been analyzed. We determine CLAS energy resolution and show that these values are compatible with those given in the detector conceptual design report. Information from the analysis of the neutral mesons photoproduction channels and from the study of the p({gamma}, p{pi}{sup +}{pi}{sup -}) reaction has been used to develop correction methods, applied to raw data, in order to extract the differential cross-sections for the reactions p({gamma}, p){pi}{sup 0}. New data points are shown and compared to the VPI multipole analysis. A preliminary study of the p({gamma}, p){eta} is stated in order to establish the method limits. An anomaly has been found in the data at a total center of mass energy of {radical}s = 1790 MeV and is discussed. (author)

  18. Composite mesons in self-confining chiral solitons

    International Nuclear Information System (INIS)

    Tandy, P.C.; Frank, M.R.

    1991-01-01

    Most quark-meson models for formation of a baryon as a bag or soliton solution begin with elementary local meson fields including a classical scalar configuration that provides repulsion of valence quarks from the vacuum. This presentation explores aspects of the very different formation mechanism that operates in a model where chiral effective meson fields are composite objects generated from bilocal qq-bar fluctuation fields and the dynamical quark mass can be self-confining. The focus is on the dynamical self-energy for quarks and the related distributed vertex for quark meson coupling. Initial numerical work to explore the practical consequences of these features is presented in the context of a static mean-field soliton. The particular method employed to identify the energy functional at the mean field or Hartree level is to obtain the standard effective action from the Legendre transformation with the help of a chemical potential constraint for the baryon number. The purpose of this approach is two-fold. First, a possible future consideration of radiative corrections might be undertaken by systematically continuing with the loop expansion beyond the lowest level. A second, more practical reason, is that in the presence of a general space-time dependent dynamical self-energy for quarks there are wavefunction renormalisation effects and energy self-consistencies to be defined and maintained for the valence quark states and eigenvalues. Speculations are made on whether this point of view can motivate meson-nucleon relativistic field models containing intrinsic cutoffs for use in nuclear physics. 29 refs., 5 figs

  19. Weak leptonic decay of light and heavy pseudoscalar mesons in an independent quark model

    International Nuclear Information System (INIS)

    Barik, N.; Dash, P.C.

    1993-01-01

    Weak leptonic decays of light and heavy pseudoscalar mesons are studied in a field-theoretic framework based on the independent quark model with a scalar-vector harmonic potential. Defining the quark-antiquark momentum distribution amplitude obtainable from the bound quark eigenmodes of the model with the assumption of a strong correlation between quark-antiquark momenta inside the decaying meson in its rest frame, we derive the partial decay width with correct kinematical factors from which we extract an expression for the pseudoscalar decay constants f M . Using the model parameters determined from earlier studies in the light-flavor sector and heavy-quark masses m c and m b from the hyperfine splitting of (D * ,D) and (B * ,B), we calculate the pseudoscalar decay constants. We find that while (f π ,f K )≡(138,157 MeV); (f D ,f Ds )≡(161,205 MeV), (f B ,f Bs )≡(122,154 MeV), and f Bc =221 MeV. We also obtain the partial decay widths and branching ratios for some kinematically allowed weak leptonic decay processes

  20. Scalar tetraquark candidates on the lattice

    International Nuclear Information System (INIS)

    Berlin, Joshua

    2017-01-01

    The topic of this thesis is the investigation of scalar tetraquark candidates from lattice QCD. It is motivated by a previous study originating in the twisted mass collaboration. The initial tetraquark candidate of choice is the a 0 (980), an isovector in the nonet of light scalars (J P =0 + ). This channel is still poorly understood. It displays an inverted mass hierarchy to what is expected from the conventional quark model and the a 0 (980) and f 0 (980) feature a surprising mass degeneracy. For this reasons the a 0 (980) is a long assumed tetraquark candidate in the literature. We follow a methodological approach by studying the sensitivity of the scalar spectrum with fully dynamical quarks to a large basis of two-quark and four-quark creation operators. Ultimately, the candidate has to be identified in the direct vicinity of two two-particles states, which is understandably inevitable for a tetraquark candidate. To succeed in this difficult task two-meson creation operators are essential to employ in this channel. By localized four-quark operators we intend to probe the Hamiltonian on eigenstates with a closely bound four-quark structure.

  1. Scalar tetraquark candidates on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Joshua

    2017-07-01

    The topic of this thesis is the investigation of scalar tetraquark candidates from lattice QCD. It is motivated by a previous study originating in the twisted mass collaboration. The initial tetraquark candidate of choice is the a{sub 0}(980), an isovector in the nonet of light scalars (J{sup P}=0{sup +}). This channel is still poorly understood. It displays an inverted mass hierarchy to what is expected from the conventional quark model and the a{sub 0}(980) and f{sub 0}(980) feature a surprising mass degeneracy. For this reasons the a{sub 0}(980) is a long assumed tetraquark candidate in the literature. We follow a methodological approach by studying the sensitivity of the scalar spectrum with fully dynamical quarks to a large basis of two-quark and four-quark creation operators. Ultimately, the candidate has to be identified in the direct vicinity of two two-particles states, which is understandably inevitable for a tetraquark candidate. To succeed in this difficult task two-meson creation operators are essential to employ in this channel. By localized four-quark operators we intend to probe the Hamiltonian on eigenstates with a closely bound four-quark structure.

  2. The effect of vector meson decays on di-hadron fragmentation functions

    International Nuclear Information System (INIS)

    Matevosyan, H.H.; Thomas, A.W.; Bentz, W.

    2014-01-01

    Di-hadron Fragmentation Functions (DFF) provide a vast amount of information on the intricate details of the parton hadronization process. Moreover, they provide a unique access to the 'clean' extraction of nucleon transversity parton distribution functions in semi inclusive deep inelastic two hadron production process with a transversely polarised target. On the example of the u → π + π - we analyse the properties of unpolarized DFFs using their probabilistic interpretation. We use both the NJL-jet hadronization model and PYTHIA 8.1 event generator to explore the effect of the strong decays of the vector mesons produced in the quark hadronization process on the pseudoscalar DFFs. Our study shows that, even though it is less probable to produce vector mesons in the hadronization process than pseudo scalar mesons of the same charge, the products of their strong decays drastically affect the DFFs for pions because of the large combinatorial factors. Thus, an accurate description of both vector meson production and decays are crucial for theoretical understanding of DFFs. (authors)

  3. Strange baryons in a chiral quark-meson model. Pt. 2

    International Nuclear Information System (INIS)

    McGovern, J.A.; Birse, M.C.

    1990-01-01

    The chrial-quark meson model is used to study baryon properties with realistic breaking of SU(3). The symmetry breaking is assumed to be strong, so that a random phase approximation (RPA) can be used. In this the strange baryons are described as excitations built on the hedgehog soliton and have an excitation energy of 315 MeV. Other properties of strange baryons are obtained by an approximate spin-isospin projection from the RPA wave function. The magnetic moments agree reasonably well with experiment, but the deviations from the experimental values suggest that the method is valid for the case of rather stronger symmetry breaking than is realistic. The dependence of the RPA energy on the magnitude of the symmetry breaking is examined, and found to be strongly nonlinear for realistic values. This supports the idea that a large πN sigma commutator need not imply a large strange-quark content in the proton. For reasonable values of the scalar meson masses the strange-quark condensate is found to be less than 5% of the total, at the mean-field level. We also estimate the contribution to the condensate from RPA correlations. Within a one-mode approximation we find these to be very small, ≅ 2%. (orig.)

  4. D meson production and long-range azimuthal correlation in 8.16 TeV p+Pb collisions with ATLAS

    CERN Document Server

    Hu, Qipeng; The ATLAS collaboration

    2017-01-01

    Measurements of production of prompt charm mesons (D0 and D*) and azimuthal correlations between inclusive D* and charged particles are presented in p+Pb collisions data at 8.16 TeV collected in 2016 by ATLAS. The prompt charm meson production is measured in minimum bias p+Pb data, reconstructed via two decay channels: D0->K+pi and D*->D0+pi->K+pi+pi. The production asymmetry between forward and backward center-of-mass rapidities for the charm mesons is studied for the range of |y*| < 0.5, and no significant asymmetry is observed. In the D*-hadron correlations, the pT of identified D* is more closely related to the pt of primordial heavy quarks, relative to the measurement of their decay muons. A finite elliptic harmonic coefficient for inclusive D* and charge particles have been extracted with a significance of one to two standard deviations, depending on multiplicity, broadly consistent with what have been observed for light hadrons and muons from heavy quark decaying.

  5. Meson spectral functions at finite temperature

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.

    2001-10-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)

  6. Meson spectral functions at finite temperature

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.

    2002-01-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature

  7. Meson spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S

    2002-03-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature.

  8. Meson spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik

    2001-10-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)

  9. Central Production of Two-Pseudoscalar Meson Systems at the COMPASS Experiment at CERN

    CERN Document Server

    Austregesilo, Alexander; Mallot, Gerhard

    The question of the existence of glueballs is one of the unsolved problems in modern particle physics and can be regarded as a stringent test for quantum chromodynamics. Especially the supernumerous states in the light scalar meson spectrum are candidates for the observation of mixing effects between $q\\bar q$ mesons and pure gluonic bound states. On the other hand, the existence and the properties of many resonances in this sector are disputed. The COMPASS experiment was proposed to make significant contributions to this field. COMPASS is a fixed-target experiment at the CERN SPS which focused on light-quark hadron spectroscopy during the data taking periods in 2008 and 2009. A world-leading data set was collected with a $190\\,\\mathrm{GeV}/c$ hadron beam impinging on a liquid hydrogen target in order to study, inter alia, the central production of glueball candidates in the light meson sector. Especially the double-Pomeron exchange mechanism is well suited for the production of mesons without valenc...

  10. Search for rare B meson decays into Ds+ mesons

    International Nuclear Information System (INIS)

    Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R.P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schroeder, H.; Schulz, H.D.; Walter, M.; Wurth, R.; Appuhn, R.D.; Hast, C.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Toepfer, D.; Walther, A.; Wegener, D.; Britton, D.I.; Charlesworth, C.E.K.; Edwards, K.W.; Hyatt, E.R.F.; Kapitza, H.; Krieger, P.; MacFarlane, D.B.; Patel, P.M.; Prentice, J.D.; Saull, P.R.B.; Tzamariudaki, K.; Van de Water, R.G.; Yoon, T.S.; Ressing, D.; Schmidtler, M.; Schneider, M.; Schubert, K.R.; Strahl, K.; Waldi, R.; Weseler, S.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Gorelov, I.; Kostina, G.; Lubimov, V.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Shibaev, V.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.

    1993-01-01

    A search has been performed for rare B meson decays into D s + mesons arising from b→u transitions, W exchange modes, B + annihilation processes, and decays where the D s + is not produced via a W→c anti s quark pair coupling, using the ARGUS detector operating on the Y(4S) resonance at the e + e - storage ring DORIS II. Upper limits for individual decay modes are obtained. In addition, from a study of D s + l - correlations an upper limit of BR(B→D s + l - X)<1.2%(90% CL) is determined. (orig.)

  11. The effect of higher order different meson exchange nucleon-nucleon interactions on the three-nucleon binding energy coupling problem

    International Nuclear Information System (INIS)

    Osman, A.; Ramadan, S.

    1989-01-01

    Faddeev equations of bound three-nucleon system are presented as a set of integral equations. To solve them, a sutable form of the nucleon-nucleon interactions is used: with the exchange of a scalar meson, a pseudoscalar meson and a massless vector meson. Higher orders of these different meson exchanges in the nucleon-nucleon interactions have been taken into account. With these nuclear forces and nucleon-nucleon interactions, the three-nucleon binding energy is calculated by solving the Faddeev integral equations. The obtained value of the three-nucleon binding energy is 8.441 MeV. The inclusion of the higher order terms of the different meson exchange in the nuclear nucleon-nucleon interaction is found to affect the three-nucleon binding by about 3.92%. 3 figs., 16 refs

  12. Vector mesons in meson-baryon scattering and large-N{sub c} quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrmann, Hans-Friedrich

    2016-02-11

    We examined strong interactions in the low-energy regime in terms of two complementary non-perturbative approaches: the interplay of large-N{sub c} QCD and chiral perturbation theory was studied. While the expansion in the parameter 1/N{sub c} is based on quark and gluon degrees of freedom, chiral perturbation theory uses hadrons as effective degrees of freedom. The focus of our work was the investigation of mesons and baryons composed from up-, down- and strange quarks. We used the chiral SU(3) Lagrangian with (J{sup P}=(1)/(2){sup +})- and (J{sup P}=(3)/(2){sup +})-baryon ground states as building blocks. In the SU(3)-flavour limit the latter form an octet and a decuplet, respectively. Studies in chiral perturbation theory hold a challenge: the chiral Lagrangian consists of an infinite number of terms. The treatment of low-energy QCD physics via a perturbation theory requires the ordering of these terms according to their relevance. We used the interplay between large-N{sub c} QCD and chiral perturbation theory to shed light on the structure of the chiral Lagrangian. In the limit of large-N{sub c} the low-energy parameters of the chiral Lagrangian are correlated. For instance the masses of the two baryon multiplets turn degenerate in the SU(3)-flavour limit. This serves as the starting point of our investigations. In this work we analysed the time-ordered product of two scalar and two vector currents in the baryon ground state. The examination of these matrix elements at large-N{sub c} was compared to corresponding results derived in chiral perturbation theory. From this we obtained sum rules for some low-energy parameters of the chiral Lagrangian. The results for the vector correlation function were used to constrain a phenomenological interaction of light vector mesons with the baryon ground states. In the second part of this thesis we addressed a formal problem which arises in a partial wave decomposition of reaction amplitudes for particles with non

  13. Mesonic quasinormal modes of the Sakai-Sugimoto model at high temperature

    International Nuclear Information System (INIS)

    Evans, Nick; Threlfall, Ed

    2008-01-01

    We examine the mesonic thermal spectrum of the Sakai-Sugimoto model of holographic QCD by finding the quasinormal frequencies of the supergravity dual. If flavor is added using D8-D8 branes there exist embeddings where the D-brane world volume contains a black hole. For these embeddings (the high-temperature phase of the Sakai-Sugimoto model) we determine the quasinormal spectra of scalar and vector mesons arising from the world volume Dirac-Born-Infeld (DBI) action of the D-brane. We stress the importance of a coordinate change that makes the infalling quasinormal modes regular at the horizon allowing a simple numerical shooting technique. Finally we examine the effect of finite spatial momentum on quasinormal spectra

  14. Heavy and Heavy-Light Mesons in the Covariant Spectator Theory

    Science.gov (United States)

    Stadler, Alfred; Leitão, Sofia; Peña, M. T.; Biernat, Elmar P.

    2018-05-01

    The masses and vertex functions of heavy and heavy-light mesons, described as quark-antiquark bound states, are calculated with the Covariant Spectator Theory (CST). We use a kernel with an adjustable mixture of Lorentz scalar, pseudoscalar, and vector linear confining interaction, together with a one-gluon-exchange kernel. A series of fits to the heavy and heavy-light meson spectrum were calculated, and we discuss what conclusions can be drawn from it, especially about the Lorentz structure of the kernel. We also apply the Brodsky-Huang-Lepage prescription to express the CST wave functions for heavy quarkonia in terms of light-front variables. They agree remarkably well with light-front wave functions obtained in the Hamiltonian basis light-front quantization approach, even in excited states.

  15. $D$ meson production and long-range azimuthal correlation in $8.16~\\mathrm{TeV}$ $p$+Pb collisions with ATLAS

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The production of $D^{0}(\\overline{D^0})$ and $D^{*\\pm}$ mesons has been measured with the ATLAS detector in $p$+Pb collisions at $\\sqrt{s_{_\\mathrm{NN}}}=8.16~\\mathrm{TeV}$ with an integrated luminosity of $76.3\\mu b^{-1}$ taken in 2016. The $D$ meson production asymmetry between forward ($0 < y^* < 0.5$) and backward ($-0.5 < y^* < 0$) center-of-mass rapidities is studied, and no significant asymmetry is observed. Azimuthal correlations between inclusive $D^{*\\pm}$ and charged particles are also presented in intervals of event-wise charged-particle multiplicity. The second-order harmonic coefficients for inclusive $D^{*\\pm}$ and charged particles azimuthal correlation have been extracted using template fits.

  16. Proceedings of High Energy Physics Workshop ''Scalar Mesons: An Interesting Puzzle for QCD'' held at SUNY Institute of Technology, May 16-18, 2003 Published by the American Institute of Physics AIP Conference Proceedings 688 Editor: Amir H. Fariborz

    International Nuclear Information System (INIS)

    Fariborz, Amir H.

    2003-01-01

    The proceedings of the workshop: ''Scalar Mesons: An Interesting Puzzle for QCD'' contains papers that were presented at the workshop by a number of experts from around the world. It includes three main categories of Theoretical, Computational and Experimental works. The topics that are presented in this proceedings are of interest to senior and junior investigators in high energy physics, nuclear physics and computational physics, and provide most recent ideas, techniques, and directions for future research in these fields

  17. Scalar ΛN and ΛΛ interaction in a chiral unitary approach

    International Nuclear Information System (INIS)

    Sasaki, K.; Oset, E.; Vacas, M. J. Vicente

    2006-01-01

    We study the central part of the ΛN and ΛΛ potential by considering the correlated and uncorrelated two-meson exchange in addition to the ω exchange contribution. The correlated two-meson exchange is evaluated within a chiral unitary approach. We find that a short-range repulsion is generated by the correlated two-meson potential, which also produces an attraction in the intermediate-distance region. The uncorrelated two-meson exchange produces a sizable attraction in all cases that is counterbalanced by the ω exchange contribution

  18. Sigma meson in heavy ion collision

    International Nuclear Information System (INIS)

    Cristian, Ivan; Fuchs, Christian

    2004-01-01

    We want to present a short theoretical prediction of the behaviour of the sigma meson in heavy ion collisions. It is considered that the sigma meson is a pion-pion correlation, resulting from the decay of the N*(1440) resonance. There will be presented some QMD simulations. (authors)

  19. Meson and baryon families as vibronic states in sl(2) quantum universal enveloping algebra

    International Nuclear Information System (INIS)

    Iwao, Syurei; Ono, Yasuji

    1990-01-01

    A mass formula of the q-deformed modified harmonic oscillator type in the sl(2) quantum universal enveloping algebra is proposed for the meson and baryon families, by taking into account the known theories as a guide. Specifying the vibronic quantum number, the deformation parameter and associated ones of the theory are determined from available data for the scalar, pseudoscalar, vector meson and baryon families. The parameters determined from totally ten families not only predict many unobserved states, but also give restrictions on the observable number of states. The method may admit taking into account non-perturbative effects. (author)

  20. Nonleptonic decays of charmed mesons under the W-exchange dominance hypothesis

    International Nuclear Information System (INIS)

    Terasaki, Kunihiko.

    1981-02-01

    Two- and three-body decays of charmed mesons are studied under the ''W-exchange'' dominance hypothesis. As for the two-body decays, the branching ratios for them are calculated in the scalar meson pole approximation. It is seen through a phenomenological analysis that the contribution of the annihilation diagram is much smaller than that of the W-exchange as has been expected in terms of 1/N expansion. This predicts that the F + → π + eta decay is considerably suppressed although it is a Cabibbo favored decay. It is also seen that the new Cabibbo angle theta sub(c)' which is defined in the charm changing currents is nearly equal to the old one theta sub(c). The soft meson technique combined with a linear approximation is applied to the three-body decays. The calculated value of B(D + → π + π + K - ) reproduced considerably well the experimental value, but this method is not successful in the other three-body decays of D mesons. The branching ratios for these decays calculated by assuming that quasi two-body decays contribute dominantly to these decays are almost consistent with the known data. (author)

  1. Search for rare B meson decays into D+s mesons

    International Nuclear Information System (INIS)

    Albrecht, H.; Ehrlichmann, H.; Hamacher, T.

    1993-04-01

    A search has been performed for rare B meson decays into D s + mesons arising from b → u transitions, W exchange modes, B + annihilation processes, and decays where the D s + is not produced via a W → c anti s quark pair coupling, using the ARGUS detector operating on the Y(4S) resonance at the e + e - storage ring DORIS II. Upper limits for individual decay modes are obtained. In addition, from a study of D s + l - correlations an upper limit of BR(B → D s + l - X) < 1.2% (90% CL) is determined. (orig.)

  2. In-medium pseudoscalar D/B mesons and charmonium decay width

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Rahul; Kumar, Arvind [Dr. B.R. Ambedkar National Institute of Technology Jalandhar, Department of Physics, Jalandhar, Punjab (India)

    2017-05-15

    Using QCD sum rules and the chiral SU(3) model, we investigate the effect of temperature, density, strangeness fraction and isospin asymmetric parameter on the shift in masses and decay constants of the pseudoscalar D and B meson in the hadronic medium, which consist of nucleons and hyperons. The in-medium properties of D and B mesons within the QCD sum rule approach depend upon the quark and gluon condensates. In the chiral SU(3) model, quark and gluon condensates are introduced through the explicit symmetry breaking term and the trace anomaly property of the QCD, respectively and are written in terms of the scalar fields σ, ζ, δ and χ. Hence, through medium modification of σ, ζ, δ and χ fields, we obtain the medium-modified masses and decay constants of D and B mesons. As an application, using {sup 3}P{sub 0} model, we calculate the in-medium decay width of the higher charmonium states ψ(3686), ψ(3770) and χ(3556) to the D anti D pairs, considering the in-medium mass of D mesons. These results may be important to understand the possible outcomes of the high-energy physics experiments, e.g., CBM and PANDA at GSI, Germany. (orig.)

  3. In-medium pseudoscalar D/B mesons and charmonium decay width

    Science.gov (United States)

    Chhabra, Rahul; Kumar, Arvind

    2017-05-01

    Using QCD sum rules and the chiral SU(3) model, we investigate the effect of temperature, density, strangeness fraction and isospin asymmetric parameter on the shift in masses and decay constants of the pseudoscalar D and B meson in the hadronic medium, which consist of nucleons and hyperons. The in-medium properties of D and B mesons within the QCD sum rule approach depend upon the quark and gluon condensates. In the chiral SU(3) model, quark and gluon condensates are introduced through the explicit symmetry breaking term and the trace anomaly property of the QCD, respectively and are written in terms of the scalar fields σ, ζ, δ and χ. Hence, through medium modification of σ, ζ, δ and χ fields, we obtain the medium-modified masses and decay constants of D and B mesons. As an application, using {}3P0 model, we calculate the in-medium decay width of the higher charmonium states ψ(3686), ψ(3770) and χ(3556) to the D\\bar{D} pairs, considering the in-medium mass of D mesons. These results may be important to understand the possible outcomes of the high-energy physics experiments, e.g., CBM and PANDA at GSI, Germany.

  4. Quarkonia and heavy-light mesons in a covariant quark model

    Directory of Open Access Journals (Sweden)

    Leitão Sofia

    2016-01-01

    Full Text Available Preliminary calculations using the Covariant Spectator Theory (CST employed a scalar linear confining interaction and an additional constant vector potential to compute the mesonic mass spectra. In this work we generalize the confining interaction to include more general structures, in particular a vector and also a pseudoscalar part, as suggested by a recent study [1]. A one-gluon-exchange kernel is also implemented to describe the short-range part of the interaction. We solve the simplest CST approximation to the complete Bethe-Salpeter equation, the one-channel spectator equation, using a numerical technique that eliminates all singularities from the kernel. The parameters of the model are determined through a fit to the experimental pseudoscalar meson spectra, with a good agreement for both quarkonia and heavy-light states.

  5. Production and decay rates of the iota meson

    International Nuclear Information System (INIS)

    Frank, M.; O'Donnell, P.J.; Toronto Univ., Ontario

    1984-01-01

    We correlate the results for the mass spectrum of low lying isoscalar-pseudoscalar mesons with the production decay rates from J/psi->γP, with P=eta 1 , eta' 1 , eta 2 and iota and study the radiative decays of the iota meson. We conclude that the iota meson has to be interpreted as having a strong gluonium component. (orig.)

  6. Scalar correlator, Higgs decay into quarks, and scheme variations of the QCD coupling

    Energy Technology Data Exchange (ETDEWEB)

    Jamin, Matthias [IFAE, BIST,Campus UAB, 08193 Bellaterra (Barcelona) (Spain); ICREA,Pg. Lluís Companys 23, 08010 Barcelona (Spain); Miravitllas, Ramon [IFAE, BIST,Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2016-10-12

    In this work, the perturbative QCD series of the scalar correlation function Ψ(s) is investigated. Besides /rm ImΨ(s), which is relevant for Higgs decay into quarks, two other physical correlators, Ψ{sup ″}(s) and D{sup L}(s), have been employed in QCD applications like quark mass determinations or hadronic τ decays. D{sup L}(s) suffers from large higher-order corrections and, by resorting to the large-β{sub 0} approximation, it is shown that this is related to a spurious renormalon ambiguity at u=1. Hence, this correlator should be avoided in phenomenological analyses. Moreover, it turns out advantageous to express the quark mass factor, introduced to make the scalar current renormalisation group invariant, in terms of the renormalisation invariant quark mass m̂{sub q}. To further study the behaviour of the perturbative expansion, we introduce a QCD coupling α̂{sub s}, whose running is explicitly renormalisation scheme independent. The scheme dependence of α̂{sub s} is parametrised by a single parameter C, being related to transformations of the QCD scale parameter Λ. It is demonstrated that appropriate choices of C lead to a substantial improvement in the behaviour of the perturbative series for Ψ{sup ″}(s) and /rm ImΨ(s).

  7. Passive Scalar Evolution in Peripheral Region

    OpenAIRE

    Lebedev, V. V.; Turitsyn, K. S.

    2003-01-01

    We consider evolution of a passive scalar (concentration of pollutants or temperature) in a chaotic (turbulent) flow. A universal asymptotic behavior of the passive scalar decay (homogenization) related to peripheral regions (near walls) is established. The passive scalar moments and its pair correlation function in the peripheral region are analyzed. A special case investigated in our paper is the passive scalar decay along a pipe.

  8. Mesonic correlation functions from light quarks and their spectral representation in hot quenched lattice QCD

    International Nuclear Information System (INIS)

    Wissel, S.

    2006-10-01

    In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T c . Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T c at nearly zero quark masses. At 1.24 T c , the occurrence of topological effects, a sign for the presence of a still broken U(1) A symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T c cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.)

  9. Effective non-Coulombic power-law potential for the study of light and heavy mesons

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1982-01-01

    From purely phenomenological considerations we have shown that it is possible to describe successfully the heavy meson spectra of cc-bar and bb-bar systems in the framework of an effective non-Coulombic power-law potential in the form V(r) = V 0 +ar/sup ν/ (with a,ν>0). The nonsingular short-distance behavior of this potential, which is in apparent contradiction with the predictions of quantum- chromodynamics, does not pose any problem in explaining the fine-hyperfine splitting, if we prescribe the spin dependence to be generated through this static confining potential in the form of an approximately equal admixture of scalar and vector parts with no contributions from the anomalous quark magnetic moments. This nonrelativistic formalsm, when extended to a unified study of the entire meson spectra including the ordinary light and the heavy mesons, gives a very good account of the meson masses, fine-hyperfine splittings, electromagnetic transition rates, and leptonic decay widths without reflecting any inadequacy in the short- and long-range behavior of this simple effective power-law potential

  10. Meson phase space density from interferometry

    International Nuclear Information System (INIS)

    Bertsch, G.F.

    1993-01-01

    The interferometric analysis of meson correlations a measure of the average phase space density of the mesons in the final state. The quantity is a useful indicator of the statistical properties of the systems, and it can be extracted with a minimum of model assumptions. Values obtained from recent measurements are consistent with the thermal value, but do not rule out superradiance effects

  11. Can strong correlations be experimentally revealed for Ҡ -mesons?

    Directory of Open Access Journals (Sweden)

    Hiesmayr Beatrix C.

    2014-01-01

    Full Text Available In 1964 the physicists John St. Bell working at CERN took the 1935-idea of Einstein-Podolsky-Rosen seriously and found that all theories based on local realism have to satisfy a certain inequality, nowadays dubbed Bell’s inequality. Experiments with ordinary matter systems or light show violations of Bell’s inequality favouring the quantum theory though a loophole free experiment has not yet been performed. This contribution presents an experimentally feasible Bell inequality for systems at higher energy scales, i.e. entangled neutral Ҡ -meson pairs that are typically produced in Φ -mesons decays or proton-antiproton annihilation processes. Strong requirements have to be overcome in order to achieve a conclusive tests, such a proposal was recently published. Surprisingly, this new Bell inequality reveals new features for weakly decaying particles, in particular, a strong sensitivity to the combined charge-conjugation-parity (CP symmetry. Here-with, a puzzling relation between a symmetry breaking for mesons and Bell’s inequality—which is a necessary and sufficient condition for the security of quantum cryptography protocols— is established. This becomes the more important since CP symmetry is related to the cosmological question why the antimatter disappeared after the Big Bang.

  12. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    Science.gov (United States)

    Chowdhury, Debika; Sreenath, V.; Sriramkumar, L.

    2016-11-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  13. The scalar-scalar-tensor inflationary three-point function in the axion monodromy model

    International Nuclear Information System (INIS)

    Chowdhury, Debika; Sriramkumar, L.; Sreenath, V.

    2016-01-01

    The axion monodromy model involves a canonical scalar field that is governed by a linear potential with superimposed modulations. The modulations in the potential are responsible for a resonant behavior which gives rise to persisting oscillations in the scalar and, to a smaller extent, in the tensor power spectra. Interestingly, such spectra have been shown to lead to an improved fit to the cosmological data than the more conventional, nearly scale invariant, primordial power spectra. The scalar bi-spectrum in the model too exhibits continued modulations and the resonance is known to boost the amplitude of the scalar non-Gaussianity parameter to rather large values. An analytical expression for the scalar bi-spectrum had been arrived at earlier which, in fact, has been used to compare the model with the cosmic microwave background anisotropies at the level of three-point functions involving scalars. In this work, with future applications in mind, we arrive at a similar analytical template for the scalar-scalar-tensor cross-correlation. We also analytically establish the consistency relation (in the squeezed limit) for this three-point function. We conclude with a summary of the main results obtained.

  14. Hunting the Scalar Glueball: Prospects for BES III

    International Nuclear Information System (INIS)

    Chanowitz, Michael S.

    2006-01-01

    The search for the ground state scalar glueball G 0 is reviewed. Spin zero glueballs will have unique dynamical properties if the 0 →(bar q)q amplitude is suppressed by chiral symmetry, as it is to all orders in perturbation theory: for instance, mixing of G 0 with (bar q)q mesons would be suppressed, radiative ψ decay would be a filter for new physics in the spin zero channel, and the decay G 0 →(bar K)K could be enhanced relative to G 0 → ππ. These properties are consistent with the identification of f 0 (1710) as the largely unmixed ground state scalar glueball, while recent BES data implies that f 0 (1500) does not contain the dominant glueball admixture. Three hypotheses are discussed: that G 0 is (1) predominantly f 0 (1500) or (2) predominantly f 0 (1710) or (3) is strongly mixed between f 0 (1500) and f 0 (1710)

  15. Mesonic correlation functions from light quarks and their spectral representation in hot quenched lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Wissel, S.

    2006-10-15

    In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T{sub c}. Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T{sub c} at nearly zero quark masses. At 1.24 T{sub c}, the occurrence of topological effects, a sign for the presence of a still broken U(1){sub A} symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T{sub c} cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.)

  16. Applications of two-body Dirac equations to the meson spectrum with three versus two covariant interactions, SU(3) mixing, and comparison to a quasipotential approach

    International Nuclear Information System (INIS)

    Crater, Horace W.; Schiermeyer, James

    2010-01-01

    In a previous paper, Crater and Van Alstine applied the two-body Dirac equations of constraint dynamics to quark-antiquark bound states using a relativistic extention of the Adler-Piran potential and compared their spectral results to those from other approaches which also considered meson spectroscopy as a whole and not in parts. In this paper, we explore in more detail the differences and similarities in an important subset of those approaches, the quasipotential approach. In the earlier paper, the transformation properties of the quark-antiquark potentials were limited to a scalar and an electromagnetic-like four-vector, with the former accounting for the confining aspects of the overall potential, and the latter the short range portion. The static Adler-Piran potential was first given an invariant form and then apportioned between those two different types of potentials. Here, we make a change in this apportionment that leads to a substantial improvement in the resultant spectroscopy by including a timelike confining vector potential over and above the scalar confining one and the electromagnetic-like vector potential. Our fit includes 19 more mesons than the earlier results and we modify the scalar portion of the potential in such a way that allows this formalism to account for the isoscalar mesons η and η ' not included in the previous work. Continuing the comparisons of formalisms and spectral results made in the previous paper with other approaches to meson spectroscopy, we examine in this paper the quasipotential approach of Ebert, Faustov, and Galkin.

  17. Structure of the (0+,1+) mesons Bs0 and Bs1, and the strong coupling constant gBs0BK and gBs1B*K

    International Nuclear Information System (INIS)

    Wang, Z. G.

    2008-01-01

    In this article, we take the point of view that the bottomed (0 + ,1 + ) mesons B s0 and B s1 are the conventional bs meson and calculate the strong coupling constants g B s0 BK and g B s1 B*K with the light-cone QCD sum rules. The numerical values of strong coupling constants g B s1 B*K and g B s0 BK are very large and support the hadronic dressing mechanism. Just like the scalar mesons f 0 (980), a 0 (980), D s0 and axial-vector meson D s1 , the (0 + ,1 + ) bottomed mesons B s0 and B s1 may have small bs kernels of the typical bs meson size. The strong couplings to the hadronic channels (or the virtual mesons loops) may result in smaller masses than the conventional bs mesons in the potential quark models and enrich the pure bs states with other components.

  18. Delocalized SYZ mirrors and confronting top-down SU(3)-structure holographic meson masses at finite g and Nc with P(article) D(ata) G(roup) values

    International Nuclear Information System (INIS)

    Yadav, Vikas; Sil, Karunava; Misra, Aalok

    2017-01-01

    Meson spectroscopy at finite gauge coupling - whereat any perturbative QCD computation would break down - and finite number of colors, from a top-down holographic string model, has thus far been entirely missing in the literature. This paper fills this gap. Using the delocalized type IIA SYZ mirror (with SU(3) structure) of the holographic type IIB dual of large-N thermal QCD of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) as constructed in Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at finite coupling and number of colors (N c = number of D5(D5)-branes wrapping a vanishing two-cycle in the top-down holographic construct of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) = O(1) in the IR in the MQGP limit of Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at the end of a Seiberg-duality cascade), we obtain analytical (not just numerical) expressions for the vector and scalar meson spectra and compare our results with previous calculations of Sakai and Sugimoto (Prog Theor Phys 113:843. doi:10.1143/PTP.113.843 arXiv:hep-th/0412141, 2005) and Dasgupta et al. (JHEP 1507:122. doi:10.1007/JHEP07(2015)122 arXiv:1409.0559 [hep-th], 2015), and we obtain a closer match with the Particle Data Group (PDG) results of Olive et al. (Particle Data Group) (Chin Phys C 38:090001, 2014). Through explicit computations, we verify that the vector and scalar meson spectra obtained by the gravity dual with a black hole for all temperatures (small and large) are nearly isospectral with the spectra obtained by a thermal gravity dual valid for only low temperatures; the isospectrality is much closer for vector mesons than scalar mesons. The black-hole gravity dual (with a horizon radius smaller than the deconfinement scale) also provides the expected large-N suppressed decrease in vector meson mass with increase of temperature. (orig.)

  19. Observation of π- B meson charge-flavor correlations and measurement of time dependent B0$\\bar{B}$0 mixing in p$\\bar{p}$ collisions

    Energy Technology Data Exchange (ETDEWEB)

    Maksimovic, Peter [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1998-02-01

    We present a study of time dependent B0-$\\bar{B}$0 mixing in p$\\bar{p}$ collisions at 1.8 TeV using 110 pb-1 collected with the CDF detector at the Fermilab Tevatron Collider. B mesons are partially reconstructed using the semileptonic decays B0→l+D*-X and B+→l+$\\bar{D}$0X (and their charge conjugates). B meson-charged pion correlations are used in order to determine the flavor of the B meson at t=0. Such correlations are expected to arise from pions produced in the fragmentation chain and also from B** decays. We measure the efficiency and purity of this flavor tagging method for both charged and neutral B mesons.

  20. B meson decays to baryons in the diquark model

    International Nuclear Information System (INIS)

    Chang, C.H.V.; Hou, W.S.

    2002-01-01

    We study B meson decays to two charmless baryons in the diquark model, including strong and electroweak penguins as well as the tree operators. It is shown that penguin operators can enhance anti B→B s anti B considerably, but affect anti B→B 1 anti B 2 only slightly, where B (1,2) and B s are non-strange and strange baryons, respectively. The γ dependence of the decay rates due to tree-penguin interference is illustrated. In principle, some of the B s anti B modes could dominate over B 1 anti B 2 for γ>90 , but in general the effect is milder than their mesonic counterparts. This is because the O 6 operator can only produce vector but not scalar diquarks, while the opposite is true for O 1 and O 4 . Predictions from the diquark model are compared to those from the sum rule calculation. The decays anti B→B s anti B s and inclusive baryonic decays are also discussed. (orig.)

  1. The interpretation of the iota meson

    International Nuclear Information System (INIS)

    Frank, M.

    1985-01-01

    The authors analyze the iota (1440) meson in a non-relativistic quark model. The authors review the experimental data, then attempt to incorporate it in the mass spectrum and radiative decays of the low-lying pseudoscalar and vector mesons. Correlating these results with production decay rates from J/psi and the radiative decays of iota, the authors conclude that the iota has to be interpreted as having a strong gluonium component

  2. High temperature meson propagators with domain-wall quarks

    International Nuclear Information System (INIS)

    Lagae, J.-F.; Sinclair, D. K.

    1999-01-01

    We study the chiral properties of domain-wall quarks at high temperatures on an ensemble of quenched configurations. Low lying eigenmodes of the Dirac operator are calculated and used to check the extent to which the Atiyah-Singer index theorem is obeyed on lattices with finite N 5 . We calculate the connected and disconnected screening propagators for the lowest mass scalar and pseudoscalar mesons in the sectors of different topological charge and note that they behave as expected. Separating out the would-be zero eigenmodes enables us to accurately estimate the disconnected propagators with far less effort than would be needed otherwise

  3. High temperature meson propagators with domain-wall quarks

    International Nuclear Information System (INIS)

    Lagaee, J.-F.; Sinclair, D.K.

    2000-01-01

    We study the chiral properties of domain-wall quarks at high temperatures on an ensemble of quenched configurations. Low lying eigenmodes of the Dirac operator are calculated and used to check the extent to which the Atiyah-Singer index theorem is obeyed on lattices with finite N 5 . We calculate the connected and disconnected screening propagators for the lowest mass scalar and pseudoscalar mesons in the sectors of different topological charge and note that they behave as expected. Separating out the would-be zero eigenmodes enables us to accurately estimate the disconnected propagators with far less effort than would be needed otherwise

  4. Equality of e+e- production amplitudes for scalar-vector and pseudoscalar-axial heavy meson-antimeson pairs

    Science.gov (United States)

    Voloshin, M. B.

