WorldWideScience

Sample records for saturation pressure differences

  1. Cloudiness and Its Relationship to Saturation Pressure Differences during a Developing East Coast Winter Storm.

    Science.gov (United States)

    Alliss, Randall J.; Raman, Sethu

    1995-11-01

    Cloudiness derived from surface observations and the Geostationary Operational Environmental Satellite VISSR (Visible Infrared Spin Scan Radiometer) Atmospheric Sounder (VAS) are compared with thermodynamic properties derived from upper-air soundings over the Gulf Stream locale during a developing winter storm. The Gulf Stream locale covers the United States mid-Atlantic coastal states, the Gulf Stream, and portions of the Sargasso Sea. Cloudiness is found quite frequently in this region. Cloud-top pressures are derived from VAS using the CO2 slicing technique and a simple threshold procedure. Cloud-base heights and cloud fractions are obtained from National Weather Service hourly reporting stations. The saturation pressure differences, defined as the difference between air parcel pressure and saturation-level pressure (lifted condensation level), are derived from upper-air soundings. Collocated comparisons with VAS and surface observations are also made. Results indicate that cloudiness is observed nearly all of the time during the 6-day period, well above the 8-yr mean. High, middle, and low opaque cloudiness are found approximately equally. Furthermore, of the high- and midlevel cloudiness observed, a considerable amount is determined to be semitransparent to terrestrial radiation. Comparisons of satellite-inferred cloudiness with surface observations indicate that the satellite can complement surface observations of cloud cover, particularly above 700 mb.Surface-observed cloudiness is segregated according to a composite cloud fraction and compared to the mean saturation pressure difference for a 1000 600-mb layer. The analysis suggests that this conserved variable may be a good indicator for estimating cloud fraction. Large negative values of saturation pressure difference correlate highly with clear skies, while those approaching zero correlate with overcast conditions. Scattered and broken cloud fractions are associated with increasing values of the

  2. Experimental study and theoretical interpretation of saturation effect on ultrasonic velocity in tight sandstones under different pressure conditions

    Science.gov (United States)

    Li, Dongqing; Wei, Jianxin; Di, Bangrang; Ding, Pinbo; Huang, Shiqi; Shuai, Da

    2018-03-01

    Understanding the influence of lithology, porosity, permeability, pore structure, fluid content and fluid distribution on the elastic wave properties of porous rocks is of great significance for seismic exploration. However, unlike conventional sandstones, the petrophysical characteristics of tight sandstones are more complex and less understood. To address this problem, we measured ultrasonic velocity in partially saturated tight sandstones under different effective pressures. A new model is proposed, combining the Mavko-Jizba-Gurevich relations and the White model. The proposed model can satisfactorily simulate and explain the saturation dependence and pressure dependence of velocity in tight sandstones. Under low effective pressure, the relationship of P-wave velocity to saturation is pre-dominantly attributed to local (pore scale) fluid flow and inhomogeneous pore-fluid distribution (large scale). At higher effective pressure, local fluid flow gradually decreases, and P-wave velocity gradually shifts from uniform saturation towards patchy saturation. We also find that shear modulus is more sensitive to saturation at low effective pressures. The new model includes wetting ratio, an adjustable parameter that is closely related to the relationship between shear modulus and saturation.

  3. A total pressure-saturation formulation of two-phase flow incorporating dynamic effects in the capillary-pressure-saturation relationship

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, H K; Celia, M A; Hassanizadeh, S M; Karlsen, K H

    2002-07-01

    New theories suggest that the relationship between capillary pressure and saturation should be enhanced by a dynamic term that is proportional to the time rate of change of saturation. This so-called dynamic capillary pressure formulation is supported by laboratory experiments, and can be included in various forms of the governing equations for two-phase flow in porous media. An extended model of two-phase flow in porous media may be developed based on fractional flow curves and a total pressure - saturation description that includes the dynamic capillary pressure terms. A dimensionless form of the resulting equation set provides an ideal tool to study the relative importance of the dynamic capillary pressure effect. This equation provides a rich set of mathematical research questions, and numerical solutions to the equation provide insights into the behavior of two-phase immiscible flow. For typical two-phase flow systems, dynamic capillary pressure acts to retard infiltration fronts, with responses dependent on system parameters including boundary conditions. Recent theoretical work suggests that the traditional algebraic relationship between capillary pressure and saturation may be inadequate. Instead, a so-called dynamic capillary pressure formulation is needed, where capillary pressure is defined as a thermodynamic variable, and the difference between phase pressures is only equal to the capillary pressure at equilibrium. Under dynamic conditions, the disequilibrium between phase-pressure differences and the capillary pressure is taken to be proportional to the time rate of change of saturation. A recent study by Hassanizadeh et al. presents experimental evidence, culled from the literature, to support this claim. Numerical simulations using dynamic pore-scale network models and upscaling also support the claim. Hassanizadeh et al. also presented numerical solutions for an enhanced version of Richards' equation that included the dynamic terms. A preliminary

  4. Shearing of saturated clays in rock joints at high confining pressures

    International Nuclear Information System (INIS)

    Wang, C.; Mao, N.

    1979-01-01

    Saturated clays are sheared between rock joints at various pore water pressures and at confining pressures up to 3 kb (300 Mpa). Sliding on these joints is stable. For a given clay, the shear stress required to initiate sliding increases linearly with the effective normal stress across the sliding surface, with a slope of 0.08 +- 0.01 for joints filled with saturated montmorillonite, 0.12 +- 0.01 with saturated chlorite, 0.15 +- 0.01 with saturated kaolinite, and 0.22 +- 0.02 with saturated silty illite. Thus at high confining pressures the shear stress required to initiate sliding on joints filled with saturated clays are very much smaller than that required to initiate sliding on clean rock joints or on joints filled with dry gouge materials. In the crust, saturation of gouge materials along active faults would greatly lower the frictional resistance to faulting and would stabilize fault movement. Different fault behaviors such as stable creep along some faults and intermittent but sudden slip along others may reflect in part different degrees of saturation of fault zones at depth

  5. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    Science.gov (United States)

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  6. Tearing mode saturation with finite pressure

    International Nuclear Information System (INIS)

    Lee, J.K.

    1988-01-01

    With finite pressure, the saturation of the current-driven tearing mode is obtained in three-dimensional nonlinear resistive magnetohydrodynamic simulations for Tokamak plasmas. To effectively focus on the tearing modes, the perturbed pressure effects are excluded while the finite equilibrium pressure effects are retained. With this model, the linear growth rates of the tearing modes are found to be very insensitive to the equilibrium pressure increase. The nonlinear aspects of the tearing modes, however, are found to be very sensitive to the pressure increase in that the saturation level of the nonlinear harmonics of the tearing modes increases monotonically with the pressure rise. The increased level is associated with enhanced tearing island sizes or increased stochastic magnetic field region. (author)

  7. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    International Nuclear Information System (INIS)

    Kyriacou, P A; Shafqat, K; Pal, S K

    2007-01-01

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO 2 ) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO 2 ) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO 2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse

  8. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    Science.gov (United States)

    Kyriacou, P. A.; Shafqat, K.; Pal, S. K.

    2007-10-01

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO2) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO2) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO2 sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures. Both pulse

  9. Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Kyriacou, P A [School of Engineering and Mathematical Sciences, City University, London EC1V 0HB (United Kingdom); Shafqat, K [School of Engineering and Mathematical Sciences, City University, London EC1V 0HB (United Kingdom); Pal, S K [St Andrew' s Centre for Plastic Surgery and Burns, Broomfield Hospital, Chelmsford, CM1 7ET (United Kingdom)

    2007-10-15

    Pulse oximetry has been one of the most significant technological advances in clinical monitoring in the last two decades. Pulse oximetry is a non-invasive photometric technique that provides information about the arterial blood oxygen saturation (SpO{sub 2}) and heart rate, and has widespread clinical applications. When peripheral perfusion is poor, as in states of hypovolaemia, hypothermia and vasoconstriction, oxygenation readings become unreliable or cease. The problem arises because conventional pulse oximetry sensors must be attached to the most peripheral parts of the body, such as finger, ear or toe, where pulsatile flow is most easily compromised. Pulse oximeters estimate arterial oxygen saturation by shining light at two different wavelengths, red and infrared, through vascular tissue. In this method the ac pulsatile photoplethysmographic (PPG) signal associated with cardiac contraction is assumed to be attributable solely to the arterial blood component. The amplitudes of the red and infrared ac PPG signals are sensitive to changes in arterial oxygen saturation because of differences in the light absorption of oxygenated and deoxygenated haemoglobin at these two wavelengths. From the ratios of these amplitudes, and the corresponding dc photoplethysmographic components, arterial blood oxygen saturation (SpO{sub 2}) is estimated. Hence, the technique of pulse oximetry relies on the presence of adequate peripheral arterial pulsations, which are detected as photoplethysmographic (PPG) signals. The aim of this study was to investigate the effect of pressure cuff-induced hypoperfusion on photoplethysmographic signals and arterial blood oxygen saturation using a custom made finger blood oxygen saturation PPG/SpO{sub 2} sensor and a commercial finger pulse oximeter. Blood oxygen saturation values from the custom oxygen saturation sensor and a commercial finger oxygen saturation sensor were recorded from 14 healthy volunteers at various induced brachial pressures

  10. Simulation of coupled flow and mechanical deformation using IMplicit Pressure-Displacement Explicit Saturation (IMPDES) scheme

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    The problem of coupled structural deformation with two-phase flow in porous media is solved numerically using cellcentered finite difference (CCFD) method. In order to solve the system of governed partial differential equations, the implicit pressure explicit saturation (IMPES) scheme that governs flow equations is combined with the the implicit displacement scheme. The combined scheme may be called IMplicit Pressure-Displacement Explicit Saturation (IMPDES). The pressure distribution for each cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation is obtained explicitly. Moreover, the stability analysis of the present scheme has been introduced and the stability condition is determined.

  11. On the propagation of a coupled saturation and pressure front

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D. W.

    2010-12-01

    Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.

  12. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    Science.gov (United States)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  13. Investigation of Primary Dew-Point Saturator Efficiency in Two Different Thermal Environments

    Science.gov (United States)

    Zvizdic, D.; Heinonen, M.; Sestan, D.

    2015-08-01

    The aim of this paper is to describe the evaluation process of the performance of the low-range saturator (LRS), when exposed to two different thermal environments. The examined saturator was designed, built, and tested at MIKES (Centre for Metrology and Accreditation, Finland), and then transported to the Laboratory for Process Measurement (LPM) in Croatia, where it was implemented in a new dew-point calibration system. The saturator works on a single-pressure-single-pass generation principle in the dew/frost-point temperature range between and . The purpose of the various tests performed at MIKES was to examine the efficiency and non-ideality of the saturator. As a test bath facility in Croatia differs from the one used in Finland, the same tests were repeated at LPM, and the effects of different thermal conditions on saturator performance were examined. Thermometers, pressure gauges, an air preparation system, and water for filling the saturator at LPM were also different than those used at MIKES. Results obtained by both laboratories indicate that the efficiency of the examined saturator was not affected either by the thermal conditions under which it was tested or by equipment used for the tests. Both laboratories concluded that LRS is efficient enough for a primary realization of the dew/frost-point temperature scale in the range from to , with flow rates between and . It is also shown that a considerable difference of the pre-saturator efficiency, indicated by two laboratories, did not have influence to the overall performance of the saturator. The results of the research are presented in graphical and tabular forms. This paper also gives a brief description of the design and operation principle of the investigated low-range saturator.

  14. COMPARISON OF THE EFFECTIVENESS OF TWO LEVELS OF SUCTION PRESSURE ON OXYGEN SATURATION IN PATIENTS WITH ENDOTRACHEAL TUBE

    Directory of Open Access Journals (Sweden)

    Muhaji

    2017-12-01

    Full Text Available Background: Endotracheal suctioning is one of the common supportive measures in intensive care units (ICU, which may be related to complications such as hypoxia. However, a questionable efficacy is still identified to choose suctioning pressure between 130 mmHg and 140 mmHg that is effective for patients with endotracheal tube. Objective: To compare the effectiveness of 130 mmHg and 140 mmHg suctioning pressure on oxygen saturation in patients with endotracheal tube. Methods: This research used a quasy experimental design with pretest and posttest group. The study was conducted from 31 January to 1 March 2017 in the Hospital of Panti Wilasa Citarum and Hospital of Roemani Muhammadiyah Semarang. There were 30 samples recruited using consecutive sampling, with 15 assigned in the 130 mmHg and 140 mmHg suctioning pressure group. Pulse oximetry was used to measure oxygen saturation. Paired t-test and Independent t-test were used for data analysis. Results: Findings showed that there was a statistically significant effect of 130 and 140 mmHg suctioning pressure on oxygen saturation in patients with ETT with p-value <0.05. There was a significant mean difference of oxygen saturation between 130 mmHg and 140 mmHg suctioning pressure group with p-value 0.004 (<0.05. The mean difference of oxygen saturation between both groups was 13.157. Conclusion: The 140 mmHg suctioning pressure is more effective compared with 130 mmHg suctioning pressure in increasing oxygen saturation in patients with ETT.

  15. SURGTANK, Steam Pressure, Saturation Temperature or Reactor Surge Tank

    International Nuclear Information System (INIS)

    Gorman, D.J.; Gupta, R.K.

