WorldWideScience

Sample records for scalable manufacturable epitaxial-side-down

  1. Scalable manufacturing processes with soft materials

    OpenAIRE

    White, Edward; Case, Jennifer; Kramer, Rebecca

    2014-01-01

    The emerging field of soft robotics will benefit greatly from new scalable manufacturing techniques for responsive materials. Currently, most of soft robotic examples are fabricated one-at-a-time, using techniques borrowed from lithography and 3D printing to fabricate molds. This limits both the maximum and minimum size of robots that can be fabricated, and hinders batch production, which is critical to gain wider acceptance for soft robotic systems. We have identified electrical structures, ...

  2. Tip-Based Nanofabrication for Scalable Manufacturing

    Directory of Open Access Journals (Sweden)

    Huan Hu

    2017-03-01

    Full Text Available Tip-based nanofabrication (TBN is a family of emerging nanofabrication techniques that use a nanometer scale tip to fabricate nanostructures. In this review, we first introduce the history of the TBN and the technology development. We then briefly review various TBN techniques that use different physical or chemical mechanisms to fabricate features and discuss some of the state-of-the-art techniques. Subsequently, we focus on those TBN methods that have demonstrated potential to scale up the manufacturing throughput. Finally, we discuss several research directions that are essential for making TBN a scalable nano-manufacturing technology.

  3. Tip-Based Nanofabrication for Scalable Manufacturing

    International Nuclear Information System (INIS)

    Hu, Huan; Somnath, Suhas

    2017-01-01

    Tip-based nanofabrication (TBN) is a family of emerging nanofabrication techniques that use a nanometer scale tip to fabricate nanostructures. Here in this review, we first introduce the history of the TBN and the technology development. We then briefly review various TBN techniques that use different physical or chemical mechanisms to fabricate features and discuss some of the state-of-the-art techniques. Subsequently, we focus on those TBN methods that have demonstrated potential to scale up the manufacturing throughput. Finally, we discuss several research directions that are essential for making TBN a scalable nano-manufacturing technology.

  4. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications

    Science.gov (United States)

    Yu, Anthony C.; Chen, Haoxuan; Chan, Doreen; Agmon, Gillie; Stapleton, Lyndsay M.; Sevit, Alex M.; Tibbitt, Mark W.; Acosta, Jesse D.; Zhang, Tony; Franzia, Paul W.; Langer, Robert; Appel, Eric A.

    2016-12-01

    Hydrogels are a class of soft material that is exploited in many, often completely disparate, industrial applications, on account of their unique and tunable properties. Advances in soft material design are yielding next-generation moldable hydrogels that address engineering criteria in several industrial settings such as complex viscosity modifiers, hydraulic or injection fluids, and sprayable carriers. Industrial implementation of these viscoelastic materials requires extreme volumes of material, upwards of several hundred million gallons per year. Here, we demonstrate a paradigm for the scalable fabrication of self-assembled moldable hydrogels using rationally engineered, biomimetic polymer-nanoparticle interactions. Cellulose derivatives are linked together by selective adsorption to silica nanoparticles via dynamic and multivalent interactions. We show that the self-assembly process for gel formation is easily scaled in a linear fashion from 0.5 mL to over 15 L without alteration of the mechanical properties of the resultant materials. The facile and scalable preparation of these materials leveraging self-assembly of inexpensive, renewable, and environmentally benign starting materials, coupled with the tunability of their properties, make them amenable to a range of industrial applications. In particular, we demonstrate their utility as injectable materials for pipeline maintenance and product recovery in industrial food manufacturing as well as their use as sprayable carriers for robust application of fire retardants in preventing wildland fires.

  5. Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells.

    Science.gov (United States)

    de Soure, António M; Fernandes-Platzgummer, Ana; da Silva, Cláudia L; Cabral, Joaquim M S

    2016-10-20

    Due to their unique features, mesenchymal stem/stromal cells (MSC) have been exploited in clinical settings as therapeutic candidates for the treatment of a variety of diseases. However, the success in obtaining clinically-relevant MSC numbers for cell-based therapies is dependent on efficient isolation and ex vivo expansion protocols, able to comply with good manufacturing practices (GMP). In this context, the 2-dimensional static culture systems typically used for the expansion of these cells present several limitations that may lead to reduced cell numbers and compromise cell functions. Furthermore, many studies in the literature report the expansion of MSC using fetal bovine serum (FBS)-supplemented medium, which has been critically rated by regulatory agencies. Alternative platforms for the scalable manufacturing of MSC have been developed, namely using microcarriers in bioreactors, with also a considerable number of studies now reporting the production of MSC using xenogeneic/serum-free medium formulations. In this review we provide a comprehensive overview on the scalable manufacturing of human mesenchymal stem/stromal cells, depicting the various steps involved in the process from cell isolation to ex vivo expansion, using different cell tissue sources and culture medium formulations and exploiting bioprocess engineering tools namely microcarrier technology and bioreactors. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A practical and scalable manufacturing process for an anti-fungal agent, Nikkomycin Z.

    Science.gov (United States)

    Stenland, Christopher J; Lis, Lev G; Schendel, Frederick J; Hahn, Nicholas J; Smart, Mary A; Miller, Amy L; von Keitz, Marc G; Gurvich, Vadim J

    2013-02-15

    A scalable and reliable manufacturing process for Nikkomycin Z HCl on a 170 g scale has been developed and optimized. The process is characterized by a 2.3 g/L fermentation yield, 79% purification yield, and >98% relative purity of the final product. This method is suitable for further scale up and cGMP production. The Streptomyces tendae ΔNikQ strain developed during the course of this study is superior to any previously reported strain in terms of higher yield and purity of Nikkomycin Z.

  7. Magnetically anisotropic additive for scalable manufacturing of polymer nanocomposite: iron-coated carbon nanotubes

    International Nuclear Information System (INIS)

    Yamamoto, Namiko; Manohara, Harish; Platzman, Ellen

    2016-01-01

    Novel nanoparticles additives for polymer nanocomposites were prepared by coating carbon nanotubes (CNTs) with ferromagnetic iron (Fe) layers, so that their micro-structures can be bulk-controlled by external magnetic field application. Application of magnetic fields is a promising, scalable method to deliver bulk amount of nanocomposites while maintaining organized nanoparticle assembly throughout the uncured polymer matrix. In this work, Fe layers (∼18 nm thick) were deposited on CNTs (∼38 nm diameter and ∼50 μm length) to form thin films with high aspect ratio, resulting in a dominance of shape anisotropy and thus high coercivity of ∼50–100 Oe. The Fe-coated CNTs were suspended in water and applied with a weak magnetic field of ∼75 G, and yet preliminary magnetic assembly was confirmed. Our results demonstrate that the fabricated Fe-coated CNTs are magnetically anisotropic and effectively respond to magnetic fields that are ∼10 3 times smaller than other existing work (∼10 5 G). We anticipate this work will pave the way for effective property enhancement and bulk application of CNT–polymer nanocomposites, through controlled micro-structure and scalable manufacturing. (paper)

  8. Solution-Processing of Organic Solar Cells: From In Situ Investigation to Scalable Manufacturing

    KAUST Repository

    Abdelsamie, Maged

    2016-12-05

    Photovoltaics provide a feasible route to fulfilling the substantial increase in demand for energy worldwide. Solution processable organic photovoltaics (OPVs) have attracted attention in the last decade because of the promise of low-cost manufacturing of sufficiently efficient devices at high throughput on large-area rigid or flexible substrates with potentially low energy and carbon footprints. In OPVs, the photoactive layer is made of a bulk heterojunction (BHJ) layer and is typically composed of a blend of an electron-donating (D) and an electron-accepting (A) materials which phase separate at the nanoscale and form a heterojunction at the D-A interface that plays a crucial role in the generation of charges. Despite the tremendous progress that has been made in increasing the efficiency of organic photovoltaics over the last few years, with power conversion efficiency increasing from 8% to 13% over the duration of this PhD dissertation, there have been numerous debates on the mechanisms of formation of the crucial BHJ layer and few clues about how to successfully transfer these lessons to scalable processes. This stems in large part from a lack of understanding of how BHJ layers form from solution. This lack of understanding makes it challenging to design BHJs and to control their formation in laboratory-based processes, such as spin-coating, let alone their successful transfer to scalable processes required for the manufacturing of organic solar cells. Consequently, the OPV community has in recent years sought out to better understand the key characteristics of state of the art lab-based organic solar cells and made efforts to shed light on how the BHJ forms in laboratory-based processes as well as in scalable processes. We take the view that understanding the formation of the solution-processed bulk heterojunction (BHJ) photoactive layer, where crucial photovoltaic processes take place, is the one of the most crucial steps to developing strategies towards the

  9. Application of response surface methodology to maximize the productivity of scalable automated human embryonic stem cell manufacture.

    Science.gov (United States)

    Ratcliffe, Elizabeth; Hourd, Paul; Guijarro-Leach, Juan; Rayment, Erin; Williams, David J; Thomas, Robert J

    2013-01-01

    Commercial regenerative medicine will require large quantities of clinical-specification human cells. The cost and quality of manufacture is notoriously difficult to control due to highly complex processes with poorly defined tolerances. As a step to overcome this, we aimed to demonstrate the use of 'quality-by-design' tools to define the operating space for economic passage of a scalable human embryonic stem cell production method with minimal cell loss. Design of experiments response surface methodology was applied to generate empirical models to predict optimal operating conditions for a unit of manufacture of a previously developed automatable and scalable human embryonic stem cell production method. Two models were defined to predict cell yield and cell recovery rate postpassage, in terms of the predictor variables of media volume, cell seeding density, media exchange and length of passage. Predicted operating conditions for maximized productivity were successfully validated. Such 'quality-by-design' type approaches to process design and optimization will be essential to reduce the risk of product failure and patient harm, and to build regulatory confidence in cell therapy manufacturing processes.

  10. Solution-Processing of Organic Solar Cells: From In Situ Investigation to Scalable Manufacturing

    KAUST Repository

    Abdelsamie, Maged

    2016-01-01

    -cost manufacturing of sufficiently efficient devices at high throughput on large-area rigid or flexible substrates with potentially low energy and carbon footprints. In OPVs, the photoactive layer is made of a bulk heterojunction (BHJ) layer and is typically composed

  11. Affordable and Scalable Manufacturing of Wearable Multi-Functional Sensory “Skin” for Internet of Everything Applications

    KAUST Repository

    Nassar, Joanna M.

    2017-10-01

    Demand for wearable electronics is expected to at least triple by 2020, embracing all sorts of Internet of Everything (IoE) applications, such as activity tracking, environmental mapping, and advanced healthcare monitoring, in the purpose of enhancing the quality of life. This entails the wide availability of free-form multifunctional sensory systems (i.e “skin” platforms) that can conform to the variety of uneven surfaces, providing intimate contact and adhesion with the skin, necessary for localized and enhanced sensing capabilities. However, current wearable devices appear to be bulky, rigid and not convenient for continuous wear in everyday life, hindering their implementation into advanced and unexplored applications beyond fitness tracking. Besides, they retail at high price tags which limits their availability to at least half of the World’s population. Hence, form factor (physical flexibility and/or stretchability), cost, and accessibility become the key drivers for further developments. To support this need in affordable and adaptive wearables and drive academic developments in “skin” platforms into practical and functional consumer devices, compatibility and integration into a high performance yet low power system is crucial to sustain the high data rates and large data management driven by IoE. Likewise, scalability becomes essential for batch fabrication and precision. Therefore, I propose to develop three distinct but necessary “skin” platforms using scalable and cost effective manufacturing techniques. My first approach is the fabrication of a CMOS-compatible “silicon skin”, crucial for any truly autonomous and conformal wearable device, where monolithic integration between heterogeneous material-based sensory platform and system components is a challenge yet to be addressed. My second approach displays an even more affordable and accessible “paper skin”, using recyclable and off-the-shelf materials, targeting environmental

  12. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays.

    Science.gov (United States)

    Lutton, Rebecca E M; Larrañeta, Eneko; Kearney, Mary-Carmel; Boyd, Peter; Woolfson, A David; Donnelly, Ryan F

    2015-10-15

    A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14×14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling

    Science.gov (United States)

    Zhai, Yao; Ma, Yaoguang; David, Sabrina N.; Zhao, Dongliang; Lou, Runnan; Tan, Gang; Yang, Ronggui; Yin, Xiaobo

    2017-03-01

    Passive radiative cooling draws heat from surfaces and radiates it into space as infrared radiation to which the atmosphere is transparent. However, the energy density mismatch between solar irradiance and the low infrared radiation flux from a near-ambient-temperature surface requires materials that strongly emit thermal energy and barely absorb sunlight. We embedded resonant polar dielectric microspheres randomly in a polymeric matrix, resulting in a metamaterial that is fully transparent to the solar spectrum while having an infrared emissivity greater than 0.93 across the atmospheric window. When backed with a silver coating, the metamaterial shows a noontime radiative cooling power of 93 watts per square meter under direct sunshine. More critically, we demonstrated high-throughput, economical roll-to-roll manufacturing of the metamaterial, which is vital for promoting radiative cooling as a viable energy technology.

  14. Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Dam, Henrik Friis; Hösel, Markus

    2014-01-01

    the manufacture of completely functional devices in exceptionally high yields. Critical to the ink and process development is a carefully chosen technology transfer to industry method where first a roll coater is employed enabling contactless stack build up, followed by a small roll-to-roll coater fitted to an X...

  15. Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies.

    Science.gov (United States)

    Jenkins, Michael J; Farid, Suzanne S

    2015-01-01

    The ability to develop cost-effective, scalable and robust bioprocesses for human pluripotent stem cells (hPSCs) will be key to their commercial success as cell therapies and tools for use in drug screening and disease modelling studies. This review outlines key process economic drivers for hPSCs and progress made on improving the economic and operational feasibility of hPSC bioprocesses. Factors influencing key cost metrics, namely capital investment and cost of goods, for hPSCs are discussed. Step efficiencies particularly for differentiation, media requirements and technology choice are amongst the key process economic drivers identified for hPSCs. Progress made to address these cost drivers in hPSC bioprocessing strategies is discussed. These include improving expansion and differentiation yields in planar and bioreactor technologies, the development of xeno-free media and microcarrier coatings, identification of optimal bioprocess operating conditions to control cell fate and the development of directed differentiation protocols that reduce reliance on expensive morphogens such as growth factors and small molecules. These approaches offer methods to further optimise hPSC bioprocessing in terms of its commercial feasibility. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  16. A novel and fully scalable Agrobacterium spray-based process for manufacturing cellulases and other cost-sensitive proteins in plants.

    Science.gov (United States)

    Hahn, Simone; Giritch, Anatoli; Bartels, Doreen; Bortesi, Luisa; Gleba, Yuri

    2015-06-01

    Transient transfection of plants by vacuum infiltration of Agrobacterium vectors represents the state of the art in plant-based protein manufacturing; however, the complexity and cost of this approach restrict it to pharmaceutical proteins. We demonstrated that simple spraying of Nicotiana plants with Agrobacterium vectors in the presence of a surfactant can substitute for vacuum inoculation. When the T-DNA of Agrobacterium encodes viral replicons capable of cell-to-cell movement, up to 90% of the leaf cells can be transfected and express a recombinant protein at levels up to 50% of total soluble protein. This simple, fast and indefinitely scalable process was successfully applied to produce cellulases, one of the most volume- and cost-sensitive biotechnology products. We demonstrate here for the first time that representatives of all hydrolase classes necessary for cellulosic biomass decomposition can be expressed at high levels, stored as silage without significant loss of activity and then used directly as enzyme additives. This process enables production of cellulases, and other potential high-volume products such as noncaloric sweetener thaumatin and antiviral protein griffithsin, at commodity agricultural prices and could find broad applicability in the large-scale production of many other cost-sensitive proteins. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Integrated culture platform based on a human platelet lysate supplement for the isolation and scalable manufacturing of umbilical cord matrix-derived mesenchymal stem/stromal cells.

    Science.gov (United States)

    de Soure, António M; Fernandes-Platzgummer, Ana; Moreira, Francisco; Lilaia, Carla; Liu, Shi-Hwei; Ku, Chen-Peng; Huang, Yi-Feng; Milligan, William; Cabral, Joaquim M S; da Silva, Cláudia L

    2017-05-01

    Umbilical cord matrix (UCM)-derived mesenchymal stem/stromal cells (MSCs) are promising therapeutic candidates for regenerative medicine settings. UCM MSCs have advantages over adult cells as these can be obtained through a non-invasive harvesting procedure and display a higher proliferative capacity. However, the high cell doses required in the clinical setting make large-scale manufacturing of UCM MSCs mandatory. A commercially available human platelet lysate-based culture supplement (UltraGRO TM , AventaCell BioMedical) (5%(v/v)) was tested to effectively isolate UCM MSCs and to expand these cells under (1) static conditions, using planar culture systems and (2) stirred culture using plastic microcarriers in a spinner flask. The MSC-like cells were isolated from UCM explant cultures after 11 ± 2 days. After five passages in static culture, UCM MSCs retained their immunophenotype and multilineage differentiation potential. The UCM MSCs cultured under static conditions using UltraGRO TM -supplemented medium expanded more rapidly compared with UCM MSCs expanded using a previously established protocol. Importantly, UCM MSCs were successfully expanded under dynamic conditions on plastic microcarriers using UltraGRO TM -supplemented medium in spinner flasks. Upon an initial 54% cell adhesion to the beads, UCM MSCs expanded by >13-fold after 5-6 days, maintaining their immunophenotype and multilineage differentiation ability. The present paper reports the establishment of an easily scalable integrated culture platform based on a human platelet lysate supplement for the effective isolation and expansion of UCM MSCs in a xenogeneic-free microcarrier-based system. This platform represents an important advance in obtaining safer and clinically meaningful MSC numbers for clinical translation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Scalable devices

    KAUST Repository

    Krü ger, Jens J.; Hadwiger, Markus

    2014-01-01

    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales

  19. Scalable devices

    KAUST Repository

    Krüger, Jens J.

    2014-01-01

    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales with the size of the problem, i.e., it can not only be used in a very specific setting but it\\'s applicable for a wide range of problems. From small scenarios to possibly very large settings. In this spirit, there exist a number of fixed areas of research on scalability. There are works on scalable algorithms, scalable architectures but what are scalable devices? In the context of this chapter, we are interested in a whole range of display devices, ranging from small scale hardware such as tablet computers, pads, smart-phones etc. up to large tiled display walls. What interests us mostly is not so much the hardware setup but mostly the visualization algorithms behind these display systems that scale from your average smart phone up to the largest gigapixel display walls.

  20. Scalable Nanomanufacturing—A Review

    Directory of Open Access Journals (Sweden)

    Khershed Cooper

    2017-01-01

    Full Text Available This article describes the field of scalable nanomanufacturing, its importance and need, its research activities and achievements. The National Science Foundation is taking a leading role in fostering basic research in scalable nanomanufacturing (SNM. From this effort several novel nanomanufacturing approaches have been proposed, studied and demonstrated, including scalable nanopatterning. This paper will discuss SNM research areas in materials, processes and applications, scale-up methods with project examples, and manufacturing challenges that need to be addressed to move nanotechnology discoveries closer to the marketplace.

  1. Scalable fabrication of perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Klein, Talysa R.; Kim, Dong Hoe; Yang, Mengjin; Berry, Joseph J.; van Hest, Maikel F. A. M.; Zhu, Kai

    2018-03-27

    Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discuss common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.

  2. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  3. PKI Scalability Issues

    OpenAIRE

    Slagell, Adam J; Bonilla, Rafael

    2004-01-01

    This report surveys different PKI technologies such as PKIX and SPKI and the issues of PKI that affect scalability. Much focus is spent on certificate revocation methodologies and status verification systems such as CRLs, Delta-CRLs, CRS, Certificate Revocation Trees, Windowed Certificate Revocation, OCSP, SCVP and DVCS.

  4. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason; Johnson, Andrew; Renambot, Luc; Peterka, Tom; Jeong, Byungil; Sandin, Daniel J.; Talandis, Jonas; Jagodic, Ratko; Nam, Sungwon; Hur, Hyejung; Sun, Yiwen

    2013-01-01

    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  5. Scalable optical quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Manykin, E A; Mel' nichenko, E V [Institute for Superconductivity and Solid-State Physics, Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2014-12-31

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr{sup 3+}, regularly located in the lattice of the orthosilicate (Y{sub 2}SiO{sub 5}) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  6. Scalable optical quantum computer

    International Nuclear Information System (INIS)

    Manykin, E A; Mel'nichenko, E V

    2014-01-01

    A way of designing a scalable optical quantum computer based on the photon echo effect is proposed. Individual rare earth ions Pr 3+ , regularly located in the lattice of the orthosilicate (Y 2 SiO 5 ) crystal, are suggested to be used as optical qubits. Operations with qubits are performed using coherent and incoherent laser pulses. The operation protocol includes both the method of measurement-based quantum computations and the technique of optical computations. Modern hybrid photon echo protocols, which provide a sufficient quantum efficiency when reading recorded states, are considered as most promising for quantum computations and communications. (quantum computer)

  7. Scalable photoreactor for hydrogen production

    KAUST Repository

    Takanabe, Kazuhiro; Shinagawa, Tatsuya

    2017-01-01

    Provided herein are scalable photoreactors that can include a membrane-free water- splitting electrolyzer and systems that can include a plurality of membrane-free water- splitting electrolyzers. Also provided herein are methods of using the scalable photoreactors provided herein.

  8. Scalable photoreactor for hydrogen production

    KAUST Repository

    Takanabe, Kazuhiro

    2017-04-06

    Provided herein are scalable photoreactors that can include a membrane-free water- splitting electrolyzer and systems that can include a plurality of membrane-free water- splitting electrolyzers. Also provided herein are methods of using the scalable photoreactors provided herein.

  9. Scalable Frequent Subgraph Mining

    KAUST Repository

    Abdelhamid, Ehab

    2017-06-19

    A graph is a data structure that contains a set of nodes and a set of edges connecting these nodes. Nodes represent objects while edges model relationships among these objects. Graphs are used in various domains due to their ability to model complex relations among several objects. Given an input graph, the Frequent Subgraph Mining (FSM) task finds all subgraphs with frequencies exceeding a given threshold. FSM is crucial for graph analysis, and it is an essential building block in a variety of applications, such as graph clustering and indexing. FSM is computationally expensive, and its existing solutions are extremely slow. Consequently, these solutions are incapable of mining modern large graphs. This slowness is caused by the underlying approaches of these solutions which require finding and storing an excessive amount of subgraph matches. This dissertation proposes a scalable solution for FSM that avoids the limitations of previous work. This solution is composed of four components. The first component is a single-threaded technique which, for each candidate subgraph, needs to find only a minimal number of matches. The second component is a scalable parallel FSM technique that utilizes a novel two-phase approach. The first phase quickly builds an approximate search space, which is then used by the second phase to optimize and balance the workload of the FSM task. The third component focuses on accelerating frequency evaluation, which is a critical step in FSM. To do so, a machine learning model is employed to predict the type of each graph node, and accordingly, an optimized method is selected to evaluate that node. The fourth component focuses on mining dynamic graphs, such as social networks. To this end, an incremental index is maintained during the dynamic updates. Only this index is processed and updated for the majority of graph updates. Consequently, search space is significantly pruned and efficiency is improved. The empirical evaluation shows that the

  10. Scalable Nonlinear Compact Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  11. Aggregate modeling of manufacturing systems

    NARCIS (Netherlands)

    Lefeber, A.A.J.; Armbruster, H.D.; Kempf, K.G.; Keskinocak, P.; Uzsoy, R.

    2011-01-01

    In this chapter we will present three approaches to model manufacturing systems in an aggregate way leading to fast and effective (i.e., scalable) simulations that allow the development of simulation tools for rapid exploration of different production scenarios in a factory as well as in a whole

  12. Aggregate modeling of manufacturing systems

    NARCIS (Netherlands)

    Lefeber, A.A.J.; Armbruster, H.D.

    2007-01-01

    In this report we will present three approaches to model manufacturing systems in an aggregate way leading to fast and effective (i.e., scalable) simulations that allow the development of simulation tools for rapid exploration of different production scenarios in a factory as well as in a whole

  13. Scalable algorithms for contact problems

    CERN Document Server

    Dostál, Zdeněk; Sadowská, Marie; Vondrák, Vít

    2016-01-01

    This book presents a comprehensive and self-contained treatment of the authors’ newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca’s friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experimen...

  14. Scalable cloud without dedicated storage

    Science.gov (United States)

    Batkovich, D. V.; Kompaniets, M. V.; Zarochentsev, A. K.

    2015-05-01

    We present a prototype of a scalable computing cloud. It is intended to be deployed on the basis of a cluster without the separate dedicated storage. The dedicated storage is replaced by the distributed software storage. In addition, all cluster nodes are used both as computing nodes and as storage nodes. This solution increases utilization of the cluster resources as well as improves fault tolerance and performance of the distributed storage. Another advantage of this solution is high scalability with a relatively low initial and maintenance cost. The solution is built on the basis of the open source components like OpenStack, CEPH, etc.

  15. Cloud manufacturing distributed computing technologies for global and sustainable manufacturing

    CERN Document Server

    Mehnen, Jörn

    2013-01-01

    Global networks, which are the primary pillars of the modern manufacturing industry and supply chains, can only cope with the new challenges, requirements and demands when supported by new computing and Internet-based technologies. Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing introduces a new paradigm for scalable service-oriented sustainable and globally distributed manufacturing systems.   The eleven chapters in this book provide an updated overview of the latest technological development and applications in relevant research areas.  Following an introduction to the essential features of Cloud Computing, chapters cover a range of methods and applications such as the factors that actually affect adoption of the Cloud Computing technology in manufacturing companies and new geometrical simplification method to stream 3-Dimensional design and manufacturing data via the Internet. This is further supported case studies and real life data for Waste Electrical ...

  16. Scalable shared-memory multiprocessing

    CERN Document Server

    Lenoski, Daniel E

    1995-01-01

    Dr. Lenoski and Dr. Weber have experience with leading-edge research and practical issues involved in implementing large-scale parallel systems. They were key contributors to the architecture and design of the DASH multiprocessor. Currently, they are involved with commercializing scalable shared-memory technology.

  17. Advanced Material Intelligent Processing Center: Next Generation Scalable Lean Manufacturing

    Science.gov (United States)

    2012-09-04

    clear distribution media becomes translucent once infused with the corn syrup mixture and does not obstruct the view. Note the setup is designed...defects in concrete structures [13,14] but the scale of faults in these structures is macroscopic as opposed to microscopic scale damage which...336. 14. Chen G, Mu H. Pommerenke D. Drewniak JL. Damage Detection of Reinforced Concrete Beams with Novel Distributed Crack/Strain Sensors

  18. Scalable Manufacturing of Solderable and Stretchable Physiologic Sensing Systems.

    Science.gov (United States)

    Kim, Yun-Soung; Lu, Jesse; Shih, Benjamin; Gharibans, Armen; Zou, Zhanan; Matsuno, Kristen; Aguilera, Roman; Han, Yoonjae; Meek, Ann; Xiao, Jianliang; Tolley, Michael T; Coleman, Todd P

    2017-10-01

    Methods for microfabrication of solderable and stretchable sensing systems (S4s) and a scaled production of adhesive-integrated active S4s for health monitoring are presented. S4s' excellent solderability is achieved by the sputter-deposited nickel-vanadium and gold pad metal layers and copper interconnection. The donor substrate, which is modified with "PI islands" to become selectively adhesive for the S4s, allows the heterogeneous devices to be integrated with large-area adhesives for packaging. The feasibility for S4-based health monitoring is demonstrated by developing an S4 integrated with a strain gauge and an onboard optical indication circuit. Owing to S4s' compatibility with the standard printed circuit board assembly processes, a variety of commercially available surface mount chip components, such as the wafer level chip scale packages, chip resistors, and light-emitting diodes, can be reflow-soldered onto S4s without modifications, demonstrating the versatile and modular nature of S4s. Tegaderm-integrated S4 respiration sensors are tested for robustness for cyclic deformation, maximum stretchability, durability, and biocompatibility for multiday wear time. The results of the tests and demonstration of the respiration sensing indicate that the adhesive-integrated S4s can provide end users a way for unobtrusive health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Light Weight, Scalable Manufacturing of Telescope Optics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future X-ray astronomy missions will require X-ray optics that have large effective areas, are lightweight, and cost effective. Recent X-ray telescopes, such...

  20. Light Weight, Scalable Manufacturing of Telescope Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future X-ray astronomy missions will require X-ray optics that have large effective areas, are lightweight, and cost effective. Recent X-ray telescopes, such...

  1. Topology Optimization for Additive Manufacturing

    DEFF Research Database (Denmark)

    Clausen, Anders

    This PhD thesis deals with the combination of topology optimization and additive man-ufacturing (AM, also known as 3D-printing). In addition to my own works, the thesis contains a broader review and assessment of the literature within the field. The thesis first presents a classification...... of the various AM technologies, a review of relevant manufacturing materials, the properties of these materials in the additively manufactured part, as well as manufacturing constraints with a potential for design optimization. Subsequently, specific topology optimization formulations relevant for the most im...... for scalable manufacturing. In relation to interface problems it is shown how a flexible void area may be included into a standard minimum compliance problem by employing an additional design variable field and a sensitivity filter. Furthermore, it is shown how the design of coated structures may be modeled...

  2. Scalable Techniques for Formal Verification

    CERN Document Server

    Ray, Sandip

    2010-01-01

    This book presents state-of-the-art approaches to formal verification techniques to seamlessly integrate different formal verification methods within a single logical foundation. It should benefit researchers and practitioners looking to get a broad overview of the spectrum of formal verification techniques, as well as approaches to combining such techniques within a single framework. Coverage includes a range of case studies showing how such combination is fruitful in developing a scalable verification methodology for industrial designs. This book outlines both theoretical and practical issue

  3. Developing Scalable Information Security Systems

    Directory of Open Access Journals (Sweden)

    Valery Konstantinovich Ablekov

    2013-06-01

    Full Text Available Existing physical security systems has wide range of lacks, including: high cost, a large number of vulnerabilities, problems of modification and support system. This paper covers an actual problem of developing systems without this list of drawbacks. The paper presents the architecture of the information security system, which operates through the network protocol TCP/IP, including the ability to connect different types of devices and integration with existing security systems. The main advantage is a significant increase in system reliability, scalability, both vertically and horizontally, with minimal cost of both financial and time resources.

  4. Manufacturing Initiative

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Manufacturing Technologies (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of...

  5. Social manufacturing

    OpenAIRE

    Hamalainen, Markko; Karjalainen, Jesse

    2017-01-01

    New business models harnessing the power of individuals have already revolutionized service industries and digital content production. In this study, we investigate whether a similar phenomenon is taking place in manufacturing industries. We start by conceptually defining two distinct forms of firm-individual collaboration in manufacturing industries: (1) social cloud manufacturing, in which firms outsource manufacturing to individuals, and (2) social platform manufacturing, in which firms pr...

  6. Scalable Performance Measurement and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gamblin, Todd [Univ. of North Carolina, Chapel Hill, NC (United States)

    2009-01-01

    Concurrency levels in large-scale, distributed-memory supercomputers are rising exponentially. Modern machines may contain 100,000 or more microprocessor cores, and the largest of these, IBM's Blue Gene/L, contains over 200,000 cores. Future systems are expected to support millions of concurrent tasks. In this dissertation, we focus on efficient techniques for measuring and analyzing the performance of applications running on very large parallel machines. Tuning the performance of large-scale applications can be a subtle and time-consuming task because application developers must measure and interpret data from many independent processes. While the volume of the raw data scales linearly with the number of tasks in the running system, the number of tasks is growing exponentially, and data for even small systems quickly becomes unmanageable. Transporting performance data from so many processes over a network can perturb application performance and make measurements inaccurate, and storing such data would require a prohibitive amount of space. Moreover, even if it were stored, analyzing the data would be extremely time-consuming. In this dissertation, we present novel methods for reducing performance data volume. The first draws on multi-scale wavelet techniques from signal processing to compress systemwide, time-varying load-balance data. The second uses statistical sampling to select a small subset of running processes to generate low-volume traces. A third approach combines sampling and wavelet compression to stratify performance data adaptively at run-time and to reduce further the cost of sampled tracing. We have integrated these approaches into Libra, a toolset for scalable load-balance analysis. We present Libra and show how it can be used to analyze data from large scientific applications scalably.

  7. Requirements for Scalable Access Control and Security Management Architectures

    National Research Council Canada - National Science Library

    Keromytis, Angelos D; Smith, Jonathan M

    2005-01-01

    Maximizing local autonomy has led to a scalable Internet. Scalability and the capacity for distributed control have unfortunately not extended well to resource access control policies and mechanisms...

  8. Adaptive format conversion for scalable video coding

    Science.gov (United States)

    Wan, Wade K.; Lim, Jae S.

    2001-12-01

    The enhancement layer in many scalable coding algorithms is composed of residual coding information. There is another type of information that can be transmitted instead of (or in addition to) residual coding. Since the encoder has access to the original sequence, it can utilize adaptive format conversion (AFC) to generate the enhancement layer and transmit the different format conversion methods as enhancement data. This paper investigates the use of adaptive format conversion information as enhancement data in scalable video coding. Experimental results are shown for a wide range of base layer qualities and enhancement bitrates to determine when AFC can improve video scalability. Since the parameters needed for AFC are small compared to residual coding, AFC can provide video scalability at low enhancement layer bitrates that are not possible with residual coding. In addition, AFC can also be used in addition to residual coding to improve video scalability at higher enhancement layer bitrates. Adaptive format conversion has not been studied in detail, but many scalable applications may benefit from it. An example of an application that AFC is well-suited for is the migration path for digital television where AFC can provide immediate video scalability as well as assist future migrations.

  9. ALADDIN - enhancing applicability and scalability

    International Nuclear Information System (INIS)

    Roverso, Davide

    2001-02-01

    The ALADDIN project aims at the study and development of flexible, accurate, and reliable techniques and principles for computerised event classification and fault diagnosis for complex machinery and industrial processes. The main focus of the project is on advanced numerical techniques, such as wavelets, and empirical modelling with neural networks. This document reports on recent important advancements, which significantly widen the practical applicability of the developed principles, both in terms of flexibility of use, and in terms of scalability to large problem domains. In particular, two novel techniques are here described. The first, which we call Wavelet On- Line Pre-processing (WOLP), is aimed at extracting, on-line, relevant dynamic features from the process data streams. This technique allows a system a greater flexibility in detecting and processing transients at a range of different time scales. The second technique, which we call Autonomous Recursive Task Decomposition (ARTD), is aimed at tackling the problem of constructing a classifier able to discriminate among a large number of different event/fault classes, which is often the case when the application domain is a complex industrial process. ARTD also allows for incremental application development (i.e. the incremental addition of new classes to an existing classifier, without the need of retraining the entire system), and for simplified application maintenance. The description of these novel techniques is complemented by reports of quantitative experiments that show in practice the extent of these improvements. (Author)

  10. Fast and scalable inequality joins

    KAUST Repository

    Khayyat, Zuhair

    2016-09-07

    Inequality joins, which is to join relations with inequality conditions, are used in various applications. Optimizing joins has been the subject of intensive research ranging from efficient join algorithms such as sort-merge join, to the use of efficient indices such as (Formula presented.)-tree, (Formula presented.)-tree and Bitmap. However, inequality joins have received little attention and queries containing such joins are notably very slow. In this paper, we introduce fast inequality join algorithms based on sorted arrays and space-efficient bit-arrays. We further introduce a simple method to estimate the selectivity of inequality joins which is then used to optimize multiple predicate queries and multi-way joins. Moreover, we study an incremental inequality join algorithm to handle scenarios where data keeps changing. We have implemented a centralized version of these algorithms on top of PostgreSQL, a distributed version on top of Spark SQL, and an existing data cleaning system, Nadeef. By comparing our algorithms against well-known optimization techniques for inequality joins, we show our solution is more scalable and several orders of magnitude faster. © 2016 Springer-Verlag Berlin Heidelberg

  11. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  12. Embedded High Performance Scalable Computing Systems

    National Research Council Canada - National Science Library

    Ngo, David

    2003-01-01

    The Embedded High Performance Scalable Computing Systems (EHPSCS) program is a cooperative agreement between Sanders, A Lockheed Martin Company and DARPA that ran for three years, from Apr 1995 - Apr 1998...

  13. Resource-aware complexity scalability for mobile MPEG encoding

    NARCIS (Netherlands)

    Mietens, S.O.; With, de P.H.N.; Hentschel, C.; Panchanatan, S.; Vasudev, B.

    2004-01-01

    Complexity scalability attempts to scale the required resources of an algorithm with the chose quality settings, in order to broaden the application range. In this paper, we present complexity-scalable MPEG encoding of which the core processing modules are modified for scalability. Scalability is

  14. A highly scalable peptide-based assay system for proteomics.

    Directory of Open Access Journals (Sweden)

    Igor A Kozlov

    Full Text Available We report a scalable and cost-effective technology for generating and screening high-complexity customizable peptide sets. The peptides are made as peptide-cDNA fusions by in vitro transcription/translation from pools of DNA templates generated by microarray-based synthesis. This approach enables large custom sets of peptides to be designed in silico, manufactured cost-effectively in parallel, and assayed efficiently in a multiplexed fashion. The utility of our peptide-cDNA fusion pools was demonstrated in two activity-based assays designed to discover protease and kinase substrates. In the protease assay, cleaved peptide substrates were separated from uncleaved and identified by digital sequencing of their cognate cDNAs. We screened the 3,011 amino acid HCV proteome for susceptibility to cleavage by the HCV NS3/4A protease and identified all 3 known trans cleavage sites with high specificity. In the kinase assay, peptide substrates phosphorylated by tyrosine kinases were captured and identified by sequencing of their cDNAs. We screened a pool of 3,243 peptides against Abl kinase and showed that phosphorylation events detected were specific and consistent with the known substrate preferences of Abl kinase. Our approach is scalable and adaptable to other protein-based assays.

  15. Performance-scalable volumetric data classification for online industrial inspection

    Science.gov (United States)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  16. Additive manufacturing.

    Science.gov (United States)

    Mumith, A; Thomas, M; Shah, Z; Coathup, M; Blunn, G

    2018-04-01

    Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research. This review describes the current position in the use of additive manufacturing in orthopaedic surgery. Cite this article: Bone Joint J 2018;100-B:455-60.

  17. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  18. Scalable 3D bicontinuous fluid networks: polymer heat exchangers toward artificial organs.

    Science.gov (United States)

    Roper, Christopher S; Schubert, Randall C; Maloney, Kevin J; Page, David; Ro, Christopher J; Yang, Sophia S; Jacobsen, Alan J

    2015-04-17

    A scalable method for fabricating architected materials well-suited for heat and mass exchange is presented. These materials exhibit unprecedented combinations of small hydraulic diameters (13.0-0.09 mm) and large hydraulic-diameter-to-thickness ratios (5.0-30,100). This process expands the range of material architectures achievable starting from photopolymer waveguide lattices or additive manufacturing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Additive Manufacturing Cloud via Peer-Robot Collaboration

    Directory of Open Access Journals (Sweden)

    Yuan Yao

    2016-05-01

    Full Text Available When building a 3D printing cloud manufacturing platform, self-sensing and collaboration on manufacturing resources present challenging problems. This paper proposes a peer-robot collaboration framework to deal with these issues. Each robot combines heterogeneous additive manufacturing hardware and software, acting as an intelligent agent. Through collaboration with other robots, it forms a dynamic and scalable integration manufacturing system. The entire distributed system is managed by rules that employ an internal rule engine, which supports rule conversion and conflict resolution. Two additive manufacturing service scenarios are designed to analyse the efficiency and scalability of the framework. Experiments show that the presented method performs well in tasks requiring large-scale access to resources and collaboration.

  20. A repeatable and scalable fabrication method for sharp, hollow silicon microneedles

    Science.gov (United States)

    Kim, H.; Theogarajan, L. S.; Pennathur, S.

    2018-03-01

    Scalability and manufacturability are impeding the mass commercialization of microneedles in the medical field. Specifically, microneedle geometries need to be sharp, beveled, and completely controllable, difficult to achieve with microelectromechanical fabrication techniques. In this work, we performed a parametric study using silicon etch chemistries to optimize the fabrication of scalable and manufacturable beveled silicon hollow microneedles. We theoretically verified our parametric results with diffusion reaction equations and created a design guideline for a various set of miconeedles (80-160 µm needle base width, 100-1000 µm pitch, 40-50 µm inner bore diameter, and 150-350 µm height) to show the repeatability, scalability, and manufacturability of our process. As a result, hollow silicon microneedles with any dimensions can be fabricated with less than 2% non-uniformity across a wafer and 5% deviation between different processes. The key to achieving such high uniformity and consistency is a non-agitated HF-HNO3 bath, silicon nitride masks, and surrounding silicon filler materials with well-defined dimensions. Our proposed method is non-labor intensive, well defined by theory, and straightforward for wafer scale mass production, opening doors to a plethora of potential medical and biosensing applications.

  1. The Concept of Business Model Scalability

    DEFF Research Database (Denmark)

    Lund, Morten; Nielsen, Christian

    2018-01-01

    -term pro table business. However, the main message of this article is that while providing a good value proposition may help the rm ‘get by’, the really successful businesses of today are those able to reach the sweet-spot of business model scalability. Design/Methodology/Approach: The article is based...... on a ve-year longitudinal action research project of over 90 companies that participated in the International Center for Innovation project aimed at building 10 global network-based business models. Findings: This article introduces and discusses the term scalability from a company-level perspective......Purpose: The purpose of the article is to de ne what scalable business models are. Central to the contemporary understanding of business models is the value proposition towards the customer and the hypotheses generated about delivering value to the customer which become a good foundation for a long...

  2. Declarative and Scalable Selection for Map Visualizations

    DEFF Research Database (Denmark)

    Kefaloukos, Pimin Konstantin Balic

    and is itself a source and cause of prolific data creation. This calls for scalable map processing techniques that can handle the data volume and which play well with the predominant data models on the Web. (4) Maps are now consumed around the clock by a global audience. While historical maps were singleuser......-defined constraints as well as custom objectives. The purpose of the language is to derive a target multi-scale database from a source database according to holistic specifications. (b) The Glossy SQL compiler allows Glossy SQL to be scalably executed in a spatial analytics system, such as a spatial relational......, there are indications that the method is scalable for databases that contain millions of records, especially if the target language of the compiler is substituted by a cluster-ready variant of SQL. While several realistic use cases for maps have been implemented in CVL, additional non-geographic data visualization uses...

  3. Scalable Density-Based Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2011-01-01

    For knowledge discovery in high dimensional databases, subspace clustering detects clusters in arbitrary subspace projections. Scalability is a crucial issue, as the number of possible projections is exponential in the number of dimensions. We propose a scalable density-based subspace clustering...... method that steers mining to few selected subspace clusters. Our novel steering technique reduces subspace processing by identifying and clustering promising subspaces and their combinations directly. Thereby, it narrows down the search space while maintaining accuracy. Thorough experiments on real...... and synthetic databases show that steering is efficient and scalable, with high quality results. For future work, our steering paradigm for density-based subspace clustering opens research potential for speeding up other subspace clustering approaches as well....

  4. Enhancing Scalability of Sparse Direct Methods

    International Nuclear Information System (INIS)

    Li, Xiaoye S.; Demmel, James; Grigori, Laura; Gu, Ming; Xia, Jianlin; Jardin, Steve; Sovinec, Carl; Lee, Lie-Quan

    2007-01-01

    TOPS is providing high-performance, scalable sparse direct solvers, which have had significant impacts on the SciDAC applications, including fusion simulation (CEMM), accelerator modeling (COMPASS), as well as many other mission-critical applications in DOE and elsewhere. Our recent developments have been focusing on new techniques to overcome scalability bottleneck of direct methods, in both time and memory. These include parallelizing symbolic analysis phase and developing linear-complexity sparse factorization methods. The new techniques will make sparse direct methods more widely usable in large 3D simulations on highly-parallel petascale computers

  5. Software performance and scalability a quantitative approach

    CERN Document Server

    Liu, Henry H

    2009-01-01

    Praise from the Reviewers:"The practicality of the subject in a real-world situation distinguishes this book from othersavailable on the market."—Professor Behrouz Far, University of Calgary"This book could replace the computer organization texts now in use that every CS and CpEstudent must take. . . . It is much needed, well written, and thoughtful."—Professor Larry Bernstein, Stevens Institute of TechnologyA distinctive, educational text onsoftware performance and scalabilityThis is the first book to take a quantitative approach to the subject of software performance and scalability

  6. From Digital Disruption to Business Model Scalability

    DEFF Research Database (Denmark)

    Nielsen, Christian; Lund, Morten; Thomsen, Peter Poulsen

    2017-01-01

    This article discusses the terms disruption, digital disruption, business models and business model scalability. It illustrates how managers should be using these terms for the benefit of their business by developing business models capable of achieving exponentially increasing returns to scale...... will seldom lead to business model scalability capable of competing with digital disruption(s)....... as a response to digital disruption. A series of case studies illustrate that besides frequent existing messages in the business literature relating to the importance of creating agile businesses, both in growing and declining economies, as well as hard to copy value propositions or value propositions that take...

  7. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  8. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  9. Content-Aware Scalability-Type Selection for Rate Adaptation of Scalable Video

    Directory of Open Access Journals (Sweden)

    Tekalp A Murat

    2007-01-01

    Full Text Available Scalable video coders provide different scaling options, such as temporal, spatial, and SNR scalabilities, where rate reduction by discarding enhancement layers of different scalability-type results in different kinds and/or levels of visual distortion depend on the content and bitrate. This dependency between scalability type, video content, and bitrate is not well investigated in the literature. To this effect, we first propose an objective function that quantifies flatness, blockiness, blurriness, and temporal jerkiness artifacts caused by rate reduction by spatial size, frame rate, and quantization parameter scaling. Next, the weights of this objective function are determined for different content (shot types and different bitrates using a training procedure with subjective evaluation. Finally, a method is proposed for choosing the best scaling type for each temporal segment that results in minimum visual distortion according to this objective function given the content type of temporal segments. Two subjective tests have been performed to validate the proposed procedure for content-aware selection of the best scalability type on soccer videos. Soccer videos scaled from 600 kbps to 100 kbps by the proposed content-aware selection of scalability type have been found visually superior to those that are scaled using a single scalability option over the whole sequence.