    2018-02-01

    The production of heavy meson-antimeson pairs of the type S V and P A in e+e- annihilation is considered, with P and V being the ground-state JP=0- and JP=1- (anti)mesons from the (1 /2 )-doublet and S and A standing for the excited JP=0+ and JP=1+ (anti)mesons from the (1 /2 )+doublet. It is argued that the production amplitudes in these two channels should be equal up to a higher (than one) order in the heavy quark mass (ΛQCD/MQ ) expansion, A (e +e-→S V ¯ )=A (e+e-→A P ¯ ) , including both the S -wave and the D -wave amplitudes. Given that the S V and P A thresholds are extremely close, the production cross section in both channels should be the same to a high degree of accuracy. In practice, this behavior can be studied for the processes e+e-→Ds 0(2317 )D¯s *+c .c . and e+e-→Ds 1(2460 )D¯ s+c .c . in the charm sector and e+e-→Bs 0B¯s *+c .c . and e+e-→Bs 1B¯ s+c .c . in the B sector.

  5. Discovery of omega meson, first neutral vector meson

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A personal account of the discovery of the ω meson is given by researcher B. Maglich. His account includes such topics as early and unsuccessful searches for a neutral vector meson (by himself and others), eventual discovery of the rho meson, the Goldhaber effect, and the observation and characterization of the ω meson. Explanatory physics notes on electromagnetic structure experiments and the determination of the quantum numbers of the ω meson are provided for nonspecialists. Also included are an outline of the relation between vector mesons and nuclear forces, a reprint of the Physical Review Letter on Evidence for a T = 0 three-pion resonance, and a scientific autobiography of the researcher. 14 figures, 1 table

  6. High-energy behavior of fermion-meson and meson-meson scattering in a supersymmetric field theory

    International Nuclear Information System (INIS)

    Opoien, J.W.

    1978-01-01

    The high-energy behavior of fermion-boson and boson-boson scattering amplitudes of a supersymmetric field theory containing a spin-1/2 fermion field, a scalar field, and a pseudoscalar field is investigated. The results can be easily modified to apply to the Yukawa model and the neutral version of the linear sigma model. The results are also compared to those of fermion-fermion scattering in the same model. In the leading-logarithm approximation, ladders with fermions running along the sides in the t channel and mesons as rungs dominate in each order of two classes of diagrams. The sum of the dominant series give rise to fixed Regge cuts for all amplitudes in each of the three theories. All amplitudes in the supersymmetric theory possess a definite signature factor, while the amplitudes for fermion-fermion and fermion-antifermion scattering in the Y model and the sigma model lack it. The results of the supersymmetric theory are also compared to the results of the spontaneously broken non-Abelian gauge theory

  7. Exclusive production of meson pairs and resonances in proton-proton collisions

    International Nuclear Information System (INIS)

    Lebiedowicz, Piotr; Szczurek, Antoni

    2013-01-01

    We report a study of the central exclusive production of π + π − and K + K − pairs in high energy hadron-hadron collisions. The amplitude is calculated in the Regge approach including both pomeron and secondary reggeon exchanges and absorption effects due to proton-proton interaction and ππ (KK) rescattering. We discuss a measurement of exclusive production of a scalar χ c0 meson via χ c0 →π + π − , K + K − decay. We find that the relative contribution of resonance states and the ππ (KK) continuum strongly depend on the cut on pion (kaon) transverse momentum. We compare the results with the existing experimental data and present predictions for the RHIC, Tevatron and LHC colliders. We discuss also the f 2 (1270) meson production mediated by an effective tensor pomeron exchanges.

  8. EDQNM model of a passive scalar with a uniform mean gradient

    International Nuclear Information System (INIS)

    Herr, S.; Wang, L.; Collins, L.R.

    1996-01-01

    Dynamic equations for the scalar autocorrelation and scalar-velocity cross correlation spectra have been derived for a passive scalar with a uniform mean gradient using the Eddy Damped Quasi Normal Markovian (EDQNM) theory. The presence of a mean gradient in the scalar field makes all correlations involving the scalar axisymmetric with respect to the axis pointing in the direction of the mean gradient. Equivalently, all scalar spectra will be functions of the wave number k and the cosine of the azimuthal angle designated as μ. In spite of this complication, it is shown that the cross correlation vector can be completely characterized by a single scalar function Q(k). The scalar autocorrelation spectrum, in contrast, has an unknown dependence on μ. However, this dependency can be expressed as an infinite sum of Legendre polynomials of μ, as first suggested by Herring [Phys. Fluids 17, 859 (1974)]. Furthermore, since the scalar field is initially zero, terms beyond the second order of the Legendre expansion are shown to be exactly zero. The energy, scalar autocorrelation, and scalar-velocity cross correlation were solved numerically from the EDQNM equations and compared to results from direct numerical simulations. The results show that the EDQNM theory is effective in describing single-point and spectral statistics of a passive scalar in the presence of a mean gradient. copyright 1996 American Institute of Physics

  9. Gauge-invariant scalar and field strength correlators in 3d

    CERN Document Server

    Laine, Mikko

    1998-01-01

    Gauge-invariant non-local scalar and field strength operators have been argued to have significance, e.g., as a way to determine the behaviour of the screened static potential at large distances, as order parameters for confinement, as input parameters in models of confinement, and as gauge-invariant definitions of light constituent masses in bound state systems. We measure such "correlators" in the 3d pure SU(2) and SU(2)+Higgs models on the lattice. We extract the corresponding mass parameters and discuss their scaling and physical interpretation. We find that the finite part of the MS-bar scheme mass measured from the field strength correlator is large, more than half the glueball mass. We also determine the non-perturbative contribution to the Debye mass in the 4d finite T SU(2) gauge theory with a method due to Arnold and Yaffe, finding $\\delta m_D\\approx 1.06(4)g^2T$.

  10. Delocalized SYZ mirrors and confronting top-down SU(3)-structure holographic meson masses at finite g and N_c with P(article) D(ata) G(roup) values

    Science.gov (United States)

    Yadav, Vikas; Misra, Aalok; Sil, Karunava

    2017-10-01

    Meson spectroscopy at finite gauge coupling - whereat any perturbative QCD computation would break down - and finite number of colors, from a top-down holographic string model, has thus far been entirely missing in the literature. This paper fills this gap. Using the delocalized type IIA SYZ mirror (with SU(3) structure) of the holographic type IIB dual of large- N thermal QCD of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) as constructed in Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at finite coupling and number of colors (N_c = number of D5(\\overline{D5})-branes wrapping a vanishing two-cycle in the top-down holographic construct of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) = O(1) in the IR in the MQGP limit of Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at the end of a Seiberg-duality cascade), we obtain analytical (not just numerical) expressions for the vector and scalar meson spectra and compare our results with previous calculations of Sakai and Sugimoto (Prog Theor Phys 113:843. doi: 10.1143/PTP.113.843 arXiv:hep-th/0412141, 2005) and Dasgupta et al. (JHEP 1507:122. doi: 10.1007/JHEP07(2015)122 arXiv:1409.0559 [hep-th], 2015), and we obtain a closer match with the Particle Data Group (PDG) results of Olive et al. (Particle Data Group) (Chin Phys C 38:090001, 2014). Through explicit computations, we verify that the vector and scalar meson spectra obtained by the gravity dual with a black hole for all temperatures (small and large) are nearly isospectral with the spectra obtained by a thermal gravity dual valid for only low temperatures; the isospectrality is much closer for vector mesons than scalar mesons. The black-hole gravity dual (with a horizon radius smaller than the deconfinement scale) also provides the expected large- N suppressed decrease in vector meson mass with increase of temperature.

  11. Relativistic actions for bound-states and applications in the meson spectroscopy; Acoes relativisticas para estados ligados e aplicacoes na espectroscopia de mesons

    Energy Technology Data Exchange (ETDEWEB)

    Silva Carvalho, Hendly da

    1991-08-01

    We study relativistic equations for bound states of two-body systems using Dirac`s constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs.

  12. Nuclear physics brought about by the π-mesons studied from field theory and experiments

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    2012-01-01

    In nuclei π-mesons are playing key role. At first the important interactions of π-mesons in light nuclei is explained mentioning that the π-meson exchange force is tensor force. It is pointed out that the importance of π-meson is observed even in the deuterons. By the progress of computations it is possible at present to calculate nuclei up to the mass number of twelve. It is explained then how to handle the π-mesons in heavy nuclei referring to the discovery of the halo of 11 Li and its analysis. Due to the pseudo scalar properties of the π-mesons, tensor force is the strong nucleon-nucleon interaction. It has been necessary to go through numbers of trials and errors to arrive at the discovery of the proper tensor force analysis. It is shown to be possible to handle them in the Tensor-Optimized Shell Model (TOSM) based on the variation method. The explanation of the Extended Brueckner Hartree-Fock (EBHF) method obtained by combining the TOSM with the mean field theory used in the heavy nuclei is given. EBHF theory has the structure including high momentum components in the 2p2h wave functions. Calculated equation of state of symmetric nuclear matter is shown as a function of density in which important contribution of the tensor force is observed. Properties of nuclear matter are discussed. (S. Funahashi)

  13. Mesonic and Quark Degrees of Freedom in the Neutron Star Matter

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Niemiec, J.; Stachniewicz, S.

    1999-01-01

    Full text: It is expected that mesonic and quark degrees of freedom may play an important role in the physics of dense matter in neutron stars. Any conclusions, however, as to the presence of e.g. meson condensates and/or quark matter inside neutron stars are subject to uncertainties which reflect incompatible model predictions at a purely nucleon level. In our project, as far as mesonic contributions to the equation of state of dense matter are concerned, we focus on the role of kaons and the isovector scalar meson a 0 (980). We find that a threshold density for the kaon condensate to form is very sensitive to a high density behaviour of the electron chemical potential, which is not well known due to uncertainties of nucleon-nucleon interactions. An important effect of the inclusion of the a 0 meson is a splitting of proton and neutron masses in the neutron star matter. A proper construction of the nucleon-quark phase transition in dense neutron star matter predicts that nucleons and quarks coexist over a finite range of pressure, with quarks (nucleons) filling gradually larger (smaller) fraction of space. We find, using a simple bag-model equation of state for the quark matter, that properties of such a mixed quark-nucleon phase are determined by the behaviour of nucleon matter isobars which is sensitive to the nuclear symmetry energy at high densities. We study also implications of the presence of a mixed phase for the structure of neutron stars. (author)

  14. Covariant Spectator Theory of heavy–light and heavy mesons and the predictive power of covariant interaction kernels

    Energy Technology Data Exchange (ETDEWEB)

    Leitão, Sofia, E-mail: sofia.leitao@tecnico.ulisboa.pt [CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Stadler, Alfred, E-mail: stadler@uevora.pt [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Peña, M.T., E-mail: teresa.pena@tecnico.ulisboa.pt [Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Biernat, Elmar P., E-mail: elmar.biernat@tecnico.ulisboa.pt [CFTP, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2017-01-10

    The Covariant Spectator Theory (CST) is used to calculate the mass spectrum and vertex functions of heavy–light and heavy mesons in Minkowski space. The covariant kernel contains Lorentz scalar, pseudoscalar, and vector contributions. The numerical calculations are performed in momentum space, where special care is taken to treat the strong singularities present in the confining kernel. The observed meson spectrum is very well reproduced after fitting a small number of model parameters. Remarkably, a fit to a few pseudoscalar meson states only, which are insensitive to spin–orbit and tensor forces and do not allow to separate the spin–spin from the central interaction, leads to essentially the same model parameters as a more general fit. This demonstrates that the covariance of the chosen interaction kernel is responsible for the very accurate prediction of the spin-dependent quark–antiquark interactions.

  15. Hadron correlations in nuclear reactions with production of cumulative protons induced by π- mesons with momentum of 6.0 GeV/c

    International Nuclear Information System (INIS)

    Bayukov, Yu.D.; Vlasov, A.V.; Gavrilov, V.B.

    1981-01-01

    Hardonic correlations were investigated in reactions with the proton backward production induced by 6.0-GeV/c π - mesons on nuclei Be, C, Al, Cu, Cd, Pb, U. The studied correlations indicate an essential role of multiple interactions of the incident particle in production of cumulative protons [ru

  16. Heavy-to-light correlators beyond the light cone

    International Nuclear Information System (INIS)

    Lucha, W.; Melikhov, D. I.; Simula, S.

    2008-01-01

    We present the first systematic analysis of the off-light-cone effects in correlators relevant for the extraction of the heavy-to-light form factors within the method of light-cone sum rules. In a model with scalar constituents, the correlator is calculated in two different ways: (i) by performing the expansion of the Bethe-Salpeter amplitude of the light meson near the light cone x 2 = 0 and (ii) by adopting the known solution for the Bethe-Salpeter amplitude which allows one to calculate the correlator without invoking any expansion. We demonstrate that the contributions to the correlator from the off-light-cone terms x 2 ≠ 0 are not suppressed by any large parameter compared to the contribution of the light-cone term x 2 0. For decays of heavy particles of mass in the range 1.5-5 GeV, the light-cone correlator is shown to systematically overestimate the full correlator, numerically the difference being 10-20%

  17. Heavy-to-light correlators beyond the light cone

    International Nuclear Information System (INIS)

    Lucha, W.; Melikhov, D. I.; Simula, S.

    2008-01-01

    We present the first systematic analysis of the off-light-cone effects in correlators relevant for the extraction of the heavy-to-light form factors within the method of light-cone sum rules. In a model with scalar constituents, the correlator is calculated in two different ways: (i) by performing the expansion of the Bethe-Salpeter amplitude of the light meson near the light cone x 2 = 0 and (ii) by adopting the known solution for the Bethe-Salpeter amplitude which allows one to calculate the correlator without invoking any expansion. We demonstrate that the contributions to the correlator from the off-light-cone terms x 2 ≠ 0 are not suppressed by any large parameter compared to the contribution of the light-cone term x 2 = 0. For decays of heavy particles of mass in the range 1.5–5 GeV, the light-cone correlator is shown to systematically overestimate the full correlator, numerically the difference being 10–20%.

  18. Electromagnetic and Scalar Pion form factor in the Kroll-Lee-Zumino model

    International Nuclear Information System (INIS)

    Dominguez, C.A.; Jottar, J.I.; Loewe, M.; Willers, B.

    2009-01-01

    The renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino is used at the one loop level to compute vertex corrections to the tree-level, Vector Meson Dominance (VMD) electromagnetic pion form factor. These corrections, together with the one-loop vacuum polarization contribution, imply a resulting electromagnetic pion form factor in excellent agreement with data in the whole range of accessible momentum transfers in the space-like region. The time-like form factor, which reproduces the Gounaris-Sakurai formula at and near the rho-meson peak, is unaffected by the vertex correction at order O(g 2 ). The KLZ model is also used to compute the scalar radius of the pion at the one loop level, finding π 2 > S =0.40fm 2 . This value implies for the low energy constant of chiral perturbation theory l-bar 4 =3.4

  19. On the mesonic-exchange currents in the photomesic reactions

    International Nuclear Information System (INIS)

    Lazard, C.; Maric, Z.; Zivanovic, D.

    1979-02-01

    The γd→π 0 d reaction is analysed in the framework of the relativistic many-body theory with mesonic degrees of freedom explicitly present. It is shown that the mesonic correlations can be grouped into transition operators containing vertices of some elementary reactions between photon, nucleons and pions. The wave function corrections due to meson exchange currents are included in the transition operators and the S-matrix is obtained with the non relativistic deuteron wave function

  20. Exclusive production of meson pairs and resonances in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lebiedowicz, Piotr [Institute of Nuclear Physics PAN, PL-31-342 Cracow (Poland); Szczurek, Antoni [Institute of Nuclear Physics PAN, PL-31-342 Cracow, Poland and University of Rzeszow, PL-35-959 Rzeszow (Poland)

    2013-04-15

    We report a study of the central exclusive production of {pi}{sup +}{pi}{sup -} and K{sup +}K{sup -} pairs in high energy hadron-hadron collisions. The amplitude is calculated in the Regge approach including both pomeron and secondary reggeon exchanges and absorption effects due to proton-proton interaction and {pi}{pi} (KK) rescattering. We discuss a measurement of exclusive production of a scalar {chi}{sub c0} meson via {chi}{sub c0}{yields}{pi}{sup +}{pi}{sup -}, K{sup +}K{sup -} decay. We find that the relative contribution of resonance states and the {pi}{pi} (KK) continuum strongly depend on the cut on pion (kaon) transverse momentum. We compare the results with the existing experimental data and present predictions for the RHIC, Tevatron and LHC colliders. We discuss also the f{sub 2} (1270) meson production mediated by an effective tensor pomeron exchanges.

  1. Meson-meson bound state in a 2+1 lattice QCD model with two flavors and strong coupling

    International Nuclear Information System (INIS)

    Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antonio Francisco

    2005-01-01

    We consider the existence of bound states of two mesons in an imaginary-time formulation of lattice QCD. We analyze an SU(3) theory with two flavors in 2+1 dimensions and two-dimensional spin matrices. For a small hopping parameter and a sufficiently large glueball mass, as a preliminary, we show the existence of isoscalar and isovector mesonlike particles that have isolated dispersion curves (upper gap up to near the two-particle threshold ∼-4lnκ). The corresponding meson masses are equal up to and including O(κ 3 ) and are asymptotically of order -2lnκ-κ 2 . Considering the zero total isospin sector, we show that there is a meson-meson bound state solution to the Bethe-Salpeter equation in a ladder approximation, below the two-meson threshold, and with binding energy of order bκ 2 ≅0.02359κ 2 . In the context of the strong coupling expansion in κ, we show that there are two sources of meson-meson attraction. One comes from a quark-antiquark exchange. This is not a meson exchange, as the spin indices are not those of the meson particle, and we refer to this as a quasimeson exchange. The other arises from gauge field correlations of four overlapping bonds, two positively oriented and two of opposite orientation. Although the exchange part gives rise to a space range-one attractive potential, the main mechanism for the formation of the bound state comes from the gauge contribution. In our lattice Bethe-Salpeter equation approach, this mechanism is manifested by an attractive distance-zero energy-dependent potential. We recall that no bound state appeared in the one-flavor case, where the repulsive effect of Pauli exclusion is stronger

  2. Excited meson radiative transitions from lattice QCD using variationally optimized operators

    Energy Technology Data Exchange (ETDEWEB)

    Shultz, Christian J. [Old Dominion Univ., Norfolk, VA (United States); Dudek, Jozef J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-06-02

    We explore the use of 'optimized' operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson interpolating fields using a variational analysis of matrices of two-point correlation functions. After performing such a determination at both zero and non-zero momentum, we compute three-point functions and are able to study radiative transition matrix elements featuring excited state mesons. The required two- and three-point correlation functions are efficiently computed using the distillation framework in which there is a factorization between quark propagation and operator construction, allowing for a large number of meson operators of definite momentum to be considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of dynamical quark all tuned to the physical strange quark mass, considering form-factors and transitions of pseudoscalar and vector meson excitations. In conclusion, the dependence on photon virtuality for a number of form-factors and transitions is extracted and some discussion of excited-state phenomenology is presented.

  3. Light meson physics from maximally twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Baron, R.; Boucaud, P.

    2009-12-01

    We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N f =2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280 PS < or similar 650 MeV we control the major systematic effects of our calculation. This enables us to confront our data with chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass, with high precision. (orig.)

  4. Meson-nucleus potentials and the search for meson-nucleus bound states

    Science.gov (United States)

    Metag, V.; Nanova, M.; Paryev, E. Ya.

    2017-11-01

    Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.

  5. Light tetraquarks and mesons in a DSE/BSE approach

    Energy Technology Data Exchange (ETDEWEB)

    Heupel, Walter

    2015-07-01

    are of a dynamical nature and are not put in by hand. Additionally, these two-body poles in the four-body equation can be interpreted as connection between the more fundamental four-body picture, where four quarks bind together, and the two-body picture, where the tetraquark is pictured as a bound state of two mesons and/or diquarks. In accordance with previous studies in a two-body framework, the pion-pion correlations are found to be much more dominant than the diquark-diquark correlations. Guided by the result that the tetraquark is dominated by poles in the phase space, an explicit pole ansatz for the amplitude was constructed, improving the numerical stability considerably. Subsequently, the Bethe-Salpeter equation was solved for tetraquarks with the quantum numbers 0++. For physical u/d-quark masses, the masses of the σ(0.35 GeV), κ(0.64 GeV) and the f{sub 0}/a{sub 0}(0.89 GeV) were calculated, with the corresponding masses given in brackets. Compared with the values of the experimental candidates, the masses are generically too low, probably caused by truncation artifacts. Nonetheless, according to the success of the Maris-Tandy model to describe ground state properties of mesons and baryons, the result is a strong indication that the lowest scalar nonet has indeed a considerable tetraquark component. Investigating the quark mass dependence of the sigma, candidates for an all strange tetraquark around 1.6 GeV and an all charm tetraquark around 5.7 GeV were found. These findings agree qualitatively with former results from a two-body approach. Additionally, the mass curve features an interesting cusp at a quark mass of about 0.65 GeV. Such cusps are known in the literature to be related to whether the T-matrix pole corresponds to a bound-state, a resonance or a virtual state. Part II: Following the time-honored concept of taking functional derivatives to obtain an interaction kernel, this technique is extended to vertex models which explicitly depend on the

  6. Spectra of heavy-light mesons in a relativistic model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Bin; Lue, Cai-Dian [Institute of High Energy Physics, Beijing (China)

    2017-05-15

    The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model which is based on a heavy-quark expansion of the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation. The kernel we choose is the standard combination of linear scalar and Coulombic vector. The effective Hamiltonian for heavy-light quark-antiquark system is calculated up to order 1/m{sub Q}{sup 2}. Our results are in good agreement with available experimental data except for the anomalous D{sub s0}{sup *}(2317) and D{sub s1}(2460) states. The newly observed heavy-light meson states can be accommodated successfully in the relativistic quark model with their assignments presented. The D{sub sJ}{sup *}(2860) can be interpreted as the vertical stroke 1{sup 3/2}D{sub 1} right angle and vertical stroke 1{sup 5/2}D{sub 3} right angle states being members of the 1D family with J{sup P} = 1{sup -} and 3{sup -}. (orig.)

  7. Penguin effects induced by the two-Higgs-doublet model and charmless B-meson decays

    International Nuclear Information System (INIS)

    Davies, A.J.; Joshi, G.C.; Matsuda, M.

    1991-03-01

    Nonstandard physical effects through the penguin diagram induced by the charged Higgs scalar contribution in the two-Higgs-doublet model are analysed. The non-leptonic β-decay processes including the non-standard two-Higgs-doublet contribution are compared with the standard model results, which arise from the magnetic gluon transition term. The charged Higgs contribution gives a sizable enhancement to the branching fractions of β-meson charmless decay. 13 refs., 4 figs

  8. Spin Chirality of Cu3 and V3 Nanomagnets. 1. Rotation Behavior of Vector Chirality, Scalar Chirality, and Magnetization in the Rotating Magnetic Field, Magnetochiral Correlations.

    Science.gov (United States)

    Belinsky, Moisey I

    2016-05-02

    The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.

  9. On the spin-parity of a E(1420) meson

    International Nuclear Information System (INIS)

    Asatryan, G.M.; Zaslavskij, A.N.

    1977-01-01

    The phenomenological analysis of data on the E(1420)-meson decay is carried out. The Adair distribution are constructed for the decays E→deltaπ, K* anti K(antiK*K), K anti K π, νππ in different reactions: the correlations in which the spin of E-meson is most explicitely manifested are marked

  10. Unified approach to the study of light and heavy mesons in the frameworkof the vacuum-polarization-corrected potential model

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1981-01-01

    Phenomenological evidence from meson spectroscopy is presented to support the view that a unified description of bound light- and heavy-quark systems is possible within the scope of a nonrelativistic-potential-model approach. The vacuum-polarization-corrected potential with its confinement part in the form of an approximately equal admixture of vector and scalar components is found to be a suitable one for the purpose. The overall systematics of the predictions based on this potential model for the meson masses, fine-hyperfine splittings, leptonic decay widths, and the Regge slopes are observed to be consistent with the premise that the forces between quarks and antiquarks are independent of the quark flavors

  11. Meson photoproduction (CLAS)

    Energy Technology Data Exchange (ETDEWEB)

    Steffen Strauch

    2009-10-01

    This is a brief and selective discussion of meson photoproduction measurements with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Meson photo- production is being used as a tool for various investigations, including the spectroscopy of baryons and mesons and the search for vector-meson medium modifications.

  12. Lowest-lying even-parity anti B{sub s} mesons: heavy-quark spin-flavor symmetry, chiral dynamics, and constituent quark-model bare masses

    Energy Technology Data Exchange (ETDEWEB)

    Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)

    2017-03-15

    The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)

  13. Light meson physics from maximally twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baron, R.; Boucaud, P. [Paris XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Dimopoulos, P. [Roma Tor Vergata Univ. (Italy). Dipt. di Fisica; INFN, Rome (IT)] (and others)

    2009-12-15

    We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N{sub f}=2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280

  14. Measurement of azimuthal correlations of D mesons and charged particles in pp collisions at $\\sqrt{s}=7$ TeV and p-Pb collisions at $\\sqrt{s_{\\rm NN}} = 5.02$ TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crkovska, Jana; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Isakov, Vladimir; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Martin; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Szabo, Alexander; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yalcin, Serpil; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2017-04-17

    The azimuthal correlations of D mesons and charged particles were measured with the ALICE detector in pp collisions at $\\sqrt{s}=7$ TeV and p-Pb collisions at $\\sqrt{s_{\\rm NN}} = 5.02$ TeV at the Large Hadron Collider. D$^0$, D$^+$, and D$^{*+}$ mesons with transverse momentum $3 0.3$ GeV/$c$. The properties of the correlation peak induced by the jet containing the D meson, described in terms of the yield of charged particles in the peak and peak width, are compatible within uncertainties between the two collision systems, and described by Monte-Carlo simulations based on the PYTHIA and POWHEG event generators.

  15. Delocalized SYZ mirrors and confronting top-down SU(3)-structure holographic meson masses at finite g and N{sub c} with P(article) D(ata) G(roup) values

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Vikas; Sil, Karunava [Indian Institute of Technology, Department of Physics, Roorkee, Uttarakhand (India); Misra, Aalok [Indian Institute of Technology, Department of Physics, Roorkee, Uttarakhand (India); McGill University, Physics Department, Montreal, QC (Canada)

    2017-10-15

    Meson spectroscopy at finite gauge coupling - whereat any perturbative QCD computation would break down - and finite number of colors, from a top-down holographic string model, has thus far been entirely missing in the literature. This paper fills this gap. Using the delocalized type IIA SYZ mirror (with SU(3) structure) of the holographic type IIB dual of large-N thermal QCD of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) as constructed in Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at finite coupling and number of colors (N{sub c} = number of D5(D5)-branes wrapping a vanishing two-cycle in the top-down holographic construct of Mia et al. (Nucl Phys B 839:187. arXiv:0902.1540 [hep-th], 2010) = O(1) in the IR in the MQGP limit of Dhuria and Misra (JHEP 1311:001. arXiv:1306.4339 [hep-th], 2013) at the end of a Seiberg-duality cascade), we obtain analytical (not just numerical) expressions for the vector and scalar meson spectra and compare our results with previous calculations of Sakai and Sugimoto (Prog Theor Phys 113:843. doi:10.1143/PTP.113.843 arXiv:hep-th/0412141, 2005) and Dasgupta et al. (JHEP 1507:122. doi:10.1007/JHEP07(2015)122 arXiv:1409.0559 [hep-th], 2015), and we obtain a closer match with the Particle Data Group (PDG) results of Olive et al. (Particle Data Group) (Chin Phys C 38:090001, 2014). Through explicit computations, we verify that the vector and scalar meson spectra obtained by the gravity dual with a black hole for all temperatures (small and large) are nearly isospectral with the spectra obtained by a thermal gravity dual valid for only low temperatures; the isospectrality is much closer for vector mesons than scalar mesons. The black-hole gravity dual (with a horizon radius smaller than the deconfinement scale) also provides the expected large-N suppressed decrease in vector meson mass with increase of temperature. (orig.)

  16. Non-perturbative RPA-method implemented in the Coulomb gauge QCD Hamiltonian: From quarks and gluons to baryons and mesons

    Science.gov (United States)

    Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.

    2018-02-01

    Starting from an algebraic model based on the QCD-Hamiltonian and previously applied to study meson states, we have developed an extension of it in order to explore the structure of baryon states. In developing our approach we have adapted concepts taken from group theory and non-perturbative many-body methods to describe states built from effective quarks and anti-quarks degrees of freedom. As a Hamiltonian we have used the QCD Hamiltonian written in the Coulomb Gauge, and expressed it in terms of effective quark-antiquark, di-quarks and di-antiquark excitations. To gain some insights about the relevant interactions of quarks in hadronic states, the Hamiltonian was approximately diagonalized by mapping quark-antiquark pairs and di-quarks (di-antiquarks) onto phonon states. In dealing with the structure of the vacuum of the theory, color-scalar and color-vector states are introduced to account for ground-state correlations. While the use of a purely color-scalar ground state is an obvious choice, so that colorless hadrons contain at least three quarks, the presence of coupled color-vector pairs in the ground state allows for colorless excitations resulting from the action of color objects upon it.

  17. Measurement of azimuthal correlations of D mesons with charged particles in pp collisions at [Formula: see text] TeV and p-Pb collisions at [Formula: see text] TeV.

    Science.gov (United States)

    Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Almaraz, J R M; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Balasubramanian, S; Baldisseri, A; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Belmont, R; Belmont-Moreno, E; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Bjelogrlic, S; Blair, J T; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Boldizsár, L; Bombara, M; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Bossú, F; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buitron, S A I; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Cai, X; Caines, H; Diaz, L Calero; Caliva, A; Calvo Villar, E; Camerini, P; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cepila, J; Cerello, P; Cerkala, J; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Chelnokov, V; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Crkovská, J; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Deisting, A; Deloff, A; Dénes, E; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erdemir, I; Erhardt, F; Espagnon, B; Estienne, M; Esumi, S; Eum, J; Evans, D; Evdokimov, S; Eyyubova, G; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fleck, M G; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Gasik, P; Gauger, E F; Germain, M; Gheata, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Grachov, O A; Graczykowski, L K; Graham, K L; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gronefeld, J M; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Haake, R; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Horak, D; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Incani, E; Ippolitov, M; Irfan, M; Isakov, V; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Khan, M Mohisin; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; León Vargas, H; Leoncino, M; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Mcdonald, D; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Molnar, L; Montaño Zetina, L; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Negrao De Oliveira, R A; Nellen, L; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Ohlson, A; Okatan, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pagano, D; Pagano, P; Paić, G; Pal, S K; Palni, P; Pan, J; Pandey, A K; Papikyan, V; Pappalardo, G S; Pareek, P; Park, J; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Šándor, L; Sandoval, A; Sano, M; Sarkar, D; Sarkar, N; Sarma, P; Scapparone, E; Scarlassara, F; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Song, Z; Soramel, F; Sorensen, S; Sozzi, F; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Muñoz, G Tejeda; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thäder, J; Thakur, D; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Valencia Palomo, L; Vallero, S; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Verweij, M; Vickovic, L; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Windelband, B; Winn, M; Yalcin, S; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaborowska, A; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zyzak, M

    2017-01-01

    The azimuthal correlations of D mesons with charged particles were measured with the ALICE apparatus in pp collisions at [Formula: see text] and p-Pb collisions at [Formula: see text] at the Large Hadron Collider. [Formula: see text], [Formula: see text], and [Formula: see text] mesons and their charge conjugates with transverse momentum [Formula: see text] and rapidity in the nucleon-nucleon centre-of-mass system [Formula: see text] (pp collisions) and [Formula: see text] (p-Pb collisions) were correlated to charged particles with [Formula: see text]. The yield of charged particles in the correlation peak induced by the jet containing the D meson and the peak width are compatible within uncertainties in the two collision systems. The data are described within uncertainties by Monte-Carlo simulations based on PYTHIA, POWHEG, and EPOS 3 event generators.

  18. The K*0(800) scalar resonance from Roy-Steiner representations of πK scattering

    International Nuclear Information System (INIS)

    Descotes-Genon, S.; Moussallam, B.

    2006-01-01

    We discuss the existence of the light scalar meson K * 0 (800) (also called κ) in a rigorous way, by showing the presence of a pole in the πK→πK amplitude on the second Riemann sheet. For this purpose, we study the domain of validity of two classes of Roy-Steiner representations in the complex energy plane. We prove that one of them is valid in a region sufficiently broad in the imaginary direction. From this representation, we compute the l=0 partial wave in the complex plane neither making any additional approximation nor having model dependence, relying only on experimental data. A scalar resonance with strangeness S=1 is found with the following mass and width: M κ =658±13 MeV and Γ κ =557±24 MeV. (orig.)

  19. Conformal invariance and the four point scalar correlator in slow-roll inflation

    International Nuclear Information System (INIS)

    Ghosh, Archisman; Kundu, Nilay; Raju, Suvrat; Trivedi, Sandip P.

    2014-01-01

    We calculate the four point correlation function for scalar perturbations in the canonical model of slow-roll inflation. We work in the leading slow-roll approximation where the calculation can be done in de Sitter space. Our calculation uses techniques drawn from the AdS/CFT correspondence to find the wave function at late times and then calculate the four point function from it. The answer we get agrees with an earlier result in the literature, obtained using different methods. Our analysis reveals a subtlety with regard to the Ward identities for conformal invariance, which arises in de Sitter space and has no analogue in AdS space. This subtlety arises because in de Sitter space the metric at late times is a genuine degree of freedom, and hence to calculate correlation functions from the wave function of the Universe at late times, one must fix gauge completely. The resulting correlators are then invariant under a conformal transformation accompanied by a compensating coordinate transformation which restores the gauge.

  20. Scalar Similarity for Relaxed Eddy Accumulation Methods

    Science.gov (United States)

    Ruppert, Johannes; Thomas, Christoph; Foken, Thomas

    2006-07-01

    The relaxed eddy accumulation (REA) method allows the measurement of trace gas fluxes when no fast sensors are available for eddy covariance measurements. The flux parameterisation used in REA is based on the assumption of scalar similarity, i.e., similarity of the turbulent exchange of two scalar quantities. In this study changes in scalar similarity between carbon dioxide, sonic temperature and water vapour were assessed using scalar correlation coefficients and spectral analysis. The influence on REA measurements was assessed by simulation. The evaluation is based on observations over grassland, irrigated cotton plantation and spruce forest. Scalar similarity between carbon dioxide, sonic temperature and water vapour showed a distinct diurnal pattern and change within the day. Poor scalar similarity was found to be linked to dissimilarities in the energy contained in the low frequency part of the turbulent spectra ( definition.

  1. Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory

    Directory of Open Access Journals (Sweden)

    Adi Armoni

    2018-03-01

    Full Text Available We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.

  2. Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory

    Science.gov (United States)

    Armoni, Adi; Ireson, Edwin; Vadacchino, Davide

    2018-03-01

    We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement) the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.

  3. Relativistic actions for bound-states and applications in the meson spectroscopy

    International Nuclear Information System (INIS)

    Silva Carvalho, Hendly da.

    1991-08-01

    We study relativistic equations for bound states of two-body systems using Dirac's constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs

  4. Tetraquarks in the 1/N expansion and meson-meson resonances

    Energy Technology Data Exchange (ETDEWEB)

    Maiani, L. [Dipartimento di Fisica and INFN, ‘Sapienza’ Università di Roma, P.le Aldo Moro 5, I-00185 Roma (Italy); Polosa, A.D. [Dipartimento di Fisica and INFN, ‘Sapienza’ Università di Roma, P.le Aldo Moro 5, I-00185 Roma (Italy); CERN Theory Department, CH-1211 Geneva 23 (Switzerland); Riquer, V. [Dipartimento di Fisica and INFN, ‘Sapienza’ Università di Roma, P.le Aldo Moro 5, I-00185 Roma (Italy)

    2016-06-27

    Diquarks are found to have the right degrees of freedom to describe the tetraquark poles in hidden-charm to open-charm meson-meson amplitudes. Compact tetraquarks result as intermediate states in non-planar diagrams of the 1/N expansion and the corresponding resonances are narrower than what estimated before. The proximity of tetraquarks to meson-thresholds has an apparent role in this analysis and, in the language of meson molecules, an halving rule in the counting of states is obtained.

  5. Tetraquarks in the 1/N expansion and meson-meson resonances

    International Nuclear Information System (INIS)

    Maiani, L.; Polosa, A.D.; Riquer, V.

    2016-01-01

    Diquarks are found to have the right degrees of freedom to describe the tetraquark poles in hidden-charm to open-charm meson-meson amplitudes. Compact tetraquarks result as intermediate states in non-planar diagrams of the 1/N expansion and the corresponding resonances are narrower than what estimated before. The proximity of tetraquarks to meson-thresholds has an apparent role in this analysis and, in the language of meson molecules, an halving rule in the counting of states is obtained.

  6. Topics on CP violation in B-meson decays

    International Nuclear Information System (INIS)

    Soares, J.M.

    1993-01-01

    In this work several independent topics on CP violation in the B-meson decays are addressed. To begin with, the present constraints on the parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are discussed. Then, I calculate the CP-violating asymmetry in the radiative decays of the charged B-mesons: it only appears at the 2-loop level, but it can be large in the b → dγ decays. At this point, the possibility of using these decays to measure the CKM entry |V td | will be studied. I also consider the decays of the neutral B-mesons: the strong correlation between the asymmetries in B 0 → ΨK S and the B 0 → π + π - is suggested as a powerful test of the standard model (a simple extension of the model is given where the correlation disappears). Finally, I address the question of observing direct CP violation in comparing these two asymmetries. An ambiguity that may arise is resolved due to the role that is played by penguin diagram contributions to the decay amplitudes

  7. Investigation of the scalar spectrum in SU (3) with eight degenerate flavors

    Science.gov (United States)

    Rinaldi, E.

    2017-12-01

    The Lattice Strong Dynamics collaboration is investigating the properties of a SU(3) gauge theory with Nf = 8 light fermions on the lattice. We measure the masses of the lightest pseudoscalar, scalar and vector states using simulations with the nHYP staggered-fermion action on large volumes and at small fermion masses, reaching Mρ/Mπ ≈ 2.2. The axial-vector meson and the nucleon are also studied for the same range of fermion masses. One of the interesting features of this theory is the dynamical presence of a light flavor-singlet scalar state with 0++ quantum numbers that is lighter than the vector resonance and has a mass consistent with the one of the pseudoscalar state for the whole fermion mass range explored. We comment on the existence of such state emerging from our lattice simulations and on the challenges of its analysis. Moreover we highlight the difficulties in pursuing simulations in the chiral regime of this theory using large volumes.

  8. Meson and baryon spectrum for QCD with two light dynamical quarks

    Science.gov (United States)

    Engel, Georg P.; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas

    2010-08-01

    We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on lattices of size 163×32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of 322(5), 470(4), and 525(7) MeV and lattice spacings close to 0.15 fm are investigated. Results for ground and excited states for several channels are given, including spin two mesons and hadrons with strange valence quarks. The analysis of the states is done with the variational method, including two kinds of Gaussian sources and derivative sources. We obtain several ground states fairly precisely and find radial excitations in various channels. Excited baryon results seem to suffer from finite size effects, in particular, at small pion masses. We discuss the possible appearance of scattering states, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare our results to results of quenched simulations using the same action.

  9. Meson and baryon spectrum for QCD with two light dynamical quarks

    International Nuclear Information System (INIS)

    Engel, Georg P.; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schaefer, Andreas

    2010-01-01

    We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on lattices of size 16 3 x32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of 322(5), 470(4), and 525(7) MeV and lattice spacings close to 0.15 fm are investigated. Results for ground and excited states for several channels are given, including spin two mesons and hadrons with strange valence quarks. The analysis of the states is done with the variational method, including two kinds of Gaussian sources and derivative sources. We obtain several ground states fairly precisely and find radial excitations in various channels. Excited baryon results seem to suffer from finite size effects, in particular, at small pion masses. We discuss the possible appearance of scattering states, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare our results to results of quenched simulations using the same action.