    2001-01-01

    1 - Description of problem or function: SURGTANK generates the steam pressure, saturation temperature, and ambient temperature history for a nuclear reactor steam surge tank (pressurizer) in a state of thermodynamic equilibrium subjected to a liquid insurge described by a specified time history of liquid levels. It is capable also of providing the pressure and saturation temperature history, starting from thermodynamic equilibrium conditions, for the same tank subjected to an out-surge described by a time history of liquid levels. Both operations are available for light- or heavy- water nuclear reactor systems. The tank is assumed to have perfect thermal insulation on its outer wall surfaces. 2 - Method of solution: Surge tank geometry and initial liquid level and saturation pressure are provided as input for the out-surge problem, along with the prescribed time-sequence level history. SURGTANK assumes a reduced pressure for the end of the first change in liquid level and determines the associated change of entropy for the closed system. The assumed pressure is adjusted and the associated change in entropy recalculated until a pressure is attained for which no change occurs. This pressure is recorded and used as the beginning pressure for the next level increment. The system is then re-defined to exclude the small amount of liquid which has left the tank, and a solution for the pressure at the end of the second level increment is obtained. The procedure is terminated when the pressure at the end of the final increment has been determined. Surge tank geometry, thermal conductivity, specific heat, and density of tank walls, initial liquid level, and saturation pressure are provided as input for the insurge problem, along with the prescribed time-sequence level history. SURGTANK assumes a slightly in- creased pressure for the end of the first level, the inner tank sur- face is assumed to follow saturation temperature, linearly with time, throughout the interval, and

  16. Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate

    International Nuclear Information System (INIS)

    Huang, Zhixian; Jiang, Haiming; Li, Ling; Wang, Hongxing; Qiu, Ting

    2015-01-01

    Highlights: • Density of ethyl trifluoroacetate was measured and its thermal expansion coefficient was determined. • Viscosity of ethyl trifluoroacetate was measured and fitted to the Andrade equation. • Saturated vapor pressure of ethyl trifluoroacetate was reported. • The Clausius–Clapeyron equation was used to calculate the molar evaporation enthalpy of ethyl trifluoroacetate. - Abstract: The properties of ethyl trifluoroacetate (CF 3 COOCH 2 CH 3 ) were measured as a function of temperature: density (278.08 to 322.50) K, viscosity (293.45 to 334.32) K, saturated vapor pressure (293.35 to 335.65) K. The density data were fitted to a quadratic polynomial equation, and the viscosity data were regressed to the Andrade equation. The correlation coefficient (R 2 ) of equations for density and viscosity are 0.9997 and 0.9999, respectively. The correlation between saturated vapor pressures and temperatures was achieved with a maximum absolute relative deviation of 0.142%. In addition, the molar evaporation enthalpy in the range of T = (293.35 to 335.65) K was estimated by the Clausius–Clapeyron equation

  17. Apparent embrittlement saturation and radiation mechanisms of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Pachur, D.

    1981-01-01

    The irradiation and annealing results of three different reactor pressure vessel steels are reported. Steel A, a basic material according to ASTM A-533 B having 0.15 percent vanadium; and Steel C contained 3.2 percent nickel. The steels were irradiated at 150, 300, and 400 degree C with neutron fluxes of 6 multiplied by 10 11 and 3 multiplied by 10 13 neutrons (n)/cm 2 /s. An apparent saturation-in-irradiation effect was found within certain neutron fluence ranges. During the annealing, various recovery processes occur in different temperature ranges. These are characterized by various activation energies. The individual processes were determined by the different time dependencies at various temperatures. Two causes for the apparent saturation were discovered from the behavior of the annealing curves

  18. A Numerical Investigation on the Effect of Gas Pressure on the Water Saturation of Compacted Bentonite-Sand Samples

    Directory of Open Access Journals (Sweden)

    Jiang-Feng Liu

    2017-01-01

    Full Text Available In deep geological disposal for high-level radioactive waste, the generated gas can potentially affect the sealing ability of bentonite buffers. There is a competition between water and gas: the former provides sealing by swelling bentonite, and the latter attempts to desaturate the bentonite buffer. Thus, this study focused on numerically modelling the coupling effects of water and gas on the water saturation and sealing efficiency of compacted bentonite-sand samples. Different gas pressures were applied to the top surface of an upper sample, whereas the water pressure on the bottom side of the lower sample was maintained at 4 MPa. The results indicated that gas pressure did not significantly affect the saturation of the bentonite-sand sample until 2 MPa. At 2 MPa, the degree of water saturation of the upper sample was close to 1.0. As the gas pressure increased, this influence was more apparent. When the gas pressure was 6 MPa or higher, it was difficult for the upper sample to become fully saturated. Additionally, the lower sample was desaturated due to the high gas pressure. This indicated that gas pressure played an important role in the water saturation process and can affect the sealing efficiency of bentonite-based buffer materials.

  19. Correlation of dew- and bubble-point curves for binary refrigerant mixtures. [Correlation between dew-point pressure(saturated vapor state) and bubble-point pressure(saturated liquid state)]. Niseibunkei kongo reibai no roten oyobi futten kyokusen no sokan

    Energy Technology Data Exchange (ETDEWEB)

    Yada, N. (Kanagawa Institute of Technology, Kanagawa (Japan)); Watanabe, K. (Keio University, Tokyo (Japan). Faculty of Science and Technology)

    1991-12-25

    The paper makes a correlation expressing dew- and bubble-point curves using measured values for seven binary refrigerant freon-mixtures. In most binary systems at the same temperature, the pressure shows a different value between in a saturated vapor state (dew-point pressure) and in a saturated liquid state (bubble-point pressure). The target is such correlation as has as simple a function form as possible and is able to estimate even near the critical point where it used to be difficult to estimate. The pressure difference between measured values of the dew- and bubble-point pressure and values calculated from Raoult's law showing an ideal mixture of fluid is expressed by a simple function form of reduced temperature Tr and molar fraction. Tr is thermodynamic temperature/critical temperature. Reproducibility of this correlation is less than {plus minus}3% of the pressure deviation. Concerning also the arbitary composition range and near the critical point, the dew- and bubble-point pressure can be calculated accurately. 24 refs., 4 figs., 5 tabs.

  20. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    International Nuclear Information System (INIS)

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-01-01

    This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO 2 gas/oil ratio in a reservoir undergoing CO 2 flood. Crosswell seismic and electromagnetic data sets taken before and during CO 2 flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO 2 injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO 2 relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO 2 /oil ratio. Resulting images of the CO 2 /oil ratio show CO 2 -rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO 2 . The images produced by this process are better correlated to the location and amount of injected CO 2 than are any of the individual

  1. An innovative technique for estimating water saturation from capillary pressure in clastic reservoirs

    Science.gov (United States)

    Adeoti, Lukumon; Ayolabi, Elijah Adebowale; James, Logan

    2017-11-01

    A major drawback of old resistivity tools is the poor vertical resolution and estimation of hydrocarbon when applying water saturation (Sw) from historical resistivity method. In this study, we have provided an alternative method called saturation height function to estimate hydrocarbon in some clastic reservoirs in the Niger Delta. The saturation height function was derived from pseudo capillary pressure curves generated using modern wells with complete log data. Our method was based on the determination of rock type from log derived porosity-permeability relationship, supported by volume of shale for its classification into different zones. Leverette-J functions were derived for each rock type. Our results show good correlation between Sw from resistivity based method and Sw from pseudo capillary pressure curves in wells with modern log data. The resistivity based model overestimates Sw in some wells while Sw from the pseudo capillary pressure curves validates and predicts more accurate Sw. In addition, the result of Sw from pseudo capillary pressure curves replaces that of resistivity based model in a well where the resistivity equipment failed. The plot of hydrocarbon pore volume (HCPV) from J-function against HCPV from Archie shows that wells with high HCPV have high sand qualities and vice versa. This was further used to predict the geometry of stratigraphic units. The model presented here freshly addresses the gap in the estimation of Sw and is applicable to reservoirs of similar rock type in other frontier basins worldwide.

  2. Simulation of coupled flow and mechanical deformation using IMplicit Pressure-Displacement Explicit Saturation (IMPDES) scheme

    KAUST Repository

    El-Amin, Mohamed; Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu

    2012-01-01

    cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation

  3. Sodium addition and/or oxygen saturation of iohexol during normal and reduced perfusion pressure

    International Nuclear Information System (INIS)

    Baath, L.

    1990-01-01

    The influence on contractile force (CF) and the propensity for ventricular fibrillation (VF) from infusing the non-ionic contrast medium iohexol during normal (75 cm H 2 O) and reduced perfusion pressure (35 cm H 2 O) were investigated in the isolated rabbit heart. Both during normal and reduced perfusion pressure iohexol (150 mg I/ml) with oxygen saturation caused a smaller reduction of CF than iohexol without oxygen. During reduced pressure iohexol with sodium addition (28 mM NaCl) caused less depression of CF than iohexol without sodium. The combination of sodium addition and oxygen saturation had the least influence on CF. Iohexol (350 mg I/ml) without sodium had a similar fibrillatory propensity during both normal and reduced pressure. Enriching iohexol with 28 mM NaCl decreased the risk of VF. The decrease was similar during both normal and reduced pressure. The risk of VF from oxygen saturation of iohexol (350 mg I/ml, without sodium) was similar during both normal and reduced pressure. It is concluded that a small addition of sodium and/or oxygen saturation of a non-ionic monomeric contrast medium have beneficial effects on the heart both during normal perfusion pressure and during ischemia. (orig.)

  4. Saturated steams pressure of HfCl4-KCl molten mixtures

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Smirnov, M.V.; Kudyakov, V.Ya.

    1980-01-01

    A bellows null pressure gauge and the dynamic method were used to measure the total and partial pressures of saturated vapors of individual components of molten HfCl 4 -KCl mixtures, as a function of temperature (260 to 1000 deg C) and composition (1.9 to 64.3 mol.% HfCl 4 ). Empirical equations expressing the relationship between pressure and temperature are presented. It is shown that in molten mixtures of hafnium tetrachloride with chlorides of alkaline metals its partial pressure dramatically increases when potassium chloride substitutes for cesium chloride

  5. Flashing of high-pressure saturated water into the pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Aya, Izuo.

    1997-01-01

    This paper presents an experimental study on a saturated high-pressure water discharging into a water pool. The purpose of the experiment is to clarify the phenomena that occur by a blow-down of the water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in a passive safety reactor. The results show that a flashing oscillation (FO) occurs when the water discharges into the pool, under specified experimental conditions. The range of the flashing location oscillates between a point very close to and some distance away from the vent hole. The pressures in the vent tube and water pool constantly fluctuate due to the flashing oscillation. The pressure oscillation and alternating flashing location might be caused by the balancing action between the supply of saturated water, flashing at the control volume and steam condensation on the steam-water interface. The frequencies of FO, or frequencies of pressure oscillation and alternating flashing location, increased as water subcooling increased, and as discharging pressure and vent hole diameter decreased. A linear analysis was conducted using a spherical flashing bubble model in which the motion of bubble is controlled by steam condensation. The effects of these parameters on the period of FO in the experiments can be predicted well by the analysis. (author)

  6. Damping Effect of an Unsaturated-Saturated System on Tempospatial Variations of Pressure Head and Specific Flux

    Science.gov (United States)

    Yang, C.; Zhang, Y. K.; Liang, X.

    2014-12-01

    Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.

  7. Saturated vapor pressure of lutetium tris-acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1983-12-01

    By the statical method using /sup 177/Lu radioactive isotope the saturated vapor pressure of anhydrous lutetium acetylacetonate at 130 to 160 deg is determined. The calculations are carried out assuming the vapor to be monomolecular. The equation of lgP versus 1/T takes the form: lg Psub((mmHg))=(8.7+-1.6)-(4110+-690)/T. The thermodynamical characteristics of LuA/sub 3/ sublimation are calculated to be ..delta..Hsub(subl.)=79+-13 kJ/mol; ..delta..Ssub(subl.)=111+-20 J/kxmol.

  8. Pore Pressure Response to Groundwater Fluctuations in Saturated Double-Layered Soil

    Directory of Open Access Journals (Sweden)

    Hongwei Ying

    2015-01-01

    Full Text Available Analytical solutions are developed for one-dimensional consolidation of double-layered saturated soil subjected to groundwater fluctuations. The solutions are derived by an explicit mathematical procedure using Duhamel’s theorem in conjunction with a Fourier series, when groundwater fluctuation is described by a general time-dependent function and assumed to be the pore water pressure variations at the upper boundary. Taking as an example the harmonic groundwater fluctuation, the relevant response of the excess pore water pressure is discussed in detail, and the main influencing factors of the excess pore pressure distribution are analyzed. A dimensionless parameter θ has been introduced because it significantly affects the phase and the amplitude of excess pore pressures. The influences of the coefficients of permeability and compressibility of soil on the excess pore pressure distribution are different and cannot be incorporated into the coefficient of consolidation in double-layered soil. The relative permeability ratio of two clayey soils also plays an important role on the curves of the distributions of the excess pore pressures. The effects of the thickness of the soil layer on the excess pore pressure distribution should be considered together with the dimensionless parameter θ and the permeability and compressibility of the double-layered soil system.