  10. Using scalable vector graphics to evolve art

    NARCIS (Netherlands)

    den Heijer, E.; Eiben, A. E.

    2016-01-01

    In this paper, we describe our investigations of the use of scalable vector graphics as a genotype representation in evolutionary art. We describe the technical aspects of using SVG in evolutionary art, and explain our custom, SVG specific operators initialisation, mutation and crossover. We perform

  11. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi; Gumerov, Nail A.; Yokota, Rio; Barba, Lorena A.; Duraiswami, Ramani

    2014-01-01

    -node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff

  12. Scalable Domain Decomposed Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  13. Scalable Open Source Smart Grid Simulator (SGSim)

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Jacobsen, Rune Hylsberg; Stefanni, Francesco

    2017-01-01

    . This paper presents an open source smart grid simulator (SGSim). The simulator is based on open source SystemC Network Simulation Library (SCNSL) and aims to model scalable smart grid applications. SGSim has been tested under different smart grid scenarios that contain hundreds of thousands of households...

  14. Cooperative Scalable Moving Continuous Query Processing

    DEFF Research Database (Denmark)

    Li, Xiaohui; Karras, Panagiotis; Jensen, Christian S.

    2012-01-01

    of the global view and handle the majority of the workload. Meanwhile, moving clients, having basic memory and computation resources, handle small portions of the workload. This model is further enhanced by dynamic region allocation and grid size adjustment mechanisms that reduce the communication...... and computation cost for both servers and clients. An experimental study demonstrates that our approaches offer better scalability than competitors...

  15. Scalable optical switches for computing applications

    NARCIS (Netherlands)

    White, I.H.; Aw, E.T.; Williams, K.A.; Wang, Haibo; Wonfor, A.; Penty, R.V.

    2009-01-01

    A scalable photonic interconnection network architecture is proposed whereby a Clos network is populated with broadcast-and-select stages. This enables the efficient exploitation of an emerging class of photonic integrated switch fabric. A low distortion space switch technology based on recently

  16. Scalable Production of Graphene-Based Wearable E-Textiles.

    Science.gov (United States)

    Karim, Nazmul; Afroj, Shaila; Tan, Sirui; He, Pei; Fernando, Anura; Carr, Chris; Novoselov, Kostya S

    2017-12-26

    Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors.

  17. LEAN Manufacturing

    DEFF Research Database (Denmark)

    Bilberg, Arne

    . The mission with the strategy is to obtain competitive production in Denmark and in Western Europe based on the right combination of manufacturing principles, motivated and trained employees, level of automation, and cooperation with suppliers and customers worldwide. The strategy has resulted in technical...

  18. Scalable Algorithms for Adaptive Statistical Designs

    Directory of Open Access Journals (Sweden)

    Robert Oehmke

    2000-01-01

    Full Text Available We present a scalable, high-performance solution to multidimensional recurrences that arise in adaptive statistical designs. Adaptive designs are an important class of learning algorithms for a stochastic environment, and we focus on the problem of optimally assigning patients to treatments in clinical trials. While adaptive designs have significant ethical and cost advantages, they are rarely utilized because of the complexity of optimizing and analyzing them. Computational challenges include massive memory requirements, few calculations per memory access, and multiply-nested loops with dynamic indices. We analyze the effects of various parallelization options, and while standard approaches do not work well, with effort an efficient, highly scalable program can be developed. This allows us to solve problems thousands of times more complex than those solved previously, which helps make adaptive designs practical. Further, our work applies to many other problems involving neighbor recurrences, such as generalized string matching.

  19. Scalable Packet Classification with Hash Tables

    Science.gov (United States)

    Wang, Pi-Chung

    In the last decade, the technique of packet classification has been widely deployed in various network devices, including routers, firewalls and network intrusion detection systems. In this work, we improve the performance of packet classification by using multiple hash tables. The existing hash-based algorithms have superior scalability with respect to the required space; however, their search performance may not be comparable to other algorithms. To improve the search performance, we propose a tuple reordering algorithm to minimize the number of accessed hash tables with the aid of bitmaps. We also use pre-computation to ensure the accuracy of our search procedure. Performance evaluation based on both real and synthetic filter databases shows that our scheme is effective and scalable and the pre-computation cost is moderate.

  20. Scalable Atomistic Simulation Algorithms for Materials Research

    Directory of Open Access Journals (Sweden)

    Aiichiro Nakano

    2002-01-01

    Full Text Available A suite of scalable atomistic simulation programs has been developed for materials research based on space-time multiresolution algorithms. Design and analysis of parallel algorithms are presented for molecular dynamics (MD simulations and quantum-mechanical (QM calculations based on the density functional theory. Performance tests have been carried out on 1,088-processor Cray T3E and 1,280-processor IBM SP3 computers. The linear-scaling algorithms have enabled 6.44-billion-atom MD and 111,000-atom QM calculations on 1,024 SP3 processors with parallel efficiency well over 90%. production-quality programs also feature wavelet-based computational-space decomposition for adaptive load balancing, spacefilling-curve-based adaptive data compression with user-defined error bound for scalable I/O, and octree-based fast visibility culling for immersive and interactive visualization of massive simulation data.

  1. Architecture Knowledge for Evaluating Scalable Databases

    Science.gov (United States)

    2015-01-16

    Architecture Knowledge for Evaluating Scalable Databases 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Nurgaliev... Scala , Erlang, Javascript Cursor-based queries Supported, Not Supported JOIN queries Supported, Not Supported Complex data types Lists, maps, sets...is therefore needed, using technology such as machine learning to extract content from product documentation. The terminology used in the database

  2. Randomized Algorithms for Scalable Machine Learning

    OpenAIRE

    Kleiner, Ariel Jacob

    2012-01-01

    Many existing procedures in machine learning and statistics are computationally intractable in the setting of large-scale data. As a result, the advent of rapidly increasing dataset sizes, which should be a boon yielding improved statistical performance, instead severely blunts the usefulness of a variety of existing inferential methods. In this work, we use randomness to ameliorate this lack of scalability by reducing complex, computationally difficult inferential problems to larger sets o...

  3. Bitcoin-NG: A Scalable Blockchain Protocol

    OpenAIRE

    Eyal, Ittay; Gencer, Adem Efe; Sirer, Emin Gun; van Renesse, Robbert

    2015-01-01

    Cryptocurrencies, based on and led by Bitcoin, have shown promise as infrastructure for pseudonymous online payments, cheap remittance, trustless digital asset exchange, and smart contracts. However, Bitcoin-derived blockchain protocols have inherent scalability limits that trade-off between throughput and latency and withhold the realization of this potential. This paper presents Bitcoin-NG, a new blockchain protocol designed to scale. Based on Bitcoin's blockchain protocol, Bitcoin-NG is By...

  4. Scuba: scalable kernel-based gene prioritization.

    Science.gov (United States)

    Zampieri, Guido; Tran, Dinh Van; Donini, Michele; Navarin, Nicolò; Aiolli, Fabio; Sperduti, Alessandro; Valle, Giorgio

    2018-01-25

    The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba .

  5. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  6. A scalable distributed RRT for motion planning

    KAUST Repository

    Jacobs, Sam Ade

    2013-05-01

    Rapidly-exploring Random Tree (RRT), like other sampling-based motion planning methods, has been very successful in solving motion planning problems. Even so, sampling-based planners cannot solve all problems of interest efficiently, so attention is increasingly turning to parallelizing them. However, one challenge in parallelizing RRT is the global computation and communication overhead of nearest neighbor search, a key operation in RRTs. This is a critical issue as it limits the scalability of previous algorithms. We present two parallel algorithms to address this problem. The first algorithm extends existing work by introducing a parameter that adjusts how much local computation is done before a global update. The second algorithm radially subdivides the configuration space into regions, constructs a portion of the tree in each region in parallel, and connects the subtrees,i removing cycles if they exist. By subdividing the space, we increase computation locality enabling a scalable result. We show that our approaches are scalable. We present results demonstrating almost linear scaling to hundreds of processors on a Linux cluster and a Cray XE6 machine. © 2013 IEEE.

  7. DISP: Optimizations towards Scalable MPI Startup

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Huansong [Florida State University, Tallahassee; Pophale, Swaroop S [ORNL; Gorentla Venkata, Manjunath [ORNL; Yu, Weikuan [Florida State University, Tallahassee

    2016-01-01

    Despite the popularity of MPI for high performance computing, the startup of MPI programs faces a scalability challenge as both the execution time and memory consumption increase drastically at scale. We have examined this problem using the collective modules of Cheetah and Tuned in Open MPI as representative implementations. Previous improvements for collectives have focused on algorithmic advances and hardware off-load. In this paper, we examine the startup cost of the collective module within a communicator and explore various techniques to improve its efficiency and scalability. Accordingly, we have developed a new scalable startup scheme with three internal techniques, namely Delayed Initialization, Module Sharing and Prediction-based Topology Setup (DISP). Our DISP scheme greatly benefits the collective initialization of the Cheetah module. At the same time, it helps boost the performance of non-collective initialization in the Tuned module. We evaluate the performance of our implementation on Titan supercomputer at ORNL with up to 4096 processes. The results show that our delayed initialization can speed up the startup of Tuned and Cheetah by an average of 32.0% and 29.2%, respectively, our module sharing can reduce the memory consumption of Tuned and Cheetah by up to 24.1% and 83.5%, respectively, and our prediction-based topology setup can speed up the startup of Cheetah by up to 80%.

  8. A scalable distributed RRT for motion planning

    KAUST Repository

    Jacobs, Sam Ade; Stradford, Nicholas; Rodriguez, Cesar; Thomas, Shawna; Amato, Nancy M.

    2013-01-01

    Rapidly-exploring Random Tree (RRT), like other sampling-based motion planning methods, has been very successful in solving motion planning problems. Even so, sampling-based planners cannot solve all problems of interest efficiently, so attention is increasingly turning to parallelizing them. However, one challenge in parallelizing RRT is the global computation and communication overhead of nearest neighbor search, a key operation in RRTs. This is a critical issue as it limits the scalability of previous algorithms. We present two parallel algorithms to address this problem. The first algorithm extends existing work by introducing a parameter that adjusts how much local computation is done before a global update. The second algorithm radially subdivides the configuration space into regions, constructs a portion of the tree in each region in parallel, and connects the subtrees,i removing cycles if they exist. By subdividing the space, we increase computation locality enabling a scalable result. We show that our approaches are scalable. We present results demonstrating almost linear scaling to hundreds of processors on a Linux cluster and a Cray XE6 machine. © 2013 IEEE.

  9. Scalable robotic biofabrication of tissue spheroids

    International Nuclear Information System (INIS)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V; Brown, J; Beaver, W; Da Silva, J V L

    2011-01-01

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  10. Scalable robotic biofabrication of tissue spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V [Advanced Tissue Biofabrication Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC (United States); Brown, J [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Beaver, W [York Technical College, Rock Hill, SC (United States); Da Silva, J V L, E-mail: mironovv@musc.edu [Renato Archer Information Technology Center-CTI, Campinas (Brazil)

    2011-06-15

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  11. Numeric Analysis for Relationship-Aware Scalable Streaming Scheme

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2014-01-01

    Full Text Available Frequent packet loss of media data is a critical problem that degrades the quality of streaming services over mobile networks. Packet loss invalidates frames containing lost packets and other related frames at the same time. Indirect loss caused by losing packets decreases the quality of streaming. A scalable streaming service can decrease the amount of dropped multimedia resulting from a single packet loss. Content providers typically divide one large media stream into several layers through a scalable streaming service and then provide each scalable layer to the user depending on the mobile network. Also, a scalable streaming service makes it possible to decode partial multimedia data depending on the relationship between frames and layers. Therefore, a scalable streaming service provides a way to decrease the wasted multimedia data when one packet is lost. However, the hierarchical structure between frames and layers of scalable streams determines the service quality of the scalable streaming service. Even if whole packets of layers are transmitted successfully, they cannot be decoded as a result of the absence of reference frames and layers. Therefore, the complicated relationship between frames and layers in a scalable stream increases the volume of abandoned layers. For providing a high-quality scalable streaming service, we choose a proper relationship between scalable layers as well as the amount of transmitted multimedia data depending on the network situation. We prove that a simple scalable scheme outperforms a complicated scheme in an error-prone network. We suggest an adaptive set-top box (AdaptiveSTB to lower the dependency between scalable layers in a scalable stream. Also, we provide a numerical model to obtain the indirect loss of multimedia data and apply it to various multimedia streams. Our AdaptiveSTB enhances the quality of a scalable streaming service by removing indirect loss.

  12. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  13. Scalable and balanced dynamic hybrid data assimilation

    Science.gov (United States)

    Kauranne, Tuomo; Amour, Idrissa; Gunia, Martin; Kallio, Kari; Lepistö, Ahti; Koponen, Sampsa

    2017-04-01

    Scalability of complex weather forecasting suites is dependent on the technical tools available for implementing highly parallel computational kernels, but to an equally large extent also on the dependence patterns between various components of the suite, such as observation processing, data assimilation and the forecast model. Scalability is a particular challenge for 4D variational assimilation methods that necessarily couple the forecast model into the assimilation process and subject this combination to an inherently serial quasi-Newton minimization process. Ensemble based assimilation methods are naturally more parallel, but large models force ensemble sizes to be small and that results in poor assimilation accuracy, somewhat akin to shooting with a shotgun in a million-dimensional space. The Variational Ensemble Kalman Filter (VEnKF) is an ensemble method that can attain the accuracy of 4D variational data assimilation with a small ensemble size. It achieves this by processing a Gaussian approximation of the current error covariance distribution, instead of a set of ensemble members, analogously to the Extended Kalman Filter EKF. Ensemble members are re-sampled every time a new set of observations is processed from a new approximation of that Gaussian distribution which makes VEnKF a dynamic assimilation method. After this a smoothing step is applied that turns VEnKF into a dynamic Variational Ensemble Kalman Smoother VEnKS. In this smoothing step, the same process is iterated with frequent re-sampling of the ensemble but now using past iterations as surrogate observations until the end result is a smooth and balanced model trajectory. In principle, VEnKF could suffer from similar scalability issues as 4D-Var. However, this can be avoided by isolating the forecast model completely from the minimization process by implementing the latter as a wrapper code whose only link to the model is calling for many parallel and totally independent model runs, all of them

  14. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    International Nuclear Information System (INIS)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, Harry M.; Phelps, Tommy

    2015-01-01

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  15. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  16. Evaluation of Advanced Polymers for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carter, William G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kutchko, Cindy [PPG Industries, Pittsburgh, PA (United States); Fenn, David [PPG Industries, Pittsburgh, PA (United States); Olson, Kurt [PPG Industries, Pittsburgh, PA (United States)

    2017-09-08

    The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. (PPG) was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition, and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficient mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and inherently low-cost.

  17. Programming Scala Scalability = Functional Programming + Objects

    CERN Document Server

    Wampler, Dean

    2009-01-01

    Learn how to be more productive with Scala, a new multi-paradigm language for the Java Virtual Machine (JVM) that integrates features of both object-oriented and functional programming. With this book, you'll discover why Scala is ideal for highly scalable, component-based applications that support concurrency and distribution. Programming Scala clearly explains the advantages of Scala as a JVM language. You'll learn how to leverage the wealth of Java class libraries to meet the practical needs of enterprise and Internet projects more easily. Packed with code examples, this book provides us

  18. Towards a Scalable, Biomimetic, Antibacterial Coating

    Science.gov (United States)

    Dickson, Mary Nora

    Corneal afflictions are the second leading cause of blindness worldwide. When a corneal transplant is unavailable or contraindicated, an artificial cornea device is the only chance to save sight. Bacterial or fungal biofilm build up on artificial cornea devices can lead to serious complications including the need for systemic antibiotic treatment and even explantation. As a result, much emphasis has been placed on anti-adhesion chemical coatings and antibiotic leeching coatings. These methods are not long-lasting, and microorganisms can eventually circumvent these measures. Thus, I have developed a surface topographical antimicrobial coating. Various surface structures including rough surfaces, superhydrophobic surfaces, and the natural surfaces of insects' wings and sharks' skin are promising anti-biofilm candidates, however none meet the criteria necessary for implementation on the surface of an artificial cornea device. In this thesis I: 1) developed scalable fabrication protocols for a library of biomimetic nanostructure polymer surfaces 2) assessed the potential these for poly(methyl methacrylate) nanopillars to kill or prevent formation of biofilm by E. coli bacteria and species of Pseudomonas and Staphylococcus bacteria and improved upon a proposed mechanism for the rupture of Gram-negative bacterial cell walls 3) developed a scalable, commercially viable method for producing antibacterial nanopillars on a curved, PMMA artificial cornea device and 4) developed scalable fabrication protocols for implantation of antibacterial nanopatterned surfaces on the surfaces of thermoplastic polyurethane materials, commonly used in catheter tubings. This project constitutes a first step towards fabrication of the first entirely PMMA artificial cornea device. The major finding of this work is that by precisely controlling the topography of a polymer surface at the nano-scale, we can kill adherent bacteria and prevent biofilm formation of certain pathogenic bacteria

  19. Scalable Optical-Fiber Communication Networks

    Science.gov (United States)

    Chow, Edward T.; Peterson, John C.

    1993-01-01

    Scalable arbitrary fiber extension network (SAFEnet) is conceptual fiber-optic communication network passing digital signals among variety of computers and input/output devices at rates from 200 Mb/s to more than 100 Gb/s. Intended for use with very-high-speed computers and other data-processing and communication systems in which message-passing delays must be kept short. Inherent flexibility makes it possible to match performance of network to computers by optimizing configuration of interconnections. In addition, interconnections made redundant to provide tolerance to faults.

  20. Scalable Tensor Factorizations with Missing Data

    DEFF Research Database (Denmark)

    Acar, Evrim; Dunlavy, Daniel M.; Kolda, Tamara G.

    2010-01-01

    of missing data, many important data sets will be discarded or improperly analyzed. Therefore, we need a robust and scalable approach for factorizing multi-way arrays (i.e., tensors) in the presence of missing data. We focus on one of the most well-known tensor factorizations, CANDECOMP/PARAFAC (CP...... is shown to successfully factor tensors with noise and up to 70% missing data. Moreover, our approach is significantly faster than the leading alternative and scales to larger problems. To show the real-world usefulness of CP-WOPT, we illustrate its applicability on a novel EEG (electroencephalogram...

  1. Scalable and Anonymous Group Communication with MTor

    Directory of Open Access Journals (Sweden)

    Lin Dong

    2016-04-01

    Full Text Available This paper presents MTor, a low-latency anonymous group communication system. We construct MTor as an extension to Tor, allowing the construction of multi-source multicast trees on top of the existing Tor infrastructure. MTor does not depend on an external service to broker the group communication, and avoids central points of failure and trust. MTor’s substantial bandwidth savings and graceful scalability enable new classes of anonymous applications that are currently too bandwidth-intensive to be viable through traditional unicast Tor communication-e.g., group file transfer, collaborative editing, streaming video, and real-time audio conferencing.

  2. Grassmann Averages for Scalable Robust PCA

    DEFF Research Database (Denmark)

    Hauberg, Søren; Feragen, Aasa; Black, Michael J.

    2014-01-01

    As the collection of large datasets becomes increasingly automated, the occurrence of outliers will increase—“big data” implies “big outliers”. While principal component analysis (PCA) is often used to reduce the size of data, and scalable solutions exist, it is well-known that outliers can...... to vectors (subspaces) or elements of vectors; we focus on the latter and use a trimmed average. The resulting Trimmed Grassmann Average (TGA) is particularly appropriate for computer vision because it is robust to pixel outliers. The algorithm has low computational complexity and minimal memory requirements...

  3. Scalability Optimization of Seamless Positioning Service

    Directory of Open Access Journals (Sweden)

    Juraj Machaj

    2016-01-01

    Full Text Available Recently positioning services are getting more attention not only within research community but also from service providers. From the service providers point of view positioning service that will be able to work seamlessly in all environments, for example, indoor, dense urban, and rural, has a huge potential to open new markets. However, such system does not only need to provide accurate position estimates but have to be scalable and resistant to fake positioning requests. In the previous works we have proposed a modular system, which is able to provide seamless positioning in various environments. The system automatically selects optimal positioning module based on available radio signals. The system currently consists of three positioning modules—GPS, GSM based positioning, and Wi-Fi based positioning. In this paper we will propose algorithm which will reduce time needed for position estimation and thus allow higher scalability of the modular system and thus allow providing positioning services to higher amount of users. Such improvement is extremely important, for real world application where large number of users will require position estimates, since positioning error is affected by response time of the positioning server.

  4. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit; Bajic, Vladimir B.; Kaushik, Dinesh

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  5. Algorithmic psychometrics and the scalable subject.

    Science.gov (United States)

    Stark, Luke

    2018-04-01

    Recent public controversies, ranging from the 2014 Facebook 'emotional contagion' study to psychographic data profiling by Cambridge Analytica in the 2016 American presidential election, Brexit referendum and elsewhere, signal watershed moments in which the intersecting trajectories of psychology and computer science have become matters of public concern. The entangled history of these two fields grounds the application of applied psychological techniques to digital technologies, and an investment in applying calculability to human subjectivity. Today, a quantifiable psychological subject position has been translated, via 'big data' sets and algorithmic analysis, into a model subject amenable to classification through digital media platforms. I term this position the 'scalable subject', arguing it has been shaped and made legible by algorithmic psychometrics - a broad set of affordances in digital platforms shaped by psychology and the behavioral sciences. In describing the contours of this 'scalable subject', this paper highlights the urgent need for renewed attention from STS scholars on the psy sciences, and on a computational politics attentive to psychology, emotional expression, and sociality via digital media.

  6. Scalable Simulation of Electromagnetic Hybrid Codes

    International Nuclear Information System (INIS)

    Perumalla, Kalyan S.; Fujimoto, Richard; Karimabadi, Dr. Homa

    2006-01-01

    New discrete-event formulations of physics simulation models are emerging that can outperform models based on traditional time-stepped techniques. Detailed simulation of the Earth's magnetosphere, for example, requires execution of sub-models that are at widely differing timescales. In contrast to time-stepped simulation which requires tightly coupled updates to entire system state at regular time intervals, the new discrete event simulation (DES) approaches help evolve the states of sub-models on relatively independent timescales. However, parallel execution of DES-based models raises challenges with respect to their scalability and performance. One of the key challenges is to improve the computation granularity to offset synchronization and communication overheads within and across processors. Our previous work was limited in scalability and runtime performance due to the parallelization challenges. Here we report on optimizations we performed on DES-based plasma simulation models to improve parallel performance. The net result is the capability to simulate hybrid particle-in-cell (PIC) models with over 2 billion ion particles using 512 processors on supercomputing platforms

  7. Towards Scalable Graph Computation on Mobile Devices.

    Science.gov (United States)

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2014-10-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach.

  8. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi

    2014-05-01

    The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.

  9. Computational scalability of large size image dissemination

    Science.gov (United States)

    Kooper, Rob; Bajcsy, Peter

    2011-01-01

    We have investigated the computational scalability of image pyramid building needed for dissemination of very large image data. The sources of large images include high resolution microscopes and telescopes, remote sensing and airborne imaging, and high resolution scanners. The term 'large' is understood from a user perspective which means either larger than a display size or larger than a memory/disk to hold the image data. The application drivers for our work are digitization projects such as the Lincoln Papers project (each image scan is about 100-150MB or about 5000x8000 pixels with the total number to be around 200,000) and the UIUC library scanning project for historical maps from 17th and 18th century (smaller number but larger images). The goal of our work is understand computational scalability of the web-based dissemination using image pyramids for these large image scans, as well as the preservation aspects of the data. We report our computational benchmarks for (a) building image pyramids to be disseminated using the Microsoft Seadragon library, (b) a computation execution approach using hyper-threading to generate image pyramids and to utilize the underlying hardware, and (c) an image pyramid preservation approach using various hard drive configurations of Redundant Array of Independent Disks (RAID) drives for input/output operations. The benchmarks are obtained with a map (334.61 MB, JPEG format, 17591x15014 pixels). The discussion combines the speed and preservation objectives.

  10. Towards Scalable Graph Computation on Mobile Devices

    Science.gov (United States)

    Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng

    2015-01-01

    Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564

  11. Big data integration: scalability and sustainability

    KAUST Repository

    Zhang, Zhang

    2016-01-26

    Integration of various types of omics data is critically indispensable for addressing most important and complex biological questions. In the era of big data, however, data integration becomes increasingly tedious, time-consuming and expensive, posing a significant obstacle to fully exploit the wealth of big biological data. Here we propose a scalable and sustainable architecture that integrates big omics data through community-contributed modules. Community modules are contributed and maintained by different committed groups and each module corresponds to a specific data type, deals with data collection, processing and visualization, and delivers data on-demand via web services. Based on this community-based architecture, we build Information Commons for Rice (IC4R; http://ic4r.org), a rice knowledgebase that integrates a variety of rice omics data from multiple community modules, including genome-wide expression profiles derived entirely from RNA-Seq data, resequencing-based genomic variations obtained from re-sequencing data of thousands of rice varieties, plant homologous genes covering multiple diverse plant species, post-translational modifications, rice-related literatures, and community annotations. Taken together, such architecture achieves integration of different types of data from multiple community-contributed modules and accordingly features scalable, sustainable and collaborative integration of big data as well as low costs for database update and maintenance, thus helpful for building IC4R into a comprehensive knowledgebase covering all aspects of rice data and beneficial for both basic and translational researches.

  12. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Vincent C. Chen

    2015-09-01

    Full Text Available To meet the need of a large quantity of hPSC-derived cardiomyocytes (CM for pre-clinical and clinical studies, a robust and scalable differentiation system for CM production is essential. With a human pluripotent stem cells (hPSC aggregate suspension culture system we established previously, we developed a matrix-free, scalable, and GMP-compliant process for directing hPSC differentiation to CM in suspension culture by modulating Wnt pathways with small molecules. By optimizing critical process parameters including: cell aggregate size, small molecule concentrations, induction timing, and agitation rate, we were able to consistently differentiate hPSCs to >90% CM purity with an average yield of 1.5 to 2 × 109 CM/L at scales up to 1 L spinner flasks. CM generated from the suspension culture displayed typical genetic, morphological, and electrophysiological cardiac cell characteristics. This suspension culture system allows seamless transition from hPSC expansion to CM differentiation in a continuous suspension culture. It not only provides a cost and labor effective scalable process for large scale CM production, but also provides a bioreactor prototype for automation of cell manufacturing, which will accelerate the advance of hPSC research towards therapeutic applications.

  13. Manufactured volvulus.

    Science.gov (United States)

    Zweifel, Noemi; Meuli, Martin; Subotic, Ulrike; Moehrlen, Ueli; Mazzone, Luca; Arlettaz, Romaine

    2013-06-01

    Malrotation with a common mesentery is the classical pathology allowing midgut volvulus to occur. There are only a few reports of small bowel volvulus without malrotation or other pathology triggering volvulation. We describe three cases of small bowel volvulus in very premature newborns with a perfectly normal intra-abdominal anatomy and focus on the question, what might have set off volvulation. In 2005 to 2008, three patients developed small bowel volvulus without any underlying pathology. Retrospective patient chart review was performed with special focus on clinical presentation, preoperative management, intraoperative findings, and potential causative explanations. Mean follow-up period was 46 months. All patients were born between 27 and 31 weeks (mean 28 weeks) with a birth weight between 800 and 1,000 g (mean 887 g). They presented with an almost identical pattern of symptoms including sudden abdominal distension, abdominal tenderness, erythema of the abdominal wall, high gastric residuals, and radiographic signs of ileus. All of them were treated with intensive abdominal massage or pelvic rotation to improve bowel movement before becoming symptomatic. Properistaltic maneuvers including abdominal massage and pelvic rotation may cause what we term a "manufactured" volvulus in very premature newborns. Thus, this practice was stopped. Georg Thieme Verlag KG Stuttgart · New York.

  14. Scalable conditional induction variables (CIV) analysis

    DEFF Research Database (Denmark)

    Oancea, Cosmin Eugen; Rauchwerger, Lawrence

    2015-01-01

    parallelizing compiler and evaluated its impact on five Fortran benchmarks. We have found that that there are many important loops using CIV subscripts and that our analysis can lead to their scalable parallelization. This in turn has led to the parallelization of the benchmark programs they appear in.......Subscripts using induction variables that cannot be expressed as a formula in terms of the enclosing-loop indices appear in the low-level implementation of common programming abstractions such as filter, or stack operations and pose significant challenges to automatic parallelization. Because...... the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow-sensitive technique that summarizes both such CIV-based and affine subscripts to program level, using the same...

  15. Scalable Faceted Ranking in Tagging Systems

    Science.gov (United States)

    Orlicki, José I.; Alvarez-Hamelin, J. Ignacio; Fierens, Pablo I.

    Nowadays, web collaborative tagging systems which allow users to upload, comment on and recommend contents, are growing. Such systems can be represented as graphs where nodes correspond to users and tagged-links to recommendations. In this paper we analyze the problem of computing a ranking of users with respect to a facet described as a set of tags. A straightforward solution is to compute a PageRank-like algorithm on a facet-related graph, but it is not feasible for online computation. We propose an alternative: (i) a ranking for each tag is computed offline on the basis of tag-related subgraphs; (ii) a faceted order is generated online by merging rankings corresponding to all the tags in the facet. Based on the graph analysis of YouTube and Flickr, we show that step (i) is scalable. We also present efficient algorithms for step (ii), which are evaluated by comparing their results with two gold standards.

  16. A graph algebra for scalable visual analytics.

    Science.gov (United States)

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.

  17. Parallel scalability of Hartree-Fock calculations

    Science.gov (United States)

    Chow, Edmond; Liu, Xing; Smelyanskiy, Mikhail; Hammond, Jeff R.

    2015-03-01

    Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree-Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.

  18. iSIGHT-FD scalability test report.

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Robert L.; Shneider, Max S.

    2008-07-01

    The engineering analysis community at Sandia National Laboratories uses a number of internal and commercial software codes and tools, including mesh generators, preprocessors, mesh manipulators, simulation codes, post-processors, and visualization packages. We define an analysis workflow as the execution of an ordered, logical sequence of these tools. Various forms of analysis (and in particular, methodologies that use multiple function evaluations or samples) involve executing parameterized variations of these workflows. As part of the DART project, we are evaluating various commercial workflow management systems, including iSIGHT-FD from Engineous. This report documents the results of a scalability test that was driven by DAKOTA and conducted on a parallel computer (Thunderbird). The purpose of this experiment was to examine the suitability and performance of iSIGHT-FD for large-scale, parameterized analysis workflows. As the results indicate, we found iSIGHT-FD to be suitable for this type of application.

  19. Scalable group level probabilistic sparse factor analysis

    DEFF Research Database (Denmark)

    Hinrich, Jesper Løve; Nielsen, Søren Føns Vind; Riis, Nicolai Andre Brogaard

    2017-01-01

    Many data-driven approaches exist to extract neural representations of functional magnetic resonance imaging (fMRI) data, but most of them lack a proper probabilistic formulation. We propose a scalable group level probabilistic sparse factor analysis (psFA) allowing spatially sparse maps, component...... pruning using automatic relevance determination (ARD) and subject specific heteroscedastic spatial noise modeling. For task-based and resting state fMRI, we show that the sparsity constraint gives rise to components similar to those obtained by group independent component analysis. The noise modeling...... shows that noise is reduced in areas typically associated with activation by the experimental design. The psFA model identifies sparse components and the probabilistic setting provides a natural way to handle parameter uncertainties. The variational Bayesian framework easily extends to more complex...

  20. Scalable on-chip quantum state tomography

    Science.gov (United States)

    Titchener, James G.; Gräfe, Markus; Heilmann, René; Solntsev, Alexander S.; Szameit, Alexander; Sukhorukov, Andrey A.

    2018-03-01

    Quantum information systems are on a path to vastly exceed the complexity of any classical device. The number of entangled qubits in quantum devices is rapidly increasing, and the information required to fully describe these systems scales exponentially with qubit number. This scaling is the key benefit of quantum systems, however it also presents a severe challenge. To characterize such systems typically requires an exponentially long sequence of different measurements, becoming highly resource demanding for large numbers of qubits. Here we propose and demonstrate a novel and scalable method for characterizing quantum systems based on expanding a multi-photon state to larger dimensionality. We establish that the complexity of this new measurement technique only scales linearly with the number of qubits, while providing a tomographically complete set of data without a need for reconfigurability. We experimentally demonstrate an integrated photonic chip capable of measuring two- and three-photon quantum states with statistical reconstruction fidelity of 99.71%.

  1. A versatile scalable PET processing system

    International Nuclear Information System (INIS)

    Dong, H.; Weisenberger, A.; McKisson, J.; Wenze, Xi; Cuevas, C.; Wilson, J.; Zukerman, L.

    2011-01-01

    Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed to accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.

  2. The Concept of Business Model Scalability

    DEFF Research Database (Denmark)

    Nielsen, Christian; Lund, Morten

    2015-01-01

    The power of business models lies in their ability to visualize and clarify how firms’ may configure their value creation processes. Among the key aspects of business model thinking are a focus on what the customer values, how this value is best delivered to the customer and how strategic partners...... are leveraged in this value creation, delivery and realization exercise. Central to the mainstream understanding of business models is the value proposition towards the customer and the hypothesis generated is that if the firm delivers to the customer what he/she requires, then there is a good foundation...... for a long-term profitable business. However, the message conveyed in this article is that while providing a good value proposition may help the firm ‘get by’, the really successful businesses of today are those able to reach the sweet-spot of business model scalability. This article introduces and discusses...

  3. The scalable coherent interface, IEEE P1596

    International Nuclear Information System (INIS)

    Gustavson, D.B.

    1990-01-01

    IEEE P1596, the scalable coherent interface (formerly known as SuperBus) is based on experience gained while developing Fastbus (ANSI/IEEE 960--1986, IEC 935), Futurebus (IEEE P896.x) and other modern 32-bit buses. SCI goals include a minimum bandwidth of 1 GByte/sec per processor in multiprocessor systems with thousands of processors; efficient support of a coherent distributed-cache image of distributed shared memory; support for repeaters which interface to existing or future buses; and support for inexpensive small rings as well as for general switched interconnections like Banyan, Omega, or crossbar networks. This paper presents a summary of current directions, reports the status of the work in progress, and suggests some applications in data acquisition and physics

  4. BASSET: Scalable Gateway Finder in Large Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Tong, H; Papadimitriou, S; Faloutsos, C; Yu, P S; Eliassi-Rad, T

    2010-11-03

    Given a social network, who is the best person to introduce you to, say, Chris Ferguson, the poker champion? Or, given a network of people and skills, who is the best person to help you learn about, say, wavelets? The goal is to find a small group of 'gateways': persons who are close enough to us, as well as close enough to the target (person, or skill) or, in other words, are crucial in connecting us to the target. The main contributions are the following: (a) we show how to formulate this problem precisely; (b) we show that it is sub-modular and thus it can be solved near-optimally; (c) we give fast, scalable algorithms to find such gateways. Experiments on real data sets validate the effectiveness and efficiency of the proposed methods, achieving up to 6,000,000x speedup.

  5. Scalable quantum search using trapped ions

    International Nuclear Information System (INIS)

    Ivanov, S. S.; Ivanov, P. A.; Linington, I. E.; Vitanov, N. V.

    2010-01-01

    We propose a scalable implementation of Grover's quantum search algorithm in a trapped-ion quantum information processor. The system is initialized in an entangled Dicke state by using adiabatic techniques. The inversion-about-average and oracle operators take the form of single off-resonant laser pulses. This is made possible by utilizing the physical symmetries of the trapped-ion linear crystal. The physical realization of the algorithm represents a dramatic simplification: each logical iteration (oracle and inversion about average) requires only two physical interaction steps, in contrast to the large number of concatenated gates required by previous approaches. This not only facilitates the implementation but also increases the overall fidelity of the algorithm.

  6. Scalable graphene aptasensors for drug quantification

    Science.gov (United States)

    Vishnubhotla, Ramya; Ping, Jinglei; Gao, Zhaoli; Lee, Abigail; Saouaf, Olivia; Vrudhula, Amey; Johnson, A. T. Charlie

    2017-11-01

    Simpler and more rapid approaches for therapeutic drug-level monitoring are highly desirable to enable use at the point-of-care. We have developed an all-electronic approach for detection of the HIV drug tenofovir based on scalable fabrication of arrays of graphene field-effect transistors (GFETs) functionalized with a commercially available DNA aptamer. The shift in the Dirac voltage of the GFETs varied systematically with the concentration of tenofovir in deionized water, with a detection limit less than 1 ng/mL. Tests against a set of negative controls confirmed the specificity of the sensor response. This approach offers the potential for further development into a rapid and convenient point-of-care tool with clinically relevant performance.

  7. Scalable Transactions for Web Applications in the Cloud

    NARCIS (Netherlands)

    Zhou, W.; Pierre, G.E.O.; Chi, C.-H.

    2009-01-01

    Cloud Computing platforms provide scalability and high availability properties for web applications but they sacrifice data consistency at the same time. However, many applications cannot afford any data inconsistency. We present a scalable transaction manager for NoSQL cloud database services to

  8. New Complexity Scalable MPEG Encoding Techniques for Mobile Applications

    Directory of Open Access Journals (Sweden)

    Stephan Mietens

    2004-03-01

    Full Text Available Complexity scalability offers the advantage of one-time design of video applications for a large product family, including mobile devices, without the need of redesigning the applications on the algorithmic level to meet the requirements of the different products. In this paper, we present complexity scalable MPEG encoding having core modules with modifications for scalability. The interdependencies of the scalable modules and the system performance are evaluated. Experimental results show scalability giving a smooth change in complexity and corresponding video quality. Scalability is basically achieved by varying the number of computed DCT coefficients and the number of evaluated motion vectors but other modules are designed such they scale with the previous parameters. In the experiments using the “Stefan” sequence, the elapsed execution time of the scalable encoder, reflecting the computational complexity, can be gradually reduced to roughly 50% of its original execution time. The video quality scales between 20 dB and 48 dB PSNR with unity quantizer setting, and between 21.5 dB and 38.5 dB PSNR for different sequences targeting 1500 kbps. The implemented encoder and the scalability techniques can be successfully applied in mobile systems based on MPEG video compression.

  9. Building scalable apps with Redis and Node.js

    CERN Document Server

    Johanan, Joshua

    2014-01-01

    If the phrase scalability sounds alien to you, then this is an ideal book for you. You will not need much Node.js experience as each framework is demonstrated in a way that requires no previous knowledge of the framework. You will be building scalable Node.js applications in no time! Knowledge of JavaScript is required.

  10. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thomas C Schulz

    Full Text Available Development of a human embryonic stem cell (hESC-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50-100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry.

  11. Fourier transform based scalable image quality measure.

    Science.gov (United States)

    Narwaria, Manish; Lin, Weisi; McLoughlin, Ian; Emmanuel, Sabu; Chia, Liang-Tien

    2012-08-01

    We present a new image quality assessment (IQA) algorithm based on the phase and magnitude of the 2D (twodimensional) Discrete Fourier Transform (DFT). The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the Human Visual Systems (HVSs) sensitivity to different frequency components is not the same. We accommodate this fact via a simple yet effective strategy of nonuniform binning of the frequency components. This process also leads to reduced space representation of the image thereby enabling the reduced-reference (RR) prospects of the proposed scheme. We employ linear regression to integrate the effects of the changes in phase and magnitude. In this way, the required weights are determined via proper training and hence more convincing and effective. Lastly, using the fact that phase usually conveys more information than magnitude, we use only the phase for RR quality assessment. This provides the crucial advantage of further reduction in the required amount of reference image information. The proposed method is therefore further scalable for RR scenarios. We report extensive experimental results using a total of 9 publicly available databases: 7 image (with a total of 3832 distorted images with diverse distortions) and 2 video databases (totally 228 distorted videos). These show that the proposed method is overall better than several of the existing fullreference (FR) algorithms and two RR algorithms. Additionally, there is a graceful degradation in prediction performance as the amount of reference image information is reduced thereby confirming its scalability prospects. To enable comparisons and future study, a Matlab implementation of the proposed algorithm is available at http://www.ntu.edu.sg/home/wslin/reduced_phase.rar.

  12. Improving diabetes medication adherence: successful, scalable interventions

    Directory of Open Access Journals (Sweden)

    Zullig LL

    2015-01-01

    Full Text Available Leah L Zullig,1,2 Walid F Gellad,3,4 Jivan Moaddeb,2,5 Matthew J Crowley,1,2 William Shrank,6 Bradi B Granger,7 Christopher B Granger,8 Troy Trygstad,9 Larry Z Liu,10 Hayden B Bosworth1,2,7,11 1Center for Health Services Research in Primary Care, Durham Veterans Affairs Medical Center, Durham, NC, USA; 2Department of Medicine, Duke University, Durham, NC, USA; 3Center for Health Equity Research and Promotion, Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA, USA; 4Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA; 5Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA; 6CVS Caremark Corporation; 7School of Nursing, Duke University, Durham, NC, USA; 8Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA; 9North Carolina Community Care Networks, Raleigh, NC, USA; 10Pfizer, Inc., and Weill Medical College of Cornell University, New York, NY, USA; 11Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA Abstract: Effective medications are a cornerstone of prevention and disease treatment, yet only about half of patients take their medications as prescribed, resulting in a common and costly public health challenge for the US healthcare system. Since poor medication adherence is a complex problem with many contributing causes, there is no one universal solution. This paper describes interventions that were not only effective in improving medication adherence among patients with diabetes, but were also potentially scalable (ie, easy to implement to a large population. We identify key characteristics that make these interventions effective and scalable. This information is intended to inform healthcare systems seeking proven, low resource, cost-effective solutions to improve medication adherence. Keywords: medication adherence, diabetes mellitus, chronic disease, dissemination research

  13. The impact of fit manufacturing on green manufacturing: A review

    Science.gov (United States)

    Qi, Ang Nian; Sin, Tan Chan; Fathullah, M.; Lee, C. C.

    2017-09-01

    Fit manufacturing and Green manufacturing are a new trend principle and concept. They are getting popular in industrial. This paper is identifying the impact between Fit manufacturing and Green manufacturing. Besides Fit manufacturing, Lean manufacturing, Agile manufacturing and Sustainable manufacturing gives big impacts to Green Manufacturing. On top of that, this paper also discuss the benefits of applying Fit manufacturing and Green manufacturing in industrial as well as environment. Hence, applications of Fit manufacturing and Green Manufacturing are increasing year by year.

  14. Scalable and Media Aware Adaptive Video Streaming over Wireless Networks

    Directory of Open Access Journals (Sweden)

    Béatrice Pesquet-Popescu

    2008-07-01

    Full Text Available This paper proposes an advanced video streaming system based on scalable video coding in order to optimize resource utilization in wireless networks with retransmission mechanisms at radio protocol level. The key component of this system is a packet scheduling algorithm which operates on the different substreams of a main scalable video stream and which is implemented in a so-called media aware network element. The concerned type of transport channel is a dedicated channel subject to parameters (bitrate, loss rate variations on the long run. Moreover, we propose a combined scalability approach in which common temporal and SNR scalability features can be used jointly with a partitioning of the image into regions of interest. Simulation results show that our approach provides substantial quality gain compared to classical packet transmission methods and they demonstrate how ROI coding combined with SNR scalability allows to improve again the visual quality.

  15. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  16. Low Cost Lithography Tool for High Brightness LED Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  17. Tribology in Manufacturing Technology

    CERN Document Server

    2013-01-01

    The present book aims to provide research advances on tribology in manufacturing technology for modern industry. This book can be used as a research book for final undergraduate engineering course (for example, mechanical, manufacturing, materials, etc) or as a subject on manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, manufacturing and tribology researchers, mechanical, mechanical, manufacturing and materials engineers, professionals in related industries with manufacturing and tribology.

  18. Oracle database performance and scalability a quantitative approach

    CERN Document Server

    Liu, Henry H

    2011-01-01

    A data-driven, fact-based, quantitative text on Oracle performance and scalability With database concepts and theories clearly explained in Oracle's context, readers quickly learn how to fully leverage Oracle's performance and scalability capabilities at every stage of designing and developing an Oracle-based enterprise application. The book is based on the author's more than ten years of experience working with Oracle, and is filled with dependable, tested, and proven performance optimization techniques. Oracle Database Performance and Scalability is divided into four parts that enable reader

  19. Scalable-to-lossless transform domain distributed video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Ukhanova, Ann; Veselov, Anton

    2010-01-01

    Distributed video coding (DVC) is a novel approach providing new features as low complexity encoding by mainly exploiting the source statistics at the decoder based on the availability of decoder side information. In this paper, scalable-tolossless DVC is presented based on extending a lossy Tran...... codec provides frame by frame encoding. Comparing the lossless coding efficiency, the proposed scalable-to-lossless TDWZ video codec can save up to 5%-13% bits compared to JPEG LS and H.264 Intra frame lossless coding and do so as a scalable-to-lossless coding....

  20. Design issues for numerical libraries on scalable multicore architectures

    International Nuclear Information System (INIS)

    Heroux, M A

    2008-01-01

    Future generations of scalable computers will rely on multicore nodes for a significant portion of overall system performance. At present, most applications and libraries cannot exploit multiple cores beyond running addition MPI processes per node. In this paper we discuss important multicore architecture issues, programming models, algorithms requirements and software design related to effective use of scalable multicore computers. In particular, we focus on important issues for library research and development, making recommendations for how to effectively develop libraries for future scalable computer systems

  1. Scalable inference for stochastic block models

    KAUST Repository

    Peng, Chengbin

    2017-12-08

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference algorithms for such a model are increasingly limited due to their high time complexity and poor scalability. In this paper, we propose a multi-stage maximum likelihood approach to recover the latent parameters of the stochastic block model, in time linear with respect to the number of edges. We also propose a parallel algorithm based on message passing. Our algorithm can overlap communication and computation, providing speedup without compromising accuracy as the number of processors grows. For example, to process a real-world graph with about 1.3 million nodes and 10 million edges, our algorithm requires about 6 seconds on 64 cores of a contemporary commodity Linux cluster. Experiments demonstrate that the algorithm can produce high quality results on both benchmark and real-world graphs. An example of finding more meaningful communities is illustrated consequently in comparison with a popular modularity maximization algorithm.