  10. B-meson anomalies and Higgs physics in flavored U(1)' model

    Science.gov (United States)

    Bian, Ligong; Lee, Hyun Min; Park, Chan Beom

    2018-04-01

    We consider a simple extension of the Standard Model with flavor-dependent U(1)', that has been proposed to explain some of B-meson anomalies recently reported at LHCb. The U(1)' charge is chosen as a linear combination of anomaly-free B_3-L_3 and L_μ -L_τ . In this model, the flavor structure in the SM is restricted due to flavor-dependent U(1)' charges, in particular, quark mixings are induced by a small vacuum expectation value of the extra Higgs doublet. As a result, it is natural to get sizable flavor-violating Yukawa couplings of heavy Higgs bosons involving the bottom quark. In this article, we focus on the phenomenology of the Higgs sector of the model including extra Higgs doublet and singlet scalars. We impose various bounds on the extended Higgs sector from Higgs and electroweak precision data, B-meson mixings and decays as well as unitarity and stability bounds, then discuss the productions and decays of heavy Higgs bosons at the LHC.

  11. Relativistic scalar-vector models of the N-N and N-nuclear interactions

    International Nuclear Information System (INIS)

    Green, A.E.S.

    1985-01-01

    This paper for the Proceedings of Conference an Anti-Nucleon and Nucleon-Nucleus Interactions summarizes work by the principal investigator and his collaborators on the nucleon-nucleon (N-N) and nucleon-nuclear (N-eta) interactions. It draws heavily on a paper presented at the Many Body Conference in Rome in 1972 but also includes a brief review of our phenomenological N-eta interaction studies. We first summarize our 48-49 generalized scalar-vector meson field theory model of the N-N interactions. This is followed by a brief description of our phenomenological work in the 50's on the N-eta interaction sponsored by the Atomic Energy Commission (the present DOE). This work finally led to strong velocity dependent potentials with spin orbit and isospin terms for shell and optical model applications. This is followed by a section on the Emergence of One-Boson Exchange Models describing developments in the 60's of quantitative generalized one boson exchange potentials (GOBEP) including our purely relativistic N-N analyses. Then follows a section on the application of this meson field model to the N-eta interaction, in particular to spherical closed shell nuclei. This work was sponsored by AFOSR but funding was halted with the Mansfield amendment. We conclude with a discussion of subsequent collateral work by former colleagues and by others who have converged upon scalar-vector relativistic models of N-N, antiN-N, N-eta and antiN-eta interactions and some lessons learned from this extended endeavor. 61 refs

  12. Spin-1 diquark contributing to the formation of tetraquarks in light mesons

    International Nuclear Information System (INIS)

    Kim, Hungchong; Cheoun, Myung-Ki; Kim, K.S.

    2017-01-01

    We apply a mixing framework to the light-meson systems and examine tetraquark possibility in the scalar channel. In the diquark-antidiquark model, a scalar diquark is a compact object when its color and flavor structures are in (anti 3_c, anti 3_f). Assuming that all the quarks are in an S-wave, the spin-0 tetraquark formed out of this scalar diquark has only one spin configuration, vertical stroke J,J_1_2,J_3_4 right angle = vertical stroke 000 right angle, where J is the spin of the tetraquark, J_1_2 the diquark spin, J_3_4 the antidiquark spin. In this construction of the scalar tetraquark, we notice that another compact diquark with spin-1 in (6_c, anti 3_f) can be used although it is less compact than the scalar diquark. The spin-0 tetraquark constructed from this vector diquark leads to the spin configuration vertical stroke J,J_1_2,J_3_4 right angle = vertical stroke 011 right angle. The two configurations, vertical stroke 000 right angle and vertical stroke 011 right angle, are found to mix strongly through the color-spin interaction. The physical states can be identified with certain mixtures of the two configurations which diagonalize the hyperfine masses of the color-spin interaction. Matching these states to two scalar resonances a_0(980), a_0(1450) or to K"*_0(800), K"*_0(1430) depending on the isospin channel, we find that their mass splittings are qualitatively consistent with the hyperfine mass splittings, which can support their tetraquark structure. To test our mixing scheme further, we also construct the tetraquarks for J = 1, J = 2 with the spin configurations vertical stroke 111 right angle and vertical stroke 2011 right angle, and we discuss possible candidates in the physical spectrum. (orig.)

  13. Cosmological three-coupled scalar theory for the dS/LCFT correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Yun Soo; Moon, Taeyoon, E-mail: ysmyung@inje.ac.kr, E-mail: tymoon@inje.ac.kr [Institute of Basic Science and Department of Computer Simulation, Inje University, Gimhae 621-749 (Korea, Republic of)

    2015-01-01

    We investigate cosmological perturbations generated during de Sitter inflation in the three-coupled scalar theory. This theory is composed of three coupled scalars φ{sub p},p=1,2,3) to give a sixth-order derivative scalar theory for φ{sub 3}, in addition to tensor. Recovering the power spectra between scalars from the LCFT correlators in momentum space indicates that the de Sitter/logarithmic conformal field theory (dS/LCFT) correspondence works in the superhorizon limit. We use LCFT correlators derived from the dS/LCFT differentiate dictionary to compare cosmological correlators (power spectra) and find also LCFT correlators by making use of extrapolate dictionary. This is because the former approach is more conventional than the latter. A bulk version dual to the truncation process to find a unitary CFT in the LCFT corresponds to selecting a physical field φ{sub 2} with positive norm propagating on the dS spacetime.

  14. Measurement of azimuthal correlations of D mesons with charged particles in pp collisions at √(s) = 7 TeV and p-Pb collisions at √(s{sub NN}) = 5.02 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J. [Czech Technical Univ., Prague (Czech Republic). Faculty of Nuclear Sciences and Physical Engineering; Adamova, D. [Academy of Sciences of the Czech Republic, Rez u Prahy (Czech Republic). Nuclear Physics Inst.; Aggarwal, M.M. [Panjab Univ., Chandigarh (India). Physics Dept.; Collaboration: ALICE Collaboration; and others

    2017-04-15

    The azimuthal correlations of D mesons with charged particles were measured with the ALICE apparatus in pp collisions at √(s) = 7 TeV and p-Pb collisions at √(s{sub NN}) = 5.02 TeV at the Large Hadron Collider. D{sup 0}, D{sup +}, and D{sup *+} mesons and their charge conjugates with transverse momentum 3 < p{sub T} < 16 GeV/c and rapidity in the nucleon-nucleon centre-of-mass system vertical stroke y{sub cms} vertical stroke < 0.5 (pp collisions) and -0.96 < y{sub cms} < 0.04 (p-Pb collisions) were correlated to charged particles with p{sub T} > 0.3GeV/c. The yield of charged particles in the correlation peak induced by the jet containing the D meson and the peak width are compatible within uncertainties in the two collision systems. The data are described within uncertainties by Monte-Carlo simulations based on PYTHIA, POWHEG, and EPOS 3 event generators. (orig.)

  15. Vector-meson dominance revisited

    Directory of Open Access Journals (Sweden)

    Terschlüsen Carla

    2012-12-01

    Full Text Available The interaction of mesons with electromagnetism is often well described by the concept of vector-meson dominance (VMD. However, there are also examples where VMD fails. A simple chiral Lagrangian for pions, rho and omega mesons is presented which can account for the respective agreement and disagreement between VMD and phenomenology in the sector of light mesons.

  16. Analysis of the scalar, axialvector, vector, tensor doubly charmed tetraquark states with QCD sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi-Gang; Yan, Ze-Hui [North China Electric Power University, Department of Physics, Baoding (China)

    2018-01-15

    In this article, we construct the axialvector-diquark-axialvector-antidiquark type currents to interpolate the scalar, axialvector, vector, tensor doubly charmed tetraquark states, and study them with QCD sum rules systematically by carrying out the operator product expansion up to the vacuum condensates of dimension 10 in a consistent way, the predicted masses can be confronted with the experimental data in the future. We can search for those doubly charmed tetraquark states in the Okubo-Zweig-Iizuka super-allowed strong decays to the charmed-meson pairs. (orig.)

  17. Penguin effects induced by the two-Higgs-doublet model and charmless B-meson decays

    International Nuclear Information System (INIS)

    Davies, A.J.; Joshi, G.C.; Matsuda, M.

    1991-01-01

    Nonstandard physical effects through the penguin diagram induced by the charged Higgs scalar contribution in the two-Higgs-doublet model are analysed. Since non-leptonic B-decay processes to final states consisting of s+s+anti s are induced only through the penguin diagram they are important tests of such contributions. We compare these decays including the non-standard two-Higgs-doublet contribution with the standard model results, which arise from the magnetic gluon transistion term. The charged Higgs contribution can give a sizable enhancement to the branching fraction of B-meson charmless decay. (orig.)

  18. Measurement of azimuthal correlations of D mesons with charged particles in pp collisions at √s=7 TeV and p–Pb collisions at √sNN=5.02 TeV

    NARCIS (Netherlands)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Iga Buitron, S. A.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Diaz, L. Calero; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A R; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, Sukhee; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; Dasgupta, S. S.; De Caro, A.; De Cataldo, G.; De Conti, C.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. Derradi; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, O.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; De Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.W.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L.D.; Keil, M.; Khan, M. Mohisin; Khan, P.M.; Khan, Shfaqat A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.-S.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.L.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Strunz-Lehner, Christine; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal’Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, Alicia; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, Isabel M.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, Rajiv; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal Da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, J.-W.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q. Y.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J.M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Muñoz, G. Tejeda; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C S; Windelband, B.; Winn, M.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I. K.; Yoon, J. H.; Yurchenko, V.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2017-01-01

    The azimuthal correlations of D mesons with charged particles were measured with the ALICE apparatus in pp collisions at s=7TeV and p–Pb collisions at sNN=5.02TeV at the Large Hadron Collider. D 0, D +, and D ∗ + mesons and their charge conjugates with transverse momentum 3

  19. submitter Time-dependent CP violation in charm mesons

    CERN Document Server

    Inguglia, Gianluca

    CP violation is a well established phenomenon for B and K mesons, but for D0 mesons, bound states made up of a quark-antiquark pair containing a charm quark, a conclusive answer to the question whether there is CP vio- lation or not, has yet to be determined. I show here the phenomenology of time-dependent CP asymmetries in charm decays, and discuss the implica- tions of experimental tests aimed at the measurement of CP violation in the interference between mixing and decays of charm mesons, in particular when studying the decay channels D0 ! h+h (h = K; ). The decay channels considered can also be used to constrain quantities that are poorly measured or still to be investigated, such as MIX and c;eff , provided that the e ects of penguin pollution are ignored. I considered correlated production of D0 mesons at the SuperB experiment and its planned asymmetric run at the charm threshold and performed a study of simulated events, nding that a boost factor = 0:28 would not be su cient to produce competitive re- ...

  20. Energies and radial distributions of Bs mesons - the effect of hypercubic blocking

    Science.gov (United States)

    Koponen, Jonna

    2006-12-01

    This is a follow-up to our earlier work for the energies and the charge (vector) and matter (scalar) distributions for S-wave states in a heavy-light meson, where the heavy quark is static and the light quark has a mass about that of the strange quark. We study the radial distributions of higher angular momentum states, namely P- and D-wave states, using a "fuzzy" static quark. A new improvement is the use of hypercubic blocking in the time direction, which effectively constrains the heavy quark to move within a 2a hypercube (a is the lattice spacing). The calculation is carried out with dynamical fermions on a 163 × 32 lattice with a ≈ 0.10 fm generated using the non-perturbatively improved clover action. The configurations were gener- ated by the UKQCD Collaboration using lattice action parameters β = 5.2, c SW = 2.0171 and κ = 0.1350. In nature the closest equivalent of this heavy-light system is the Bs meson. Attempts are now being made to understand these results in terms of the Dirac equation.

  1. Massive scalar counterpart of gravitational waves in scalarized neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)

    2017-09-15

    In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)

  2. Temperature-dependent cross sections for meson-meson nonresonant reactions in hadronic matter

    International Nuclear Information System (INIS)

    Zhang Yiping; Xu Xiaoming; Ge Huijun

    2010-01-01

    We present a potential of which the short-distance part is given by one gluon exchange plus perturbative one- and two-loop corrections and of which the large-distance part exhibits a temperature-dependent constant value. The Schroedinger equation with this temperature-dependent potential yields a temperature dependence of the mesonic quark-antiquark relative-motion wave function and of meson masses. The temperature dependence of the potential, the wave function and the meson masses brings about temperature dependence of cross sections for the nonresonant reactions ππ→ρρ for I=2, KK→K*K* for I=1, KK*→K*K* for I=1, πK→ρK* for I=3/2, πK*→ρK* for I=3/2, ρK→ρK* for I=3/2 and πK*→ρK for I=3/2. As the temperature increases, the rise or fall of peak cross sections is determined by the increased radii of initial mesons, the loosened bound states of final mesons, and the total-mass difference of the initial and final mesons. The temperature-dependent cross sections and meson masses are parametrized.

  3. D meson production and long-range azimuthal correlation in 8.16 TeV p+Pb collisions with ATLAS

    CERN Document Server

    Hu, Qipeng; The ATLAS collaboration

    2018-01-01

    Measurements of prompt charm mesons ($D^0$ and $D^*$) productions and azimuthal correlations between inclusive $D^*$ and charged particles are presented in p+Pb collisions data at 8.16 TeV collected in 2016 by ATLAS. No significant production asymmetry between forward and backward and asymmetry is observed. A finite $2\\cos(2\\Delta\\phi)$ modulation for inclusive $D^*$ is observed with a $1\\sim2\\sigma$ significance, depending on multiplicity, broadly consistent with what have been observed for light hadrons and HF muons.

  4. Two-body spectra of pseudoscalar mesons with an O(a2)-improved lattice action using Wilson fermions

    International Nuclear Information System (INIS)

    Fiebig, H.R.; Mihaly, A.; Woloshyn, R.M.

    1998-01-01

    We extend our calculations with the second-order tree-level and tadpole improved next-nearest-neighbor action to meson-meson systems. Correlation matrices built from interpolating fields representing two pseudoscalar mesons (π-π) with relative momenta vector-p are diagonalized, and the mass spectrum is extracted. Link variable fuzzing and operator smearing at both sinks and sources is employed. Calculations are presented for two values of the hopping parameter. The spectrum is used to discuss the residual interaction in the meson-meson system. (orig.)

  5. MesonNet Workshop on Meson Transition Form Factors

    CERN Document Server

    Eidelman, S; Hanhart, C; Kubis, B; Kupsc, A; Leupold, S; Moskal, P; Schadmand, S

    2012-01-01

    The mini-proceedings of the Workshop on Meson Transition Form Factors held in Cracow from May 29th to 30th, 2012 introduce the meson transition form factor project with special emphasis on the interrelations between the various form factors (on-shell, single off-shell, double off-shell). Short summaries of the talks presented at the workshop follow.

  6. Up sector of minimal flavor violation: top quark properties and direct D meson CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Berger, Joshua; Hewett, JoAnne L.; Li, Ye

    2013-07-01

    Minimal Flavor Violation in the up-type quark sector leads to particularly interesting phenomenology due to the interplay of flavor physics in the charm sector and collider physics from flavor changing processes in the top sector. We study the most general operators that can affect top quark properties and D meson decays in this scenario, concentrating on two CP violating operators for detailed studies. The consequences of these effective operators on charm and top flavor changing processes are generically small, but can be enhanced if there exists a light flavor mediator that is a Standard Model gauge singlet scalar and transforms under the flavor symmetry group. This flavor mediator can satisfy the current experimental bounds with a mass as low as tens of GeV and explain observed D-meson direct CP violation. Additionally, the model predicts a non-trivial branching fraction for a top quark decay that would mimic a dijet resonance.

  7. Near-side azimuthal and pseudorapidity correlations using neutral strange baryons and mesons in d +Au , Cu + Cu, and Au + Au collisions at √{sN N}=200 GeV

    Science.gov (United States)

    Abelev, B.; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barnby, L. S.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bombara, M.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Gaillard, L.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, Y.; Li, W.; Li, X.; Li, X.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, L.; Ma, R.; Ma, G. L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nattrass, C.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, H.; Wang, Y.; Wang, G.; Wang, Y.; Wang, J. S.; Wang, F.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, J.; Xu, H.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, S.; Zhang, J. B.; Zhang, J.; Zhang, J.; Zhang, Z.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-07-01

    We present measurements of the near side of triggered di-hadron correlations using neutral strange baryons (Λ ,Λ ¯) and mesons (KS0) at intermediate transverse momentum (3 < pT <6 GeV /c ) to look for possible flavor and baryon-meson dependence. This study is performed in d +Au , Cu+Cu, and Au+Au collisions at √{sN N}=200 GeV measured by the STAR experiment at RHIC. The near-side di-hadron correlation contains two structures, a peak which is narrow in azimuth and pseudorapidity consistent with correlations from jet fragmentation, and a correlation in azimuth which is broad in pseudorapidity. The particle composition of the jet-like correlation is determined using identified associated particles. The dependence of the conditional yield of the jet-like correlation on the trigger particle momentum, associated particle momentum, and centrality for correlations with unidentified trigger particles are presented. The neutral strange particle composition in jet-like correlations with unidentified charged particle triggers is not well described by PYTHIA. However, the yield of unidentified particles in jet-like correlations with neutral strange particle triggers is described reasonably well by the same model.

  8. Search for scalar top and scalar bottom quarks at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2002-01-01

    Searches for a scalar top quark and a scalar bottom quark have been performed using a data sample of 438 pb-1 at centre-of-mass energies of sqrt(s) = 192 - 209 GeV collected with the OPAL detector at LEP. No evidence for a signal was found. The 95% confidence level lower limit on the scalar top quark mass is 97.6 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. When the scalar top quark decouples from the Z0 boson, the lower limit is 95.7 GeV. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark decaying into a bottom quark, a charged lepton and a scalar neutrino has also been studied. The lower limit on the scalar top quark mass is 93.0 GeV for this decay mode, if the mass difference between the scalar top quark a...

  9. Two-body spectra of pseudoscalar mesons with an O(a{sup 2})-improved lattice action using Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Fiebig, H.R. [FIU-University Park, Miami, FL (United States). Phys. Dept.; Markum, H.; Rabitsch, K. [Institut fuer Kernphysik, Technische Universitaet Wien, 1040 Vienna (Austria); Mihaly, A. [Department of Theoretical Physics, Lajos Kossuth University, 4010 Debrecen (Hungary); Woloshyn, R.M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada)

    1998-04-01

    We extend our calculations with the second-order tree-level and tadpole improved next-nearest-neighbor action to meson-meson systems. Correlation matrices built from interpolating fields representing two pseudoscalar mesons ({pi}-{pi}) with relative momenta vector-p are diagonalized, and the mass spectrum is extracted. Link variable fuzzing and operator smearing at both sinks and sources is employed. Calculations are presented for two values of the hopping parameter. The spectrum is used to discuss the residual interaction in the meson-meson system. (orig.). 6 refs.

  10. Spin-1 diquark contributing to the formation of tetraquarks in light mesons

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hungchong [Korea Aerospace University, Research Institute of Basic Science, Goyang (Korea, Republic of); Cheoun, Myung-Ki [Soongsil University, Department of Physics, Seoul (Korea, Republic of); Kim, K.S. [Korea Aerospace University, School of Liberal Arts and Science, Goyang (Korea, Republic of)

    2017-03-15

    We apply a mixing framework to the light-meson systems and examine tetraquark possibility in the scalar channel. In the diquark-antidiquark model, a scalar diquark is a compact object when its color and flavor structures are in (anti 3{sub c}, anti 3{sub f}). Assuming that all the quarks are in an S-wave, the spin-0 tetraquark formed out of this scalar diquark has only one spin configuration, vertical stroke J,J{sub 12},J{sub 34} right angle = vertical stroke 000 right angle, where J is the spin of the tetraquark, J{sub 12} the diquark spin, J{sub 34} the antidiquark spin. In this construction of the scalar tetraquark, we notice that another compact diquark with spin-1 in (6{sub c}, anti 3{sub f}) can be used although it is less compact than the scalar diquark. The spin-0 tetraquark constructed from this vector diquark leads to the spin configuration vertical stroke J,J{sub 12},J{sub 34} right angle = vertical stroke 011 right angle. The two configurations, vertical stroke 000 right angle and vertical stroke 011 right angle, are found to mix strongly through the color-spin interaction. The physical states can be identified with certain mixtures of the two configurations which diagonalize the hyperfine masses of the color-spin interaction. Matching these states to two scalar resonances a{sub 0}(980), a{sub 0}(1450) or to K{sup *}{sub 0}(800), K{sup *}{sub 0}(1430) depending on the isospin channel, we find that their mass splittings are qualitatively consistent with the hyperfine mass splittings, which can support their tetraquark structure. To test our mixing scheme further, we also construct the tetraquarks for J = 1, J = 2 with the spin configurations vertical stroke 111 right angle and vertical stroke 2011 right angle, and we discuss possible candidates in the physical spectrum. (orig.)

  11. Mesonic effects in nuclear physics

    International Nuclear Information System (INIS)

    Johnson, M.

    1978-01-01

    The relation between mesons and nucleons and the properties of nuclear matter, as presently understood, is considered in these lectures. Feynman diagrams, meson theoretical nucleon-nucleon interactions, mesonic components in nuclear wave functions, direct observation of mesonic components in NN scattering above the pion production threshold, nuclear matter theory, and pion condensation are treated. 120 references

  12. Evidence for the Production of Neutral Mesons by Photons

    CERN Document Server

    Steinberger, J; Panofsky, Wolfgang Kurt Hermann

    1950-01-01

    In the bombardment of nuclei by 330-Mev x-rays, multiple gamma-rays are emitted. From their angular correlation it is deduced that they are emitted in pairs in the disintegration of neutral particles moving with relativistic velocities and therefore of intermediate mass. The neutral mesons are produced with cross sections similar to those for the charged mesons and with an angular distribution peaked more in the forward direction. The production cross section in hydrogen and the production cross section per nucleon in C and Be are comparable.

  13. Local structure of scalar flux in turbulent passive scalar mixing

    Science.gov (United States)

    Konduri, Aditya; Donzis, Diego

    2012-11-01

    Understanding the properties of scalar flux is important in the study of turbulent mixing. Classical theories suggest that it mainly depends on the large scale structures in the flow. Recent studies suggest that the mean scalar flux reaches an asymptotic value at high Peclet numbers, independent of molecular transport properties of the fluid. A large DNS database of isotropic turbulence with passive scalars forced with a mean scalar gradient with resolution up to 40963, is used to explore the structure of scalar flux based on the local topology of the flow. It is found that regions of small velocity gradients, where dissipation and enstrophy are small, constitute the main contribution to scalar flux. On the other hand, regions of very small scalar gradient (and scalar dissipation) become less important to the scalar flux at high Reynolds numbers. The scaling of the scalar flux spectra is also investigated. The k - 7 / 3 scaling proposed by Lumley (1964) is observed at high Reynolds numbers, but collapse is not complete. A spectral bump similar to that in the velocity spectrum is observed close to dissipative scales. A number of features, including the height of the bump, appear to reach an asymptotic value at high Schmidt number.

  14. Experiments on scalar mixing and transport

    International Nuclear Information System (INIS)

    Warhaft, Z.

    1993-01-01

    The author provides an overview of his recent work on passive (temperature) scalar mixing in both homogeneous and inhomogeneous turbulent flows. He shows that for homogeneous grid generated turbulence, in the presence of a linear temperature profile, the probability density function (pdf) of the temperature fluctuations has broad exponential tails, while the pdf of velocity is Gaussian. However, in the absence of a scalar gradient the pdf of temperature is Gaussian. This new result sheds insight into the fundamentals of turbulent mixing as well as to the nature of the velocity field. It is also shown that the spectrum of the temperature fluctuations has a scaling region that is consistent with Kolmogorov scaling although a similar scaling region is absent for the velocity field in this low Reynolds number flow. Finally, results concerning the mixing and dispersion of scalars in a jet are shown. Although initially the scalar mixing is strongly dependent on input conditions, the mixing is shown to be rapid and the correlation coefficient asymptotes to unity by x/D ∼ 20

  15. Recent status of meson spectroscopy experiment

    International Nuclear Information System (INIS)

    Tsuru, Tsuneaki

    1986-01-01

    Recent meson spectroscopy experiments are reviewed centering on glueballs and it is insisted as follows. Something may lie near 750 MeV. Scalar glueball at 750 - 1000 MeV should be studied. The G(1590) is to be investigated. Multiquark states need to be studied to establish the scalar nonet. We have some tensor glueball candidates, θ, 3 g T 's and ζ, which are to be further examined. Pseudoscalar states include many interesting physics. Some puzzles were solved. However, many problems remain unsolved and new puzzles appeared. Whether the E and l are the same state or not, and whether the E/l is a glueball or not are the major interests at present. Systematical experimental and theoretical works are required. In an experimental field, radial excitations, especially a radial excitation of η', should be confirmed. In general higher statistics data are necessary to perform a complete partial wave analysis. A 1 ++ isoscalar member, a partner of D(1280), is missing and required to be confirmed as soon as possible. A confirmation of this state will serve to solve the E/l puzzle. The state will be probably an (santi s) state. 1 +- H', a partner of H(1190), is required to be confirmed. Multiquark states are to be investigated. ''Oddballs'' are to be challenged. Recent experiments require high statistics data enough to perform a model-independent partial wave analysis. The (qanti q) - (gg) mixing and hybrids are to be further studied in experimental and theoretical fields. (Nogami, K.)

  16. Charmed meson production at LHCb

    International Nuclear Information System (INIS)

    Müller, Dominik

    2016-01-01

    Measurements of charm meson production are important tests for QCD predictions and LHCb is uniquely suited to perform these measurements in the forward region. This paper summarises recent charm meson production measurements performed by LHCb of J/ψ and open charm mesons and the associated production of ϒ and open charm mesons. The J/ψ and open charm meson measurements are performed with data recorded in Run 2 of the Large Hadron Collider. With proton-proton collisions at √s = 13 TeV, these open a new regime in which QCD predictions for charm meson production may be precisely tested. Furthermore, ratios of cross-sections at different centre-of-mass energies benefit of cancellation of both experimental and theoretical uncertainties, providing a new sensitive test of the QCD calculations. Measurements of ϒ and open charm meson associated production are performed using √s = 7 TeV and √s = 8 TeV data and constitute the first observation of this production channel.

  17. Perspective of meson science

    International Nuclear Information System (INIS)

    Yamazaki, T.; Nagamine, K.

    1992-01-01

    Unstable particles such as mesons and muons are now used in various research domains of physics, chemistry, engineering, and life sciences. This book is aimed at summarizing the present exploratory activities and giving future perspectives from a very broad scope. It contains 27 contributions in a wide range of subjects, such as μSR studies of superconductivities, magnetism, muon beam and μSr methodology, theoretical accounts of muon hyperfine interactions, muon catalyzed fusion processes, metastable exotic atoms, medical diagnostics, strangeness nuclear physics, mesons in nuclei, meson-related nuclear reactions and structure, and exotic decays of mesons

  18. PROPERTIES OF THE $omega$ MESON

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, J. B.; Murray, J. J.; Ferro-Luzzi, M.; Huwe, D. O.

    1963-06-15

    Properties of the omega meson were studied from the reaction K/sup -/ + p yields LAMBDA + omega in a 72-in. hydrogen bubble chamber. The momentum of the K/sup -/ mesons was 1.2 to 1.75 Bev/c. The mass of the omega meson is found to be 782 Mev with a width, predominated by three-meson( pi ) decay mode, estimated to be less than 4 Mev. Branching ratios for omega -meson decay into pi /sup +/ pi /sup -/ pi /sup o/, pi /sup o/ gamma , pi /sup +/ i/ sup -/, and e/sup +/e/sup -o/ were determined. (R.E.U.)

  19. Muoproduction of J/ψ-mesons and the gluon distribution in nucleons

    International Nuclear Information System (INIS)

    Jong, Maarten de.

    1991-01-01

    The cross sections for production of J/ψ-mesons in muon-scattering at hydrogen and deuterium have been measured at a muon-energy of 280 GeV in order to extract from these the momentum distribution of gluons in the nucleon. These cross sections turned out to be equal for protons and neutrons within the experimental error. In the framework of the colour singlet model the gluon distribution has been determined from the cross section for the inelastic production of J/ψ mesons. At small gluon impulses the distribution obtained resembles a brems-strahlung spectrum. This distribution decreases, according to a simple description (counting rules) at larger impulses. The same model however underestimates the cross section for elastic production of J/ψ-mesons seriously. It is found that in inelastic production of J/ψ-mesons both helicities of the meson occur equally. Also a correlation has been observed between the scattering plane and the plane in which the J/ψ meson decays. The production of J/ψ-mesons and ψ'-mesons has been investigated in muon scattering at concrete at the same incoming energy. The measured ratio of their cross sections agrees with the colour singlet model but disagrees with the simplified description which characterizes the 'photon-gluon fusion model'. The possible nuclear-mass dependence of the cross section for J/ψ-meson production has been investigated in interactions of muons with tin and carbon at an energy of 280 GeV. This possible dependence turns out to be absent which means that on the basis of the colour singlet model the distributions of the gluons in the nucleon are equal in tin and carbon. (author). 103 refs.; 60 figs.; 19 tabs

  20. Sigma-omega meson coupling and properties of nuclei and nuclear matter

    International Nuclear Information System (INIS)

    Haidari, Maryam M.; Sharma, Madan M.

    2008-01-01

    We have constructed a Lagrangian model with a coupling of σ and ω mesons in the relativistic mean-field theory. Properties of finite nuclei and nuclear matter are explored with the new Lagrangian model SIG-OM. The study shows that an excellent description of binding energies and charge radii of nuclei over a large range of isospin is achieved with SIG-OM. With an incompressibility of nuclear matter K=265 MeV, it is also able to describe the breathing-mode isoscalar giant monopole resonance energies appropriately. It is shown that the high-density behaviour of the equation of state of nuclear and neutron matter with the σ-ω coupling is much softer than that of the non-linear scalar coupling model

  1. Issues in light meson spectroscopy: The case for meson spectroscopy at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, S. [Carleton Univ., Ottawa (Canada)

    1994-04-01

    The author reviews some outstanding issues in meson spectroscopy. The most important qualitative issue is whether hadrons with explicit gluonic degrees of freedom exist. To answer this question requires a much better understanding of conventional q{bar q} mesons. The author therefore begins by examining the status of conventional meson spectroscopy and how the situation can be improved. The expected properties of gluonic excitations are discussed with particular emphasis on hybrids to give guidance to experimental searches. Multiquark systems are commented upon as they are likely to be important in the mass region under study and will have to be understood better. In the final section the author discusses the opportunities that CEBAF can offer for the study of meson spectroscopy.

  2. Tetraquark and two-meson states at large N{sub c}

    Energy Technology Data Exchange (ETDEWEB)

    Lucha, Wolfgang [Austrian Academy of Sciences, Institute for High Energy Physics, Vienna (Austria); Melikhov, Dmitri [Austrian Academy of Sciences, Institute for High Energy Physics, Vienna (Austria); M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); University of Vienna, Faculty of Physics, Vienna (Austria); Sazdjian, Hagop [IPNO, Universite Paris-Sud, CNRS-IN2P3, Universite Paris-Saclay, Orsay (France)

    2017-12-15

    Considering four-point correlation functions of color-singlet quark bilinears, we investigate, in the large-N{sub c} limit of QCD, the subleading diagrams that involve, in the s-channel of meson-meson scattering amplitudes, two-quark-two-antiquark intermediate states. The latter contribute, together with gluon exchanges, to the formation, at the hadronic level, of two-meson and tetraquark intermediate states. It is shown that the two-meson contributions, which are predictable, in general, from leading-order N{sub c}-behaviors, consistently satisfy the constraints resulting from the 1/N{sub c} expansion procedure and thus provide a firm basis for the extraction of tetraquark properties from N{sub c}-subleading diagrams. We find that, in general, tetraquarks, if they exist in compact form, should have narrow decay widths, of the order of N{sub c}{sup -2}. For the particular case of exotic tetraquarks, involving four different quark flavors, two different types of tetraquark are needed, each having a preferred decay channel, to satisfy the consistency constraints. (orig.)

  3. QCD sum-rules analysis of vector (1-) heavy quarkonium meson-hybrid mixing

    Science.gov (United States)

    Palameta, A.; Ho, J.; Harnett, D.; Steele, T. G.

    2018-02-01

    We use QCD Laplace sum rules to study meson-hybrid mixing in vector (1-) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leading-order perturbation theory, we include four- and six-dimensional gluon condensate contributions as well as a six-dimensional quark condensate contribution. We construct several single and multiresonance models that take known hadron masses as inputs. We investigate which resonances couple to both currents and so exhibit meson-hybrid mixing. Compared to single resonance models that include only the ground state, we find that models that also include excited states lead to significantly improved agreement between QCD and experiment. In the charmonium sector, we find that meson-hybrid mixing is consistent with a two-resonance model consisting of the J /ψ and a 4.3 GeV resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing in the ϒ (1 S ) , ϒ (2 S ), ϒ (3 S ), and ϒ (4 S ).

  4. Extracting rephase-invariant CP and CPT violating parameters from asymmetries of time-ordered integrated rates of correlated decays of entangled mesons

    International Nuclear Information System (INIS)

    Huang, Zhijie; Shi, Yu.

    2012-01-01

    We present a general model-independent formalism of measuring CP and CPT violating parameters through time-ordered integrated rates of correlated decays of C=±1 entangled states of neutral pseudoscalar mesons. We give the general formulae of CP and CPT violating parameters in terms of four measurable asymmetries defined for the time-ordered integrated rates, applicable to all kinds of decay product. Two special cases which are often realized in experiments are discussed specifically. (orig.)

  5. Scalar-metric and scalar-metric-torsion gravitational theories

    International Nuclear Information System (INIS)

    Aldersley, S.J.

    1977-01-01

    The techniques of dimensional analysis and of the theory of tensorial concomitants are employed to study field equations in gravitational theories which incorporate scalar fields of the Brans-Dicke type. Within the context of scalar-metric gravitational theories, a uniqueness theorem for the geometric (or gravitational) part of the field equations is proven and a Lagrangian is determined which is uniquely specified by dimensional analysis. Within the context of scalar-metric-torsion gravitational theories a uniqueness theorem for field Lagrangians is presented and the corresponding Euler-Lagrange equations are given. Finally, an example of a scalar-metric-torsion theory is presented which is similar in many respects to the Brans-Dicke theory and the Einstein-Cartan theory

  6. Chiral Quark-Meson model of N and DELTA with vector mesons

    International Nuclear Information System (INIS)

    Broniowski, W.; Banerjee, M.K.

    1985-10-01

    Vector mesons rho, A 1 and ω are introduced in the Chiral Quark-Meson Theory (CQMT) of N and Δ. We propose a new viewpoint for developing CQMT from QCD at the mean-field level. The SU(2) x SU(2) chiral Lagrangian incorporates universal coupling. Accordingly, rho is coupled to the conserved isospin current, A to the partially conserved axial-vector current (PCAC), and ω to the conserved baryon current. As a result the only parameter of the model not directly related to experiment is the quark-pion coupling constant. A fully self-consistent mean-field solution to the model is found for fields in the hedgehog ansatz. The vector mesons play a very important role in the system. They contribute significantly to the values of observables and produce a high-quality fit to many data. The classical stability of the system with respect to hedgehog excitations is analyzed through the use of the Quark-Meson RPA equations (QMRPA)

  7. Exotic hybrid mesons in hard electroproduction

    CERN Document Server

    Anikin, I V; Szymanowski, L; Teryaev, O V; Wallon, S

    2005-01-01

    We estimate the sizeable cross section for deep exclusive electroproduction of an exotic $J^{PC}=1^{-+}$ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e. as $1/Q^2$. This is due to the non-vanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in $\\alpha_{S}$ and we explore the consequences of fixing the renormalization scale ambiguity through the BLM procedure. We study the particular case where the hybrid meson decays through a $\\pi\\eta $ meson pair. We discuss the $\\pi\\eta$ generalized distribution amplitude and then calculate the production amplitude for this process. We propose a forward-backward asymmetry in the production of $\\pi$ and $\\eta$ mesons as a signal for the hybrid meson production. We briefly comment on hybrid electroproduction at very ...

  8. Oscillations of the static meson fields at finite baryon density

    International Nuclear Information System (INIS)

    Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt

    1996-04-01

    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (orig.)

  9. Spin-zero mesons and current algebras

    International Nuclear Information System (INIS)

    Wellner, M.

    1977-01-01

    Large chiral algebras, using the f and d coefficients of SU(3) can be constructed with spin-1/2 baryons. Such algebras have been found useful in some previous investigations. This article examines under what conditions similar or identical current algebras may be realized with spin-0 mesons. A curious lack of analogy emerges between meson and baryon currents. Second-class currents, made of mesons, are required in some algebras. If meson and baryon currents are to satisfy the same extended SU(3) algebra, four meson nonets are needed, in terms of which we give an explicit construction for the currents

  10. Excluding scalar gluons

    International Nuclear Information System (INIS)

    Koller, K.; Krasemann, H.

    1979-08-01

    We investigate the Dalitz plot population and thrust angular distribution for the Orthoquarkonium decay Q anti Q → 3 scalar gluons. The Dalitz plot for scalar gluons is populated in corners where events are 2 jet like and this disagrees with existing Upsilon data. The scalar gluon thrust angular distribution is also in striking disagreement with the UPSILON data and so scalar gluons are completely ruled out. (orig.)

  11. Structure of exotic nuclei and superheavy elements in meson field theory

    Energy Technology Data Exchange (ETDEWEB)

    Linn, Khin Nyan

    2008-07-15

    In this work the nuclear structure of exotic nuclei and superheavy nuclei is studied in a relativistic framework. In the relativistic mean-field (RMF) approximation, the nucleons interact with each other through the exchange of various effective mesons (scalar, vector, isovector-vector). Ground state properties of exotic nuclei and superheavy nuclei are studied in the RMF theory with the three different parameter sets (ChiM,NL3,NL-Z2). Axial deformation of nuclei within two drip lines are performed with the parameter set (ChiM). The position of drip lines are investigated with three different parameter sets (ChiM,NL3,NL-Z2) and compared with the experimental drip line nuclei. In addition, the structure of hypernuclei are studied and for a certain isotope, hyperon halo nucleus is predicted. (orig.)

  12. Structure of exotic nuclei and superheavy elements in meson field theory

    International Nuclear Information System (INIS)

    Linn, Khin Nyan

    2008-07-01

    In this work the nuclear structure of exotic nuclei and superheavy nuclei is studied in a relativistic framework. In the relativistic mean-field (RMF) approximation, the nucleons interact with each other through the exchange of various effective mesons (scalar, vector, isovector-vector). Ground state properties of exotic nuclei and superheavy nuclei are studied in the RMF theory with the three different parameter sets (ChiM,NL3,NL-Z2). Axial deformation of nuclei within two drip lines are performed with the parameter set (ChiM). The position of drip lines are investigated with three different parameter sets (ChiM,NL3,NL-Z2) and compared with the experimental drip line nuclei. In addition, the structure of hypernuclei are studied and for a certain isotope, hyperon halo nucleus is predicted. (orig.)