  9. Saturated steams pressure of HfCl/sub 4/-KCl molten mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Smirnov, M V; Kudyakov, V Ya [AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii

    1980-02-01

    A bellows null pressure gauge and the dynamic method were used to measure the total and partial pressures of saturated vapors of individual components of molten HfCl/sub 4/-KCl mixtures, as a function of temperature (260 to 1000 deg C) and composition (1.9 to 64.3 mol.% HfCl/sub 4/). Empirical equations expressing the relationship between pressure and temperature are presented. It is shown that in molten mixtures of hafnium tetrachloride with chlorides of alkaline metals its partial pressure dramatically increases when potassium chloride substitutes for cesium chloride.

  10. Estimation of changes in saturation and pressure from 4D seismic AVO and time-shift analysis

    NARCIS (Netherlands)

    Trani, M.; Arts, R.; Leeuwenburgh, O.; Brouwer, J.

    2011-01-01

    A reliable estimate of reservoir pressure and fluid saturation changes from time-lapse seismic data is difficult to obtain. Existing methods generally suffer from leakage between the estimated parameters. We propose a new method using different combinations of time-lapse seismic attributes based on

  11. The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Manzurola, Emanuel [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2007-08-15

    Vapour pressures of water over saturated solutions of sodium acetate, potassium acetate, sodium perchlorate, and potassium perchlorate were determined over the (278 to 318) K temperature range and compared with available in the literature data. The cases of saturated solutions of sodium chlorate and potassium chlorate are also considered. The determined vapour pressures were used to obtain the water activities, the osmotic coefficients, and the molar enthalpies of vaporization in considered systems.

  12. Numerical and Experimental Investigations of the Effect of PVD and Vacuum Pressure on the Degree of Saturation

    Directory of Open Access Journals (Sweden)

    Ala Nasir Aljorany

    2018-12-01

    Full Text Available Soft clays are generally characterized by low shear strength, low permeability and high compressibility. An effective method to accelerate consolidation of such soils is to use vertical drains along with vacuum preloading to encourage radial flow of water. In this research numerical modeling of prefabricated vertical drains with vacuum pressure was done to investigate the effect of using vertical drains together with vacuum pressure on the degree of saturation of fully and saturated-unsaturated soft soils. Laboratory experiments were conducted by using a specially-designed large consolidometer cell where a central drain was installed and vacuum pressure was applied. All tests were conducted with a vacuum pressure of 40 kPa applied for a period of 30 days where a degree of soil consolidation of 90% was attained. At the end of the test period fifteen samples were taken from different locations distributed along the depth and radially to measure the water content. Consolidation settlements were recorded with time for all tests. The results showed that using vacuum pressure with vertical drains is a very effective method to accelerate consolidation of soils. As the thickness of unsaturated top layer increases, the settlement of soil surface decreases. The water content decreased after 30 days of application of the vacuum pressure.

  13. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    Science.gov (United States)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness

  14. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve.

    Science.gov (United States)

    Collins, Julie-Ann; Rudenski, Aram; Gibson, John; Howard, Luke; O'Driscoll, Ronan

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content), saturation (S O2 ) and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin-oxygen dissociation curve, a graphical representation of the relationship between oxygen satur-ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the S O2 in blood from patients with normal pH and S O2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (S pO2 ) is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (S aO2 ) as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable S pO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  15. Pressure of saturated vapor of yttrium and zirconium acetylacetonates

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1984-08-01

    The static method and the flow method using /sup 91/Y and /sup 95/Zr radioactive indicators have been applied to determine pressure of saturated vapour of yttrium and zirconium acetylacetonates. Values of thermodynamic functions ..delta..Hsub(subl)=(98+-16)kJ/mol and ..delta..Ssub(subl.)=(155+-30)J/mol x K are calculated for sublimation of yttrium acetylacetonate. For sublimation of zirconium acetylacetonates ..delta..Hsub(subl) equals (116+-38) kJ/mol and ..delta..Ssub(subl) is equal to (198+-65) J/molxK.

  16. Capillary pressure as a unique function of electric permittivity and water saturation

    NARCIS (Netherlands)

    Plug, W.J.; Slob, E.; Van Turnhout, J.; Bruining, J.

    2007-01-01

    The relation between capillary pressure (Pc) and interfacial area has been investigated by measuring Pc and the electric permittivity at 100 kHz simultaneously as function of the water saturation, (Sw). Drainage and imbibition experiments have been conducted for sand-distilled water-gas (CO2/N2)

  17. The impact of rock and fluid uncertainties in the estimation of saturation and pressure from a 4D petro elastic inversion

    International Nuclear Information System (INIS)

    Pazetti, Bruno; Davolio, Alessandra; Schiozer, Denis J

    2015-01-01

    The integration of 4D seismic (4DS) attributes and reservoir simulation is used to reduce risks in the management of petroleum fields. One possible alternative is the saturation and pressure domain. In this case, we use estimations of saturation and pressure changes from 4D seismic data as input in history matching processes to yield more reliable production predictions in simulation models. The estimation of dynamic changes from 4DS depends on the knowledge of reservoir rock and fluid properties that are uncertain in the process of estimation. This paper presents a study of the impact of rock and fluid uncertainties on the estimation of saturation and pressure changes achieved through a 4D petro-elastic inversion. The term impact means that the saturation and pressure estimation can be perturbed by the rock and fluid uncertainties. The motivation for this study comes from the necessity to estimate uncertainties in saturation and pressure variation to incorporate them in the history matching procedures, avoiding the use of deterministic values from 4DS, which may not be reliable. The study is performed using a synthetic case with known response from where it is possible to show that the errors of estimated saturation and pressure depend on the magnitude of rock and fluid uncertainties jointly with the reservoir dynamic changes. The main contribution of this paper is to show how uncertain reservoir properties can affect the reliability of pressure and saturation estimation from 4DS and how it depends on reservoir changes induced by production. This information can be used in future projects which use quantitative inversion to integrate reservoir simulation and 4D seismic data. (paper)

  18. Synthesis and investigation of saturated vapor pressure of lanthanum, praseodymium and neodymium tris-isopropylcyclopentadienyls

    International Nuclear Information System (INIS)

    Devyatykh, G.G.; Chernyaev, N.P.; Zverev, Yu.B.; Gavrishchuk, E.M.; Runovskaya, I.V.; Krupnova, Eh.F.; Chesnokova, S.G.

    1980-01-01

    Lanthanum, praseodymium and neodymium tris-isopropylcyclopentadienyls are synthesized with corresponding unhydrous chlorides in tetrahydrofuran solution. Saturated vapour pressure of substances obtained is studied in the 150-262 deg C range by the statistic method using a compensation zero-manometer. Vapour pressure of the compounds in question is shown to increase with the growth of the rare earth element number [ru

  19. Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils

    Science.gov (United States)

    Rigby, S. E.; Fay, S. D.; Tyas, A.; Clarke, S. D.; Reay, J. J.; Warren, J. A.; Gant, M.; Elgy, I.

    2017-06-01

    The spatial and temporal distribution of pressure and impulse from explosives buried in saturated cohesive and cohesionless soils has been measured experimentally for the first time. Ten experiments have been conducted at quarter-scale, where localised pressure loading was measured using an array of 17 Hopkinson pressure bars. The blast pressure measurements are used in conjunction with high-speed video filmed at 140,000 fps to investigate in detail the physical processes occurring at the loaded face. Two coarse cohesionless soils and one fine cohesive soil were tested: a relatively uniform sand, a well-graded sandy gravel, and a fine-grained clay. The results show that there is a single fundamental loading mechanism when explosives are detonated in saturated soil, invariant of particle size and soil cohesion. It is also shown that variability in localised loading is intrinsically linked to the particle size distribution of the surrounding soil.

  20. Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils

    Science.gov (United States)

    Rigby, S. E.; Fay, S. D.; Tyas, A.; Clarke, S. D.; Reay, J. J.; Warren, J. A.; Gant, M.; Elgy, I.

    2018-05-01

    The spatial and temporal distribution of pressure and impulse from explosives buried in saturated cohesive and cohesionless soils has been measured experimentally for the first time. Ten experiments have been conducted at quarter-scale, where localised pressure loading was measured using an array of 17 Hopkinson pressure bars. The blast pressure measurements are used in conjunction with high-speed video filmed at 140,000 fps to investigate in detail the physical processes occurring at the loaded face. Two coarse cohesionless soils and one fine cohesive soil were tested: a relatively uniform sand, a well-graded sandy gravel, and a fine-grained clay. The results show that there is a single fundamental loading mechanism when explosives are detonated in saturated soil, invariant of particle size and soil cohesion. It is also shown that variability in localised loading is intrinsically linked to the particle size distribution of the surrounding soil.

  1. Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve

    Directory of Open Access Journals (Sweden)

    Julie-Ann Collins

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content, saturation (SO2 and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin–oxygen dissociation curve, a graphical representation of the relationship between oxygen satur­ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the SO2 in blood from patients with normal pH and SO2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (SpO2 is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (SaO2 as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable SpO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  2. Elasticity of water-saturated rocks as a function of temperature and pressure.

    Science.gov (United States)

    Takeuchi, S.; Simmons, G.

    1973-01-01

    Compressional and shear wave velocities of water-saturated rocks were measured as a function of both pressure and temperature near the melting point of ice to confining pressure of 2 kb. The pore pressure was kept at about 1 bar before the water froze. The presence of a liquid phase (rather than ice) in microcracks of about 0.3% porosity affected the compressional wave velocity by about 5% and the shear wave velocity by about 10%. The calculated effective bulk modulus of the rocks changes rapidly over a narrow range of temperature near the melting point of ice, but the effective shear modulus changes gradually over a wider range of temperature. This phenomenon, termed elastic anomaly, is attributed to the existence of liquid on the boundary between rock and ice due to local stresses and anomalous melting of ice under pressure.

  3. Effect of CH4 on the CO2 breakthrough pressure and permeability of partially saturated low-permeability sandstone in the Ordos Basin, China

    Science.gov (United States)

    Zhao, Yan; Yu, Qingchun

    2018-01-01

    The behavior of CO2 that coexists with CH4 and the effect of CH4 on the CO2 stream need to be deeply analyzed and studied, especially in the presence of water. Our previous studies investigated the breakthrough pressure and permeability of pure CO2 in five partially saturated low-permeability sandstone core samples from the Ordos Basin, and we concluded that rocks with a small pore size and low permeability show considerable sealing capacity even under unsaturated conditions. In this paper, we selected three of these samples for CO2-CH4 gas-mixture breakthrough experiments under various degrees of water saturation. The breakthrough experiments were performed by increasing the gas pressure step by step until breakthrough occurred. Then, the effluent gas mixture was collected for chromatographic partitioning analysis. The results indicate that CH4 significantly affects the breakthrough pressure and permeability of CO2. The presence of CH4 in the gas mixture increases the interfacial tension and, thus, the breakthrough pressure. Therefore, the injected gas mixture that contains the highest (lowest) mole fraction of CH4 results in the largest (smallest) breakthrough pressure. The permeability of the gas mixture is greater than that for pure CO2 because of CH4, and the effective permeability decreases with increased breakthrough pressure. Chromatographic partitioning of the effluent mixture gases indicates that CH4 breaks through ahead of CO2 as a result of its weaker solubility in water. Correlations are established between (1) the breakthrough pressure and water saturation, (2) the effective permeability and water saturation, (3) the breakthrough pressure and effective permeability, and (4) the mole fraction of CO2/CH4 in the effluent mixture gases and water saturation. These results deepen our understanding of the multi-phase flow behavior in the porous media under unsaturated conditions, which have implications for formulating emergency response plans for gas

  4. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity

    NARCIS (Netherlands)

    Sousa, C.A.; Winter, de L.; Janssen, M.G.J.; Vermue, M.H.; Wijffels, R.H.

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (PO2=0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06

  5. Shear weakening for different lithologies observed at different saturation stages

    Science.gov (United States)

    Diethart-Jauk, Elisabeth; Gegenhuber, Nina

    2018-01-01

    For this study, samples from different lithologies ("Leitha"-limestone, "Dachstein"-limestone, "Haupt"-dolomite, "Bunt"-sandstone, Grey Berea sandstone, granite, quartzite and basalt) were selected. Samples were dried at 70 °C, respectively 105 °C and were saturated with brine. Mass, porosity, permeability, compressional and shear wave velocity were determined from dry and brine saturated samples at laboratory conditions, based on an individual measurement program. Shear modulus was calculated to find out, if shear weakening exists for the dataset. Shear weakening means that shear modulus of dry samples is higher than of saturated samples, but it is assumed that shear modulus is unaffected by saturation. "Dachstein"-limestone and basalt show shear weakening, quartzite samples show both weakening and hardening. Granite samples are affected by temperature, after drying with 105 °C no change can be observed anymore. "Bunt"-sandstone samples show a change in the shear modulus in a small extent, although they may contain clay minerals. The other lithologies show no effect. Explanations for carbonate samples can be the complicated pore structure, for basalt it could be that weathering creates clay minerals which are known as causes for a change of the shear modulus. Fluid viscosity can also be an important factor.