  2. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Zhang, J.; Duan, X.; Bugbee, K.; Christopher, S. A.; Miller, J. J.

    2017-12-01

    Estimates indicate that the world's information will grow by 800% in the next five years. In any given field, a single researcher or a team of researchers cannot keep up with this rate of knowledge expansion without the help of cognitive systems. Cognitive computing, defined as the use of information technology to augment human cognition, can help tackle large systemic problems. Knowledge graphs, one of the foundational components of cognitive systems, link key entities in a specific domain with other entities via relationships. Researchers could mine these graphs to make probabilistic recommendations and to infer new knowledge. At this point, however, there is a dearth of tools to generate scalable Knowledge graphs using existing corpus of scientific literature for Earth science research. Our project is currently developing an end-to-end automated methodology for incrementally constructing Knowledge graphs for Earth Science. Semantic Entity Recognition (SER) is one of the key steps in this methodology. SER for Earth Science uses external resources (including metadata catalogs and controlled vocabulary) as references to guide entity extraction and recognition (i.e., labeling) from unstructured text, in order to build a large training set to seed the subsequent auto-learning component in our algorithm. Results from several SER experiments will be presented as well as lessons learned.

  3. CODA: A scalable, distributed data acquisition system

    International Nuclear Information System (INIS)

    Watson, W.A. III; Chen, J.; Heyes, G.; Jastrzembski, E.; Quarrie, D.

    1994-01-01

    A new data acquisition system has been designed for physics experiments scheduled to run at CEBAF starting in the summer of 1994. This system runs on Unix workstations connected via ethernet, FDDI, or other network hardware to multiple intelligent front end crates -- VME, CAMAC or FASTBUS. CAMAC crates may either contain intelligent processors, or may be interfaced to VME. The system is modular and scalable, from a single front end crate and one workstation linked by ethernet, to as may as 32 clusters of front end crates ultimately connected via a high speed network to a set of analysis workstations. The system includes an extensible, device independent slow controls package with drivers for CAMAC, VME, and high voltage crates, as well as a link to CEBAF accelerator controls. All distributed processes are managed by standard remote procedure calls propagating change-of-state requests, or reading and writing program variables. Custom components may be easily integrated. The system is portable to any front end processor running the VxWorks real-time kernel, and to most workstations supplying a few standard facilities such as rsh and X-windows, and Motif and socket libraries. Sample implementations exist for 2 Unix workstation families connected via ethernet or FDDI to VME (with interfaces to FASTBUS or CAMAC), and via ethernet to FASTBUS or CAMAC

  4. Ancestors protocol for scalable key management

    Directory of Open Access Journals (Sweden)

    Dieter Gollmann

    2010-06-01

    Full Text Available Group key management is an important functional building block for secure multicast architecture. Thereby, it has been extensively studied in the literature. The main proposed protocol is Adaptive Clustering for Scalable Group Key Management (ASGK. According to ASGK protocol, the multicast group is divided into clusters, where each cluster consists of areas of members. Each cluster uses its own Traffic Encryption Key (TEK. These clusters are updated periodically depending on the dynamism of the members during the secure session. The modified protocol has been proposed based on ASGK with some modifications to balance the number of affected members and the encryption/decryption overhead with any number of the areas when a member joins or leaves the group. This modified protocol is called Ancestors protocol. According to Ancestors protocol, every area receives the dynamism of the members from its parents. The main objective of the modified protocol is to reduce the number of affected members during the leaving and joining members, then 1 affects n overhead would be reduced. A comparative study has been done between ASGK protocol and the modified protocol. According to the comparative results, it found that the modified protocol is always outperforming the ASGK protocol.

  5. Scalable Combinatorial Tools for Health Disparities Research

    Directory of Open Access Journals (Sweden)

    Michael A. Langston

    2014-10-01

    Full Text Available Despite staggering investments made in unraveling the human genome, current estimates suggest that as much as 90% of the variance in cancer and chronic diseases can be attributed to factors outside an individual’s genetic endowment, particularly to environmental exposures experienced across his or her life course. New analytical approaches are clearly required as investigators turn to complicated systems theory and ecological, place-based and life-history perspectives in order to understand more clearly the relationships between social determinants, environmental exposures and health disparities. While traditional data analysis techniques remain foundational to health disparities research, they are easily overwhelmed by the ever-increasing size and heterogeneity of available data needed to illuminate latent gene x environment interactions. This has prompted the adaptation and application of scalable combinatorial methods, many from genome science research, to the study of population health. Most of these powerful tools are algorithmically sophisticated, highly automated and mathematically abstract. Their utility motivates the main theme of this paper, which is to describe real applications of innovative transdisciplinary models and analyses in an effort to help move the research community closer toward identifying the causal mechanisms and associated environmental contexts underlying health disparities. The public health exposome is used as a contemporary focus for addressing the complex nature of this subject.

  6. Percolator: Scalable Pattern Discovery in Dynamic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sutanay; Purohit, Sumit; Lin, Peng; Wu, Yinghui; Holder, Lawrence B.; Agarwal, Khushbu

    2018-02-06

    We demonstrate Percolator, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of Percolator is to dynamically decide and verify a small fraction of patterns and their in- stances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a) the feasibility of incremental pattern mining by walking through each component of Percolator, b) the efficiency and scalability of Percolator over the sheer size of real-world dynamic graphs, and c) how the user-friendly GUI of Percolator inter- acts with users to support keyword-based queries that detect, browse and inspect trending patterns. We also demonstrate two user cases of Percolator, in social media trend analysis and academic collaboration analysis, respectively.

  7. Scalable Notch Antenna System for Multiport Applications

    Directory of Open Access Journals (Sweden)

    Abdurrahim Toktas

    2016-01-01

    Full Text Available A novel and compact scalable antenna system is designed for multiport applications. The basic design is built on a square patch with an electrical size of 0.82λ0×0.82λ0 (at 2.4 GHz on a dielectric substrate. The design consists of four symmetrical and orthogonal triangular notches with circular feeding slots at the corners of the common patch. The 4-port antenna can be simply rearranged to 8-port and 12-port systems. The operating band of the system can be tuned by scaling (S the size of the system while fixing the thickness of the substrate. The antenna system with S: 1/1 in size of 103.5×103.5 mm2 operates at the frequency band of 2.3–3.0 GHz. By scaling the antenna with S: 1/2.3, a system of 45×45 mm2 is achieved, and thus the operating band is tuned to 4.7–6.1 GHz with the same scattering characteristic. A parametric study is also conducted to investigate the effects of changing the notch dimensions. The performance of the antenna is verified in terms of the antenna characteristics as well as diversity and multiplexing parameters. The antenna system can be tuned by scaling so that it is applicable to the multiport WLAN, WIMAX, and LTE devices with port upgradability.

  8. Scalable conditional induction variables (CIV) analysis

    KAUST Repository

    Oancea, Cosmin E.

    2015-02-01

    Subscripts using induction variables that cannot be expressed as a formula in terms of the enclosing-loop indices appear in the low-level implementation of common programming abstractions such as Alter, or stack operations and pose significant challenges to automatic parallelization. Because the complexity of such induction variables is often due to their conditional evaluation across the iteration space of loops we name them Conditional Induction Variables (CIV). This paper presents a flow-sensitive technique that summarizes both such CIV-based and affine subscripts to program level, using the same representation. Our technique requires no modifications of our dependence tests, which is agnostic to the original shape of the subscripts, and is more powerful than previously reported dependence tests that rely on the pairwise disambiguation of read-write references. We have implemented the CIV analysis in our parallelizing compiler and evaluated its impact on five Fortran benchmarks. We have found that that there are many important loops using CIV subscripts and that our analysis can lead to their scalable parallelization. This in turn has led to the parallelization of the benchmark programs they appear in.

  9. A Programmable, Scalable-Throughput Interleaver

    Directory of Open Access Journals (Sweden)

    E. J. C. Rijshouwer

    2010-01-01

    Full Text Available The interleaver stages of digital communication standards show a surprisingly large variation in throughput, state sizes, and permutation functions. Furthermore, data rates for 4G standards such as LTE-Advanced will exceed typical baseband clock frequencies of handheld devices. Multistream operation for Software Defined Radio and iterative decoding algorithms will call for ever higher interleave data rates. Our interleave machine is built around 8 single-port SRAM banks and can be programmed to generate up to 8 addresses every clock cycle. The scalable architecture combines SIMD and VLIW concepts with an efficient resolution of bank conflicts. A wide range of cellular, connectivity, and broadcast interleavers have been mapped on this machine, with throughputs up to more than 0.5 Gsymbol/second. Although it was designed for channel interleaving, the application domain of the interleaver extends also to Turbo interleaving. The presented configuration of the architecture is designed as a part of a programmable outer receiver on a prototype board. It offers (near universal programmability to enable the implementation of new interleavers. The interleaver measures 2.09 mm2 in 65 nm CMOS (including memories and proves functional on silicon.

  10. A Programmable, Scalable-Throughput Interleaver

    Directory of Open Access Journals (Sweden)

    Rijshouwer EJC

    2010-01-01

    Full Text Available The interleaver stages of digital communication standards show a surprisingly large variation in throughput, state sizes, and permutation functions. Furthermore, data rates for 4G standards such as LTE-Advanced will exceed typical baseband clock frequencies of handheld devices. Multistream operation for Software Defined Radio and iterative decoding algorithms will call for ever higher interleave data rates. Our interleave machine is built around 8 single-port SRAM banks and can be programmed to generate up to 8 addresses every clock cycle. The scalable architecture combines SIMD and VLIW concepts with an efficient resolution of bank conflicts. A wide range of cellular, connectivity, and broadcast interleavers have been mapped on this machine, with throughputs up to more than 0.5 Gsymbol/second. Although it was designed for channel interleaving, the application domain of the interleaver extends also to Turbo interleaving. The presented configuration of the architecture is designed as a part of a programmable outer receiver on a prototype board. It offers (near universal programmability to enable the implementation of new interleavers. The interleaver measures 2.09 m in 65 nm CMOS (including memories and proves functional on silicon.

  11. A Testbed for Highly-Scalable Mission Critical Information Systems

    National Research Council Canada - National Science Library

    Birman, Kenneth P

    2005-01-01

    ... systems in a networked environment. Headed by Professor Ken Birman, the project is exploring a novel fusion of classical protocols for reliable multicast communication with a new style of peer-to-peer protocol called scalable "gossip...

  12. Scalable Partitioning Algorithms for FPGAs With Heterogeneous Resources

    National Research Council Canada - National Science Library

    Selvakkumaran, Navaratnasothie; Ranjan, Abhishek; Raje, Salil; Karypis, George

    2004-01-01

    As FPGA densities increase, partitioning-based FPGA placement approaches are becoming increasingly important as they can be used to provide high-quality and computationally scalable placement solutions...

  13. An update on coating/manufacturing techniques of microneedles.

    Science.gov (United States)

    Tarbox, Tamara N; Watts, Alan B; Cui, Zhengrong; Williams, Robert O

    2017-12-29

    Recently, results have been published for the first successful phase I human clinical trial investigating the use of dissolving polymeric microneedles… Even so, further clinical development represents an important hurdle that remains in the translation of microneedle technology to approved products. Specifically, the potential for accumulation of polymer within the skin upon repeated application of dissolving and coated microneedles, combined with a lack of safety data in humans, predicates a need for further clinical investigation. Polymers are an important consideration for microneedle technology-from both manufacturing and drug delivery perspectives. The use of polymers enables a tunable delivery strategy, but the scalability of conventional manufacturing techniques could arguably benefit from further optimization. Micromolding has been suggested in the literature as a commercially viable means to mass production of both dissolving and swellable microneedles. However, the reliance on master molds, which are commonly manufactured using resource intensive microelectronics industry-derived processes, imparts notable material and design limitations. Further, the inherently multi-step filling and handling processes associated with micromolding are typically batch processes, which can be challenging to scale up. Similarly, conventional microneedle coating processes often follow step-wise batch processing. Recent developments in microneedle coating and manufacturing techniques are highlighted, including micromilling, atomized spraying, inkjet printing, drawing lithography, droplet-born air blowing, electro-drawing, continuous liquid interface production, 3D printing, and polyelectrolyte multilayer coating. This review provides an analysis of papers reporting on potentially scalable production techniques for the coating and manufacturing of microneedles.

  14. SOL: A Library for Scalable Online Learning Algorithms

    OpenAIRE

    Wu, Yue; Hoi, Steven C. H.; Liu, Chenghao; Lu, Jing; Sahoo, Doyen; Yu, Nenghai

    2016-01-01

    SOL is an open-source library for scalable online learning algorithms, and is particularly suitable for learning with high-dimensional data. The library provides a family of regular and sparse online learning algorithms for large-scale binary and multi-class classification tasks with high efficiency, scalability, portability, and extensibility. SOL was implemented in C++, and provided with a collection of easy-to-use command-line tools, python wrappers and library calls for users and develope...

  15. Modular Universal Scalable Ion-trap Quantum Computer

    Science.gov (United States)

    2016-06-02

    SECURITY CLASSIFICATION OF: The main goal of the original MUSIQC proposal was to construct and demonstrate a modular and universally- expandable ion...Distribution Unlimited UU UU UU UU 02-06-2016 1-Aug-2010 31-Jan-2016 Final Report: Modular Universal Scalable Ion-trap Quantum Computer The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Ion trap quantum computation, scalable modular architectures REPORT DOCUMENTATION PAGE 11

  16. Architectures and Applications for Scalable Quantum Information Systems

    Science.gov (United States)

    2007-01-01

    Gershenfeld and I. Chuang. Quantum computing with molecules. Scientific American, June 1998. [16] A. Globus, D. Bailey, J. Han, R. Jaffe, C. Levit , R...AFRL-IF-RS-TR-2007-12 Final Technical Report January 2007 ARCHITECTURES AND APPLICATIONS FOR SCALABLE QUANTUM INFORMATION SYSTEMS...NUMBER 5b. GRANT NUMBER FA8750-01-2-0521 4. TITLE AND SUBTITLE ARCHITECTURES AND APPLICATIONS FOR SCALABLE QUANTUM INFORMATION SYSTEMS 5c

  17. On the scalability of LISP and advanced overlaid services

    OpenAIRE

    Coras, Florin

    2015-01-01

    In just four decades the Internet has gone from a lab experiment to a worldwide, business critical infrastructure that caters to the communication needs of almost a half of the Earth's population. With these figures on its side, arguing against the Internet's scalability would seem rather unwise. However, the Internet's organic growth is far from finished and, as billions of new devices are expected to be joined in the not so distant future, scalability, or lack thereof, is commonly believed ...

  18. Scalable, full-colour and controllable chromotropic plasmonic printing

    OpenAIRE

    Xue, Jiancai; Zhou, Zhang-Kai; Wei, Zhiqiang; Su, Rongbin; Lai, Juan; Li, Juntao; Li, Chao; Zhang, Tengwei; Wang, Xue-Hua

    2015-01-01

    Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber. More importantly, our approach also demonstrates ...

  19. Responsive, Flexible and Scalable Broader Impacts (Invited)

    Science.gov (United States)

    Decharon, A.; Companion, C.; Steinman, M.

    2010-12-01

    In many educator professional development workshops, scientists present content in a slideshow-type format and field questions afterwards. Drawbacks of this approach include: inability to begin the lecture with content that is responsive to audience needs; lack of flexible access to specific material within the linear presentation; and “Q&A” sessions are not easily scalable to broader audiences. Often this type of traditional interaction provides little direct benefit to the scientists. The Centers for Ocean Sciences Education Excellence - Ocean Systems (COSEE-OS) applies the technique of concept mapping with demonstrated effectiveness in helping scientists and educators “get on the same page” (deCharon et al., 2009). A key aspect is scientist professional development geared towards improving face-to-face and online communication with non-scientists. COSEE-OS promotes scientist-educator collaboration, tests the application of scientist-educator maps in new contexts through webinars, and is piloting the expansion of maps as long-lived resources for the broader community. Collaboration - COSEE-OS has developed and tested a workshop model bringing scientists and educators together in a peer-oriented process, often clarifying common misconceptions. Scientist-educator teams develop online concept maps that are hyperlinked to “assets” (i.e., images, videos, news) and are responsive to the needs of non-scientist audiences. In workshop evaluations, 91% of educators said that the process of concept mapping helped them think through science topics and 89% said that concept mapping helped build a bridge of communication with scientists (n=53). Application - After developing a concept map, with COSEE-OS staff assistance, scientists are invited to give webinar presentations that include live “Q&A” sessions. The webinars extend the reach of scientist-created concept maps to new contexts, both geographically and topically (e.g., oil spill), with a relatively small

  20. Microscopic Characterization of Scalable Coherent Rydberg Superatoms

    Directory of Open Access Journals (Sweden)

    Johannes Zeiher

    2015-08-01

    Full Text Available Strong interactions can amplify quantum effects such that they become important on macroscopic scales. Controlling these coherently on a single-particle level is essential for the tailored preparation of strongly correlated quantum systems and opens up new prospects for quantum technologies. Rydberg atoms offer such strong interactions, which lead to extreme nonlinearities in laser-coupled atomic ensembles. As a result, multiple excitation of a micrometer-sized cloud can be blocked while the light-matter coupling becomes collectively enhanced. The resulting two-level system, often called a “superatom,” is a valuable resource for quantum information, providing a collective qubit. Here, we report on the preparation of 2 orders of magnitude scalable superatoms utilizing the large interaction strength provided by Rydberg atoms combined with precise control of an ensemble of ultracold atoms in an optical lattice. The latter is achieved with sub-shot-noise precision by local manipulation of a two-dimensional Mott insulator. We microscopically confirm the superatom picture by in situ detection of the Rydberg excitations and observe the characteristic square-root scaling of the optical coupling with the number of atoms. Enabled by the full control over the atomic sample, including the motional degrees of freedom, we infer the overlap of the produced many-body state with a W state from the observed Rabi oscillations and deduce the presence of entanglement. Finally, we investigate the breakdown of the superatom picture when two Rydberg excitations are present in the system, which leads to dephasing and a loss of coherence.

  1. Myria: Scalable Analytics as a Service

    Science.gov (United States)

    Howe, B.; Halperin, D.; Whitaker, A.

    2014-12-01

    At the UW eScience Institute, we're working to empower non-experts, especially in the sciences, to write and use data-parallel algorithms. To this end, we are building Myria, a web-based platform for scalable analytics and data-parallel programming. Myria's internal model of computation is the relational algebra extended with iteration, such that every program is inherently data-parallel, just as every query in a database is inherently data-parallel. But unlike databases, iteration is a first class concept, allowing us to express machine learning tasks, graph traversal tasks, and more. Programs can be expressed in a number of languages and can be executed on a number of execution environments, but we emphasize a particular language called MyriaL that supports both imperative and declarative styles and a particular execution engine called MyriaX that uses an in-memory column-oriented representation and asynchronous iteration. We deliver Myria over the web as a service, providing an editor, performance analysis tools, and catalog browsing features in a single environment. We find that this web-based "delivery vector" is critical in reaching non-experts: they are insulated from irrelevant effort technical work associated with installation, configuration, and resource management. The MyriaX backend, one of several execution runtimes we support, is a main-memory, column-oriented, RDBMS-on-the-worker system that supports cyclic data flows as a first-class citizen and has been shown to outperform competitive systems on 100-machine cluster sizes. I will describe the Myria system, give a demo, and present some new results in large-scale oceanographic microbiology.

  2. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed...... different manufacturing plants in the network and their impact on network transformation. Findings – The paper highlights the dominant role of manufacturing plants in the continuously changing shape of a manufacturing network. The paper demonstrates that a product or process change at one manufacturing...... by identifying the gaps in the reviewed literature. The paper is based on three case studies undertaken in Danish manufacturing companies to explore in detail their manufacturing plants and networks. The cases provide a sound basis for developing the research questions and explaining the interaction between...

  3. An Overview of Cloud Implementation in the Manufacturing Process Life Cycle

    Science.gov (United States)

    Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed

    2017-08-01

    The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.

  4. Zinc oxide nanoleaves: A scalable disperser-assisted sonochemical approach for synthesis and an antibacterial application.

    Science.gov (United States)

    Gupta, Anadi; Srivastava, Rohit

    2018-03-01

    Current study reports a new and highly scalable method for the synthesis of novel structure Zinc oxide nanoleaves (ZnO-NLs) using disperser-assisted sonochemical approach. The synthesis was carried out in different batches from 50mL to 1L to ensure the scalability of the method which produced almost similar results. The use of high speed (9000rpm) mechanical dispersion while bath sonication (200W, 33kHz) yield 4.4g of ZnO-NLs powder in 1L batch reaction within 2h (>96% yield). The ZnO-NLs shows an excellent thermal stability even at a higher temperature (900°C) and high surface area. The high antibacterial activity of ZnO-NLs against diseases causing Gram-positive bacteria Staphylococcus aureus shows a reduction in CFU, morphological changes like eight times reduction in cell size, cell burst, and cellular leakage at 200µg/mL concentration. This study provides an efficient, cost-effective and an environmental friendly approach for the synthesis of ZnO-NLs at industrial scale as well as new technique to increase the efficiency of the existing sonochemical method. We envisage that this method can be applied to various fields where ZnO is significantly consumed like rubber manufacturing, ceramic industry and medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    Science.gov (United States)

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    , clarifying how the nanoelectrode attains intracellular access. This understanding will be translated into a circuit model for the nanobio interface, which we will then use to lay out the strategies for improving the interface. The intracellular interface of the nanoelectrode is currently inferior to that of the patch clamp electrode; reaching this benchmark will be an exciting challenge that involves optimization of electrode geometries, materials, chemical modifications, electroporation protocols, and recording/stimulation electronics, as we describe in the Account. Another important theme of this Account, beyond the optimization of the individual nanoelectrode-cell interface, is the scalability of the nanoscale electrodes. We will discuss this theme using a recent development from our groups as an example, where an array of ca. 1000 nanoelectrode pixels fabricated on a CMOS integrated circuit chip performs parallel intracellular recording from a few hundreds of cardiomyocytes, which marks a new milestone in electrophysiology.

  6. Laplacian embedded regression for scalable manifold regularization.

    Science.gov (United States)

    Chen, Lin; Tsang, Ivor W; Xu, Dong

    2012-06-01

    world data sets show the effectiveness and scalability of the proposed framework.

  7. The Experiment Method for Manufacturing Grid Development on Single Computer

    Institute of Scientific and Technical Information of China (English)

    XIAO Youan; ZHOU Zude

    2006-01-01

    In this paper, an experiment method for the Manufacturing Grid application system development in the single personal computer environment is proposed. The characteristic of the proposed method is constructing a full prototype Manufacturing Grid application system which is hosted on a single personal computer with the virtual machine technology. Firstly, it builds all the Manufacturing Grid physical resource nodes on an abstraction layer of a single personal computer with the virtual machine technology. Secondly, all the virtual Manufacturing Grid resource nodes will be connected with virtual network and the application software will be deployed on each Manufacturing Grid nodes. Then, we can obtain a prototype Manufacturing Grid application system which is working in the single personal computer, and can carry on the experiment on this foundation. Compared with the known experiment methods for the Manufacturing Grid application system development, the proposed method has the advantages of the known methods, such as cost inexpensively, operation simple, and can get the confidence experiment result easily. The Manufacturing Grid application system constructed with the proposed method has the high scalability, stability and reliability. It is can be migrated to the real application environment rapidly.

  8. Scalable human ES culture for therapeutic use: propagation, differentiation, genetic modification and regulatory issues.

    Science.gov (United States)

    Rao, M

    2008-01-01

    Embryonic stem cells unlike most adult stem cell populations can replicate indefinitely while preserving genetic, epigenetic, mitochondrial and functional profiles. ESCs are therefore an excellent candidate cell type for providing a bank of cells for allogenic therapy and for introducing targeted genetic modifications for therapeutic intervention. This ability of prolonged self-renewal of stem cells and the unique advantages that this offers for gene therapy, discovery efforts, cell replacement, personalized medicine and other more direct applications requires the resolution of several important manufacturing, gene targeting and regulatory issues. In this review, we assess some of the advance made in developing scalable culture systems, improvement in vector design and gene insertion technology and the changing regulatory landscape.

  9. Design and performance verification of a wideband scalable dual-polarized probe for spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Kim, Oleksiy S.; Nielsen, Jeppe Majlund

    2012-01-01

    A wideband scalable dual-polarized probe designed by the Electromagnetic Systems group at the Technical University of Denmark is presented. The design was scaled and two probes were manufactured for the frequency bands 1-3 GHz and 0.4-1.2 GHz. The results of the acceptance tests of the 0.4-1.2 GHz...... probe are briefly discussed. Since these probes represent so-called higher-order antennas, applicability of the recently developed higher-order probe correction technique [3] for these probes was investigated. Extensive tests were carried out for two representative antennas under test using...

  10. Appraising manufacturing location

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2002-01-01

    International location of manufacturing activities is an issue for managers of manufacturing companies as well as public policy makers. For managers, the issue is relevant because international locations offer opportunities for lowering costs due to productivity improvements. For governments the

  11. Manufacturing engineering and technology

    CERN Document Server

    Kalpakjian, Serope; Vijai Sekar, K S

    2014-01-01

    For courses in manufacturing processes at two- or four-year schools. An up-to-date text that provides a solid background in manufacturing processes. Manufacturing Engineering and Technology, SI Edition, 7e, presents a mostly qualitative description of the science, technology, and practice of manufacturing. This includes detailed descriptions of manufacturing processes and the manufacturing enterprise that will help introduce students to important concepts. With a total of 120 examples and case studies, up-to-date and comprehensive coverage of all topics, and superior two-color graphics, this text provides a solid background for manufacturing students and serves as a valuable reference text for professionals. Teaching and Learning Experience To provide a better teaching and learning experience, for both instructors and students, this program will: * Apply Theory and/or Research: An excellent overview of manufacturing conceptswith a balance of relevant fundamentals and real-world practices. * Engage Students: E...

  12. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  13. Quality Scalability Compression on Single-Loop Solution in HEVC

    Directory of Open Access Journals (Sweden)

    Mengmeng Zhang

    2014-01-01

    Full Text Available This paper proposes a quality scalable extension design for the upcoming high efficiency video coding (HEVC standard. In the proposed design, the single-loop decoder solution is extended into the proposed scalable scenario. A novel interlayer intra/interprediction is added to reduce the amount of bits representation by exploiting the correlation between coding layers. The experimental results indicate that the average Bjøntegaard delta rate decrease of 20.50% can be gained compared with the simulcast encoding. The proposed technique achieved 47.98% Bjøntegaard delta rate reduction compared with the scalable video coding extension of the H.264/AVC. Consequently, significant rate savings confirm that the proposed method achieves better performance.

  14. Scalable DeNoise-and-Forward in Bidirectional Relay Networks

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Krigslund, Rasmus; Popovski, Petar

    2010-01-01

    In this paper a scalable relaying scheme is proposed based on an existing concept called DeNoise-and-Forward, DNF. We call it Scalable DNF, S-DNF, and it targets the scenario with multiple communication flows through a single common relay. The idea of the scheme is to combine packets at the relay...... in order to save transmissions. To ensure decodability at the end-nodes, a priori information about the content of the combined packets must be available. This is gathered during the initial transmissions to the relay. The trade-off between decodability and number of necessary transmissions is analysed...

  15. ACE - Manufacturer Identification Code (MID)

    Data.gov (United States)

    Department of Homeland Security — The ACE Manufacturer Identification Code (MID) application is used to track and control identifications codes for manufacturers. A manufacturer is identified on an...

  16. Large-scale additive manufacturing with bioinspired cellulosic materials.

    Science.gov (United States)

    Sanandiya, Naresh D; Vijay, Yadunund; Dimopoulou, Marina; Dritsas, Stylianos; Fernandez, Javier G

    2018-06-05

    Cellulose is the most abundant and broadly distributed organic compound and industrial by-product on Earth. However, despite decades of extensive research, the bottom-up use of cellulose to fabricate 3D objects is still plagued with problems that restrict its practical applications: derivatives with vast polluting effects, use in combination with plastics, lack of scalability and high production cost. Here we demonstrate the general use of cellulose to manufacture large 3D objects. Our approach diverges from the common association of cellulose with green plants and it is inspired by the wall of the fungus-like oomycetes, which is reproduced introducing small amounts of chitin between cellulose fibers. The resulting fungal-like adhesive material(s) (FLAM) are strong, lightweight and inexpensive, and can be molded or processed using woodworking techniques. We believe this first large-scale additive manufacture with ubiquitous biological polymers will be the catalyst for the transition to environmentally benign and circular manufacturing models.

  17. Design for scalability in 3D computer graphics architectures

    DEFF Research Database (Denmark)

    Holten-Lund, Hans Erik

    2002-01-01

    This thesis describes useful methods and techniques for designing scalable hybrid parallel rendering architectures for 3D computer graphics. Various techniques for utilizing parallelism in a pipelines system are analyzed. During the Ph.D study a prototype 3D graphics architecture named Hybris has...

  18. Scalable storage for a DBMS using transparent distribution

    NARCIS (Netherlands)

    J.S. Karlsson; M.L. Kersten (Martin)

    1997-01-01

    textabstractScalable Distributed Data Structures (SDDSs) provide a self-managing and self-organizing data storage of potentially unbounded size. This stands in contrast to common distribution schemas deployed in conventional distributed DBMS. SDDSs, however, have mostly been used in synthetic

  19. Scalable force directed graph layout algorithms using fast multipole methods

    KAUST Repository

    Yunis, Enas Abdulrahman; Yokota, Rio; Ahmadia, Aron

    2012-01-01

    We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach

  20. Cascaded column generation for scalable predictive demand side management

    NARCIS (Netherlands)

    Toersche, Hermen; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2014-01-01

    We propose a nested Dantzig-Wolfe decomposition, combined with dynamic programming, for the distributed scheduling of a large heterogeneous fleet of residential appliances with nonlinear behavior. A cascaded column generation approach gives a scalable optimization strategy, provided that the problem

  1. Scalable power selection method for wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-01-01

    Full Text Available This paper addresses the problem of a scalable dynamic power control (SDPC) for wireless mesh networks (WMNs) based on IEEE 802.11 standards. An SDPC model that accounts for architectural complexities witnessed in multiple radios and hops...

  2. Efficient Enhancement for Spatial Scalable Video Coding Transmission

    Directory of Open Access Journals (Sweden)

    Mayada Khairy

    2017-01-01

    Full Text Available Scalable Video Coding (SVC is an international standard technique for video compression. It is an extension of H.264 Advanced Video Coding (AVC. In the encoding of video streams by SVC, it is suitable to employ the macroblock (MB mode because it affords superior coding efficiency. However, the exhaustive mode decision technique that is usually used for SVC increases the computational complexity, resulting in a longer encoding time (ET. Many other algorithms were proposed to solve this problem with imperfection of increasing transmission time (TT across the network. To minimize the ET and TT, this paper introduces four efficient algorithms based on spatial scalability. The algorithms utilize the mode-distribution correlation between the base layer (BL and enhancement layers (ELs and interpolation between the EL frames. The proposed algorithms are of two categories. Those of the first category are based on interlayer residual SVC spatial scalability. They employ two methods, namely, interlayer interpolation (ILIP and the interlayer base mode (ILBM method, and enable ET and TT savings of up to 69.3% and 83.6%, respectively. The algorithms of the second category are based on full-search SVC spatial scalability. They utilize two methods, namely, full interpolation (FIP and the full-base mode (FBM method, and enable ET and TT savings of up to 55.3% and 76.6%, respectively.

  3. Scalable Robust Principal Component Analysis Using Grassmann Averages

    DEFF Research Database (Denmark)

    Hauberg, Søren; Feragen, Aasa; Enficiaud, Raffi

    2016-01-01

    In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortu...

  4. A Scalable Smart Meter Data Generator Using Spark

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Liu, Xiufeng; Danalachi, Sergiu

    2017-01-01

    Today, smart meters are being used worldwide. As a matter of fact smart meters produce large volumes of data. Thus, it is important for smart meter data management and analytics systems to process petabytes of data. Benchmarking and testing of these systems require scalable data, however, it can ...

  5. Scalability and efficiency of genetic algorithms for geometrical applications

    NARCIS (Netherlands)

    Dijk, van S.F.; Thierens, D.; Berg, de M.; Schoenauer, M.

    2000-01-01

    We study the scalability and efficiency of a GA that we developed earlier to solve the practical cartographic problem of labeling a map with point features. We argue that the special characteristics of our GA make that it fits in well with theoretical models predicting the optimal population size

  6. Scalable electro-photonic integration concept based on polymer waveguides

    NARCIS (Netherlands)

    Bosman, E.; Steenberge, G. van; Boersma, A.; Wiegersma, S.; Harmsma, P.J.; Karppinen, M.; Korhonen, T.; Offrein, B.J.; Dangel, R.; Daly, A.; Ortsiefer, M.; Justice, J.; Corbett, B.; Dorrestein, S.; Duis, J.

    2016-01-01

    A novel method for fabricating a single mode optical interconnection platform is presented. The method comprises the miniaturized assembly of optoelectronic single dies, the scalable fabrication of polymer single mode waveguides and the coupling to glass fiber arrays providing the I/O's. The low

  7. A Massively Scalable Architecture for Instant Messaging & Presence

    NARCIS (Netherlands)

    Schippers, Jorrit; Remke, Anne Katharina Ingrid; Punt, Henk; Wegdam, M.; Haverkort, Boudewijn R.H.M.; Thomas, N.; Bradley, J.; Knottenbelt, W.; Dingle, N.; Harder, U.

    2010-01-01

    This paper analyzes the scalability of Instant Messaging & Presence (IM&P) architectures. We take a queueing-based modelling and analysis approach to ��?nd the bottlenecks of the current IM&P architecture at the Dutch social network Hyves, as well as of alternative architectures. We use the

  8. Adolescent sexuality education: An appraisal of some scalable ...

    African Journals Online (AJOL)

    Adolescent sexuality education: An appraisal of some scalable interventions for the Nigerian context. VC Pam. Abstract. Most issues around sexual intercourse are highly sensitive topics in Nigeria. Despite the disturbingly high adolescent HIV prevalence and teenage pregnancy rate in Nigeria, sexuality education is ...

  9. Scalable multifunction RF system concepts for joint operations

    NARCIS (Netherlands)

    Otten, M.P.G.; Wit, J.J.M. de; Smits, F.M.A.; Rossum, W.L. van; Huizing, A.

    2010-01-01

    RF systems based on modular architectures have the potential of better re-use of technology, decreasing development time, and decreasing life cycle cost. Moreover, modular architectures provide scalability, allowing low cost upgrades and adaptability to different platforms. To achieve maximum

  10. Estimates of the Sampling Distribution of Scalability Coefficient H

    Science.gov (United States)

    Van Onna, Marieke J. H.

    2004-01-01

    Coefficient "H" is used as an index of scalability in nonparametric item response theory (NIRT). It indicates the degree to which a set of items rank orders examinees. Theoretical sampling distributions, however, have only been derived asymptotically and only under restrictive conditions. Bootstrap methods offer an alternative possibility to…

  11. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven S. C. [Univ. of Akron, OH (United States)

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  12. Measuring Manufacturing Innovativeness

    DEFF Research Database (Denmark)

    Blichfeldt, Henrik; Knudsen, Mette Præst

    2017-01-01

    Globalization and customization increases the pressure on manufacturing companies, and the ability to provide innovativeness is a potential source of competitive advantage. This paper positions the manufacturing entity in the innovation process, and investigates the relation between innovation vers...... technology and organizational concepts. Based on Danish survey data from the European Manufacturing Survey (EMS-2015) this paper finds that there is a relation between innovative companies, and their level of technology and use of organizational concepts. Technology and organizational concepts act...... as manufacturing levers to support the manufacturing and production system to provide innovativeness. The managerial implication lies in building manufacturing capabilities to support the innovative process, by standardization, optimization and creating stability in combination with automation and advanced...

  13. Evaluation of 3D printed anatomically scalable transfemoral prosthetic knee.

    Science.gov (United States)

    Ramakrishnan, Tyagi; Schlafly, Millicent; Reed, Kyle B

    2017-07-01

    This case study compares a transfemoral amputee's gait while using the existing Ossur Total Knee 2000 and our novel 3D printed anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee is 3D printed out of a carbon-fiber and nylon composite that has a gear-mesh coupling with a hard-stop weight-actuated locking mechanism aided by a cross-linked four-bar spring mechanism. This design can be scaled using anatomical dimensions of a human femur and tibia to have a unique fit for each user. The transfemoral amputee who was tested is high functioning and walked on the Computer Assisted Rehabilitation Environment (CAREN) at a self-selected pace. The motion capture and force data that was collected showed that there were distinct differences in the gait dynamics. The data was used to perform the Combined Gait Asymmetry Metric (CGAM), where the scores revealed that the overall asymmetry of the gait on the Ossur Total Knee was more asymmetric than the anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee had higher peak knee flexion that caused a large step time asymmetry. This made walking on the anatomically scalable transfemoral prosthetic knee more strenuous due to the compensatory movements in adapting to the different dynamics. This can be overcome by tuning the cross-linked spring mechanism to emulate the dynamics of the subject better. The subject stated that the knee would be good for daily use and has the potential to be adapted as a running knee.

  14. Blind Cooperative Routing for Scalable and Energy-Efficient Internet of Things

    KAUST Repository

    Bader, Ahmed; Alouini, Mohamed-Slim

    2016-01-01

    Multihop networking is promoted in this paper for energy-efficient and highly-scalable Internet of Things (IoT). Recognizing concerns related to the scalability of classical multihop routing and medium access techniques, the use of blind cooperation

  15. Manufacturing ontology through templates

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available The manufacturing industry contains a high volume of knowhow and of high value, much of it being held by key persons in the company. The passing of this know-how is the basis of manufacturing ontology. Among other methods like advanced filtering and algorithm based decision making, one way of handling the manufacturing ontology is via templates. The current paper tackles this approach and highlights the advantages concluding with some recommendations.

  16. Manufacturing knowledge management strategy

    OpenAIRE

    Shaw , Duncan; Edwards , John

    2006-01-01

    Abstract The study sought to understand the components of knowledge management strategy from the perspective of staff in UK manufacturing organisations. To analyse this topic we took an empirical approach and collaborated with two manufacturing organisations. Our main finding centres on the key components of a knowledge management strategy, and the relationships between it and manufacturing strategy and corporate strategy. Other findings include: the nature of knowledge in manufact...

  17. Industrial & Manufacturing Engineering | Classification | College of

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  18. Strategic Roles of Manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng

    with the trend of globalisation, how do industrial companies develop their global manufacturing networks? These two questions are actually interlinked. On the one hand, facing increasing offshoring and outsourcing of production activities, industrial companies have to understand how to develop their global...... manufacturing networks. On the other hand, ongoing globalisation also brings tremendous impacts to post-industrial economies (e.g. Denmark). A dilemma therefore arises, i.e. whether it is still necessary to keep manufacturing in these post-industrial economies; if yes, what kinds of roles manufacturing should...

  19. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  20. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  1. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  2. Temporal scalability comparison of the H.264/SVC and distributed video codec

    DEFF Research Database (Denmark)

    Huang, Xin; Ukhanova, Ann; Belyaev, Evgeny

    2009-01-01

    The problem of the multimedia scalable video streaming is a current topic of interest. There exist many methods for scalable video coding. This paper is focused on the scalable extension of H.264/AVC (H.264/SVC) and distributed video coding (DVC). The paper presents an efficiency comparison of SV...

  3. A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting.

    Science.gov (United States)

    Kidambi, Piran R; Mariappan, Dhanushkodi D; Dee, Nicholas T; Vyatskikh, Andrey; Zhang, Sui; Karnik, Rohit; Hart, A John

    2018-03-28

    Scalable, cost-effective synthesis and integration of graphene is imperative to realize large-area applications such as nanoporous atomically thin membranes (NATMs). Here, we report a scalable route to the production of NATMs via high-speed, continuous synthesis of large-area graphene by roll-to-roll chemical vapor deposition (CVD), combined with casting of a hierarchically porous polymer support. To begin, we designed and built a two zone roll-to-roll graphene CVD reactor, which sequentially exposes the moving foil substrate to annealing and growth atmospheres, with a sharp, isothermal transition between the zones. The configurational flexibility of the reactor design allows for a detailed evaluation of key parameters affecting graphene quality and trade-offs to be considered for high-rate roll-to-roll graphene manufacturing. With this system, we achieve synthesis of uniform high-quality monolayer graphene ( I D / I G casting and postprocessing, show size-selective molecular transport with performance comparable to that of membranes made from conventionally synthesized graphene. Therefore, this work establishes the feasibility of a scalable manufacturing process of NATMs, for applications including protein desalting and small-molecule separations.

  4. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.

    Science.gov (United States)

    Cao, Xuan; Chen, Haitian; Gu, Xiaofei; Liu, Bilu; Wang, Wenli; Cao, Yu; Wu, Fanqi; Zhou, Chongwu

    2014-12-23

    Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.

  5. Improving Project Manufacturing Coordination

    Directory of Open Access Journals (Sweden)

    Korpivaara Ville

    2014-09-01

    Full Text Available The objective of this research is to develop firms’ project manufacturing coordination. The development will be made by centralizing the manufacturing information flows in one system. To be able to centralize information, a deep user need assessment is required. After user needs have been identified, the existing system will be developed to match these needs. The theoretical background is achieved through exploring the literature of project manufacturing, development project success factors and different frameworks and tools for development project execution. The focus of this research is rather in customer need assessment than in system’s technical expertise. To ensure the deep understanding of customer needs this study is executed by action research method. As a result of this research the information system for project manufacturing coordination was developed to respond revealed needs of the stakeholders. The new system improves the quality of the manufacturing information, eliminates waste in manufacturing coordination processes and offers a better visibility to the project manufacturing. Hence it provides a solid base for the further development of project manufacturing.

  6. Modern manufacturing engineering

    CERN Document Server

    2015-01-01

    This book covers recent research and trends in Manufacturing Engineering. The chapters emphasize different aspects of the transformation from materials to products. It provides the reader with fundamental materials treatments and the integration of processes. Concepts such as green and lean manufacturing are also covered in this book.

  7. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    Topology optimization has been used to design two-dimensional material structures with specific elastic properties, but optimized designs of three-dimensional material structures are more scarsely seen. Partly because it requires more computational power, and partly because it is a major challenge...... to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM....../S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization...

  8. Scientific visualization uncertainty, multifield, biomedical, and scalable visualization

    CERN Document Server

    Chen, Min; Johnson, Christopher; Kaufman, Arie; Hagen, Hans

    2014-01-01

    Based on the seminar that took place in Dagstuhl, Germany in June 2011, this contributed volume studies the four important topics within the scientific visualization field: uncertainty visualization, multifield visualization, biomedical visualization and scalable visualization. • Uncertainty visualization deals with uncertain data from simulations or sampled data, uncertainty due to the mathematical processes operating on the data, and uncertainty in the visual representation, • Multifield visualization addresses the need to depict multiple data at individual locations and the combination of multiple datasets, • Biomedical is a vast field with select subtopics addressed from scanning methodologies to structural applications to biological applications, • Scalability in scientific visualization is critical as data grows and computational devices range from hand-held mobile devices to exascale computational platforms. Scientific Visualization will be useful to practitioners of scientific visualization, ...

  9. Scalable quantum memory in the ultrastrong coupling regime.

    Science.gov (United States)

    Kyaw, T H; Felicetti, S; Romero, G; Solano, E; Kwek, L-C

    2015-03-02

    Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z2 parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances.

  10. Fast & scalable pattern transfer via block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars

    2015-01-01

    A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin-casting of s......A fully scalable and efficient pattern transfer process based on block copolymer (BCP) self-assembling directly on various substrates is demonstrated. PS-rich and PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are used to give monolayer sphere morphology after spin...... on long range lateral order, including fabrication of substrates for catalysis, solar cells, sensors, ultrafiltration membranes and templating of semiconductors or metals....

  11. Semantic Models for Scalable Search in the Internet of Things

    Directory of Open Access Journals (Sweden)

    Dennis Pfisterer

    2013-03-01

    Full Text Available The Internet of Things is anticipated to connect billions of embedded devices equipped with sensors to perceive their surroundings. Thereby, the state of the real world will be available online and in real-time and can be combined with other data and services in the Internet to realize novel applications such as Smart Cities, Smart Grids, or Smart Healthcare. This requires an open representation of sensor data and scalable search over data from diverse sources including sensors. In this paper we show how the Semantic Web technologies RDF (an open semantic data format and SPARQL (a query language for RDF-encoded data can be used to address those challenges. In particular, we describe how prediction models can be employed for scalable sensor search, how these prediction models can be encoded as RDF, and how the models can be queried by means of SPARQL.

  12. Scalability of DL_POLY on High Performance Computing Platform

    Directory of Open Access Journals (Sweden)

    Mabule Samuel Mabakane

    2017-12-01

    Full Text Available This paper presents a case study on the scalability of several versions of the molecular dynamics code (DL_POLY performed on South Africa‘s Centre for High Performance Computing e1350 IBM Linux cluster, Sun system and Lengau supercomputers. Within this study different problem sizes were designed and the same chosen systems were employed in order to test the performance of DL_POLY using weak and strong scalability. It was found that the speed-up results for the small systems were better than large systems on both Ethernet and Infiniband network. However, simulations of large systems in DL_POLY performed well using Infiniband network on Lengau cluster as compared to e1350 and Sun supercomputer.

  13. On the Scalability of Time-predictable Chip-Multiprocessing

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang; Schoeberl, Martin

    2012-01-01

    Real-time systems need a time-predictable execution platform to be able to determine the worst-case execution time statically. In order to be time-predictable, several advanced processor features, such as out-of-order execution and other forms of speculation, have to be avoided. However, just using...... simple processors is not an option for embedded systems with high demands on computing power. In order to provide high performance and predictability we argue to use multiprocessor systems with a time-predictable memory interface. In this paper we present the scalability of a Java chip......-multiprocessor system that is designed to be time-predictable. Adding time-predictable caches is mandatory to achieve scalability with a shared memory multi-processor system. As Java bytecode retains information about the nature of memory accesses, it is possible to implement a memory hierarchy that takes...