  13. Binding of hypernuclei in the latest quark-meson coupling model

    International Nuclear Information System (INIS)

    Guichon, Pierre A.M.; Thomas, Anthony W.; Tsushima, Kazuo

    2008-01-01

    The most recent development of the quark-meson coupling (QMC) model, in which the effect of the mean scalar field in-medium on the hyperfine interaction is also included self-consistently, is used to compute the properties of hypernuclei. The calculations for Λ and Ξ hypernuclei are of comparable quality to earlier QMC results without the additional parameter needed there. Even more significantly, the additional repulsion associated with the increased hyperfine interaction in-medium completely changes the predictions for Σ hypernuclei. Whereas in the earlier work they were bound by an amount similar to Λ hypernuclei, here they are unbound, in qualitative agreement with the experimental absence of such states. The equivalent non-relativistic potential felt by the Σ is repulsive inside the nuclear interior and weakly attractive in the nuclear surface, as suggested by the analysis of Σ-atoms

  14. The hyperon-nucleon interaction

    International Nuclear Information System (INIS)

    Haidenbauer, J.

    2007-01-01

    Results of two recent hyperon-nucleon interaction potentials, both developed by the Bonn-Juelich group, are presented that are derived either in the conventional meson-exchange picture or within leading order chiral effective field theory. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. The most salient feature of the new meson-exchange hyperon-nucleon model is that the contributions in the scalar-isoscalar (σ) and vector-isovector (ρ) exchange channels are constrained by a microscopic model of correlated ππ and KK-bar exchange

  15. Superconvergent perturbation theory for euclidean scalar field theories

    International Nuclear Information System (INIS)

    Ushveridze, A.G.

    1984-01-01

    It is shown that the bare (unrenormalized) correlation functions in the euclidean scalar field theories can be expanded in a series whose terms, being computable in a relatively simple way, are free from ultraviolet and infrared divergencies. This series is convergent (divergent) for finite (infinite) values of the correlation functions. (orig.)

  16. Electroproduction and photoproduction of vector mesons and generalized vector meson dominance

    International Nuclear Information System (INIS)

    Fraas, H.; Kuroda, M.

    1977-05-01

    Using generalized vector meson dominance, electro- and photoproduction of vector mesons is studied. The unnatural parity exchange part of ω(1.2) production is estimated to be about one fourth of that of ω-production. The off diagonal transition model suggests the suppression of diffractive rho(1.2) and ω(1.2) production. (orig.) [de

  17. Deep electroproduction of exotic hybrid mesons

    International Nuclear Information System (INIS)

    Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.

    2004-01-01

    We evaluate the leading order amplitude for the deep exclusive electroproduction of an exotic hybrid meson in the Bjorken regime. We show that, contrarily to naive expectation, this amplitude factorizes at the twist 2 level and thus scales like usual meson electroproduction when the virtual photon and the hybrid meson are longitudinally polarized. Exotic hybrid mesons may thus be studied in electroproduction experiments at JLAB, HERA (HERMES) or CERN (Compass)

  18. Observation of Bell Inequality violation in B mesons

    CERN Document Server

    Go, A

    2004-01-01

    A pair of $B^0\\bar B^0$ mesons from $\\Upsilon(4S)$ decay exhibit EPR type non-local particle-antiparticle (flavor) correlation. It is possible to write down Bell Inequality (in the CHSH form: $S\\le2$) to test the non-locality assumption of EPR. Using semileptonic $B^0$ decays of $\\Upsilon(4S)$ at Belle experiment, a clear violation of Bell Inequality in particle-antiparticle correlation is observed: S=2.725+-0.167(stat)+-0.092(syst)

  19. Exotic hybrid mesons in hard electroproduction

    International Nuclear Information System (INIS)

    Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.

    2005-01-01

    We estimate the sizeable cross section for deep exclusive electroproduction of an exotic J PC =1 -+ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e., as 1/Q 2 . This is due to the nonvanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy-momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in α S and we explore the consequences of fixing the renormalization scale ambiguity through the Brodsky-Lepage-Mackenzie (BLM) procedure. We study the particular case where the hybrid meson decays through a πη meson pair. We discuss the πη generalized distribution amplitude and then calculate the production amplitude for this process. We propose a forward-backward asymmetry in the production of π and η mesons as a signal for the hybrid meson production. We briefly comment on hybrid electroproduction at very high energy, in the diffractive limit where a QCD Odderon exchange mechanism should dominate. The conclusion of our study is that hard electroproduction is a promising way to study exotic hybrid mesons, in particular, at JLAB, HERA (HERMES), or CERN (Compass)

  20. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhiming, E-mail: 465609785@qq.com [School of Economics and Management, Wuyi University, Jiangmen 529020 (China); Situ, Haozhen, E-mail: situhaozhen@gmail.com [College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642 (China)

    2017-02-15

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.

  1. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    International Nuclear Information System (INIS)

    Huang, Zhiming; Situ, Haozhen

    2017-01-01

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.

  2. Oscillations of the static meson fields at finite baryon density

    International Nuclear Information System (INIS)

    Florkowski, W.; Friman, B.; Technische Hochschule Darmstadt

    1996-04-01

    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu-Jona-Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas. (author). 19 refs, 6 figs

  3. Strange mesonic transition form factor

    International Nuclear Information System (INIS)

    Goity, J.L.; Musolf, M.J.

    1996-01-01

    The strange-quark vector current ρ-to-π meson transition form factor is computed at one-loop order using strange meson intermediate states. A comparison is made with a φ-meson dominance model estimate. We find that one-loop contributions are comparable in magnitude to those predicted by φ-meson dominance. It is possible that the one-loop contribution can make the matrix element as large as those of the electromagnetic current mediating vector meson radiative decays. However, due to the quadratic dependence of the one-loop results on the hadronic form factor cutoff mass, a large uncertainty in the estimate of the loops is unavoidable. These results indicate that non-nucleonic strange quarks could contribute appreciable in moderate-parallel Q 2 parallel parity-violating electron-nucleus scattering measurements aimed at probing the strange-quark content of the nucleon. copyright 1996 The American Physical Society

  4. Hadronic slopes and cross-sections for vector mesons

    International Nuclear Information System (INIS)

    Ferreira, Erasmo; Pereira, Flavio

    1998-01-01

    The data on photoproduction of vector mesons at high energies shows that the correlation between observables and their dependence on the energy and on the hadronic sizes which is characteristics of nonperturbative dynamics also appear in these processes. The analysis of the data exhibits effects of the interplay between perturbative and nonperturbative contributions. (author)

  5. Meson spectra from two-body dirac equations with minimal interactions

    International Nuclear Information System (INIS)

    Crater, H.W.; Becker, R.L.; Wong, C.Y.

    1991-01-01

    Many authors have used two-body relativistic wave equations with spin in nonperturbative numerical quark model calculations of the meson spectrum. Usually, they adopt a truncation of the Bethe-Salpeter equation of QED and/or scalar. QED and replace the static Coulomb interactions of those field theories with a semiphenomenological Q bar Q potential whose insertion in the Breit terms give the corresponding spin corrections. However, the successes of these wave equations in QED have invariably depended on perturbative treatment of the terms in each beyond the Coulomb terms. There have been no successful nonperturbative numerical test of two-body quantum wave equations in QED, because in most equations the effective potentials beyond the Coulomb are singular and can only be treated perturbatively. This is a glaring omission that we rectify here for the case of the two-body Dirac equations of constraint dynamics. We show in this paper that a nonperturbative numerical treatment of these equations for QED yields the same spectral results as a perturbative treatment of them which in turn agrees with the standard spectral results for positronium and muonium. This establishes that the vector and scalar interaction structures of our equations accurately incorporate field theoretic interactions in a bone fide relativistic wave equation. The last portion of this work will report recent quark model calculations using these equations with the Adler-Piran static Q bar Q potential

  6. Quarks and mesons in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1981-01-01

    Quantum chromodynamics is believed to be candidate theory for the strong interactions and contains as its ingredients spinor quark fields and vector gluons, none of which can perhaps be ever liberated and detected in laboratories. A nucleus consists of nucleons bound by nuclear force which are however separately observable and which seem to preserve their identities even under extreme conditions. An intriguing question is: when compressed to high densities or heated to high temperature, at what point does a nuclear matter cease to be describable in terms of nucleon and meson degrees of freedom, but become a plasma of quarks and gluons; and how does this transition occur. This is not an idle question. If quarks and gluons are never to be observed isolated, then it may be that at low energies (or at low densities) they are not the right variables to do physics with. Instead hadrons must be. On the other hand, asymptotic freedom - the unique property of non-abelian gauge theories to which QCD belongs that quark-gluon and gluon-gluon interactions get weaker at short distances - tells us that at some large matter density the matter must necessarily be in the form of quark gas interacting only weakly. This means that a change in degrees of freedom must take place. We would like to know where this occurs and how. In this talk, I would like to address to this question by discussing first the large success we have had in understanding the role that mesons play in finite nuclei and nuclear matter and then attempting to correlate nucleon and meson degrees of freedom to quark-gluon degrees of freedom. In my opinion we are now at a stage where we feel fairly confident in our understanding of nucleon-meson structure of nuclei and nuclear matter and any further progress in deeper understanding of nuclear dynamics - and strong interactions - must come from QCD or its effective version, bags or strings. (orig.)

  7. Static and dynamic characteristics of various mesons and the deuteron. Author-review of the Thesis

    International Nuclear Information System (INIS)

    Secansky, M.

    2009-01-01

    The Dissertation is concerned of static and dynamic characteristics of various mesons and the deuteron, which are defined in the Introduction. Special attention is payed to the electromagnetic polarizabilities of pions in the Chapter I and the Chapter II. While in the Chapter I is represented a review of present theoretical and experimental situation of the pion polarizabilities, in the Chapter II the problem of an ambiguous determination of the sum and the difference of the neutral pion polarizabilities is solved by the unambiguous determination of a meson parameters with the help of the pion scalar form factor and the calculation and the two photon decay of σ meson in the framework of the linearized Nambu-Jona-Lasinio type Lagrangian. In the Chapter III the new deuteron - proton sum rule is derived, by means of which and data on the corresponding physical quantities in the sum rule the mean -square - charge radius of the deuteron is numerically evaluated to be in a satisfactory agreement with the dispersion relations prediction. In the Chapter IV by means of the special Lagrangian of the quark - meson interactions the decay width of φ → f 0 (980)γ and the total cross - section of the e + e - → γ * → φf 0 (980) process is predicted. In the last Chapter V we have tried to solve the conflict between the measured and theoretically predicted branching ratio of the process π 0 → e + e - decay by the inclusion of the double - logarithmic QED radiative corrections. Despite of the latter, the discrepancy between the theoretical prediction and the experimental result for the π 0 → e + e - decay was not removed and further independent experimental and theoretical efforts have to be continued. (Author)

  8. Meson factories

    International Nuclear Information System (INIS)

    Dicello, J.F.; Zaider, M.; Bradbury, J.N.

    1979-01-01

    Technological improvements in accelerator design in the 1960's resulted in the capability to develop medium-energy proton accelerators with beam intensities of almost 1 mA. These beams are able to produce fluxes of secondary particles, including pions, muons, neutrinos, and neutrons, which are as much as 10,000 times as intense as those previously available. Those machines built for optimum meson production are commonly called meson factories. The characteristics of these facilities are reviewed, and the present programs in applied research, and some potential areas of future work are discussed

  9. Workshop on mesons and mesonic states up to slightly above 1 GeV/c2

    International Nuclear Information System (INIS)

    Oelert, W.; Sefzick, T.

    1991-04-01

    The new accelerator COSY-Juelich will provide protons with momenta up to 3.3 GeV/c. Thus an effective mass slightly above 1 GeV/c 2 can be produced in the pp-interaction. Employing higher mass targets also heavier mesons can be observed. The production of single mesons and of mesonic states with and without strangeness can be investgated at COSY. The structure of some mesons in the mass range of 950 McV/c 2 to 1020 MeV/c 2 is still not well understood. While the Φ(1020) at the upper limit of this range is believed to be of rahter pure santi s nature the content of the η'(958) meson at the lower limit of this range is still under discussion. New results suggest that what is called the f o meson (former notation S*) consists in reality of two close and narrow states; one of them being a santi s - quarks configuration while the other should be a flavour singlet which couples to ππ and Kanti K with similar strengths. Also the discussion on possible gluonium candidates is still alive. It is speculated that some of these mesons - till now supposed to have widths of 30 to 50 MeV/c 2 - could rather be an overlay of structures with much smaller widths. Another features of resonances in this region is their partial decay into the Kanti K channel if their actual mass is large enough. Strong decays in Kanti K could be a signal of a Kanti K 'molecular' nature of the resonance. In particular the atomic K + K - structure should exist. In order to have review of the physics related to these problems there was a workshop held on: MESONS and MESONIC STATES up to slightly above 1 GeV/c 2 at the ZEL - Forschungszentrum - Juelich February 19 to 20, 1990. The following contains copies of the shown transparencies and short write-ups as far as available. (orig.)

  10. Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence

    International Nuclear Information System (INIS)

    Ya-Ming, Liu; Zhao-Hui, Liu; Hai-Feng, Han; Jing, Li; Han-Feng, Wang; Chu-Guang, Zheng

    2009-01-01

    The statistics of a passive scalar along inertial particle trajectory in homogeneous isotropic turbulence with a mean scalar gradient is investigated by using direct numerical simulation. We are interested in the influence of particle inertia on such statistics, which is crucial for further understanding and development of models in non-isothermal gas-particle flows. The results show that the scalar variance along particle trajectory decreases with the increasing particle inertia firstly; when the particle's Stokes number S t is less than 1.0, it reaches the minimal value when S t is around 1.0, then it increases if S t increases further. However, the scalar dissipation rate along the particle trajectory shows completely contrasting behavior in comparison with the scalar variance. The mechanical-to-thermal time scale ratios averaged along particle, p , are approximately two times smaller than that computed in the Eulerian frame r, and stay at nearly 1.77 with a weak dependence on particle inertia. In addition, the correlations between scalar dissipation and now structure characteristics along particle trajectories, such as strain and vorticity, are also computed, and they reach their maximum and minimum, 0.31 and 0.25, respectively, when S t is around 1.0. (fundamental areas of phenomenology (including applications))

  11. Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories

    Science.gov (United States)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-04-01

    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.

  12. QCD bosonization and the meson effective action

    International Nuclear Information System (INIS)

    Praschifka, J.; Roberts, C.D.; Cahill, R.T.

    1987-01-01

    A bosonization of quantum chromodynamics (QCD) is employed to derive a meson effective action, thus providing a direct link between QCD and meson phenomenology. As an example of this approach expressions are obtained for the meson parameters associated with the analysis of ω→3π decay. The bosonization also directly motivates a divergence-free, global color-symmetry model for mesons, which is seen to be a generalization of various phenomenological models. Good estimates are obtained for the values of several of the meson parameters

  13. Effect of spatio-temporal noise in the Eddington factor on the scalar flux

    International Nuclear Information System (INIS)

    Prinja, Anil K.

    2015-01-01

    Highlights: • Spatio-temporal Gaussian noise is considered in the Eddington factor simulating noise in the low-order equation associated with a hybrid numerical solution technique for the transport equation. • A closed equation for the mean scalar flux is obtained that is accurate for small correlation times and exact in the white noise limit. • The equation for the mean scalar flux contains a fourth-order spatial derivative that is a consequence of the noise. • The fourth-order term is shown to destabilize all perturbations with wavelengths less than a critical value that depends on the noise amplitude, correlation length and time. • An asymptotic solution is shown to be possible for small noise amplitude. - Abstract: Spatial and temporal noise in the Eddington factor, simulating noise arising in hybrid numerical schemes, is modeled as a Gaussian stochastic process and its effect on the scalar flux investigated theoretically. In the small correlation time limit, a nonstandard closed equation for the mean scalar flux is obtained that contains a fourth order derivative of the scalar flux. In an infinite medium setting, this term is shown to have a destabilizing effect on the solution. Specifically, any spatial Fourier mode with wavelength smaller than a critical value, which depends on the noise characteristics, amplifies in time without bound, in contrast to the corresponding nonrandom case which is dissipative for all modes. An asymptotic solution is obtained which shows that the noise effect disappears at late times and the scalar flux limits to the deterministic solution.

  14. Constraints from conformal symmetry on the three point scalar correlator in inflation

    International Nuclear Information System (INIS)

    Kundu, Nilay; Shukla, Ashish; Trivedi, Sandip P.

    2015-01-01

    Using symmetry considerations, we derive Ward identities which relate the three point function of scalar perturbations produced during inflation to the scalar four point function, in a particular limit. The derivation assumes approximate conformal invariance, and the conditions for the slow roll approximation, but is otherwise model independent. The Ward identities allow us to deduce that the three point function must be suppressed in general, being of the same order of magnitude as in the slow roll model. They also fix the three point function in terms of the four point function, upto one constant which we argue is generically suppressed. Our approach is based on analyzing the wave function of the universe, and the Ward identities arise by imposing the requirements of spatial and time reparametrization invariance on it.

  15. Study of leading strange meson resonances and spin-orbit splittings in K-p → K-π+n at 11 GeV/c

    International Nuclear Information System (INIS)

    Honma, A.K.

    1980-11-01

    The results from a high-statistics study of Kπ elastic scattering in the reaction K - p → K - π + n are presented. The data for this analysis are taken from an 11-GeV/c K - p experiment performed on the Large Aperture Solenoidal Spectrometer (LASS) facility at the Stanford Linear Accelerator Center (SLAC). By selecting the very forward produced K - π + events, a sample consisting of data for the Kπ → Kπ elastic scattering reaction was extracted. The angular distribution for this meson-meson scattering is studied by use of both a spherical harmonic moments analysis and a partial-wave analysis (PWA). The previously established leading natural spin-parity strange meson resonances (the J/sup P/ = 1 - K*(895), the 2 + K*(1430), and the 3 - K*(1780)) are observed in the results from both the moments analysis and the PWA. In addition, evidence for a new spin 4 - K* resonance with a mass of 2080 MeV and a width of about 225 MeV is presented. The results from the PWA confirm the existence of a 0 + kappa (1490) and propose the existence of a second scalar meson resonance, the 0 + kappa' (1900). Structure in the P-wave amplitude indicates resonance behavior in the mass region near 1700 MeV. In two of the four ambiguous solutions for the mass region above 1800 MeV, there is strong evidence for another P-wave resonant structure near 2100 MeV. The observed strange meson resonances are found to have a natural interpretation in terms of states predicted by the quark model. In particular, the mass splittings of the leading trajectory natural spin-parity strange meson states and the mass splittings between the spin-orbit triplet states are discussed. 59 figures, 17 tables

  16. In-medium QCD sum rules for {omega} meson, nucleon and D meson

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ronny

    2008-07-01

    The modifications of hadronic properties caused by an ambient nuclear medium are investigated within the scope of QCD sum rules. This is exemplified for the cases of the {omega} meson, the nucleon and the D meson. By virtue of the sum rules, integrated spectral densities of these hadrons are linked to properties of the QCD ground state, quantified in condensates. For the cases of the {omega} meson and the nucleon it is discussed how the sum rules allow a restriction of the parameter range of poorly known four-quark condensates by a comparison of experimental and theoretical knowledge. The catalog of independent four-quark condensates is covered and relations among these condensates are revealed. The behavior of four-quark condensates under the chiral symmetry group and the relation to order parameters of spontaneous chiral symmetry breaking are outlined. In this respect, also the QCD condensates appearing in differences of sum rules of chiral partners are investigated. Finally, the effects of an ambient nuclear medium on the D meson are discussed and relevant condensates are identified. (orig.)

  17. Photoproduction of Scalar Mesons Using the CEBAF Large Acceptance Spectrometer (CLAS)

    Science.gov (United States)

    Chandavar, Shloka K.

    The search for glueballs has been ongoing for several decades. The lightest glueball has been predicted by quenched lattice QCD to have mass in the range of 1.0--1.7 GeV and JPC = 0++ . The mixing of glueball states with neighbouring meson states complicates their identification and hence several experiments have been carried out over the years to study the glueball candidates. By analyzing the decay channels and production mechanisms of these candidates, their glueball content can theoretically be determined. In reality, a lot of confusion still exists about the status of these glueball candidates. The f0(1500) is one of several contenders for the lightest glueball, which has been extensively studied in several different kinds of experiments. However, there exists no photoproduction data on this particle. In the analysis presented in this dissertation, the presence of the f0(1500) in the KS 0KS0 channel is investigated in photoproduction using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility, also called Jefferson Lab (JLab). This is done by studying the reaction, gammap → fJp → KS0 KS0p → 2(pi +pi-)p using data from the g12 experiment. A clear peak is seen at 1500 MeV in the background subtracted data. This is enhanced if the momentum transfer is restricted to be less than 1 GeV2. Comparing with simulations, it is seen that this peak is associated with t channel production mechanism. The f 2'(1525) has a mass of 1525 MeV and a width of 73 MeV, and hence there is a possibility of it contributing to the peak observed in our data. A moments analysis seems to suggest some presence of a D wave, however, the low acceptance at forward and backward angles prohibits a definitive conclusion.

  18. Scalar quarkonium masses

    International Nuclear Information System (INIS)

    Lee, W.; Weingarten, D.

    1996-01-01

    We evaluate the valence approximation to the mass of scalar quarkonium for a range of different parameters. Our results strongly suggest that the infinite volume continuum limit of the mass of ss scalar quarkonium lies well below the mass of f J (1710). The resonance f 0 (1500) appears to the best candidate for ss scalar quarkonium. (orig.)

  19. Mesons and quarks in nuclei

    International Nuclear Information System (INIS)

    Oset, E.

    1980-01-01

    A short review of the topic of mesons in nuclei is exposed paying particular attention to the relationship between several mesonic processes. Special emphasis is put into the microscopic pictures that can ultimately relate all these processes with the elementary coupling of mesons to the nuclear hadronic components. The importance of the short range part of the nuclear interaction opens the doors to a more basic understanding in terms of the quark components of nucleons and isobars. (orig.)

  20. Towers of hybrid mesons

    International Nuclear Information System (INIS)

    Semay, Claude; Buisseret, Fabien; Silvestre-Brac, Bernard

    2009-01-01

    A hybrid meson is a quark-antiquark pair in which, contrary to ordinary mesons, the gluon field is in an excited state. In the framework of constituent models, the interaction potential is assumed to be the energy of an excited string. An approximate, but accurate, analytical solution of the Schroedinger equation with such a potential is presented. When applied to hybrid charmonia and bottomonia, towers of states are predicted in which the masses are a linear function of a harmonic oscillator band number for the quark-antiquark pair. Such a formula could be a reliable guide for the experimental detection of heavy hybrid mesons.

  1. Charge parity exotic mesons

    International Nuclear Information System (INIS)

    Burden, C.J.

    1998-01-01

    Full text: Evidence for a meson with exotic quantum numbers J PC 1 -+ , the ρ(1405), has been observed at the AGS at Brookhaven and Crystal Barrel at CERN. This meson is exotic to the extent that its quantum numbers are not consistent with the generalised Pauli exclusion principle applied to the naive constituent quark model. In a fully relativistic field theoretic treatment, however, there is nothing in principle to preclude the existence of charge parity exotics. Using our earlier covariant Bethe-Salpeter model of light-quark mesons with no new parameter fitting we demonstrate the existence of a q - q-bar bound state with the quantum numbers of the ρ

  2. Bern-Kosower rule for scalar QED

    International Nuclear Information System (INIS)

    Daikouji, K.; Shino, M.; Sumino, Y.

    1996-01-01

    We derive a full Bern-Kosower-type rule for scalar QED starting from quantum field theory: we derive a set of rules for calculating S-matrix elements for any processes at any order of the coupling constant. A gauge-invariant set of diagrams in general is first written in the world line path-integral expression. Then we integrate over x(τ), and the resulting expression is given in terms of a correlation function on the world line left-angle x(τ)x(τ ' )right-angle. Simple rules to decompose the correlation function into basic elements are obtained. A gauge transformation known as the integration by parts technique can be used to reduce the number of independent terms before integration over proper-time variables. The surface terms can be omitted provided the external scalars are on shell. Also, we clarify correspondence to the conventional Feynman rule, which enabled us to avoid any ambiguity coming from the infinite dimensionality of the path-integral approach. copyright 1996 The American Physical Society

  3. New physics effects in charm meson decays involving c → ul{sup +}l{sup -}(l{sub i}{sup -+}l{sub j}{sup ±}) transitions

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Suchismita; Mohanta, Rukmani [University of Hyderabad, School of Physics, Hyderabad (India)

    2017-05-15

    We study the effect of the scalar leptoquark and Z{sup '} boson on the rare decays of the D mesons involving flavour changing transitions c → ul{sup +}l{sup -}(l{sub i}{sup -+}l{sub j}{sup ±}). We constrain the new physics parameter space using the branching ratio of the rare decay mode D{sup 0} → μ{sup +}μ{sup -} and the D{sup 0} - anti D{sup 0} oscillation data. We compute the branching ratios, forward-backward asymmetry parameters and flat terms in D{sup +(0)} → π{sup +(0)} μ{sup +}μ{sup -} processes using the constrained parameters. The branching ratios of the lepton flavour violating D meson decays, such as D{sup 0} → μe, τe and D{sup +(0)} → π{sup +(0)} μ{sup -}e{sup +} are also investigated. (orig.)

  4. Spin information from vector-meson decay in photoproduction

    International Nuclear Information System (INIS)

    Kloet, W.M.; Chiang, W.; Tabakin, F.

    1998-01-01

    For the photoproduction of vector mesons, all single and double spin observables involving vector-meson two-body decays are defined consistently in the γN center-of-mass frame. These definitions yield a procedure for extracting physically meaningful single and double spin observables that are subject to known rules concerning their angle and energy evolution. As part of this analysis, we show that measuring the two-meson decay of a photo produced ρ or φ does not determine the vector meson's vector polarization, but only its tensor polarization. The vector meson decay into lepton pairs is also insensitive to the vector meson's vector polarization, unless one measures the spin of one of the leptons. Similar results are found for all double spin observables which involve observation of vector-meson decay. To access the vector meson's vector polarization, one therefore needs to either measure the spin of the decay leptons, make an analysis of the background interference effects, or relate the vector meson's vector polarization to other accessible spin observables. copyright 1998 The American Physical Society

  5. Recent results of hadronic decays of J/psi into vector-tensor from MARK III

    International Nuclear Information System (INIS)

    Becker, J.J.; Blaylock, G.T.; Bolton, T.; Brown, J.S.

    1987-02-01

    From a data sample of 5.8 x 10 6 J/psi's collected by the MARK III detector at the storage ring SPEAR at SLAC, two-body decay modes of the J/psi into a vector and a tensor meson have been measured. From the studies of the tensor meson, recoiling against the ideally mixed and well understood vector mesons, quark correlations are established and compared with the theoretical expectations of the J/psi decays and the SU(3) predictions. The beginnings of a similar systematic study of the two-body vector scalar decays are also presented

  6. From meson- and photon-nucleon scattering to vector mesons in nuclear matter

    International Nuclear Information System (INIS)

    Wolf, Gy.; Lutz, M.F.M.; Friman, B.

    2003-01-01

    A relativistic and unitary approach to pion- and photon-nucleon scattering taking into account the πN, ρN, ωN, ηN, πΔ, KΛ and KΣ channels is presented. The scheme dynamically generates the s- and d-wave baryon resonances N(1535), N(1650), N(1520) and N(1700) and as well as Δ(1620) and Δ(1700) in terms of quasi-local two-body interaction terms. A fair description of the experimental data relevant to the properties of slow vector mesons in nuclear matter is obtained. The resulting s-wave ρ- and ω-meson-nucleon scattering amplitudes which define the leading density modification of the ρ- and ω-meson spectral functions in nuclear matter are presented. (author)

  7. Higgs-boson and Z-boson flavor-changing neutral-current decays correlated with B-meson decays in the littlest Higgs model with T parity

    International Nuclear Information System (INIS)

    Han Xiaofang; Wang Lei; Yang Jinmin

    2008-01-01

    In the littlest Higgs model with T-parity new flavor-changing interactions between mirror fermions and the standard model (SM) fermions can induce various flavor-changing neutral-current decays for B-mesons, the Z-boson, and the Higgs boson. Since all these decays induced in the littlest Higgs with T-parity model are correlated, in this work we perform a collective study for these decays, namely, the Z-boson decay Z→bs, the Higgs-boson decay h→bs, and the B-meson decays B→X s γ, B s →μ + μ - , and B→X s μ + μ - . We find that under the current experimental constraints from the B-decays, the branching ratios of both Z→bs and h→bs can still deviate from the SM predictions significantly. In the parameter space allowed by the B-decays, the branching ratio of Z→bs can be enhanced up to 10 -7 (about one order above the SM prediction) while h→bs can be much suppressed relative to the SM prediction (about one order below the SM prediction).

  8. New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories.

    Science.gov (United States)

    Doneva, Daniela D; Yazadjiev, Stoytcho S

    2018-03-30

    In the present Letter, we consider a class of extended scalar-tensor-Gauss-Bonnet (ESTGB) theories for which the scalar degree of freedom is excited only in the extreme curvature regime. We show that in the mentioned class of ESTGB theories there exist new black-hole solutions that are formed by spontaneous scalarization of the Schwarzschild black holes in the extreme curvature regime. In this regime, below certain mass, the Schwarzschild solution becomes unstable and a new branch of solutions with a nontrivial scalar field bifurcates from the Schwarzschild one. As a matter of fact, more than one branch with a nontrivial scalar field can bifurcate at different masses, but only the first one is supposed to be stable. This effect is quite similar to the spontaneous scalarization of neutron stars. In contrast to the standard spontaneous scalarization of neutron stars, which is induced by the presence of matter, in our case, the scalarization is induced by the curvature of the spacetime.

  9. Scattering amplitudes to all orders in meson exchange

    International Nuclear Information System (INIS)

    Silbar, R.R.; Mattis, M.P.

    1990-01-01

    As the number of colors in QCD, N C , becomes large, it is possible to sum up all meson-exchange contributions, however arbitrarily complicated, to meson-baryon and baryon-baryon scattering. A semi-classical structure for the two-flavor theory emerges, in close correspondence to vector-meson-augmented Skyrme models. In this limit, baryons act as extended static sources for the classical meson fields. This leads to non-linear differential equations for the classical meson fields which can be solved numerically for static radial (hedgehog-like) solutions. The non-linear terms in the equations of motion for the quantized meson fields can then be simplified, to leading order in 1/N C , by replacing all factors of the meson field but one by the previously-found classical field. This results in linear, Schroedinger-like equations, which are easily solved. For the meson-baryon case the solution can be subsequently analyzed to obtain the phase shifts for the scattering and, from these, the baryon resonance spectrum of the model. As the warm-up, we have carried out this calculation for the simple case of σ mesons only, finding sensible results. 8 refs., 3 figs

  10. Holographic picture of heavy vector meson melting

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F.; Diles, Saulo [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Martin Contreras, Miguel Angel [Universidad de los Andes, High Energy Group, Department of Physics, Bogota (Colombia)

    2016-11-15

    The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1S, 2S and 3S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ(1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium. (orig.)

  11. The exchange of correlated pions and kaons in the baryon-baryon interaction

    International Nuclear Information System (INIS)

    Reuber, A.G.

    1995-09-01

    The exchange of two correlated pions or kaons provides the main part of the intermediate-range attraction between two baryons. In this work, a dynamical model for correlated two-pion and two-kaon exchange in the baryon-baryon interaction is presented, both in the scalar-isoscalar (σ) and the vector-isovector (ρ) channel. The contribution of correlated ππ and K anti K exchange is derived from the amplitudes for the transition of a baryon-antibaryon state (B anti B') to a ππ or K anti K state in the pseudophysical region by applying dispersion theory and unitarity. For the B anti B'→ππ, K anti K amplitudes a microscopic model is constructed, which is based on the hadron-exchange picture. The Born terms include contributions from baryon-exchange as well as ρ-pole diagrams. The correlations between the two pseudoscalar mesons are taken into account exactly by means of ππ-K anti K amplitudes derived likewise from a meson-exchange model, which is in line with the empirical ππ data. The parameters of the B anti B'→ππ, K anti K model, which are related to each other by the assumption of SU(3) symmetry, are determined by the adjustment to the quasiempirical N anti N→ππ amplitudes in the pseudophysical region. It is found that correlated K anti K exchange being negligible in the NN interaction plays an important role in the σ-channel for baryon-baryon states with non-vanishing strangeness. The strength of correlated ππ plus K anti K exchange in the σ-channel decreases with the strangeness of the baryon-baryon system becoming more negative. Due to the admixture of baryon-exchange processes to the SU(3)-symmetric ρ-pole contributions the results for correlated ππ-exchange in the vector-isovector channel deviate from what is expected in the naive SU(3) picture for genuine ρ-exchange. (orig.)

  12. Studies on inclusive meson resonance and particle production

    International Nuclear Information System (INIS)

    Saarikko, Heimo

    1978-01-01

    Production and decay of meson resonances are studied in medium energy meson-proton collisions. Strong evidence is found that hadronic collisions are dominated by resonance production. Especially the vector mesons have often large inclusive cross sections, typically of the order of few millibarns at the present energies. In all, a majority of pions and kaons appear to be decay products of resonances or other unstable particles. The detailed kinematics of the parent resonance's decays is found to play an important role in determining inclusive pion spectra. The squared transverse momentum distributions of hadrons heavier than the pion appear to have in common an exponential behaviour, with a universal slope for the esponential fall-off. The observed vector meson yields suggest that only a small fraction of the direct lepton production observed at large transverse momentum in nucleon-nucleon interactions is accounted for by the ''old'' vector mesons. An attempt has been made to separate out the central production and fragmentation components of the meson production. Both the central production and the fragmentation of the incoming meson are found to be important mechanisms in the non-strange meson production whereas the central production of strange meson resonances is rare at our energies. The ratios of the observed meson yields are found to be generally in good agreement with a simple quark-counting model. (author)

  13. Tensor meson dominance and e+e--physics

    International Nuclear Information System (INIS)

    Genz, H.; Karlsruhe Univ.; Mallik, S.

    1983-01-01

    The phenomenological status of tensor meson dominance is reported. Some new results concerning hadronic decays of the 2 ++ -meson chi 2 (3.55) and the heavy lepton tau are also included. Considering experimental errors, tensor meson dominance is in agreement with experiment. (author)

  14. Single spin asymmetry for charm mesons

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Zacarias, G. [PIMAyC, Eje Central Lazaro Cardenas No. 152, Apdo. Postal 14-805, D.F. (Mexico); Herrera, G.; Mercado, J. [Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, D.F. (Mexico)

    2007-08-15

    We study single spin asymmetries of D{sup 0} and D{sup -} mesons in polarized proton-proton collisions. A two component model is used to describe charm meson production. The production of D mesons occurs by recombination of the constituents present in the initial state as well as by fragmentation of quarks in the final state. This model has proved to describe the production of charm. The recombination component involves a mechanism of spin alignment that ends up in a single spin asymmetry. Experimental measurements of single spin asymmetry for pions at RHIC are compared with the model. Predictions for the asymmetry in D mesons are presented. (orig.)

  15. Single spin asymmetry for charm mesons

    International Nuclear Information System (INIS)

    Dominguez Zacarias, G.; Herrera, G.; Mercado, J.

    2007-01-01

    We study single spin asymmetries of D 0 and D - mesons in polarized proton-proton collisions. A two component model is used to describe charm meson production. The production of D mesons occurs by recombination of the constituents present in the initial state as well as by fragmentation of quarks in the final state. This model has proved to describe the production of charm. The recombination component involves a mechanism of spin alignment that ends up in a single spin asymmetry. Experimental measurements of single spin asymmetry for pions at RHIC are compared with the model. Predictions for the asymmetry in D mesons are presented. (orig.)

  16. Asymptotic energy scale factors for pseudoscalar meson scattering and charmed meson couplings

    International Nuclear Information System (INIS)

    Thews, R.L.

    1977-01-01

    Energy scale factors ν 0 for PP → PP scattering amplitudes are related via absence of exotic resonances of ratios of tensor to vector coupling strengths. These same ratios are extracted from FESR's for non-exotic reactions. The scale factors obtained are all of the order of 1.0 GeV 2 or less, indepedent of quantum numbers. This contradicts the expectations of dual amplitudes in which ν 0 =1/α', and trajectory slopes are smaller for charmed mesons. Decay widths for tensor mesons are predicted. An observed SU(3) violation for the ratio A 2 → KantiK/K** → Kπ is shown to be consistent with the FESR results. Charmed meson decays are predicted to be factors of 2 to 3 larger than those predicted by SU(4). (author)

  17. Measuring the strangeness content of the nucleon by observing the ϕ-meson mass shift in nuclear matter

    International Nuclear Information System (INIS)

    Gubler, Philipp; Ohtani, Keisuke

    2015-01-01

    The modification of the ϕ-meson at finite density is studied by using QCD sum rules in combination with the maximum entropy method. As a result, it is found that the mass shift of the ϕ-meson is strongly correlated to the strangeness content of the nucleon, , which governs the depletion of the strange quark condensate in nuclear matter. (author)

  18. Heavy meson observables and Dyson-Schwinger equations

    International Nuclear Information System (INIS)

    Ivanov, M. A.

    1998-01-01

    Dyson-Schwinger equation (DSE) studies show that the b-quark mass-function is approximately constant, and that this is true to a lesser extent for the c-quark. This observation provides the basis for a study of the leptonic and semileptonic decays of heavy pseudoscalar mesons using a ''heavy-quark'' limit of the DSES, which, when exact, reduces the number of independent form factors. Semileptonic decays with light mesons in the final state are also accessible because the DSES provide a description of light-quark propagation characteristics and light-meson structure. A description of B-meson decays is straightforward, however, the study of decays involving the D-meson indicates that c-quark mass-corrections are quantitatively important

  19. Study of leading strange meson resonances and spin-orbit splittings in K/sup -/p. -->. K/sup -/. pi. /sup +/n at 11 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Honma, A.K.

    1980-11-01

    The results from a high-statistics study of K..pi.. elastic scattering in the reaction K/sup -/p ..-->.. K/sup -/..pi../sup +/n are presented. The data for this analysis are taken from an 11-GeV/c K/sup -/p experiment performed on the Large Aperture Solenoidal Spectrometer (LASS) facility at the Stanford Linear Accelerator Center (SLAC). By selecting the very forward produced K/sup -/..pi../sup +/ events, a sample consisting of data for the K..pi.. ..-->.. K..pi.. elastic scattering reaction was extracted. The angular distribution for this meson-meson scattering is studied by use of both a spherical harmonic moments analysis and a partial-wave analysis (PWA). The previously established leading natural spin-parity strange meson resonances (the J/sup P/ = 1/sup -/ K*(895), the 2/sup +/ K*(1430), and the 3/sup -/ K*(1780)) are observed in the results from both the moments analysis and the PWA. In addition, evidence for a new spin 4/sup -/ K* resonance with a mass of 2080 MeV and a width of about 225 MeV is presented. The results from the PWA confirm the existence of a 0/sup +/ kappa (1490) and propose the existence of a second scalar meson resonance, the 0/sup +/ kappa' (1900). Structure in the P-wave amplitude indicates resonance behavior in the mass region near 1700 MeV. In two of the four ambiguous solutions for the mass region above 1800 MeV, there is strong evidence for another P-wave resonant structure near 2100 MeV. The observed strange meson resonances are found to have a natural interpretation in terms of states predicted by the quark model. In particular, the mass splittings of the leading trajectory natural spin-parity strange meson states and the mass splittings between the spin-orbit triplet states are discussed. 59 figures, 17 tables.

  20. Exotic meson spectroscopy with CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Adams, G.; Napolitano, J. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The identification and study of mesons with explicit gluonic degrees of freedom will provide major constraints on nonperturbative QCD and models thereof. CLAS will provide a unique opportunity for studying these resonances by measuring photoproduction of multi-meson final states.