  6. Saturation of bentonite dependent upon temperature

    International Nuclear Information System (INIS)

    Hausmannova, Lucie; Vasicek, Radek

    2010-01-01

    Document available in extended abstract form only. The fundamental idea behind the long-term safe operation of a deep repository is the use of the Multi-barrier system principle. Barriers may well differ according to the type of host rock in which the repository is located. It is assumed that the buffer in the granitic host rock environment will consist of swelling clays which boast the ideal properties for such a function i.e. low permeability, high swelling pressure, self-healing ability etc. all of which are affected primarily by mineralogy and dry density. Water content plays a crucial role in the activation of swelling pressure as well as, subsequently, in the potential self healing of the various contact areas of the numerous buffer components made from bentonite. In the case of a deep repository, a change in water content is not only connected with the possible intake of water from the host rock, but also with its redistribution owing to changes in temperature after the insertion of the heat source (disposal waste package containing spent fuel) into the repository 'nest'. The principal reason for the experimental testing of this high dry density material is the uncertainty with regard to its saturation ability (final water content or the degree of saturation) at higher temperatures. The results of the Mock-Up-CZ experiment showed that when the barrier is constantly supplied with a saturation medium over a long time period the water content in the barrier as well as the degree of saturation settle independently of temperature. The Mock-Up-CZ experiment was performed at temperatures of 30 deg. - 90 deg. C in the barrier; therefore it was decided to experimentally verify this behaviour by means of targeted laboratory tests. A temperature of 110 deg. C was added to the set of experimental temperatures resulting in samples being tested at 25 deg. C, 95 deg. C and 110 deg. C. The degree of saturation is defined as the ratio of pore water volume to pore

  7. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles......The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low...... volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar...

  8. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity.

    Science.gov (United States)

    Sousa, Cláudia; de Winter, Lenneke; Janssen, Marcel; Vermuë, Marian H; Wijffels, René H

    2012-01-01

    The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (P(O)₂= 0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06 day(-1), respectively. An increase of the P(CO)₂from 0.007 to 0.02 bar at P(O₂) of 0.84 bar resulted in an increase in the growth rate from 1.06 to 1.36 day(-1). These results confirm that the reduction of algal growth at high oxygen concentrations at sub-saturating light conditions is mainly caused by competitive inhibition of Rubisco. This negative effect on growth can be overcome by restoring the O(2)/CO(2) ratio by an increase in the partial carbon dioxide pressure. In comparison to general practice (P(O(2)) = 0.42 bar), working at partial O(2) pressure of 0.84 bar could reduce the energy requirement for degassing by a factor of 3-4. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Experimental determination of cesium saturated vapor pressure in the 483/642 deg K temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gushchin, G I; Subbotin, V A; Khachaturov, Eh Kh [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Obninsk. Fiziko-Ehnergeticheskij Inst.

    1975-07-01

    Test results of saturated cesium vapour pressure in the temperature range of 483.13-642 deg K and pressure range of 15.77-1.389 N/m/sup 2/ by direct static method are presented. The testing system comprises a differential bellows-type pressure sensor, a thermostatic unit and a gas system with V-shaped oil manometer used for argon-assisted sensor calibration. The static sensor characteristic approaches linearity in the pressure range of 10-600 N/m/sup 2/. The greatest non-linearity is observed at low pressures (10-40 N/m/sup 2/) and does not exceed 3-4%. Sensor sensitivity is 0.39 mV/N/m/sup 2/ in this pressure range. The characteristic hysteresis is 0.5% and below. With pressures greater than 600 N/m/sup 2/, the sensor sensitivity gradually decreases by 12% while the characteristic hysteresis increases to 2-3%. A brief description of the experimental procedure is offered. The present results are compared with other authors' data.

  10. Lipid order, saturation and surface property relationships: a study of human meibum saturation.

    Science.gov (United States)

    Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S

    2013-11-01

    Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum

  11. Near-saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada

    Science.gov (United States)

    Bodhinayake, Waduwawatte; Si, Bing Cheng

    2004-10-01

    Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near-saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double-ring and tension infiltrometers at -0.3, -0.7, -1.5 and -2.2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field-saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at -0.3 kPa pressure head, inverse capillary length scale () and water-conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p 1.36 × 10-4 m in diameter in the three land uses. Land use modified near-saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage.

  12. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod

    Science.gov (United States)

    This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating...

  13. A comparison of ground and satellite observations of cloud cover to saturation pressure differences during a cold air outbreak

    Energy Technology Data Exchange (ETDEWEB)

    Alliss, R.J.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The role of clouds in the atmospheric general circulation and the global climate is twofold. First, clouds owe their origin to large-scale dynamical forcing, radiative cooling in the atmosphere, and turbulent transfer at the surface. In addition, they provide one of the most important mechanisms for the vertical redistribution of momentum and sensible and latent heat for the large scale, and they influence the coupling between the atmosphere and the surface as well as the radiative and dynamical-hydrological balance. In existing diagnostic cloudiness parameterization schemes, relative humidity is the most frequently used variable for estimating total cloud amount or stratiform cloud amount. However, the prediction of relative humidity in general circulation models (GCMs) is usually poor. Even for the most comprehensive GCMs, the predicted relative humidity may deviate greatly from that observed, as far as the frequency distribution of relative humidity is concerned. Recently, there has been an increased effort to improve the representation of clouds and cloud-radiation feedback in GCMs, but the verification of cloudiness parameterization schemes remains a severe problem because of the lack of observational data sets. In this study, saturation pressure differences (as opposed to relative humidity) and satellite-derived cloud heights and amounts are compared with ground determinations of cloud cover over the Gulf Stream Locale (GSL) during a cold air outbreak.

  14. Experimental study on saturated boiling of two phase natural circulation under low pressure in narrow rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zi-chao; Qi, Shi; Zhou, Tao; Li, Bing; Shahzad, Muhammad Ali [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing (China); Huang, Yan-ping [Nuclear Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.

    2017-12-15

    Saturated boiling of two-phase natural circulation has been experimentally investigated based on a natural circulation device with narrow rectangular channels. When heating power reaches a certain range, it is possible to observe the phenomenon of saturated boiling and flow pattern transition in the system. The results show the heat transfer coefficient of saturated boiling decreases with the increasing of pressure, heating power and size of narrow rectangle channels. The buoyancy force causing mixed convection decreases the heat transfer coefficient. Finally, a dimensionless number is introduced, which reflects length to width ratio of rectangular narrow section and Rayleigh number, in order to revise the presented correlation. All errors fall within the range of ±15%.

  15. Inversion degree and saturation magnetization of different nanocrystalline cobalt ferrites

    International Nuclear Information System (INIS)

    Concas, G.; Spano, G.; Cannas, C.; Musinu, A.; Peddis, D.; Piccaluga, G.

    2009-01-01

    The inversion degree of a series of nanocrystalline samples of CoFe 2 O 4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57 Fe Moessbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Moessbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.

  16. Determination of saturation functions and wettability for chalk based on measured fluid saturations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.; Bech, N.; Moeller Nielsen, C.

    1998-08-01

    The end effect of displacement experiments on low permeable porous media is used for determination of relative permeability functions and capillary pressure functions. Saturation functions for a drainage process are determined from a primary drainage experiment. A reversal of the flooding direction creates an intrinsic imbibition process in the sample, which enables determination if imbibition saturation functions. The saturation functions are determined by a parameter estimation technique. Scanning effects are modelled by the method of Killough. Saturation profiles are determined by NMR. (au)

  17. Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats.

    Science.gov (United States)

    Alcaide, María; Stogios, Peter J; Lafraya, Álvaro; Tchigvintsev, Anatoli; Flick, Robert; Bargiela, Rafael; Chernikova, Tatyana N; Reva, Oleg N; Hai, Tran; Leggewie, Christian C; Katzke, Nadine; La Cono, Violetta; Matesanz, Ruth; Jebbar, Mohamed; Jaeger, Karl-Erich; Yakimov, Michail M; Yakunin, Alexander F; Golyshin, Peter N; Golyshina, Olga V; Savchenko, Alexei; Ferrer, Manuel

    2015-02-01

    The present study provides a deeper view of protein functionality as a function of temperature, salt and pressure in deep-sea habitats. A set of eight different enzymes from five distinct deep-sea (3040-4908 m depth), moderately warm (14.0-16.5°C) biotopes, characterized by a wide range of salinities (39-348 practical salinity units), were investigated for this purpose. An enzyme from a 'superficial' marine hydrothermal habitat (65°C) was isolated and characterized for comparative purposes. We report here the first experimental evidence suggesting that in salt-saturated deep-sea habitats, the adaptation to high pressure is linked to high thermal resistance (P value = 0.0036). Salinity might therefore increase the temperature window for enzyme activity, and possibly microbial growth, in deep-sea habitats. As an example, Lake Medee, the largest hypersaline deep-sea anoxic lake of the Eastern Mediterranean Sea, where the water temperature is never higher than 16°C, was shown to contain halopiezophilic-like enzymes that are most active at 70°C and with denaturing temperatures of 71.4°C. The determination of the crystal structures of five proteins revealed unknown molecular mechanisms involved in protein adaptation to poly-extremes as well as distinct active site architectures and substrate preferences relative to other structurally characterized enzymes. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Saturated tearing modes in tokamaks with divertors

    International Nuclear Information System (INIS)

    Bateman, G.

    1982-12-01

    We have developed a self-consistent theory of saturated tearing modes capable of predicting multiple magnetic island widths in tokamaks with no assumptions on the cross-sectional shape, aspect ratio, or plasma pressure. We are in the process of implementing this algorithm in the form of a computer code. We propose: (1) to complete, refine, document and publish this computer code; (2) to carry out a survey in which we vary the current profile, aspect ratio, cross-sectional shape, and pressure profile in order to determine their effect on saturated tearing mode magnetic island widths; and (3) to determine the effect of some externally applied magnetic perturbation harmonics on these magnetic island widths. Particular attention will be paid to the coupling between different helical harmonics, the effect of multiple magnetic islands on the profiles of temperature, pressure and current, and the potential of magnetic island overlap leading to a disruptive instability

  19. Estimation of critical gas saturation during pressure depletion in virgin and waterflooded reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, S.R.; Sorbie, K.S. [Heriot-Watt Univ., Dept. of Petroleum Engineering, Edinburgh (United Kingdom)

    1999-08-01

    An important issue in petroleum engineering is the prediction of gas production during reservoir depletion - either following conventional waterflooding operations or in the early stages of hydrocarbon production. The estimation of critical gas saturation for use in corresponding simulation studies is clearly a primary concern. To this end, a 3D, three-phase numerical pore-scale simulator has been developed that can be used to estimate critical gas saturations over a range of different lengthscales and for a wide range of fluid and rock properties. The model incorporates a great deal of the known physics observed in associated laboratory micromodel experiments, including embryonic nucleation, supersaturation effects, multiphase diffusion, bubble growth/migration/fragmentation, oil shrinkage, and three-phase spreading coefficients. These precise pore-scale mechanisms governing gas evolution have been found to be far more subtle than earlier models would suggest because of the large variation of gas/oil interfacial tension (IFT) with pressure. This has a profound effect upon the migration of gas structures during depletion. In models pertaining to reservoir rock, the process of gas migration is consequently much slower than predictions from more simplistic models would imply. This is the first time that bubble fragmentation and IFT variations have been included in a model of gas evolution at the pore-scale and the implications for production forecasting are expected to be significant. In addition, novel scaling groups have been derived for a number of different facies under both virgin and waterflooded conditions. One future application of these groups would be to scale S{sub gc} values obtained from high rate depressurization experiments to the low rate conditions more characteristic of field operations. (Author)

  20. Heating of a fully saturated darcian half-space: Pressure generation, fluid expulsion, and phase change

    Science.gov (United States)

    Delaney, P.

    1984-01-01

    Analytical solutions are developed for the pressurization, expansion, and flow of one- and two-phase liquids during heating of fully saturated and hydraulically open Darcian half-spaces subjected to a step rise in temperature at its surface. For silicate materials, advective transfer is commonly unimportant in the liquid region; this is not always the case in the vapor region. Volume change is commonly more important than heat of vaporization in determining the position of the liquid-vapor interface, assuring that the temperatures cannot be determined independently of pressures. Pressure increases reach a maximum near the leading edge of the thermal front and penetrate well into the isothermal region of the body. Mass flux is insensitive to the hydraulic properties of the half-space. ?? 1984.

  1. Thermophysical properties of a fluid-saturated sandstone

    International Nuclear Information System (INIS)

    Abid, Muhammad; Hammerschmidt, Ulf; Koehler, Juergen

    2014-01-01

    Thermophysical properties of a fluid-saturated stone are presented that are obtained by using the transient hot-bridge technique (THB) at ambient conditions. Measurements are succeedingly done each after having filled the porous stone structure first with six different fluids of distinct thermal conductivities and next with six different gases also having different thermal conductivities. Variations in thermal conductivity, thermal diffusivity and volumetric specific heat due to liquid or gas saturations are discussed. Internal pore structure of the stone is studied by using Scanning Electron Microscopy (SEM), Mercury Intrusion Porosimetry (MIP) and other standardized density methods at ambient conditions. Effect of interstitial pore pressure on thermophysical properties are also discussed in the context of Knudsen effect. (authors)

  2. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2007-01-01

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems

  3. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2007-07-15

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems.

  4. A demonstration experiment for studying the properties of saturated vapor

    Science.gov (United States)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2017-11-01

    The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.