  14. ATLAS Grid Data Processing: system evolution and scalability

    CERN Document Server

    Golubkov, D; The ATLAS collaboration; Klimentov, A; Minaenko, A; Nevski, P; Vaniachine, A; Walker, R

    2012-01-01

    The production system for Grid Data Processing handles petascale ATLAS data reprocessing and Monte Carlo activities. The production system empowered further data processing steps on the Grid performed by dozens of ATLAS physics groups with coordinated access to computing resources worldwide, including additional resources sponsored by regional facilities. The system provides knowledge management of configuration parameters for massive data processing tasks, reproducibility of results, scalable database access, orchestrated workflow and performance monitoring, dynamic workload sharing, automated fault tolerance and petascale data integrity control. The system evolves to accommodate a growing number of users and new requirements from our contacts in ATLAS main areas: Trigger, Physics, Data Preparation and Software & Computing. To assure scalability, the next generation production system architecture development is in progress. We report on scaling up the production system for a growing number of users provi...

  15. NPTool: Towards Scalability and Reliability of Business Process Management

    Science.gov (United States)

    Braghetto, Kelly Rosa; Ferreira, João Eduardo; Pu, Calton

    Currently one important challenge in business process management is provide at the same time scalability and reliability of business process executions. This difficulty becomes more accentuated when the execution control assumes complex countless business processes. This work presents NavigationPlanTool (NPTool), a tool to control the execution of business processes. NPTool is supported by Navigation Plan Definition Language (NPDL), a language for business processes specification that uses process algebra as formal foundation. NPTool implements the NPDL language as a SQL extension. The main contribution of this paper is a description of the NPTool showing how the process algebra features combined with a relational database model can be used to provide a scalable and reliable control in the execution of business processes. The next steps of NPTool include reuse of control-flow patterns and support to data flow management.

  16. Proof of Stake Blockchain: Performance and Scalability for Groupware Communications

    DEFF Research Database (Denmark)

    Spasovski, Jason; Eklund, Peter

    2017-01-01

    A blockchain is a distributed transaction ledger, a disruptive technology that creates new possibilities for digital ecosystems. The blockchain ecosystem maintains an immutable transaction record to support many types of digital services. This paper compares the performance and scalability of a web......-based groupware communication application using both non-blockchain and blockchain technologies. Scalability is measured where message load is synthesized over two typical communication topologies. The first is 1 to n network -- a typical client-server or star-topology with a central vertex (server) receiving all...... messages from the remaining n - 1 vertices (clients). The second is a more naturally occurring scale-free network topology, where multiple communication hubs are distributed throughout the network. System performance is tested with both blockchain and non-blockchain solutions using multiple cloud computing...

  17. Continuity-Aware Scheduling Algorithm for Scalable Video Streaming

    Directory of Open Access Journals (Sweden)

    Atinat Palawan

    2016-05-01

    Full Text Available The consumer demand for retrieving and delivering visual content through consumer electronic devices has increased rapidly in recent years. The quality of video in packet networks is susceptible to certain traffic characteristics: average bandwidth availability, loss, delay and delay variation (jitter. This paper presents a scheduling algorithm that modifies the stream of scalable video to combat jitter. The algorithm provides unequal look-ahead by safeguarding the base layer (without the need for overhead of the scalable video. The results of the experiments show that our scheduling algorithm reduces the number of frames with a violated deadline and significantly improves the continuity of the video stream without compromising the average Y Peek Signal-to-Noise Ratio (PSNR.

  18. Scalable, full-colour and controllable chromotropic plasmonic printing

    Science.gov (United States)

    Xue, Jiancai; Zhou, Zhang-Kai; Wei, Zhiqiang; Su, Rongbin; Lai, Juan; Li, Juntao; Li, Chao; Zhang, Tengwei; Wang, Xue-Hua

    2015-01-01

    Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber. More importantly, our approach also demonstrates controllable chromotropic capability, that is, the ability of reversible colour transformations. This chromotropic capability affords enormous potentials in building functionalized prints for anticounterfeiting, special label, and high-density data encryption storage. With such excellent performances in functional colour applications, this colour-printing approach could pave the way for plasmonic colour printing in real-world commercial utilization. PMID:26567803

  19. Manufacturing at Nanoscale: Top-Down, Bottom-up and System Engineering

    International Nuclear Information System (INIS)

    Zhang Xiang; Sun Cheng; Fang, Nicholas

    2004-01-01

    The current nano-technology revolution is facing several major challenges: to manufacture nanodevices below 20 nm, to fabricate three-dimensional complex nano-structures, and to heterogeneously integrate multiple functionalities. To tackle these grand challenges, the Center for Scalable and Integrated NAno-Manufacturing (SINAM), a NSF Nanoscale Science and Engineering Center, set its goal to establish a new manufacturing paradigm that integrates an array of new nano-manufacturing technologies, including the plasmonic imaging lithography and ultramolding imprint lithography aiming toward critical resolution of 1-10 nm and the hybrid top-down and bottom-up technologies to achieve massively parallel integration of heterogeneous nanoscale components into higher-order structures and devices. Furthermore, SINAM will develop system engineering strategies to scale-up the nano-manufacturing technologies. SINAMs integrated research and education platform will shed light to a broad range of potential applications in computing, telecommunication, photonics, biotechnology, health care, and national security

  20. A Scalable Heuristic for Viral Marketing Under the Tipping Model

    Science.gov (United States)

    2013-09-01

    Flixster is a social media website that allows users to share reviews and other information about cinema . [35] It was extracted in Dec. 2010. – FourSquare...work of Reichman were developed independently . We also note that Reichman performs no experimental evaluation of the algorithm. A Scalable Heuristic...other dif- fusion models, such as the independent cascade model [21] and evolutionary graph theory [25] as well as probabilistic variants of the

  1. A Scalable Communication Architecture for Advanced Metering Infrastructure

    OpenAIRE

    Ngo Hoang , Giang; Liquori , Luigi; Nguyen Chan , Hung

    2013-01-01

    Advanced Metering Infrastructure (AMI), seen as foundation for overall grid modernization, is an integration of many technologies that provides an intelligent connection between consumers and system operators [ami 2008]. One of the biggest challenge that AMI faces is to scalable collect and manage a huge amount of data from a large number of customers. In our paper, we address this challenge by introducing a mixed peer-to-peer (P2P) and client-server communication architecture for AMI in whic...

  2. Scalable Multi-group Key Management for Advanced Metering Infrastructure

    OpenAIRE

    Benmalek , Mourad; Challal , Yacine; Bouabdallah , Abdelmadjid

    2015-01-01

    International audience; Advanced Metering Infrastructure (AMI) is composed of systems and networks to incorporate changes for modernizing the electricity grid, reduce peak loads, and meet energy efficiency targets. AMI is a privileged target for security attacks with potentially great damage against infrastructures and privacy. For this reason, Key Management has been identified as one of the most challenging topics in AMI development. In this paper, we propose a new Scalable multi-group key ...

  3. Economical and scalable synthesis of 6-amino-2-cyanobenzothiazole

    Directory of Open Access Journals (Sweden)

    Jacob R. Hauser

    2016-09-01

    Full Text Available 2-Cyanobenzothiazoles (CBTs are useful building blocks for: 1 luciferin derivatives for bioluminescent imaging; and 2 handles for bioorthogonal ligations. A particularly versatile CBT is 6-amino-2-cyanobenzothiazole (ACBT, which has an amine handle for straight-forward derivatisation. Here we present an economical and scalable synthesis of ACBT based on a cyanation catalysed by 1,4-diazabicyclo[2.2.2]octane (DABCO, and discuss its advantages for scale-up over previously reported routes.

  4. Space Situational Awareness Data Processing Scalability Utilizing Google Cloud Services

    Science.gov (United States)

    Greenly, D.; Duncan, M.; Wysack, J.; Flores, F.

    Space Situational Awareness (SSA) is a fundamental and critical component of current space operations. The term SSA encompasses the awareness, understanding and predictability of all objects in space. As the population of orbital space objects and debris increases, the number of collision avoidance maneuvers grows and prompts the need for accurate and timely process measures. The SSA mission continually evolves to near real-time assessment and analysis demanding the need for higher processing capabilities. By conventional methods, meeting these demands requires the integration of new hardware to keep pace with the growing complexity of maneuver planning algorithms. SpaceNav has implemented a highly scalable architecture that will track satellites and debris by utilizing powerful virtual machines on the Google Cloud Platform. SpaceNav algorithms for processing CDMs outpace conventional means. A robust processing environment for tracking data, collision avoidance maneuvers and various other aspects of SSA can be created and deleted on demand. Migrating SpaceNav tools and algorithms into the Google Cloud Platform will be discussed and the trials and tribulations involved. Information will be shared on how and why certain cloud products were used as well as integration techniques that were implemented. Key items to be presented are: 1.Scientific algorithms and SpaceNav tools integrated into a scalable architecture a) Maneuver Planning b) Parallel Processing c) Monte Carlo Simulations d) Optimization Algorithms e) SW Application Development/Integration into the Google Cloud Platform 2. Compute Engine Processing a) Application Engine Automated Processing b) Performance testing and Performance Scalability c) Cloud MySQL databases and Database Scalability d) Cloud Data Storage e) Redundancy and Availability

  5. Architectural Techniques to Enable Reliable and Scalable Memory Systems

    OpenAIRE

    Nair, Prashant J.

    2017-01-01

    High capacity and scalable memory systems play a vital role in enabling our desktops, smartphones, and pervasive technologies like Internet of Things (IoT). Unfortunately, memory systems are becoming increasingly prone to faults. This is because we rely on technology scaling to improve memory density, and at small feature sizes, memory cells tend to break easily. Today, memory reliability is seen as the key impediment towards using high-density devices, adopting new technologies, and even bui...

  6. Superlinearly scalable noise robustness of redundant coupled dynamical systems.

    Science.gov (United States)

    Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L

    2016-03-01

    We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.

  7. Event metadata records as a testbed for scalable data mining

    International Nuclear Information System (INIS)

    Gemmeren, P van; Malon, D

    2010-01-01

    At a data rate of 200 hertz, event metadata records ('TAGs,' in ATLAS parlance) provide fertile grounds for development and evaluation of tools for scalable data mining. It is easy, of course, to apply HEP-specific selection or classification rules to event records and to label such an exercise 'data mining,' but our interest is different. Advanced statistical methods and tools such as classification, association rule mining, and cluster analysis are common outside the high energy physics community. These tools can prove useful, not for discovery physics, but for learning about our data, our detector, and our software. A fixed and relatively simple schema makes TAG export to other storage technologies such as HDF5 straightforward. This simplifies the task of exploiting very-large-scale parallel platforms such as Argonne National Laboratory's BlueGene/P, currently the largest supercomputer in the world for open science, in the development of scalable tools for data mining. Using a domain-neutral scientific data format may also enable us to take advantage of existing data mining components from other communities. There is, further, a substantial literature on the topic of one-pass algorithms and stream mining techniques, and such tools may be inserted naturally at various points in the event data processing and distribution chain. This paper describes early experience with event metadata records from ATLAS simulation and commissioning as a testbed for scalable data mining tool development and evaluation.

  8. Scalable force directed graph layout algorithms using fast multipole methods

    KAUST Repository

    Yunis, Enas Abdulrahman

    2012-06-01

    We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach to graph layout that treats the vertices V as repelling charged particles with the edges E connecting them acting as springs. Traditionally, the amount of work required in applying the Force-Directed Graph Layout algorithm is O(|V|2 + |E|) using direct calculations and O(|V| log |V| + |E|) using truncation, filtering, and/or multi-level techniques. Correct application of the Fast Multipole Method allows us to maintain a lower complexity of O(|V| + |E|) while regaining most of the precision lost in other techniques. Solving layout problems for truly large graphs with millions of vertices still requires a scalable algorithm and implementation. We have been able to leverage the scalability and architectural adaptability of the ExaFMM library to create a Force-Directed Graph Layout implementation that runs efficiently on distributed multicore and multi-GPU architectures. © 2012 IEEE.

  9. The intergroup protocols: Scalable group communication for the internet

    Energy Technology Data Exchange (ETDEWEB)

    Berket, Karlo [Univ. of California, Santa Barbara, CA (United States)

    2000-12-04

    Reliable group ordered delivery of multicast messages in a distributed system is a useful service that simplifies the programming of distributed applications. Such a service helps to maintain the consistency of replicated information and to coordinate the activities of the various processes. With the increasing popularity of the Internet, there is an increasing interest in scaling the protocols that provide this service to the environment of the Internet. The InterGroup protocol suite, described in this dissertation, provides such a service, and is intended for the environment of the Internet with scalability to large numbers of nodes and high latency links. The InterGroup protocols approach the scalability problem from various directions. They redefine the meaning of group membership, allow voluntary membership changes, add a receiver-oriented selection of delivery guarantees that permits heterogeneity of the receiver set, and provide a scalable reliability service. The InterGroup system comprises several components, executing at various sites within the system. Each component provides part of the services necessary to implement a group communication system for the wide-area. The components can be categorized as: (1) control hierarchy, (2) reliable multicast, (3) message distribution and delivery, and (4) process group membership. We have implemented a prototype of the InterGroup protocols in Java, and have tested the system performance in both local-area and wide-area networks.

  10. Scalable Video Coding with Interlayer Signal Decorrelation Techniques

    Directory of Open Access Journals (Sweden)

    Yang Wenxian

    2007-01-01

    Full Text Available Scalability is one of the essential requirements in the compression of visual data for present-day multimedia communications and storage. The basic building block for providing the spatial scalability in the scalable video coding (SVC standard is the well-known Laplacian pyramid (LP. An LP achieves the multiscale representation of the video as a base-layer signal at lower resolution together with several enhancement-layer signals at successive higher resolutions. In this paper, we propose to improve the coding performance of the enhancement layers through efficient interlayer decorrelation techniques. We first show that, with nonbiorthogonal upsampling and downsampling filters, the base layer and the enhancement layers are correlated. We investigate two structures to reduce this correlation. The first structure updates the base-layer signal by subtracting from it the low-frequency component of the enhancement layer signal. The second structure modifies the prediction in order that the low-frequency component in the new enhancement layer is diminished. The second structure is integrated in the JSVM 4.0 codec with suitable modifications in the prediction modes. Experimental results with some standard test sequences demonstrate coding gains up to 1 dB for I pictures and up to 0.7 dB for both I and P pictures.

  11. Scalable Coverage Maintenance for Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun Lu

    2007-06-01

    Full Text Available Owing to numerous potential applications, wireless sensor networks have been attracting significant research effort recently. The critical challenge that wireless sensor networks often face is to sustain long-term operation on limited battery energy. Coverage maintenance schemes can effectively prolong network lifetime by selecting and employing a subset of sensors in the network to provide sufficient sensing coverage over a target region. We envision future wireless sensor networks composed of a vast number of miniaturized sensors in exceedingly high density. Therefore, the key issue of coverage maintenance for future sensor networks is the scalability to sensor deployment density. In this paper, we propose a novel coverage maintenance scheme, scalable coverage maintenance (SCOM, which is scalable to sensor deployment density in terms of communication overhead (i.e., number of transmitted and received beacons and computational complexity (i.e., time and space complexity. In addition, SCOM achieves high energy efficiency and load balancing over different sensors. We have validated our claims through both analysis and simulations.

  12. Manufacture of disposal canisters

    International Nuclear Information System (INIS)

    Nolvi, L.

    2009-12-01

    The report summarizes the development work carried out in the manufacturing of disposal canister components, and present status, in readiness for manufacturing, of the components for use in assembly of spent nuclear fuel disposal canister. The disposal canister consist of two major components: the nodular graphite cast iron insert and overpack of oxygen-free copper. The manufacturing process for copper components begins with a cylindrical cast copper billet. Three different manufacturing processes i.e. pierce and draw, extrusion and forging are being developed, which produce a seamless copper tube or a tube with an integrated bottom. The pierce and draw process, Posiva's reference method, makes an integrated bottom possible and only the lid requires welding. Inserts for BWR-element are cast with 12 square channels and inserts for VVER 440-element with 12 round channels. Inserts for EPR-elements have four square channels. Casting of BWR insert type has been studied so far. Experience of casting inserts for PWR, which is similar to the EPR-type, has been got in co-operation with SKB. The report describes the processes being developed for manufacture of disposal canister components and some results of the manufacturing experiments are presented. Quality assurance and quality control in manufacture of canister component is described. (orig.)

  13. Micro/Nano manufacturing

    DEFF Research Database (Denmark)

    Tosello, Guido

    2017-01-01

    Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro......-scale dimensions and accuracies. Furthermore, these fundamentally different technology ecosystems are currently combined in order to exploit strengths of both platforms. One example is the use of lithography-based technologies to establish nanostructures that are subsequently transferred to 3D geometries via...

  14. Scalability of Sustainable Business Models in Hybrid Organizations

    Directory of Open Access Journals (Sweden)

    Adam Jabłoński

    2016-02-01

    Full Text Available The dynamics of change in modern business create new mechanisms for company management to determine their pursuit and the achievement of their high performance. This performance maintained over a long period of time becomes a source of ensuring business continuity by companies. An ontological being enabling the adoption of such assumptions is such a business model that has the ability to generate results in every possible market situation and, moreover, it has the features of permanent adaptability. A feature that describes the adaptability of the business model is its scalability. Being a factor ensuring more work and more efficient work with an increasing number of components, scalability can be applied to the concept of business models as the company’s ability to maintain similar or higher performance through it. Ensuring the company’s performance in the long term helps to build the so-called sustainable business model that often balances the objectives of stakeholders and shareholders, and that is created by the implemented principles of value-based management and corporate social responsibility. This perception of business paves the way for building hybrid organizations that integrate business activities with pro-social ones. The combination of an approach typical of hybrid organizations in designing and implementing sustainable business models pursuant to the scalability criterion seems interesting from the cognitive point of view. Today, hybrid organizations are great spaces for building effective and efficient mechanisms for dialogue between business and society. This requires the appropriate business model. The purpose of the paper is to present the conceptualization and operationalization of scalability of sustainable business models that determine the performance of a hybrid organization in the network environment. The paper presents the original concept of applying scalability in sustainable business models with detailed

  15. Manufacturing tolerant topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick...... (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization...... approach, under- and over-etching is modelled by image processing-based "erode" and "dilate" operators and the optimization problem is formulated as a worst case design problem. Applications of the method to the design of macro structures for minimum compliance and micro compliant mechanisms show...

  16. Manufacturing parabolic mirrors

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)

  17. MEDICAL MANUFACTURING INNOVATIONS

    Directory of Open Access Journals (Sweden)

    Cosma Sorin Cosmin

    2015-02-01

    Full Text Available The purpose of these studies was to improve the design and manufacturing process by selective laser melting, of new medical implants. After manufacturing process, the implants were measured, microscopically and mechanical analyzed. Implants manufactured by AM can be an attractive option for surface coatings to improve the osseointegration process. The main advantages of customized implants made by AM process are: the precise adaptation to the region of implantation, better cosmesis, reduced surgical times and better performance over their generic counterparts. These medical manufacturing changes the way that the surgeons are planning surgeries and engineers are designing custom implant. AM process has eliminated the constraints of shape, size, internal structure and mechanical properties making it possible for fabrication of implants that conform to the physical and mechanical requirements of implantation according to CT images. This article will review some custom implants fabricated in DME using biocompatible titanium.

  18. Manufacturing Enterprise in Asia

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-12-13

    Dec 13, 2017 ... 53 Designing Financial Systems in East Asia and Japan ..... 5.3 Weights for the industrial production index (%) ..... The demand for manufactured goods for this low level of consumption per capita also tends to be very low.

  19. Additive manufactured serialization

    Science.gov (United States)

    Bobbitt, III, John T.

    2017-04-18

    Methods for forming an identifying mark in a structure are described. The method is used in conjunction with an additive manufacturing method and includes the alteration of a process parameter during the manufacturing process. The method can form in a unique identifying mark within or on the surface of a structure that is virtually impossible to be replicated. Methods can provide a high level of confidence that the identifying mark will remain unaltered on the formed structure.

  20. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  1. Enabling Manufacturing Competitiveness and Economic Sustainability : Proceedings of the 4th International Conference on Changeable, Agile, Reconfigurable and Virtual production

    CERN Document Server

    2012-01-01

    The changing manufacturing environment requires more responsive and adaptable manufacturing systems. The theme of the 4th International Conference on Changeable, Agile, Reconfigurable and Virtual production (CARV2011) is “Enabling Manufacturing Competitiveness and Economic Sustainability”. Leading edge research and best implementation practices and experiences, which address these important issues and challenges, are presented. The proceedings include advances in manufacturing systems design, planning, evaluation, control and evolving paradigms such as mass customization, personalization, changeability, re-configurability and flexibility. New and important concepts such as the dynamic product families and platforms, co-evolution of products and systems, and methods for enhancing manufacturing systems’ economic sustainability and prolonging their life to produce more than one product generation are treated. Enablers of change in manufacturing systems, production volume and capability scalability and man...

  2. An Assessment of Gas Foil Bearing Scalability and the Potential Benefits to Civilian Turbofan Engines

    Science.gov (United States)

    Bruckner, Robert J.

    2010-01-01

    Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.

  3. The use of cloth fabric diffusion layers for scalable microbial fuel cells

    KAUST Repository

    Luo, Yong

    2013-04-01

    A scalable and pre-manufactured cloth material (Goretex® fabric) was used as a diffusion layer (DL) material as a replacement for a liquid-applied polytetrafluoroethylene (PTFE) DL. Cathodes with the Goretex fabric heat-bonded to the air-side of carbon cloth cathode (CC-Goretex) produced a maximum power density of 1330±30mW/m2, similar to that using a PTFE DL (1390±70mW/m2, CC-PTFE). This method was also successfully used to produce cathodes made of inexpensive carbon mesh, which resulted in only slightly less power (1180±10mW/m2) (CM-Goretex). Coulombic efficiencies were a function of current density, with the highest value for CC-PTFE cathodes (63%), similar to CC-Goretex cathodes (61%), and slightly larger than that obtained for the CM-Goretex cathodes (54%). These results show that a commercially available fabric can easily be used as the DL in an MFC, achieving performance similar to that obtained with a more labor-intensive process based on liquid-applied DLs using PTFE. © 2013 Elsevier B.V.

  4. New VCSEL technology with scalability for single mode operation and densely integrated arrays

    Science.gov (United States)

    Zhao, Guowei; Demir, Abdullah; Freisem, Sabine; Zhang, Yu; Liu, Xiaohang; Deppe, Dennis G.

    2011-06-01

    Data are presented demonstrating a new lithographic vertical-cavity surface-emitting laser (VCSEL) technology, which produces simultaneous mode- and current-confinement only by lithography and epitaxial crystal growth. The devices are grown by solid source molecular beam epitaxy, and have lithographically defined sizes that vary from 3 μm to 20 μm. The lithographic process allows the devices to have high uniformity throughout the wafer and scalability to very small size. The 3 μm device shows a threshold current of 310 μA, the slope efficiency of 0.81 W/A, and the maximum output power of more than 5 mW. The 3 μm device also shows single-mode single-polarization operation without the use of surface grating, and has over 25 dB side-mode-suppression-ratio up to 1 mW of output power. The devices have low thermal resistance due to the elimination of oxide aperture. High reliability is achieved by removal of internal strain caused by the oxide, stress test shows no degradation for the 3 μm device operating at very high injection current level of 142 kA/cm2 for 1000 hours, while at this dive level commercial VCSELs fail rapidly. The lithographic VCSEL technology can lead to manufacture of reliable small size laser diode, which will have application in large area 2-D arrays and low power sensors.

  5. VPLS: an effective technology for building scalable transparent LAN services

    Science.gov (United States)

    Dong, Ximing; Yu, Shaohua

    2005-02-01

    Virtual Private LAN Service (VPLS) is generating considerable interest with enterprises and service providers as it offers multipoint transparent LAN service (TLS) over MPLS networks. This paper describes an effective technology - VPLS, which links virtual switch instances (VSIs) through MPLS to form an emulated Ethernet switch and build Scalable Transparent Lan Services. It first focuses on the architecture of VPLS with Ethernet bridging technique at the edge and MPLS at the core, then it tries to elucidate the data forwarding mechanism within VPLS domain, including learning and aging MAC addresses on a per LSP basis, flooding of unknown frames and replication for unknown, multicast, and broadcast frames. The loop-avoidance mechanism, known as split horizon forwarding, is also analyzed. Another important aspect of VPLS service is its basic operation, including autodiscovery and signaling, is discussed. From the perspective of efficiency and scalability the paper compares two important signaling mechanism, BGP and LDP, which are used to set up a PW between the PEs and bind the PWs to a particular VSI. With the extension of VPLS and the increase of full mesh of PWs between PE devices (n*(n-1)/2 PWs in all, a n2 complete problem), VPLS instance could have a large number of remote PE associations, resulting in an inefficient use of network bandwidth and system resources as the ingress PE has to replicate each frame and append MPLS labels for remote PE. So the latter part of this paper focuses on the scalability issue: the Hierarchical VPLS. Within the architecture of HVPLS, this paper addresses two ways to cope with a possibly large number of MAC addresses, which make VPLS operate more efficiently.

  6. A scalable lock-free hash table with open addressing

    DEFF Research Database (Denmark)

    Nielsen, Jesper Puge; Karlsson, Sven

    2016-01-01

    and concurrent operations without any locks. In this paper, we present a new fully lock-free open addressed hash table with a simpler design than prior published work. We split hash table insertions into two atomic phases: first inserting a value ignoring other concurrent operations, then in the second phase......Concurrent data structures synchronized with locks do not scale well with the number of threads. As more scalable alternatives, concurrent data structures and algorithms based on widely available, however advanced, atomic operations have been proposed. These data structures allow for correct...

  7. Highly Scalable Trip Grouping for Large Scale Collective Transportation Systems

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Pedersen, Torben Bach; Risch, Tore

    2008-01-01

    Transportation-related problems, like road congestion, parking, and pollution, are increasing in most cities. In order to reduce traffic, recent work has proposed methods for vehicle sharing, for example for sharing cabs by grouping "closeby" cab requests and thus minimizing transportation cost...... and utilizing cab space. However, the methods published so far do not scale to large data volumes, which is necessary to facilitate large-scale collective transportation systems, e.g., ride-sharing systems for large cities. This paper presents highly scalable trip grouping algorithms, which generalize previous...

  8. pcircle - A Suite of Scalable Parallel File System Tools

    Energy Technology Data Exchange (ETDEWEB)

    2015-10-01

    Most of the software related to file system are written for conventional local file system, they are serialized and can't take advantage of the benefit of a large scale parallel file system. "pcircle" software builds on top of ubiquitous MPI in cluster computing environment and "work-stealing" pattern to provide a scalable, high-performance suite of file system tools. In particular - it implemented parallel data copy and parallel data checksumming, with advanced features such as async progress report, checkpoint and restart, as well as integrity checking.

  9. Scalable video on demand adaptive Internet-based distribution

    CERN Document Server

    Zink, Michael

    2013-01-01

    In recent years, the proliferation of available video content and the popularity of the Internet have encouraged service providers to develop new ways of distributing content to clients. Increasing video scaling ratios and advanced digital signal processing techniques have led to Internet Video-on-Demand applications, but these currently lack efficiency and quality. Scalable Video on Demand: Adaptive Internet-based Distribution examines how current video compression and streaming can be used to deliver high-quality applications over the Internet. In addition to analysing the problems

  10. Scalable web services for the PSIPRED Protein Analysis Workbench.

    Science.gov (United States)

    Buchan, Daniel W A; Minneci, Federico; Nugent, Tim C O; Bryson, Kevin; Jones, David T

    2013-07-01

    Here, we present the new UCL Bioinformatics Group's PSIPRED Protein Analysis Workbench. The Workbench unites all of our previously available analysis methods into a single web-based framework. The new web portal provides a greatly streamlined user interface with a number of new features to allow users to better explore their results. We offer a number of additional services to enable computationally scalable execution of our prediction methods; these include SOAP and XML-RPC web server access and new HADOOP packages. All software and services are available via the UCL Bioinformatics Group website at http://bioinf.cs.ucl.ac.uk/.

  11. A Scalable Architecture of a Structured LDPC Decoder

    Science.gov (United States)

    Lee, Jason Kwok-San; Lee, Benjamin; Thorpe, Jeremy; Andrews, Kenneth; Dolinar, Sam; Hamkins, Jon

    2004-01-01

    We present a scalable decoding architecture for a certain class of structured LDPC codes. The codes are designed using a small (n,r) protograph that is replicated Z times to produce a decoding graph for a (Z x n, Z x r) code. Using this architecture, we have implemented a decoder for a (4096,2048) LDPC code on a Xilinx Virtex-II 2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed iterations. The implemented message-passing algorithm uses an optimized 3-bit non-uniform quantizer that operates with 0.2dB implementation loss relative to a floating point decoder.

  12. Interactive segmentation: a scalable superpixel-based method

    Science.gov (United States)

    Mathieu, Bérengère; Crouzil, Alain; Puel, Jean-Baptiste

    2017-11-01

    This paper addresses the problem of interactive multiclass segmentation of images. We propose a fast and efficient new interactive segmentation method called superpixel α fusion (SαF). From a few strokes drawn by a user over an image, this method extracts relevant semantic objects. To get a fast calculation and an accurate segmentation, SαF uses superpixel oversegmentation and support vector machine classification. We compare SαF with competing algorithms by evaluating its performances on reference benchmarks. We also suggest four new datasets to evaluate the scalability of interactive segmentation methods, using images from some thousand to several million pixels. We conclude with two applications of SαF.

  13. Robust and scalable optical one-way quantum computation

    International Nuclear Information System (INIS)

    Wang Hefeng; Yang Chuiping; Nori, Franco

    2010-01-01

    We propose an efficient approach for deterministically generating scalable cluster states with photons. This approach involves unitary transformations performed on atoms coupled to optical cavities. Its operation cost scales linearly with the number of qubits in the cluster state, and photon qubits are encoded such that single-qubit operations can be easily implemented by using linear optics. Robust optical one-way quantum computation can be performed since cluster states can be stored in atoms and then transferred to photons that can be easily operated and measured. Therefore, this proposal could help in performing robust large-scale optical one-way quantum computation.

  14. Scalable Brain Network Construction on White Matter Fibers.

    Science.gov (United States)

    Chung, Moo K; Adluru, Nagesh; Dalton, Kim M; Alexander, Andrew L; Davidson, Richard J

    2011-02-12

    DTI offers a unique opportunity to characterize the structural connectivity of the human brain non-invasively by tracing white matter fiber tracts. Whole brain tractography studies routinely generate up to half million tracts per brain, which serves as edges in an extremely large 3D graph with up to half million edges. Currently there is no agreed-upon method for constructing the brain structural network graphs out of large number of white matter tracts. In this paper, we present a scalable iterative framework called the ε-neighbor method for building a network graph and apply it to testing abnormal connectivity in autism.

  15. Parallelism and Scalability in an Image Processing Application

    DEFF Research Database (Denmark)

    Rasmussen, Morten Sleth; Stuart, Matthias Bo; Karlsson, Sven

    2008-01-01

    parallel programs. This paper investigates parallelism and scalability of an embedded image processing application. The major challenges faced when parallelizing the application were to extract enough parallelism from the application and to reduce load imbalance. The application has limited immediately......The recent trends in processor architecture show that parallel processing is moving into new areas of computing in the form of many-core desktop processors and multi-processor system-on-chip. This means that parallel processing is required in application areas that traditionally have not used...

  16. Parallelism and Scalability in an Image Processing Application

    DEFF Research Database (Denmark)

    Rasmussen, Morten Sleth; Stuart, Matthias Bo; Karlsson, Sven

    2009-01-01

    parallel programs. This paper investigates parallelism and scalability of an embedded image processing application. The major challenges faced when parallelizing the application were to extract enough parallelism from the application and to reduce load imbalance. The application has limited immediately......The recent trends in processor architecture show that parallel processing is moving into new areas of computing in the form of many-core desktop processors and multi-processor system-on-chips. This means that parallel processing is required in application areas that traditionally have not used...

  17. Scalable error correction in distributed ion trap computers

    International Nuclear Information System (INIS)

    Oi, Daniel K. L.; Devitt, Simon J.; Hollenberg, Lloyd C. L.

    2006-01-01

    A major challenge for quantum computation in ion trap systems is scalable integration of error correction and fault tolerance. We analyze a distributed architecture with rapid high-fidelity local control within nodes and entangled links between nodes alleviating long-distance transport. We demonstrate fault-tolerant operator measurements which are used for error correction and nonlocal gates. This scheme is readily applied to linear ion traps which cannot be scaled up beyond a few ions per individual trap but which have access to a probabilistic entanglement mechanism. A proof-of-concept system is presented which is within the reach of current experiment

  18. Focal plane array with modular pixel array components for scalability

    Science.gov (United States)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  19. A scalable parallel algorithm for multiple objective linear programs

    Science.gov (United States)

    Wiecek, Malgorzata M.; Zhang, Hong

    1994-01-01

    This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.

  20. Empirical Evaluation of Superposition Coded Multicasting for Scalable Video

    KAUST Repository

    Chun Pong Lau

    2013-03-01

    In this paper we investigate cross-layer superposition coded multicast (SCM). Previous studies have proven its effectiveness in exploiting better channel capacity and service granularities via both analytical and simulation approaches. However, it has never been practically implemented using a commercial 4G system. This paper demonstrates our prototype in achieving the SCM using a standard 802.16 based testbed for scalable video transmissions. In particular, to implement the superposition coded (SPC) modulation, we take advantage a novel software approach, namely logical SPC (L-SPC), which aims to mimic the physical layer superposition coded modulation. The emulation results show improved throughput comparing with generic multicast method.

  1. Scalable and Hybrid Radio Resource Management for Future Wireless Networks

    DEFF Research Database (Denmark)

    Mino, E.; Luo, Jijun; Tragos, E.

    2007-01-01

    The concept of ubiquitous and scalable system is applied in the IST WINNER II [1] project to deliver optimum performance for different deployment scenarios, from local area to wide area wireless networks. The integration in a unique radio system of a cellular and local area type networks supposes...... a great advantage for the final user and for the operator, compared with the current situation, with disconnected systems, usually with different subscriptions, radio interfaces and terminals. To be a ubiquitous wireless system, the IST project WINNER II has defined three system modes. This contribution...

  2. Implementation of hierarchical design for manufacture rules in manufacturing processes

    OpenAIRE

    Parvez, Masud

    2008-01-01

    In order to shorten the product development cycle time, minimise overall cost and smooth transition into production, early consideration of manufacturing processes is important. Design for Manufacture (DFM) is the practice of designing products with manufacturing issues using an intelligent system, which translates 3D solid models into manufacturable features. Many existing and potential applications, particularly in the field of manufacturing, require various aspects of features technology. ...

  3. Robust Manufacturing Control

    CERN Document Server

    2013-01-01

    This contributed volume collects research papers, presented at the CIRP Sponsored Conference Robust Manufacturing Control: Innovative and Interdisciplinary Approaches for Global Networks (RoMaC 2012, Jacobs University, Bremen, Germany, June 18th-20th 2012). These research papers present the latest developments and new ideas focusing on robust manufacturing control for global networks. Today, Global Production Networks (i.e. the nexus of interconnected material and information flows through which products and services are manufactured, assembled and distributed) are confronted with and expected to adapt to: sudden and unpredictable large-scale changes of important parameters which are occurring more and more frequently, event propagation in networks with high degree of interconnectivity which leads to unforeseen fluctuations, and non-equilibrium states which increasingly characterize daily business. These multi-scale changes deeply influence logistic target achievement and call for robust planning and control ...

  4. Flexibility in fuel manufacturing

    International Nuclear Information System (INIS)

    Reparaz, A.; Stavig, W.E.; McLees, R.B.

    1987-01-01

    From its inception Exxon Nuclear has produced both BWR and PWR fuels. This is reflected in a product line that, to date, includes over 20 fuel designs. These range from 6x6 design at one end of the spectrum to the recently introduced 17x17 design. The benefits offered include close tailoring of the fuel design to match the customer's requirements, and the ability to rapidly introduce product changes, such as the axial blanket design, with a minimal impact on manufacturing. This flexibility places a number of demands on the manufacturing organization. Close interfaces must be established, and maintained, between the marketing, product design, manufacturing, purchasing and quality organizations, and the information flows must be immediate and accurate. Production schedules must be well planned and must be maintained or revised to reflect changing circumstances. Finally, the manufacturing facilities must be designed to allow rapid switchover between product designs with minor tooling changes and/or rerouting of product flows to alternate work stations. Among the tools used to manage the flow of information and to maintain the tight integration necessary between the various manufacturing, engineering and quality organizations is a commercially available, computerized planning and tracking system, AMAPS. A real-time production data collection system has been designed which gathers data from each production work station for use by the shop floor control module of AMAPS. Accuracy of input to the system is improved through extensive use of bar codes to gather information on the product as it moves through and between work stations. This computerized preparation of material tracing has an impact on direct manufacturing records, quality control records, nuclear material records and accounting and inventory records. This is of benefit to both Exxon Nuclear and its customers

  5. Model-Based Evaluation Of System Scalability: Bandwidth Analysis For Smartphone-Based Biosensing Applications

    DEFF Research Database (Denmark)

    Patou, François; Madsen, Jan; Dimaki, Maria

    2016-01-01

    Scalability is a design principle often valued for the engineering of complex systems. Scalability is the ability of a system to change the current value of one of its specification parameters. Although targeted frameworks are available for the evaluation of scalability for specific digital systems...... re-engineering of 5 independent system modules, from the replacement of a wireless Bluetooth interface, to the revision of the ADC sample-and-hold operation could help increase system bandwidth....

  6. Diccionario Lean Manufacturing

    OpenAIRE

    Muñoz Ellner, Sarah María

    2016-01-01

    El Diccionario Bilingüe de Lean Manufacturing pretende ser un instrumento de apoyo a todo aquel que tenga la responsabilidad de planear, ejecutar o simplemente algún interés con las actividades de Lean Manufacturing, aportando así también conceptos claros tanto en castellano como en inglés, con el fin de entender de forma integral el alcance mismo que puede llegar a tener dicha filosofía, al igual que se proporcionara una serie de siglas y herramientas para la implementación del Lean Manufact...

  7. Developments in fuel manufacturing

    International Nuclear Information System (INIS)

    Williams, T.

    1997-01-01

    BNFL has a long tradition of willingness to embrace technological challenge and a dedication to quality. This paper describes advances in the overall manufacturing philosophy at BNFL's Fuel Business Group and then covers how some new technologies are currently being employed in BNFL Fuel Business Group's flagship oxide complex (OFC), which is currently in its final stages of commissioning. This plant represents a total investment of some Pound 200 million. This paper also describes how these technologies are also being deployed in BNFL's MOX plant now being built at Sellafield and, finally, covers some new processes being developed for advanced fuel manufacture. (author)

  8. A Multi-Component Automated Laser-Origami System for Cyber-Manufacturing

    Science.gov (United States)

    Ko, Woo-Hyun; Srinivasa, Arun; Kumar, P. R.

    2017-12-01

    Cyber-manufacturing systems can be enhanced by an integrated network architecture that is easily configurable, reliable, and scalable. We consider a cyber-physical system for use in an origami-type laser-based custom manufacturing machine employing folding and cutting of sheet material to manufacture 3D objects. We have developed such a system for use in a laser-based autonomous custom manufacturing machine equipped with real-time sensing and control. The basic elements in the architecture are built around the laser processing machine. They include a sensing system to estimate the state of the workpiece, a control system determining control inputs for a laser system based on the estimated data and user’s job requests, a robotic arm manipulating the workpiece in the work space, and middleware, named Etherware, supporting the communication among the systems. We demonstrate automated 3D laser cutting and bending to fabricate a 3D product as an experimental result.

  9. Neutron generators with size scalability, ease of fabrication and multiple ion source functionalities

    Science.gov (United States)

    Elizondo-Decanini, Juan M

    2014-11-18

    A neutron generator is provided with a flat, rectilinear geometry and surface mounted metallizations. This construction provides scalability and ease of fabrication, and permits multiple ion source functionalities.

  10. Traffic and Quality Characterization of the H.264/AVC Scalable Video Coding Extension

    Directory of Open Access Journals (Sweden)

    Geert Van der Auwera

    2008-01-01

    Full Text Available The recent scalable video coding (SVC extension to the H.264/AVC video coding standard has unprecedented compression efficiency while supporting a wide range of scalability modes, including temporal, spatial, and quality (SNR scalability, as well as combined spatiotemporal SNR scalability. The traffic characteristics, especially the bit rate variabilities, of the individual layer streams critically affect their network transport. We study the SVC traffic statistics, including the bit rate distortion and bit rate variability distortion, with long CIF resolution video sequences and compare them with the corresponding MPEG-4 Part 2 traffic statistics. We consider (i temporal scalability with three temporal layers, (ii spatial scalability with a QCIF base layer and a CIF enhancement layer, as well as (iii quality scalability modes FGS and MGS. We find that the significant improvement in RD efficiency of SVC is accompanied by substantially higher traffic variabilities as compared to the equivalent MPEG-4 Part 2 streams. We find that separately analyzing the traffic of temporal-scalability only encodings gives reasonable estimates of the traffic statistics of the temporal layers embedded in combined spatiotemporal encodings and in the base layer of combined FGS-temporal encodings. Overall, we find that SVC achieves significantly higher compression ratios than MPEG-4 Part 2, but produces unprecedented levels of traffic variability, thus presenting new challenges for the network transport of scalable video.

  11. SCALABLE TIME SERIES CHANGE DETECTION FOR BIOMASS MONITORING USING GAUSSIAN PROCESS

    Data.gov (United States)

    National Aeronautics and Space Administration — SCALABLE TIME SERIES CHANGE DETECTION FOR BIOMASS MONITORING USING GAUSSIAN PROCESS VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Biomass monitoring,...

  12. On Scalability and Replicability of Smart Grid Projects—A Case Study

    Directory of Open Access Journals (Sweden)

    Lukas Sigrist

    2016-03-01

    Full Text Available This paper studies the scalability and replicability of smart grid projects. Currently, most smart grid projects are still in the R&D or demonstration phases. The full roll-out of the tested solutions requires a suitable degree of scalability and replicability to prevent project demonstrators from remaining local experimental exercises. Scalability and replicability are the preliminary requisites to perform scaling-up and replication successfully; therefore, scalability and replicability allow for or at least reduce barriers for the growth and reuse of the results of project demonstrators. The paper proposes factors that influence and condition a project’s scalability and replicability. These factors involve technical, economic, regulatory and stakeholder acceptance related aspects, and they describe requirements for scalability and replicability. In order to assess and evaluate the identified scalability and replicability factors, data has been collected from European and national smart grid projects by means of a survey, reflecting the projects’ view and results. The evaluation of the factors allows quantifying the status quo of on-going projects with respect to the scalability and replicability, i.e., they provide a feedback on to what extent projects take into account these factors and on whether the projects’ results and solutions are actually scalable and replicable.

  13. Ultracold molecules: vehicles to scalable quantum information processing

    International Nuclear Information System (INIS)

    Brickman Soderberg, Kathy-Anne; Gemelke, Nathan; Chin Cheng

    2009-01-01

    In this paper, we describe a novel scheme to implement scalable quantum information processing using Li-Cs molecular states to entangle 6 Li and 133 Cs ultracold atoms held in independent optical lattices. The 6 Li atoms will act as quantum bits to store information and 133 Cs atoms will serve as messenger bits that aid in quantum gate operations and mediate entanglement between distant qubit atoms. Each atomic species is held in a separate optical lattice and the atoms can be overlapped by translating the lattices with respect to each other. When the messenger and qubit atoms are overlapped, targeted single-spin operations and entangling operations can be performed by coupling the atomic states to a molecular state with radio-frequency pulses. By controlling the frequency and duration of the radio-frequency pulses, entanglement can be either created or swapped between a qubit messenger pair. We estimate operation fidelities for entangling two distant qubits and discuss scalability of this scheme and constraints on the optical lattice lasers. Finally we demonstrate experimental control of the optical potentials sufficient to translate atoms in the lattice.

  14. Scalable Nernst thermoelectric power using a coiled galfenol wire

    Science.gov (United States)

    Yang, Zihao; Codecido, Emilio A.; Marquez, Jason; Zheng, Yuanhua; Heremans, Joseph P.; Myers, Roberto C.

    2017-09-01

    The Nernst thermopower usually is considered far too weak in most metals for waste heat recovery. However, its transverse orientation gives it an advantage over the Seebeck effect on non-flat surfaces. Here, we experimentally demonstrate the scalable generation of a Nernst voltage in an air-cooled metal wire coiled around a hot cylinder. In this geometry, a radial temperature gradient generates an azimuthal electric field in the coil. A Galfenol (Fe0.85Ga0.15) wire is wrapped around a cartridge heater, and the voltage drop across the wire is measured as a function of axial magnetic field. As expected, the Nernst voltage scales linearly with the length of the wire. Based on heat conduction and fluid dynamic equations, finite-element method is used to calculate the temperature gradient across the Galfenol wire and determine the Nernst coefficient. A giant Nernst coefficient of -2.6 μV/KT at room temperature is estimated, in agreement with measurements on bulk Galfenol. We expect that the giant Nernst effect in Galfenol arises from its magnetostriction, presumably through enhanced magnon-phonon coupling. Our results demonstrate the feasibility of a transverse thermoelectric generator capable of scalable output power from non-flat heat sources.

  15. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    Science.gov (United States)

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  16. Scalable parallel prefix solvers for discrete ordinates transport

    International Nuclear Information System (INIS)

    Pautz, S.; Pandya, T.; Adams, M.