  1. About oscillations in the system of K0 mesons

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2011-01-01

    This work considers K 0 -, K 0 bar - meson mixings and oscillations via K 1 0 , K 2 0 - meson states at strangeness violation by the weak interactions and K 1 0 -, K 2 0 - meson mixings and oscillations via K S -, K L - meson states at CP violation by the weak interactions without and with taking into account decay widths. We work in the framework of the masses mixing scheme. It is shown that K 1 0 -(K S -) meson states appear at big distances from the K 0 -mesons source after their decays (τ L ≥ τ S (τ 2 ≥τ 1 )) due to oscillations of residual K 2 0 (K L ) mesons and then again we see short-living K 1 0 (K S ) mesons. It is implied that K L ↔K S meson oscillations are absent. The case is also considered when at CP violation unitarity is violated, but orthogonality of K S , K L states remains. The general expressions for probabilities of meson oscillations (transitions) are given

  2. Exclusive φ meson production in HERMES

    International Nuclear Information System (INIS)

    Golembiovskaya, Mayya

    2014-03-01

    In the present work exclusive φ meson leptoproduction at HERMES experiment in DESY was studied using the data collected at HERA accelerator in the period from 1998 till 2000 and from 2006 till 2007 years. In the analysis unpolarized and longitudinally polarized hydrogen and deuteron targets were used, the beam consisted of longitudinally polarized leptons. Via measurement of the angular and momentum distribution of the φ meson decay products 23 spin density matrix elements (SDMEs) for the φ meson were obtained. The number of SDMEs was defined by the experiment conditions, e.g. by the beam and target polarization directions. For the mentioned time period φ meson SDMEs were defined at HERMES for the first time. The quantities U 1 , U 2 and U 3 which can be used to check presence of unnatural parity exchange (UPE) mechanism in phi meson production were calculated from SDMEs. All the results were obtained in 3 kinematic bins of Q 2 , 4 kinematic bins of t' and for the integrated kinematics. No statistically significant difference between the results for hydrogen and deuteron targets was observed. The UPE quantities were found to be zero within 2 σ for the integrated kinematics, indicating negligible contribution of UPE for the φ meson production which is in agreement with theory predictions. The test of s-channel helicity conservation hypothesis via comparison of corresponding SDME values showed helicity conservation for the φ meson production.

  3. Exclusive φ meson production in HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Golembiovskaya, Mayya

    2014-03-15

    In the present work exclusive φ meson leptoproduction at HERMES experiment in DESY was studied using the data collected at HERA accelerator in the period from 1998 till 2000 and from 2006 till 2007 years. In the analysis unpolarized and longitudinally polarized hydrogen and deuteron targets were used, the beam consisted of longitudinally polarized leptons. Via measurement of the angular and momentum distribution of the φ meson decay products 23 spin density matrix elements (SDMEs) for the φ meson were obtained. The number of SDMEs was defined by the experiment conditions, e.g. by the beam and target polarization directions. For the mentioned time period φ meson SDMEs were defined at HERMES for the first time. The quantities U{sub 1}, U{sub 2} and U{sub 3} which can be used to check presence of unnatural parity exchange (UPE) mechanism in phi meson production were calculated from SDMEs. All the results were obtained in 3 kinematic bins of Q{sup 2}, 4 kinematic bins of t' and for the integrated kinematics. No statistically significant difference between the results for hydrogen and deuteron targets was observed. The UPE quantities were found to be zero within 2 σ for the integrated kinematics, indicating negligible contribution of UPE for the φ meson production which is in agreement with theory predictions. The test of s-channel helicity conservation hypothesis via comparison of corresponding SDME values showed helicity conservation for the φ meson production.

  4. Semileptonic decays of B mesons into excited charm mesons: leading order and 1/mc contributions

    International Nuclear Information System (INIS)

    Mannel, T.

    1994-01-01

    We use the heavy quark effective theory to investigate the form factors that describe the semileptonic decays of a B meson into excited daughter mesons. For an excited daughter meson with charm, a single form factor is needed at leading order, while five form factors and two dimensionful constants are needed to order 1/m c in the heavy quark expansion. For non-charmed final states, a total of four form factors are needed at leading order. For the process B→D(*)Xlν, four form factors are also needed at leading order. (orig.)

  5. Discussion of the 3P0 model applied to the decay of mesons into two mesons

    International Nuclear Information System (INIS)

    Bonnaz, R.; Silvestre-Brac, B.

    1999-01-01

    The 3 P 0 model for the decay of a meson into two mesons is revisited. In particular, the formalism is extended in order to deal with an arbitrary form for the creation vertex and with the exact meson wave functions. A careful analysis of both effects is performed and discussed. The model is then applied to a large class of transitions known experimentally. Two types of quark-antiquark potentials have been tested and compared. (author)

  6. Production of excited charmed mesons at LEP

    CERN Document Server

    Abbaneo, D

    2000-01-01

    Studies od the production of orbitally excited charmed and charmed strange mesons in e+e- collisions, performed by the LEP collaborations are reviewed. Measurements of the production rates of orbitally excited charmed mesons in semileptonic b decays are presented. Searches for charmed meson radial excitations are also briefly discussed.

  7. Hard electroproduction of hybrid mesons

    International Nuclear Information System (INIS)

    Anikin, I.V.; LPT Universite Paris-Sud, Orsay; Szymanowski, L.; Teryaev, O.V.; ); Wallon, S.

    2005-01-01

    We estimate the sizeable cross section for deep exclusive electroproduction of an exotic J PC = 1 -+ hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson electroproduction, i.e. as 1/Q 2 . This is due to the non-vanishing leading twist distribution amplitude for the hybrid meson, which may be normalized thanks to its relation to the energy momentum tensor and to the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in as and we explore the consequences of fixing the renormalization scale ambiguity through the BLM procedure. (author)

  8. S-wave spectroscopy and Hyperne splitting of Bc meson

    International Nuclear Information System (INIS)

    Shah, Manan; Bhavsar, Tanvi; Vinodkumar, P.C.

    2017-01-01

    B c meson is the only heavy meson with two open flavours. This system is also interesting because they cannot annihilate into gluons. The mass spectra and hyperfine splitting of the B c meson are investigated in the Dirac framework with the help of linear + constant potential. The spin-spin interactions are also included in the calculation of the pseudoscalar and vector meson masses. Our computed result for the B c meson are in very good agreement with experimental results as well as other available theoretical result. Decay properties are also interesting because it is expected that decay of B c meson occur in to neutral meson. We hope our theoretical results are helpful for future experimental observations

  9. Three Body Decays of D0 and DS Mesons

    International Nuclear Information System (INIS)

    Palano, Antimo

    2001-01-01

    New generation experiments are providing large data sets for charm physics with statistics which supersede most previous measurements. The Dalitz plot analyses of 3-body charm decays have been performed in the past but these new large and clean samples will allow high precision measurements that were never before possible. The Dalitz plot analysis of three-body decays is a relatively new technique in development for charm physics studies. This method of analysis is the most complete way of analyzing the data since it allows measurement of both decay amplitudes and phases. The final state is the result of the interference of all intermediate states. The significant results provided by these studies are: (1) Accurate measurements of branching fractions; (2) A study of Final State Interactions; (3) A study of CP violation in rates and decay amplitudes; and (4) New input to several old unsolved problems in light meson spectroscopy, in particular to the scalar mesons puzzle. Factorization models assume the weak decay amplitudes to be real. The fact that the observed amplitudes have a relative complex phase is a consequence of final state interaction. CP violation is expected to be small in charm decays (∼ 10 -3 ) [1]. Two amplitudes with different phases are needed: Ae iδA + Be iδB . In singly Cabibbo-suppressed decays penguin terms may provide a weak phase, while Final State Interactions provide a strong phase shift. Under CP the weak phases change sign but the strong ones do not. Any difference between D and (bar D) in the Dalitz plot would be evidence for CP violation. Throughout this paper charge conjugate modes, where not explicit, are implied

  10. Experiments on eta-meson production

    International Nuclear Information System (INIS)

    Peng, J.C.

    1985-01-01

    Following a review of some highlights of eta-meson characteristics, the status of eta-meson production experiments is reviewed. The physics motivations and first results of two LAMPF experiments on (π,eta) reactions are discussed. Possible future experiments are also discussed. 42 refs., 12 figs., 4 tabs

  11. High transverse momentum phenomena involving π and eta mesons

    International Nuclear Information System (INIS)

    Buesser, F.W.; Camilleri, L.; Di Lella, L.

    1975-01-01

    The inclusive production of π and eta mesons at theta/sub cm/ = 90 0 was measured for proton-proton collisions at five center-of-mass energies between 23.5 and 62.4 GeV. The momentum correlation of charged particles emitted together with a large transverse momentum π was also studied using two magnetic spectrometers each centered at theta/sub cm/ = 90 0

  12. Antiproton-proton annihilation into light neutral meson pairs within an effective meson theory

    Science.gov (United States)

    Wang, Ying; Bystritskiy, Yury M.; Ahmadov, Azad I.; Tomasi-Gustafsson, Egle

    2017-08-01

    Antiproton-proton annihilation into light neutral mesons in the few GeV energy domain is investigated in view of a global description of the existing data and predictions for future work at the Antiproton Annihilation at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR). An effective meson model earlier developed, with mesonic and baryonic degrees of freedom in s , t , and u channels, is applied here to π0π0 production. Form factors with logarithmic s and t (u ) dependencies are applied. A fair agreement with the existing angular distributions is obtained. Applying SU(3) symmetry, it is straightforward to recover the angular distributions for π0η and η η production in the same energy range. A good agreement is generally obtained with all existing data.

  13. Meson 2000 Conference Summary lite

    International Nuclear Information System (INIS)

    Barnes, T.

    2000-01-01

    This short contribution is a late MESON2000 conference summary. As appropriate for the 600th anniversary of the Jagiellonian University, it begins with a brief summary of the last 600 years of European history and its place in hadron physics. Next a ''physicist chirality'' order parameter PC is introduced. When applied to MESON2000 plenary speakers this order parameter illustrates the separation of hadron physicists into disjoint communities. The individual plenary talks in MESON2000 are next sorted according to the subconference associated with each of the 36 plenary speakers. Finally, I conclude with a previously unreported Feynman story regarding the use of models in hadron physics. (author)

  14. On conditional scalar increment and joint velocity-scalar increment statistics

    International Nuclear Information System (INIS)

    Zhang Hengbin; Wang Danhong; Tong Chenning

    2004-01-01

    Conditional velocity and scalar increment statistics are usually studied in the context of Kolmogorov's refined similarity hypotheses and are considered universal (quasi-Gaussian) for inertial-range separations. In such analyses the locally averaged energy and scalar dissipation rates are used as conditioning variables. Recent studies have shown that certain local turbulence structures can be captured when the local scalar variance (φ 2 ) r and the local kinetic energy k r are used as the conditioning variables. We study the conditional increments using these conditioning variables, which also provide the local turbulence scales. Experimental data obtained in the fully developed region of an axisymmetric turbulent jet are used to compute the statistics. The conditional scalar increment probability density function (PDF) conditional on (φ 2 ) r is found to be close to Gaussian for (φ 2 ) r small compared with its mean and is sub-Gaussian and bimodal for large (φ 2 ) r , and therefore is not universal. We find that the different shapes of the conditional PDFs are related to the instantaneous degree of non-equilibrium (production larger than dissipation) of the local scalar. There is further evidence of this from the conditional PDF conditional on both (φ 2 ) r and χ r , which is largely a function of (φ 2 ) r /χ r , a measure of the degree of non-equilibrium. The velocity-scalar increment joint PDF is close to joint Gaussian and quad-modal for equilibrium and non-equilibrium local velocity and scalar, respectively. The latter shape is associated with a combination of the ramp-cliff and plane strain structures. Kolmogorov's refined similarity hypotheses also predict a dependence of the conditional PDF on the degree of non-equilibrium. Therefore, the quasi-Gaussian (joint) PDF, previously observed in the context of Kolmogorov's refined similarity hypotheses, is only one of the conditional PDF shapes of inertial range turbulence. The present study suggests that

  15. Search for Scalar Top and Scalar Bottom Quarks at $\\sqrt{s}$ = 189 GeV at LEP

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Blobel, V.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hoch, M.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1999-01-01

    Searches for a scalar top quark and a scalar bottom quark have been performed using a data sample of 182 pb-1 at a centre-of-mass energy of 189 GeV collected with the OPAL detector at LEP. No evidence for a signal was found. The 95% confidence level lower limit on the scalar top quark mass is 90.3 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. In the worst case, when the scalar top quark decouples from the Z boson, the lower limit is 87.2 GeV. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark decaying into a bottom quark, a charged lepton and a scalar neutrino has also been studied. From a search for the scalar bottom quark, a mass limit of 88.6 GeV was obtained if the mass difference between the scalar bottom...

  16. First lattice calculation of the B-meson binding and kinetic energies

    CERN Document Server

    Crisafulli, M; Martinelli, G; Sachrajda, Christopher T C

    1995-01-01

    We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy -\\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. This calculation has required the non-perturbative subtraction of the power divergences present in matrix elements of the Lagrangian operator \\bar h D_4 h and of the kinetic energy operator \\bar h \\vec D^2 h. The non-perturbative renormalisation of the relevant operators has been implemented by imposing suitable renormalisation conditions on quark matrix elements, in the Landau gauge. Our numerical results have been obtained from several independent numerical simulations at \\beta=6.0 and 6.2, and using, for the meson correlators, the results obtained by the APE group at the same values of \\beta. Our best estimate, obtained by combining results at different values of \\beta, is \\labar =190 \\err{50}{30} MeV. For the \\overline{MS} running mass, we obtain \\overline {m}_b(\\overline {m}_b) =4.17 \\pm 0.06 GeV, in reasonable agreement with previous...

  17. The phi-meson and Chiral-mass-meson production in heavy-ion collisions as potential probes of quark-gluon-plasma and Chiral symmetry transitions

    Science.gov (United States)

    Takahashi, Y.; Eby, P. B.

    1985-01-01

    Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.

  18. The η' meson from lattice QCD

    International Nuclear Information System (INIS)

    Jansen, K.; Michael, C.; Urbach, C.

    2008-04-01

    We study the flavour singlet pseudoscalar mesons from first principles using lattice QCD. With N f =2 flavours of light quark, this is the so-called η 2 meson and we discuss the phenomenological status of this. Using maximally twisted-mass lattice QCD, we extract the mass of the η 2 meson at two values of the lattice spacing for lighter quarks than previously discussed in the literature. We are able to estimate the mass value in the limit of light quarks with their physical masses. (orig.)

  19. Meson spectroscopy experiment at KEK - E/iota puzzle

    International Nuclear Information System (INIS)

    Tsuru, Tsuneaki

    1985-01-01

    Physics interests at the KEK (National Laboratory for High Energy Physics) are (1) search for exotic mesons such as glueballs (gg), meiktons (q anti q g) and multiquark states (q sup(2 - )q 2 ), (2) search for missing ordinary mesons (q anti q) and confirmation of unestablished mesons, and (3) new informations of quark contents of mesons, mixing angles of SU(3) singlet-octet and tests of conservations law. Special interest is in search for exotics such as glueballs and meiktons. (2) is a so-called meson spectroscopy experiment. This is important not only in itself but also in identifying newly discovered states as exotics because exotics have often same quantum numbers as ordinary mesons. Contents are the following: glueballs and E/iota puzzles, spectrometer system, experiments, performance of the spectrometer, physics outputs, E/iota puzzles and πI experiment, future plans. (Mori, K.)

  20. Study of the doubly-charmed decays of B mesons with the experiment BABAR in SLAC; Etude des desintegrations doublement charmees des mesons B avec l'experience BABAR a SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Robbe, P

    2002-04-01

    The BABAR experiment at SLAC (Stanford linear acceleration center) has been studying since 1999 B meson decays from e{sup +}e{sup -} collisions at the {gamma}(4S) resonance. The first goal of the collaboration was to measure the sin (2{beta}) CP-violation parameter within the standard model. This measurement requires to know with precision the absolute length scale of the detector. A method to test this scale was developed using nuclear interactions in the beam-pipe material. The longitudinal length scale was then determined at the 1 % level precision. The systematic error associated with length measurement in the detector concerning B meson lifetime and B meson oscillation frequency is then negligible with respect to the other errors. The K meson content of B decays is a key ingredient of the sin (2{beta}) measurement and is used to tag the flavour of the other B in events containing a B decaying to a CP eigenstate. The K charge is correlated to the B flavour. Wrong sign kaons, which can dilute B tagging, can come from wrong sign D decays (B{yields} DX). Doubly charmed decays (B{yields} D{sup (*)}D-bar{sup (*)}) K are one possibility to produce wrong sign D decays. The twenty-two decay modes are reconstructed exclusively. The total branching fraction is measured with enough precision to establish that B{yields} D{sup (*)}D-bar{sup (*)} K decays are not the only source of wrong sign D mesons in B decays. (author)

  1. Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Banik, Amit; Pandey, Madhurima; Majumdar, Debasish [Saha Institute of Nuclear Physics, HBNI, Astroparticle Physics and Cosmology Division, Kolkata (India); Biswas, Anirban [Harish Chandra Research Institute, Allahabad (India)

    2017-10-15

    We explore a two component dark matter model with a fermion and a scalar. In this scenario the Standard Model (SM) is extended by a fermion, a scalar and an additional pseudo scalar. The fermionic component is assumed to have a global U(1){sub DM} and interacts with the pseudo scalar via Yukawa interaction while a Z{sub 2} symmetry is imposed on the other component - the scalar. These ensure the stability of both dark matter components. Although the Lagrangian of the present model is CP conserving, the CP symmetry breaks spontaneously when the pseudo scalar acquires a vacuum expectation value (VEV). The scalar component of the dark matter in the present model also develops a VEV on spontaneous breaking of the Z{sub 2} symmetry. Thus the various interactions of the dark sector and the SM sector occur through the mixing of the SM like Higgs boson, the pseudo scalar Higgs like boson and the singlet scalar boson. We show that the observed gamma ray excess from the Galactic Centre as well as the 3.55 keV X-ray line from Perseus, Andromeda etc. can be simultaneously explained in the present two component dark matter model and the dark matter self interaction is found to be an order of magnitude smaller than the upper limit estimated from the observational results. (orig.)

  2. Lattice study of D and D{sub s} meson form factors with twisted boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning; Wu, Ya-Jie [Xi' an Technological University, School of Science, Xi' an (China)

    2017-03-15

    We present results on the D and D{sub s} meson electromagnetic form factors using N{sub f} = 2 twisted mass Lattice Quantum Chromodynamics (LQCD) gauge configurations. In this simulation, to access spatial components of momenta that are different from the integer multiples of 2π/L, we apply twisted boundary conditions to compute corresponding correlation functions. Electromagnetic form factors with more small four-momentum transfer are determined, and further we fit the electromagnetic charge radius for D and D{sub s} mesons, respectively. (orig.)

  3. Fermion-scalar conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Kos, Filip [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States)

    2016-04-13

    We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

  4. Light Vector Mesons in the Nuclear Medium

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Michael; Nasseripour, Rakhsha; Weygand, Dennis; Djalali, Chaden; Tur, Clarisse; Mosel, Ulrich; Muehlich, Pascal; Adams, Gary; Amaryan, Moscov; Amaryan, Moskov; Ambrozewicz, Pawel; Anghinolfi, Marco; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, James; Baltzell, Nathan; Barrow, Steve; Battaglieri, Marco; Bedlinskiy, Ivan; Bektasoglu, Mehmet; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Biselli, Angela; Blaszczyk, Lukasz; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Burkert, Volker; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Carnahan, Bryan; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crannell, Hall; Crede, Volker; Cummings, John; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Denizli, Haluk; Dennis, Lawrence; Deur, Alexandre; Dharmawardane, Kahanawita; Dickson, Richard; Dodge, Gail; Doughty, David; Dugger, Michael; Dytman, Steven; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feldman, Gerald; Feuerbach, Robert; Fradi, Ahmed; Funsten, Herbert; Garcon, Michel; Gavalian, Gagik; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gordon, Christopher; Gothe, Ralf; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hadjidakis, Cynthia; Hafidi, Kawtar; Hakobyan, Hayk; Hakobyan, Rafael; Hanretty, Charles; Hardie, John; Hassall, Neil; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Kellie, James; Khandaker, Mahbubul; Khetarpal, Puneet; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Klimenko, Alexei; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Li, Ji; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McAleer, Simeon; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mehrabyan, Surik; Melone, Joseph; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Minehart, Ralph; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Mueller, James; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kijun; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Pozdnyakov, Sergey; Preedom, Barry; Price, John; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Riccardi, Gregory; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Ronchetti, Federico; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinsky, Aleksey; Stepanyan, Stepan; Stepanyan, Samuel; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Todor, Luminita; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Watts, Daniel; Weinstein, Lawrence; Williams, Michael; Wolin, Elliott; Yegneswaran, Amrit; Zana, Lorenzo; Zhang, Bin; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen

    2008-07-01

    The light vector mesons ($\\rho$, $\\omega$, and $\\phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $\\rho$ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to $e^{+}e^{-}$. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The $\\rho$ meson mass spectrum was extracted after the $\\omega$ and $\\phi$ signals were removed in a nearly model-independent way. Comparisons were made between the $\\rho$ mass spectra from the heavy targets ($A > 2$) with the mass spectrum extracted from the deuterium target. With respect to the $\\rho$-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body eff

  5. Meson spectroscopy, quark mixing and quantum chromodynamics

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1979-01-01

    A semiphenomenological theory of mass spectrum for mesons, consisting of a quark-antiquark pair, is presented. Relativistic kinematical effects of the quark mass differences, the SU(3)-symmetry breaking in slopes of the Regge trajectories and in radially excited states are taken into account. The OZI-rule breaking is taken into account by means of the mixing matrix for the quark wave functions, whose form is suggested by the quantum chromodynamics. A simple extrapolation of expression, given by the quantum chromodynamics from the ''asymptotic freedom'' region to the ''infrared slavery'' region is proposed to describe the dependence of the mixing parameters on the meson masses. To calculate masses and mixing angles for pseudoscalar mesons a condition is proposed that the pion mass is minimal. In this situation the eta-meson mass is near the maximal value. The predictions of the theory for masses and mixing angles of the mesons are in good agreement with the experiment

  6. Rapidity resummation for B-meson wave functions

    Directory of Open Access Journals (Sweden)

    Shen Yue-Long

    2014-01-01

    Full Text Available Transverse-momentum dependent (TMD hadronic wave functions develop light-cone divergences under QCD corrections, which are commonly regularized by the rapidity ζ of gauge vector defining the non-light-like Wilson lines. The yielding rapidity logarithms from infrared enhancement need to be resummed for both hadronic wave functions and short-distance functions, to achieve scheme-independent calculations of physical quantities. We briefly review the recent progress on the rapidity resummation for B-meson wave functions which are the key ingredients of TMD factorization formulae for radiative-leptonic, semi-leptonic and non-leptonic B-meson decays. The crucial observation is that rapidity resummation induces a strong suppression of B-meson wave functions at small light-quark momentum, strengthening the applicability of TMD factorization in exclusive B-meson decays. The phenomenological consequence of rapidity-resummation improved B-meson wave functions is further discussed in the context of B → π transition form factors at large hadronic recoil.

  7. Charged track multiplicity in B meson decay

    International Nuclear Information System (INIS)

    Brandenburg, G.; Ershov, A.; Gao, Y. S.; Kim, D. Y.-J.; Wilson, R.; Browder, T. E.; Li, Y.; Rodriguez, J. L.; Yamamoto, H.; Bergfeld, T.

    2000-01-01

    We have used the CLEO II detector to study the multiplicity of charged particles in the decays of B mesons produced at the Υ(4S) resonance. Using a sample of 1.5x10 6 B meson pairs, we find the mean inclusive charged particle multiplicity to be 10.71±0.02 -0.15 +0.21 for the decay of the pair. This corresponds to a mean multiplicity of 5.36±0.01 -0.08 +0.11 for a single B meson. Using the same data sample, we have also extracted the mean multiplicities in semileptonic and nonleptonic decays. We measure a mean of 7.82±0.05 -0.19 +0.21 charged particles per BB(bar sign) decay when both mesons decay semileptonically. When neither B meson decays semileptonically, we measure a mean charged particle multiplicity of 11.62±0.04 -0.18 +0.24 per BB(bar sign) pair. (c) 2000 The American Physical Society

  8. Searches for scalar top and scalar bottom quarks at LEP2

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Bazarko, A O; Becker, U; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Hühn, T; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Whelan, E P; Williams, M I; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Ealet, A; Fouchez, D; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Serin, L; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Bettarini, S; Bozzi, C; Calderini, G; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Steinberger, Jack; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Fabbro, B; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Foss, J; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    Searches for scalar top and bottom quarks have been performed with data collected by the ALEPH detector at LEP. The data sample consists of 21.7 pb^-1 taken at sqrt{s} = 161, 170, and 172~GeV and 5.7 pb^-1 taken at sqrt{s} = 130 and 136~GeV. No evidence for scalar top quarks or scalar bottom quarks was found in the channels stop --> c chi, stop --> b l snu, and sbottom --> b chi. For the channel stop --> c chi a limit of 67 GeV/c^2 has been set on the scalar top quark mass, independent of the mixing angle between the supersymmetric partners of the left and right-handed states of the top quark. This limit assumes a mass difference between the stop and the chi of at least 10 GeV/c^2. For the channel stop --> b l snu the mixing-angle independent scalar top limit is 70 GeV/c^2, assuming a mass difference between the stop and the snu of at least 10 GeV/c^2. For the channel sbottom --> b chi, a limit of 73 GeV/c^2 has been set on the mass of the supersymmetric partner of the left-handed state of the bottom quark. T...

  9. Further evidence for magnetic charge from meson spectroscopy

    International Nuclear Information System (INIS)

    Akers, D.

    1987-01-01

    Recently evidence was presented for the existence of magnetic charge from Zeeman splitting in meson states. The model by Akers predicted the existence of a new eta meson at 1814 MeV with I/sup G/ (J/sup PC/) = O + (O -+ ). Experimental evidence for this new meson is cited and discussed

  10. Scalar potentials and the Dirac equation

    International Nuclear Information System (INIS)

    Bergerhoff, B.; Soff, G.

    1994-01-01

    The Dirac equation is solved for various types of scalar potentials. Energy eigenvalues and normalized bound-state wave functions are calculated analytically for a scalar 1/r-potential as well as for a mixed scalar and Coulomb 1/r-potential. Also continuum wave functions for positive and negative energies are derived. Similarly, we investigate the solutions of the Dirac equation for a scalar square-well potential. Relativistic wave functions for scalar Yukawa and exponential potentials are determined numerically. Finally, we also discuss solutions of the Dirac equation for scalar linear and quadratic potentials which are frequently used to simulate quark confinement. (orig.)

  11. The Meson Spectroscopy Program at the Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, Alessandro [Istituto Nazionale di Fisica Nucleare (INFN), Torino (Italy). et al.

    2015-06-01

    The experimental techniques that will be applied by the next generation meson spectroscopy experiments at JLab are described. For the first time, these experiments will be able to exploit the features of a photon beam of unprecedented intensity and momentum resolution, that will allow to perform precision studies of meson states with masses below 3 GeV/c2. Photon induced reactions will enhance the production of spin-1 mesons, that are of particular interest according to the most recent Lattice QCD calculations of the lightest exotic hybrid meson.

  12. Mass spectrum of 1-+ exotic mesons from lattice QCD

    International Nuclear Information System (INIS)

    Cook, M. S.; Fiebig, H. R.

    2006-01-01

    Time correlation functions of a hybrid exotic meson operator, with J PC =1 -+ , generated in quenched lattice QCD are subjected to a (Bayesian) maximum entropy analysis. Five distinct spectral levels are uncovered. Their extrapolation into the physical pion mass region suggests a possible relationship to experimentally known states π 1 (1400) and π 1 (1600), and also to a state in the 2 GeV region carrying the same quantum numbers

  13. Meson facility. Powerful new research tool

    International Nuclear Information System (INIS)

    Lobashev, V.M.; Tavkhelidze, A.N.

    A meson facility is being built at the Institute of Nuclear Research, USSR Academy of Sciences, in Troitsk, where the Scientific Center, USSR Academy of Sciences is located. The facility will include a linear accelerator for protons and negative hydrogen ions with 600 MeV energy and 0.5-1 mA beam current. Some fundamental studies that can be studied at a meson facility are described in the areas of elementary particles, neutron physics, solid state physics, and applied research. The characteristics of the linear accelerator are given and the meson facility's experimental complex is described

  14. Search for radiative B meson decays

    International Nuclear Information System (INIS)

    Lesiak, T.; Muryn, B.; Nowak, G.; Antreasyan, D.; Irion, J.; McBride, P.; Strauch, K.; Bartels, H.W.; Bienlein, J.K.; Brockmueller, K.; Jakubowski, Z.; Karch, K.; Kloiber, T.; Koch, W.; Maschmann, W.; Meyer, H.; Skwarnicki, T.; Trost, H.J.; Voigt, A.; Wachs, K.; Zschorsch, P.; Besset, D.; Cabenda, R.; Cowan, R.; Bieler, C.; Graaf, K.; Heinsius, F.H.; Kiel, T.; Krueger, S.; Lekebusch, R.; Nernst, R.; Sievers, D.; Stock, V.; Strohbusch, U.; Bloom, E.D.; Clare, R.; Cooper, S.; Fairfield, K.; Fridman, A.; Gaiser, J.; Gelphman, D.; Godfrey, G.; Hofstadter, R.; Kirkbride, I.; Lee, R.; Leffler, S.; Litke, A.M.; Lockman, W.; Lowe, S.; Niczyporuk, B.; Pollock, B.; Schwarz, A.; Tompkins, J.; Van Uitert, B.; Wacker, K.; Brock, I.; Engler, A.; Kraemer, R.W.; Marlow, D.; Messing, F.; Prindle, D.; Renger, B.; Rippich, C.; Vogel, H.; Cavalli-Sforza, M.; Coyne, D.; Folger, G.; Glaser, G.; Kobel, M.; Lurz, B.; Schuette, J.; Volland, U.; Wegener, H.; Janssen, H.; Koenig, A.C.; Metzger, W.J.; Reidenbach, M.; Schotanus, J.; Walle, R.T. van de; Walk, W.; Keh, S.; Kilian, H.; Koenigsmann, K.; Scheer, M.; Schmitt, P.; Marsiske, H.; Williams, D.A.

    1992-01-01

    The Crystal Ball detector at the e + e - storage ring DORIS-II has been used to search for radiative B meson decays, especially of the type b→sγ. No mono-energetic γ-lines have been found in the inclusive photon spectrum from Υ(4S) decays, and upper limits are obtained for radiative decays of B mesons to various strange mesons and to the D*. Integrating the photon spectrum over the corresponding energy range, we find BR(B→γX) -3 , at 90% confidence level for the mass range 892 MeV≤M X ≤2045 MeV. (orig.)

  15. Search for radiative B meson decays

    International Nuclear Information System (INIS)

    Lesiak, T.; Muryn, B.; Nowak, G.; Antreasyan, D.; Irion, J.; McBride, P.; Strauch, K.; Bartels, H.W.; Bienlein, J.K.; Brockmueller, K.; Jakubowski, Z.; Karch, K.; Kloiber, T.; Koch, W.; Maschmann, W.; Meyer, H.; Skwarnicki, T.; Trost, H.J.; Voigt, A.; Wachs, K.; Zschorsch, P.; Besset, D.; Cabenda, R.; Cowan, R.; Bieler, C.; Graaf, K.; Heinsius, F.H.; Kiel, T.; Krueger, S.; Lekebusch, R.; Nernst, R.; Sievers, D.; Stock, V.; Strohbusch, U.; Bloom, E.D.; Clare, R.; Cooper, S.; Fairfield, K.; Fridman, A.; Gaiser, J.; Gelphman, D.; Godfrey, G.; Hofstadter, R.; Kirkbride, I.; Lee, R.; Leffler, S.; Litke, A.M.; Lockman, W.; Lowe, S.; Niczyporuk, B.; Pollock, B.; Schwarz, A.; Tompkins, J.; Van Uitert, B.; Wacker, K.; Brock, I.; Engler, A.; Kraemer, R.W.; Marlow, D.; Messing, F.; Prindle, D.; Renger, B.; Rippich, C.; Vogel, H.; Cavalli-Sforza, M.; Coyne, D.; Folger, G.; Glaser, G.; Kobel, M.; Lurz, B.; Schuette, J.; Volland, U.; Wegener, H.; Janssen, H.; Koenig, A.C.; Metzger, W.J.; Reidenbach, M.; Schotanus, J.; Walle, R.T. van de; Walk, W.; Keh, S.; Kilian, H.; Koenigsmann, K.; Scheer, M.; Schmitt, P.; Marsiske, H.; Peck, C.; Porter, F.C.; Ratoff, P.; Williams, D.A.

    1991-07-01

    The Crystal Ball detector at the ε + ε - storage ring DORIS-II has been used to search for radiative B meson decays, especially of the type b→sγ. No mono-energetic γ-lines have been found in the inclusive photon spectrum from Υ(4S) decays, and upper limits are obtained for radiative decays of B mesons to various strange mesons and to the D*. Integrating the photon spectrum over the corresponding energy range, we find BR(B→γX) -3 at 90% confidence level for the mass range 892 MeV≤M X ≤2045 MeV. (orig.)

  16. Quantum chromodynamics with infinite number of vector mesons

    International Nuclear Information System (INIS)

    Geshkenbejn, B.V.

    1988-01-01

    Families of vector mesons Ρ,Ψ,Υ, contain an infinite number of resonances with gradually increasing widths are considered. The asymptotic freedom requirement involves a relationship between the electric width of k-th resonance and its mass M k derivative over the number k. It is shown that for the families of Ψ and Υ mesons the moment from experimental function R(s) is equal to the sum of the moment from a bare quark loop and the edge term which stems from replacing of summation by integration. These equalities are fulfilled up to 1% for 60 moments in the Ψ-meson family and up to 2% for 96 moments in the Υ-meson family. The electronic widths of the resonances and the Ρ-meson mass are calculated. 7 refs

  17. Cosmic variance in inflation with two light scalars

    Energy Technology Data Exchange (ETDEWEB)

    Bonga, Béatrice; Brahma, Suddhasattwa; Deutsch, Anne-Sylvie; Shandera, Sarah, E-mail: bpb165@psu.edu, E-mail: suddhasattwa.brahma@gmail.com, E-mail: asdeutsch@psu.edu, E-mail: shandera@gravity.psu.edu [Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, University Park, PA, 16802 (United States)

    2016-05-01

    We examine the squeezed limit of the bispectrum when a light scalar with arbitrary non-derivative self-interactions is coupled to the inflaton. We find that when the hidden sector scalar is sufficiently light ( m ∼< 0.1 H ), the coupling between long and short wavelength modes from the series of higher order correlation functions (from arbitrary order contact diagrams) causes the statistics of the fluctuations to vary in sub-volumes. This means that observations of primordial non-Gaussianity cannot be used to uniquely reconstruct the potential of the hidden field. However, the local bispectrum induced by mode-coupling from these diagrams always has the same squeezed limit, so the field's locally determined mass is not affected by this cosmic variance.

  18. Regulating the infrared by mode matching: a massless scalar in expanding spaces with constant deceleration

    NARCIS (Netherlands)

    Janssen, T.M.; Prokopec, T.

    2011-01-01

    In this paper we consider a massless scalar field, with a possible coupling ξ to the Ricci scalar in a D dimensional Friedmann-Lemaître-Robertson-Walker space-time with a constant deceleration parameter q=ϵ-1, ϵ=-H˙/H2. Correlation functions for the Bunch-Davies vacuum of such a theory have long

  19. Spontaneous Scalarization: Dead or Alive?

    Science.gov (United States)

    Berti, Emanuele; Crispino, Luis; Gerosa, Davide; Gualtieri, Leonardo; Horbatsch, Michael; Macedo, Caio; Okada da Silva, Hector; Pani, Paolo; Sotani, Hajime; Sperhake, Ulrich

    2015-04-01

    In 1993, Damour and Esposito-Farese showed that a wide class of scalar-tensor theories can pass weak-field gravitational tests and exhibit nonperturbative strong-field deviations away from General Relativity in systems involving neutron stars. These deviations are possible in the presence of ``spontaneous scalarization,'' a phase transition similar in nature to spontaneous magnetization in ferromagnets. More than twenty years after the original proposal, binary pulsar experiments have severely constrained the possibility of spontaneous scalarization occurring in nature. I will show that these experimental constraints have important implications for the torsional oscillation frequencies of neutron stars and for the so-called ``I-Love-Q'' relations in scalar-tensor theories. I will also argue that there is still hope to observe strong scalarization effects, despite the strong experimental bounds on the original mechanism. In particular, I will discuss two mechanisms that could produce strong scalarization in neutron stars: anisotropy and multiscalarization. This work was supported by NSF CAREER Award PHY-1055103.

  20. Is a charmed axial-vector meson already found

    International Nuclear Information System (INIS)

    Matsuda, S.

    1976-12-01

    A calculation is presented of the production rate via e + e - annihilation for a charmed p-wave meson of Jsup(P) = 1 + , based on a non-relativistic quark model of charmed hadrons. The results strongly suggest that the charmed axial-vector meson should be found copiously in association with a ground-state charmed meson. (author)

  1. Fock exchange in meson theories of nuclei

    International Nuclear Information System (INIS)

    Bolsterli, M.

    1986-01-01

    The Fock exchange term in meson field theories of nuclear systems is shown to arise from a two-loop ground-state self-energy diagram. Evaluation of this diagram gives the relativistic or semirelativistic analog of the Fock exchange energy; it differs from the nucleon-nucleon Fock energy in including retardation effects. In finite meson-field theories of nuclear systems, the variational nature of the meson-field analog of the Hartree-Fock energy functional can be further elucidated. 4 refs

  2. On some rare weak decays of vector mesons

    International Nuclear Information System (INIS)

    Kurdadze, L.M.; Silagadze, Z.K.

    2000-01-01

    Some semileptonic weak decays of vector mesons are considered in the framework of the most popular quark models. Two the most popular models go give more elaborated estimates for the vector meson semileptonic decay rates are used. Unfortunately the predicted branching ratios are too small to make a study of these decays realistic at meson factories under construction [ru

  3. Search and study of low-mass scalar mesons in the reaction np → npπ+π- at the impulse of neutron beam Pn=(5.20±0.12) GeV/c

    International Nuclear Information System (INIS)

    Troyan, Yu.A.; Arakelyan, S.G.; Belyaev, A.V.; Ierusalimov, A.P.; Plekhanov, E.B.; Troyan, A.Yu.