  5. The Effects of NaCl Concentration and Confining Pressure on Mechanical and Acoustic Behaviors of Brine-Saturated Sandstone

    Directory of Open Access Journals (Sweden)

    Yan-Hua Huang

    2018-02-01

    Full Text Available To better understand the mechanical behavior of rock with brine saturation, conventional triaxial experiments were carried out on sandstone for a range of confining pressures (0–60 MPa and NaCl concentrations (0–30%. As the confining pressure and NaCl concentration increased, the triaxial compressive strength, crack damage threshold, Young’s modulus, cohesion, and internal friction angle all increased. Real-time ultrasonic wave and acoustic emission (AE techniques were used to obtain the relationship between acoustic behavior and stress level during the whole triaxial compression process. During the whole deformation process, the evolution of P-wave velocity and accumulated AE count could be divided into four phases. The microstructural characteristics of brine-saturated sandstone, before and after loading, indicated that the strength enhancement mechanism may be attributed to an increase in inter-particle friction resulting from salt crystallisation around the points of contact. The angle of friction increased by more than 86% at maximum NaCl concentration compared to that for distilled water. The NaCl deposition in the pore space resulted in nonlinear strength increases for the brine-saturated sandstone specimens with increasing salinity. The present study is expected to improve the knowledge of the strength and failure mechanisms of sedimentary rock in deep saline aquifers.

  6. Saturated liquid densities of propane at T = (280 to 365) K

    International Nuclear Information System (INIS)

    Miyamoto, H.; Uematsu, M.

    2007-01-01

    Saturated liquid densities for propane were obtained by means of a metal-bellows variable volumometer at T = (280, 300, 320, 340, 360, and 365) K. The mol-fraction purity of the propane used in the measurements was 0.99997. The expanded uncertainties (k = 2) in temperature, pressure, and density measurements were estimated to be less than ±3 mK, 1.4 kPa (p ≤ 7 MPa), and ±0.09%, respectively. For the determination of the saturation boundary at each temperature for propane, we measured the density data at intervals of about 20 kPa very close to the saturation boundary. After such measurements had been completed, the saturated liquid density data at each temperature were determined as the intersection between the isotherm and our previously determined vapour pressure value. The discrepancies between the three series in the present measurements, in which different sample fillings were used, were also confirmed to be sufficiently lower than the experimental uncertainty. The saturated liquid density correlation was also provided for the systematic comparisons between the present measurements and the literature data

  7. The Phase Envelope of Multicomponent Mixtures in the Presence of a Capillary Pressure Difference

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando; Yan, Wei; Michelsen, Michael Locht

    2016-01-01

    for test mixtures with wide ranges of compositions at different capillary radii and vapor fractions. The calculation results show that the phase envelope changes everywhere except at the critical point. The bubble point and the lower branch of the dew point show a decrease in the saturation pressure......, whereas the upper branch of the dew point shows an increase. The cricondentherm is shifted to a higher temperature. We also presented a mathematical analysis of the phase envelope shift due to capillary pressure based on linear approximations. The resulting linear approximation equations can predict...... the magnitude of shift, and the approximation is close for the change in the bubble point pressure....

  8. A three-dimensional laboratory steam injection model allowing in situ saturation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

    1992-08-01

    The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

  9. TECHNIQUES OF EVALUATION OF HEMOGLOBIN OXYGEN SATURATION IN CLINICAL OPHTHALMOLOGY

    Directory of Open Access Journals (Sweden)

    S. Yu. Petrov

    2016-01-01

    Full Text Available Oxygen content in body fluids and tissues is an important indicator of life support functions. A number of ocular pathologies, e.g. glaucoma, are of presumable vascular origin which means altered blood supply and oxygen circulation. Most oxygen is transported in the blood in the association with hemoglobin. When passing through the capillaries, hemoglobin releases oxygen, converting from oxygenated form to deoxygenated form. This process is accompanied by the changes in spectral characteristics of hemoglobin which result in different colors of arterial and venous blood. Photometric technique for the measurement of oxygen saturation in blood is based on the differences in light absorption by different forms of hemoglobin. The measurement of saturation is called oximetry. Pulse oximetry with assessment of tissue oxygenation is the most commonly used method in medicine. The degree of hemoglobin oxygen saturation in the eye blood vessels is the most accessible for noninvasive studies during ophthalmoscopy and informative. Numerous studies showed the importance of this parameter for the diagnosis of retinopathy of various genesis, metabolic status analysis in hyperglycemia, diagnosis and control of treatment of glaucoma and other diseases involving alterations in eye blood supply. The specific method for evaluation of oxygen concentration is the measurement of pressure of oxygen dissolved in the blood, i.e. partial pressure of oxygen. In ophthalmological practice, this parameter is measured in anterior chamber fluid evaluating oxygen level for several ophthalmopathies including different forms of glaucoma, for instillations of hypotensive eye drops as well as in vitreous body near to the optic disc under various levels of intraocular pressure. Currently, monitoring of oxygen saturation in retinal blood vessels, i.e. retinal oximetry, is well developed. This technique is based on the assessment of light absorption by blood depending on

  10. Measurement of electrical impedance of a Berea sandstone core during the displacement of saturated brine by oil and CO2 injections

    Science.gov (United States)

    Liu, Yu; Xue, Ziqiu; Park, Hyuck; Kiyama, Tamotsu; Zhang, Yi; Nishizawa, Osamu; Chae, Kwang-seok

    2015-12-01

    Complex electrical impedance measurements were performed on a brine-saturated Berea sandstone core while oil and CO2 were injected at different pressures and temperatures. The saturations of brine, oil, and CO2 in the core were simultaneously estimated using an X-ray computed tomography scanner. The formation factor of this Berea core and the resistivity indexes versus the brine saturations were calculated using Archie's law. The experimental results found different flow patterns of oil under different pressures and temperatures. Fingers were observed for the first experiment at 10 MPa and 40 °C. The fingers were restrained as the viscosity ratio of oil and water changed in the second (10 MPa and 25 °C) and third (5 MPa and 25 °C) experiments. The resistivity index showed an exponential increase with a decrease in brine saturation. The saturation exponent varied from 1.4 to 4.0 at different pressure and temperature conditions. During the oil injection procedure, the electrical impedance increased with oil saturation and was significantly affected by different oil distributions; therefore, the impedance varied whether the finger was remarkable or not, even if the oil saturation remained constant. During the CO2 injection steps, the impedance showed almost no change with CO2 saturation because the brine in the pores became immobile after the oil injection.

  11. Saturated virtual fluorescence emission difference microscopy based on detector array

    Science.gov (United States)

    Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu

    2017-07-01

    Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.

  12. Establishing a quantitative functional relationship between capillary pressure, saturation and interfacial area. 1997 annual progress report

    International Nuclear Information System (INIS)

    Montemagno, C.D.

    1997-01-01

    'There is a fundamental knowledge gap associated with the in situ remediation of non-aqueous phase pollutants. Currently it is not possible to accurately determine the interfacial surface area of non-aqueous contaminants. As a result it is impossible to (1) accurately establish the health and environmental risk associated with the pollution: (2) precisely quantify and evaluate the potential efficacy of various in situ treatment technologies; and (3) conduct reliable performance assessments of the applied remediation technology during and after the clean-up. The global goal of this investigation is to try to remedy these shortcomings through the development of a formalized functional relationship between interfacial area (a), phase saturation (S) and capillary pressure (P). The development of this relationship will allow the direct determination of the fluid-fluid interfacial area from field measurements. Quantitative knowledge of the surface area of the non-aqueous phase pollutant facilitates accurate predictions of both the rate of dissolution and the contact area available for treatment. In addition. if saturation and capillary pressure measurements are made during the remediation process. both the spatial and temporal effectiveness of the remediation technology can be quantified. This information can then be used to optimize the restoration program. The project objective will be achieved through an integrated and focused research program that is comprised of theoretical computational and experimental efforts. These efforts are organized into a framework of four tasks: (1) improve on newly developed laboratory techniques to quantify and directly measure the functional relationship between phase interfacial area (a), saturation (S) and capillary pressure (P). (2) Develop new computational algorithms in conjunction with laboratory measurements to predict P, S and a. (3) Test existing theory and develop new theory to describe the relationship between P, S and a at

  13. Saturated poroelastic actuators generated by topology optimization

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    2011-01-01

    the coupling of internal fluid pressure and elastic shear stresses a slab of the optimized porous material deflects/deforms when a pressure is imposed and an actuator is created. Several phenomenologically based constraints are imposed in order to get a stable force transmitting actuator.......In this paper the fluid-structure interaction problem of a saturated porous media is considered. The pressure coupling properties of porous saturated materials change with the microstructure and this is utilized in the design of an actuator using a topology optimized porous material. By maximizing...

  14. Saturated vapor pressure over molten mixtures of GaCl3 and alkali metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Smolenskij, V.V.; Moskalenko, N.I.

    2004-01-01

    Volatilities of GaCl 3 and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl 3 in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl 3 ; their variation permits altering parameters of GaCl 3 distillation from the salt melt in a wide range [ru

  15. Oxygen Saturation in the Dental Pulp of Maxillary Premolars in Different Age Groups - Part 1.

    Science.gov (United States)

    Estrela, Carlos; Serpa, Giuliano C; Alencar, Ana Helena G; Bruno, Kely F; Barletta, Fernando B; Felippe, Wilson T; Estrela, Cyntia R A; Souza, João B

    2017-01-01

    The aim of this study was to determine oxygen saturation levels in the dental pulp of maxillary premolars in different age groups. A total of 120 human maxillary premolars with normal dental pulps were selected covering the following age groups: 20-24, 25-29, 30-34, 35-39 and 40-44 years (n=24 each group). Oxygen saturation was assessed using pulse oximetry. Analysis of variance was used to assess differences in oxygen saturation levels and Tukey's test was used to identify the age groups that differed from each other. Significance was set at 0.05. Mean oxygen saturation of 120 premolars was 86.20% considering all age groups. Significantly reduced levels were found in the oldest group compared to the other groups: 40 to 44 years - 80.00% vs. 89.71, 87.67, 88.71, and 84.80% for age groups 20-24, 25-29, 30-34, 35-39 years, respectively. The mean oxygen saturation levels were similar between 20 and 39 years of age (86.20%) in the whole sample, but reduced significantly in the 40-44-year age group, suggesting that older patients present lower oxygen saturation results even in the absence of pulp tissue injury.

  16. Saturation curve of SiO2 component in rutile-type GeO2: A recoverable high-temperature pressure standard from 3 GPa to 10 GPa

    International Nuclear Information System (INIS)

    Leinenweber, Kurt; Gullikson, Amber L.; Stoyanov, Emil; Malik, Abds-Sami

    2015-01-01

    The accuracy and precision of pressure measurements and the pursuit of reliable and readily available pressure scales at simultaneous high temperatures and pressures are still topics in development in high pressure research despite many years of work. In situ pressure scales based on x-ray diffraction are widely used but require x-ray access, which is lacking outside of x-ray beam lines. Other methods such as fixed points require several experiments to bracket a pressure calibration point. In this study, a recoverable high-temperature pressure gauge for pressures ranging from 3 GPa to 10 GPa is presented. The gauge is based on the pressure-dependent solubility of an SiO 2 component in the rutile-structured phase of GeO 2 (argutite), and is valid when the argutite solid solution coexists with coesite. The solid solution varies strongly in composition, mainly in pressure but also somewhat in temperature, and the compositional variations are easily detected by x-ray diffraction of the recovered products because of significant changes in the lattice parameters. The solid solution is measured here on two isotherms, one at 1200 °C and the other at 1500 °C, and is developed as a pressure gauge by calibrating it against three fixed points for each temperature and against the lattice parameter of MgO measured in situ at a total of three additional points. A somewhat detailed thermodynamic analysis is then presented that allows the pressure gauge to be used at other temperatures. This provides a way to accurately and reproducibly evaluate the pressure in high pressure experiments and applications in this pressure-temperature range, and could potentially be used as a benchmark to compare various other pressure scales under high temperature conditions. - Graphical abstract: The saturation curve of SiO 2 in TiO 2 shows a strong pressure dependence and a strong dependence of unit cell volume on composition. This provides an opportunity to use this saturation curve as a

  17. Bulk elastic wave propagation in partially saturated porous solids

    International Nuclear Information System (INIS)

    Berryman, J.G.; Thigpen, L.; Chin, R.C.Y.

    1988-01-01

    The linear equations of motion that describe the behavior of small disturbances in a porous solid containing both liquid and gas are solved for bulk wave propagation. The equations have been simplified by neglecting effects due to changes in capillary pressure. With this simplifying assumption, the equations reduce to two coupled (vector) equations of the form found in Biot's equations (for full saturation) but with more complicated coefficients. As in fully saturated solids, two shear waves with the same speed but different polarizations exist as do two compressional waves with distinct speeds. Attenuation effects can be enhanced in the partially saturated solid, depending on the distribution of gas in the pore space. Two models of the liquid/gas spatial distribution are considered: a segregated-fluids model and a mixed-fluids model. The two models predict comparable attentuation when the gas saturation is low, but the segregated-fluids model predicts a more rapid roll-off of attenuation as the gas saturation increases

  18. Nuclear determination of saturation profiles in core plugs

    International Nuclear Information System (INIS)

    Sletsgaard, J.; Oelgaard, P.L.