    2009-01-01

    The well-known 'sweep' algorithm for inverting the streaming-plus-collision term in first-order deterministic radiation transport calculations has some desirable numerical properties. However, it suffers from parallel scaling issues caused by a lack of concurrency. The maximum degree of concurrency, and thus the maximum parallelism, grows more slowly than the problem size for sweeps-based solvers. We investigate a new class of parallel algorithms that involves recasting the streaming-plus-collision problem in prefix form and solving via cyclic reduction. This method, although computationally more expensive at low levels of parallelism than the sweep algorithm, offers better theoretical scalability properties. Previous work has demonstrated this approach for one-dimensional calculations; we show how to extend it to multidimensional calculations. Notably, for multiple dimensions it appears that this approach is limited to long-characteristics discretizations; other discretizations cannot be cast in prefix form. We implement two variants of the algorithm within the radlib/SCEPTRE transport code library at Sandia National Laboratories and show results on two different massively parallel systems. Both the 'forward' and 'symmetric' solvers behave similarly, scaling well to larger degrees of parallelism then sweeps-based solvers. We do observe some issues at the highest levels of parallelism (relative to the system size) and discuss possible causes. We conclude that this approach shows good potential for future parallel systems, but the parallel scalability will depend heavily on the architecture of the communication networks of these systems. (authors)

  17. Scalable privacy-preserving big data aggregation mechanism

    Directory of Open Access Journals (Sweden)

    Dapeng Wu

    2016-08-01

    Full Text Available As the massive sensor data generated by large-scale Wireless Sensor Networks (WSNs recently become an indispensable part of ‘Big Data’, the collection, storage, transmission and analysis of the big sensor data attract considerable attention from researchers. Targeting the privacy requirements of large-scale WSNs and focusing on the energy-efficient collection of big sensor data, a Scalable Privacy-preserving Big Data Aggregation (Sca-PBDA method is proposed in this paper. Firstly, according to the pre-established gradient topology structure, sensor nodes in the network are divided into clusters. Secondly, sensor data is modified by each node according to the privacy-preserving configuration message received from the sink. Subsequently, intra- and inter-cluster data aggregation is employed during the big sensor data reporting phase to reduce energy consumption. Lastly, aggregated results are recovered by the sink to complete the privacy-preserving big data aggregation. Simulation results validate the efficacy and scalability of Sca-PBDA and show that the big sensor data generated by large-scale WSNs is efficiently aggregated to reduce network resource consumption and the sensor data privacy is effectively protected to meet the ever-growing application requirements.

  18. The Node Monitoring Component of a Scalable Systems Software Environment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Samuel James [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This research describes Fountain, a suite of programs used to monitor the resources of a cluster. A cluster is a collection of individual computers that are connected via a high speed communication network. They are traditionally used by users who desire more resources, such as processing power and memory, than any single computer can provide. A common drawback to effectively utilizing such a large-scale system is the management infrastructure, which often does not often scale well as the system grows. Large-scale parallel systems provide new research challenges in the area of systems software, the programs or tools that manage the system from boot-up to running a parallel job. The approach presented in this thesis utilizes a collection of separate components that communicate with each other to achieve a common goal. While systems software comprises a broad array of components, this thesis focuses on the design choices for a node monitoring component. We will describe Fountain, an implementation of the Scalable Systems Software (SSS) node monitor specification. It is targeted at aggregate node monitoring for clusters, focusing on both scalability and fault tolerance as its design goals. It leverages widely used technologies such as XML and HTTP to present an interface to other components in the SSS environment.

  19. Scalable fast multipole methods for vortex element methods

    KAUST Repository

    Hu, Qi

    2012-11-01

    We use a particle-based method to simulate incompressible flows, where the Fast Multipole Method (FMM) is used to accelerate the calculation of particle interactions. The most time-consuming kernelsâ\\'the Biot-Savart equation and stretching term of the vorticity equationâ\\'are mathematically reformulated so that only two Laplace scalar potentials are used instead of six, while automatically ensuring divergence-free far-field computation. Based on this formulation, and on our previous work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm also uses new data structures which can dynamically manage inter-node communication and load balance efficiently but with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s. © 2012 IEEE.

  20. Silicon nanophotonics for scalable quantum coherent feedback networks

    Energy Technology Data Exchange (ETDEWEB)

    Sarovar, Mohan; Brif, Constantin [Sandia National Laboratories, Livermore, CA (United States); Soh, Daniel B.S. [Sandia National Laboratories, Livermore, CA (United States); Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States); Cox, Jonathan; DeRose, Christopher T.; Camacho, Ryan; Davids, Paul [Sandia National Laboratories, Albuquerque, NM (United States)

    2016-12-15

    The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism. (orig.)

  1. The TOTEM DAQ based on the Scalable Readout System (SRS)

    Science.gov (United States)

    Quinto, Michele; Cafagna, Francesco S.; Fiergolski, Adrian; Radicioni, Emilio

    2018-02-01

    The TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measurement at the LHC) experiment at LHC, has been designed to measure the total proton-proton cross-section and study the elastic and diffractive scattering at the LHC energies. In order to cope with the increased machine luminosity and the higher statistic required by the extension of the TOTEM physics program, approved for the LHC's Run Two phase, the previous VME based data acquisition system has been replaced with a new one based on the Scalable Readout System. The system features an aggregated data throughput of 2GB / s towards the online storage system. This makes it possible to sustain a maximum trigger rate of ˜ 24kHz, to be compared with the 1KHz rate of the previous system. The trigger rate is further improved by implementing zero-suppression and second-level hardware algorithms in the Scalable Readout System. The new system fulfils the requirements for an increased efficiency, providing higher bandwidth, and increasing the purity of the data recorded. Moreover full compatibility has been guaranteed with the legacy front-end hardware, as well as with the DAQ interface of the CMS experiment and with the LHC's Timing, Trigger and Control distribution system. In this contribution we describe in detail the architecture of full system and its performance measured during the commissioning phase at the LHC Interaction Point.

  2. Silicon nanophotonics for scalable quantum coherent feedback networks

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Brif, Constantin; Soh, Daniel B.S.; Cox, Jonathan; DeRose, Christopher T.; Camacho, Ryan; Davids, Paul

    2016-01-01

    The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism. (orig.)

  3. ENDEAVOUR: A Scalable SDN Architecture for Real-World IXPs

    KAUST Repository

    Antichi, Gianni

    2017-10-25

    Innovation in interdomain routing has remained stagnant for over a decade. Recently, IXPs have emerged as economically-advantageous interconnection points for reducing path latencies and exchanging ever increasing traffic volumes among, possibly, hundreds of networks. Given their far-reaching implications on interdomain routing, IXPs are the ideal place to foster network innovation and extend the benefits of SDN to the interdomain level. In this paper, we present, evaluate, and demonstrate ENDEAVOUR, an SDN platform for IXPs. ENDEAVOUR can be deployed on a multi-hop IXP fabric, supports a large number of use cases, and is highly-scalable while avoiding broadcast storms. Our evaluation with real data from one of the largest IXPs, demonstrates the benefits and scalability of our solution: ENDEAVOUR requires around 70% fewer rules than alternative SDN solutions thanks to our rule partitioning mechanism. In addition, by providing an open source solution, we invite everyone from the community to experiment (and improve) our implementation as well as adapt it to new use cases.

  4. Scalable Nernst thermoelectric power using a coiled galfenol wire

    Directory of Open Access Journals (Sweden)

    Zihao Yang

    2017-09-01

    Full Text Available The Nernst thermopower usually is considered far too weak in most metals for waste heat recovery. However, its transverse orientation gives it an advantage over the Seebeck effect on non-flat surfaces. Here, we experimentally demonstrate the scalable generation of a Nernst voltage in an air-cooled metal wire coiled around a hot cylinder. In this geometry, a radial temperature gradient generates an azimuthal electric field in the coil. A Galfenol (Fe0.85Ga0.15 wire is wrapped around a cartridge heater, and the voltage drop across the wire is measured as a function of axial magnetic field. As expected, the Nernst voltage scales linearly with the length of the wire. Based on heat conduction and fluid dynamic equations, finite-element method is used to calculate the temperature gradient across the Galfenol wire and determine the Nernst coefficient. A giant Nernst coefficient of -2.6 μV/KT at room temperature is estimated, in agreement with measurements on bulk Galfenol. We expect that the giant Nernst effect in Galfenol arises from its magnetostriction, presumably through enhanced magnon-phonon coupling. Our results demonstrate the feasibility of a transverse thermoelectric generator capable of scalable output power from non-flat heat sources.

  5. On eliminating synchronous communication in molecular simulations to improve scalability

    Science.gov (United States)

    Straatsma, T. P.; Chavarría-Miranda, Daniel G.

    2013-12-01

    Molecular dynamics simulation, as a complementary tool to experimentation, has become an important methodology for the understanding and design of molecular systems as it provides access to properties that are difficult, impossible or prohibitively expensive to obtain experimentally. Many of the available software packages have been parallelized to take advantage of modern massively concurrent processing resources. The challenge in achieving parallel efficiency is commonly attributed to the fact that molecular dynamics algorithms are communication intensive. This paper illustrates how an appropriately chosen data distribution and asynchronous one-sided communication approach can be used to effectively deal with the data movement within the Global Arrays/ARMCI programming model framework. A new put_notify capability is presented here, allowing the implementation of the molecular dynamics algorithm without any explicit global or local synchronization or global data reduction operations. In addition, this push-data model is shown to very effectively allow hiding data communication behind computation. Rather than data movement or explicit global reductions, the implicit synchronization of the algorithm becomes the primary challenge for scalability. Without any explicit synchronous operations, the scalability of molecular simulations is shown to depend only on the ability to evenly balance computational load.

  6. A Taxonomy of Manufacturing Strategies

    OpenAIRE

    Jeffrey G. Miller; Aleda V. Roth

    1994-01-01

    This paper describes the development and analysis of a numerical taxonomy of manufacturing strategies. The taxonomy was developed with standard methods of cluster analysis, and is based on the relative importance attached to eleven competitive capabilities defining the manufacturing task of 164 large American manufacturing business units. Three distinct clusters of manufacturing strategy groups were observed. Though there is an industry effect, all three manufacturing strategy types are obser...

  7. Scalable Directed Assembly of Highly Crystalline 2,7-Dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) Films.

    Science.gov (United States)

    Chai, Zhimin; Abbasi, Salman A; Busnaina, Ahmed A

    2018-05-30

    Assembly of organic semiconductors with ordered crystal structure has been actively pursued for electronics applications such as organic field-effect transistors (OFETs). Among various film deposition methods, solution-based film growth from small molecule semiconductors is preferable because of its low material and energy consumption, low cost, and scalability. Here, we show scalable and controllable directed assembly of highly crystalline 2,7-dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) films via a dip-coating process. Self-aligned stripe patterns with tunable thickness and morphology over a centimeter scale are obtained by adjusting two governing parameters: the pulling speed of a substrate and the solution concentration. OFETs are fabricated using the C8-BTBT films assembled at various conditions. A field-effect hole mobility up to 3.99 cm 2 V -1 s -1 is obtained. Owing to the highly scalable crystalline film formation, the dip-coating directed assembly process could be a great candidate for manufacturing next-generation electronics. Meanwhile, the film formation mechanism discussed in this paper could provide a general guideline to prepare other organic semiconducting films from small molecule solutions.

  8. Transfer of manufacturing units

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Riis, Jens Ove; Sørensen, Brian Vejrum

    2008-01-01

    The ongoing and unfolding relocation of activities is one of the major trends, that calls for attention in the domain of operations management. In particular, prescriptive models outlining: stages of the process, where to locate, and how to establish the new facilities have been studied, while...... and dilemmas to be addressed when transferring manufacturing units....

  9. Reusing Old Manufacturing Buildings

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    This article presents an interesting design challenge for students, one that will certainly let them integrate subject matter and get a sense of pride for doing something useful in their own community. The author would be willing to bet that the average town or city has some old red brick manufacturing building(s) that have seen much better days.…

  10. Virtual manufacturing in reality

    Science.gov (United States)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  11. Tolerances in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Zhang, Yang; Islam, Aminul

    This paper describes a method for analysis of tolerances in micro manufacturing. It proposes a mapping oftolerances to dimensions and compares this with current available international standards. The analysisdocuments that tolerances are not scaled down as the absolute dimension. In practice...

  12. Cladding tube manufacturing technology

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report A lloy Development for High Burnup Cladding . Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs

  13. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Costello, J.M.

    1980-09-01

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  14. Manufacturing and Merchandising Careers

    Science.gov (United States)

    Ryan, Peter J.; And Others

    1977-01-01

    Anyone with a flair for business, product development, or promotion might consider a manufacturing or merchandising occupation. The music industry offers many career opportunities for administrators, salespersons, marketing specialists--the record industry offers positions from promotion manager to rack jobber. Describes instrument company…

  15. Manufacturing in Denmark

    DEFF Research Database (Denmark)

    Hansen, Johannes; Boer, Henrike Engele Elisabeth; Boer, Harry

    This report compares the manufacturing strategies, practices, performances and improvement activities of 39 companies that are representative for the Danish assembly industry with those of 804 companies from 19 other countries. The data supporting this report were collected in 2013 and concern...

  16. Competitive Manufacturing Dynamics

    DEFF Research Database (Denmark)

    Rymaszewska, Anna; Christensen, Irene; Karlsson, Christer

    to constantly improve this process in terms of time to volume, according to predefined cost and quality measures. The importance of the success of this process can lead to a significant creation of competitive advantage. This paper addresses the challenges of the manufacturing ramp-up process in the context...

  17. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  18. Turbine airfoil manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

    1995-12-31

    The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

  19. Drug development and manufacturing

    Science.gov (United States)

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  20. Scalable graphene production: perspectives and challenges of plasma applications

    Science.gov (United States)

    Levchenko, Igor; Ostrikov, Kostya (Ken); Zheng, Jie; Li, Xingguo; Keidar, Michael; B. K. Teo, Kenneth

    2016-05-01

    Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h-1 m-2 was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various

  1. Efficient Delivery of Scalable Video Using a Streaming Class Model

    Directory of Open Access Journals (Sweden)

    Jason J. Quinlan

    2018-03-01

    Full Text Available When we couple the rise in video streaming with the growing number of portable devices (smart phones, tablets, laptops, we see an ever-increasing demand for high-definition video online while on the move. Wireless networks are inherently characterised by restricted shared bandwidth and relatively high error loss rates, thus presenting a challenge for the efficient delivery of high quality video. Additionally, mobile devices can support/demand a range of video resolutions and qualities. This demand for mobile streaming highlights the need for adaptive video streaming schemes that can adjust to available bandwidth and heterogeneity, and can provide a graceful changes in video quality, all while respecting viewing satisfaction. In this context, the use of well-known scalable/layered media streaming techniques, commonly known as scalable video coding (SVC, is an attractive solution. SVC encodes a number of video quality levels within a single media stream. This has been shown to be an especially effective and efficient solution, but it fares badly in the presence of datagram losses. While multiple description coding (MDC can reduce the effects of packet loss on scalable video delivery, the increased delivery cost is counterproductive for constrained networks. This situation is accentuated in cases where only the lower quality level is required. In this paper, we assess these issues and propose a new approach called Streaming Classes (SC through which we can define a key set of quality levels, each of which can be delivered in a self-contained manner. This facilitates efficient delivery, yielding reduced transmission byte-cost for devices requiring lower quality, relative to MDC and Adaptive Layer Distribution (ALD (42% and 76% respective reduction for layer 2, while also maintaining high levels of consistent quality. We also illustrate how selective packetisation technique can further reduce the effects of packet loss on viewable quality by

  2. Towards scalable quantum communication and computation: Novel approaches and realizations

    Science.gov (United States)

    Jiang, Liang

    Quantum information science involves exploration of fundamental laws of quantum mechanics for information processing tasks. This thesis presents several new approaches towards scalable quantum information processing. First, we consider a hybrid approach to scalable quantum computation, based on an optically connected network of few-qubit quantum registers. Specifically, we develop a novel scheme for scalable quantum computation that is robust against various imperfections. To justify that nitrogen-vacancy (NV) color centers in diamond can be a promising realization of the few-qubit quantum register, we show how to isolate a few proximal nuclear spins from the rest of the environment and use them for the quantum register. We also demonstrate experimentally that the nuclear spin coherence is only weakly perturbed under optical illumination, which allows us to implement quantum logical operations that use the nuclear spins to assist the repetitive-readout of the electronic spin. Using this technique, we demonstrate more than two-fold improvement in signal-to-noise ratio. Apart from direct application to enhance the sensitivity of the NV-based nano-magnetometer, this experiment represents an important step towards the realization of robust quantum information processors using electronic and nuclear spin qubits. We then study realizations of quantum repeaters for long distance quantum communication. Specifically, we develop an efficient scheme for quantum repeaters based on atomic ensembles. We use dynamic programming to optimize various quantum repeater protocols. In addition, we propose a new protocol of quantum repeater with encoding, which efficiently uses local resources (about 100 qubits) to identify and correct errors, to achieve fast one-way quantum communication over long distances. Finally, we explore quantum systems with topological order. Such systems can exhibit remarkable phenomena such as quasiparticles with anyonic statistics and have been proposed as

  3. Scalable graphene production: perspectives and challenges of plasma applications.

    Science.gov (United States)

    Levchenko, Igor; Ostrikov, Kostya Ken; Zheng, Jie; Li, Xingguo; Keidar, Michael; B K Teo, Kenneth

    2016-05-19

    Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h(-1) m(-2) was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of

  4. Enhancing cell and gene therapy manufacture through the application of advanced fluorescent optical sensors (Review).

    Science.gov (United States)

    Harrison, Richard P; Chauhan, Veeren M

    2017-12-15

    Cell and gene therapies (CGTs) are examples of future therapeutics that can be used to cure or alleviate the symptoms of disease, by repairing damaged tissue or reprogramming defective genetic information. However, despite the recent advancements in clinical trial outcomes, the path to wide-scale adoption of CGTs remains challenging, such that the emergence of a "blockbuster" therapy has so far proved elusive. Manufacturing solutions for these therapies require the application of scalable and replicable cell manufacturing techniques, which differ markedly from the existing pharmaceutical incumbent. Attempts to adopt this pharmaceutical model for CGT manufacture have largely proved unsuccessful. The most significant challenges facing CGT manufacturing are process analytical testing and quality control. These procedures would greatly benefit from improved sensory technologies that allow direct measurement of critical quality attributes, such as pH, oxygen, lactate and glucose. In turn, this would make manufacturing more robust, replicable and standardized. In this review, the present-day state and prospects of CGT manufacturing are discussed. In particular, the authors highlight the role of fluorescent optical sensors, focusing on their strengths and weaknesses, for CGT manufacture. The review concludes by discussing how the integration of CGT manufacture and fluorescent optical sensors could augment future bioprocessing approaches.

  5. Micro-manufacturing: design and manufacturing of micro-products

    National Research Council Canada - National Science Library

    Koç, Muammer; Özel, Tuğrul

    2011-01-01

    .... After addressing the fundamentals and non-metallic-based micro-manufacturing processes in the semiconductor industry, it goes on to address specific metallic-based micro-manufacturing processes...

  6. Reconfigurable manufacturing system for agile mass customization manufacturing

    CSIR Research Space (South Africa)

    Xing, B

    2006-07-01

    Full Text Available Manufacturing companies are facing three challenges: low cost production of product, high quality standard and rapid responsiveness to customer requirements. These three goals are equally important for the manufacturing companies who want...

  7. Design and application of reconfigurable manufacturing systems in agile mass customization manufacturing environment.

    CSIR Research Space (South Africa)

    Xing, B

    2007-05-01

    Full Text Available processes. Many manufacturing techniques are based on the principles of Flexible Manufacturing and Dedicated Manufacturing for mass production. Reconfigurable Manufacturing System, (RMS), is a manufacturing system that can provide for Agile Manufacturing...

  8. A Scalable Framework to Detect Personal Health Mentions on Twitter.

    Science.gov (United States)

    Yin, Zhijun; Fabbri, Daniel; Rosenbloom, S Trent; Malin, Bradley

    2015-06-05

    Biomedical research has traditionally been conducted via surveys and the analysis of medical records. However, these resources are limited in their content, such that non-traditional domains (eg, online forums and social media) have an opportunity to supplement the view of an individual's health. The objective of this study was to develop a scalable framework to detect personal health status mentions on Twitter and assess the extent to which such information is disclosed. We collected more than 250 million tweets via the Twitter streaming API over a 2-month period in 2014. The corpus was filtered down to approximately 250,000 tweets, stratified across 34 high-impact health issues, based on guidance from the Medical Expenditure Panel Survey. We created a labeled corpus of several thousand tweets via a survey, administered over Amazon Mechanical Turk, that documents when terms correspond to mentions of personal health issues or an alternative (eg, a metaphor). We engineered a scalable classifier for personal health mentions via feature selection and assessed its potential over the health issues. We further investigated the utility of the tweets by determining the extent to which Twitter users disclose personal health status. Our investigation yielded several notable findings. First, we find that tweets from a small subset of the health issues can train a scalable classifier to detect health mentions. Specifically, training on 2000 tweets from four health issues (cancer, depression, hypertension, and leukemia) yielded a classifier with precision of 0.77 on all 34 health issues. Second, Twitter users disclosed personal health status for all health issues. Notably, personal health status was disclosed over 50% of the time for 11 out of 34 (33%) investigated health issues. Third, the disclosure rate was dependent on the health issue in a statistically significant manner (P<.001). For instance, more than 80% of the tweets about migraines (83/100) and allergies (85

  9. Scalable quantum information processing with atomic ensembles and flying photons

    International Nuclear Information System (INIS)

    Mei Feng; Yu Yafei; Feng Mang; Zhang Zhiming

    2009-01-01

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could much relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.

  10. Final Report. Center for Scalable Application Development Software

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice Univ., Houston, TX (United States)

    2014-10-26

    The Center for Scalable Application Development Software (CScADS) was established as a part- nership between Rice University, Argonne National Laboratory, University of California Berkeley, University of Tennessee – Knoxville, and University of Wisconsin – Madison. CScADS pursued an integrated set of activities with the aim of increasing the productivity of DOE computational scientists by catalyzing the development of systems software, libraries, compilers, and tools for leadership computing platforms. Principal Center activities were workshops to engage the research community in the challenges of leadership computing, research and development of open-source software, and work with computational scientists to help them develop codes for leadership computing platforms. This final report summarizes CScADS activities at Rice University in these areas.

  11. Final Report: Center for Programming Models for Scalable Parallel Computing

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [William Marsh Rice University

    2011-09-13

    As part of the Center for Programming Models for Scalable Parallel Computing, Rice University collaborated with project partners in the design, development and deployment of language, compiler, and runtime support for parallel programming models to support application development for the “leadership-class” computer systems at DOE national laboratories. Work over the course of this project has focused on the design, implementation, and evaluation of a second-generation version of Coarray Fortran. Research and development efforts of the project have focused on the CAF 2.0 language, compiler, runtime system, and supporting infrastructure. This has involved working with the teams that provide infrastructure for CAF that we rely on, implementing new language and runtime features, producing an open source compiler that enabled us to evaluate our ideas, and evaluating our design and implementation through the use of benchmarks. The report details the research, development, findings, and conclusions from this work.

  12. Overview of the Scalable Coherent Interface, IEEE STD 1596 (SCI)

    International Nuclear Information System (INIS)

    Gustavson, D.B.; James, D.V.; Wiggers, H.A.

    1992-10-01

    The Scalable Coherent Interface standard defines a new generation of interconnection that spans the full range from supercomputer memory 'bus' to campus-wide network. SCI provides bus-like services and a shared-memory software model while using an underlying, packet protocol on many independent communication links. Initially these links are 1 GByte/s (wires) and 1 GBit/s (fiber), but the protocol scales well to future faster or lower-cost technologies. The interconnect may use switches, meshes, and rings. The SCI distributed-shared-memory model is simple and versatile, enabling for the first time a smooth integration of highly parallel multiprocessors, workstations, personal computers, I/O, networking and data acquisition

  13. Scalable Task Assignment for Heterogeneous Multi-Robot Teams

    Directory of Open Access Journals (Sweden)

    Paula García

    2013-02-01

    Full Text Available This work deals with the development of a dynamic task assignment strategy for heterogeneous multi-robot teams in typical real world scenarios. The strategy must be efficiently scalable to support problems of increasing complexity with minimum designer intervention. To this end, we have selected a very simple auction-based strategy, which has been implemented and analysed in a multi-robot cleaning problem that requires strong coordination and dynamic complex subtask organization. We will show that the selection of a simple auction strategy provides a linear computational cost increase with the number of robots that make up the team and allows the solving of highly complex assignment problems in dynamic conditions by means of a hierarchical sub-auction policy. To coordinate and control the team, a layered behaviour-based architecture has been applied that allows the reusing of the auction-based strategy to achieve different coordination levels.

  14. A Practical and Scalable Tool to Find Overlaps between Sequences

    Directory of Open Access Journals (Sweden)

    Maan Haj Rachid

    2015-01-01

    Full Text Available The evolution of the next generation sequencing technology increases the demand for efficient solutions, in terms of space and time, for several bioinformatics problems. This paper presents a practical and easy-to-implement solution for one of these problems, namely, the all-pairs suffix-prefix problem, using a compact prefix tree. The paper demonstrates an efficient construction of this time-efficient and space-economical tree data structure. The paper presents techniques for parallel implementations of the proposed solution. Experimental evaluation indicates superior results in terms of space and time over existing solutions. Results also show that the proposed technique is highly scalable in a parallel execution environment.

  15. A Software and Hardware IPTV Architecture for Scalable DVB Distribution

    Directory of Open Access Journals (Sweden)

    Georg Acher

    2009-01-01

    Full Text Available Many standards and even more proprietary technologies deal with IP-based television (IPTV. But none of them can transparently map popular public broadcast services such as DVB or ATSC to IPTV with acceptable effort. In this paper we explain why we believe that such a mapping using a light weight framework is an important step towards all-IP multimedia. We then present the NetCeiver architecture: it is based on well-known standards such as IPv6, and it allows zero configuration. The use of multicast streaming makes NetCeiver highly scalable. We also describe a low cost FPGA implementation of the proposed NetCeiver architecture, which can concurrently stream services from up to six full transponders.

  16. Smartphone based scalable reverse engineering by digital image correlation

    Science.gov (United States)

    Vidvans, Amey; Basu, Saurabh

    2018-03-01

    There is a need for scalable open source 3D reconstruction systems for reverse engineering. This is because most commercially available reconstruction systems are capital and resource intensive. To address this, a novel reconstruction technique is proposed. The technique involves digital image correlation based characterization of surface speeds followed by normalization with respect to angular speed during rigid body rotational motion of the specimen. Proof of concept of the same is demonstrated and validated using simulation and empirical characterization. Towards this, smart-phone imaging and inexpensive off the shelf components along with those fabricated additively using poly-lactic acid polymer with a standard 3D printer are used. Some sources of error in this reconstruction methodology are discussed. It is seen that high curvatures on the surface suppress accuracy of reconstruction. Reasons behind this are delineated in the nature of the correlation function. Theoretically achievable resolution during smart-phone based 3D reconstruction by digital image correlation is derived.

  17. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    Science.gov (United States)

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  18. Simplifying Scalable Graph Processing with a Domain-Specific Language

    KAUST Repository

    Hong, Sungpack; Salihoglu, Semih; Widom, Jennifer; Olukotun, Kunle

    2014-01-01

    Large-scale graph processing, with its massive data sets, requires distributed processing. However, conventional frameworks for distributed graph processing, such as Pregel, use non-traditional programming models that are well-suited for parallelism and scalability but inconvenient for implementing non-trivial graph algorithms. In this paper, we use Green-Marl, a Domain-Specific Language for graph analysis, to intuitively describe graph algorithms and extend its compiler to generate equivalent Pregel implementations. Using the semantic information captured by Green-Marl, the compiler applies a set of transformation rules that convert imperative graph algorithms into Pregel's programming model. Our experiments show that the Pregel programs generated by the Green-Marl compiler perform similarly to manually coded Pregel implementations of the same algorithms. The compiler is even able to generate a Pregel implementation of a complicated graph algorithm for which a manual Pregel implementation is very challenging.

  19. Simplifying Scalable Graph Processing with a Domain-Specific Language

    KAUST Repository

    Hong, Sungpack

    2014-01-01

    Large-scale graph processing, with its massive data sets, requires distributed processing. However, conventional frameworks for distributed graph processing, such as Pregel, use non-traditional programming models that are well-suited for parallelism and scalability but inconvenient for implementing non-trivial graph algorithms. In this paper, we use Green-Marl, a Domain-Specific Language for graph analysis, to intuitively describe graph algorithms and extend its compiler to generate equivalent Pregel implementations. Using the semantic information captured by Green-Marl, the compiler applies a set of transformation rules that convert imperative graph algorithms into Pregel\\'s programming model. Our experiments show that the Pregel programs generated by the Green-Marl compiler perform similarly to manually coded Pregel implementations of the same algorithms. The compiler is even able to generate a Pregel implementation of a complicated graph algorithm for which a manual Pregel implementation is very challenging.

  20. Optimization of Hierarchical Modulation for Use of Scalable Media

    Directory of Open Access Journals (Sweden)

    Heneghan Conor

    2010-01-01

    Full Text Available This paper studies the Hierarchical Modulation, a transmission strategy of the approaching scalable multimedia over frequency-selective fading channel for improving the perceptible quality. An optimization strategy for Hierarchical Modulation and convolutional encoding, which can achieve the target bit error rates with minimum global signal-to-noise ratio in a single-user scenario, is suggested. This strategy allows applications to make a free choice of relationship between Higher Priority (HP and Lower Priority (LP stream delivery. The similar optimization can be used in multiuser scenario. An image transport task and a transport task of an H.264/MPEG4 AVC video embedding both QVGA and VGA resolutions are simulated as the implementation example of this optimization strategy, and demonstrate savings in SNR and improvement in Peak Signal-to-Noise Ratio (PSNR for the particular examples shown.

  1. A Scalable Policy and SNMP Based Network Management Framework

    Institute of Scientific and Technical Information of China (English)

    LIU Su-ping; DING Yong-sheng

    2009-01-01

    Traditional SNMP-based network management can not deal with the task of managing large-scaled distributed network,while policy-based management is one of the effective solutions in network and distributed systems management. However,cross-vendor hardware compatibility is one of the limitations in policy-based management. Devices existing in current network mostly support SNMP rather than Common Open Policy Service (COPS) protocol. By analyzing traditional network management and policy-based network management, a scalable network management framework is proposed. It is combined with Internet Engineering Task Force (IETF) framework for policybased management and SNMP-based network management. By interpreting and translating policy decision to SNMP message,policy can be executed in traditional SNMP-based device.

  2. MOSDEN: A Scalable Mobile Collaborative Platform for Opportunistic Sensing Applications

    Directory of Open Access Journals (Sweden)

    Prem Prakash Jayaraman

    2014-05-01

    Full Text Available Mobile smartphones along with embedded sensors have become an efficient enabler for various mobile applications including opportunistic sensing. The hi-tech advances in smartphones are opening up a world of possibilities. This paper proposes a mobile collaborative platform called MOSDEN that enables and supports opportunistic sensing at run time. MOSDEN captures and shares sensor data acrossmultiple apps, smartphones and users. MOSDEN supports the emerging trend of separating sensors from application-specific processing, storing and sharing. MOSDEN promotes reuse and re-purposing of sensor data hence reducing the efforts in developing novel opportunistic sensing applications. MOSDEN has been implemented on Android-based smartphones and tablets. Experimental evaluations validate the scalability and energy efficiency of MOSDEN and its suitability towards real world applications. The results of evaluation and lessons learned are presented and discussed in this paper.

  3. Photonic Architecture for Scalable Quantum Information Processing in Diamond

    Directory of Open Access Journals (Sweden)

    Kae Nemoto

    2014-08-01

    Full Text Available Physics and information are intimately connected, and the ultimate information processing devices will be those that harness the principles of quantum mechanics. Many physical systems have been identified as candidates for quantum information processing, but none of them are immune from errors. The challenge remains to find a path from the experiments of today to a reliable and scalable quantum computer. Here, we develop an architecture based on a simple module comprising an optical cavity containing a single negatively charged nitrogen vacancy center in diamond. Modules are connected by photons propagating in a fiber-optical network and collectively used to generate a topological cluster state, a robust substrate for quantum information processing. In principle, all processes in the architecture can be deterministic, but current limitations lead to processes that are probabilistic but heralded. We find that the architecture enables large-scale quantum information processing with existing technology.

  4. Neuromorphic adaptive plastic scalable electronics: analog learning systems.

    Science.gov (United States)

    Srinivasa, Narayan; Cruz-Albrecht, Jose

    2012-01-01

    Decades of research to build programmable intelligent machines have demonstrated limited utility in complex, real-world environments. Comparing their performance with biological systems, these machines are less efficient by a factor of 1 million1 billion in complex, real-world environments. The Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program is a multifaceted Defense Advanced Research Projects Agency (DARPA) project that seeks to break the programmable machine paradigm and define a new path for creating useful, intelligent machines. Since real-world systems exhibit infinite combinatorial complexity, electronic neuromorphic machine technology would be preferable in a host of applications, but useful and practical implementations still do not exist. HRL Laboratories LLC has embarked on addressing these challenges, and, in this article, we provide an overview of our project and progress made thus far.

  5. Implementation of the Timepix ASIC in the Scalable Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Lupberger, M., E-mail: lupberger@physik.uni-bonn.de; Desch, K.; Kaminski, J.

    2016-09-11

    We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.

  6. A Scalable Framework and Prototype for CAS e-Science

    Directory of Open Access Journals (Sweden)

    Yuanchun Zhou

    2007-07-01

    Full Text Available Based on the Small-World model of CAS e-Science and the power low of Internet, this paper presents a scalable CAS e-Science Grid framework based on virtual region called Virtual Region Grid Framework (VRGF. VRGF takes virtual region and layer as logic manage-unit. In VRGF, the mode of intra-virtual region is pure P2P, and the model of inter-virtual region is centralized. Therefore, VRGF is decentralized framework with some P2P properties. Further more, VRGF is able to achieve satisfactory performance on resource organizing and locating at a small cost, and is well adapted to the complicated and dynamic features of scientific collaborations. We have implemented a demonstration VRGF based Grid prototype—SDG.

  7. Scalable Domain Decomposition Preconditioners for Heterogeneous Elliptic Problems

    Directory of Open Access Journals (Sweden)

    Pierre Jolivet

    2014-01-01

    Full Text Available Domain decomposition methods are, alongside multigrid methods, one of the dominant paradigms in contemporary large-scale partial differential equation simulation. In this paper, a lightweight implementation of a theoretically and numerically scalable preconditioner is presented in the context of overlapping methods. The performance of this work is assessed by numerical simulations executed on thousands of cores, for solving various highly heterogeneous elliptic problems in both 2D and 3D with billions of degrees of freedom. Such problems arise in computational science and engineering, in solid and fluid mechanics. While focusing on overlapping domain decomposition methods might seem too restrictive, it will be shown how this work can be applied to a variety of other methods, such as non-overlapping methods and abstract deflation based preconditioners. It is also presented how multilevel preconditioners can be used to avoid communication during an iterative process such as a Krylov method.

  8. A Secure and Scalable Data Communication Scheme in Smart Grids

    Directory of Open Access Journals (Sweden)

    Chunqiang Hu

    2018-01-01

    Full Text Available The concept of smart grid gained tremendous attention among researchers and utility providers in recent years. How to establish a secure communication among smart meters, utility companies, and the service providers is a challenging issue. In this paper, we present a communication architecture for smart grids and propose a scheme to guarantee the security and privacy of data communications among smart meters, utility companies, and data repositories by employing decentralized attribute based encryption. The architecture is highly scalable, which employs an access control Linear Secret Sharing Scheme (LSSS matrix to achieve a role-based access control. The security analysis demonstrated that the scheme ensures security and privacy. The performance analysis shows that the scheme is efficient in terms of computational cost.

  9. A scalable implementation of RI-SCF on parallel computers

    International Nuclear Information System (INIS)

    Fruechtl, H.A.; Kendall, R.A.; Harrison, R.J.

    1996-01-01

    In order to avoid the integral bottleneck of conventional SCF calculations, the Resolution of the Identity (RI) method is used to obtain an approximate solution to the Hartree-Fock equations. In this approximation only three-center integrals are needed to build the Fock matrix. It has been implemented as part of the NWChem package of portable and scalable ab initio programs for parallel computers. Utilizing the V-approximation, both the Coulomb and exchange contribution to the Fock matrix can be calculated from a transformed set of three-center integrals which have to be precalculated and stored. A distributed in-core method as well as a disk based implementation have been programmed. Details of the implementation as well as the parallel programming tools used are described. We also give results and timings from benchmark calculations

  10. Scalable Lunar Surface Networks and Adaptive Orbit Access

    Science.gov (United States)

    Wang, Xudong

    2015-01-01

    Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.

  11. Scalable Creation of Long-Lived Multipartite Entanglement

    Science.gov (United States)

    Kaufmann, H.; Ruster, T.; Schmiegelow, C. T.; Luda, M. A.; Kaushal, V.; Schulz, J.; von Lindenfels, D.; Schmidt-Kaler, F.; Poschinger, U. G.

    2017-10-01

    We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in 40Ca+, stored in a microstructured segmented Paul trap. These qubits are sequentially entangled by laser-driven pairwise gate operations. Between these, the qubit register is dynamically reconfigured via ion shuttling operations, where ion crystals are separated and merged, and ions are moved in and out of a fixed laser interaction zone. A sequence consisting of three pairwise entangling gates yields a four-ion Greenberger-Horne-Zeilinger state |ψ ⟩=(1 /√{2 })(|0000 ⟩+|1111 ⟩) , and full quantum state tomography reveals a state fidelity of 94.4(3)%. We analyze the decoherence of this state and employ dynamic decoupling on the spatially distributed constituents to maintain 69(5)% coherence at a storage time of 1.1 sec.

  12. Robot skills for manufacturing

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath; Nalpantidis, Lazaros; Andersen, Rasmus Skovgaard

    2016-01-01

    -asserting robot skills for manufacturing. We show how a relatively small set of skills are derived from current factory worker instructions, and how these can be transferred to industrial mobile manipulators. General robot skills can not only be implemented on these robots, but also be intuitively concatenated...... products are introduced by manufacturers. In order to compete on global markets, the factories of tomorrow need complete production lines, including automation technologies that can effortlessly be reconfigured or repurposed, when the need arises. In this paper we present the concept of general, self...... in running production facilities at an industrial partner. It follows from these experiments that the use of robot skills, and associated task-level programming framework, is a viable solution to introducing robots that can intuitively and on the fly be programmed to perform new tasks by factory workers....

  13. Additive manufacturing of metals

    International Nuclear Information System (INIS)

    Herzog, Dirk; Seyda, Vanessa; Wycisk, Eric; Emmelmann, Claus

    2016-01-01

    Additive Manufacturing (AM), the layer-by layer build-up of parts, has lately become an option for serial production. Today, several metallic materials including the important engineering materials steel, aluminium and titanium may be processed to full dense parts with outstanding properties. In this context, the present overview article describes the complex relationship between AM processes, microstructure and resulting properties for metals. It explains the fundamentals of Laser Beam Melting, Electron Beam Melting and Laser Metal Deposition, and introduces the commercially available materials for the different processes. Thereafter, typical microstructures for additively manufactured steel, aluminium and titanium are presented. Special attention is paid to AM specific grain structures, resulting from the complex thermal cycle and high cooling rates. The properties evolving as a consequence of the microstructure are elaborated under static and dynamic loading. According to these properties, typical applications are presented for the materials and methods for conclusion.

  14. Manufacture of heat exchangers

    International Nuclear Information System (INIS)

    Burton, J.E.; Tombs, R.W.T.

    1980-01-01

    A tube bundle for use in a heat exchanger has a series of spaced parallel tubes supported by tube plates and is manufactured by depositing welding material around the end of each tube, machining the deposited material to form an annular flange around the end of the tube and welding the flange into apertures in the tube plate. Preferably the tubes have a length which is slightly less than the distance between the outer surfaces of the tube plates and the deposited material is deposited so that it overlaps and protects the end surfaces of the tubes. A plug may be inserted in the bore of the tubes during the welding material deposition which, as described, is effected by manual metal arc welding. One use of heat exchangers incorporating a tube bundle manufactured as above is in apparatus for reducing the volume of, and recovering nitric acid from, radioactive effluents from a nuclear reprocessing plant. (author)

  15. The manufacturers' viewpoint

    International Nuclear Information System (INIS)

    Davis, D.A.

    1986-01-01

    This paper describes the approach by six separate manufacturers to the problem of availability from their particular view point. This presentation demonstrates basic strategy: attention to high reliability at the design phase, based on positive and detailed feedback from existing plant; quality assurance at the production stage which has been planned into the production process in the form of a Q.A. manual in design; sophisticated test procedures and facilities; simplicity of design with high accuracy in production; provision of a clear operational maintenance manual, etc. The manufacturers agreed on the need to make a conscious commitment to design for high availability, taking into account both initial and ongoing operating costs in life cycle cost assessment. Predictability, reliability, maintainability, efficiency, market acceptability and maintenance support based on high quality feedback between operator and supplier were all stressed on the grounds that prevention is always better than cure

  16. Extending JPEG-LS for low-complexity scalable video coding

    DEFF Research Database (Denmark)

    Ukhanova, Anna; Sergeev, Anton; Forchhammer, Søren

    2011-01-01

    JPEG-LS, the well-known international standard for lossless and near-lossless image compression, was originally designed for non-scalable applications. In this paper we propose a scalable modification of JPEG-LS and compare it with the leading image and video coding standards JPEG2000 and H.264/SVC...

  17. CloudTPS: Scalable Transactions for Web Applications in the Cloud

    NARCIS (Netherlands)

    Zhou, W.; Pierre, G.E.O.; Chi, C.-H.

    2010-01-01

    NoSQL Cloud data services provide scalability and high availability properties for web applications but at the same time they sacrifice data consistency. However, many applications cannot afford any data inconsistency. CloudTPS is a scalable transaction manager to allow cloud database services to

  18. Scalable Integrated Region-Based Image Retrieval Using IRM and Statistical Clustering.

    Science.gov (United States)

    Wang, James Z.; Du, Yanping

    Statistical clustering is critical in designing scalable image retrieval systems. This paper presents a scalable algorithm for indexing and retrieving images based on region segmentation. The method uses statistical clustering on region features and IRM (Integrated Region Matching), a measure developed to evaluate overall similarity between images…

  19. An extended systematic mapping study about the scalability of i* Models

    Directory of Open Access Journals (Sweden)

    Paulo Lima

    2016-12-01

    Full Text Available i* models have been used for requirements specification in many domains, such as healthcare, telecommunication, and air traffic control. Managing the scalability and the complexity of such models is an important challenge in Requirements Engineering (RE. Scalability is also one of the most intractable issues in the design of visual notations in general: a well-known problem with visual representations is that they do not scale well. This issue has led us to investigate scalability in i* models and its variants by means of a systematic mapping study. This paper is an extended version of a previous paper on the scalability of i* including papers indicated by specialists. Moreover, we also discuss the challenges and open issues regarding scalability of i* models and its variants. A total of 126 papers were analyzed in order to understand: how the RE community perceives scalability; and which proposals have considered this topic. We found that scalability issues are indeed perceived as relevant and that further work is still required, even though many potential solutions have already been proposed. This study can be a starting point for researchers aiming to further advance the treatment of scalability in i* models.

  20. Building a scalable event-level metadata service for ATLAS

    International Nuclear Information System (INIS)

    Cranshaw, J; Malon, D; Goosens, L; Viegas, F T A; McGlone, H

    2008-01-01

    The ATLAS TAG Database is a multi-terabyte event-level metadata selection system, intended to allow discovery, selection of and navigation to events of interest to an analysis. The TAG Database encompasses file- and relational-database-resident event-level metadata, distributed across all ATLAS Tiers. An oracle hosted global TAG relational database, containing all ATLAS events, implemented in Oracle, will exist at Tier O. Implementing a system that is both performant and manageable at this scale is a challenge. A 1 TB relational TAG Database has been deployed at Tier 0 using simulated tag data. The database contains one billion events, each described by two hundred event metadata attributes, and is currently undergoing extensive testing in terms of queries, population and manageability. These 1 TB tests aim to demonstrate and optimise the performance and scalability of an Oracle TAG Database on a global scale. Partitioning and indexing strategies are crucial to well-performing queries and manageability of the database and have implications for database population and distribution, so these are investigated. Physics query patterns are anticipated, but a crucial feature of the system must be to support a broad range of queries across all attributes. Concurrently, event tags from ATLAS Computing System Commissioning distributed simulations are accumulated in an Oracle-hosted database at CERN, providing an event-level selection service valuable for user experience and gathering information about physics query patterns. In this paper we describe the status of the Global TAG relational database scalability work and highlight areas of future direction

  1. A lightweight scalable agarose-gel-synthesized thermoelectric composite

    Science.gov (United States)

    Kim, Jin Ho; Fernandes, Gustavo E.; Lee, Do-Joong; Hirst, Elizabeth S.; Osgood, Richard M., III; Xu, Jimmy

    2018-03-01

    Electronic devices are now advancing beyond classical, rigid systems and moving into lighweight flexible regimes, enabling new applications such as body-wearables and ‘e-textiles’. To support this new electronic platform, composite materials that are highly conductive yet scalable, flexible, and wearable are needed. Materials with high electrical conductivity often have poor thermoelectric properties because their thermal transport is made greater by the same factors as their electronic conductivity. We demonstrate, in proof-of-principle experiments, that a novel binary composite can disrupt thermal (phononic) transport, while maintaining high electrical conductivity, thus yielding promising thermoelectric properties. Highly conductive Multi-Wall Carbon Nanotube (MWCNT) composites are combined with a low-band gap semiconductor, PbS. The work functions of the two materials are closely matched, minimizing the electrical contact resistance within the composite. Disparities in the speed of sound in MWCNTs and PbS help to inhibit phonon propagation, and boundary layer scattering at interfaces between these two materials lead to large Seebeck coefficient (> 150 μV/K) (Mott N F and Davis E A 1971 Electronic Processes in Non-crystalline Materials (Oxford: Clarendon), p 47) and a power factor as high as 10 μW/(K2 m). The overall fabrication process is not only scalable but also conformal and compatible with large-area flexible hosts including metal sheets, films, coatings, possibly arrays of fibers, textiles and fabrics. We explain the behavior of this novel thermoelectric material platform in terms of differing length scales for electrical conductivity and phononic heat transfer, and explore new material configurations for potentially lightweight and flexible thermoelectric devices that could be networked in a textile.