    2012-01-01

    The results of search and study of resonance effects in the system of π + π - from the reaction np → npπ + π - at the impulse of the quasimonochromatic neutrons P n = (5.20 ± 0.12) GeV/c from the data obtained in an exposure of the 1 m hydrogen bubble chamber of LHE (JINR) are presented. After supplementary sorting out the events where a secondary proton flies forward in the general c.m.s. of reaction (cos θ p * > 0) in the effective mass spectrum of π + π - - combinations, there were nine peculiarities found out at masses (350±3), (408±3), (489±3), (579±5), (676±7), (762±11), (878±7), (1036±13), (1170±11) MeV/c 2 with experimental widths not more than several tens of MeV/c 2 . The direct measurement of the spin of resonances was carried out. Also, other quantum numbers were obtained. All of these peculiarities have a similar set of quantum numbers I G (J PC ) = 0 + (0 ++ ). The sequence of scalar-isoscalar resonances f 0 (σ 0 ) with masses in the range of M ≤ 1200 MeV/c 2 was explored. The phenomenological dependence for the resonance mass on its number was found. This dependence covered not only resonances shown in this paper but also all those which are present in PDG tables with quantum numbers of f 0 (σ 0 )-mesons

  4. Rare meson decays into very light neutralinos

    Energy Technology Data Exchange (ETDEWEB)

    Dreiner, H.K.; Grab, S. [Bonn Univ. (Germany). Bethe Center for Theoretical Physics und Physikalisches Inst.; Koschade, D. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Physik; London Univ. (United Kingdom). Centre for Reserach in String Theory; Kraemer, M.; O' Leary, B. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Physik; Langenfeld, U. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2009-05-15

    We investigate the bounds on the mass of the lightest neutralino from rare meson decays within the MSSM with and without minimal flavor violation. We present explicit formulae for the two-body decays of mesons into light neutralinos and perform the first complete calculation of the loop-induced decays of kaons to pions and light neutralinos and B mesons to kaons and light neutralinos. We find that the supersymmetric branching ratios are strongly suppressed within the MSSM with minimal flavor violation, and that no bounds on the neutralino mass can be inferred from experimental data, i.e. a massless neutralino is allowed. The branching ratios for kaon and B meson decays into light neutralinos may, however, be enhanced when one allows for non-minimal flavor violation. We find new constraints on the MSSM parameter space for such scenarios and discuss prospects for future kaon and B meson experiments. Finally, we comment on the search for light neutralinos in monojet signatures at the Tevatron and at the LHC. (orig.)

  5. Meson exchange corrections in deep inelastic scattering on deuteron

    International Nuclear Information System (INIS)

    Kaptari, L.P.; Titov, A.I.

    1989-01-01

    Starting with the general equations of motion of the nucleons interacting with the mesons the one-particle Schroedinger-like equation for the nucleon wave function and the deep inelastic scattering amplitude with the meson-exchange currents are obtained. Effective pion-, sigma-, and omega-meson exchanges are considered. It is found that the mesonic corrections only partially (about 60%) restore the energy sum rule breaking because of the nucleon off-mass-shell effects in nuclei. This results contradicts with the prediction based on the calculation of the energy sum rule limited by the second order of the nucleon-meson vertex and static approximation. 17 refs.; 3 figs

  6. Unified Chiral models of mesons and baryons

    International Nuclear Information System (INIS)

    Mendez-Galain, R.; Ripka, G.

    1990-01-01

    Unified Chiral models of mesons and baryons are presented. Emphasis is placed on the underlying quark structure of hadrons including the Skyrmion. The Nambu Jona-Lasinio model with vector mesons is discussed

  7. Search for gluonic excitations in light unconventional mesons

    Energy Technology Data Exchange (ETDEWEB)

    Paul Eugenio

    2007-07-01

    Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenologicalmodels for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by a discussion of plans at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.

  8. Quark condensate contributions to the gluon self-energy and the ρ meson sum rule

    International Nuclear Information System (INIS)

    Steele, T.G.

    1989-01-01

    The operator-product expansion will be employed to obtain the lowest-order, quark condensate component of both the gluon self-energy and the ρ meson correlation function to all orders in the quark mass parameter. Field-theoretic aspects of the self-energy and correlation function will be considered, and physical effects to the quark condensate upon gluon mass generation will be examined. (orig.)

  9. Quantum hadrodynamic and nuclear matter

    International Nuclear Information System (INIS)

    Serot, B.D.

    1984-01-01

    The properties of infinite nuclear matter are studied in the model relativistic quantum field theory of Walecka. Neutral scalar and vector meson exchange reproduces the basic Lorentz structure of the observed nucleon-nucleon interaction, and the consequences of this structure are studied in detail. In the mean-field approximation, nuclear saturation involves a cancellation between large attractive and repulsive components in the average potential energy. The attractive scalar field decreases the nucleon mass significantly, and the strong vector repulsion implies a stiff high-density equation of state. Corrections to the mean-field approach arising from vacuum fluctuations, self-consistent nucleon exchange, and two-nucleon correlations are examined. These have a small effect on the condensed meson fields but may produce significant changes in the binding energy. Corrections to the mean-field equation of state are small at high density

  10. Phenomenology of supersymmetry with scalar sequestering

    International Nuclear Information System (INIS)

    Perez, Gilad; Roy, Tuhin S.; Schmaltz, Martin

    2009-01-01

    The defining feature of scalar sequestering is that the minimal supersymmetric standard model squark and slepton masses as well as all entries of the scalar Higgs mass matrix vanish at some high scale. This ultraviolet boundary condition--scalar masses vanish while gaugino and Higgsino masses are unsuppressed--is independent of the supersymmetry breaking mediation mechanism. It is the result of renormalization group scaling from approximately conformal strong dynamics in the hidden sector. We review the mechanism of scalar sequestering and prove that the same dynamics which suppresses scalar soft masses and the B μ term also drives the Higgs soft masses to -|μ| 2 . Thus the supersymmetric contribution to the Higgs mass matrix from the μ term is exactly canceled by the soft masses. Scalar sequestering has two tell-tale predictions for the superpartner spectrum in addition to the usual gaugino mediation predictions: Higgsinos are much heavier (μ > or approx. TeV) than scalar Higgses (m A ∼few hundred GeV), and third generation scalar masses are enhanced because of new positive contributions from Higgs loops.

  11. A note on perfect scalar fields

    International Nuclear Information System (INIS)

    Unnikrishnan, Sanil; Sriramkumar, L.

    2010-01-01

    We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.

  12. Conformal scalar fields and chiral splitting on super Riemann surfaces

    International Nuclear Information System (INIS)

    D'Hoker, E.; Phong, D.H.

    1989-01-01

    We provide a complete description of correlation functions of scalar superfields on a super Riemann surface, taking into account zero modes and non-trivial topology. They are built out of chirally split correlation functions, or conformal blocks at fixed internal momenta. We formulate effective rules which determine these completely in terms of geometric invariants of the super Riemann surface. The chirally split correlation functions have non-trivial monodromy and produce single-valued amplitudes only upon integration over loop momenta. Our discussion covers the even spin structure as well as the odd spin structure case which had been the source of many difficulties in the past. Super analogues of Green's functions, holomorphic spinors, and prime forms emerge which should pave the way to function theory on super Riemann surfaces. In superstring theories, chirally split amplitudes for scalar superfields are crucial in enforcing the GSO projection required for consistency. However one really knew how to carry this out only in the operator formalism to one-loop order. Our results provide a way of enforcing the GSO projection to any loop. (orig.)

  13. Search for maximal flavor violating scalars in same-charge lepton pairs in pp collisions at sqrt[s]=1.96 TeV.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bar-Shalom, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rajaraman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, F; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2009-01-30

    Models of maximal flavor violation (MxFV) in elementary particle physics may contain at least one new scalar SU(2) doublet field Phi(FV)=(eta(0),eta(+)) that couples the first and third generation quarks (q_(1), q_(3)) via a Lagrangian term L(FV)=xi(13)Phi(FV)q(1)q(3). These models have a distinctive signature of same-charge top-quark pairs and evade flavor-changing limits from meson mixing measurements. Data corresponding to 2 fb(-1) collected by the Collider Dectector at Fermilab II detector in pp[over ] collisions at sqrt[s]=1.96 TeV are analyzed for evidence of the MxFV signature. For a neutral scalar eta(0) with m_(eta;(0))=200 GeV/c(2) and coupling xi(13)=1, approximately 11 signal events are expected over a background of 2.1+/-1.8 events. Three events are observed in the data, consistent with background expectations, and limits are set on the coupling xi(13) for m(eta(0)=180-300 GeV/c(2).

  14. Old tensor mesons in QCD sum rules

    International Nuclear Information System (INIS)

    Aliev, T.M.; Shifman, M.A.

    1981-01-01

    Tensor mesons f, A 2 and A 3 are analyzed within the framework of QCD sum rules. The effects of gluon and quark condensate is accounted for phenomenologically. Accurate estimates of meson masses and coupling constants of the lowest-lying states are obtained. It is shown that the masses are reproduced within theoretical uncertainty of about 80 MeV. The coupling of f meson to the corresponding quark current is determined. The results are in good aqreement with experimental data [ru

  15. Why do nucleons cling. [Meson theory

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N [Hindu Coll., Delhi (India)

    1976-10-01

    The nature of the forces which bind nucleons together within the nucleus of an atom have been discussed in detail. The characteristic properties of the nucleons, such as spin, interaction range etc. and the meson theory of nuclear forces are described. The present researches indicate that the force between two nucleons in a many-nucleon system is not very different from the force between two free nucleons. Researches related to the origin of nuclear forces based on the meson theory are now mainly concerned with the role played by the heavier mesons and the two pion exchanges in the middle region around 0.7 fm. (10/sup -13/ cm).

  16. Single meson photoproduction and IR renormalons

    International Nuclear Information System (INIS)

    Agaev, S.S.

    1996-10-01

    Single pseudoscalar and vector mesons inclusive photoproduction γh → MX via higher twist mechanism is calculated using the QCD running coupling constant method. It is proved that in the context of this method a higher twist contribution to the photoproduction cross section cannot be normalized in terms of the meson electromagnetic form factor. The structure of infrared renormalon singularities of the higher twist subprocess cross section and the resumed expression (the Borel sum) for it are found. Comparisons are made with earlier results, as well as with leading twist cross section. Phenomenological effects of studied contributions for π, K, ρ-meson photoproduction are discussed. (author). 21 refs, 8 figs

  17. The phenomenology of scalar colour octets

    International Nuclear Information System (INIS)

    Krasnikov, N.V.

    1995-01-01

    The phenomenology of color scalar octet particles is discussed. Namely, the discovery potential of scalar octets at LEP, FNAL and LHC is discussed. It appears that new hadrons composed from scalar colour octets are rather longlived (Γ≤O(10) keV). The current experimental data don't contradict to the existence of light (M∼O(1) GeV) scalar octets. Light scalar colour octets give additional contribution to the QCD β-function and allow to improve agreement between deep inelastic and LEP data. 10 refs.; 2 figs

  18. B decays to wrong sign charm mesons at the DELPHI experiment

    International Nuclear Information System (INIS)

    Schwanda, C.

    2001-05-01

    In the present work, b hadron decays to 'wrong sign charm' mesons, b → D-bar 0 X, b → D - X and b → D s - X, are studied using the data collected by the DELPHI experiment in the years 1994 and 1995, and the corresponding branching fractions are extracted. Decays b → c-bar are expected to occur through the Cabibbo favored transitions b → cW - and W - → cbar s, and hence wrong sign charm decays are in fact double charm transitions. The interest in this type of b decays is triggered by different motivations. At first, wrong sign charm decays provide evidence for an alternative mechanism leading to the production of charmed mesons in b decay ('upper vertex charm'), and, second, the double charm rate is related to n c , the mean number of charm quarks (and anti-quarks) produced per b decay, n c =1 + Br(b → c c-bar s). Predictions of the semileptonic B meson branching fraction, based on the heavy quark effective theory (HQET) and the heavy quark expansion (HQE), also fix the value of n c . By measuring the double charm rate, we can thus probe these predictions. The measurement of the inclusive wrong sign branching fractions proceeds through the following steps: At first, the charmed meson decays D 0 → K - π + , D + → K - π + π + and D s + → φ π + → K + K - π + are exclusively reconstructed in the DELPHI data. The charge of the c quark confined inside the charmed meson is determined by the charge of the kaon (D 0 , D + ) or by the charge of the pion (D s + ). The b quark charge at decay time in the charmed meson hemisphere is estimated by using identified particles. A neural network approach is adopted. By correlating both charge informations, we obtain the main discriminant variable for selecting wrong sign mesons. We measure the following branching ratios: Br(b → D-bar X)=(9.3 ± 1.7(stat) ± 1.3(syst))% and Br(b → D s - X)=(10.3 ± 1.1(stat) ± 2.9(syst))% (the first error is statistical, the second one systematic). This result is

  19. An improved mixing model providing joint statistics of scalar and scalar dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Daniel W. [Department of Energy Resources Engineering, Stanford University, Stanford, CA (United States); Jenny, Patrick [Institute of Fluid Dynamics, ETH Zurich (Switzerland)

    2008-11-15

    For the calculation of nonpremixed turbulent flames with thin reaction zones the joint probability density function (PDF) of the mixture fraction and its dissipation rate plays an important role. The corresponding PDF transport equation involves a mixing model for the closure of the molecular mixing term. Here, the parameterized scalar profile (PSP) mixing model is extended to provide the required joint statistics. Model predictions are validated using direct numerical simulation (DNS) data of a passive scalar mixing in a statistically homogeneous turbulent flow. Comparisons between the DNS and the model predictions are provided, which involve different initial scalar-field lengthscales. (author)

  20. A Novel A Posteriori Investigation of Scalar Flux Models for Passive Scalar Dispersion in Compressible Boundary Layer Flows

    Science.gov (United States)

    Braman, Kalen; Raman, Venkat

    2011-11-01

    A novel direct numerical simulation (DNS) based a posteriori technique has been developed to investigate scalar transport modeling error. The methodology is used to test Reynolds-averaged Navier-Stokes turbulent scalar flux models for compressible boundary layer flows. Time-averaged DNS velocity and turbulence fields provide the information necessary to evolve the time-averaged scalar transport equation without requiring the use of turbulence modeling. With this technique, passive dispersion of a scalar from a boundary layer surface in a supersonic flow is studied with scalar flux modeling error isolated from any flowfield modeling errors. Several different scalar flux models are used. It is seen that the simple gradient diffusion model overpredicts scalar dispersion, while anisotropic scalar flux models underpredict dispersion. Further, the use of more complex models does not necessarily guarantee an increase in predictive accuracy, indicating that key physics is missing from existing models. Using comparisons of both a priori and a posteriori scalar flux evaluations with DNS data, the main modeling shortcomings are identified. Results will be presented for different boundary layer conditions.

  1. Tensor meson dominance and e/sup +/e/sup -/-physics

    Energy Technology Data Exchange (ETDEWEB)

    Genz, H [Miami Univ., Coral Gables, FL (USA). Center for Theoretical Studies; Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Theoretische Kernphysik); Mallik, S [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Theoretische Kernphysik

    1983-01-01

    The phenomenological status of tensor meson dominance is reported. Some new results concerning hadronic decays of the 2/sup + +/-meson chi/sub 2/(3.55) and the heavy lepton tau are also included. Considering experimental errors, tensor meson dominance is in agreement with experiment.

  2. Searches for scalar top and scalar bottom quarks at LEP2

    Science.gov (United States)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Bazarko, A. O.; Becker, U.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rizzo, G.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J. C.; Machefert, F.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Huehn, T.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Stacey, A. M.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Ealet, A.; Fouchez, D.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Serin, L.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Foss, J.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1997-11-01

    Searches for scalar top and bottom quarks have been performed with data collected by the ALEPH detector at LEP. The data sample consists of 21.7 pb-1 taken at sqrt(s) = 161, 170, and 172 GeV and 5.7 pb-1 taken at sqrt(s) = 130 and 136 GeV. No evidence for scalar top quarks or scalar bottom quarks was found in the channels t~-->cχ, t~-->blν~, and b~-->bχ. For the channel t~-->cχ a limit of 67 GeV/c2has been set on the scalar top quark mass, independent of the mixing angle between the supersymmetric partners of the left and right-handed states of the top quark. This limit assumes a mass difference between the t~ and the χ of at least 10 GeV/c2. For the channel t~-->blν~ the mixing-angle independent scalar top limit is 70 GeV/c2, assuming a mass difference between the t~ and the ν~ of at least 10 GeV/c2. For the channel b~-->bχ, a limit of 73 GeV/c2has been set on the mass of the supersymmetric partner of the left-handed state of the bottom quark. This limit is valid if the mass difference between the b~ and the χ is at least 10 GeV/c2.

  3. Radiative decays of vector mesons in the chiral bag model

    International Nuclear Information System (INIS)

    Tabachenko, A.N.

    1988-01-01

    A new model of radiative π-meson decays of vector mesons in the chiral bag model is proposed. The quark-π-meson interaction has the form of a pseudoscalar coupling and is located on the bag surface. The vector meson decay width depends on the quark masses, the π-meson decay constant, the radius of the bag, and the free parameter Z 2 , which specifies the disappearance of the bag during the decay. The obtained results for the omega- and p-decay widths are in satisfactory agreement with the experiment

  4. Inclusive spectra of hadrons in B-meson decays

    International Nuclear Information System (INIS)

    Dobrovol'skaya, A.V.; Ter-Martirosyan, K.A.; Zoller, V.R.

    1989-01-01

    The inclusive spectra of hadrons (mainly pions) produced in the semileptonic and nonleptonic decays of B-mesons are calculated. Parameters of spectra for different types of hard qq-bar-strings, appearing in the B-meson decays, are determined using the data on e+e-annihilation. Numerical results for B-meson decay induced by both b→b and b→u transitions are presented. 10 refs.; 5 figs

  5. The role of the form factor and short-range correlation in the relativistic Hartree-Fock model for nuclear matter

    Science.gov (United States)

    Hu, J.; Toki, H.; Wen, W.; Shen, H.

    2010-03-01

    The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size ( Λ ˜ 1.0 -2.0GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ -meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ -meson energies in the relativistic Hartree-Fock approximation for nuclear matter.

  6. Measurement of Inclusive and Dijet D* Meson Cross Sections in Photoproduction at HERA

    CERN Document Server

    Aaron, F.D.

    2012-05-04

    The inclusive photoproduction of D\\ast mesons and of D\\ast-tagged dijets is investigated with the H1 detector at the ep collider HERA. The kinematic region covers small photon virtualities Q2 1.8 GeV. The heavy quark production process is further investigated in events with at least two jets with transverse momentum pT (jet) > 3.5 GeV each, one containing the D\\ast meson. Differential cross sections for D\\ast-tagged dijet production and for correlations between the jets are measured in the range |eta(D\\ast)| 2.1 GeV. The results are compared with predictions from Monte Carlo simulations and next-to-leading order perturbative QCD calculations.

  7. Measurement of the Exclusive and Inclusive Branching Fractions of $B^{0}_{s} \\to D^{(*)+}_{s}D^{(*)-}_{s}$ Decays at CDF and its Implications on the Decay Width Difference in the $B^{0}_{s}-B^{-0}_{s}$ Meson System

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Dominik [Karlsruhe Inst. of Technology (KIT) (Germany)

    2011-01-01

    The purpose of this thesis is threefold: Firstly, new measurements of both the exclusive and semi-inclusive partial decay widths of $B^{0}_{s} \\to D^{(*)+}_{s}D^{(*)-}_{s}$ meson decays are presented. Secondly, the feasibility of extracting the unknown polarization components in $B^{0}_{s} \\to D^{(*)+}_{s}D^{(*)-}_{s}$ by partial reconstruction of this pseudo-scalar to vector-vector decay in a Monte Carlo driven analysis scheme is studied. Finally, based on the suggestions contributed by the theory community this study discusses how a measurement of the branching fraction of semi-inclusive decays $B^{0}_{s} \\to D^{(*)+}_{s}D^{(*)-}_{s}$ can contribute to gain insight about the relative decay width di erence in the B$0\\atop{s}$--B$0\\atop{s}$ meson system.

  8. Meson Spectroscopy in the Light Quark Sector

    Science.gov (United States)

    De Vita, R.

    2014-03-01

    Understanding the hadron spectrum is one of the fundamental issues in modern particle physics. We know that existing hadron configurations include baryons, made of three quarks, and mesons, made of quark-antiquark pairs. However most of the mass of the hadrons is not due to the mass of these elementary constituents but to their binding force. Studying the hadron spectrum is therefore a tool to understand one of the fundamental forces in nature, the strong force, and Quantum Chromo Dynamics (QCD), the theory that describes it. This investigation can provide an answer to fundamental questions as what is the origin of the mass of hadrons, what is the origin of quark confinement, what are the relevant degrees of freedom to describe these complex systems and how the transition between the elementary constituents, quarks and gluons, and baryons and mesons occurs. In this field a key tool is given by meson spectroscopy. Mesons, being made by a quark and an anti-quark, are the simplest quark bound system and therefore the ideal benchmark to study the interaction between quarks and understand what the role of gluons is. In this investigation, it is fundamental to precisely determine the spectrum and properties of mesons but also to search for possible unconventional states beyond the qbar q configuration as tetraquarks (qqoverline{qq}), hybrids (qbar qg) and glueballs. These states can be distinguished unambiguously from regular mesons when they have exotic quantum numbers, i.e. combinations of total angular momentum, spin and parity that are not allowed for qbar q states. These are called exotic quantum numbers and the corresponding states are referred to as exotics. The study of the meson spectrum and the search for exotics is among the goals of several experiments in the world that exploit different reaction processes, as e+e- annihilation, pbar p annihilation, pion scattering, proton-proton scattering and photo-production, to produce meson states. This intense effort is

  9. SACLAY: Eta mesons at Saturne

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-05-15

    Using a nuclear reaction, the new tagged eta meson facility now operating at the French Saturne National Laboratory in Saclay produces eta mesons (together with recoil helium-3 nuclei) by proton bombardment of a deuterium target. The proton beam is extracted from the Saturne synchrotron at 893 MeV, stabilized to 80 keV. This is a scant 1.5 MeV above the reaction threshold and close to the energy where eta production peaks.

  10. SACLAY: Eta mesons at Saturne

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Using a nuclear reaction, the new tagged eta meson facility now operating at the French Saturne National Laboratory in Saclay produces eta mesons (together with recoil helium-3 nuclei) by proton bombardment of a deuterium target. The proton beam is extracted from the Saturne synchrotron at 893 MeV, stabilized to 80 keV. This is a scant 1.5 MeV above the reaction threshold and close to the energy where eta production peaks

  11. Anyone for non-scalarity?

    OpenAIRE

    Duffley, Patrick; Larrivée, Pierre

    2010-01-01

    This paper examines the status of scalarity in the analysis of the meaning of the English determiner any. The latter’s position as a prime exemplar of the category of polarity-sensitive items has led it to be generally assumed to have scalar meaning. Scalar effects are absent however from a number of common uses of this word. This suggests that any does not involve scales as part of its core meaning, but produces them as a derived interpretative property. The role of three factors in the deri...

  12. Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes

    Energy Technology Data Exchange (ETDEWEB)

    Cadoni, Mariano [Dipartimento di Fisica, Università di Cagliari,Cittadella Universitaria, 09042 Monserrato (Italy); INFN, Sezione di Cagliari,Cagliari (Italy); Franzin, Edgardo [Dipartimento di Fisica, Università di Cagliari,Cittadella Universitaria, 09042 Monserrato (Italy); INFN, Sezione di Cagliari,Cagliari (Italy); CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Serra, Matteo [Dipartimento di Matematica, Sapienza Università di Roma,Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2016-01-20

    We derive exact brane solutions of minimally coupled Einstein-Maxwell-scalar gravity in d+2 dimensions with a vanishing scalar potential and we show that these solutions are conformal to the Lifshitz spacetime whose dual QFT is characterized by hyperscaling violation. These solutions, together with the AdS brane and the domain wall sourced by an exponential potential, give the complete list of scalar branes sourced by a generic potential having simple (scale-covariant) scaling symmetries not involving Galilean boosts. This allows us to give a classification of both simple and interpolating brane solution of minimally coupled Einstein-Maxwell-scalar gravity having no Schrödinger isometries, which may be very useful for holographic applications.

  13. Scalar field cosmology in three-dimensions

    International Nuclear Information System (INIS)

    Oliveira Neto, G.

    2001-01-01

    We study an analytical solution to the Einstein's equations in 2 + 1-dimensions. The space-time is dynamical and has a line symmetry. The matter content is a minimally coupled, massless, scalar field. Depending on the value of certain parameters, this solution represents three distinct space-times. The first one is at space-time. Then, we have a big bang model with a negative curvature scalar and a real scalar field. The last case is a big bang model with event horizons where the curvature scalar vanishes and the scalar field changes from real to purely imaginary. (author)

  14. Multistrange Meson-Baryon Dynamics and Resonance Generation

    Science.gov (United States)

    Khemchandani, K. P.; Martínez Torres, A.; Hosaka, A.; Nagahiro, H.; Navarra, F. S.; Nielsen, M.

    2018-05-01

    In this talk I review our recent studies on meson-baryon systems with strangeness - 1 and - 2. The motivation of our works is to find resonances generated as a consequence of coupled channel meson-baryon interactions. The coupled channels are all meson-baryon systems formed by combining a pseudoscalar or a vector meson with an octet baryon such that the system has the strange quantum number equal to - 1 or - 2. The lowest order meson-baryon interaction amplitudes are obtained from Lagrangians based on the chiral and the hidden local symmetries related to the vector mesons working as the gauge bosons. These lowest order amplitudes are used as an input to solve the Bethe-Salpeter equation and a search for poles is made in the resulting amplitudes, in the complex plane. In case of systems with strangeness - 1, we find evidence for the existence of some hyperons such as: Λ(2000), Σ(1750), Σ(1940), Σ(2000). More recently, in the study of strangeness - 2 systems we have found two narrow resonances which can be related to Ξ (1690) and Ξ(2120). In this latter work, we have obtained the lowest order amplitudes relativistically as well as in the nonrelativistic approximation to solve the scattering equations. We find that the existence of the poles in the complex plane does not get affected by the computation of the scattering equation with the lowest order amplitudes obtained in the nonrelativistic approximation.

  15. Asymptotics of Heavy-Meson Form Factors

    CERN Document Server

    Grozin, A.G.; Grozin, Andrey G.; Neubert, Matthias

    1997-01-01

    Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behaviour of heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave functions. For $1\\ll |v\\cdot v'|\\ll m_Q/\\Lambda$, the form factors are dominated by the Isgur--Wise function, which is determined by the interference between the wave functions of leading and subleading twist. At $|v\\cdot v'|\\gg m_Q/\\Lambda$, they are dominated by two functions arising at order $1/m_Q$ in the heavy-quark expansion, which are determined by the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole region $|v\\cdot v'|\\gg 1$. As a consequence, there is an exact zero in the form factor for the scattering of longitudinally polarized $B^*$ mesons at some value $v\\cdot v'\\sim m_b/\\Lambda$, and an approximate zero in the form factor of $B$ mesons in the timelike region ($v\\cdot v'\\sim -m_b/\\Lambda$). We obtain the evolution equations and sum rules ...

  16. Scalar-tetrad theories of gravity

    International Nuclear Information System (INIS)

    Hayward, J.

    1981-01-01

    A general theory of gravitation is constructed using a tetrad and a scalar field. The resulting theory, called a scalar-tetrad theory, does not contain Einstein's or the Brans-Dicke theories as special cases. However, there is a range of scalar-tetrad theories with the same post-Newtonian limit as Einstein's theory. Two particular models are interesting because of their simplicity. (author)

  17. C(1480) meson and electromagnetic processes

    International Nuclear Information System (INIS)

    Landsberg, L.G.

    1992-01-01

    Possible processes of production of the vector meson C(1480) → var-phi π, a candidate for exotic states, in electromagnetic processes are considered [photoproduction, e + e - →C(1480) → var-phi π 0 , and the reaction of production of C(1480) in the Coulomb field of a nucleus]. It is shown that coherent Coulomb production of the C(1480) meson allows one to determine the absolute value of BR[C(1480) → var-phi π], which is essential for the interpretation of the nature of this hadron. Possibilities of observing C(1480) mesons in e + e - collisions at the var-phi factory DAΦNE are studied. 27 refs., 12 figs., 1 tab

  18. Radiative decay of light and heavy mesons

    International Nuclear Information System (INIS)

    Barik, N.; Dash, P.C.

    1994-01-01

    The M1 transition among the vector (V) and pseudoscalar (P) mesons in the light and heavy flavor sectors has been investigated in a potential model of independent quarks. Going beyond the static approximation, to add some momentum dependence due to the recoil effect in a more realistic calculation, we find an improvement in the results for the radiative decay of light flavored mesons. However, our prediction on the decay rates for the mesons (D * and B * ) in the heavy flavor sector remains unaffected and compares well with those of other model calculations

  19. The scalar-photon 3-point vertex in massless quenched scalar QED

    International Nuclear Information System (INIS)

    Concha-Sánchez, Y; Gutiérrez-Guerrero, L X; Fernández-Rangel, L A

    2016-01-01

    Non perturbative studies of Schwinger-Dyson equations (SDEs) require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the scalar-photon three point vertex can be expressed in terms of only two independent form factors, longitudinal and transverse. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green- Takahashi identity (WFGTI), while the transverse vertex remains undetermined. In massless quenched sQED, we propose the transverse part of the non perturbative scalar-photon vertex. (paper)

  20. Neutral meson tests of time-reversal symmetry invariance

    OpenAIRE

    Bevan, Adrian; Inguglia, Gianluca; Zoccali, Michele

    2013-01-01

    The laws of quantum physics can be studied under the mathematical operation T that inverts the direction of time. Strong and electromagnetic forces are known to be invariant under temporal inversion, however the weak force is not. The BaBar experiment recently exploited the quantum-correlated production of pairs of B0 mesons to show that T is a broken symmetry. Here we show that it is possible to perform a wide range of tests of quark flavour changing processes under T in order to validate th...

  1. Review of meson resonance radiative decays

    International Nuclear Information System (INIS)

    Thorndike, E.H.

    1977-01-01

    The radiative decays of meson resonances can be studied by three different approaches, it is noted. These are the meson-exchange, Primakoff effect, and the production of the desired resonance and subsequent observation of its decay. These approaches are criticized and examples of them are reviewed. Mass distributions are shown and branching ratios discussed. 21 references

  2. Meson masses and decay constants from unquenched lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); McNeile, C. [Glasgow Univ. (United Kingdom). Dept. of Physics and Astronomy; Michael, C. [Liverpool Univ. (United Kingdom). Theoretical Physics Div., Dept. of Mathematical Sciences; Urbach, C. [Humboldt Univ. Berlin (Germany). Inst. fuer Physik

    2009-06-15

    We report results for the masses of the flavour non-singlet light 0{sup ++}, 1{sup --}, and 1{sup +-} mesons from unquenched lattice QCD at two lattice spacings. The twisted mass formalism was used with two flavours of sea quarks. For the 0{sup ++} and 1{sup +-} mesons we look for the effect of decays on the mass dependence. For the light vector mesons we study the chiral extrapolations of the mass. We report results for the leptonic and transverse decay constants of the meson. We test the mass dependence of the KRSF relations. (orig.)

  3. Meson masses and decay constants from unquenched lattice QCD

    International Nuclear Information System (INIS)

    Jansen, K.; McNeile, C.; Michael, C.; Urbach, C.

    2009-06-01

    We report results for the masses of the flavour non-singlet light 0 ++ , 1 -- , and 1 +- mesons from unquenched lattice QCD at two lattice spacings. The twisted mass formalism was used with two flavours of sea quarks. For the 0 ++ and 1 +- mesons we look for the effect of decays on the mass dependence. For the light vector mesons we study the chiral extrapolations of the mass. We report results for the leptonic and transverse decay constants of the meson. We test the mass dependence of the KRSF relations. (orig.)

  4. Inclusive decays of the B meson and possible life-time difference between Bd0 and B± mesons

    International Nuclear Information System (INIS)

    Tanimoto, Morimitsu

    1992-01-01

    We study branching ratios of the inclusive semileptonic decay and the inclusive anti ccanti s decay of the B meson in the spectator model, focusing on the life-time difference between B d 0 and B + mesons. In the case of τsub(B ± )/τsub(B d 0 )=1, it is impossible to get the branching ratio below 12% for B→eνX without going over 20% for B→anti ccanti s, which is unfavored by the inclusive K - decay of the B meson. It is found that the sizable life-time difference leads to the reasonable inclusive semileptonic decay rate and the inclusive anti ccanti s decay rate. (orig.)

  5. Observation and study of bottom-meson decays to a charm meson, a proton-antiproton pair, and pions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tae Min [Univ. of California, Santa Barbara, CA (United States)

    2010-04-27

    Bottom-meson decays with baryons show two unusual features—the branching fractions are enhanced for multibody decays and the baryon-antibaryon subsystem recoils against the other decay products—and their reasons are not yet well understood. Moreover, measurements using explicit reconstruction techniques constitute only about 1% out of about 8% of such decays. This Dissertation reports the study of ten bottom-meson decays (labeled 0– 9) to a proton-antiproton pair, a charm meson, and a system of up to two pions, using the BABAR Experiment’s 455×106 BB pairs produced with the PEP-II asymmetric-energy e+e- collider at the Stanford Linear Accelerator Center.

  6. CORNELL: CLEO discovers B meson penguins

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    The CLEO collaboration at Cornell's CESR electron-positron storage ring has discovered a rare type of B meson decay in which only a high energy photon and a K* meson are produced. These decays provide the first unambiguous evidence for an alternative route for heavy quark decay that has been given the whimsical name ''penguin diagram''. In the mid-1970s penguin diagrams were proposed to explain the puzzling strangeness quantum number selection rules in the decay of K mesons. At the same time it was realized that penguin diagrams could also be important in the CP violation seen in neutral K meson decay. CP violation, an asymmetry between matter and antimatter, is an essential ingredient in understanding why there is much more matter than antimatter in the universe. CP violation introduces a definite direction to the arrow of time, which could otherwise point equally forwards or backwards. In addition, penguin decays are very sensitive to some extensions of the Standard Model of weak decay. Although penguin diagrams were first proposed to explain an effect in K meson decay, the K system gives no unique signature for them, and verification of penguin processes meant looking elsewhere. In the Standard Model, quarks decay under the influence of the weak force, emitting a W boson. Since the W is charged, the charge of the initial quark differs from that of the final quark, so the charge of the quark changes as well as its flavour.

  7. The nucleon-nucleon interaction from a realistic pseudoscalar-vector chiral lagrangian

    International Nuclear Information System (INIS)

    Kaiser, N.; Meissner, U.G.; Massachusetts Inst. of Tech., Cambridge

    1990-01-01

    We investigate the static nucleon-nucleon potential in the framework of a non-linear chiral meson theory. The model includes pions as well as the vector mesons ρ and ω. All parameters are fixed in the meson sector and predictions about the nucleon-nucleon interaction follow without adjusting any parameters. We use an S-matrix approach to calculate correlated two-pion exchange between two solitons. The most prominent feature of this two-pion exchange is that it leads very natural to attraction in the scalar-isoscalar channel. We also discuss the effect of πp correlations on the central potential, and present the spectral function related to the correlated two-pion exchange. Furthermore, we study the form factors of the nucleon sources related to the two-pion exchange and find that they are of dipole type with typical cutoff scales Λ D ≅ 700 MeV. We also discuss the destructive interference of π- and ρ-exchange in the isovector tensor potential. Altogether, we present a unified treatment of meson exchange phenomenology based on a serious model of the nucleon. Finally, we point out the limitations of the model and discuss some further applications. (orig.)

  8. The role of the form factor and short-range correlation in the relativistic Hartree-Fock model for nuclear matter

    International Nuclear Information System (INIS)

    Hu, J.; Toki, H.; Wen, W.; Shen, H.

    2010-01-01

    The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size (Λ∝1.0 -2.0 GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ-meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ-meson energies in the relativistic Hartree-Fock approximation for nuclear matter. (orig.)

  9. Non-equilibrium scalar two point functions in AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Keränen, Ville [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Kleinert, Philipp [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Merton College, University of Oxford,Merton Street, Oxford OX1 4JD (United Kingdom)

    2015-04-22

    In the first part of the paper, we discuss different versions of the AdS/CFT dictionary out of equilibrium. We show that the Skenderis-van Rees prescription and the “extrapolate” dictionary are equivalent at the level of “in-in” two point functions of free scalar fields in arbitrary asymptotically AdS spacetimes. In the second part of the paper, we calculate two point correlation functions in dynamical spacetimes using the “extrapolate” dictionary. These calculations are performed for conformally coupled scalar fields in examples of spacetimes undergoing gravitational collapse, the AdS{sub 2}-Vaidya spacetime and the AdS{sub 3}-Vaidya spacetime, which allow us to address the problem of thermalization following a quench in the boundary field theory. The computation of the correlators is formulated as an initial value problem in the bulk spacetime. Finally, we compare our results for AdS{sub 3}-Vaidya to results in the previous literature obtained using the geodesic approximation and we find qualitative agreement.

  10. Non-equilibrium scalar two point functions in AdS/CFT

    International Nuclear Information System (INIS)

    Keränen, Ville; Kleinert, Philipp

    2015-01-01

    In the first part of the paper, we discuss different versions of the AdS/CFT dictionary out of equilibrium. We show that the Skenderis-van Rees prescription and the “extrapolate” dictionary are equivalent at the level of “in-in” two point functions of free scalar fields in arbitrary asymptotically AdS spacetimes. In the second part of the paper, we calculate two point correlation functions in dynamical spacetimes using the “extrapolate” dictionary. These calculations are performed for conformally coupled scalar fields in examples of spacetimes undergoing gravitational collapse, the AdS 2 -Vaidya spacetime and the AdS 3 -Vaidya spacetime, which allow us to address the problem of thermalization following a quench in the boundary field theory. The computation of the correlators is formulated as an initial value problem in the bulk spacetime. Finally, we compare our results for AdS 3 -Vaidya to results in the previous literature obtained using the geodesic approximation and we find qualitative agreement.

  11. Scalar Relativistic Study of the Structure of Rhodium Acetate

    Directory of Open Access Journals (Sweden)

    Emily E. Edwards

    2004-01-01

    Full Text Available Abstract: Rhodium acetate, related rhodium carboxylates, and rhodium amide complexes are powerful catalysts for carbene chemistry. They readily promote the decomposition of diazo compounds and transfer the resulting carbene to a variety of substrates. There have been several quantum chemistry studies of these compounds, particularly of the acetate. These have all used non-relativistic methods, and all have shown optimized Rh-Rh bond lengths significantly longer than the experimental value. In this study we have surveyed several scalar relativistic DFT methods using Gaussian, Slater, and numerical basis functions (in DGAUSS, ADF, and DMOL3. Several combinations of exchange-correlation functionals with relativistic and non-relativistic effective core potentials (ECP were investigated, as were non-relativistic and all electron scalar relativistic methods. The combination of the PW91 exchange and PW91 correlation functional with the Christiansen-Ermler ECP gave the best results: 2.3918 Å compared to the experimental value of 2.3855±0.0005 Å.

  12. One-loop masses of open-string scalar fields in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    In phenomenological models with D-branes, there are in general open-string massless scalar fields, in addition to closed-string massless moduli fields corresponding to the compactification. It is interesting to focus on the fate of such scalar fields in models with broken supersymmetry, because no symmetry forbids their masses. The one-loop effect may give non-zero masses to them, and in some cases mass squared may become negative, which means the radiative gauge symmetry breaking. In this article we investigate and propose a simple method for calculating the one-loop corrections using the boundary state formalism. There are two categories of massless open-string scalar fields. One consists the gauge potential fields corresponding to compactified directions, which can be understood as scalar fields in uncompactified space-time (related with Wilson line degrees of freedom). The other consists 'gauge potential fields' corresponding to transverse directions of D-brane, which emerge as scalar fields in D-brane world-volume (related with brane moduli fields). The D-brane boundary states with constant backgrounds of these scalar fields are constructed, and one-loop scalar masses are calculated in the closed string picture. Explicit calculations are given in the following four concrete models: one D25-brane with a circle compactification in bosonic string theory, one D9-brane with a circle compactification in superstring theory, D3-branes at a supersymmetric C 3 /Z 3 orbifold singularity, and a model of brane supersymmetry breaking with D3-branes and anti-D7-branes at a supersymmetric C 3 /Z 3 orbifold singularity. We show that the sign of the mass squared has a strong correlation with the sign of the related open-string one-loop vacuum amplitude.