    1997-01-01

    A method to determine liquid saturations in core plugs during flooding is of importance when the relative permeability and capillary pressure function are to be determined. This part of the EFP-95 project uses transmission of γ-radiation to determine these saturations. In γ-transmission measurements, the electron density of the given substance is measured. This is an advantage as compared to methods that use electric conductivity, since neither oil nor gas conducts electricity. At the moment a single 137 Cs-source is used, but a theoretical investigation of whether it is possible to determine three saturations, using two radioactive sources with different γ-energies, has been performed. Measurements were made on three core plugs. To make sure that the measurements could be reproduced, all the plugs had a point of reference, i.e. a mark so that it was possible to place the plug same way every time. Two computer programs for calculation of saturation and porosity and the experimental setup are listed. (EG)

  19. Thermo-hydraulic behavior of saturated steam-water mixture in pressure vessel during injection of cold water

    International Nuclear Information System (INIS)

    Aya, Izuo; Kobayashi, Michiyuki; Inasaka, Fujio; Nariai, Hideki.

    1983-01-01

    The thermo-hydraulic behavior of saturated steam water mixture in a pressure vessel during injection of cold water was experimentally investigated with the Facility for Mixing Effect of Emergency Core Cooling Water. The dimensions of the pressure vessel used in the experiments were 284mm ID and 1,971mm height. 11 experiments were conducted without blowdown in order to comprehend the basic process excluding the effect of blowdown at injection of cold water. The initial pressure and water level, the injection flow rate and the size of injection nozzle were chosen as experimental parameters. Temperatures and void fractions at 6 elevations as well as pressure in the pressure vessel were measured, and new data especially on the pressure undershoot just after the initation of water injection and the vertical distribution of temperature and void fraction were gotten. The transients of pressure, average temperature and void fraction were caluculated using single-volume analysis code BLODAC-1V which is based on thermal equilibrium and so-called bubble gradient model. Some input parameters included in the analysis code were evaluated through the comparison of analysis with experimental data. Moreover, the observed pressure undershoot which is evaluated to be induced by a time lag of vapourization in water due to thermal nonequilibrium, was also discussed with the aid of another simple analysis model. (author)

  20. CT-scan-monitored electrical-resistivity measurements show problems achieving homogeneous saturation

    International Nuclear Information System (INIS)

    Sprunt, E.S.; Davis, R.M.; Muegge, E.L.; Desai, K.P.

    1991-01-01

    This paper reports on x-ray computerized tomography (CT) scans obtained during measurement of the electrical resistivity of core samples which revealed some problems in obtaining uniform saturation along the lengths of the samples. The electrical resistivity of core samples is measured as a function of water saturation to determine the saturation exponent used in electric-log interpretation. An assumption in such tests is that the water saturation is uniformly distributed. Failure of this assumption can result in errors in the determination of the saturation exponent. Three problems were identified in obtaining homogeneous water saturation in two samples of a Middle Eastern carbonate grainstone: a stationary front formed in one sample at 1-psi oil/brine capillary pressure, a moving front formed at oil/brine capillary pressure ≤4 psi in samples tested in fresh mixed-wettability and cleaned water-wet states, and the heterogeneous fluid distribution caused by a rapidly moving front did not dissipate when the capillary pressure was eliminated in the samples

  1. Modeling of carbon sequestration in coal-beds: A variable saturated simulation

    International Nuclear Information System (INIS)

    Liu Guoxiang; Smirnov, Andrei V.

    2008-01-01

    Storage of carbon dioxide in deep coal seams is a profitable method to reduce the concentration of green house gases in the atmosphere while the methane as a byproduct can be extracted during carbon dioxide injection into the coal seam. In this procedure, the key element is to keep carbon dioxide in the coal seam without escaping for a long term. It is depended on many factors such as properties of coal basin, fracture state, phase equilibrium, etc., especially the porosity, permeability and saturation of the coal seam. In this paper, a variable saturation model was developed to predict the capacity of carbon dioxide sequestration and coal-bed methane recovery. This variable saturation model can be used to track the saturation variability with the partial pressures change caused by carbon dioxide injection. Saturation variability is a key factor to predict the capacity of carbon dioxide storage and methane recovery. Based on this variable saturation model, a set of related variables including capillary pressure, relative permeability, porosity, coupled adsorption model, concentration and temperature equations were solved. From results of the simulation, historical data agree with the variable saturation model as well as the adsorption model constructed by Langmuir equations. The Appalachian basin, as an example, modeled the carbon dioxide sequestration in this paper. The results of the study and the developed models can provide the projections for the CO 2 sequestration and methane recovery in coal-beds within different regional specifics

  2. Capillary pressure and saturation relations for supercritical CO2 and brine in sand: High-pressure Pc(Sw) controller/meter measurements and capillary scaling predictions

    Science.gov (United States)

    Tokunaga, Tetsu K.; Wan, Jiamin; Jung, Jong-Won; Kim, Tae Wook; Kim, Yongman; Dong, Wenming

    2013-08-01

    In geologic carbon sequestration, reliable predictions of CO2 storage require understanding the capillary behavior of supercritical (sc) CO2. Given the limited availability of measurements of the capillary pressure (Pc) dependence on water saturation (Sw) with scCO2 as the displacing fluid, simulations of CO2 sequestration commonly rely on modifying more familiar air/H2O and oil/H2O Pc(Sw) relations, adjusted to account for differences in interfacial tensions. In order to test such capillary scaling-based predictions, we developed a high-pressure Pc(Sw) controller/meter, allowing accurate Pc and Sw measurements. Drainage and imbibition processes were measured on quartz sand with scCO2-brine at pressures of 8.5 and 12.0 MPa (45°C), and air-brine at 21°C and 0.1 MPa. Drainage and rewetting at intermediate Sw levels shifted to Pc values that were from 30% to 90% lower than predicted based on interfacial tension changes. Augmenting interfacial tension-based predictions with differences in independently measured contact angles from different sources led to more similar scaled Pc(Sw) relations but still did not converge onto universal drainage and imbibition curves. Equilibrium capillary trapping of the nonwetting phases was determined for Pc = 0 during rewetting. The capillary-trapped volumes for scCO2 were significantly greater than for air. Given that the experiments were all conducted on a system with well-defined pore geometry (homogeneous sand), and that scCO2-brine interfacial tensions are fairly well constrained, we conclude that the observed deviations from scaling predictions resulted from scCO2-induced decreased wettability. Wettability alteration by scCO2 makes predicting hydraulic behavior more challenging than for less reactive fluids.

  3. Effect of sintering pressure on structure and magnetic properties of Zn0.99Ni0.01O bulk samples synthesized under different pressures

    International Nuclear Information System (INIS)

    Wang, Yongqiang; Yuan, Chaosheng; Su, Lei; Wang, Zheng; Hao, Junhong; Ren, Yufen

    2015-01-01

    A series of Zn 0.99 Ni 0.01 O bulk samples were prepared by a coprecipitation method, and then sintered at 600 °C under various pressures from normal pressure(NP) to 3 GPa. The effects of sintering pressure (P S ) on the structure, morphology and magnetic properties of the doping samples were investigated in detail. The XRD and HRTEM results reveal that all samples are of single-phase hexagonal structure. Compared with the sample sintered at normal pressure, the lattice parameters a and c of the samples sintered at high pressures (HP) show a sharply decrease. With the increase of sintering pressure, the particle size gradually increases as well as the particles get closer to each other. At 300 K, the sample sintered at normal pressure shows a superparamagnetic-like behavior, while the samples sintered at high pressures display typical ferromagnetic behaviors. The saturation magnetization of the samples sintered at high pressures is three orders of magnitude larger than that of the one sintered at normal pressure. Our results reveal that an appropriate sintering pressure can tune the magnetic properties of Ni-doped ZnO system by changing the lattice parameters, particle size and inter-particle spacing, which may be helpful to the practical applications. - Highlights: • A series of Zn 0.99 Ni 0.01 O bulk samples were sintered in different pressures. • The lattice constants of the samples sintered at high pressure clearly decrease. • The particle size increases gradually with the increase of sintering pressure. • The samples sintered at different pressures show different magnetic behaviors. • Appropriate sintering pressure can tune the magnetic properties of Zn–Ni–O system

  4. Evaluation of different near-infrared spectroscopy technologies for assessment of tissue oxygen saturation during a vascular occlusion test.

    Science.gov (United States)

    Steenhaut, Kevin; Lapage, Koen; Bové, Thierry; De Hert, Stefan; Moerman, Annelies

    2017-12-01

    An increasing number of NIRS devices are used to provide measurements of peripheral tissue oxygen saturation (S t O 2 ). The aim of the present study is to test the hypothesis that despite technological differences between devices, similar trend values will be obtained during a vascular occlusion test. The devices compared are NIRO-200NX, which measures S t O 2 and oxyhemoglobin by spatially resolved spectroscopy and the Beer-Lambert law, respectively, and INVOS 5100C and Foresight Elite, which both measure S t O 2 with the Beer-Lambert law, enhanced with the spatial resolution technique. Forty consenting adults scheduled for CABG surgery were recruited. The respective sensors of the three NIRS devices were applied over the brachioradial muscle. Before induction of anesthesia, 3 min of ischemia were induced by inflating a blood pressure cuff at the upper arm, whereafter cuff pressure was rapidly released. Tissue oxygenation measurements included baseline, minimum and maximum values, desaturation and resaturation slopes, and rise time. Comparisons between devices were performed with the Kruskal-Wallis test with post hoc Mann-Whitney pairwise comparisons. Agreement was evaluated using Bland-Altman plots. Oxyhemoglobin measured with NIRO responded faster than the other NIRS technologies to changes in peripheral tissue oxygenation (20 vs. 27-40 s, p ≤ 0.01). When comparing INVOS with Foresight, oxygenation changes were prompter (upslope 311 [92-523]%/min vs. 114[65-199]%/min, p ≤ 0.01) and more pronounced (minimum value 36 [21-48] vs. 45 [40-51]%, p ≤ 0.01) with INVOS. Significant differences in tissue oxygen saturation measurements were observed, both within the same device as between different devices using the same measurement technology.

  5. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock.

    Science.gov (United States)

    Du, Wei; Liu, Da-Wei; Wang, Xiao-Ting; Long, Yun; Chai, Wen-Zhao; Zhou, Xiang; Rui, Xi

    2013-12-01

    Central venous oxygen saturation (Scvo2) is a useful therapeutic target when treating septic shock. We hypothesized that combining Scvo2 and central venous-to-arterial partial pressure of carbon dioxide difference (△Pco2) may provide additional information about survival. We performed a retrospective analysis of 172 patients treated for septic shock. All patients were treated using goal-directed therapy to achieve Scvo2 ≥ 70%. After 6 hours of treatment, we divided patients into 4 groups based on Scvo2 (<70% or ≥ 70%) and △Pco2 (<6 mm Hg or ≥ 6 mm Hg). Overall, 28-day mortality was 35.5%. For patients in whom the Scvo2 target was not achieved at 6 hours, mortality was 50.0%, compared with 29.5% in those in whom Scvo2 exceeded 70% (P = .009). In patients with Scvo2 ≥ 70%, mortality was lower if △Pco2 was <6 mm Hg than if △Pco2 was ≥ 6 mm Hg (56.1% vs 16.1%, respectively; P < .001) and 6-hour lactate clearance was superior (0.01 ± 0.61 vs 0.21 ± 0.31, respectively; P = .016). The combination of Scvo2 and △Pco2 appears to predict outcome in critically ill patients resuscitated from septic shock better than Scvo2 alone. Patients who meet both targets appear to clear lactate more efficiently. © 2013.

  6. Influence of Pore-Fluid Pressure on Elastic Wave Velocity and Electrical Conductivity in Water-Saturated Rocks

    Science.gov (United States)

    Higuchi, A.; Watanabe, T.

    2013-12-01

    Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure

  7. Hemodynamic differences between continual positive and two types of negative pressure ventilation.

    Science.gov (United States)

    Lockhat, D; Langleben, D; Zidulka, A

    1992-09-01

    In seven anesthetized dogs, ventilated with matching lung volumes, tidal volumes, and respiratory rates, we compared the effects on cardiac output (CO), arterial venous oxygen saturation difference (SaO2 - SVO2), and femoral and inferior vena cava pressure (1) intermittent positive pressure ventilation with positive end-expiratory pressure (CPPV); (2) iron-lung ventilation with negative end-expiratory pressure (ILV-NEEP); (3) grid and wrap ventilation with NEEP applied to the thorax and upper abdomen (G&W-NEEP). The values of CO and SaO2 - SVO2 with ILV-NEEP were similar to those with CPPV. However, with G&W-NEEP as compared with ILV-NEEP, mean CO was greater (2.9 versus 2.6 L/min, p = 0.02) and mean (SaO2 - SVO2) was lower (26.6% versus 28.3%, p = NS). Mean PFEM-IVC was higher with G&W-NEEP than with the other types of ventilation. We conclude that (1) ILV-NEEP is hemodynamically equivalent to CPPV and (2) G&W-NEEP has less adverse hemodynamic consequences. has less adverse hemodynamic consequences.

  8. CT-scan-monitored electrical resistivity measurements show problems achieving homogeneous saturation

    International Nuclear Information System (INIS)

    Sprunt, E.S.; Coles, M.E.; Davis, R.M.; Muegge, E.L.; Desai, K.P.