  2. fastBMA: scalable network inference and transitive reduction.

    Science.gov (United States)

    Hung, Ling-Hong; Shi, Kaiyuan; Wu, Migao; Young, William Chad; Raftery, Adrian E; Yeung, Ka Yee

    2017-10-01

    Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have developed fastBMA, a distributed, parallel, and scalable implementation of Bayesian model averaging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminating redundant indirect edges in the network by mapping the transitive reduction to an easily solved shortest-path problem. We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time series yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory-efficient, parallel, and distributed application that scales to human genome-wide expression data. A 10 000-gene regulation network can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network inference methods such as the 1 based on LASSO. The improved scalability allows it to calculate networks from genome scale data in a reasonable time frame. The transitive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated networkBMA Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) and as ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/). © The Authors 2017. Published by Oxford University Press.

  3. Joint-layer encoder optimization for HEVC scalable extensions

    Science.gov (United States)

    Tsai, Chia-Ming; He, Yuwen; Dong, Jie; Ye, Yan; Xiu, Xiaoyu; He, Yong

    2014-09-01

    Scalable video coding provides an efficient solution to support video playback on heterogeneous devices with various channel conditions in heterogeneous networks. SHVC is the latest scalable video coding standard based on the HEVC standard. To improve enhancement layer coding efficiency, inter-layer prediction including texture and motion information generated from the base layer is used for enhancement layer coding. However, the overall performance of the SHVC reference encoder is not fully optimized because rate-distortion optimization (RDO) processes in the base and enhancement layers are independently considered. It is difficult to directly extend the existing joint-layer optimization methods to SHVC due to the complicated coding tree block splitting decisions and in-loop filtering process (e.g., deblocking and sample adaptive offset (SAO) filtering) in HEVC. To solve those problems, a joint-layer optimization method is proposed by adjusting the quantization parameter (QP) to optimally allocate the bit resource between layers. Furthermore, to make more proper resource allocation, the proposed method also considers the viewing probability of base and enhancement layers according to packet loss rate. Based on the viewing probability, a novel joint-layer RD cost function is proposed for joint-layer RDO encoding. The QP values of those coding tree units (CTUs) belonging to lower layers referenced by higher layers are decreased accordingly, and the QP values of those remaining CTUs are increased to keep total bits unchanged. Finally the QP values with minimal joint-layer RD cost are selected to match the viewing probability. The proposed method was applied to the third temporal level (TL-3) pictures in the Random Access configuration. Simulation results demonstrate that the proposed joint-layer optimization method can improve coding performance by 1.3% for these TL-3 pictures compared to the SHVC reference encoder without joint-layer optimization.

  4. Scalable Multi-Platform Distribution of Spatial 3d Contents

    Science.gov (United States)

    Klimke, J.; Hagedorn, B.; Döllner, J.

    2013-09-01

    Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. In this paper, we introduce a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.

  5. Northwest Manufacturing Initiative

    Science.gov (United States)

    2014-07-31

    biodegradable wipes, and bags. The gStyle clothing line consists of various types of stylish clothes for babies. All gDiapers are plastic free...offers recycling services for industrial plastics and non-serviceable containers. Industrial plastics include pails, buckets, pallets, plastic film, and...manufacturer, now recycle used soda bottles, unusable second quality fabrics and worn out garments into polyester fibers to produce many of their clothes

  6. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2012-10-01

    Full Text Available for microfluidics K. LAND, S. HUGO, M MBANJWA, L FOURIE CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidics refers to the manipulation of very small volumes of fluid.... Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid...

  7. Northwest Manufacturing Initiative

    Science.gov (United States)

    2013-08-31

    Kadali R. Talla R. Hugo T. Russell A. Thoreson E. Porgharibshahishahrebabak Dae-wook Kim Ellen A. Fuller J. Rick Evans 5d. PROJECT NUMBER...Manufacturing (CIM) Cell .................................................................................. 8 Hurricane 130W Laser Cutter/Engraver (48” X 36...Miniature Prototype Warehouse Application using Imaging Source and RoboRealm® 3. Hurricane 130W Laser Cutter/Engraver (48” X 36”) a. Rapid

  8. Technology for Manufacturing Efficiency

    Science.gov (United States)

    1995-01-01

    The Ground Processing Scheduling System (GPSS) was developed by Ames Research Center, Kennedy Space Center and divisions of the Lockheed Company to maintain the scheduling for preparing a Space Shuttle Orbiter for a mission. Red Pepper Software Company, now part of PeopleSoft, Inc., commercialized the software as their ResponseAgent product line. The software enables users to monitor manufacturing variables, report issues and develop solutions to existing problems.

  9. Advances in Additive Manufacturing

    Science.gov (United States)

    2016-07-14

    with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS...Hamilton • Beth Bimber Air Force Research Laboratory, Metals Branch • Eddie Schwalbach • Mike Groeber • Benjamin Leever • James Hardin...conducting more in-field, or point-of-need, manufacturing than ever before. Other areas of concentration include man- machine interface, capabilities

  10. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  11. Fuel manufacturing and utilization

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient utilisation of nuclear fuel requires manufacturing facilities capable of making advanced fuel types, with appropriate quality control. Once made, the use of such fuels requires a proper understanding of their behaviour in the reactor environment, so that safe operation for the design life can be achieved. The International Atomic Energy Agency supports Member States to improve in-pile fuel performance and management of materials; and to develop advanced fuel technologies for ensuring reliability and economic efficiency of the nuclear fuel cycle. It provides assistance to Member States to support fuel-manufacturing capability, including quality assurance techniques, optimization of manufacturing parameters and radiation protection. The IAEA supports the development fuel modelling expertise in Member States, covering both normal operation and postulated and severe accident conditions. It provides information and support for the operation of Nuclear Power Plant to ensure that the environment and water chemistry is appropriate for fuel operation. The IAEA supports fuel failure investigations, including equipment for failed fuel detection and for post-irradiation examination and inspection, as well as fuel repair, it provides information and support research into the basic properties of fuel materials, including UO 2 , MOX and zirconium alloys. It further offers guidance on the relationship with back-end requirement (interim storage, transport, reprocessing, disposal), fuel utilization and management, MOX fuels, alternative fuels and advanced fuel technology

  12. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs

    Directory of Open Access Journals (Sweden)

    Choo Andre

    2011-04-01

    Full Text Available Abstract Background Exosomes or secreted bi-lipid vesicles from human ESC-derived mesenchymal stem cells (hESC-MSCs have been shown to reduce myocardial ischemia/reperfusion injury in animal models. However, as hESC-MSCs are not infinitely expansible, large scale production of these exosomes would require replenishment of hESC-MSC through derivation from hESCs and incur recurring costs for testing and validation of each new batch. Our aim was therefore to investigate if MYC immortalization of hESC-MSC would circumvent this constraint without compromising the production of therapeutically efficacious exosomes. Methods The hESC-MSCs were transfected by lentivirus carrying a MYC gene. The transformed cells were analyzed for MYC transgene integration, transcript and protein levels, and surface markers, rate of cell cycling, telomerase activity, karyotype, genome-wide gene expression and differentiation potential. The exosomes were isolated by HPLC fractionation and tested in a mouse model of myocardial ischemia/reperfusion injury, and infarct sizes were further assessed by using Evans' blue dye injection and TTC staining. Results MYC-transformed MSCs largely resembled the parental hESC-MSCs with major differences being reduced plastic adherence, faster growth, failure to senesce, increased MYC protein expression, and loss of in vitro adipogenic potential that technically rendered the transformed cells as non-MSCs. Unexpectedly, exosomes from MYC-transformed MSCs were able to reduce relative infarct size in a mouse model of myocardial ischemia/reperfusion injury indicating that the capacity for producing therapeutic exosomes was preserved. Conclusion Our results demonstrated that MYC transformation is a practical strategy in ensuring an infinite supply of cells for the production of exosomes in the milligram range as either therapeutic agents or delivery vehicles. In addition, the increased proliferative rate by MYC transformation reduces the time for cell production and thereby reduces production costs.

  13. Affordable and Scalable Manufacturing of Wearable Multi-Functional Sensory “Skin” for Internet of Everything Applications

    KAUST Repository

    Nassar, Joanna M.

    2017-01-01

    Demand for wearable electronics is expected to at least triple by 2020, embracing all sorts of Internet of Everything (IoE) applications, such as activity tracking, environmental mapping, and advanced healthcare monitoring, in the purpose

  14. Transistor and integrated circuit manufacture

    International Nuclear Information System (INIS)

    Colman, D.

    1978-01-01

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry. (author)

  15. 77 FR 2275 - Manufacturing Council

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Manufacturing Council AGENCY... candidate's proven experience in promoting, developing and marketing programs in support of manufacturing... participating in Council meetings and events are responsible for their travel, living and other personal...

  16. 76 FR 33244 - Manufacturing Council

    Science.gov (United States)

    2011-06-08

    ... DEPARTMENT OF COMMERCE International Trade Administration Manufacturing Council AGENCY... experience in promoting, developing and marketing programs in support of manufacturing industries, in job... Council meetings and events are responsible for their travel, living and other personal expenses. Meetings...

  17. Manufacturing mobility in global operations

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2002-01-01

    The globalization trend inevitably affects the organization of manufacturing by enterprises. It offers opportunities to examine manufacturing from a global perspective and consequently to produce where it is most appropriate. However, globalization has also led to an increase in competitive

  18. Green Manufacturing Fundamentals and Applications

    CERN Document Server

    2013-01-01

    Green Manufacturing: Fundamentals and Applications introduces the basic definitions and issues surrounding green manufacturing at the process, machine and system (including supply chain) levels. It also shows, by way of several examples from different industry sectors, the potential for substantial improvement and the paths to achieve the improvement. Additionally, this book discusses regulatory and government motivations for green manufacturing and outlines the path for making manufacturing more green as well as making production more sustainable. This book also: • Discusses new engineering approaches for manufacturing and provides a path from traditional manufacturing to green manufacturing • Addresses regulatory and economic issues surrounding green manufacturing • Details new supply chains that need to be in place before going green • Includes state-of-the-art case studies in the areas of automotive, semiconductor and medical areas as well as in the supply chain and packaging areas Green Manufactu...

  19. 75 FR 80040 - Manufacturing Council

    Science.gov (United States)

    2010-12-21

    ..., developing and marketing programs in support of manufacturing industries, job creation in the manufacturing... relevant contact information such as mailing address, fax, e-mail, fixed and mobile phone numbers and...

  20. Transistor and integrated circuit manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Colman, D

    1978-09-27

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry.

  1. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  2. Exploring manufacturing solutions for SMEs

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Blichfeldt, Henrik; Bilberg, Arne

    This exploratory study provides an overview over current state of manufacturing solutions in small and medium sized enterprises (SMEs) in region of Southern Denmark. Building on manufacturing paradigms, this paper reveals relevant aspects for the development and implementation of improving SMEs...... of manufacturing solutions, which are required to increase their competitiveness and assure sustainable growth....

  3. 78 FR 67117 - Manufacturing Council

    Science.gov (United States)

    2013-11-08

    ... preeminent destination for investment in manufacturing throughout the world'' as provided for in Section 4 of... the viewpoint of those stakeholders on current and emerging issues in the manufacturing sector. In... the U.S. manufacturing industry in terms of industry sectors, geographic locations, demographics, and...

  4. 2001 Industry Studies: Advanced Manufacturing

    Science.gov (United States)

    2001-05-28

    oriented, 19 and manufacturers are employing the Internet and associated information technologies to better integrate supply chains and form extended...ways to compete in world markets . As part of this ongoing transformation, the broad implementation of advanced manufacturing technologies , processes...competitive advantages and better performance in world markets . Importantly, advanced manufacturing involves the innovative integration of new technology

  5. Aero-MINE (Motionless INtegrated Energy) for Distributed Scalable Wind Power.

    Energy Technology Data Exchange (ETDEWEB)

    Houchens, Brent C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blaylock, Myra L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-01

    The proposed Aero-MINE technology will extract energy from wind without any exterior moving parts. Aero-MINEs can be integrated into buildings or function stand-alone, and are scalable. This gives them advantages similar to solar panels, but with the added benefit of operation in cloudy or dark conditions. Furthermore, compared to solar panels, Aero-MINEs can be manufactured at lower cost and with less environmental impact. Power generation is isolated internally by the pneumatic transmission of air and the outlet air-jet nozzles amplify the effectiveness. Multiple units can be connected to one centrally located electric generator. Aero-MINEs are ideal for the built-environment, with numerous possible configurations ranging from architectural integration to modular bolt-on products. Traditional wind turbines suffer from many fundamental challenges. The fast-moving blades produce significant aero-acoustic noise, visual disturbances, light-induced flickering and impose wildlife mortality risks. The conversion of massive mechanical torque to electricity is a challenge for gears, generators and power conversion electronics. In addition, the installation, operation and maintenance of wind turbines is required at significant height. Furthermore, wind farms are often in remote locations far from dense regions of electricity customers. These technical and logistical challenges add significantly to the cost of the electricity produced by utility-scale wind farms. In contrast, distributed wind energy eliminates many of the logistical challenges. However, solutions such as micro-turbines produce relatively small amounts of energy due to the reduction in swept area and still suffer from the motion-related disadvantages of utility-scale turbines. Aero-MINEs combine the best features of distributed generation, while eliminating the disadvantages.

  6. Scalable Inkjet-Based Structural Color Printing by Molding Transparent Gratings on Multilayer Nanostructured Surfaces.

    Science.gov (United States)

    Jiang, Hao; Kaminska, Bozena

    2018-04-24

    To enable customized manufacturing of structural colors for commercial applications, up-scalable, low-cost, rapid, and versatile printing techniques are highly demanded. In this paper, we introduce a viable strategy for scaling up production of custom-input images by patterning individual structural colors on separate layers, which are then vertically stacked and recombined into full-color images. By applying this strategy on molded-ink-on-nanostructured-surface printing, we present an industry-applicable inkjet structural color printing technique termed multilayer molded-ink-on-nanostructured-surface (M-MIONS) printing, in which structural color pixels are molded on multiple layers of nanostructured surfaces. Transparent colorless titanium dioxide nanoparticles were inkjet-printed onto three separate transparent polymer substrates, and each substrate surface has one specific subwavelength grating pattern for molding the deposited nanoparticles into structural color pixels of red, green, or blue primary color. After index-matching lamination, the three layers were vertically stacked and bonded to display a color image. Each primary color can be printed into a range of different shades controlled through a half-tone process, and full colors were achieved by mixing primary colors from three layers. In our experiments, an image size as big as 10 cm by 10 cm was effortlessly achieved, and even larger images can potentially be printed on recombined grating surfaces. In one application example, the M-MIONS technique was used for printing customizable transparent color optical variable devices for protecting personalized security documents. In another example, a transparent diffractive color image printed with the M-MIONS technique was pasted onto a transparent panel for overlaying colorful information onto one's view of reality.

  7. A relativity concept in mesenchymal stromal cell manufacturing.

    Science.gov (United States)

    Martin, Ivan; De Boer, Jan; Sensebe, Luc

    2016-05-01

    Mesenchymal stromal cells (MSCs) are being experimentally tested in several biological systems and clinical settings with the aim of verifying possible therapeutic effects for a variety of indications. MSCs are also known to be heterogeneous populations, with phenotypic and functional features that depend heavily on the individual donor, the harvest site, and the culture conditions. In the context of this multidimensional complexity, a recurrent question is whether it is feasible to produce MSC batches as "standard" therapeutics, possibly within scalable manufacturing systems. Here, we provide a short overview of the literature on different culture methods for MSCs, including those employing innovative technologies, and of some typically assessed functional features (e.g., growth, senescence, genomic stability, clonogenicity, etc.). We then offer our perspective of a roadmap on how to identify and refine manufacturing systems for MSCs intended for specific clinical indications. We submit that the vision of producing MSCs according to a unique standard, although commercially attractive, cannot yet be scientifically substantiated. Instead, efforts should be concentrated on standardizing methods for characterization of MSCs generated by different groups, possibly covering a vast gamut of functionalities. Such assessments, combined with hypotheses on the therapeutic mode of action and associated clinical data, should ultimately allow definition of in-process controls and measurable release criteria for MSC manufacturing. These will have to be validated as predictive of potency in suitable pre-clinical models and of therapeutic efficacy in patients. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Metabolic engineering: the ultimate paradigm for continuous pharmaceutical manufacturing.

    Science.gov (United States)

    Yadav, Vikramaditya G; Stephanopoulos, Gregory

    2014-07-01

    Research and development (R&D) expenditures by pharmaceutical companies doubled over the past decade, yet candidate attrition rates and development times rose markedly during this period. Understandably, companies have begun downsizing their pipelines and diverting investments away from R&D in favor of manufacturing. It is estimated that transitioning to continuous manufacturing could enable companies to compete for a share in emerging markets. Accordingly, the model for continuous manufacturing that has emerged commences with the conversion of late-stage intermediates into the active pharmaceutical ingredient (API) in a series of continuous flow reactors, followed by continuous solid processing to form finished tablets. The use of flow reactions for API synthesis will certainly generate purer products at higher yields in shorter times compared to equivalent batch reactions. However, transitioning from batch to flow configuration simply alleviates transport limitations within the reaction milieu. As the catalogue of reactions used in flow syntheses is a subset of batch-based chemistries, molecules such as natural products will continue to evade drug prospectors. Also, it is uncertain whether flow synthesis can deliver improvements in the atom and energy economies of API production at the scales that would achieve the levels of revenue growth targeted by companies. Instead, it is argued that implementing metabolic engineering for the production of oxidized scaffolds as gateway molecules for flow-based addition of electrophiles is a more effective and scalable strategy for accessing natural product chemical space. This new paradigm for manufacturing, with metabolic engineering as its engine, would also permit rapid optimization of production variables and allow facile scale-up from gram to ton scale to meet material requirements for clinical trials, thus recasting manufacturing as a tool for discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Transforming nanomedicine manufacturing toward Quality by Design and microfluidics.

    Science.gov (United States)

    Colombo, Stefano; Beck-Broichsitter, Moritz; Bøtker, Johan Peter; Malmsten, Martin; Rantanen, Jukka; Bohr, Adam

    2018-04-05

    Nanopharmaceuticals aim at translating the unique features of nano-scale materials into therapeutic products and consequently their development relies critically on the progression in manufacturing technology to allow scalable processes complying with process economy and quality assurance. The relatively high failure rate in translational nanopharmaceutical research and development, with respect to new products on the market, is at least partly due to immature bottom-up manufacturing development and resulting sub-optimal control of quality attributes in nanopharmaceuticals. Recently, quality-oriented manufacturing of pharmaceuticals has undergone an unprecedented change toward process and product development interaction. In this context, Quality by Design (QbD) aims to integrate product and process development resulting in an increased number of product applications to regulatory agencies and stronger proprietary defense strategies of process-based products. Although QbD can be applied to essentially any production approach, microfluidic production offers particular opportunities for QbD-based manufacturing of nanopharmaceuticals. Microfluidics provides unique design flexibility, process control and parameter predictability, and also offers ample opportunities for modular production setups, allowing process feedback for continuously operating production and process control. The present review aims at outlining emerging opportunities in the synergistic implementation of QbD strategies and microfluidic production in contemporary development and manufacturing of nanopharmaceuticals. In doing so, aspects of design and development, but also technology management, are reviewed, as is the strategic role of these tools for aligning nanopharmaceutical innovation, development, and advanced industrialization in the broader pharmaceutical field. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Good manufacturing practice

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    2001-01-01

    In this presentation author deals with the Implementation of good manufacturing practice for radiopharmaceuticals. The presentation is divided into next parts: Batch size; Expiration date; QC Testing; Environmental concerns; Personnel aspects; Radiation concerns; Theoretical yields; Sterilizing filters; Control and reconciliation of materials and components; Product strength; In process sampling and testing; Holding and distribution; Drug product inspection; Buildings and facilities; Renovations at BNL for GMP; Aseptic processing and sterility assurance; Process validation and control; Quality control and drug product stability; Documentation and other GMP topics; Building design considerations; Equipment; and Summary

  11. GASPRNG: GPU accelerated scalable parallel random number generator library

    Science.gov (United States)

    Gao, Shuang; Peterson, Gregory D.

    2013-04-01

    Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or

  12. Organic photovoltaic cells: from performance improvement to manufacturing processes.

    Science.gov (United States)

    Youn, Hongseok; Park, Hui Joon; Guo, L Jay

    2015-05-20

    Organic photovoltaics (OPVs) have been pursued as a next generation power source due to their light weight, thin, flexible, and simple fabrication advantages. Improvements in OPV efficiency have attracted great attention in the past decade. Because the functional layers in OPVs can be dissolved in common solvents, they can be manufactured by eco-friendly and scalable printing or coating technologies. In this review article, the focus is on recent efforts to control nanomorphologies of photoactive layer and discussion of various solution-processed charge transport and extraction materials, to maximize the performance of OPV cells. Next, recent works on printing and coating technologies for OPVs to realize solution processing are reviewed. The review concludes with a discussion of recent advances in the development of non-traditional lamination and transfer method towards highly efficient and fully solution-processed OPV. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Design and manufacturing challenges of optogenetic neural interfaces: a review

    Science.gov (United States)

    Goncalves, S. B.; Ribeiro, J. F.; Silva, A. F.; Costa, R. M.; Correia, J. H.

    2017-08-01

    Optogenetics is a relatively new technology to achieve cell-type specific neuromodulation with millisecond-scale temporal precision. Optogenetic tools are being developed to address neuroscience challenges, and to improve the knowledge about brain networks, with the ultimate aim of catalyzing new treatments for brain disorders and diseases. To reach this ambitious goal the implementation of mature and reliable engineered tools is required. The success of optogenetics relies on optical tools that can deliver light into the neural tissue. Objective/Approach: Here, the design and manufacturing approaches available to the scientific community are reviewed, and current challenges to accomplish appropriate scalable, multimodal and wireless optical devices are discussed. Significance: Overall, this review aims at presenting a helpful guidance to the engineering and design of optical microsystems for optogenetic applications.

  14. High performance flexible metal oxide/silver nanowire based transparent conductive films by a scalable lamination-assisted solution method

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2017-03-01

    Full Text Available Flexible MoO3/silver nanowire (AgNW/MoO3/TiO2/Epoxy electrodes with comparable performance to ITO were fabricated by a scalable solution-processed method with lamination assistance for transparent and conductive applications. Silver nanoparticle-based electrodes were also prepared for comparison. Using a simple spin-coating and lamination-assisted planarization method, a full solution-based approach allows preparation of AgNW-based composite electrodes at temperatures as low as 140 °C. The resulting flexible AgNW-based electrodes exhibit higher transmittance of 82% at 550 nm and lower sheet resistance about 12–15 Ω sq−1, in comparison with the values of 68% and 22–25 Ω sq−1 separately for AgNP based electrodes. Scanning electron microscopy (SEM and Atomic force microscopy (AFM reveals that the multi-stacked metal-oxide layers embedded with the AgNWs possess lower surface roughness (<15 nm. The AgNW/MoO3 composite network could enhance the charge transport and collection efficiency by broadening the lateral conduction range due to the built of an efficient charge transport network with long-sized nanowire. In consideration of the manufacturing cost, the lamination-assisted solution-processed method is cost-effective and scalable, which is desire for large-area fabrication. While in view of the materials cost and comparable performance, this AgNW-based transparent and conductive electrodes is potential as an alternative to ITO for various optoelectronic applications.

  15. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation

    Science.gov (United States)

    Lei, Yuguo; Schaffer, David V.

    2013-12-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expansion and differentiation of hPSCs, especially for clinical utilization, remains a challenge. We report a simple, defined, efficient, scalable, and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions, free of any human- or animal-derived factors, and entailing only recombinant protein factors. Under an optimized protocol, the 3D system enables long-term, serial expansion of multiple hPSCs lines with a high expansion rate (∼20-fold per 5-d passage, for a 1072-fold expansion over 280 d), yield (∼2.0 × 107 cells per mL of hydrogel), and purity (∼95% Oct4+), even with single-cell inoculation, all of which offer considerable advantages relative to current approaches. Moreover, the system enabled 3D directed differentiation of hPSCs into multiple lineages, including dopaminergic neuron progenitors with a yield of ∼8 × 107 dopaminergic progenitors per mL of hydrogel and ∼80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales, from basic biological investigation to clinical development.

  16. Designing Psychological Treatments for Scalability: The PREMIUM Approach.

    Directory of Open Access Journals (Sweden)

    Sukumar Vellakkal

    Full Text Available Lack of access to empirically-supported psychological treatments (EPT that are contextually appropriate and feasible to deliver by non-specialist health workers (referred to as 'counsellors' are major barrier for the treatment of mental health problems in resource poor countries. To address this barrier, the 'Program for Effective Mental Health Interventions in Under-resourced Health Systems' (PREMIUM designed a method for the development of EPT for severe depression and harmful drinking. This was implemented over three years in India. This study assessed the relative usefulness and costs of the five 'steps' (Systematic reviews, In-depth interviews, Key informant surveys, Workshops with international experts, and Workshops with local experts in the first phase of identifying the strategies and theoretical model of the treatment and two 'steps' (Case series with specialists, and Case series and pilot trial with counsellors in the second phase of enhancing the acceptability and feasibility of its delivery by counsellors in PREMIUM with the aim of arriving at a parsimonious set of steps for future investigators to use for developing scalable EPT.The study used two sources of data: the usefulness ratings by the investigators and the resource utilization. The usefulness of each of the seven steps was assessed through the ratings by the investigators involved in the development of each of the two EPT, viz. Healthy Activity Program for severe depression and Counselling for Alcohol Problems for harmful drinking. Quantitative responses were elicited to rate the utility (usefulness/influence, followed by open-ended questions for explaining the rankings. The resources used by PREMIUM were computed in terms of time (months and monetary costs.The theoretical core of the new treatments were consistent with those of EPT derived from global evidence, viz. Behavioural Activation and Motivational Enhancement for severe depression and harmful drinking respectively

  17. A Scalable Gaussian Process Analysis Algorithm for Biomass Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, Varun [ORNL; Vatsavai, Raju [ORNL

    2011-01-01

    Biomass monitoring is vital for studying the carbon cycle of earth's ecosystem and has several significant implications, especially in the context of understanding climate change and its impacts. Recently, several change detection methods have been proposed to identify land cover changes in temporal profiles (time series) of vegetation collected using remote sensing instruments, but do not satisfy one or both of the two requirements of the biomass monitoring problem, i.e., {\\em operating in online mode} and {\\em handling periodic time series}. In this paper, we adapt Gaussian process regression to detect changes in such time series in an online fashion. While Gaussian process (GP) have been widely used as a kernel based learning method for regression and classification, their applicability to massive spatio-temporal data sets, such as remote sensing data, has been limited owing to the high computational costs involved. We focus on addressing the scalability issues associated with the proposed GP based change detection algorithm. This paper makes several significant contributions. First, we propose a GP based online time series change detection algorithm and demonstrate its effectiveness in detecting different types of changes in {\\em Normalized Difference Vegetation Index} (NDVI) data obtained from a study area in Iowa, USA. Second, we propose an efficient Toeplitz matrix based solution which significantly improves the computational complexity and memory requirements of the proposed GP based method. Specifically, the proposed solution can analyze a time series of length $t$ in $O(t^2)$ time while maintaining a $O(t)$ memory footprint, compared to the $O(t^3)$ time and $O(t^2)$ memory requirement of standard matrix manipulation based methods. Third, we describe a parallel version of the proposed solution which can be used to simultaneously analyze a large number of time series. We study three different parallel implementations: using threads, MPI, and a

  18. Towards Reliable, Scalable, and Energy Efficient Cognitive Radio Systems

    KAUST Repository

    Sboui, Lokman

    2017-11-01

    The cognitive radio (CR) concept is expected to be adopted along with many technologies to meet the requirements of the next generation of wireless and mobile systems, the 5G. Consequently, it is important to determine the performance of the CR systems with respect to these requirements. In this thesis, after briefly describing the 5G requirements, we present three main directions in which we aim to enhance the CR performance. The first direction is the reliability. We study the achievable rate of a multiple-input multiple-output (MIMO) relay-assisted CR under two scenarios; an unmanned aerial vehicle (UAV) one-way relaying (OWR) and a fixed two-way relaying (TWR). We propose special linear precoding schemes that enable the secondary user (SU) to take advantage of the primary-free channel eigenmodes. We study the SU rate sensitivity to the relay power, the relay gain, the UAV altitude, the number of antennas and the line of sight availability. The second direction is the scalability. We first study a multiple access channel (MAC) with multiple SUs scenario. We propose a particular linear precoding and SUs selection scheme maximizing their sum-rate. We show that the proposed scheme provides a significant sum-rate improvement as the number of SUs increases. Secondly, we expand our scalability study to cognitive cellular networks. We propose a low-complexity algorithm for base station activation/deactivation and dynamic spectrum management maximizing the profits of primary and secondary networks subject to green constraints. We show that our proposed algorithms achieve performance close to those obtained with the exhaustive search method. The third direction is the energy efficiency (EE). We present a novel power allocation scheme based on maximizing the EE of both single-input and single-output (SISO) and MIMO systems. We solve a non-convex problem and derive explicit expressions of the corresponding optimal power. When the instantaneous channel is not available, we

  19. High-performance, scalable optical network-on-chip architectures

    Science.gov (United States)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of

  20. OPINION: Safe exponential manufacturing

    Science.gov (United States)

    Phoenix, Chris; Drexler, Eric

    2004-08-01

    In 1959, Richard Feynman pointed out that nanometre-scale machines could be built and operated, and that the precision inherent in molecular construction would make it easy to build multiple identical copies. This raised the possibility of exponential manufacturing, in which production systems could rapidly and cheaply increase their productive capacity, which in turn suggested the possibility of destructive runaway self-replication. Early proposals for artificial nanomachinery focused on small self-replicating machines, discussing their potential productivity and their potential destructiveness if abused. In the light of controversy regarding scenarios based on runaway replication (so-called 'grey goo'), a review of current thinking regarding nanotechnology-based manufacturing is in order. Nanotechnology-based fabrication can be thoroughly non-biological and inherently safe: such systems need have no ability to move about, use natural resources, or undergo incremental mutation. Moreover, self-replication is unnecessary: the development and use of highly productive systems of nanomachinery (nanofactories) need not involve the construction of autonomous self-replicating nanomachines. Accordingly, the construction of anything resembling a dangerous self-replicating nanomachine can and should be prohibited. Although advanced nanotechnologies could (with great difficulty and little incentive) be used to build such devices, other concerns present greater problems. Since weapon systems will be both easier to build and more likely to draw investment, the potential for dangerous systems is best considered in the context of military competition and arms control.

  1. INTEGRATED AUTOMOTIVE MANUFACTURING SUPPLY

    Directory of Open Access Journals (Sweden)

    P.J.S. Van Dyk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Supply planning and traffic flow planning are major activities in the automotive manufacturing environment worldwide. Traditionally, the impact of supply planning strategies on plant traffic is rarely considered. This paper describes the development of a Decision Support System (DSS that will assist automotive manufacturers to analyse the effect of supply planning decisions on plant traffic during the supply planning phase of their logistics planning process. In essence, this DSS consists of a Supply Medium Decision Support Tool (SMDST (an interactive MS-Excel model with Visual Basic interfacing and a traffic flow simulation model tool (using eMPlant simulation software.

    AFRIKAANSE OPSOMMING: Verskaffingsbeplanning en verkeersvloeibeplanning is belangrike aktiwiteite in die motorvervaardigingsbedryf wêreldwyd. Tradisioneel word die uitwerking van verskaffings-beplanningsstrategië op aanlegverkeer selde in ag geneem. Hierdie artikel beskryf die ontwikkeling van ’n Besluitnemings Ondersteuningstelsel (DSS wat motorvervaardigers sal ondersteun in die analise van die effek van verskaffingsbeplanningbesluite op aanlegverkeer tydens die verskaffingsbeplanningsfase van hulle logistieke beplanningsproses. Hierdie DSS bestaan hoofsaaklik uit ’n Verskaffings-vervoermiddel Besluitnemingshulpmiddel (SMDST (’n interaktiewe MS-Excel model met “Visual Basic” koppelling asook ’n simulasiemodel van verkeersvloei (met eM-Plant simulasiesagteware.

  2. Spraying Techniques for Large Scale Manufacturing of PEM-FC Electrodes

    Science.gov (United States)

    Hoffman, Casey J.

    Fuel cells are highly efficient energy conversion devices that represent one part of the solution to the world's current energy crisis in the midst of global climate change. When supplied with the necessary reactant gasses, fuel cells produce only electricity, heat, and water. The fuel used, namely hydrogen, is available from many sources including natural gas and the electrolysis of water. If the electricity for electrolysis is generated by renewable energy (e.g., solar and wind power), fuel cells represent a completely 'green' method of producing electricity. The thought of being able to produce electricity to power homes, vehicles, and other portable or stationary equipment with essentially zero environmentally harmful emissions has been driving academic and industrial fuel cell research and development with the goal of successfully commercializing this technology. Unfortunately, fuel cells cannot achieve any appreciable market penetration at their current costs. The author's hypothesis is that: the development of automated, non-contact deposition methods for electrode manufacturing will improve performance and process flexibility, thereby helping to accelerate the commercialization of PEMFC technology. The overarching motivation for this research was to lower the cost of manufacturing fuel cell electrodes and bring the technology one step closer to commercial viability. The author has proven this hypothesis through a detailed study of two non-contact spraying methods. These scalable deposition systems were incorporated into an automated electrode manufacturing system that was designed and built by the author for this research. The electrode manufacturing techniques developed by the author have been shown to produce electrodes that outperform a common lab-scale contact method that was studied as a baseline, as well as several commercially available electrodes. In addition, these scalable, large scale electrode manufacturing processes developed by the author are

  3. Study on scalable Coulombic degradation for estimating the lifetime of organic light-emitting devices

    International Nuclear Information System (INIS)

    Zhang Wenwen; Hou Xun; Wu Zhaoxin; Liang Shixiong; Jiao Bo; Zhang Xinwen; Wang Dawei; Chen Zhijian; Gong Qihuang

    2011-01-01

    The luminance decays of organic light-emitting diodes (OLEDs) are investigated with initial luminance of 1000 to 20 000 cd m -2 through a scalable Coulombic degradation and a stretched exponential decay. We found that the estimated lifetime by scalable Coulombic degradation deviates from the experimental results when the OLEDs work with high initial luminance. By measuring the temperature of the device during degradation, we found that the higher device temperatures will lead to instabilities of organic materials in devices, which is expected to result in the difference between the experimental results and estimation using the scalable Coulombic degradation.

  4. A practical multilayered conducting polymer actuator with scalable work output

    International Nuclear Information System (INIS)

    Ikushima, Kimiya; John, Stephen; Yokoyama, Kazuo; Nagamitsu, Sachio

    2009-01-01

    Household assistance robots are expected to become more prominent in the future and will require inherently safe design. Conducting polymer-based artificial muscle actuators are one potential option for achieving this safety, as they are flexible, lightweight and can be driven using low input voltages, unlike electromagnetic motors; however, practical implementation also requires a scalable structure and stability in air. In this paper we propose and practically implement a multilayer conducting polymer actuator which could achieve these targets using polypyrrole film and ionic liquid-soaked separators. The practical work density of a nine-layer multilayer actuator was 1.4 kJ m −3 at 0.5 Hz, when the volumes of the electrolyte and counter electrodes were included, which approaches the performance of mammalian muscle. To achieve air stability, we analyzed the effect of air-stable ionic liquid gels on actuator displacement using finite element simulation and it was found that the majority of strain could be retained when the elastic modulus of the gel was kept below 3 kPa. As a result of this work, we have shown that multilayered conducting polymer actuators are a feasible idea for household robotics, as they provide a substantial practical work density in a compact structure and can be easily scaled as required

  5. Online Hashing for Scalable Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Peng Li

    2018-05-01

    Full Text Available Recently, hashing-based large-scale remote sensing (RS image retrieval has attracted much attention. Many new hashing algorithms have been developed and successfully applied to fast RS image retrieval tasks. However, there exists an important problem rarely addressed in the research literature of RS image hashing. The RS images are practically produced in a streaming manner in many real-world applications, which means the data distribution keeps changing over time. Most existing RS image hashing methods are batch-based models whose hash functions are learned once for all and kept fixed all the time. Therefore, the pre-trained hash functions might not fit the ever-growing new RS images. Moreover, the batch-based models have to load all the training images into memory for model learning, which consumes many computing and memory resources. To address the above deficiencies, we propose a new online hashing method, which learns and adapts its hashing functions with respect to the newly incoming RS images in terms of a novel online partial random learning scheme. Our hash model is updated in a sequential mode such that the representative power of the learned binary codes for RS images are improved accordingly. Moreover, benefiting from the online learning strategy, our proposed hashing approach is quite suitable for scalable real-world remote sensing image retrieval. Extensive experiments on two large-scale RS image databases under online setting demonstrated the efficacy and effectiveness of the proposed method.

  6. Scalable global grid catalogue for Run3 and beyond

    Science.gov (United States)

    Martinez Pedreira, M.; Grigoras, C.; ALICE Collaboration

    2017-10-01

    The AliEn (ALICE Environment) file catalogue is a global unique namespace providing mapping between a UNIX-like logical name structure and the corresponding physical files distributed over 80 storage elements worldwide. Powerful search tools and hierarchical metadata information are integral parts of the system and are used by the Grid jobs as well as local users to store and access all files on the Grid storage elements. The catalogue has been in production since 2005 and over the past 11 years has grown to more than 2 billion logical file names. The backend is a set of distributed relational databases, ensuring smooth growth and fast access. Due to the anticipated fast future growth, we are looking for ways to enhance the performance and scalability by simplifying the catalogue schema while keeping the functionality intact. We investigated different backend solutions, such as distributed key value stores, as replacement for the relational database. This contribution covers the architectural changes in the system, together with the technology evaluation, benchmark results and conclusions.

  7. Scalable bonding of nanofibrous polytetrafluoroethylene (PTFE) membranes on microstructures

    Science.gov (United States)

    Mortazavi, Mehdi; Fazeli, Abdolreza; Moghaddam, Saeed

    2018-01-01

    Expanded polytetrafluoroethylene (ePTFE) nanofibrous membranes exhibit high porosity (80%-90%), high gas permeability, chemical inertness, and superhydrophobicity, which makes them a suitable choice in many demanding fields including industrial filtration, medical implants, bio-/nano- sensors/actuators and microanalysis (i.e. lab-on-a-chip). However, one of the major challenges that inhibit implementation of such membranes is their inability to bond to other materials due to their intrinsic low surface energy and chemical inertness. Prior attempts to improve adhesion of ePTFE membranes to other surfaces involved surface chemical treatments which have not been successful due to degradation of the mechanical integrity and the breakthrough pressure of the membrane. Here, we report a simple and scalable method of bonding ePTFE membranes to different surfaces via the introduction of an intermediate adhesive layer. While a variety of adhesives can be used with this technique, the highest bonding performance is obtained for adhesives that have moderate contact angles with the substrate and low contact angles with the membrane. A thin layer of an adhesive can be uniformly applied onto micro-patterned substrates with feature sizes down to 5 µm using a roll-coating process. Membrane-based microchannel and micropillar devices with burst pressures of up to 200 kPa have been successfully fabricated and tested. A thin layer of the membrane remains attached to the substrate after debonding, suggesting that mechanical interlocking through nanofiber engagement is the main mechanism of adhesion.

  8. SAChES: Scalable Adaptive Chain-Ensemble Sampling.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ray, Jaideep [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ebeida, Mohamed Salah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huang, Maoyi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hou, Zhangshuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ren, Huiying [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-01

    We present the development of a parallel Markov Chain Monte Carlo (MCMC) method called SAChES, Scalable Adaptive Chain-Ensemble Sampling. This capability is targed to Bayesian calibration of com- putationally expensive simulation models. SAChES involves a hybrid of two methods: Differential Evo- lution Monte Carlo followed by Adaptive Metropolis. Both methods involve parallel chains. Differential evolution allows one to explore high-dimensional parameter spaces using loosely coupled (i.e., largely asynchronous) chains. Loose coupling allows the use of large chain ensembles, with far more chains than the number of parameters to explore. This reduces per-chain sampling burden, enables high-dimensional inversions and the use of computationally expensive forward models. The large number of chains can also ameliorate the impact of silent-errors, which may affect only a few chains. The chain ensemble can also be sampled to provide an initial condition when an aberrant chain is re-spawned. Adaptive Metropolis takes the best points from the differential evolution and efficiently hones in on the poste- rior density. The multitude of chains in SAChES is leveraged to (1) enable efficient exploration of the parameter space; and (2) ensure robustness to silent errors which may be unavoidable in extreme-scale computational platforms of the future. This report outlines SAChES, describes four papers that are the result of the project, and discusses some additional results.

  9. SVOPME: A Scalable Virtual Organization Privileges Management Environment

    International Nuclear Information System (INIS)

    Garzoglio, Gabriele; Sfiligoi, Igor; Levshina, Tanya; Wang, Nanbor; Ananthan, Balamurali

    2010-01-01

    Grids enable uniform access to resources by implementing standard interfaces to resource gateways. In the Open Science Grid (OSG), privileges are granted on the basis of the user's membership to a Virtual Organization (VO). However, Grid sites are solely responsible to determine and control access privileges to resources using users' identity and personal attributes, which are available through Grid credentials. While this guarantees full control on access rights to the sites, it makes VO privileges heterogeneous throughout the Grid and hardly fits with the Grid paradigm of uniform access to resources. To address these challenges, we are developing the Scalable Virtual Organization Privileges Management Environment (SVOPME), which provides tools for VOs to define and publish desired privileges and assists sites to provide the appropriate access policies. Moreover, SVOPME provides tools for Grid sites to analyze site access policies for various resources, verify compliance with preferred VO policies, and generate directives for site administrators on how the local access policies can be amended to achieve such compliance without taking control of local configurations away from site administrators. This paper discusses what access policies are of interest to the OSG community and how SVOPME implements privilege management for OSG.

  10. The Scalable Coherent Interface and related standards projects

    International Nuclear Information System (INIS)

    Gustavson, D.B.

    1991-09-01

    The Scalable Coherent Interface (SCI) project (IEEE P1596) found a way to avoid the limits that are inherent in bus technology. SCI provides bus-like services by transmitting packets on a collection of point-to-point unidirectional links. The SCI protocols support cache coherence in a distributed-shared-memory multiprocessor model, message passing, I/O, and local-area-network-like communication over fiber optic or wire links. VLSI circuits that operate parallel links at 1000 MByte/s and serial links at 1000 Mbit/s will be available early in 1992. Several ongoing SCI-related projects are applying the SCI technology to new areas or extending it to more difficult problems. P1596.1 defines the architecture of a bridge between SCI and VME; P1596.2 compatibly extends the cache coherence mechanism for efficient operation with kiloprocessor systems; P1596.3 defines new low-voltage (about 0.25 V) differential signals suitable for low power interfaces for CMOS or GaAs VLSI implementations of SCI; P1596.4 defines a high performance memory chip interface using these signals; P1596.5 defines data transfer formats for efficient interprocessor communication in heterogeneous multiprocessor systems. This paper reports the current status of SCI, related standards, and new projects. 16 refs

  11. High-performance scalable Information Service for the ATLAS experiment

    CERN Document Server

    Kolos, S; The ATLAS collaboration; Hauser, R

    2012-01-01

    The ATLAS experiment is being operated by highly distributed computing system which is constantly producing a lot of status information which is used to monitor the experiment operational conditions as well as to access the quality of the physics data being taken. For example the ATLAS High Level Trigger(HLT) algorithms are executed on the online computing farm consisting from about 1500 nodes. Each HLT algorithm is producing few thousands histograms, which have to be integrated over the whole farm and carefully analyzed in order to properly tune the event rejection. In order to handle such non-physics data the Information Service (IS) facility has been developed in the scope of the ATLAS TDAQ project. The IS provides high-performance scalable solution for information exchange in distributed environment. In the course of an ATLAS data taking session the IS handles about hundred gigabytes of information which is being constantly updated with the update interval varying from a second to few tens of seconds. IS ...

  12. A scalable platform for biomechanical studies of tissue cutting forces

    International Nuclear Information System (INIS)

    Valdastri, P; Tognarelli, S; Menciassi, A; Dario, P

    2009-01-01

    This paper presents a novel and scalable experimental platform for biomechanical analysis of tissue cutting that exploits a triaxial force-sensitive scalpel and a high resolution vision system. Real-time measurements of cutting forces can be used simultaneously with accurate visual information in order to extract important biomechanical clues in real time that would aid the surgeon during minimally invasive intervention in preserving healthy tissues. Furthermore, the in vivo data gathered can be used for modeling the viscoelastic behavior of soft tissues, which is an important issue in surgical simulator development. Thanks to a modular approach, this platform can be scaled down, thus enabling in vivo real-time robotic applications. Several cutting experiments were conducted with soft porcine tissues (lung, liver and kidney) chosen as ideal candidates for biopsy procedures. The cutting force curves show repeated self-similar units of localized loading followed by unloading. With regards to tissue properties, the depth of cut plays a significant role in the magnitude of the cutting force acting on the blade. Image processing techniques and dedicated algorithms were used to outline the surface of the tissues and estimate the time variation of the depth of cut. The depth of cut was finally used to obtain the normalized cutting force, thus allowing comparative biomechanical analysis

  13. Scalable and cost-effective NGS genotyping in the cloud.

    Science.gov (United States)

    Souilmi, Yassine; Lancaster, Alex K; Jung, Jae-Yoon; Rizzo, Ettore; Hawkins, Jared B; Powles, Ryan; Amzazi, Saaïd; Ghazal, Hassan; Tonellato, Peter J; Wall, Dennis P

    2015-10-15

    While next-generation sequencing (NGS) costs have plummeted in recent years, cost and complexity of computation remain substantial barriers to the use of NGS in routine clinical care. The clinical potential of NGS will not be realized until robust and routine whole genome sequencing data can be accurately rendered to medically actionable reports within a time window of hours and at scales of economy in the 10's of dollars. We take a step towards addressing this challenge, by using COSMOS, a cloud-enabled workflow management system, to develop GenomeKey, an NGS whole genome analysis workflow. COSMOS implements complex workflows making optimal use of high-performance compute clusters. Here we show that the Amazon Web Service (AWS) implementation of GenomeKey via COSMOS provides a fast, scalable, and cost-effective analysis of both public benchmarking and large-scale heterogeneous clinical NGS datasets. Our systematic benchmarking reveals important new insights and considerations to produce clinical turn-around of whole genome analysis optimization and workflow management including strategic batching of individual genomes and efficient cluster resource configuration.