  13. Study of the doubly-charmed decays of B mesons with the experiment BABAR in SLAC

    International Nuclear Information System (INIS)

    Robbe, P.

    2002-04-01

    The BABAR experiment at SLAC (Stanford linear acceleration center) has been studying since 1999 B meson decays from e + e - collisions at the γ(4S) resonance. The first goal of the collaboration was to measure the sin (2β) CP-violation parameter within the standard model. This measurement requires to know with precision the absolute length scale of the detector. A method to test this scale was developed using nuclear interactions in the beam-pipe material. The longitudinal length scale was then determined at the 1 % level precision. The systematic error associated with length measurement in the detector concerning B meson lifetime and B meson oscillation frequency is then negligible with respect to the other errors. The K meson content of B decays is a key ingredient of the sin (2β) measurement and is used to tag the flavour of the other B in events containing a B decaying to a CP eigenstate. The K charge is correlated to the B flavour. Wrong sign kaons, which can dilute B tagging, can come from wrong sign D decays (B→ DX). Doubly charmed decays (B→ D (*) D-bar (*) K are one possibility to produce wrong sign D decays. The twenty-two decay modes are reconstructed exclusively. The total branching fraction is measured with enough precision to establish that B→ D (*) D-bar (*) K decays are not the only source of wrong sign D mesons in B decays. (author)

  14. Symmetry inheritance of scalar fields

    International Nuclear Information System (INIS)

    Ivica Smolić

    2015-01-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair. (paper)

  15. Kr-PLIF for scalar imaging in supersonic flows.

    Science.gov (United States)

    Narayanaswamy, V; Burns, R; Clemens, N T

    2011-11-01

    Experiments were performed to explore the use of two-photon planar laser-induced fluorescence (PLIF) of krypton gas for applications of scalar imaging in supersonic flows. Experiments were performed in an underexpanded jet of krypton, which exhibited a wide range of conditions, from subsonic to hypersonic. Excellent signal-to-noise ratios were obtained, showing the technique is suitable for single-shot imaging. The data were used to infer the distribution of gas density and temperature by correcting the fluorescence signal for quenching effects and using isentropic relations. The centerline variation of the density and temperature from the experiments agree very well with those predicted with an empirical correlation and a CFD simulation (FLUENT). Overall, the high signal levels and quantifiable measurements indicate that Kr-PLIF could be an effective scalar marker for use in supersonic and hypersonic flow applications.

  16. Glueballs, hybrids, multiquarks

    Energy Technology Data Exchange (ETDEWEB)

    Klempt, Eberhard [Helmholtz-Institut fuer Strahlen-und Kernphysik der Rheinischen Friedrich-Wilhelms Universitaet, Nussallee 14-16, D-53115 Bonn (Germany)], E-mail: klempt@hiskp.uni-bonn.de; Zaitsev, Alexander [Institute for High-Energy Physics, Moscow Region, RU-142284 Protvino (Russian Federation)

    2007-12-15

    Glueballs, hybrids and multiquark states are predicted as bound states in models guided by quantum chromo dynamics (QCD), by QCD sum rules or QCD on a lattice. Estimates for the (scalar) glueball ground state are in the mass range from 1000 to 1800 MeV, followed by a tensor and a pseudoscalar glueball at higher mass. Experiments have reported evidence for an abundance of meson resonances with 0{sup -+},0{sup ++} and 2{sup ++} quantum numbers. In particular, the sector of scalar mesons is full of surprises starting from the elusive {sigma} and {kappa} mesons. The a{sub 0}(980) and f{sub 0}(980), discussed extensively in the literature, are reviewed with emphasis on their Janus-like appearance as KK-bar molecules, tetraquark states or qq-bar mesons. Most exciting is the possibility that the three mesons f{sub 0}(1370), f{sub 0}(1500), and f{sub 0}(1710) might reflect the appearance of a scalar glueball in the world of quarkonia. However, the existence of f{sub 0}(1370) is not beyond doubt and there is evidence that both f{sub 0}(1500) and f{sub 0}(1710) are flavour octet states, possibly in a tetraquark composition. We suggest a scheme in which the scalar glueball is dissolved into the wide background into which all scalar flavour-singlet mesons collapse. There is an abundance of meson resonances with the quantum numbers of the {eta}. Three states are reported below 1.5GeV/c{sup 2} whereas quark models expect only one, perhaps two. One of these states, {iota}(1440), was the prime glueball candidate for a long time. We show that {iota}(1440) is the first radial excitation of the {eta} meson. Hybrids may have exotic quantum numbers which are not accessible by qq-bar mesons. There are several claims for J{sup PC}=1{sup -+} exotics, some of them with properties as predicted from the flux tube model interpreting the quark-antiquark binding by a gluon string. The evidence for these states depends partly on the assumption that meson-meson interactions are dominated by s

  17. Composite vector mesons and string models

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1985-01-01

    The author discusses the general question of gauge mesons in extended supergravities, and whether such theories can produce the gauge mesons corresponding to a group at least as large as SU(3) x SU(2) x U(1). An exciting conjecture in this direction was made a few years ago by previous authors, who suggested that there might be composite SU(8) gauge mesons in a supergravity model known as the N=8 model. Until we have a consistent, renormalizable theory of supergravity we cannot really obtain any indication of the truth or falseness of that conjecture. One form of the Neveu-Schwarz string model has been shown to be a theory of supergravity; it is finite at the one-loop level and probably in any order of perturbation theory. The discussion is within the framework of this model. The author questions whether massive vector mesons can possibly lose their mass due to interactions. Arguments have been given on both sides of this question, and the author believes that this can occur under certain circumstances. Our conclusions is that the FNNS mechanism will create a gauge symmetry in addition to the rigid symmetry

  18. High statistics inclusive φ meson production at SPS energies

    International Nuclear Information System (INIS)

    Dijkstra, H.; Belau, E.

    1986-01-01

    Inclusive φ meson production has been measured for 100 GeV/c and 200 GeV/c incident π - , anti p and K - , and for 120 GeV/c and 200 GeV/c incident π + , p and K + , using a Be target. A total of 630,000 φ mesons has been recorded in the kinematic range 0 F F and dσ/dp T 2 . The longitudinal momentum distributions show that the strange valence quarks of the incident K mesons play an important role in φ meson production, even at small x F . The decay angular distribution of the φ meson is evaluated in the Gottfried-Jackson frame and is expressed in the elements of the density matrix. There is a small but significant cos 2 θ GJ dependence for small p T , which decreases for increasing p T . (Auth.)

  19. Direct Photon and Neutral Mesons Measurements with the ALICE Detector

    CERN Document Server

    Matyja, Adam

    2016-01-01

    The ALICE experiment at LHC is dedicated to studies of the Quark– Gluon Plasma (QGP) state, which is going to be created in heavy-ion collisions. Both photons and neutral mesons are excellent probes for QGP formation. Photons are produced during the different stages of the expan- sion of the initial hot matter fireball. They do not interact strongly with the medium and passing through it, they carry information on their emis- sion point. The prompt photons which are formed at the early stage of the collision enable us to test perturbative QCD constraining parton distri- butions and fragmentation functions. Looking into the regime of thermal photons, one can extract the temperature of the medium. The medium- induced energy loss of particles can be investigated via the measurement of neutral meson spectra for different centrality classes as well as via neutral meson–hadron correlations. A decrease of the nuclear modification factor ( R AA ) with centrality of the collision is observed. The suppression of th...

  20. Molecular components in P-wave charmed-strange mesons

    CERN Document Server

    Ortega, Pablo G.

    2016-10-26

    Results obtained by various experiments show that the $D_{s0}^{\\ast}(2317)$ and $D_{s1}(2460)$ mesons are very narrow states located below the $DK$ and $D^{\\ast}K$ thresholds, respectively. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. Motivated by a recent lattice study which addresses the mass shifts of the $c\\bar{s}$ ground states with quantum numbers $J^{P}=0^{+}$ ($D_{s0}^{\\ast}(2317)$) and $J^{P}=1^{+}$ ($D_{s1}(2460)$) due to their coupling with $S$-wave $D^{(\\ast)}K$ thresholds, we perform a similar analysis within a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The quark model has been applied to a wide range of hadronic observables and thus the model parameters are completely constrained. The coupling between quark-antiquark and meson-meson Fock components is done using a modified version of the $^{3}P_{0}$ decay model. We observe that the coupling of the $0^{+}$ $(1^{+})$ mes...

  1. Passive scalar transport mediated by laminar vortex rings

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, R H; Rodríguez, G, E-mail: rohernan@ing.uchile.cl [LEAF-NL, Depto. Ingeniería Civil Mecánica, Universidad de Chile, Casilla 2777, Santiago (Chile)

    2017-04-15

    Numerical simulations were used to study the dynamics of a passive conserved scalar quantity entrained by a self-propelling viscous vortex ring. The transport and mixing process of the passive scalar variable were studied considering two initial scalar distributions: (i) The scalar substance was introduced into the ring during its formation, further focusing in the shedding into the wake of the ring; (ii) A disk-like scalar layer was placed in the ring’s path where the entrainment of the scalar substance into the ring bubble was studied as a function of the ring strength. In both cases, the scalar concentration inside the vortex bubble exhibits a steady decay with time. In the second case, it was shown that the entrained scalar mass grows with both the Reynolds number of the ring and the thickness of the scalar layer in the propagation direction. The ring can be viewed as a mechanism for scalar transportation along important distances. (paper)

  2. CORNELL: CLEO discovers B meson penguins

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The CLEO collaboration at Cornell's CESR electron-positron storage ring has discovered a rare type of B meson decay in which only a high energy photon and a K* meson are produced. These decays provide the first unambiguous evidence for an alternative route for heavy quark decay that has been given the whimsical name ''penguin diagram''. In the mid-1970s penguin diagrams were proposed to explain the puzzling strangeness quantum number selection rules in the decay of K mesons. At the same time it was realized that penguin diagrams could also be important in the CP violation seen in neutral K meson decay. CP violation, an asymmetry between matter and antimatter, is an essential ingredient in understanding why there is much more matter than antimatter in the universe. CP violation introduces a definite direction to the arrow of time, which could otherwise point equally forwards or backwards. In addition, penguin decays are very sensitive to some extensions of the Standard Model of weak decay. Although penguin diagrams were first proposed to explain an effect in K meson decay, the K system gives no unique signature for them, and verification of penguin processes meant looking elsewhere. In the Standard Model, quarks decay under the influence of the weak force, emitting a W boson. Since the W is charged, the charge of the initial quark differs from that of the final quark, so the charge of the quark changes as well as its flavour

  3. Renormalization group analysis of B →π form factors with B -meson light-cone sum rules

    Science.gov (United States)

    Shen, Yue-Long; Wei, Yan-Bing; Lü, Cai-Dian

    2018-03-01

    Within the framework of the B -meson light-cone sum rules, we review the calculation of radiative corrections to the three B →π transition form factors at leading power in Λ /mb. To resum large logarithmic terms, we perform the complete renormalization group evolution of the correlation function. We employ the integral transformation which diagonalizes evolution equations of the jet function and the B -meson light-cone distribution amplitude to solve these evolution equations and obtain renormalization group improved sum rules for the B →π form factors. Results of the form factors are extrapolated to the whole physical q2 region and are compared with that of other approaches. The effect of B -meson three-particle light-cone distribution amplitudes, which will contribute to the form factors at next-to-leading power in Λ /mb at tree level, is not considered in this paper.

  4. Bs mesons: semileptonic and nonleptonic decays

    Directory of Open Access Journals (Sweden)

    Albertus C.

    2014-01-01

    Full Text Available In this contribution we compute some nonleptonic and semileptonic decay widths of Bs mesons, working in the context of constituent quark models [1, 2]. For the case of semileptonic decays we consider reactions leading to kaons or different Jπ Ds mesons. The study of nonleptonic decays has been done in the factorisation approximation and includes the final states enclosed in Table 2.

  5. SU(4) flavor symmetry breaking in D-meson couplings to light hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Fontoura, C.E. [Instituto Tecnologico da Aeronautica, DCTA, Sao Jose dos Campos, SP (Brazil); Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil); Haidenbauer, J. [Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Krein, G. [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-05-15

    The validity of SU(4)-flavor symmetry relations of couplings of charmed D-mesons to light mesons and baryons is examined with the use of {sup 3}P{sub 0} quark-pair creation model and nonrelativistic quark-model wave functions. We focus on the three-meson couplings ππρ, KKρ and DDρ and baryon-baryon-meson couplings NNπ, NΛK and NΛ{sub c}D. It is found that SU(4)-flavor symmetry is broken at the level of 30% in the DDρ tree-meson couplings and 20% in the baryon-baryon-meson couplings. Consequences of these findings for DN cross sections and existence of bound states D-mesons in nuclei are discussed. (orig.)

  6. Study of light mesons with WASA-at-COSY

    Science.gov (United States)

    Prencipe, Elisabetta

    2014-06-01

    The WASA detector, operating at the COSY facility in Jülich (Germany) has been collecting data since 2007. The experiment allows to perform studies of light mesons, such as π0, η and ω rare decay processes, in order to perform precise measurements of branching ratios, determine Dalitz plot parameters, test symmetry and symmetry breaking, and evaluate transition form factors. In the experiments a proton or deuteron beam impinged on a pellet target of hydrogen or deuterium, which allows the reactions proton-proton (pp) or proton-deuteron (pd). A high-statistics sample of η mesons has been collected: in the reaction pd →3He η, 3×107η mesons were tagged at a beam energy of 1.0 GeV, while 5×108η mesons were produced in the reaction pp → ppη at 1.4 GeV. This corresponds to the production of 10 η/s and 100 η/s, respectively, for the two reaction processes. In the pp dataset a higher background level is found compared to the pd data set. In both cases, we identify the η mesons by means of the missing mass derived from the recoil particles. A kinematic fit largely rejects the background in our analysis. The advantage in using the pp dataset is that the production of η mesons is almost a factor of 10 higher than in the pd fusion to 3He. As we plan to measure the branching ratios of very rare processes, high statistics is needed. A summary of the recent activity on the study of light mesons with WASA-at-COSY here is given.

  7. Study of light mesons with WASA-at-COSY

    Directory of Open Access Journals (Sweden)

    Prencipe Elisabetta

    2014-06-01

    Full Text Available The WASA detector, operating at the COSY facility in Jülich (Germany has been collecting data since 2007. The experiment allows to perform studies of light mesons, such as π0, η and ω rare decay processes, in order to perform precise measurements of branching ratios, determine Dalitz plot parameters, test symmetry and symmetry breaking, and evaluate transition form factors. In the experiments a proton or deuteron beam impinged on a pellet target of hydrogen or deuterium, which allows the reactions proton-proton (pp or proton-deuteron (pd. A high-statistics sample of η mesons has been collected: in the reaction pd →3He η, 3×107η mesons were tagged at a beam energy of 1.0 GeV, while 5×108η mesons were produced in the reaction pp → ppη at 1.4 GeV. This corresponds to the production of 10 η/s and 100 η/s, respectively, for the two reaction processes. In the pp dataset a higher background level is found compared to the pd data set. In both cases, we identify the η mesons by means of the missing mass derived from the recoil particles. A kinematic fit largely rejects the background in our analysis. The advantage in using the pp dataset is that the production of η mesons is almost a factor of 10 higher than in the pd fusion to 3He. As we plan to measure the branching ratios of very rare processes, high statistics is needed. A summary of the recent activity on the study of light mesons with WASA-at-COSY here is given.

  8. Exploring the Quark-Gluon Content of Hadrons: From Mesons to Nuclear Matter

    International Nuclear Information System (INIS)

    Hrayr Matevosyan

    2007-01-01

    Even though Quantum Chromodynamics (QCD) was formulated over three decades ago, it poses enormous challenges for describing the properties of hadrons from the underlying quark-gluon degrees of freedom. Moreover, the problem of describing the nuclear force from its quark-gluon origin is still open. While a direct solution of QCD to describe the hadrons and nuclear force is not possible at this time, we explore a variety of developed approaches ranging from phenomenology to first principle calculations at one or other level of approximation in linking the nuclear force to QCD. The Dyson Schwinger formulation (DSE) of coupled integral equations for the QCD Green's functions allows a non-perturbative approach to describe hadronic properties, starting from the level of QCD n-point functions. A significant approximation in this method is the employment of a finite truncation of the system of DSEs, that might distort the physical picture. In this work we explore the effects of including a more complete truncation of the quark-gluon vertex function on the resulting solutions for the quark 2-point functions as well as the pseudoscalar and vector meson masses. The exploration showed strong indications of possibly large contributions from the explicit inclusion of the gluon 3- and 4-point functions that are omitted in this and previous analyses. We then explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime using phenomenological models of nucleon structure. Finally, we further developed the Quark Meson Coupling model for describing atomic nuclei and nuclear matter, where the quark-gluon structure of nucleons is modeled by the MIT bag model and the nucleon many body interaction is mediated by the exchange of scalar and vector mesons. This approach allows us to formulate a fully relativistic theory, which can be expanded in the nonrelativistic limit to reproduce the well known phenomenological Skyrme

  9. Interference in Exclusive Vector Meson Production in Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim

    2000-01-01

    Vector mesons are produced copiously in peripheral relativistic heavy-ion collisions. Virtual photons from one ion can fluctuate into quark-antiquark pairs and scatter from the second ion, emerging as vector mesons. The emitter and target are indistinguishable, so emission from the two ions will interfere. Vector mesons have negative parity so the interference is destructive, reducing the production of mesons with small transverse momentum. The mesons are short lived, and decay before emission from the two ions can overlap. However, the decay-product wave functions overlap and interfere since they are produced in an entangled state, providing an example of the Einstein-Podolsky-Rosen paradox. (c) 2000 The American Physical Society

  10. Scalar electron production in e+e- annihilation

    International Nuclear Information System (INIS)

    Kuroda, M.; Kobayashi, T.; Yamada, S.; Ishikawa, K.

    1983-05-01

    The single scalar electron production process e + e - -> esup(+-) + Photino + scalar electron (scalar electron -> esup(-+) + Photino), with the detection of e + as well as e - , provides a clean method to detect scalar electrons when their masses are not lighter than the beam energy. We made a complete calculation of the process and evaluated the production cross sections. (orig.)

  11. A unified model of K- and π-mesons

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    On the foundation of an antecedent non-linear meson field theory it is suggested that the π-meson field may be described in terms of collective motions of the K-meson fields. A particular model of the K-nucleon interaction is considered whose collective π-modes have symmetrical PV coupling with the nucleon system; parity is conserved to a great extent for the π-nucleon system in the absence of strange particles. The direct K-nucleon interactions do not conserve parity; their sign and symmetry are qualitatively acceptable. The masses and coupling constants of the meson fields are determinate in terms of one universal coupling constant and a cut-off. The structure of this model suggests a natural way for the introduction of the 'spurion', describing weak interactions that violate strangeness. (author). 6 refs

  12. Measurement of elastic electroproduction of $\\phi$ mesons at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Borras, K.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; David, M.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazarian, S.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Hoprich, W.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Kaufmann, O.; Kausch, M.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Krucker, D.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Kutuev, R.; Lachnit, W.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstrom, M.; Lobodzinska, E.; Lobodzinski, B.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Sedlak, K.; Sefkow, F.; Chekelian, V.I.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Tchernyshov, V.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; von Dombrowski, S.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.

    2000-01-01

    The elastic electroproduction of phi mesons is studied at HERA with the H1 detector for photon virtualities 1 < Q^2 < 15 GeV^2 and hadronic centre of mass energies 40 < W < 130 GeV. The Q^2 and t dependences of the cross section are extracted (t being the square of the four-momentum transfer to the target proton). When plotted as function of (Q^2 + M_V^2) and scaled by the appropriate SU(5) quark charge factor, the phi meson cross section agrees within errors with the cross sections of the vector mesons V = rho, omega and J/psi. A detailed analysis is performed of the phi meson polarisation state and the ratio of the production cross sections for longitudinally and transversely polarised phi mesons is determined. A small but significant violation of s-channel helicity conservation (SCHC) is observed.

  13. Semileptonic B-meson decays in SU(3)

    International Nuclear Information System (INIS)

    Li Zuohong; Hou Yunzhi

    1994-01-01

    Based on the SU(3) approximate symmetry in the strong interaction three-body and four-body semileptonic B-meson decays are analyzed. Relations between decay rates are derived. Some of these relations may provide information on the nature of various competing dynamical effects that can occur in semileptonic B-meson decays

  14. Measurement of inclusive and dijet D{sup *} meson cross sections in photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Insitute, Moscow (RU)] (and others)

    2011-12-15

    The inclusive photoproduction of D{sup *} mesons and of D{sup *}-tagged dijets is investigated with the H1 detector at the ep collider HERA. The kinematic region covers small photon virtualities Q{sup 2}<2 GeV{sup 2} and photon-proton centre-of-mass energies of 100meson differential cross sections are measured for central rapidities vertical stroke {eta}(D{sup *}) vertical stroke <1.5 and transverse momenta p{sub T}(D{sup *})>1.8 GeV. The heavy quark production process is further investigated in events with at least two jets with transverse momentum p{sub T}(jet)>3.5 GeV each, one containing the D{sup *} meson. Differential cross sections for D{sup *}-tagged dijet production and for correlations between the jets are measured in the range vertical stroke {eta}(D{sup *}) vertical stroke <1.5 and p{sub T} (D{sup *})>2.1 GeV. The results are compared with predictions from Monte Carlo simulations and next-to-leading order perturbative QCD calculations. (orig.)

  15. Measurement of inclusive and dijet D{sup *} meson cross sections in photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Inst. (Armenia); Barrelet, E. [CNRS/IN2P3, LPNHE, Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, Paris (France); Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Radescu, V.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [CNRS/IN2P3, LAL, Univ. Paris-Sud, Orsay (France); Boenig, M.O.; Wegener, D. [TU Dortmund, Inst. fuer Physik, Dortmund (Germany); Boudry, V.; Moreau, F.; Specka, A. [CNRS/IN2P3, LLR, Ecole Polytechnique, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Univ. of Belgrade, Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham (United Kingdom)] [and others

    2012-05-15

    The inclusive photoproduction of D {sup *} mesons and of D {sup *}-tagged dijets is investigated with the H1 detector at the ep collider HERA. The kinematic region covers small photon virtualities Q {sup 2}<2 GeV{sup 2} and photon-proton centre-of-mass energies of 100meson differential cross sections are measured for central rapidities vertical stroke {eta}(D{sup *}) vertical stroke <1.5 and transverse momenta p{sub T}(D {sup *})>1.8 GeV. The heavy quark production process is further investigated in events with at least two jets with transverse momentum p{sub T} (jet) >3.5 GeV each, one containing the D{sup *} meson. Differential cross sections for D{sup *}-tagged dijet production and for correlations between the jets are measured in the range vertical stroke {eta}(D{sup *}) vertical stroke <1.5 and p{sub T}(D {sup *})>2.1 GeV. The results are compared with predictions from Monte Carlo simulations and next-to-leading order perturbative QCD calculations. (orig.)

  16. Decays of mesons with charm quarks on the lattice

    International Nuclear Information System (INIS)

    Ali Khan, A.; Braun, V.; Burch, T.; Goeckeler, M.; Schaefer, A.; Schierholz, G.

    2007-10-01

    We investigate mesons containing charm quarks on fine lattices with a -1 ∝ 5 GeV. The quenched approximation is employed using theWilson gauge action at β = 6.6 and nonperturbatively O(a) improvedWilson quarks. We present results for decay constants using various interpolating fields and give preliminary results for form factors of semileptonic decays of D s mesons to light pseudoscalar mesons. (orig.)

  17. Final State Interaction on non Mesonic Hyperon Weak Decay Spectra of Λ12C

    International Nuclear Information System (INIS)

    Gonzalez, I.; Rodriguez, O.; Deppman, A.; Duarte, S.; Krmpotic, F.

    2011-01-01

    In the present work, we study the one nucleon induced non mesonic hyperon weak decay (NMWD)(ΛΝ → ηΝ) on the Λ 12 C hypernuclei with corresponding transition rates given by Γ ρ ≡ Γ (Λρ → ηρ) and Γ η ≡ Γ (Λη → ηη) respectively. The whole nuclear process is described by using a connection of two models, one to describe the primary non mesonic weak decay in the nuclear environment and another one to follows the time evolution of the outgoing of nucleons from nuclear system, to consider the Final State Interaction (FSI). The Independent-Particle Shell-Model (IPSM) is used to depict the dynamic of the primary decay by mean of the exchange of π and + Κ mesons with usual parameterization. A time dependent multicolisional intranuclear cascade approach implemented on the CRISP (Collaboration Rio-Sao Paulo) code incorporates the FSI to the Γ η /Γ ρ ratio calculation and the behaviour of these value with the coulomb barrier as well as to the observable nucleon kinetic energy spectra and also to angular correlation determinations. Recent KEK and FINUDA experiments on one- and two-nucleon non mesonic weak decay (NMWD) spectra in Λ 12 C hypernuclei are analyzed theoretically and the effect of FSI is determined within our model scenery. (Author)

  18. Electroproduction of pseudoscalar mesons at large transverse momenta

    Energy Technology Data Exchange (ETDEWEB)

    Domokos, G.; Kovesi-Domokos, S.; Yunn, B. C.

    1973-07-15

    Inclusive electroproduction of spinless (pseudoscalar) mesons at large transverse momenta is studied in the framework of local scale invariance. Scaling laws are established for the structure iunctions and approximate analytic expressions are derived for the scaling functions. It is predicted that the cross section decreases essentially according to a power law as a function of the transverse momentum of the observed meson, similarly to hadronic cross sections. The production rate of heavy mesons is found to rise slowly with the laboratory energy of the virtual photon. (auth)

  19. In-medium behaviour of vector mesons and the longitudinal and transverse response functions in (e,e'p) reactions

    International Nuclear Information System (INIS)

    Soyeur, M.; Brown, G.E.; Rho, M.

    1991-01-01

    The electromagnetic form factors of nucleons appear dominated by vector mesons at momentum transfers small than ∼ 1 GeV/c. It is therefore expected that measurements of quantities involving the electromagnetic form factors of nucleons embedded in nuclei will be sensitive to changes in vector meson properties arising from their interaction with the medium. Longitudinal and transverse response functions measured in quasi-elastic (e,e'p) reactions provide such data for two very different operators, the charge and the current densities. We show that a decrease of vector meson masses in the medium, consistent with present expectations about chiral symmetry restoration in nuclei, produces the quenching observed in the longitudinal response of light systems ( 3 He, 4 He) and part of this quenching for heavier nuclei 40 Ca where nuclear correlations are expected to generate an additional suppression of the longitudinal response. The transverse response is almost unchanged, in agreement with the data. Difficulties in extrating very quantitative information on the in-medium behaviour of vector mesons from (e,e'p) data are pointed out

  20. THE ETA-MESON PHOTOPRODUCTION ON PROTON

    Czech Academy of Sciences Publication Activity Database

    Donoval, Jan; Bydžovský, Petr

    2011-01-01

    Roč. 26, 3-4 (2011), s. 645-646 ISSN 0217-751X. [11th International Workshop on Meson Production , Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/08/0984 Institutional research plan: CEZ:AV0Z10480505 Keywords : Eta-meson photoproduction * form factors * nucleon resonances Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  1. Excited charmed mesons

    International Nuclear Information System (INIS)

    Butler, J.N.; Shukla, S.

    1995-05-01

    The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one

  2. Minimal extension of the standard model scalar sector

    International Nuclear Information System (INIS)

    O'Connell, Donal; Wise, Mark B.; Ramsey-Musolf, Michael J.

    2007-01-01

    The minimal extension of the scalar sector of the standard model contains an additional real scalar field with no gauge quantum numbers. Such a field does not couple to the quarks and leptons directly but rather through its mixing with the standard model Higgs field. We examine the phenomenology of this model focusing on the region of parameter space where the new scalar particle is significantly lighter than the usual Higgs scalar and has small mixing with it. In this region of parameter space most of the properties of the additional scalar particle are independent of the details of the scalar potential. Furthermore the properties of the scalar that is mostly the standard model Higgs can be drastically modified since its dominant branching ratio may be to a pair of the new lighter scalars

  3. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  4. Studies of Excited $D$ mesons in $B$ meson decays

    CERN Document Server

    AUTHOR|(CDS)2082679

    This thesis documents the studies of several three-body B + meson decays, each with a charged charmed meson in the final state. All analyses presented use a data sample recorded by the LHCb detector in 2011 and 2012, corresponding to an integrated luminosity of 3.0 $fb^{-1}$ of $pp$ collision data. The $B^{+} \\to D^{-}K^{+}\\pi^{+}$ and $B^{+} \\to D^{+}K^{+}\\pi^{-}$ decay modes are observed for the first time. The branching fraction of the favoured $B^{+} \\to D^{-}K^{+}\\pi^{+}$ decay mode is measured relative to the topologically similar $B^{+} \\to D^{-}\\pi^{+}\\pi^{+}$ decay and the $B^{+} \\to D^{-}K^{+}\\pi^{+}$ final state is used as a normalisation channel for the suppressed $B^{+} \\to D^{+}K^{+}\\pi^{-}$ decay branching fraction measurement. Searches are performed for the quasi-two-body decays $B^{+} \\to D^{+}K^{*}(892)^{0}$ and $B^{+} \\to D_{2}^{*}(2460)^{0}K^{+}$, using the sample of $B^{+} \\to D^{+}K^{+}\\pi^{-}$ candidate decays. No significant signals are observed for either decay mode and upper limits a...

  5. Meson-Meson molecules and compact four-quark states

    International Nuclear Information System (INIS)

    Vijande, J.; Valcarce, A.

    2010-01-01

    The physics of charm has become one of the best laboratories exposing the limitations of the naive constituent quark model and also giving hints into a more mature description of meson spectroscopy, beyond the simple quark-antiquark configurations. In this talk we review some recent studies of multiquark components in the charm sector and discuss in particular exotic and non-exotic four-quark systems.

  6. Composite (Goldstone) Higgs Dynamics on the Lattice

    DEFF Research Database (Denmark)

    Arthur, Rudy; Drach, Vincent; Hansen, Martin Rasmus Lundquist

    2014-01-01

    We study the meson spectrum of the SU(2) gauge theory with two Wilson fermions in the fundamental representation. The theory unifies both Technicolor and composite Goldstone Boson Higgs models of electroweak symmetry breaking. We have calculated the masses of the lightest spin one vector and axial...... for accelerator experiments, whereas the scalar meson will mix with a pGB of the theory and produce two scalar states. The lighter of the states is the 125 GeV Higgs boson, and the heavier would be a new yet unobserved scalar state....

  7. Self-consistent descriptions of vector mesons in hot matter reexamined

    International Nuclear Information System (INIS)

    Riek, Felix; Knoll, Joern

    2010-01-01

    Technical concepts are presented that improve the self-consistent treatment of vector mesons in a hot and dense medium. First applications concern an interacting gas of pions and ρ mesons. As an extension of earlier studies, we thereby include random-phase-approximation-type vertex corrections and further use dispersion relations to calculate the real part of the vector-meson self-energy. An improved projection method preserves the four transversality of the vector-meson polarization tensor throughout the self-consistent calculations, thereby keeping the scheme void of kinematical singularities.

  8. Experimental evidence for hadroproduction of exotic mesons

    International Nuclear Information System (INIS)

    G. S. Adams; T. Adams; Z. Bar-Yam; J. M. Bishop; V. A. Bodyagin; B. B. Brabson; D. S. Brown; N. M. Cason; S. U. Chung; R. R. Crittenden; J. P. Cummings; K. Danyo; S. Denisov; V. Dorofeev; J. P. Dowd; A. R. Dzierba; P. Eugenio; J. Gunter; R. W. Hackenburg; M. Hayek; E. I. Ivanov; I. Kachaev; W. Kern; E. King; O. L. Kodolova; V. L. Korotkikh; M. A. Kostin; J. Kuhn; R. Lindenbusch; V. Lipaev; J. M. LoSecco; J. J. Manak; J. Napolitano; M. Nozar; C. Olchanski; A. I. Ostrovidov; T. K. Pedlar; A. Popov; D. R. Rust; D. Ryabchikov; A. H. Sanjari; L. I. Sarycheva; E. Scott; K. K. Seth; N. Shenhav; W. D. Shephard; N. B. Sinev; J. A. Smith; P. T. Smith; D. L. Stienike; T. Sulanke; S. A. Taegar; S. Teige; D. R. Thompson; I. N. Vardanyan; D. P. Weygand; D. White; H. J. Willutzki; J. Wise; M. Witkowski; A. A. Yershov; D. Zhao

    2001-01-01

    New measurements of peripheral meson production are presented. The data confirm the existence of exotic mesons at 1.4 and 1.6 GeV/c2. The latter state dominates the eta'pi- decay spectrum. The data on eta pi+pi-pi- decay show large strength in several exotic (Jpc = 1- +) waves as well

  9. QED effects in the pseudoscalar meson sector

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD (United Kingdom); Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo, 650-0047 (Japan); Perlt, H. [Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, Leipzig, 04109 (Germany); Pleiter, D. [Jülich Supercomputer Centre, Forschungszentrum Jülich, Jülich, 52425 (Germany); Institut für Theoretische Physik, Universität Regensburg, Regensburg, 93040 (Germany); Rakow, P.E.L. [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Peach Street , Liverpool, L69 3BX (United Kingdom); Schierholz, G. [Deutsches Elektronen-Synchrotron DESY, Hamburg, 22603 (Germany); Schiller, A. [Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, Leipzig, 04109 (Germany); Stokes, R. [CSSM, Department of Physics, University of Adelaide, Adelaide, SA, 5005 (Australia); Stüben, H. [Regionales Rechenzentrum, Universität Hamburg, Hamburg, 20146 (Germany); Young, R.D.; Zanotti, J.M. [CSSM, Department of Physics, University of Adelaide, Adelaide, SA, 5005 (Australia); Collaboration: the QCDSF and UKQCD collaboration

    2016-04-15

    In this paper we present results on the pseudoscalar meson masses from a fully dynamical simulation of QCD+QED, concentrating particularly on violations of isospin symmetry. We calculate the π{sup +}–π{sup 0} splitting and also look at other isospin violating mass differences. We have presented results for these isospin splittings in http://arxiv.org/abs/1508.06401. In this paper we give more details of the techniques employed, discussing in particular the question of how much of the symmetry violation is due to QCD, arising from the different masses of the u and d quarks, and how much is due to QED, arising from the different charges of the quarks. This decomposition is not unique, it depends on the renormalisation scheme and scale. We suggest a renormalisation scheme in which Dashen’s theorem for neutral mesons holds, so that the electromagnetic self-energies of the neutral mesons are zero, and discuss how the self-energies change when we transform to a scheme such as (MS)-bar , in which Dashen’s theorem for neutral mesons is violated.

  10. Oscillations of neutral B mesons systems

    CERN Document Server

    Boucrot, J.

    1999-01-01

    The oscillation phenomenon in the neutral B mesons systems is now well established. The motivations and principles of the measurements are given; then the most recent results from the LEP experiments, the CDF collaboration at Fermilab and the SLD collaboration at SLAC are reviewed. The present world average of the $\\bd$ meson oscillation frequency is $\\dmd = 0.471 \\pm 0.016 \\ps$ and the lower limit on the $\\bs$ oscillation frequency is

  11. Hybrid mesons with auxiliary fields

    International Nuclear Information System (INIS)

    Buisseret, F.; Mathieu, V.

    2006-01-01

    Hybrid mesons are exotic mesons in which the color field is not in the ground state. Their understanding deserves interest from a theoretical point of view, because it is intimately related to nonperturbative aspects of QCD. Moreover, it seems that some recently detected particles, such as the π 1 (1600) and the Y(4260), are serious hybrid candidates. In this work, we investigate the description of such exotic hadrons by applying the auxiliary fields technique (also known as the einbein field method) to the widely used spinless Salpeter Hamiltonian with appropriate linear confinement. Instead of the usual numerical resolution, this technique allows to find simplified analytical mass spectra and wave functions of the Hamiltonian, which still lead to reliable qualitative predictions. We analyse and compare two different descriptions of hybrid mesons, namely a two-body q system with an excited flux tube, or a three-body qg system. We also compute the masses of the 1 -+ hybrids. Our results are shown to be in satisfactory agreement with lattice QCD and other effective models. (orig.)

  12. Solar System constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field

    Science.gov (United States)

    Anderson, David; Yunes, Nicolás

    2017-09-01

    Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.

  13. Motion of Passive Scalar by Elasticity-Induced Instability in Curved Microchannel

    Directory of Open Access Journals (Sweden)

    Xiao-Bin Li

    2014-08-01

    Full Text Available This paper presented a direct numerical simulation (DNS study on the elasticity-induced irregular flow, passive mixing, and scalar evolution in the curvilinear microchannel. The mixing enhancement was achieved at vanishingly low-Reynolds-number chaotic flow raised by elastic instabilities. Along with the mixing process, the passive scalar transportation carried by the flow was greatly affected by the flow structure and the underlying interaction between microstructures of viscoelastic fluid and flow structure itself. The simulations are conducted for a wide range of viscoelasticity. As the elastic effect exceeds the critical value, the flow tends to a chaotic state, while the evolution of scalar gets strong and fast, showing excellent agreement with experimental results. For the temporal changing of scalar gradients, they vary rapidly in the form of isosurfaces, with the shape of “rolls” in the bulk and evolving into “threads” near the wall. That indicates that the flow fields should be related to the deformation of viscoelastic micromolecules. The probability distribution function analysis between micromolecular deformation and flow field deformation shows that the main direction of molecular stretching is perpendicular to the main direction of flow field deformation. It implies they are weakly correlated, due to the confinement of channel wall.

  14. Determination of the $X(3872)$ meson quantum numbers

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Oyanguren Campos, M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lohn, S; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Mcnab, A; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    The quantum numbers of the $X(3872)$ meson are determined to be $J^{PC} = 1^{++}$ based on angular correlations in $B^+\\to X(3872) K^+$ decays, where $X(3872)\\to \\pi^+\\pi^- J/\\psi$ and $J/\\psi \\to\\mu^+\\mu^-$. The data correspond to 1.0 fb$^{-1}$ of $pp$ collisions collected by the LHCb detector. The only alternative assignment allowed by previous measurements, $J^{PC}=2^{-+}$, is rejected with a confidence level equivalent to more than eight Gaussian standard deviations using the likelihood-ratio test in the full angular phase space. This result favors exotic explanations of the $X(3872)$ state.

  15. On wave functions of mesons involving the s-, c- and b-quarks

    International Nuclear Information System (INIS)

    Zhitnitskij, A.R.; Zhitnitskij, I.R.; Chernyak, V.L.

    1983-01-01

    The wave function components of pseudoscalar and vestor mesons which are antisymmertric with respect to permutation of the quark momenta are studied. The results are as follows: elt xsub(s)-xsub(u) > sub(K) approximately equal to 0.11 for the K meson, sub(K*) approximately equal to 0.15-C.20 for the K* meson, being a mean fraction of the longitudinal momentum transferred by the s(u) quark. The following estimates are obtained: / approximately equal to 0.20-0.25; / approximately equal to 0.8x10 -2 . The asymptotics of the K 0 -meson form factor and the etasub(c) → KK* decay width are found. Properties of the wave functions of mesons which contain a light and a heavy quark (D, B, ...) are considered. For the B 0 meson approximately equal to 0.10 is found. Arguments are given supporting nonenhancement of the amplitudes of the processes involving D mesons compared to similar K-meson amplitudes. A simple way is suggested to determine the asymptotic form of various wave functions

  16. Low energy constraints and scalar leptoquarks⋆

    Directory of Open Access Journals (Sweden)

    Fajfer Svjetlana

    2014-01-01

    Full Text Available The presence of a colored weak doublet scalar state with mass below 1 TeV can provide an explanation of the observed branching ratios in B → D(∗τντ decays. Constraints coming from Z → bb̄, muon g − 2, lepton flavor violating decays are derived. The colored scalar is accommodated within 45 representation of SU(5 group of unification. We show that presence of color scalar can improve mass relations in the up-type quark sector mass. Impact of the colored scalar embedding in 45-dimensional representation of SU(5 on low-energy phenomenology is also presented.