    1991-01-01

    X-ray CT scans obtained during measurement of the electrical resistivity of core samples revealed some problems in obtaining uniform saturation along the length of the sample. In this paper the electrical resistivity of core samples is measured as a function of water saturation to determine the saturation exponent, which is used in electric log interpretation. An assumption in such tests is that the water saturation is uniformly distributed. Failure of this assumption can result in errors in the determination of the saturation exponent. Three problems were identified in obtaining homogeneous water saturation in two samples of a Middle Eastern carbonate grainstone. A stationary front formed in one sample at 1 psi oil/brine capillary pressure. A moving front formed at oil/brine capillary pressures of 4 psi or less in both samples tested, in both a fresh mixed-wettability state and in a cleaned water-wet state. In these samples, the heterogeneous fluid distribution caused by a rapidly moving front did not dissipate when the capillary pressure was eliminated

  9. Optic nerve sheath diameter on fat-saturated T2-weighted orbital MR imaging reflects intracranial pressure

    International Nuclear Information System (INIS)

    Watanabe, Arata; Kinouchi, Hiroyuki; Horikoshi, Toru; Uchida, Mikito; Sakatsume, Satoshi

    2009-01-01

    Although dilated optic nerve sheath (ONS) is observed in the setting of increased intracranial pressure (ICP) such as idiopathic intracranial hypertension or hydrocephalus, the relationship between ONS diameter and ICP is unclear. We analyzed the relationship between subdural pressure measured during surgery in patients with chronic subdural fluid collections and ONS diameter measured on MR images. Orbital thin slice fat-saturated MR images were obtained within 24 hours before surgery and ONS diameters were measured just behind the optic globe. Subdural pressure was measured using a manometer before opening the dura mater during surgery. Significant correlation was found between the ONS diameter and subdural pressure (y=0.0618x+4.8219. y: ONS diameter (mm), x: subdural pressure (cmH 2 O), correlation coefficient: 0.505). The ONS diameter before surgery (6.1±0.7 mm) was significantly reduced after surgery (4.8±0.9 mm, p=0.003). Increased ONS diameter on MR images is a strong indicator of increased ICP we propose 6 mm as the normal limit of diameter just behind the eyeball because this value corresponds to the upper normal limit of ICP of around 20 cmH 2 O with above mentioned approximate curve. (author)

  10. Evaporation heat transfer and pressure drop of R-410A in three 7.0 mm O.D. microfin tubes having different inside geometries

    International Nuclear Information System (INIS)

    Kim, Nae Hyun

    2015-01-01

    R-410A evaporation heat transfer and pressure drop data are provided for three 7.0 mm O.D. microfin tubes. The microfin tubes had different helix angle, fin height and fin apex angle. Tests were conducted for a range of quality (0.2 ∼ 0.8), mass flux (216 ∼ 390 kg/m 2 s), heat flux (9 ∼ 17 kW/m 2 ) and saturation temperature (8 ∼ 12 .deg. C). It was found that three microfin tubes yielded approximately the same heat transfer coefficients. Microfin tube with larger inter-fin spacing or smaller helix angle yielded lager pressure drop. Both heat transfer coefficient and pressure drop increased as mass flux or quality increased. However, they decreased as saturation temperature increased. The range of heat transfer enhancement factor (1.37 ∼ 1.97) was comparable with that of pressure drop penalty factor (1.22 ∼ 1.77). Data are compared with available heat transfer and pressure drop correlations

  11. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    Science.gov (United States)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  12. Simulation of consolidation in partially saturated soil materials

    International Nuclear Information System (INIS)

    Narasimhan, T.N.

    1982-03-01

    Partially saturated soil materials undergo consolidation, heave, collapse and failure due to changes in pore fluid pressure. The precise nature of the mechanics of such deformations is only poorly understood at present. Experimental evidence has shown that the volume change behavior of unsaturated soils cannot be adequately explained through changes in effective stress, even when a saturation dependent parameter is incorporated into the definition of effective stress. Two independent stress-state variables, involving combinations of total stress, pore air pressure and pore water pressure, are required to characterize volume changes and saturation changes in the partially saturated state. In general, two coupled conservation equations, one for the water-phase and the other for the air-phase need to be solved in order to predict the deformation behavior of unsaturated soils. If directional displacements and changes in the stress-field are required, then the conservation equations are to be integrated with an additional set of multi-dimensional force balance equations. For lack of a sufficient understanding of elastic constants such as Poisson's Ratio and Lame's constants as applied to unsaturated soils, little has been achieved so far in integrating the conservation equations and the force balance equations. For the long-term modeling of consolidation with respect to uranium mill tailings, it may be acceptable and economical to solve a single conservation equation for water, assuming that the air-phase is continuous and is at atmospheric pressure everywhere in the soil. The greatest challenge to modeling consolidation in the unsaturated zone at the presnt time is to develop enough experimental data defining the variation of void ratio and saturation with reference to the two chosen stress-state variables

  13. Saturated phase densities of (CO_2 + H_2O) at temperatures from (293 to 450) K and pressures up to 64 MPa

    International Nuclear Information System (INIS)

    Efika, Emmanuel C.; Hoballah, Rayane; Li, Xuesong; May, Eric F.; Nania, Manuela; Sanchez-Vicente, Yolanda; Martin Trusler, J.P.

    2016-01-01

    Highlights: • Saturated phase densities of CO_2 + H_2O were measured with a 1.5 kg · m"−"3 uncertainty. • Aqueous phase densities can be predicted within 3 kg · m"−"3 using empirical models. • The CO_2-rich phase density was within 8 kg · m"−"3 of pure CO_2 at the same (p, T). • The cubic EOS of Spycher and Pruess deviates from the data by up to about 8 kg · m"−"3. - Abstract: An apparatus consisting of an equilibrium cell connected to two vibrating tube densimeters and two syringe pumps was used to measure the saturated phase densities of (CO_2 + H_2O) at temperatures from (293 to 450) K and pressures up to 64 MPa, with estimated average standard uncertainties of 1.5 kg · m"−"3 for the CO_2-rich phase and 1.0 kg · m"−"3 for the aqueous phase. The densimeters were housed in the same thermostat as the equilibrium cell and were calibrated in situ using pure water, CO_2 and helium. Following mixing, samples of each saturated phase were displaced sequentially at constant pressure from the equilibrium cell into the vibrating tube densimeters connected to the top (CO_2-rich phase) and bottom (aqueous phase) of the cell. The aqueous phase densities are predicted to within 3 kg · m"−"3 using empirical models for the phase compositions and partial molar volumes of each component. However, a recently developed multi-parameter equation of state (EOS) for this binary mixture, Gernert and Span [32], was found to under predict the measured aqueous phase density by up to 13 kg · m"−"3. The density of the CO_2-rich phase was always within about 8 kg · m"−"3 of the density for pure CO_2 at the same pressure and temperature; the differences were most positive near the critical density, and became negative at temperatures above about 373 K and pressures below about 10 MPa. For this phase, the multi-parameter EOS of Gernert and Span describes the measured densities to within 5 kg · m"−"3, whereas the computationally-efficient cubic EOS model of

  14. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  15. Salt-saturated concrete strength and permeability

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hansen, F.D.; Knowles, M.K.

    1996-01-01

    Laboratory-scale experiments applicable to the use of salt-saturated concrete as a seal material for a transuranic waste repository have been completed. Nitrogen gas permeability measurements were made using a flexible-wall permeameter, a confining pressure of 1 MPa, and gas pressure gradients ranging from 0.3 MPa to 0.75 MPa. Results show that salt-saturated concrete has very low intrinsic permeability with values ranging from 9.4 x 10 -22 m 2 to 9.7 x 10 -17 m 2 . Strength and deformation characteristics were investigated under conditions of triaxial compression with confining pressures ranging from 0 to 15 MPa using either axial strain-rate or axial stress-rate control and show that the failure strength of concrete increases with confining pressure which can be adequately described through pressure-sensitive failure criteria. Axial, radial, and volumetric strains were also measured during each test and these data were used to determine elastic properties. Experimental results are applicable in the design and analysis of scale-related functions and apply to other concrete structures subjected to compressive loadings such as dams and prestressed structural members

  16. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  17. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    Science.gov (United States)

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  18. Landsliding in partially saturated materials

    Science.gov (United States)

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  19. Recipe for residual oil saturation determination

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, A.J.; Kidwell, C.M.

    1979-01-01

    In 1978, Shell Oil Co., in conjunction with the US Department of Energy, conducted a residual oil saturation study in a deep, hot high-pressured Gulf Coast Reservoir. The work was conducted prior to initiation of CO/sub 2/ tertiary recovery pilot. Many problems had to be resolved prior to and during the residual oil saturation determination. The problems confronted are outlined such that the procedure can be used much like a cookbook in designing future studies in similar reservoirs. Primary discussion centers around planning and results of a log-inject-log operation used as a prime method to determine the residual oil saturation. Several independent methods were used to calculate the residual oil saturation in the subject well in an interval between 12,910 ft (3935 m) and 12,020 ft (3938 m). In general, these numbers were in good agreement and indicated a residual oil saturation between 22% and 24%. 10 references.

  20. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2008-01-01

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate

  1. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2008-05-15

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate.

  2. Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function.

    Science.gov (United States)

    Hall, Wendy L

    2009-06-01

    The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.

  3. The Effect of Non-nutritive Sucking on Transcutaneous Oxygen Saturation in Neonates under the Nasal Continuous Positive Airway Pressure (CPAP

    Directory of Open Access Journals (Sweden)

    Mousa Ahmadpour-kacho

    2017-03-01

    Full Text Available BackgroundSeveral beneficial effects of non-nutritive sucking in infants, including the physiological stability, relaxation, better transition from tube feeding to oral feeding have been reported. But its effect on oxygen saturation in neonates under the Nasal Continuous Positive Airway Pressure (NCPAPو (is not so clear. This study aimed to investigate the effects of non-nutritive sucking on transcutaneous oxygen saturation levels of neonates treated with NCPAP.Materials and MethodsThis quasi-experimental study was done on 25 preterm neonates, hospitalized with a diagnosis of respiratory distress, required NCPAP, in the neonatal intensive care unit (NICU at the Ayatollah Rouhani Hospital and Babol Clinic, North of Iran. Non-nutritive sucking was elicited by a standard pacifier appropriate to their age one hour a day, and the mean oxygen saturation was measured before and after intervention by cardiopulmonary monitoring (Saadat Co., Iran. Data analyzed using SPSS-18.0 software.ResultsIn the 25 cases studied, the mean oxygen saturation values ​​before performing non-nutritive sucking was 96.31±2.88%, which was changed to 98.35±1.6% after intervention, and this increase was statistically significant (P = 0.004.Results showed that the gender, birth weight and gestational age of neonates had no effect on mean Blood oxygen saturation (SpO2level.ConclusionAccording to the results, using the non-nutritive sucking in premature neonates under the NCPAP, can improve oxygenation.

  4. Central venous oxygen saturation during hypovolaemic shock in humans

    DEFF Research Database (Denmark)

    Madsen, P; Iversen, H; Secher, N H

    1993-01-01

    We compared central venous oxygen saturation and central venous pressure (CVP) as indices of the effective blood volume during 50 degrees head-up tilt (anti-Trendelenburg's position) induced hypovolaemic shock in eight healthy subjects. Head-up tilt increased thoracic electrical impedance from 31...... (28-36) (median and range) to 34 (30-40) Ohm, mean arterial pressure (MAP) from 79 (70-88) to 86 (80-99) mmHg, heart rate (HR) from 67 (56-71) to 99 (78-119) beats min-1 (p ....05) but thereafter remained stable. In contrast, central venous oxygen saturation showed a linear decrease with time from 0.75 (0.69-0.78) at rest to 0.60 (0.49-0.67) (p measurement of central venous oxygen saturation...

  5. Effect of Al_2O_3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol

    Science.gov (United States)

    Zhelezny, Vitaly; Geller, Vladimir; Semenyuk, Yury; Nikulin, Artem; Lukianov, Nikolai; Lozovsky, Taras; Shymchuk, Mykola

    2018-03-01

    This paper presents results of an experimental study of the density, saturated vapor pressure, surface tension and viscosity of Al_2O_3 nanoparticle colloidal solutions in isopropyl alcohol. Studies of the thermophysical properties of nanofluids were performed at various temperatures and concentrations of Al_2O_3 nanoparticles. The paper gives considerable attention to a turbidimetric analysis of the stability of nanofluid samples. Samples of nanofluids remained stable over the range of parameters of the experiments, ensuring the reliability of the thermophysical property data for the Al_2O_3 nanoparticle colloidal solutions in isopropyl alcohol. The studies show that the addition of Al_2O_3 nanoparticles leads to an increase of the density, saturated vapor pressure and viscosity, as well as a decrease for the surface tension of isopropyl alcohol. The information reported in this paper on the various thermophysical properties for the isopropyl alcohol/Al_2O_3 nanoparticle model system is useful for the development of thermodynamically consistent models for predicting properties of nanofluids and correct modeling of the heat exchange processes.

  6. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    Science.gov (United States)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  7. Saturation and oscillation of current in semiconductors subjected to uniaxial deformation

    International Nuclear Information System (INIS)

    Zdebskii, A.P.; Olikh, Yu.A.; Savchuk, A.U.