  14. A Platform for Scalable Satellite and Geospatial Data Analysis

    Science.gov (United States)

    Beneke, C. M.; Skillman, S.; Warren, M. S.; Kelton, T.; Brumby, S. P.; Chartrand, R.; Mathis, M.

    2017-12-01

    At Descartes Labs, we use the commercial cloud to run global-scale machine learning applications over satellite imagery. We have processed over 5 Petabytes of public and commercial satellite imagery, including the full Landsat and Sentinel archives. By combining open-source tools with a FUSE-based filesystem for cloud storage, we have enabled a scalable compute platform that has demonstrated reading over 200 GB/s of satellite imagery into cloud compute nodes. In one application, we generated global 15m Landsat-8, 20m Sentinel-1, and 10m Sentinel-2 composites from 15 trillion pixels, using over 10,000 CPUs. We recently created a public open-source Python client library that can be used to query and access preprocessed public satellite imagery from within our platform, and made this platform available to researchers for non-commercial projects. In this session, we will describe how you can use the Descartes Labs Platform for rapid prototyping and scaling of geospatial analyses and demonstrate examples in land cover classification.

  15. An open, interoperable, and scalable prehospital information technology network architecture.

    Science.gov (United States)

    Landman, Adam B; Rokos, Ivan C; Burns, Kevin; Van Gelder, Carin M; Fisher, Roger M; Dunford, James V; Cone, David C; Bogucki, Sandy

    2011-01-01

    Some of the most intractable challenges in prehospital medicine include response time optimization, inefficiencies at the emergency medical services (EMS)-emergency department (ED) interface, and the ability to correlate field interventions with patient outcomes. Information technology (IT) can address these and other concerns by ensuring that system and patient information is received when and where it is needed, is fully integrated with prior and subsequent patient information, and is securely archived. Some EMS agencies have begun adopting information technologies, such as wireless transmission of 12-lead electrocardiograms, but few agencies have developed a comprehensive plan for management of their prehospital information and integration with other electronic medical records. This perspective article highlights the challenges and limitations of integrating IT elements without a strategic plan, and proposes an open, interoperable, and scalable prehospital information technology (PHIT) architecture. The two core components of this PHIT architecture are 1) routers with broadband network connectivity to share data between ambulance devices and EMS system information services and 2) an electronic patient care report to organize and archive all electronic prehospital data. To successfully implement this comprehensive PHIT architecture, data and technology requirements must be based on best available evidence, and the system must adhere to health data standards as well as privacy and security regulations. Recent federal legislation prioritizing health information technology may position federal agencies to help design and fund PHIT architectures.

  16. Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications

    Science.gov (United States)

    Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.

    2017-10-01

    Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.

  17. Nano-islands Based Charge Trapping Memory: A Scalability Study

    KAUST Repository

    Elatab, Nazek; Saadat, Irfan; Saraswat, Krishna; Nayfeh, Ammar

    2017-01-01

    Zinc-oxide (ZnO) and zirconia (ZrO2) metal oxides have been studied extensively in the past few decades with several potential applications including memory devices. In this work, a scalability study, based on the ITRS roadmap, is conducted on memory devices with ZnO and ZrO2 nano-islands charge trapping layer. Both nano-islands are deposited using atomic layer deposition (ALD), however, the different sizes, distribution and properties of the materials result in different memory performance. The results show that at the 32-nm node charge trapping memory with 127 ZrO2 nano-islands can provide a 9.4 V memory window. However, with ZnO only 31 nano-islands can provide a window of 2.5 V. The results indicate that ZrO2 nano-islands are more promising than ZnO in scaled down devices due to their higher density, higher-k, and absence of quantum confinement effects.

  18. Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction.

    Science.gov (United States)

    Soleimani, Hossein; Hensman, James; Saria, Suchi

    2017-08-21

    Missing data and noisy observations pose significant challenges for reliably predicting events from irregularly sampled multivariate time series (longitudinal) data. Imputation methods, which are typically used for completing the data prior to event prediction, lack a principled mechanism to account for the uncertainty due to missingness. Alternatively, state-of-the-art joint modeling techniques can be used for jointly modeling the longitudinal and event data and compute event probabilities conditioned on the longitudinal observations. These approaches, however, make strong parametric assumptions and do not easily scale to multivariate signals with many observations. Our proposed approach consists of several key innovations. First, we develop a flexible and scalable joint model based upon sparse multiple-output Gaussian processes. Unlike state-of-the-art joint models, the proposed model can explain highly challenging structure including non-Gaussian noise while scaling to large data. Second, we derive an optimal policy for predicting events using the distribution of the event occurrence estimated by the joint model. The derived policy trades-off the cost of a delayed detection versus incorrect assessments and abstains from making decisions when the estimated event probability does not satisfy the derived confidence criteria. Experiments on a large dataset show that the proposed framework significantly outperforms state-of-the-art techniques in event prediction.

  19. Toward a Scalable and Sustainable Intervention for Complementary Food Safety.

    Science.gov (United States)

    Rahman, Musarrat J; Nizame, Fosiul A; Nuruzzaman, Mohammad; Akand, Farhana; Islam, Mohammad Aminul; Parvez, Sarker Masud; Stewart, Christine P; Unicomb, Leanne; Luby, Stephen P; Winch, Peter J

    2016-06-01

    Contaminated complementary foods are associated with diarrhea and malnutrition among children aged 6 to 24 months. However, existing complementary food safety intervention models are likely not scalable and sustainable. To understand current behaviors, motivations for these behaviors, and the potential barriers to behavior change and to identify one or two simple actions that can address one or few food contamination pathways and have potential to be sustainably delivered to a larger population. Data were collected from 2 rural sites in Bangladesh through semistructured observations (12), video observations (12), in-depth interviews (18), and focus group discussions (3). Although mothers report preparing dedicated foods for children, observations show that these are not separate from family foods. Children are regularly fed store-bought foods that are perceived to be bad for children. Mothers explained that long storage durations, summer temperatures, flies, animals, uncovered food, and unclean utensils are threats to food safety. Covering foods, storing foods on elevated surfaces, and reheating foods before consumption are methods believed to keep food safe. Locally made cabinet-like hardware is perceived to be acceptable solution to address reported food safety threats. Conventional approaches that include teaching food safety and highlighting benefits such as reduced contamination may be a disincentive for rural mothers who need solutions for their physical environment. We propose extending existing beneficial behaviors by addressing local preferences of taste and convenience. © The Author(s) 2016.

  20. Scalable Pressure Sensor Based on Electrothermally Operated Resonator

    KAUST Repository

    Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Alcheikh, Nouha; Younis, Mohammad I.

    2017-01-01

    We experimentally demonstrate a new pressure sensor that offers the flexibility of being scalable to small sizes up to the nano regime. Unlike conventional pressure sensors that rely on large diaphragms and big-surface structures, the principle of operation here relies on convective cooling of the air surrounding an electrothermally heated resonant structure, which can be a beam or a bridge. This concept is demonstrated using an electrothermally tuned and electrostatically driven MEMS resonator, which is designed to be deliberately curved. We show that the variation of pressure can be tracked accurately by monitoring the change in the resonance frequency of the resonator at a constant electrothermal voltage. We show that the range of the sensed pressure and the sensitivity of detection are controllable by the amount of the applied electrothermal voltage. Theoretically, we verify the device concept using a multi-physics nonlinear finite element model. The proposed pressure sensor is simple in principle and design and offers the possibility of further miniaturization to the nanoscale.

  1. Scalability Issues for Remote Sensing Infrastructure: A Case Study

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-04-01

    Full Text Available For the past decade, a team of University of Calgary researchers has operated a large “sensor Web” to collect, analyze, and share scientific data from remote measurement instruments across northern Canada. This sensor Web receives real-time data streams from over a thousand Internet-connected sensors, with a particular emphasis on environmental data (e.g., space weather, auroral phenomena, atmospheric imaging. Through research collaborations, we had the opportunity to evaluate the performance and scalability of their remote sensing infrastructure. This article reports the lessons learned from our study, which considered both data collection and data dissemination aspects of their system. On the data collection front, we used benchmarking techniques to identify and fix a performance bottleneck in the system’s memory management for TCP data streams, while also improving system efficiency on multi-core architectures. On the data dissemination front, we used passive and active network traffic measurements to identify and reduce excessive network traffic from the Web robots and JavaScript techniques used for data sharing. While our results are from one specific sensor Web system, the lessons learned may apply to other scientific Web sites with remote sensing infrastructure.

  2. Scalable Photogrammetric Motion Capture System "mosca": Development and Application

    Science.gov (United States)

    Knyaz, V. A.

    2015-05-01

    Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  3. Detailed Modeling and Evaluation of a Scalable Multilevel Checkpointing System

    Energy Technology Data Exchange (ETDEWEB)

    Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moody, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bronevetsky, Greg [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); de Supinski, Bronis R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-01

    High-performance computing (HPC) systems are growing more powerful by utilizing more components. As the system mean time before failure correspondingly drops, applications must checkpoint frequently to make progress. But, at scale, the cost of checkpointing becomes prohibitive. A solution to this problem is multilevel checkpointing, which employs multiple types of checkpoints in a single run. Moreover, lightweight checkpoints can handle the most common failure modes, while more expensive checkpoints can handle severe failures. We designed a multilevel checkpointing library, the Scalable Checkpoint/Restart (SCR) library, that writes lightweight checkpoints to node-local storage in addition to the parallel file system. We present probabilistic Markov models of SCR's performance. We show that on future large-scale systems, SCR can lead to a gain in machine efficiency of up to 35 percent, and reduce the load on the parallel file system by a factor of two. In addition, we predict that checkpoint scavenging, or only writing checkpoints to the parallel file system on application termination, can reduce the load on the parallel file system by 20 × on today's systems and still maintain high application efficiency.

  4. TDCCREC: AN EFFICIENT AND SCALABLE WEB-BASED RECOMMENDATION SYSTEM

    Directory of Open Access Journals (Sweden)

    K.Latha

    2010-10-01

    Full Text Available Web browsers are provided with complex information space where the volume of information available to them is huge. There comes the Recommender system which effectively recommends web pages that are related to the current webpage, to provide the user with further customized reading material. To enhance the performance of the recommender systems, we include an elegant proposed web based recommendation system; Truth Discovery based Content and Collaborative RECommender (TDCCREC which is capable of addressing scalability. Existing approaches such as Learning automata deals with usage and navigational patterns of users. On the other hand, Weighted Association Rule is applied for recommending web pages by assigning weights to each page in all the transactions. Both of them have their own disadvantages. The websites recommended by the search engines have no guarantee for information correctness and often delivers conflicting information. To solve them, content based filtering and collaborative filtering techniques are introduced for recommending web pages to the active user along with the trustworthiness of the website and confidence of facts which outperforms the existing methods. Our results show how the proposed recommender system performs better in predicting the next request of web users.

  5. Highly scalable and robust rule learner: performance evaluation and comparison.

    Science.gov (United States)

    Kurgan, Lukasz A; Cios, Krzysztof J; Dick, Scott

    2006-02-01

    Business intelligence and bioinformatics applications increasingly require the mining of datasets consisting of millions of data points, or crafting real-time enterprise-level decision support systems for large corporations and drug companies. In all cases, there needs to be an underlying data mining system, and this mining system must be highly scalable. To this end, we describe a new rule learner called DataSqueezer. The learner belongs to the family of inductive supervised rule extraction algorithms. DataSqueezer is a simple, greedy, rule builder that generates a set of production rules from labeled input data. In spite of its relative simplicity, DataSqueezer is a very effective learner. The rules generated by the algorithm are compact, comprehensible, and have accuracy comparable to rules generated by other state-of-the-art rule extraction algorithms. The main advantages of DataSqueezer are very high efficiency, and missing data resistance. DataSqueezer exhibits log-linear asymptotic complexity with the number of training examples, and it is faster than other state-of-the-art rule learners. The learner is also robust to large quantities of missing data, as verified by extensive experimental comparison with the other learners. DataSqueezer is thus well suited to modern data mining and business intelligence tasks, which commonly involve huge datasets with a large fraction of missing data.

  6. Scalable Pressure Sensor Based on Electrothermally Operated Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-11-03

    We experimentally demonstrate a new pressure sensor that offers the flexibility of being scalable to small sizes up to the nano regime. Unlike conventional pressure sensors that rely on large diaphragms and big-surface structures, the principle of operation here relies on convective cooling of the air surrounding an electrothermally heated resonant structure, which can be a beam or a bridge. This concept is demonstrated using an electrothermally tuned and electrostatically driven MEMS resonator, which is designed to be deliberately curved. We show that the variation of pressure can be tracked accurately by monitoring the change in the resonance frequency of the resonator at a constant electrothermal voltage. We show that the range of the sensed pressure and the sensitivity of detection are controllable by the amount of the applied electrothermal voltage. Theoretically, we verify the device concept using a multi-physics nonlinear finite element model. The proposed pressure sensor is simple in principle and design and offers the possibility of further miniaturization to the nanoscale.

  7. Developing a scalable modeling architecture for studying survivability technologies

    Science.gov (United States)

    Mohammad, Syed; Bounker, Paul; Mason, James; Brister, Jason; Shady, Dan; Tucker, David

    2006-05-01

    To facilitate interoperability of models in a scalable environment, and provide a relevant virtual environment in which Survivability technologies can be evaluated, the US Army Research Development and Engineering Command (RDECOM) Modeling Architecture for Technology Research and Experimentation (MATREX) Science and Technology Objective (STO) program has initiated the Survivability Thread which will seek to address some of the many technical and programmatic challenges associated with the effort. In coordination with different Thread customers, such as the Survivability branches of various Army labs, a collaborative group has been formed to define the requirements for the simulation environment that would in turn provide them a value-added tool for assessing models and gauge system-level performance relevant to Future Combat Systems (FCS) and the Survivability requirements of other burgeoning programs. An initial set of customer requirements has been generated in coordination with the RDECOM Survivability IPT lead, through the Survivability Technology Area at RDECOM Tank-automotive Research Development and Engineering Center (TARDEC, Warren, MI). The results of this project are aimed at a culminating experiment and demonstration scheduled for September, 2006, which will include a multitude of components from within RDECOM and provide the framework for future experiments to support Survivability research. This paper details the components with which the MATREX Survivability Thread was created and executed, and provides insight into the capabilities currently demanded by the Survivability faculty within RDECOM.

  8. Elastic pointer directory organization for scalable shared memory multiprocessors

    Institute of Scientific and Technical Information of China (English)

    Yuhang Liu; Mingfa Zhu; Limin Xiao

    2014-01-01

    In the field of supercomputing, one key issue for scal-able shared-memory multiprocessors is the design of the directory which denotes the sharing state for a cache block. A good direc-tory design intends to achieve three key attributes: reasonable memory overhead, sharer position precision and implementation complexity. However, researchers often face the problem that gain-ing one attribute may result in losing another. The paper proposes an elastic pointer directory (EPD) structure based on the analysis of shared-memory applications, taking the fact that the number of sharers for each directory entry is typical y smal . Analysis re-sults show that for 4 096 nodes, the ratio of memory overhead to the ful-map directory is 2.7%. Theoretical analysis and cycle-accurate execution-driven simulations on a 16 and 64-node cache coherence non uniform memory access (CC-NUMA) multiproces-sor show that the corresponding pointer overflow probability is reduced significantly. The performance is observed to be better than that of a limited pointers directory and almost identical to the ful-map directory, except for the slight implementation complex-ity. Using the directory cache to explore directory access locality is also studied. The experimental result shows that this is a promis-ing approach to be used in the state-of-the-art high performance computing domain.

  9. Highly scalable parallel processing of extracellular recordings of Multielectrode Arrays.

    Science.gov (United States)

    Gehring, Tiago V; Vasilaki, Eleni; Giugliano, Michele

    2015-01-01

    Technological advances of Multielectrode Arrays (MEAs) used for multisite, parallel electrophysiological recordings, lead to an ever increasing amount of raw data being generated. Arrays with hundreds up to a few thousands of electrodes are slowly seeing widespread use and the expectation is that more sophisticated arrays will become available in the near future. In order to process the large data volumes resulting from MEA recordings there is a pressing need for new software tools able to process many data channels in parallel. Here we present a new tool for processing MEA data recordings that makes use of new programming paradigms and recent technology developments to unleash the power of modern highly parallel hardware, such as multi-core CPUs with vector instruction sets or GPGPUs. Our tool builds on and complements existing MEA data analysis packages. It shows high scalability and can be used to speed up some performance critical pre-processing steps such as data filtering and spike detection, helping to make the analysis of larger data sets tractable.

  10. Nano-islands Based Charge Trapping Memory: A Scalability Study

    KAUST Repository

    Elatab, Nazek

    2017-10-19

    Zinc-oxide (ZnO) and zirconia (ZrO2) metal oxides have been studied extensively in the past few decades with several potential applications including memory devices. In this work, a scalability study, based on the ITRS roadmap, is conducted on memory devices with ZnO and ZrO2 nano-islands charge trapping layer. Both nano-islands are deposited using atomic layer deposition (ALD), however, the different sizes, distribution and properties of the materials result in different memory performance. The results show that at the 32-nm node charge trapping memory with 127 ZrO2 nano-islands can provide a 9.4 V memory window. However, with ZnO only 31 nano-islands can provide a window of 2.5 V. The results indicate that ZrO2 nano-islands are more promising than ZnO in scaled down devices due to their higher density, higher-k, and absence of quantum confinement effects.

  11. Mindfulness and compassion: an examination of mechanism and scalability.

    Directory of Open Access Journals (Sweden)

    Daniel Lim

    Full Text Available Emerging evidence suggests that meditation engenders prosocial behaviors meant to benefit others. However, the robustness, underlying mechanisms, and potential scalability of such effects remain open to question. The current experiment employed an ecologically valid situation that exposed participants to a person in visible pain. Following three-week, mobile-app based training courses in mindfulness meditation or cognitive skills (i.e., an active control condition, participants arrived at a lab individually to complete purported measures of cognitive ability. Upon entering a public waiting area outside the lab that contained three chairs, participants seated themselves in the last remaining unoccupied chair; confederates occupied the other two. As the participant sat and waited, a third confederate using crutches and a large walking boot entered the waiting area while displaying discomfort. Compassionate responding was assessed by whether participants gave up their seat to allow the uncomfortable confederate to sit, thereby relieving her pain. Participants' levels of empathic accuracy was also assessed. As predicted, participants assigned to the mindfulness meditation condition gave up their seats more frequently than did those assigned to the active control group. In addition, empathic accuracy was not increased by mindfulness practice, suggesting that mindfulness-enhanced compassionate behavior does not stem from associated increases in the ability to decode the emotional experiences of others.

  12. Interactive and Animated Scalable Vector Graphics and R Data Displays

    Directory of Open Access Journals (Sweden)

    Deborah Nolan

    2012-01-01

    Full Text Available We describe an approach to creating interactive and animated graphical displays using R's graphics engine and Scalable Vector Graphics, an XML vocabulary for describing two-dimensional graphical displays. We use the svg( graphics device in R and then post-process the resulting XML documents. The post-processing identities the elements in the SVG that correspond to the different components of the graphical display, e.g., points, axes, labels, lines. One can then annotate these elements to add interactivity and animation effects. One can also use JavaScript to provide dynamic interactive effects to the plot, enabling rich user interactions and compelling visualizations. The resulting SVG documents can be embedded withinHTML documents and can involve JavaScript code that integrates the SVG and HTML objects. The functionality is provided via the SVGAnnotation package and makes static plots generated via R graphics functions available as stand-alone, interactive and animated plots for the Web and other venues.

  13. Parallel peak pruning for scalable SMP contour tree computation

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Hamish A. [Univ. of Leeds (United Kingdom); Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Davis, CA (United States); Sewell, Christopher M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahrens, James P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-09

    As data sets grow to exascale, automated data analysis and visualisation are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. Here in this paper, we report the first shared SMP algorithm for fully parallel contour tree computation, withfor-mal guarantees of O(lgnlgt) parallel steps and O(n lgn) work, and implementations with up to 10x parallel speed up in OpenMP and up to 50x speed up in NVIDIA Thrust.

  14. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    Science.gov (United States)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  15. A Scalable proxy cache for Grid Data Access

    International Nuclear Information System (INIS)

    Cristian Cirstea, Traian; Just Keijser, Jan; Arthur Koeroo, Oscar; Starink, Ronald; Alan Templon, Jeffrey

    2012-01-01

    We describe a prototype grid proxy cache system developed at Nikhef, motivated by a desire to construct the first building block of a future https-based Content Delivery Network for grid infrastructures. Two goals drove the project: firstly to provide a “native view” of the grid for desktop-type users, and secondly to improve performance for physics-analysis type use cases, where multiple passes are made over the same set of data (residing on the grid). We further constrained the design by requiring that the system should be made of standard components wherever possible. The prototype that emerged from this exercise is a horizontally-scalable, cooperating system of web server / cache nodes, fronted by a customized webDAV server. The webDAV server is custom only in the sense that it supports http redirects (providing horizontal scaling) and that the authentication module has, as back end, a proxy delegation chain that can be used by the cache nodes to retrieve files from the grid. The prototype was deployed at Nikhef and tested at a scale of several terabytes of data and approximately one hundred fast cores of computing. Both small and large files were tested, in a number of scenarios, and with various numbers of cache nodes, in order to understand the scaling properties of the system. For properly-dimensioned cache-node hardware, the system showed speedup of several integer factors for the analysis-type use cases. These results and others are presented and discussed.

  16. Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach.

    Science.gov (United States)

    Kothary, Pratik; Dou, Xuan; Fang, Yin; Gu, Zhuxiao; Leo, Sin-Yen; Jiang, Peng

    2017-02-01

    Here we report an unconventional colloidal lithography approach for fabricating a variety of periodic polymer nanostructures with tunable geometries and hydrophobic properties. Wafer-sized, double-layer, non-close-packed silica colloidal crystal embedded in a polymer matrix is first assembled by a scalable spin-coating technology. The unusual non-close-packed crystal structure combined with a thin polymer film separating the top and the bottom colloidal layers render great versatility in templating periodic nanostructures, including arrays of nanovoids, nanorings, and hierarchical nanovoids. These different geometries result in varied fractions of entrapped air in between the templated nanostructures, which in turn lead to different apparent water contact angles. Superhydrophobic surfaces with >150° water contact angles and <5° contact angle hysteresis are achieved on fluorosilane-modified polymer hierarchical nanovoid arrays with large fractions of entrapped air. The experimental contact angle measurements are complemented with theoretical predictions using the Cassie's model to gain insights into the fundamental microstructure-dewetting property relationships. The experimental and theoretical contact angles follow the same trends as determined by the unique hierarchical structures of the templated periodic arrays. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Dynamic superhydrophobic behavior in scalable random textured polymeric surfaces

    Science.gov (United States)

    Moreira, David; Park, Sung-hoon; Lee, Sangeui; Verma, Neil; Bandaru, Prabhakar R.

    2016-03-01

    Superhydrophobic (SH) surfaces, created from hydrophobic materials with micro- or nano- roughness, trap air pockets in the interstices of the roughness, leading, in fluid flow conditions, to shear-free regions with finite interfacial fluid velocity and reduced resistance to flow. Significant attention has been given to SH conditions on ordered, periodic surfaces. However, in practical terms, random surfaces are more applicable due to their relative ease of fabrication. We investigate SH behavior on a novel durable polymeric rough surface created through a scalable roll-coating process with varying micro-scale roughness through velocity and pressure drop measurements. We introduce a new method to construct the velocity profile over SH surfaces with significant roughness in microchannels. Slip length was measured as a function of differing roughness and interstitial air conditions, with roughness and air fraction parameters obtained through direct visualization. The slip length was matched to scaling laws with good agreement. Roughness at high air fractions led to a reduced pressure drop and higher velocities, demonstrating the effectiveness of the considered surface in terms of reduced resistance to flow. We conclude that the observed air fraction under flow conditions is the primary factor determining the response in fluid flow. Such behavior correlated well with the hydrophobic or superhydrophobic response, indicating significant potential for practical use in enhancing fluid flow efficiency.

  18. A scalable coevolutionary multi-objective particle swarm optimizer

    Directory of Open Access Journals (Sweden)

    Xiangwei Zheng

    2010-11-01

    Full Text Available Multi-Objective Particle Swarm Optimizers (MOPSOs are easily trapped in local optima, cost more function evaluations and suffer from the curse of dimensionality. A scalable cooperative coevolution and ?-dominance based MOPSO (CEPSO is proposed to address these issues. In CEPSO, Multi-objective Optimization Problems (MOPs are decomposed in terms of their decision variables and are optimized by cooperative coevolutionary subswarms, and a uniform distribution mutation operator is adopted to avoid premature convergence. All subswarms share an external archive based on ?-dominance, which is also used as a leader set. Collaborators are selected from the archive and used to construct context vectors in order to evaluate particles in a subswarm. CEPSO is tested on several classical MOP benchmark functions and experimental results show that CEPSO can readily escape from local optima and optimize both low and high dimensional problems, but the number of function evaluations only increases linearly with respect to the number of decision variables. Therefore, CEPSO is competitive in solving various MOPs.

  19. Scalable and Flexible Multiview MAX-VAR Canonical Correlation Analysis

    Science.gov (United States)

    Fu, Xiao; Huang, Kejun; Hong, Mingyi; Sidiropoulos, Nicholas D.; So, Anthony Man-Cho

    2017-08-01

    Generalized canonical correlation analysis (GCCA) aims at finding latent low-dimensional common structure from multiple views (feature vectors in different domains) of the same entities. Unlike principal component analysis (PCA) that handles a single view, (G)CCA is able to integrate information from different feature spaces. Here we focus on MAX-VAR GCCA, a popular formulation which has recently gained renewed interest in multilingual processing and speech modeling. The classic MAX-VAR GCCA problem can be solved optimally via eigen-decomposition of a matrix that compounds the (whitened) correlation matrices of the views; but this solution has serious scalability issues, and is not directly amenable to incorporating pertinent structural constraints such as non-negativity and sparsity on the canonical components. We posit regularized MAX-VAR GCCA as a non-convex optimization problem and propose an alternating optimization (AO)-based algorithm to handle it. Our algorithm alternates between {\\em inexact} solutions of a regularized least squares subproblem and a manifold-constrained non-convex subproblem, thereby achieving substantial memory and computational savings. An important benefit of our design is that it can easily handle structure-promoting regularization. We show that the algorithm globally converges to a critical point at a sublinear rate, and approaches a global optimal solution at a linear rate when no regularization is considered. Judiciously designed simulations and large-scale word embedding tasks are employed to showcase the effectiveness of the proposed algorithm.

  20. Scalable, ultra-resistant structural colors based on network metamaterials

    KAUST Repository

    Galinski, Henning

    2017-05-05

    Structural colors have drawn wide attention for their potential as a future printing technology for various applications, ranging from biomimetic tissues to adaptive camouflage materials. However, an efficient approach to realize robust colors with a scalable fabrication technique is still lacking, hampering the realization of practical applications with this platform. Here, we develop a new approach based on large-scale network metamaterials that combine dealloyed subwavelength structures at the nanoscale with lossless, ultra-thin dielectric coatings. By using theory and experiments, we show how subwavelength dielectric coatings control a mechanism of resonant light coupling with epsilon-near-zero regions generated in the metallic network, generating the formation of saturated structural colors that cover a wide portion of the spectrum. Ellipsometry measurements support the efficient observation of these colors, even at angles of 70°. The network-like architecture of these nanomaterials allows for high mechanical resistance, which is quantified in a series of nano-scratch tests. With such remarkable properties, these metastructures represent a robust design technology for real-world, large-scale commercial applications.

  1. CX: A Scalable, Robust Network for Parallel Computing

    Directory of Open Access Journals (Sweden)

    Peter Cappello

    2002-01-01

    Full Text Available CX, a network-based computational exchange, is presented. The system's design integrates variations of ideas from other researchers, such as work stealing, non-blocking tasks, eager scheduling, and space-based coordination. The object-oriented API is simple, compact, and cleanly separates application logic from the logic that supports interprocess communication and fault tolerance. Computations, of course, run to completion in the presence of computational hosts that join and leave the ongoing computation. Such hosts, or producers, use task caching and prefetching to overlap computation with interprocessor communication. To break a potential task server bottleneck, a network of task servers is presented. Even though task servers are envisioned as reliable, the self-organizing, scalable network of n- servers, described as a sibling-connected height-balanced fat tree, tolerates a sequence of n-1 server failures. Tasks are distributed throughout the server network via a simple "diffusion" process. CX is intended as a test bed for research on automated silent auctions, reputation services, authentication services, and bonding services. CX also provides a test bed for algorithm research into network-based parallel computation.

  2. Scalable Fault-Tolerant Location Management Scheme for Mobile IP

    Directory of Open Access Journals (Sweden)

    JinHo Ahn

    2001-11-01

    Full Text Available As the number of mobile nodes registering with a network rapidly increases in Mobile IP, multiple mobility (home of foreign agents can be allocated to a network in order to improve performance and availability. Previous fault tolerant schemes (denoted by PRT schemes to mask failures of the mobility agents use passive replication techniques. However, they result in high failure-free latency during registration process if the number of mobility agents in the same network increases, and force each mobility agent to manage bindings of all the mobile nodes registering with its network. In this paper, we present a new fault-tolerant scheme (denoted by CML scheme using checkpointing and message logging techniques. The CML scheme achieves low failure-free latency even if the number of mobility agents in a network increases, and improves scalability to a large number of mobile nodes registering with each network compared with the PRT schemes. Additionally, the CML scheme allows each failed mobility agent to recover bindings of the mobile nodes registering with the mobility agent when it is repaired even if all the other mobility agents in the same network concurrently fail.

  3. A Scalable Architecture for VoIP Conferencing

    Directory of Open Access Journals (Sweden)

    R Venkatesha Prasad

    2003-10-01

    Full Text Available Real-Time services are traditionally supported on circuit switched network. However, there is a need to port these services on packet switched network. Architecture for audio conferencing application over the Internet in the light of ITU-T H.323 recommendations is considered. In a conference, considering packets only from a set of selected clients can reduce speech quality degradation because mixing packets from all clients can lead to lack of speech clarity. A distributed algorithm and architecture for selecting clients for mixing is suggested here based on a new quantifier of the voice activity called "Loudness Number" (LN. The proposed system distributes the computation load and reduces the load on client terminals. The highlights of this architecture are scalability, bandwidth saving and speech quality enhancement. Client selection for playing out tries to mimic a physical conference where the most vocal participants attract more attention. The contributions of the paper are expected to aid H.323 recommendations implementations for Multipoint Processors (MP. A working prototype based on the proposed architecture is already functional.

  4. Manufacturing Renaissance : Return of manufacturing to western countries

    OpenAIRE

    Kianian, Babak; Larsson, Tobias; Tavassoli, Mohammad

    2013-01-01

    This chapter argues that the location of manufacturing is gradually shifting to the west again, exemplifying the ‘manufacturing renaissance’. Such a claim is based on the recent observed trend and the discussion is contextualized within the established theory that has been able to explain the location of manufacturing, that is, the product life cycle (PLC) model. Then the chapter identifies and discusses the four main drivers of this new phenomenon: (i) rising wage levels in emerging economie...

  5. Competitive manufacturing strategies for the manufacturing industries in Turkey

    OpenAIRE

    Ulusoy, Gündüz; Ulusoy, Gunduz

    2003-01-01

    In this study, results of the research into competitive manufacturing strategies of companies in four different sector studies covering 82 companies from the electronics, cement, automotive manufacturers, and appliances part and component suppliers in Turkey are presented. The data used in the study are gathered by conducting four sector surveys in 1997 and 1998 using a questionnaire supported by some follow-up interviews and site visits. A competitive manufacturing strategy is represented he...

  6. Scalable Emergency Response System for Oceangoing Assets. Final Summary Report

    Science.gov (United States)

    2009-01-20

    no personal protective suit is deemed necessary. 1) Filters airborne agents while still allowing for verbal communication.132 d) Brightly colored ...transportation flow.365 The maritime cluster industry includes five sectors: transportation, manufacturing and services, recreation, commercial fishing , and... TiO2 was the best nanoparticle of those tested for destroying the contaminants. Salt water and dirty water both slowed the destruction process, but

  7. Scalable Directed Self-Assembly Using Ultrasound Waves

    Science.gov (United States)

    2015-09-04

    the practical implementation of ultrasound DSA as a manufacturing technique requires linking the transducer arrangement and settings that generate ...function generator (Tektronix, AFG 3102), amplified by a 45 dB 50 W RF power amplifier (Electronic Navigation Industries, 440LA). Cross-linking of the...SECURITY CLASSIFICATION OF: We aim to understand how ultrasound waves can be used to create organized patterns of nanoparticles in a host medium such

  8. Manufacturing halal in Malaysia

    DEFF Research Database (Denmark)

    Fischer, Johan

    2016-01-01

    In Arabic, halal literally means ‘permissible’ or ‘lawful’. Halal is no longer an expression of an esoteric form of production, trade and consumption, but part of a huge and expanding globalized market in which certification, standards and technoscience play important roles. Over the past three...... production, trade and consumption. Based on fieldwork in Malaysia, this article explores how manufacturing companies understand and practise halal certification, standards and technoscience. I argue that while existing studies of halal overwhelmingly explore micro-social aspects such as the everyday...... consumption among Muslim groups, ‘the bigger institutional picture’ that frames such consumption production and regulation are not well understood. By studying halal production, I provide an ethnography of the overlapping technologies and techniques of production and regulation that together warrant a product...

  9. Developments in fuel manufacturing

    International Nuclear Information System (INIS)

    Ion, S.E.; Harrop, G.; Maricalva Gonzalez, J.

    1995-01-01

    The status of the investment and R and D programmes in the UK and Spanish fuel fabrication facilities is outlined. Due to a number of circumstances, BNFL and ENUSA have been in the forefront of capital investment, with associated commitment to engineering and scientific research and development. Carrying through this investment has allowed the embodiment of proven state of the art technologies in the design of fuel fabrication plants, with particular emphasis on meeting the future challenge of health and safety, and product quality, at an acceptable cost. ENUSA and BNFL currently supply fuel, not only to their respective 'home' markets but also to France, Belgium, Sweden, and Germany. Both organisations employ an International Business outlook and partake in focused and speculative R and D projects for the design and manufacture of nuclear fuel. (orig./HP)

  10. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  11. Maintenance in sustainable manufacturing

    Directory of Open Access Journals (Sweden)

    Vladimir Stuchly

    2014-09-01

    Full Text Available Background: Sustainable development is about reaching a balance between economic, social, and environmental goals, as well as people's participation in the planning process in order to gain their input and support. For a company, sustainable development means adoption of such business strategy and actions that contribute to satisfying present needs of company and stakeholders, as well as simultaneous protection, maintenance and strengthening of human and environmental potential which will be needed in the future. This new approach forces manufacturing companies to change their previous management paradigms. New management paradigm should include new issues and develop innovative methods, practices and technologies striving for solving problem of shortages of resources, softening environment overload and enabling development of environment-friendly lifecycle of products. Hence, its realization requires updating existing production models as they are based on previously accepted paradigm of unlimited resources and unlimited regeneration capabilities. Maintenance plays a crucial role because of its impact on availability, reliability, quality and life cycle cost, thus it should be one of the main pillars of new business running model.  Material and methods: The following paper is a result of research on the literature and observation of practices undertaken by a company within maintenance area. Results and conclusions: The main message is that considering sustainable manufacturing requires considerable expanding range of analysis and focusing on supporting processes. Maintenance offers numerous opportunities of decreasing influence of business processes on natural environment and more efficient resources utilization. The goal of maintenance processes realizing sustainable development strategy is increased profitability of exploitation and optimization of total lifecycle cost without disturbing safety and environmental issues. 

  12. Transparent Conductive Ink for Additive Manufacturing

    Science.gov (United States)

    Patlan, X. J.; Rolin, T. D.

    2017-01-01

    NASA analyzes, tests, packages, and fabricates electrical, electronic, and electromechanical (EEE) parts. Nanotechnology is listed in NASA's Technology Roadmap as a key area to invest for further development.1 This research project focused on using nanotechnology to improve electroluminescent lighting in terms of additive manufacturing and to increase energy efficiency. Specifically, this project's goal was to produce a conductive but transparent printable ink that can be sprayed on any surface for use as one of the electrodes in electroluminescent device design. This innovative work is known as thick film dielectric electroluminescent (TDEL) technology. TDEL devices are used for "backlighting, illumination, and identification due to their tunable color output, scalability, and efficiency" (I.K. Small, T.D. Rolin, and A.D. Shields, "3D Printed Electroluminescent Light Panels," NASA Fiscal Year 2017 Center Innovation Fund Proposal, unpublished data, 2017). These devices use a 'front-to-back' printing method, where the substrate is the transparent layer, and the dielectric and phosphor are layered on top. This project is a first step in the process of creating a 3D printable 'back-to-front' electroluminescent device. Back-to-front 3D-printed devices are beneficial because they can be printed onto different substrates and embedded in different surfaces, and the substrate is not required to be transparent, all because the light is emitted from the top surface through the transparent conductor. Advances in this area will help further development of printing TDEL devices on an array of different surfaces. Figure 1 demonstrates the layering of the two electrodes that are aligned in a parallel plate capacitor structure (I.K. Small, T.D. Rolin, and A.D. Shields, "3D Printed Electroluminescent Light Panels," NASA Fiscal Year 2017 Center Innovation Fund Proposal, unpublished data, 2017). Voltage is applied across the device, and the subsequent electron excitation results in

  13. Manufacturing consumption of energy 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  14. Manufacturing consumption of energy 1991

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  15. Green manufacturing processes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering, Campus Universitario de Santiago

    2013-02-01

    This book provides the recent advances on green manufacturing processes and systems for modern industry. Chapter 1 provides information on sustainable manufacturing through environmentally-friendly machining. Chapter 2 is dedicated to environmentally-friendly machining: vegetable based cutting fluids. Chapter 3 describes environmental-friendly joining of tubes. Chapter 4 contains information on concepts, methods and strategies for zero-waste in manufacturing. Finally, chapter 5 is dedicated to the application of hybrid MCDM approach for selecting the best tyre recycling process.

  16. The state of biopharmaceutical manufacturing.

    Science.gov (United States)

    Molowa, David T; Mazanet, Rosemary

    2003-01-01

    The manufacturing of protein-based biopharmaceuticals is done in bacterial or mammalian cell cultures. While bacterial cultures are inexpensive, dependable, and approved by regulatory authorities, many complex proteins cannot be manufactured this way. Complex proteins must be manufactured in mammalian cell cultures to produce active products. Mammalian cell culture capacity is limited and has slowed the delivery of necessary biopharmaceutical products to patients. The nature of the production capacity problem and future outlook are critically examined.

  17. Wide and High Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roschli, Alex C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The goal of this project is to develop and demonstrate the enabling technologies for Wide and High Additive Manufacturing (WHAM). WHAM will open up new areas of U.S. manufacturing for very large tooling in support of the transportation and energy industries, significantly reducing cost and lead time. As with Big Area Additive Manufacturing (BAAM), the initial focus is on the deposition of composite materials.

  18. Scalable and near-optimal design space exploration for embedded systems

    CERN Document Server

    Kritikakou, Angeliki; Goutis, Costas

    2014-01-01

    This book describes scalable and near-optimal, processor-level design space exploration (DSE) methodologies.  The authors present design methodologies for data storage and processing in real-time, cost-sensitive data-dominated embedded systems.  Readers will be enabled to reduce time-to-market, while satisfying system requirements for performance, area, and energy consumption, thereby minimizing the overall cost of the final design.   • Describes design space exploration (DSE) methodologies for data storage and processing in embedded systems, which achieve near-optimal solutions with scalable exploration time; • Presents a set of principles and the processes which support the development of the proposed scalable and near-optimal methodologies; • Enables readers to apply scalable and near-optimal methodologies to the intra-signal in-place optimization step for both regular and irregular memory accesses.

  19. Temporal Scalability through Adaptive -Band Filter Banks for Robust H.264/MPEG-4 AVC Video Coding

    Directory of Open Access Journals (Sweden)

    Pau G

    2006-01-01

    Full Text Available This paper presents different structures that use adaptive -band hierarchical filter banks for temporal scalability. Open-loop and closed-loop configurations are introduced and illustrated using existing video codecs. In particular, it is shown that the H.264/MPEG-4 AVC codec allows us to introduce scalability by frame shuffling operations, thus keeping backward compatibility with the standard. The large set of shuffling patterns introduced here can be exploited to adapt the encoding process to the video content features, as well as to the user equipment and transmission channel characteristics. Furthermore, simulation results show that this scalability is obtained with no degradation in terms of subjective and objective quality in error-free environments, while in error-prone channels the scalable versions provide increased robustness.

  20. SuperLU{_}DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoye S.; Demmel, James W.

    2002-03-27

    In this paper, we present the main algorithmic features in the software package SuperLU{_}DIST, a distributed-memory sparse direct solver for large sets of linear equations. We give in detail our parallelization strategies, with focus on scalability issues, and demonstrate the parallel performance and scalability on current machines. The solver is based on sparse Gaussian elimination, with an innovative static pivoting strategy proposed earlier by the authors. The main advantage of static pivoting over classical partial pivoting is that it permits a priori determination of data structures and communication pattern for sparse Gaussian elimination, which makes it more scalable on distributed memory machines. Based on this a priori knowledge, we designed highly parallel and scalable algorithms for both LU decomposition and triangular solve and we show that they are suitable for large-scale distributed memory machines.

  1. Continuous flow photocyclization of stilbenes – scalable synthesis of functionalized phenanthrenes and helicenes

    Directory of Open Access Journals (Sweden)

    Quentin Lefebvre

    2013-09-01

    Full Text Available A continuous flow oxidative photocyclization of stilbene derivatives has been developed which allows the scalable synthesis of backbone functionalized phenanthrenes and helicenes of various sizes in good yields.

  2. Investigation on Reliability and Scalability of an FBG-Based Hierarchical AOFSN

    Directory of Open Access Journals (Sweden)

    Li-Mei Peng

    2010-03-01

    Full Text Available The reliability and scalability of large-scale based optical fiber sensor networks (AOFSN are considered in this paper. The AOFSN network consists of three-level hierarchical sensor network architectures. The first two levels consist of active interrogation and remote nodes (RNs and the third level, called the sensor subnet (SSN, consists of passive Fiber Bragg Gratings (FBGs and a few switches. The switch architectures in the RN and various SSNs to improve the reliability and scalability of AOFSN are studied. Two SSNs with a regular topology are proposed to support simple routing and scalability in AOFSN: square-based sensor cells (SSC and pentagon-based sensor cells (PSC. The reliability and scalability are evaluated in terms of the available sensing coverage in the case of one or multiple link failures.

  3. JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding

    Directory of Open Access Journals (Sweden)

    Thomas André

    2007-03-01

    Full Text Available We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.

  4. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability

    KAUST Repository

    Li, Henan; Li, Ying; Aljarb, Areej; Shi, Yumeng; Li, Lain-Jong

    2017-01-01

    to generate high-quality TMDC layers with scalable size, controllable thickness, and excellent electronic properties suitable for both technological applications and fundamental sciences. The capability to precisely engineer 2D materials by chemical approaches

  5. JPEG2000-Compatible Scalable Scheme for Wavelet-Based Video Coding

    Directory of Open Access Journals (Sweden)

    André Thomas

    2007-01-01

    Full Text Available We present a simple yet efficient scalable scheme for wavelet-based video coders, able to provide on-demand spatial, temporal, and SNR scalability, and fully compatible with the still-image coding standard JPEG2000. Whereas hybrid video coders must undergo significant changes in order to support scalability, our coder only requires a specific wavelet filter for temporal analysis, as well as an adapted bit allocation procedure based on models of rate-distortion curves. Our study shows that scalably encoded sequences have the same or almost the same quality than nonscalably encoded ones, without a significant increase in complexity. A full compatibility with Motion JPEG2000, which tends to be a serious candidate for the compression of high-definition video sequences, is ensured.

  6. On the scalability of uncoordinated multiple access for the Internet of Things

    KAUST Repository

    Chisci, Giovanni

    2017-11-16

    The Internet of things (IoT) will entail massive number of wireless connections with sporadic traffic patterns. To support the IoT traffic, several technologies are evolving to support low power wide area (LPWA) wireless communications. However, LPWA networks rely on variations of uncoordinated spectrum access, either for data transmissions or scheduling requests, thus imposing a scalability problem to the IoT. This paper presents a novel spatiotemporal model to study the scalability of the ALOHA medium access. In particular, the developed mathematical model relies on stochastic geometry and queueing theory to account for spatial and temporal attributes of the IoT. To this end, the scalability of the ALOHA is characterized by the percentile of IoT devices that can be served while keeping their queues stable. The results highlight the scalability problem of ALOHA and quantify the extend to which ALOHA can support in terms of number of devices, traffic requirement, and transmission rate.

  7. Scalable Metadata Management for a Large Multi-Source Seismic Data Repository

    Energy Technology Data Exchange (ETDEWEB)

    Gaylord, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dodge, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Magana-Zook, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barno, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knapp, D. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thomas, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sullivan, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ruppert, S. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-26

    In this work, we implemented the key metadata management components of a scalable seismic data ingestion framework to address limitations in our existing system, and to position it for anticipated growth in volume and complexity.

  8. Virtual CIM and Digital Manufacturing

    Institute of Scientific and Technical Information of China (English)

    Sev V.Nagalingam; Grier C.I.Lin

    2006-01-01

    Manufacturing enterprises play an important role in improving the economic environment of a country.Today, the capability to produce high quality products with shorter delivery time and the ability to produce according to the diverse customer requirements has become the characteristics of successful manufacturing industries. Application of intelligent manufacturing systems and Computer integrated manufacturing (CIM) are the most effective methods for overcoming the issues faced by present day manufactures while retaining the employment level and revenue of a country in today's highly competitive global market. With the developments taking place in CIM and its related technologies, the application of CIM in manufacturing enterprises has become a reality from the dream. This paper highlights the historical developments towards automation and the need for CIM systems. Furthermore, it analyses some new terms such as agile manufacturing, digital manufacturing, agent-based manufacturing and others, which have been emerging recently, and argues all these new technologies are the subsystems of CIM. In addition, this paper provides a new direction in CIM to fulfil the emerging challenges in today's global market and to satisfy the emerging need of virtual enterprises in the form of Virtual CIM.