  17. A lattice QCD determination of potentials between pairs of static-light mesons

    International Nuclear Information System (INIS)

    Hetzenegger, Martin

    2011-01-01

    Potentials between pairs of static-light mesons are interesting in a sense that they give insights in the nature of strong interactions from first principles for multiquark systems. For large heavy quark masses, e.g., the spectra of heavy-light mesons are determined by excitations of the light quark and gluonic degrees of freedom. In particular, the vector-pseudoscalar splitting vanishes and a static-light meson can be interpreted as either a B, a B * , a D or a D * heavy-light meson. Calculating potentials between two static-light mesons also enables investigations of possible bound tetraquark states or for particles that are close to the meson-antimeson threshold, such as the X(3872) or the Z + (4430).

  18. Fokker-type dynamics with three-body correlations

    International Nuclear Information System (INIS)

    Salas, A.; Sanchez-Ron, J.M.

    1981-01-01

    Dynamical systems of N point particles without internal degrees of freedom are studied. Their equations of motion are derived from a Fokker-type variational principle with n-body correlations (n = 2,3,...,N), with special emphasis on the case n = 3. The distinction between n-body correlation and n-body effective force is analyzed in detail, with the help of an example. Maximal sets of independent three-body Poincare-invariant scalars are given. An example of three-body correlation formally similar to the usual two-body long-range scalar correlation is given and discussed. (author)

  19. Scalar field dark matter: behavior around black holes

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Osorio, Alejandro; Guzmán, F. Siddhartha; Lora-Clavijo, Fabio D., E-mail: alejandro@ifm.umich.mx, E-mail: guzman@ifm.umich.mx, E-mail: fadulora@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán (Mexico)

    2011-06-01

    We present the numerical evolution of a massive test scalar fields around a Schwarzschild space-time. We proceed by using hyperboloidal slices that approach future null infinity, which is the boundary of scalar fields, and also demand the slices to penetrate the event horizon of the black hole. This approach allows the scalar field to be accreted by the black hole and to escape toward future null infinity. We track the evolution of the energy density of the scalar field, which determines the rate at which the scalar field is being diluted. We find polynomial decay of the energy density of the scalar field, and use it to estimate the rate of dilution of the field in time. Our findings imply that the energy density of the scalar field decreases even five orders of magnitude in time scales smaller than a year. This implies that if a supermassive black hole is the Schwarzschild solution, then scalar field dark matter would be diluted extremely fast.

  20. Scalar field dark matter: behavior around black holes

    International Nuclear Information System (INIS)

    Cruz-Osorio, Alejandro; Guzmán, F. Siddhartha; Lora-Clavijo, Fabio D.

    2011-01-01

    We present the numerical evolution of a massive test scalar fields around a Schwarzschild space-time. We proceed by using hyperboloidal slices that approach future null infinity, which is the boundary of scalar fields, and also demand the slices to penetrate the event horizon of the black hole. This approach allows the scalar field to be accreted by the black hole and to escape toward future null infinity. We track the evolution of the energy density of the scalar field, which determines the rate at which the scalar field is being diluted. We find polynomial decay of the energy density of the scalar field, and use it to estimate the rate of dilution of the field in time. Our findings imply that the energy density of the scalar field decreases even five orders of magnitude in time scales smaller than a year. This implies that if a supermassive black hole is the Schwarzschild solution, then scalar field dark matter would be diluted extremely fast

  1. Mixed meson masses with domain-wall valence and staggered sea fermions

    International Nuclear Information System (INIS)

    Orginos, Kostas; Walker-Loud, Andre

    2008-01-01

    Mixed action lattice calculations allow for an additive lattice-spacing-dependent mass renormalization of mesons composed of one sea and one valence quark, regardless of the type of fermion discretization methods used in the valence and sea sectors. The value of the mass renormalization depends upon the lattice actions used. This mixed meson mass shift is an important lattice artifact to determine for mixed action calculations; because it modifies the pion mass, it plays a central role in the low-energy dynamics of all hadronic correlation functions. We determine the leading order, O(a 2 ), and next-to-leading order, O(a 2 m π 2 ), additive mass shift of valence-sea mesons for a mixed lattice action with domain-wall valence fermions and rooted staggered sea fermions, relevant to the majority of current large scale mixed action lattice efforts. We find that, on the asqtad-improved coarse MILC lattices, this additive mass shift is well parametrized in lattice units by Δ(am) 2 =0.034(2)-0.06(2)(am π ) 2 , which in physical units, using a=0.125 fm, corresponds to Δ(m) 2 =(291±8 MeV) 2 -0.06(2)m π 2 . In terms of the mixed action effective field theory parameters, the corresponding mass shift is given by a 2 Δ Mix =(316±4 MeV) 2 at leading order plus next-to-leading order corrections including the necessary chiral logarithms for this mixed action calculation, determined in this work. Within the precision of our calculation, one cannot distinguish between the full next-to-leading order effective field theory analysis of this additive mixed meson mass shift and the parametrization given above.

  2. Physical Origin of Density Dependent Force of the Skyrme Type within the Quark Meson Coupling Model

    International Nuclear Information System (INIS)

    Pierre Guichon; Hrayr Matevosyan; N. Sandulescu; Anthony Thomas

    2006-01-01

    A density dependent, effective nucleon-nucleon force of the Skyrme type is derived from the quark-meson coupling model--a self-consistent, relativistic quark level description of nuclear matter. This new formulation requires no assumption that the mean scalar field is small and hence constitutes a significant advance over earlier work. The similarity of the effective interaction to the widely used SkM* force encourages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge distributions of doubly magic nuclei. Finding impressive results in this conventional arena, we apply the same effective interaction, within the Hartree-Fock-Bogoliubov approach, to the properties of nuclei far from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we apply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application to the properties of neutron stars

  3. About direct CP violation in the system of K0 mesons

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2012-01-01

    This work is devoted to computation of the parameter of direct CP violation by the weak interactions in the system of K 0 mesons at K 1 0 -, K 2 0 -meson mixings and oscillations via K S -, K L -meson states

  4. Mesonic atom production in high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Wakai, M.; Bando, H.; Sano, M.

    1987-08-01

    The production probability of π-mesonic atom in high-energy nuclear collisions is estimated by a coalescence model. The production cross section is calculated for p + Ne and Ne + Ne systems at 2.1 GeV/A and 5.0 GeV/A beam energy. It is shown that nuclear fragments with larger charge numbers have the advantage in the formation of π-mesonic atoms. The cross section is proportional to Z 3 and of the order of magnitude of 1 ∼ 10 μb in all the above cases. The production cross sections of K-mesonic atoms are also estimated. (author)

  5. Light meson decays in CLAS and CLAS12

    Energy Technology Data Exchange (ETDEWEB)

    Kunkel, Michael [Forschungszentrum Juelich (Germany); Collaboration: CLAS Collaboration

    2016-07-01

    Photoproduction experiments with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Facility produce data sets with competitive statistics of light mesons. With these data sets, measurements of transition form factors for η, ω, and η' mesons via conversion decays can be performed using the invariant mass distribution of the final state dileptons. Tests of fundamental symmetries and information on the light quark mass difference can be performed using a Dalitz plot analysis of the meson decay. An overview of preliminary results, from existing CLAS data, and future prospects within the newly upgraded CLAS12 apparatus are given.

  6. Finite temperature QCD sum rule and the ρ-meson

    International Nuclear Information System (INIS)

    Liu Jueping; Jin Yaping

    1995-01-01

    The contributions from the three-gluon condensates to the finite temperature QCD sum rule for the ρ-meson are calculated, and then the dependence of the properties of the ρ-meson upon temperature is investigated in a string model of condensates. The results show that the parameters characterizing the properties of the ρ-meson change noticeably when the temperature closes to the critical temperature of the condensates, and if the critical temperatures of condensates are the same

  7. Electroproduction of pseudoscalar mesons above the resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Niczyporuk, B.B. [Continuous Electron beam Accelerator Facility, Newport News, VA (United States)

    1994-04-01

    In this paper, the author has revisited twenty year old data considering the progress achieved in related fields. To make further progress in our understanding of strong interactions, one needs much better quality of exclusive electroproduction data. A measurement of the differential cross section {sigma}(t, W, Q{sup 2}) for the reactions e{sup {minus}} + p {r_arrow} e{sup {minus}} + {pi}{sup +}(K{sup +}) + n({Lambda}{degrees}) at a beam energy of {ge} 4 GeV is proposed. Data will be collected simultaneously for both reactions using the CLAS detector at CEBAF in the following kinematical region: Q{sup 2} > 1 GeV{sup 2} and W > 2 GeV. One of the most interesting aspects of electroproduction is that it can be used to measure photoproduction amplitudes as functions of the photon mass squared Q{sup 2} and momentum transfer t. Emphasis is given to measuring the differential cross sections for t {approximately} m{sup 2}{sub {pi},{kappa}}. Above the resonance region (W > 2 GeV), the cross section is dominated by the amplitudes for scalar photons. Measured angular distributions of produced mesons will be used to estimate the contribution of various amplitudes to the cross sections. High statistics and good quality data collected simultaneously using a large acceptance detector will improve our understanding of nucleon structure as well as the hadronic properties of the photon.

  8. σ and ρ meson strength distributions from in medium corrected ππ correlations and the nuclear equation of state

    International Nuclear Information System (INIS)

    Chanfray, G.; Aouissat, Z.; Schuck, P.; Norenberg, W.

    1990-01-01

    The most important part of the intermediate range nucleon-nucleon attraction is attributed to the exchange of non interacting as well as interaction two pions in the I = J = O channel. The corresponding 2π exchange potential, or part of it, is often simulated by a sigma-meson exchange with mass of about 600 MeV, which is then used as a basic input to nuclear matter calculation. This may give in particular a justification to the popular σ-ψ model. However a number of question remains concerning the microscopic nature of such an effective sigma meson. The point the authors want to emphasize in this paper concerns the possible modification of the sigma in the medium since they think that it is made out of pions whose propagations are strongly altered by the medium. However also the ρ-meson may undergo similar in medium corrections which possibly are related to recent experimental findings. The authors discuss, with a very simple model, the problem of pion propagation and pion-pion interaction in the medium and the occurrence of highly collective pion-delta modes (pionic branch, pisobar, quasi pion) in agreement with experimental data. They also should have some very important consequences on the dynamics of relativistic heavy collision. The authors address the very important question of the nuclear matter equation of state where collective pionic effects are included to reconstruct an effective sigma exchange whose mass and coupling constant are density dependent

  9. Scattering of vector mesons off nucleons

    International Nuclear Information System (INIS)

    Lutz, M.F.M.; Friman, B.; Wolf, G.

    2001-12-01

    We construct a relativistic and unitary approach to 'high' energy pion- and photon-nucleon reactions taking the πN, πΔ, ρN, ωN, ηN, K Λ, KΣ final states into account. Our scheme dynamically generates the s- and d-wave nucleon resonances N(1535), N(1650) and N(1520) and isobar resonances Δ(1620) and δ(1700) in terms of quasi-local interaction vertices. The description of photon-induced processes is based on a generalized vector-meson dominance assumption which directly relates the electromagnetic quasi-local 4-point interaction vertices to the corresponding vertices involving the ρ and ω fields. We obtain a satisfactory description of the elastic and inelastic pion- and photon-nucleon scattering data in the channels considered. The resulting s-wave ρ- and ω-nucleon scattering amplitudes are presented. Using these amplitudes we compute the leading density modification of the ρ and ω mass distributions in nuclear matter. We find a repulsive mass shift for the ω meson at small nuclear density but predict considerable strength in resonance-hole like ω-meson modes. Compared to previous calculations our result for the ρ-meson spectral function shows a significantly smaller in-medium effect. This reflects a not too large coupling strength of the N(1520) resonance to the ρN channel. (orig.)

  10. Scalar field mass in generalized gravity

    International Nuclear Information System (INIS)

    Faraoni, Valerio

    2009-01-01

    The notions of mass and range of a Brans-Dicke-like scalar field in scalar-tensor and f(R) gravity are subject to an ambiguity that hides a potential trap. We spell out this ambiguity and identify a physically meaningful and practical definition for these quantities. This is relevant when giving a mass to this scalar in order to circumvent experimental limits on the PPN parameters coming from solar system experiments.

  11. A lattice QCD determination of potentials between pairs of static-light mesons

    Energy Technology Data Exchange (ETDEWEB)

    Hetzenegger, Martin

    2011-07-04

    Potentials between pairs of static-light mesons are interesting in a sense that they give insights in the nature of strong interactions from first principles for multiquark systems. For large heavy quark masses, e.g., the spectra of heavy-light mesons are determined by excitations of the light quark and gluonic degrees of freedom. In particular, the vector-pseudoscalar splitting vanishes and a static-light meson can be interpreted as either a B, a B{sup *}, a D or a D{sup *} heavy-light meson. Calculating potentials between two static-light mesons also enables investigations of possible bound tetraquark states or for particles that are close to the meson-antimeson threshold, such as the X(3872) or the Z{sup +}(4430).

  12. Hierarchal scalar and vector tetrahedra

    International Nuclear Information System (INIS)

    Webb, J.P.; Forghani, B.

    1993-01-01

    A new set of scalar and vector tetrahedral finite elements are presented. The elements are hierarchal, allowing mixing of polynomial orders; scalar orders up to 3 and vector orders up to 2 are defined. The vector elements impose tangential continuity on the field but not normal continuity, making them suitable for representing the vector electric or magnetic field. Further, the scalar and vector elements are such that they can easily be used in the same mesh, a requirement of many quasi-static formulations. Results are presented for two 50 Hz problems: the Bath Cube, and TEAM Problem 7

  13. Meson masses in electromagnetic fields with Wilson fermions

    Science.gov (United States)

    Bali, G. S.; Brandt, B. B.; Endrődi, G.; Gläßle, B.

    2018-02-01

    We determine the light meson spectrum in QCD in the presence of background magnetic fields using quenched Wilson fermions. Our continuum extrapolated results indicate a monotonous reduction of the connected neutral pion mass as the magnetic field grows. The vector meson mass is found to remain nonzero, a finding relevant for the conjectured ρ -meson condensation at strong magnetic fields. The continuum extrapolation was facilitated by adding a novel magnetic field-dependent improvement term to the additive quark mass renormalization. Without this term, sizable lattice artifacts that would deceptively indicate an unphysical rise of the connected neutral pion mass for strong magnetic fields are present. We also investigate the impact of these lattice artifacts on further observables like magnetic polarizabilities and discuss the magnetic field-induced mixing between ρ -mesons and pions. We also derive Ward-Takashi identities for QCD +QED both in the continuum formulation and for (order a -improved) Wilson fermions.

  14. Vector meson decays in the chiral bag model

    International Nuclear Information System (INIS)

    Maxwell, O.V.; Jennings, B.K.

    1985-01-01

    Vector meson decays are examined in a model where a confined quark and antiquark annihilate, producing a pair of elementary pseudoscalar mesons. Two versions of the pseudoscalar meson-quark interaction are employed, one where the coupling is restricted to the bag surface and one where it extends throughout the bag volume. Energy conservation is ensured in the model through insertion of exponential factors containing the bag energy at each interaction vertex. To guarantee momentum conservation, a wave-packet description is utilized in which the decay widths are normalized by a factor involving the overlap of the initial bag state with the confined qanti q state of zero momentum. With either interaction, the model yields a value for the p-width that exceeds the empirical width by a factor two. For the Ksup(*) and PHI mesons, the computed widths depend strongly on the interaction employed. Implications of these results for chiral bag models are discussed. (orig.)

  15. Confirmation of the Z(4430)- resonance and other exotic meson results from the LHCb experiment

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The LHCb experiment at CERN has recently confirmed the existence of the exotic Z(4430)- state first observed by the Belle experiment in 2008. Its quantum numbers have been measured and the resonant nature of this state has been demonstrated for the first time. As it is charged, the Z(4430)- cannot be classified as a conventional charmonium (ccbar) state, making it a candidate for an exotic resonance composed of four quarks (ccbar udbar). This talk will outline the history of the Z(4430)-, its possible interpretations and describe how the signature of this exotic state can be extracted from the large sample of B0 -> psi(2S) K+pi- decays that LHCb has collected during Run-1 of the LHC. I will also describe recent LHCb results that probe the nature of the exotic X(3872) particle and help to clarify our understanding of the f0(500) and f0(980) scalar mesons that have long thought to be four quark states.

  16. Hadron spectroscopy

    CERN Document Server

    Amsler, Claude

    2000-01-01

    The experimental status of glueballs and hybrids is briefly reviewed. Recent results for scalar mesons suggest that f sub 0 (1500) is the ground state scalar glueball. The identification of the first excited glueball state, a tensor, is premature, although candidates are available. We have now evidence for at least two mesons, pi sub 1 (1400) and pi sub 1 (1600), with quantum numbers incompatible with a qq-bar structure.

  17. Exploring a new S U (4 ) symmetry of meson interpolators

    Science.gov (United States)

    Glozman, L. Ya.; Pak, M.

    2015-07-01

    In recent lattice calculations it has been discovered that mesons upon truncation of the quasizero modes of the Dirac operator obey a symmetry larger than the S U (2 )L×S U (2 )R×U (1 )A symmetry of the QCD Lagrangian. This symmetry has been suggested to be S U (4 )⊃S U (2 )L×S U (2 )R×U (1 )A that mixes not only the u- and d-quarks of a given chirality, but also the left- and right-handed components. Here it is demonstrated that bilinear q ¯q interpolating fields of a given spin J ≥1 transform into each other according to irreducible representations of S U (4 ) or, in general, S U (2 NF). This fact together with the coincidence of the correlation functions establishes S U (4 ) as a symmetry of the J ≥1 mesons upon quasizero mode reduction. It is shown that this symmetry is a symmetry of the confining instantaneous charge-charge interaction in QCD. Different subgroups of S U (4 ) as well as the S U (4 ) algebra are explored.

  18. Scalar multi-wormholes

    International Nuclear Information System (INIS)

    Egorov, A I; Kashargin, P E; Sushkov, Sergey V

    2016-01-01

    In 1921 Bach and Weyl derived the method of superposition to construct new axially symmetric vacuum solutions of general relativity. In this paper we extend the Bach–Weyl approach to non-vacuum configurations with massless scalar fields. Considering a phantom scalar field with the negative kinetic energy, we construct a multi-wormhole solution describing an axially symmetric superposition of N wormholes. The solution found is static, everywhere regular and has no event horizons. These features drastically tell the multi-wormhole configuration from other axially symmetric vacuum solutions which inevitably contain gravitationally inert singular structures, such as ‘struts’ and ‘membranes’, that keep the two bodies apart making a stable configuration. However, the multi-wormholes are static without any singular struts. Instead, the stationarity of the multi-wormhole configuration is provided by the phantom scalar field with the negative kinetic energy. Anther unusual property is that the multi-wormhole spacetime has a complicated topological structure. Namely, in the spacetime there exist 2 N asymptotically flat regions connected by throats. (paper)

  19. Skyrmions and vector mesons: a symmetric approach

    International Nuclear Information System (INIS)

    Caldi, D.G.

    1984-01-01

    We propose an extension of the effective, low-energy chiral Lagrangian known as the Skyrme model, to one formulated by a non-linear sigma model generalized to include vector mesons in a symmetric way. The model is based on chiral SU(6) x SU(6) symmetry spontaneously broken to static SU(6). The rho and other vector mesons are dormant Goldstone bosons since they are in the same SU(6) multiplet as the pion and other pseudoscalars. Hence the manifold of our generalized non-linear sigma model is the coset space (SU(6) x SU(6))/Su(6). Relativistic effects, via a spin-dependent mass term, break the static SU(6) and give the vectors a mass. The model can then be fully relativistic and covariant. The lowest-lying Skyrmion in this model is the whole baryonic 56-plet, which splits into the octet and decuplet in the presence of relativistic SU(6)-breaking. Due to the built-in SU(6) and the presence of vector mesons, the model is expected to have better phenomenological results, as well as providing a conceptually more unified picture of mesons and baryons. 29 references

  20. Hard production of exotic hybrid mesons

    Energy Technology Data Exchange (ETDEWEB)

    Anikin, I.; Teryaev, O.V. [Bogoliubov Lab. of Theoretical Physics, JINR, Dubna (Russian Federation); Pire, B.; Anikin, I. [Ecole Polytechnique, CPHT, 91 - Palaiseau (France); Szymanowski, I. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Liege Univ. (Belgium); Anikin, I.; Wallon, S. [Paris-11 Univ., Lab. de Physique Theorique, 91 - Orsay (France)

    2005-07-01

    Exotic hybrid mesons H, with quantum numbers J{sup PC} = 1{sup -+} may be copiously produced in the hard exclusive processes {gamma}{sup *}(Q{sup 2}){gamma} {yields} H and {gamma}{sup *}(Q{sup 2})P(p) {yields} HP(p') because they have a leading twist distribution amplitude with a sizable coupling constant f{sub H}, which may be estimated through QCD sum rules. The reaction rates scale in the same way as the corresponding rates for usual mesons. (authors)

  1. D-meson production by muons in the COMPASS experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Zvyagin, Alexander

    2011-01-21

    One of the physics goals of the COMPASS experiment at CERN was to measure the contribution of gluons to the nucleon spin. To achieve this, it was proposed to scatter polarized 160 GeV/c muons on a polarized deuteron target and to detect D mesons in the final state. The underlying process in this D meson production is supposed to be the Photon-Gluon Fusion (PGF), where a virtual photon emitted by the muon interacts with a gluon from the target nucleon, producing a charm-anticharm quark pair. Fragmentation of a charm (anticharm) quark leads with high probability to the creation of a D{sup 0} or D{sup *} meson, which COMPASS detects via the D{sup 0}{yields}K{pi} and D{sup *}{yields}D{sup 0}{pi}{yields}K{pi}{pi} decay modes. From the longitudinal cross section spin asymmetries of the D meson production and theoretical predictions for the PGF cross section, the gluon contribution to the nucleon spin has been measured by the COMPASS experiment. The results presented in the thesis are the following. Based on data from the year 2004 a total visible cross section of 1.8{+-}0.4 nb, for the D{sup *} meson production, has been measured, with the error being dominated by systematic effects. It is validated that the D mesons are indeed produced through the PGF process, by comparison of measured D meson kinematic distributions to the ones predicted by a theory (AROMA generator). A good agreement was found for the distribution shapes, which confirms that PGF plays a major role. However, a 20% difference was found in the number of produced D{sup 0} and D{sup 0} mesons (and for the D{sup *+} and D{sup *-} mesons as well) which is significantly larger than predicted by AROMA. Kinematic distributions of D{sup 0} and D{sup *} mesons were compared with the background and also with the nearby K{sup *}{sub 2}(1430){sup 0} resonance, using all longitudinal data taken in 2002-2006. The particle-antiparticle asymmetry has been studied as a function of several kinematic variables. The 20

  2. DNS of a spatially developing turbulent boundary layer with passive scalar transport

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiang [Linne Flow Centre, KTH Mechanics, Osquars Backe 18, SE-100 44 Stockholm (Sweden)], E-mail: qiang@mech.kth.se; Schlatter, Philipp; Brandt, Luca; Henningson, Dan S. [Linne Flow Centre, KTH Mechanics, Osquars Backe 18, SE-100 44 Stockholm (Sweden)

    2009-10-15

    A direct numerical simulation (DNS) of a spatially developing turbulent boundary layer over a flat plate under zero pressure gradient (ZPG) has been carried out. The evolution of several passive scalars with both isoscalar and isoflux wall boundary condition are computed during the simulation. The Navier-Stokes equations as well as the scalar transport equation are solved using a fully spectral method. The highest Reynolds number based on the free-stream velocity U{sub {infinity}} and momentum thickness {theta} is Re{sub {theta}}=830, and the molecular Prandtl numbers are 0.2, 0.71 and 2. To the authors' knowledge, this Reynolds number is to date the highest with such a variety of scalars. A large number of turbulence statistics for both flow and scalar fields are obtained and compared when possible to existing experimental and numerical simulations at comparable Reynolds number. The main focus of the present paper is on the statistical behaviour of the scalars in the outer region of the boundary layer, distinctly different from the channel-flow simulations. Agreements as well as discrepancies are discussed while the influence of the molecular Prandtl number and wall boundary conditions is also highlighted. A Pr scaling for various quantities is proposed in outer scalings. In addition, spanwise two-point correlation and instantaneous fields are employed to investigate the near-wall streak spacing and the coherence between the velocity and the scalar fields. Probability density functions (PDF) and joint probability density functions (JPDF) are shown to identify the intermittency both near the wall and in the outer region of the boundary layer. The present simulation data will be available online for the research community.

  3. DNS of a spatially developing turbulent boundary layer with passive scalar transport

    International Nuclear Information System (INIS)

    Li Qiang; Schlatter, Philipp; Brandt, Luca; Henningson, Dan S.

    2009-01-01

    A direct numerical simulation (DNS) of a spatially developing turbulent boundary layer over a flat plate under zero pressure gradient (ZPG) has been carried out. The evolution of several passive scalars with both isoscalar and isoflux wall boundary condition are computed during the simulation. The Navier-Stokes equations as well as the scalar transport equation are solved using a fully spectral method. The highest Reynolds number based on the free-stream velocity U ∞ and momentum thickness θ is Re θ =830, and the molecular Prandtl numbers are 0.2, 0.71 and 2. To the authors' knowledge, this Reynolds number is to date the highest with such a variety of scalars. A large number of turbulence statistics for both flow and scalar fields are obtained and compared when possible to existing experimental and numerical simulations at comparable Reynolds number. The main focus of the present paper is on the statistical behaviour of the scalars in the outer region of the boundary layer, distinctly different from the channel-flow simulations. Agreements as well as discrepancies are discussed while the influence of the molecular Prandtl number and wall boundary conditions is also highlighted. A Pr scaling for various quantities is proposed in outer scalings. In addition, spanwise two-point correlation and instantaneous fields are employed to investigate the near-wall streak spacing and the coherence between the velocity and the scalar fields. Probability density functions (PDF) and joint probability density functions (JPDF) are shown to identify the intermittency both near the wall and in the outer region of the boundary layer. The present simulation data will be available online for the research community.

  4. Light meson decays from photon-induced reactions with CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Kunkel, Michael C. [Forschungszentrum Juelich (Germany); Collaboration: CLAS-Collaboration

    2015-07-01

    Photo-production experiments with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Laboratory produce data sets with unprecedented statistics of light mesons. With these data sets, measurements of transition form factors for η, ω, and η' via conversion decays are performed using a line shape analysis on the invariant mass of the final state dileptons. Tests of fundamental symmetries and information on the light quark mass difference are performed using a Dalitz plot analysis of the meson decay. In addition, the data allows for a search for dark matter, such as the heavy photon via conversion decays of light mesons and physics beyond the Standard Model is searched for via invisible decays of η mesons. An overview of the first results and future prospects is given.

  5. QCD sum rules for the decay amplitudes of pseudoscalar mesons

    International Nuclear Information System (INIS)

    Narison, S.

    1981-07-01

    Bounds on the π and K meson decay amplitudes are obtained to a good accuracy from QCD sum rules of the Laplace transform type. A relation between fsub(π) and the rho meson coupling to the photon is given. Using the heavy quarks q 2 =0 sum rule to two loops we find our best bounds: fsub(D) approximately < (101+-25) MeV and fsub(F) approximately < (147+-41.6) MeV to be compared to fsub(π) approximately 93.3 MeV. We also derive a relation between the D and F meson masses and the charm quark mass. Our results are extended to the beautiful B mesons. (author)

  6. Mesons versus quasi-normal modes: undercooling and overheating

    NARCIS (Netherlands)

    Paredes Galan, A.; Peeters, K.; Zamaklar, m.

    2008-01-01

    In holographic models of gauge theories with matter, there generically exists a first order phase transition in which mesons dissociate. We perform a careful analysis of the meson and quasi-particle spectra in the overheated resp. undercooled regimes close to the junction of the two phases. We show

  7. Electro- and chromomagnetism in the charm meson spectrum

    International Nuclear Information System (INIS)

    Fritzsch, H.

    1977-01-01

    How the D and F meson spectrum is influenced by the chromomagnetic and electomagnetic hyperfine interaction is discussed. In particular a relation between the hyperfine splitting of charmed mesons and the magnetic moments of the baryons is derived. M(Fsub(+)*)-M(Fsub(+)) approximately 100+-8 MeV. (Auth.)

  8. Geometry of the Scalar Sector

    CERN Document Server

    Alonso, Rodrigo; Manohar, Aneesh V.

    2016-01-01

    The $S$-matrix of a quantum field theory is unchanged by field redefinitions, and so only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifold ${\\mathcal M}$ is flat. We explicitly compute the one-loop correction to scalar scattering in the SM written in non-linear Callan-Coleman-Wess-Zumino (CCWZ) form, where it has an infinite series of higher dimensional operators, and show that the $S$-matrix is finite. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved ${\\mathcal M}$, ...

  9. Κ-meson decays and parity violation

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1989-01-01

    Between 1948 and 1954 many Κ-meson decay modes were observed, including the tau, pion and xi positives, in emulsion experiments all with masses around 500 MeV. An attempt was made to rationalize the various names for the new particles being discovered. A period of experimental consolidation followed. An attempt was then made to determine the spin parity of the three-pion system from tau plus decay using matrix calculations. New stripped emulsion techniques now permitted a secondary-particle track to be followed to its endpoint. Stacked emulsions were flown in balloons to study Κ mesons and hyperons using cosmic radiation. Later similar work used the new particle accelerators, the Cosmotron and the Bevatron as sources. The author showed that the tau plus and theta plus were competing decay modes of the same Κ + meson, but this meant that parity conservation was violated. Later theoreticians T D Lee and C N Yang provided evidence for this surprising idea from their work on semileptonic weak interactions. (UK)

  10. {phi} meson electroproduction at small Bjorken-x

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, P. [Wuppertal Univ., Fachbereich Physik (Germany)

    2005-07-01

    It is reported on an analysis of {phi}-meson electroproduction at small Bjorken-x(x{sub B{sub j}}) within the handbag approach. The amplitudes can be factorized into generalized parton distribution (GPDs) and a partonic subprocess, electroproduction off gluons. Cross-sections and spin density matrix elements are evaluated for {phi}-meson electroproduction and found to be in fair agreement with recent HERA data. (author)

  11. MESON AND DI-ELECTRON PRODUCTION WITH HADES

    Czech Academy of Sciences Publication Activity Database

    Frohlich, I.; Agakishiev, G.; Agodi, C.; Balanda, A.; Bellia, G.; Belver, D.; Belyaev, A.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Braun-Munzinger, P.; Cabanelas, P.; Castro, E.; Chernenko, S.; Christ, T.; Destefanis, M.; Díaz, J.; Dohrmann, F.; Dybczak, A.; Eberl, T.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Galatyuk, T.; Garzón, J.A.; Gernhäuser, R.; Gil, A.; Gilardi, C.; Golubeva, M.; Gonzalez-Diaz, D.; Grosse, E.; Guber, F.; Heilmann, M.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Kanaki, K.; Karavicheva, T.; Kirschner, D.; Koenig, I.; Koenig, W.; Kolb, B.W.; Kotte, R.; Kozuch, A.; Krása, Antonín; Křížek, Filip; Krücken, R.; Kuhn, W.; Kugler, Andrej; Kurepin, A.; Lamas-Valverde, J.; Lang, S.; Lange, J.S.; Lapidus, K.; Lopes, L.; Maier, L.; Mangiarotti, A.; Marín, J.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Mishra, D.; Moriniére, E.; Mousa, J.; Muntz, C.; Naumann, L.; Novotny, R.; Otwinowski, J.; Pachmayer, Y.C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Cavalcanti, T.P.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Roy-Stephan, M.; Rustamov, A.; Sadovsky, A.; Sailer, B.; Salabura, P.; Schmah, A.; Simon, R. S.; Sobolev, Yuri, G.; Spataro, S.; Spruck, B.; Strobele, H.; Stroth, J.; Sturm, C.; Sudol, M.; Tarantola, A.; Teilab, K.; Tlustý, Pavel; Traxler, M.; Trebacz, R.; Tsertos, H.; Veretenkin, I.; Wagner, Vladimír; Wen, H.; Wisniowski, M.; Wojcik, T.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Yu.; Zhou, P.; Zumbruch, P.

    2009-01-01

    Roč. 24, 2-3 (2009), s. 317-326 ISSN 0217-751X. [Conference MESON 2008. Jagiellonian Univ, Cracow, 06.06.2008-10.06.2008] R&D Projects: GA AV ČR IAA100480803; GA MŠk LC07050 Institutional research plan: CEZ:AV0Z10480505 Keywords : Mesons * di-electrons * resonances Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.941, year: 2009

  12. Beautiful mesons from QCD spectral sum rules

    International Nuclear Information System (INIS)

    Narison, S.

    1991-01-01

    We discuss the beautiful meson from the point of view of the QCD spectral sum rules (QSSR). The bottom quark mass and the mixed light quark-gluon condensates are determined quite accurately. The decay constant f B is estimated and we present some arguments supporting this result. The decay constants and the masses of the other members of the beautiful meson family are predicted. (orig.)

  13. Static-light meson masses from twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Jansen, Karl; Michael, Chris; Shindler, Andrea; Wagner, Marc

    2008-08-01

    We compute the static-light meson spectrum using two-flavor Wilson twisted mass lattice QCD. We have considered five different values for the light quark mass corresponding to 300 MeV PS S mesons. (orig.)

  14. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    Science.gov (United States)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Winter, Frank; Nplqcd Collaboration

    2018-04-01

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass mπ˜806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O (10 %), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  15. Schwarzschild black holes can wear scalar wigs.

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  16. Magnetic polarizabilities of light mesons in SU(3 lattice gauge theory

    Directory of Open Access Journals (Sweden)

    E.V. Luschevskaya

    2015-09-01

    Full Text Available We investigate the ground state energies of neutral pseudoscalar and vector meson in SU(3 lattice gauge theory in the strong abelian magnetic field. The energy of ρ0 meson with zero spin projection sz=0 on the axis of the external magnetic field decreases, while the energies with non-zero spins sz=−1 and +1 increase with the field. The energy of π0 meson decreases as a function of the magnetic field. We calculate the magnetic polarizabilities of pseudoscalar and vector mesons for lattice volume 184. For ρ0 with spin |sz|=1 and π0 meson the polarizabilities in the continuum limit have been evaluated. We do not observe any evidence in favour of tachyonic mode existence.

  17. A survey of E/iota meson in hadroproduction

    International Nuclear Information System (INIS)

    Chung, S.U.

    1987-01-01

    The E(1420) meson has been around with us since 1963, when its observation was first reported by R. Armenteros et al. With the discovery of the iota(1460) in the same decay channel from J/ψ radiative decays in 1980, there has been a resurgence of interest in this meson because it may turn out to be a pseudoscalar glueball. This review covers the E/iota states seen in hadroproduction, while an update of the iota meson from J/ψ radiative decays is covered by D. Hitlin in this volume. The present review represents an updated version of the previous reviews given by the author at Lund, Leipzig, and Santander

  18. Semileptonic Branching Fractions of Charged and Neutral B Mesons

    International Nuclear Information System (INIS)

    Athanas, M.; Brower, W.; Masek, G.; Paar, H.P.; Gronberg, J.; Kutschke, R.; Menary, S.; Morrison, R.J.; Nakanishi, S.; Nelson, H.N.; Nelson, T.K.; Qiao, C.; Richman, J.D.; Ryd, A.; Tajima, H.; Sperka, D.; Witherell, M.S.; Balest, R.; Cho, K.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Bloom, K.; Browder, T.E.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Crowcroft, D.S.; Drell, P.S.; Dumas, D.; Ehrlich, R.; Gaidarev, P.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Henderson, S.; Jones, C.D.; Jones, S.L.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Patterson, J.R.; Peterson, D.; Riley, D.; Salman, S.; Sapper, M.; Wuerthwein, F.; Avery, P.; Freyberger, A.; Rodriguez, J.; Yang, S.; Yelton, J.; Cinabro, D.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Bergfeld, T.; Eisenstein, B.I.; Gollin, G.; Ong, B.; Palmer, M.; Selen, M.; Thaler, J.J.; Edwards, K.W.; Ogg, M.; Bellerive, A.; Britton, D.I.; Hyatt, E.R.F.; MacFarlane, D.B.; Patel, P.M.; Spaan, B.; Sadoff, A.J.; Ammar, R.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kotov, S.; Kravchenko, I.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Momayezi, M.; Nelson, J.K.; Patton, S.; Poling, R.; Savinov, V.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Ling, Z.; Mahmood, A.H.; O'Neill, J.J.; Severini, H.; Sun, C.R.; Wappler, F.; Crawford, G.; Daubenmier, C.M.; Fulton, R.; Fujino, D.; Gan, K.K.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Malchow, R.; Skovpen, Y.; Sung, M.; White, C.; Zoeller, M.M.; Butler, F.; Fu, X.; Nemati, B.; Ross, W.R.; Skubic, P.; Wood, M.; Bishai, M.; Fast, J.; Gerndt, E.; McIlwain, R.L.; Miao, T.; Miller, D.H.; Modesitt, M.; Payne, D.; Shibata, E.I.; Shipsey, I.P.J.; Wang, P.N.; Battle, M.; Ernst, J.; Gibbons, L.; Kwon, Y.

    1994-01-01

    An examination of leptons in Υ(4S) events tagged by reconstructed B meson decays yields semileptonic branching fractions of b - =(10.1±1.8±1.5)% for charged and b 0 =(10.9±0.7±1.1)% for neutral B mesons. This is the first measurement for charged B mesons. Assuming equality of the charged and neutral semileptonic widths, the ratio b - /b 0 =0.93±0.18±0.12 is equivalent to the ratio of lifetimes

  19. Quasi-exotic open-flavor mesons

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, T.; Krassnigg, A. [University of Graz, NAWI Graz, Institute of Physics, Graz (Austria)

    2017-06-15

    Meson states with exotic quantum numbers arise naturally in a covariant bound-state framework in QCD. We investigate the consequences of shifting quark masses such that the states are no longer restricted to certain C-parities, but only by J{sup P}. Then, a priori, one can no longer distinguish exotic or conventional states. In order to identify signatures of the different states to look for experimentally, we provide the behavior of masses, leptonic decay constants, and orbital-angular-momentum decomposition of such mesons, as well as the constellations in which they could be found. Most prominently, we consider the case of charged quasi-exotic excitations of the pion. (orig.)

  20. A search for unconventional mesons

    International Nuclear Information System (INIS)

    Turnau, J.

    1984-01-01

    Selected problems of the fixed target meson spectroscopy connected with the issue of unconventional states glueballs, hybrides and four-quarks are discussed. The experimental basis of the dissertation consists of some results of the WA3 experiment performed by ACCMOR collaboration (Π - p→(3Π) - p, K - p→K - Π + Π - p, Π - p→K s o K s o n) and of the S136 experiment performed by CCM collaborations (Π - p↑→Π + Π - n, Π - p↑→K + K - n). Mesons with spin parities J PC = 0 -+ , 0 ++ , 1 ++ and 2 ++ are discussed from the point of view of the phenomenology of unconventional states. (author)