  9. GoFFish: Graph-Oriented Framework for Foresight and Insight Using Scalable Heuristics

    Science.gov (United States)

    2015-09-01

    A. Biem, E. Bouillet, H. Feng, A. Ranganathan , A. Riabov, O. Verscheure, H. Koutsopoulos, and C. Moran, “Ibm infos- phere streams for scalable, real...Systems and Software. Elsevier, 2013, vol. 86, no. 1, pp. 2–11. [5] A. Biem, E. Bouillet, H. Feng, A. Ranganathan , A. Riabov, O. Verscheure, H...Feng, A. Ranganathan , A. Riabov, O. Verscheure, H. Koutsopoulos, and C. Moran. Ibm infosphere streams for scalable, real-time, intelligent

  10. Accounting Fundamentals and the Variation of Stock Price: Factoring in the Investment Scalability

    OpenAIRE

    Sumiyana, Sumiyana; Baridwan, Zaki; Sugiri, Slamet; Hartono, Jogiyanto

    2010-01-01

    This study develops a new return model with respect to accounting fundamentals. The new return model is based on Chen and Zhang (2007). This study takes into account theinvestment scalability information. Specifically, this study splitsthe scale of firm’s operations into short-run and long-runinvestment scalabilities. We document that five accounting fun-damentals explain the variation of annual stock return. Thefactors, comprised book value, earnings yield, short-run andlong-run investment s...

  11. Advanced manufacturing technologies modern machining, advanced joining, sustainable manufacturing

    CERN Document Server

    2017-01-01

    This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.

  12. Manufacturing Math Classes: An Instructional Program Guide for Manufacturing Workers.

    Science.gov (United States)

    McBride, Pamela G.; And Others

    This program guide documents a manufacturing job family curriculum that develops competence in generic work force education skills through three courses: Reading Rulers, Charts, and Gauges and Math for Manufacturing Workers I and II. An annotated table of contents lists a brief description of the questions answered in each section. An introduction…

  13. Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance

    Science.gov (United States)

    Kennedy, David N.; Lehár, Joseph; Lee, Myung Joo; Blood, Anne J.; Lee, Sang; Perlis, Roy H.; Smoller, Jordan W.; Morris, Robert; Fava, Maurizio

    2010-01-01

    Background Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach), decrease (avoid), or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory. Methodology/Principal Findings Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i) a preference trade-off counterbalancing approach and avoidance, (ii) a value function linking preference intensity to uncertainty about preference, and (iii) a saturation function linking preference intensity to its standard deviation, thereby setting limits to both. Conclusions/Significance These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference

  14. Recurrent, robust and scalable patterns underlie human approach and avoidance.

    Directory of Open Access Journals (Sweden)

    Byoung Woo Kim

    2010-05-01

    Full Text Available Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach, decrease (avoid, or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory.Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i a preference trade-off counterbalancing approach and avoidance, (ii a value function linking preference intensity to uncertainty about preference, and (iii a saturation function linking preference intensity to its standard deviation, thereby setting limits to both.These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been

  15. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing

    2010-05-25

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  16. Using Python to Construct a Scalable Parallel Nonlinear Wave Solver

    KAUST Repository

    Mandli, Kyle

    2011-01-01

    Computational scientists seek to provide efficient, easy-to-use tools and frameworks that enable application scientists within a specific discipline to build and/or apply numerical models with up-to-date computing technologies that can be executed on all available computing systems. Although many tools could be useful for groups beyond a specific application, it is often difficult and time consuming to combine existing software, or to adapt it for a more general purpose. Python enables a high-level approach where a general framework can be supplemented with tools written for different fields and in different languages. This is particularly important when a large number of tools are necessary, as is the case for high performance scientific codes. This motivated our development of PetClaw, a scalable distributed-memory solver for time-dependent nonlinear wave propagation, as a case-study for how Python can be used as a highlevel framework leveraging a multitude of codes, efficient both in the reuse of code and programmer productivity. We present scaling results for computations on up to four racks of Shaheen, an IBM BlueGene/P supercomputer at King Abdullah University of Science and Technology. One particularly important issue that PetClaw has faced is the overhead associated with dynamic loading leading to catastrophic scaling. We use the walla library to solve the issue which does so by supplanting high-cost filesystem calls with MPI operations at a low enough level that developers may avoid any changes to their codes.

  17. Hierarchical sets: analyzing pangenome structure through scalable set visualizations

    Science.gov (United States)

    2017-01-01

    Abstract Motivation: The increase in available microbial genome sequences has resulted in an increase in the size of the pangenomes being analyzed. Current pangenome visualizations are not intended for the pangenome sizes possible today and new approaches are necessary in order to convert the increase in available information to increase in knowledge. As the pangenome data structure is essentially a collection of sets we explore the potential for scalable set visualization as a tool for pangenome analysis. Results: We present a new hierarchical clustering algorithm based on set arithmetics that optimizes the intersection sizes along the branches. The intersection and union sizes along the hierarchy are visualized using a composite dendrogram and icicle plot, which, in pangenome context, shows the evolution of pangenome and core size along the evolutionary hierarchy. Outlying elements, i.e. elements whose presence pattern do not correspond with the hierarchy, can be visualized using hierarchical edge bundles. When applied to pangenome data this plot shows putative horizontal gene transfers between the genomes and can highlight relationships between genomes that is not represented by the hierarchy. We illustrate the utility of hierarchical sets by applying it to a pangenome based on 113 Escherichia and Shigella genomes and find it provides a powerful addition to pangenome analysis. Availability and Implementation: The described clustering algorithm and visualizations are implemented in the hierarchicalSets R package available from CRAN (https://cran.r-project.org/web/packages/hierarchicalSets) Contact: thomasp85@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28130242

  18. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing; Kim, Han Sun; Lee, Jung-Yong; Peumans, Peter; Cui, Yi

    2010-01-01

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  19. Scalable electro-photonic integration concept based on polymer waveguides

    Science.gov (United States)

    Bosman, E.; Van Steenberge, G.; Boersma, A.; Wiegersma, S.; Harmsma, P.; Karppinen, M.; Korhonen, T.; Offrein, B. J.; Dangel, R.; Daly, A.; Ortsiefer, M.; Justice, J.; Corbett, B.; Dorrestein, S.; Duis, J.

    2016-03-01

    A novel method for fabricating a single mode optical interconnection platform is presented. The method comprises the miniaturized assembly of optoelectronic single dies, the scalable fabrication of polymer single mode waveguides and the coupling to glass fiber arrays providing the I/O's. The low cost approach for the polymer waveguide fabrication is based on the nano-imprinting of a spin-coated waveguide core layer. The assembly of VCSELs and photodiodes is performed before waveguide layers are applied. By embedding these components in deep reactive ion etched pockets in the silicon substrate, the planarity of the substrate for subsequent layer processing is guaranteed and the thermal path of chip-to-substrate is minimized. Optical coupling of the embedded devices to the nano-imprinted waveguides is performed by laser ablating 45 degree trenches which act as optical mirror for 90 degree deviation of the light from VCSEL to waveguide. Laser ablation is also implemented for removing parts of the polymer stack in order to mount a custom fabricated connector containing glass fiber arrays. A demonstration device was built to show the proof of principle of the novel fabrication, packaging and optical coupling principles as described above, combined with a set of sub-demonstrators showing the functionality of the different techniques separately. The paper represents a significant part of the electro-photonic integration accomplishments in the European 7th Framework project "Firefly" and not only discusses the development of the different assembly processes described above, but the efforts on the complete integration of all process approaches into the single device demonstrator.

  20. Rate control scheme for consistent video quality in scalable video codec.

    Science.gov (United States)

    Seo, Chan-Won; Han, Jong-Ki; Nguyen, Truong Q

    2011-08-01

    Multimedia data delivered to mobile devices over wireless channels or the Internet are complicated by bandwidth fluctuation and the variety of mobile devices. Scalable video coding has been developed as an extension of H.264/AVC to solve this problem. Since scalable video codec provides various scalabilities to adapt the bitstream for the channel conditions and terminal types, scalable codec is one of the useful codecs for wired or wireless multimedia communication systems, such as IPTV and streaming services. In such scalable multimedia communication systems, video quality fluctuation degrades the visual perception significantly. It is important to efficiently use the target bits in order to maintain a consistent video quality or achieve a small distortion variation throughout the whole video sequence. The scheme proposed in this paper provides a useful function to control video quality in applications supporting scalability, whereas conventional schemes have been proposed to control video quality in the H.264 and MPEG-4 systems. The proposed algorithm decides the quantization parameter of the enhancement layer to maintain a consistent video quality throughout the entire sequence. The video quality of the enhancement layer is controlled based on a closed-form formula which utilizes the residual data and quantization error of the base layer. The simulation results show that the proposed algorithm controls the frame quality of the enhancement layer in a simple operation, where the parameter decision algorithm is applied to each frame.

  1. A scalable healthcare information system based on a service-oriented architecture.

    Science.gov (United States)

    Yang, Tzu-Hsiang; Sun, Yeali S; Lai, Feipei

    2011-06-01

    Many existing healthcare information systems are composed of a number of heterogeneous systems and face the important issue of system scalability. This paper first describes the comprehensive healthcare information systems used in National Taiwan University Hospital (NTUH) and then presents a service-oriented architecture (SOA)-based healthcare information system (HIS) based on the service standard HL7. The proposed architecture focuses on system scalability, in terms of both hardware and software. Moreover, we describe how scalability is implemented in rightsizing, service groups, databases, and hardware scalability. Although SOA-based systems sometimes display poor performance, through a performance evaluation of our HIS based on SOA, the average response time for outpatient, inpatient, and emergency HL7Central systems are 0.035, 0.04, and 0.036 s, respectively. The outpatient, inpatient, and emergency WebUI average response times are 0.79, 1.25, and 0.82 s. The scalability of the rightsizing project and our evaluation results show that the SOA HIS we propose provides evidence that SOA can provide system scalability and sustainability in a highly demanding healthcare information system.

  2. Manufacturing strategy issues in selected Indian manufacturing industry

    Directory of Open Access Journals (Sweden)

    Mahender Singh

    2013-03-01

    Full Text Available This paper presents some findings of Indian manufacturing sectors viz. automobile (especially two-wheeler, tractor and general manufacturing industry. Various manufacturing strategy issues such as competitive priorities, improvement activities, and performance measures, have been identified and assessed in Indian context. Sector wise comparison of competitive priorities, improvement activities i.e. advanced manufacturing technology (AMT, integrated information systems (IIS, and advanced management systems (AMS, and performance measure, is provided. Our results showed that most of the Indian companies are still emphasizing on quality. However, automobile sector has set to compete globally with high innovation rate, faster new product development, and continuous improvement. It is also observed that Indian companies are investing more in AMS as compared to IIS and AMT. Manufacturing competence index is also computed for each sector.

  3. Scalable fabric tactile sensor arrays for soft bodies

    Science.gov (United States)

    Day, Nathan; Penaloza, Jimmy; Santos, Veronica J.; Killpack, Marc D.

    2018-06-01

    Soft robots have the potential to transform the way robots interact with their environment. This is due to their low inertia and inherent ability to more safely interact with the world without damaging themselves or the people around them. However, existing sensing for soft robots has at least partially limited their ability to control interactions with their environment. Tactile sensors could enable soft robots to sense interaction, but most tactile sensors are made from rigid substrates and are not well suited to applications for soft robots which can deform. In addition, the benefit of being able to cheaply manufacture soft robots may be lost if the tactile sensors that cover them are expensive and their resolution does not scale well for manufacturability. This paper discusses the development of a method to make affordable, high-resolution, tactile sensor arrays (manufactured in rows and columns) that can be used for sensorizing soft robots and other soft bodies. However, the construction results in a sensor array that exhibits significant amounts of cross-talk when two taxels in the same row are compressed. Using the same fabric-based tactile sensor array construction design, two different methods for cross-talk compensation are presented. The first uses a mathematical model to calculate a change in resistance of each taxel directly. The second method introduces additional simple circuit components that enable us to isolate each taxel electrically and relate voltage to force directly. Fabric sensor arrays are demonstrated for two different soft-bodied applications: an inflatable single link robot and a human wrist.

  4. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [Univ. of Arizona, Tucson, AZ (United States)

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  5. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  6. APPROACHES FOR SUSTAINABLE MANUFACTURING

    Institute of Scientific and Technical Information of China (English)

    G(U)NTHER Seliger; SEBASTIAN Kernbaum; MARCO Zettl

    2007-01-01

    Sustainable development is a holistic approach harmonizing ecological, economical and socio-political needs with respect to the superior objective of enhancing human living standards. Thereby the availability of natural resources and the conservation of the ecosystems have to be considered that future generations have the possibility to meet their own needs. A long-term economical development demands the transition from a source-sink economy to a cycle economy as a result of limited resources, limited environmental capacities to absorb waste and emissions as well as increasing needs of a growing population. A reference model for sustainability in manufacturing is presented and used to illustrate sustainable approaches with respect to management, technology, process and product. Adaptation of products and components is a vital element for supporting efficient reuse of products and components. Consequently adaptation contributes to the ambitious goals of sustainability. Technological enablers for adaptation as modularity, information and communication technology are exemplarily introduced. Moreover, approaches for disseminating knowledge in sustainability are given.

  7. Balances instruments, manufacturers, history

    CERN Document Server

    Robens, Erich; Kiefer, Susanne

    2014-01-01

    The book deals mainly with direct mass determination by means of a conventional balances. It covers the history of the balance from the beginnings in Egypt earlier than 3000 BC to recent developments. All balance types are described with emphasis on scientific balances. Methods of indirect mass determination, which are applied to very light objects like molecules and the basic particles of matter and celestial bodies, are included.  As additional guidance, today’s manufacturers are listed and the profile of important companies is reviewed. Several hundred photographs, reproductions and drawings show instruments and their uses. This book includes commercial weighing instruments for merchandise and raw materials in workshops as well as symbolic weighing in the ancient Egyptian’s ceremony of ‘Weighing of the Heart’, the Greek fate balance, the Roman  Justitia, Juno Moneta and Middle Ages scenes of the Last Judgement with Jesus or St. Michael and of modern balances. The photographs are selected from the...

  8. Application of manufactured products

    Science.gov (United States)

    Sastri, Sankar; Duke, Michael B.

    1992-01-01

    A wide range of products can be manufactured from the following materials: (1) lunar regolith or basalt; (2) regolith or rock beneficiated to concentrate plagioclase or other minerals; (3) iron, extracted from lunar soil or rocks by various means; (4) naturally occurring or easily obtained materials that have cementitious properties; and (5) byproducts of the above materials. Among the products that can be produced from these materials are the following: beams; plates and sheets; transparent plates (windows); bricks and blocks; pipes and tubes; low-density materials (foams); fiber, wire, and cables; foils and reflective coatings; hermetic seals (coatings); and formed objects. In addition to oxygen, which can be obtained by several processes, either from unbeneficiated regolith or by reduction of concentrated ilmenite, these materials make the simplest requirements of the lunar resource extraction system. A thorough analysis of the impact of these simplest products on the economics of space operations is not possible at this point. Research is necessary both to define optimum techniques and adapt them to space and to determine the probable market for the products so that the priority of various processes can be assessed. Discussions of the following products are presented: aerobraking heat shields; pressurized habitats; lunar photovoltaic farms; and agricultural systems.

  9. Training for New Manufacturing Technologies.

    Science.gov (United States)

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…

  10. 75 FR 30781 - Manufacturing Council

    Science.gov (United States)

    2010-06-02

    ... convenience. Pending applicants remain under consideration and do not need to resubmit their applications..., particularly seeking the representation of small- and medium-sized enterprises. Additional factors which may be... marketing programs in support of manufacturing industries, job creation in the manufacturing sector, or the...

  11. Business models for additive manufacturing

    DEFF Research Database (Denmark)

    Hadar, Ronen; Bilberg, Arne; Bogers, Marcel

    2015-01-01

    Digital fabrication — including additive manufacturing (AM), rapid prototyping and 3D printing — has the potential to revolutionize the way in which products are produced and delivered to the customer. Therefore, it challenges companies to reinvent their business model — describing the logic...... of creating and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how a consumer goods manufacturer can organize the operations of a more open business model when moving from...... a manufacturer-centric to a consumer-centric value logic. A major shift includes a move from centralized to decentralized supply chains, where consumer goods manufacturers can implement a “hybrid” approach with a focus on localization and accessibility or develop a fully personalized model where the consumer...

  12. Manufacturing best practices and performance

    DEFF Research Database (Denmark)

    Szász, Levente; Demeter, Krisztina; Boer, Harry

    2014-01-01

    whether a) home and host country characteristics moderate the association between manufacturing practices and performance, and, thus, whether b) there are manufacturing practices that are universally best. Manufacturing practices and performance are measured using data collected through the fifth round...... analysis is used to develop groups of companies based on home and host country development. Exploratory factor analysis is applied to create bundles of manufacturing practices and performance measures. Then, using moderated multiple regressions (MMR) with interaction factor, and separate multiple...... regression analyses for each group of companies, bundles of manufacturing practices are identified that lead to best-in-class performance improvements. A range of control variables is introduced to help interpret the results. The study shows that home and host country context does affect the association...

  13. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    Science.gov (United States)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  14. Laser additive manufacturing of 3D meshes for optical applications.

    Science.gov (United States)

    Essa, Khamis; Sabouri, Aydin; Butt, Haider; Basuny, Fawzia Hamed; Ghazy, Mootaz; El-Sayed, Mahmoud Ahmed

    2018-01-01

    Selective laser melting (SLM) is a widely used additive manufacturing process that can be used for printing of intricate three dimensional (3D) metallic structures. Here we demonstrate the fabrication of titanium alloy Ti-6Al-4V alloy based 3D meshes with nodally-connected diamond like unit cells, with lattice spacing varying from 400 to 1000 microns. A Concept Laser M2 system equipped with laser that has a wavelength of 1075 nm, a constant beam spot size of 50μm and maximum power of 400W was used to manufacture the 3D meshes. These meshes act as optical shutters / directional transmitters and display interesting optical properties. A detailed optical characterisation was carried out and it was found that these structures can be optimised to act as scalable rotational shutters with high efficiencies and as angle selective transmission screens for protection against unwanted and dangerous radiations. The efficiency of fabricated lattice structures can be increased by enlarging the meshing size.

  15. Laser additive manufacturing of 3D meshes for optical applications.

    Directory of Open Access Journals (Sweden)

    Khamis Essa

    Full Text Available Selective laser melting (SLM is a widely used additive manufacturing process that can be used for printing of intricate three dimensional (3D metallic structures. Here we demonstrate the fabrication of titanium alloy Ti-6Al-4V alloy based 3D meshes with nodally-connected diamond like unit cells, with lattice spacing varying from 400 to 1000 microns. A Concept Laser M2 system equipped with laser that has a wavelength of 1075 nm, a constant beam spot size of 50μm and maximum power of 400W was used to manufacture the 3D meshes. These meshes act as optical shutters / directional transmitters and display interesting optical properties. A detailed optical characterisation was carried out and it was found that these structures can be optimised to act as scalable rotational shutters with high efficiencies and as angle selective transmission screens for protection against unwanted and dangerous radiations. The efficiency of fabricated lattice structures can be increased by enlarging the meshing size.

  16. Organizing for manufacturing innovation. The case of Flexible Manufacturing Systems

    DEFF Research Database (Denmark)

    Boer, Harry; Krabbendam, Koos

    1992-01-01

    addressing the manufacturing innovation process are even fewer and provide little insight into its true nature. Consequently, little is known about the effective organization of such processes. In the present article an organization model of manufacturing innovation is described, and its practicability...... the implementation of new technology effectively. This is not surprising, considering the innovative nature of this process. Although there is a host of literature on innovation, organization and (the benefits of) new technology, the literature in which these areas are linked together is scarce. Publications...... assessed using the results of seven case studies of the implementation of flexible manufacturing systems in British, Belgian and Dutch mechanical engineering companies....

  17. GSKY: A scalable distributed geospatial data server on the cloud

    Science.gov (United States)

    Rozas Larraondo, Pablo; Pringle, Sean; Antony, Joseph; Evans, Ben

    2017-04-01

    Earth systems, environmental and geophysical datasets are an extremely valuable sources of information about the state and evolution of the Earth. Being able to combine information coming from different geospatial collections is in increasing demand by the scientific community, and requires managing and manipulating data with different formats and performing operations such as map reprojections, resampling and other transformations. Due to the large data volume inherent in these collections, storing multiple copies of them is unfeasible and so such data manipulation must be performed on-the-fly using efficient, high performance techniques. Ideally this should be performed using a trusted data service and common system libraries to ensure wide use and reproducibility. Recent developments in distributed computing based on dynamic access to significant cloud infrastructure opens the door for such new ways of processing geospatial data on demand. The National Computational Infrastructure (NCI), hosted at the Australian National University (ANU), has over 10 Petabytes of nationally significant research data collections. Some of these collections, which comprise a variety of observed and modelled geospatial data, are now made available via a highly distributed geospatial data server, called GSKY (pronounced [jee-skee]). GSKY supports on demand processing of large geospatial data products such as satellite earth observation data as well as numerical weather products, allowing interactive exploration and analysis of the data. It dynamically and efficiently distributes the required computations among cloud nodes providing a scalable analysis framework that can adapt to serve large number of concurrent users. Typical geospatial workflows handling different file formats and data types, or blending data in different coordinate projections and spatio-temporal resolutions, is handled transparently by GSKY. This is achieved by decoupling the data ingestion and indexing process as

  18. High-Performance Scalable Information Service for the ATLAS Experiment

    International Nuclear Information System (INIS)

    Kolos, S; Boutsioukis, G; Hauser, R

    2012-01-01

    The ATLAS[1] experiment is operated by a highly distributed computing system which is constantly producing a lot of status information which is used to monitor the experiment operational conditions as well as to assess the quality of the physics data being taken. For example the ATLAS High Level Trigger(HLT) algorithms are executed on the online computing farm consisting from about 1500 nodes. Each HLT algorithm is producing few thousands histograms, which have to be integrated over the whole farm and carefully analyzed in order to properly tune the event rejection. In order to handle such non-physics data the Information Service (IS) facility has been developed in the scope of the ATLAS Trigger and Data Acquisition (TDAQ)[2] project. The IS provides a high-performance scalable solution for information exchange in distributed environment. In the course of an ATLAS data taking session the IS handles about a hundred gigabytes of information which is being constantly updated with the update interval varying from a second to a few tens of seconds. IS provides access to any information item on request as well as distributing notification to all the information subscribers. In the latter case IS subscribers receive information within a few milliseconds after it was updated. IS can handle arbitrary types of information, including histograms produced by the HLT applications, and provides C++, Java and Python API. The Information Service is a unique source of information for the majority of the online monitoring analysis and GUI applications used to control and monitor the ATLAS experiment. Information Service provides streaming functionality allowing efficient replication of all or part of the managed information. This functionality is used to duplicate the subset of the ATLAS monitoring data to the CERN public network with a latency of a few milliseconds, allowing efficient real-time monitoring of the data taking from outside the protected ATLAS network. Each information

  19. Scalable quantum information processing with photons and atoms

    Science.gov (United States)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO

  20. Scalable and portable visualization of large atomistic datasets

    Science.gov (United States)

    Sharma, Ashish; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2004-10-01

    A scalable and portable code named Atomsviewer has been developed to interactively visualize a large atomistic dataset consisting of up to a billion atoms. The code uses a hierarchical view frustum-culling algorithm based on the octree data structure to efficiently remove atoms outside of the user's field-of-view. Probabilistic and depth-based occlusion-culling algorithms then select atoms, which have a high probability of being visible. Finally a multiresolution algorithm is used to render the selected subset of visible atoms at varying levels of detail. Atomsviewer is written in C++ and OpenGL, and it has been tested on a number of architectures including Windows, Macintosh, and SGI. Atomsviewer has been used to visualize tens of millions of atoms on a standard desktop computer and, in its parallel version, up to a billion atoms. Program summaryTitle of program: Atomsviewer Catalogue identifier: ADUM Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUM Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: 2.4 GHz Pentium 4/Xeon processor, professional graphics card; Apple G4 (867 MHz)/G5, professional graphics card Operating systems under which the program has been tested: Windows 2000/XP, Mac OS 10.2/10.3, SGI IRIX 6.5 Programming languages used: C++, C and OpenGL Memory required to execute with typical data: 1 gigabyte of RAM High speed storage required: 60 gigabytes No. of lines in the distributed program including test data, etc.: 550 241 No. of bytes in the distributed program including test data, etc.: 6 258 245 Number of bits in a word: Arbitrary Number of processors used: 1 Has the code been vectorized or parallelized: No Distribution format: tar gzip file Nature of physical problem: Scientific visualization of atomic systems Method of solution: Rendering of atoms using computer graphic techniques, culling algorithms for data

  1. Development of a robust, versatile, and scalable inoculum train for the production of a DNA vaccine.

    Science.gov (United States)

    Okonkowski, J; Kizer-Bentley, L; Listner, K; Robinson, D; Chartrain, M

    2005-01-01

    For many microbial fermentation processes, the inoculum train can have a substantial impact on process performance in terms of productivity, profitability, and process control. In general, it is understood that a well-characterized and flexible inoculum train is essential for future scale-up and implementation of the process in a pilot plant or manufacturing setting. A fermentation process utilizing E. coli DH5 for the production of plasmid DNA carrying the HIV gag gene for use as a vaccine is currently under development in our laboratory. As part of the development effort, we evaluated inoculum train schemes that incorporate one, two, or three stages. In addition, we investigated the effect of inoculum viable-cell concentrations, either thawed or actively growing, over a wide range (from 2.5 x 10(4) to 1.0 x 10(8) viable cells/mL or approximately 0.001% to 4% of final working volume). The various inoculum trains were evaluated in terms of final plasmid yield, process time, reproducibility, robustness, and feasibility at large scale. The results of these studies show that final plasmid yield remained in the desired range, despite the number of stages or inoculation viable-cell concentrations comprising the inoculum train. On the basis of these observations and because it established a large database, the first part of these investigations supports an exceptional flexibility in the design of scalable inoculum trains for this DNA vaccine process. This work also highlighted that a slightly higher level of process reproducibility, as measured by the time for the culture to reach mid-exponential growth, was observed when using actively growing versus frozen cells. It also demonstrated the existence of a viable-cell concentration threshold for the one-stage process, since we observed that inoculation of the production stage with very low amounts of viable cells from a frozen source could lead to increased process sensitivity to external factors such as variation in the

  2. From Lab to Fab: Developing a Nanoscale Delivery Tool for Scalable Nanomanufacturing

    Science.gov (United States)

    Safi, Asmahan A.

    The emergence of nanomaterials with unique properties at the nanoscale over the past two decades carries a capacity to impact society and transform or create new industries ranging from nanoelectronics to nanomedicine. However, a gap in nanomanufacturing technologies has prevented the translation of nanomaterial into real-world commercialized products. Bridging this gap requires a paradigm shift in methods for fabricating structured devices with a nanoscale resolution in a repeatable fashion. This thesis explores the new paradigms for fabricating nanoscale structures devices and systems for high throughput high registration applications. We present a robust and scalable nanoscale delivery platform, the Nanofountain Probe (NFP), for parallel direct-write of functional materials. The design and microfabrication of NFP is presented. The new generation addresses the challenges of throughput, resolution and ink replenishment characterizing tip-based nanomanufacturing. To achieve these goals, optimized probe geometry is integrated to the process along with channel sealing and cantilever bending. The capabilities of the newly fabricated probes are demonstrated through two type of delivery: protein nanopatterning and single cell nanoinjection. The broad applications of the NFP for single cell delivery are investigated. An external microfluidic packaging is developed to enable delivery in liquid environment. The system is integrated to a combined atomic force microscope and inverted fluorescence microscope. Intracellular delivery is demonstrated by injecting a fluorescent dextran into Hela cells in vitro while monitoring the injection forces. Such developments enable in vitro cellular delivery for single cell studies and high throughput gene expression. The nanomanufacturing capabilities of NFPs are explored. Nanofabrication of carbon nanotube-based electronics presents all the manufacturing challenges characterizing of assembling nanomaterials precisely onto devices. The

  3. Automated Expansion of Primary Human T Cells in Scalable and Cell-Friendly Hydrogel Microtubes for Adoptive Immunotherapy.

    Science.gov (United States)

    Lin, Haishuang; Li, Qiang; Wang, Ou; Rauch, Jack; Harm, Braden; Viljoen, Hendrik J; Zhang, Chi; Van Wyk, Erika; Zhang, Chi; Lei, Yuguo

    2018-05-11

    Adoptive immunotherapy is a highly effective strategy for treating many human cancers, such as melanoma, cervical cancer, lymphoma, and leukemia. Here, a novel cell culture technology is reported for expanding primary human T cells for adoptive immunotherapy. T cells are suspended and cultured in microscale alginate hydrogel tubes (AlgTubes) that are suspended in the cell culture medium in a culture vessel. The hydrogel tubes protect cells from hydrodynamic stresses and confine the cell mass less than 400 µm (in radial diameter) to ensure efficient mass transport, creating a cell-friendly microenvironment for growing T cells. This system is simple, scalable, highly efficient, defined, cost-effective, and compatible with current good manufacturing practices. Under optimized culture conditions, the AlgTubes enable culturing T cells with high cell viability, low DNA damage, high growth rate (≈320-fold expansion over 14 days), high purity (≈98% CD3+), and high yield (≈3.2 × 10 8 cells mL -1 hydrogel). All offer considerable advantages compared to current T cell culturing approaches. This new culture technology can significantly reduce the culture volume, time, and cost, while increasing the production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries.

    Science.gov (United States)

    Zhang, Zailei; Wang, Yanhong; Ren, Wenfeng; Tan, Qiangqiang; Chen, Yunfa; Li, Hong; Zhong, Ziyi; Su, Fabing

    2014-05-12

    Despite the promising application of porous Si-based anodes in future Li ion batteries, the large-scale synthesis of these materials is still a great challenge. A scalable synthesis of porous Si materials is presented by the Rochow reaction, which is commonly used to produce organosilane monomers for synthesizing organosilane products in chemical industry. Commercial Si microparticles reacted with gas CH3 Cl over various Cu-based catalyst particles to substantially create macropores within the unreacted Si accompanying with carbon deposition to generate porous Si/C composites. Taking advantage of the interconnected porous structure and conductive carbon-coated layer after simple post treatment, these composites as anodes exhibit high reversible capacity and long cycle life. It is expected that by integrating the organosilane synthesis process and controlling reaction conditions, the manufacture of porous Si-based anodes on an industrial scale is highly possible. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Scalable synthesis and energy applications of defect engineeered nano materials

    Science.gov (United States)

    Karakaya, Mehmet

    Nanomaterials and nanotechnologies have attracted a great deal of attention in a few decades due to their novel physical properties such as, high aspect ratio, surface morphology, impurities, etc. which lead to unique chemical, optical and electronic properties. The awareness of importance of nanomaterials has motivated researchers to develop nanomaterial growth techniques to further control nanostructures properties such as, size, surface morphology, etc. that may alter their fundamental behavior. Carbon nanotubes (CNTs) are one of the most promising materials with their rigidity, strength, elasticity and electric conductivity for future applications. Despite their excellent properties explored by the abundant research works, there is big challenge to introduce them into the macroscopic world for practical applications. This thesis first gives a brief overview of the CNTs, it will then go on mechanical and oil absorption properties of macro-scale CNT assemblies, then following CNT energy storage applications and finally fundamental studies of defect introduced graphene systems. Chapter Two focuses on helically coiled carbon nanotube (HCNT) foams in compression. Similarly to other foams, HCNT foams exhibit preconditioning effects in response to cyclic loading; however, their fundamental deformation mechanisms are unique. Bulk HCNT foams exhibit super-compressibility and recover more than 90% of large compressive strains (up to 80%). When subjected to striker impacts, HCNT foams mitigate impact stresses more effectively compared to other CNT foams comprised of non-helical CNTs (~50% improvement). The unique mechanical properties we revealed demonstrate that the HCNT foams are ideally suited for applications in packaging, impact protection, and vibration mitigation. The third chapter describes a simple method for the scalable synthesis of three-dimensional, elastic, and recyclable multi-walled carbon nanotube (MWCNT) based light weight bucky-aerogels (BAGs) that are

  6. Detecting Attacks in CyberManufacturing Systems: Additive Manufacturing Example

    Directory of Open Access Journals (Sweden)

    Wu Mingtao

    2017-01-01

    Full Text Available CyberManufacturing System is a vision for future manufacturing where physical components are fully integrated with computational processes in a connected environment. However, realizing the vision requires that its security be adequately ensured. This paper presents a vision-based system to detect intentional attacks on additive manufacturing processes, utilizing machine learning techniques. Particularly, additive manufacturing systems have unique vulnerabilities to malicious attacks, which can result in defective infills but without affecting the exterior. In order to detect such infill defects, the research uses simulated 3D printing process images as well as actual 3D printing process images to compare accuracies of machine learning algorithms in classifying, clustering and detecting anomalies on different types of infills. Three algorithms - (i random forest, (ii k nearest neighbor, and (iii anomaly detection - have been adopted in the research and shown to be effective in detecting such defects.

  7. Advanced Manufacturing Technologies (AMT): Modular Rapidly Manufactured SmallSat

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize advanced manufacturing processes to design and fabricate a fully functional prototype flight model, with the goal of demonstrating rapid on-orbit assembly of...

  8. Knowledge Transfer and Manufacturing Relocation in International Manufacturing Networks

    DEFF Research Database (Denmark)

    Madsen, Erik Skov

    2014-01-01

    This paper is built on six longitudinal case studies of knowledge transfer in manufacturing relocation. By focusing on tacit and explicit knowledge the paper introduces a model for identification of knowledge in relation to four task situations on the shop floor in a manufacturing environment...... after relocation. Finally the paper discusses how “dispatching capacity” and “absorptive capacity” can improve the process....

  9. Integrated Glass Coating Manufacturing Line

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor [Enki Technology Inc., San Jose, CA (United States)

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs and a detailed deployment plan for the equipment.

  10. Support given by the manufacturer

    International Nuclear Information System (INIS)

    Schomer, E.

    1993-01-01

    As regards German NPP, the purchaser has the control function and the manufacturer the role of a general planner binding together all supply lots. Therefore the manufacturer possesses a very broad and thorough detailed knowledge of the plant functioning and becomes a life-long important partner of the plant. Such partnership requires from the manufacturer to provide continuously available and economical services to the plant; he must work purposefully in a quality-conscious and innovative way. This is his vision, and he will comply with it over the whole service life of the plant. The importance of services is illustrated by a large number of examples. (orig./DG) [de

  11. Micro manufacturing techniques and applications

    CERN Document Server

    Du, Ruxu; Li, Zifu

    2013-01-01

    Micro/meso-scale manufacturing has been developed in research fields of machining, forming, materials and others, but its potential to industries are yet to be fully realized. The theme of the current volume was to build a bridge joining academic research and industrial needs in micro manufacturing. Among the 12 papers selected for publication are three keynote addresses onmicro and desktop factories for micro/meso-scale manufacturing applicationsand future visions, tissue cutting mechanics and applications for needlecore biopsy and guidance, and micro-texturing onto amorphous carbonmaterials

  12. An Assessment of Advanced Manufacturing Technologies Implementation in Manufacturing Enterprises

    Directory of Open Access Journals (Sweden)

    Ghulam Yasin Shaikh

    2011-04-01

    Full Text Available The implementation of AMTs (Advanced Manufacturing Technologies has always been the high interest and core issue for the manufacturing enterprises to get rapid production for global market place. The developed countries have achieved its competitive advantage by implementing this unique model of technologies with full range of systems. In developing countries, the implementation of such technologies is not much common due to so many reasons, (political, social, economical and technical but entrepreneurs of growing economies are contemplating to reshape long term strategy to adopt Computer systems oriented technologies in their manufacturing companies to meet the growing needs of their indigenous market on one hand and to make a place in the international market on the other. Although, very few manufacturing organization do meet the global market requirements. But there is still lot of efforts to be taken for world class competition. An attempt has been made in this paper to develop a conceptual model taking in to account the three parameters such as, Direct, Indirect and Administrative AMTs. This research work further attempts to present an empirical data analysis conducted in the manufacturing enterprises in province of Sindh, Pakistan. The overall indigenous progress of manufacturing enterprises as according to the data collected from 60 companies reveals that the AMTs systems are partially understood and practiced that is also one of the cause towards slow progress of national exchequer.

  13. Cloud Manufacturing Service Paradigm for Group Manufacturing Companies

    Directory of Open Access Journals (Sweden)

    Jingtao Zhou

    2014-07-01

    Full Text Available The continuous refinement of specialization requires that the group manufacturing company must be constantly focused on how to concentrate its core resources in special sphere to form its core competitive advantage. However, the resources in enterprise group are usually distributed in different subsidiary companies, which means they cannot be fully used, constraining the competition and development of the enterprise. Conducted as a response to a need for cloud manufacturing studies, systematic and detailed studies on cloud manufacturing schema for group companies are carried out in this paper. A new hybrid private clouds paradigm is proposed to meet the requirements of aggregation and centralized use of heterogeneous resources and business units distributed in different subsidiary companies. After the introduction of the cloud manufacturing paradigm for enterprise group and its architecture, this paper presents a derivation from the abstraction of paradigm and framework to the application of a practical evaluative working mechanism. In short, the paradigm establishes an effective working mechanism to translate collaborative business process composed by the activities into cloud manufacturing process composed by services so as to create a foundation resulting in mature traditional project monitoring and scheduling technologies being able to be used in cloud manufacturing project management.

  14. Accounting Fundamentals and the Variation of Stock Price: Factoring in the Investment Scalability

    Directory of Open Access Journals (Sweden)

    Sumiyana Sumiyana

    2010-05-01

    Full Text Available This study develops a new return model with respect to accounting fundamentals. The new return model is based on Chen and Zhang (2007. This study takes into account theinvestment scalability information. Specifically, this study splitsthe scale of firm’s operations into short-run and long-runinvestment scalabilities. We document that five accounting fun-damentals explain the variation of annual stock return. Thefactors, comprised book value, earnings yield, short-run andlong-run investment scalabilities, and growth opportunities, co associate positively with stock price. The remaining factor,which is the pure interest rate, is negatively related to annualstock return. This study finds that inducing short-run and long-run investment scalabilities into the model could improve the degree of association. In other words, they have value rel-evance. Finally, this study suggests that basic trading strategieswill improve if investors revert to the accounting fundamentals. Keywords: accounting fundamentals; book value; earnings yield; growth opportuni­ties; short­run and long­run investment scalabilities; trading strategy;value relevance

  15. Building Flexible Manufacturing Systems Based on Peer-Its

    Directory of Open Access Journals (Sweden)

    M. Hechinger

    2008-02-01

    Full Text Available Peer-to-peer computing principles have started to pervade into mechanical control systems, inducing a paradigm shift from centralized to autonomic control. We have developed a self-contained, miniaturized, universal and scalable peer-to-peer based hardware-software system, the peer-it platform, to serve as a stick-on computer solution to raise real-world artefacts like, for example, machines, tools, or appliances towards technology-rich, autonomous, self-induced, and context-aware peers, operating as spontaneously interacting ensembles. The peer-it platform integrates sensor, actuator, and wireless communication facilities on the hardware level, with an object-oriented, component-based coordination framework at the software level, thus providing a generic platform for sensing, computing, controlling, and communication on a large scale. The physical appearance of a peer-it supports pinning it to real-world artefacts, while at the same time integrating those artefacts into a mobile ad hoc network of peers. Peer-it networks thus represent ensembles of coordinated artefacts, exhibiting features of autonomy like self-management at the node level and self-organization at the network level. We demonstrate how the peer-it system implements the desired flexibility in automated manufacturing systems to react in the case of changes, whether intended or unexpectedly occuring. The peer-it system enables machine flexibility in that it adapts production facilities to produce new types of products, or change the order of operation executed on parts instantaneously. Secondly, it enables routing flexibility, that is, the ability to use multiple machines to spontaneously perform the same operation on one part alternatively (to implement autonomic fault tolerance or to absorb large-scale changes in volume, capacity, or capability (to implement autonomic scalability.

  16. Building Flexible Manufacturing Systems Based on Peer-Its

    Directory of Open Access Journals (Sweden)

    dos Santos Rocha M

    2008-01-01

    Full Text Available Abstract Peer-to-peer computing principles have started to pervade into mechanical control systems, inducing a paradigm shift from centralized to autonomic control. We have developed a self-contained, miniaturized, universal and scalable peer-to-peer based hardware-software system, the peer-it platform, to serve as a stick-on computer solution to raise real-world artefacts like, for example, machines, tools, or appliances towards technology-rich, autonomous, self-induced, and context-aware peers, operating as spontaneously interacting ensembles. The peer-it platform integrates sensor, actuator, and wireless communication facilities on the hardware level, with an object-oriented, component-based coordination framework at the software level, thus providing a generic platform for sensing, computing, controlling, and communication on a large scale. The physical appearance of a peer-it supports pinning it to real-world artefacts, while at the same time integrating those artefacts into a mobile ad hoc network of peers. Peer-it networks thus represent ensembles of coordinated artefacts, exhibiting features of autonomy like self-management at the node level and self-organization at the network level. We demonstrate how the peer-it system implements the desired flexibility in automated manufacturing systems to react in the case of changes, whether intended or unexpectedly occuring. The peer-it system enables machine flexibility in that it adapts production facilities to produce new types of products, or change the order of operation executed on parts instantaneously. Secondly, it enables routing flexibility, that is, the ability to use multiple machines to spontaneously perform the same operation on one part alternatively (to implement autonomic fault tolerance or to absorb large-scale changes in volume, capacity, or capability (to implement autonomic scalability.

  17. Many Manufactured Nanosats, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To achieve the capability to affordably produce scores of nano-spacecraft for envisioned constellation missions, a new manufacturing process is needed to reduce the...

  18. Wood and Paper Manufacturing Sectors

    Science.gov (United States)

    Find EPA regulatory information for the wood product and paper manufacturing sectors, including paper, pulp and lumber. Information includes NESHAPs and effluent guidelines for pulp and paper rulemaking, and compliance guidelines

  19. Trident: scalable compute archives: workflows, visualization, and analysis

    Science.gov (United States)

    Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Kotulla, Ralf; Henschel, Robert; Harbeck, Daniel

    2016-08-01

    The Astronomy scientific community has embraced Big Data processing challenges, e.g. associated with time-domain astronomy, and come up with a variety of novel and efficient data processing solutions. However, data processing is only a small part of the Big Data challenge. Efficient knowledge discovery and scientific advancement in the Big Data era requires new and equally efficient tools: modern user interfaces for searching, identifying and viewing data online without direct access to the data; tracking of data provenance; searching, plotting and analyzing metadata; interactive visual analysis, especially of (time-dependent) image data; and the ability to execute pipelines on supercomputing and cloud resources with minimal user overhead or expertise even to novice computing users. The Trident project at Indiana University offers a comprehensive web and cloud-based microservice software suite that enables the straight forward deployment of highly customized Scalable Compute Archive (SCA) systems; including extensive visualization and analysis capabilities, with minimal amount of additional coding. Trident seamlessly scales up or down in terms of data volumes and computational needs, and allows feature sets within a web user interface to be quickly adapted to meet individual project requirements. Domain experts only have to provide code or business logic about handling/visualizing their domain's data products and about executing their pipelines and application work flows. Trident's microservices architecture is made up of light-weight services connected by a REST API and/or a message bus; a web interface elements are built using NodeJS, AngularJS, and HighCharts JavaScript libraries among others while backend services are written in NodeJS, PHP/Zend, and Python. The software suite currently consists of (1) a simple work flow execution framework to integrate, deploy, and execute pipelines and applications (2) a progress service to monitor work flows and sub

  20. Scalability of Ferroelectric Tunnel Junctions to Sub-100 nm Dimensions

    Science.gov (United States)

    Abuwasib, Mohammad

    The ferroelectric tunnel junction (FTJ) is an emerging low-power device that has potential application as a non-volatile memory and logic element in beyond-CMOS circuits. As a beyond- CMOS device, it is necessary to investigate the device scaling limit of FTJs to sub-50 nm dimensions. In addition to the fabrication of scaled FTJs, the integration challenges and CMOS compatibility of the device needs to be addressed. FTJ device performance including ON/OFF ratio, memory retention time, switching endurance, write /read speed and power dissipation need to be characterized for benchmarking of this emerging device, compared to its charge-based counterparts such as DRAM, NAND/NOR flash, as well as to other emerging memory devices. In this dissertation, a detailed investigation of scaling of BaTiO3 (BTO) based FTJs was performed, from full-scale integration to electrical characterization. Two types of FTJs with La0.67Sr0.33MnO3 (LSMO) and SrRuO3 (SRO) bottom electrodes were investigated in this work namely; Co/BTO/LSMO and Co/BTO/SRO. A CMOS compatible fabrication process for integration of Co/BTO/LSMO FTJ devices ( 3x3 microm 2) was demonstrated for the first time using standard photolithography and self-aligned RIE technique. The fabricated FTJ device showed switching behavior, however, degradation of the LSMO contact was observed during the fabrication process. A detailed investigation of the contact properties of bottom electrode materials (LSMO, SRO) for BTO-based FTJs was performed. The process and thermal stability of different contact overlayers (Ti, Pt) was explained to understand the nature of the ohmic contacts for metal to SRO and LSMO layers. Noble metals-to-SRO was found to form the most stable contacts for FTJs. Based on this study, a systematic scalability study of Co/BTO/SRO FTJs was carried out from micron ( 3x3 microm2) to submicron ( 200x200 nm2) dimensions. Positive UP Negative Down (PUND) measurement confirms the ferroelectric properties of the BTO