    1985-01-01

    The influence of an external uniaxial deformation on the saturation and oscillations of current in photosensitive CdS monocrystals is investigated. The specimens were subjected to uniaxial pressure up to 6 x 10 7 N/m 2 , the pressure being either parallel or perpendicular to the c axis in CdS. With application of external pressure, the shape of current oscillations and their amplitude changed. In the case where the pressure was perpendicular to the direction of current I, the amplitude of oscillations and the saturation depth of the volt-ampere characteristic, VAC, were increased. With pressure being parallel to the current direction, the reverse phenomenon was observed, i.e. the efficiency of the acousto-electronic interaction was reduced

  8. In-situ, high pressure and temperature experimental determination of hydrogen isotope fractionation between coexisting hydrous melt and silicate-saturated aqueous fluid

    Science.gov (United States)

    Mysen, B. O.

    2012-12-01

    Hydrogen isotope fractionation between water-saturated silicate melt and silicate-saturated aqueous fluid has been determined experimentally, in-situ with the samples in the 450-800C and 101-1567 MPa temperature and pressure range, respectively. The temperatures are, therefore higher than those where hydrogen bonding in fluids and melts is important [1]. The experiments were conducted with a hydrothermal diamond anvil cell (HDAC) as the high-temperature/-pressure tool and vibrational spectroscopy to determine D/H fractionation. Compositions were along the haploandesite join, Na2Si4O9 - Na2(NaAl)4O9 [Al/(Al+Si)=0-0.1], and a 50:50 (by volume) H2O:D2O fluid mixture as starting material. Platinum metal was used to enhance equilibration rate. Isotopic equilibrium was ascertained by using variable experimental duration at given temperature and pressure. In the Al-free Na-silicate system, the enthalpy change of the (D/H) equilibrium of fluid is 3.1±0.7 kJ/mol, whereas for coexisting melt, ΔH=0 kJ/mol within error. With Al/(Al+Si)=0.1, ΔH=5.2±0.9 kJ/mol for fluid and near 0 within error for coexisting melt melt. For the exchange equilibrium between melt and fluid, H2O(melt)+D2O(fluid)=H2O(fluid)+D2O(melt), the ΔH=4.6±0.7 and 6.5±0.7 kJ/mol for the two Al-free and Al-bearing compositions, respectively, respectively. The D/H equilibration within fluids and melts and, therefore, D/H partitioning between coexisting fluid and melt reflect the influence of dissolved H2O(D2O) in melts and dissolved silicate components in H2O(D2O) fluid on their structure. The positive temperature- and pressure-dependence of silicate solubility and on silicate structure in silicate-saturated aqueous fluid governs the D/H fractionation in the fluid because increasing silicate solute concentration in fluid results in silicate polymerization [2]. These structural effects may be analogous to observed solute-dependent oxygen isotope fractionation between brine and CO2 [3]. In the temperature

  9. High-Pressure Chemistry of a Zeolitic Imidazolate Framework Compound in the Presence of Different Fluids.

    Science.gov (United States)

    Im, Junhyuck; Yim, Narae; Kim, Jaheon; Vogt, Thomas; Lee, Yongjae

    2016-09-14

    Pressure-dependent structural and chemical changes of the zeolitic imidazolate framework compound ZIF-8 have been investigated using different pressure transmitting media (PTM) up to 4 GPa. The unit cell of ZIF-8 expands and contracts under hydrostatic pressure depending on the solvent molecules used as PTM. When pressurized in water up to 2.2(1) GPa, the unit cell of ZIF-8 reveals a gradual contraction. In contrast, when alcohols are used as PTM, the ZIF-8 unit cell volume initially expands by 1.2% up to 0.3(1) GPa in methanol, and by 1.7% up to 0.6(1) GPa in ethanol. Further pressure increase then leads to a discontinuous second volume expansion by 1.9% at 1.4(1) GPa in methanol and by 0.3% at 2.3(1) GPa in ethanol. The continuous uptake of molecules under pressure, modeled by the residual electron density derived from Rietveld refinements of X-ray powder diffraction, reveals a saturation pressure near 2 GPa. In non-penetrating PTM (silicone oil), ZIF-8 becomes amorphous at 0.9(1) GPa. The structural changes observed in the ZIF-8-PTM system under pressure point to distinct molecular interactions within the pores.

  10. High speed drying of saturated steam

    International Nuclear Information System (INIS)

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  11. (p,V{sub m},T,x) measurements for aqueous LiNO{sub 3} solutions[Density; Concentration; Electrolyte solutions; Equation of state; Lithium nitrate; Saturated density; Saturated pressure; Temperature; Water

    Energy Technology Data Exchange (ETDEWEB)

    Abdulagatov, I.M. E-mail: ilmutdin@boulder.nist.govmangur@datacom.ru; Azizov, N.D. E-mail: Nazim_Azizov@yahoo.com

    2004-01-01

    (p,V{sub m},T,x) properties of four aqueous LiNO{sub 3} solutions (0.181, 0.526, 0.963, and 1.728) mol {center_dot} kg{sup -1} H{sub 2}O were measured in the liquid phase with a constant-volume piezometer immersed in a precision liquid thermostat. Measurements were made for 10 isotherms between (298 and 573) K. The range of pressure was from (2 to 40) MPa. The total uncertainty of density, pressure, temperature, and concentration measurements were estimated to be less than 0.06 %, 0.05 %, 10 mK, and 0.014 %, respectively. The values of saturated density were determined by extrapolating experimental (p,{rho}) data to the vapor-pressure at fixed temperature and composition using an interpolating equation. A polynomial type of equation of state for specific volume was obtained as a function of temperature, pressure, and composition by a least-squares method from the experimental data. The average absolute deviation (AAD) between measured and calculated values from this polynomial equation for density was 0.02 %. Measured values of solution density were compared with values calculated from Pitzer's ion-interaction equation. The agreement is within (0.2 to 0.4) % depending of concentration range.

  12. The New LMK Primary Standard for Dew-Point Sensor Calibration: Evaluation of the High-Range Saturator Efficiency

    Science.gov (United States)

    Hudoklin, Domen; Drnovšek, Janko

    2008-10-01

    In the field of hygrometry, a primary dew-point standard can be realized according to several proven principles, such as single-pressure (1-P), two-pressure (2-P), or divided flow. Different realizations have been introduced by various national laboratories, each resulting in a stand-alone complex generation system. Recent trends in generator design favor the single-pressure principle without recirculation because it promises theoretically lower uncertainty and because it avoids problems regarding the leak tightness of the recirculation. Instead of recirculation, the efficiency of saturation, the key factor, is increased by preconditioning the inlet gas entering the saturator. For preconditioning, a presaturator or purifier is used to bring the dew point of the inlet stream close to the saturator temperature. The purpose of the paper is to identify the minimum requirements for the preconditioning system and the main saturator to assure efficient saturation for the LMK generator. Moreover, the aim is also to find out if the preconditioning system can be avoided despite the rather simple construction of the main saturator. If this proves to be the case, the generator design can be simplified while maintaining an accurate value of the generated dew point. Experiments were carried out within the scope of improving our existing primary generator in the above-ambient dew-point range up to +70°C. These results show the generated dew point is within the measurement uncertainty for any dew-point value of the inlet gas. Thus, the preconditioning subsystem can be avoided, which leads to a simplified generator design.

  13. Investigation of induced changes after treatment with ionizing radiation and saturated steam in the case of paprika

    International Nuclear Information System (INIS)

    Kispeter, J.; Bajusz-Kabok, K.; Fekete, M.; Szabo, G.; Fodor, E.; Pali, T.

    2002-01-01

    Complete text of publication follows. Beside conventional food preservation methods, such new physical methods are also applied as ionising radiation, high hydrostatic pressure, high-tension gradient, fluctuating strong magnetic field as well as treatments with high-pressure saturated steam and microwaves. Since radiation treatment is the best known, it can be regarded as a basic method in comparative tests. In our work the preservation-induced changes were investigated for paprika griests of various origin and quality (different dyestuff contents). Samples were treated with ionising radiation, high-pressure saturated steam (140 deg C, 30 s) or with combinations of these. The changes were followed as a function of absorbed dose (2, 5, 7.5, 10 kGy) and storage time (0, 1, 2, 4, 12 weeks) using colour measurements, rheological and ESR methods. Our results are summarised as follows: (1) The treatment with high-pressure saturated steam is equivalent to that of 5 kGy absorbed γ-doses. Significant changes in dyestuff contents and surface colours can't be detected immediately after treatments. After storage of 12 weeks, decomposition of dyestuffs and changes in surface colours in samples treated with saturated steam are 20% greater than in control. Radiation results in a slight (few %) dyestuff decomposition and colour change (i.e. discolouration). (2) Rheological characteristics were changed in both treatments (apparent viscosities were increased) during storage. This is a reversible and permanent change in the case of treatments with ionising radiation and with high-pressure saturated steam, respectively. (3) Changes induced by microwave treatment are in accordance with rheological changes. (4) Treatment with saturated steam results in a decrease in the cellulose free radical content. The decrease is inversely proportional to dyestuff contents. (5) Decrease of cellulose radical concentration with the storage time is of exponential-like character. Radicals disappear at

  14. [Regional cerebral oxygen saturation as a marker of hemodynamic state following cardiac surgery].

    Science.gov (United States)

    García-Hernández, J A; Aldemira-Liz, A; Martínez-López, A I; Cayuela, A; Charlo-Molina, M T; Cano-Franco, J; Loscertales-Abril, M

    2013-10-01

    Regional cerebral oxygen saturation (rSO₂) is a measure of the general state of perfusion and oxygenation. We aim to analyze the relationship between this and various hemodynamic and respiratory parameters. Forty-three patients, operated on between October 2011 and July 2012, were included in this prospective observational descriptive study. The following parameters were measured: mean arterial pressure, both arterial and central venous oxygen saturation and partial pressures of oxygen and carbon dioxide, and lactate levels. From these parameters, the oxygenation index and the oxygen extraction ratio were calculated. These measurements were studied to evaluate whether rSO₂ correlated significantly with the other parameters. The average age and weight of the patients were 27.3 months and 9.2 kg, respectively. The rSO₂ correlated positively with both central venous oxygen saturation (r=0.73, P 0.4) between the rSO₂ and central venous oxygen saturation, and between the rSO₂ and oxygen extraction ratio. Regional cerebral oxygen saturation correlates well with hemodynamic parameters - mean arterial pressure, venous saturation, and the tissue oxygen extraction. However, it does not correlate with respiratory parameters. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  15. New concept to describe three-phase capillary pressure-degree of saturation relationship in porous media.

    Science.gov (United States)

    Nakamura, Keita; Kikumoto, Mamoru

    2018-03-15

    The Leverett concept is used conventionally to model the relationship between the capillary pressures and the degrees of saturation in the water-nonaqueous phase liquid (NAPL)-air three-phase system in porous media. In this paper, the limitation of the Leverett concept that the concept is not applicable in the case of nonspreading NAPLs is discussed through microscopic consideration. A new concept that can be applied in the case of nonspreading NAPLs as well as spreading NAPLs is then proposed. The validity of the proposed concept is confirmed by comparing with past experimental data and simulation results obtained using the conventional model based on the Leverett concept. It is confirmed that the proposed concept can correctly predict the observed distributions of NAPLs, including those of nonspreading ones. Copyright © 2018. Published by Elsevier B.V.

  16. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK

    2015-04-01

    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  17. The use of hemoglobin saturation ratio as a means of measuring tissue perfusion in the development of heel pressure sores.

    Science.gov (United States)

    Aliano, Kristen A; Stavrides, Steve; Davenport, Thomas

    2013-09-01

    The heel is a common site of pressure ulcers. The amount of pressure and time needed to develop these wounds is dependent on various factors including pressure surface, the patient's anatomy, and co-morbidities. We studied the use of the hemoglobin saturation ratio as a means of assessing heel perfusion in various pressure settings. The mixed perfusion ratio in the heels of 5 volunteers was assessed on 3 pressure surfaces and at the time of off-load. The surfaces studied included: stretcher pad, plastic backboard without padding, and pressure reduction gel. Each surface was measured for 5 minutes with a real-time reading. On the stretcher, the average StO2% decrease for each pressure surface was 26.2 ± 10 (range 18-43). The average StO2% decrease on the backboard was 22.8 ± 12.3 (range 8-37), and 24.0 ± 4.8 (range 19-30) on the gel pad. The StO2% drop plateaued with the stretcher and gel pad, but with the backboard there was a continued slow drop at 5 minutes. This study demonstrates that hemoglobin oxygenation ratio may be effective in assessing a tissue's direct perfusion in the setting of tissue pressure and may also be beneficial to better assess the effects of pressure-reduction surfaces. Further studies will be needed to determine time to skin breakdown as it pertains to pressure and tissue oxygenation.

  18. Cavitation erosion of silver plated coating at different temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Shuji; Motoi, Yoshihiro [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fuku-shi, Fukui 910-8507 (Japan); Kikuta, Kengo; Tomaru, Hiroshi [IHI Corperation, TOYOSU IHI BUILDING, 1-1, Toyosu 3-chome, Koto-ku, Tokyo 1358710 (Japan)

    2014-04-11

    Cavitation often occurs in inducer pumps used for space rockets. Silver plated coating on the inducer liner faces the damage of cavitation. Therefore, it is important to study about the cavitation erosion resistance for silver plated coating at several operating conditions in the inducer pumps. In this study, the cavitation erosion tests were carried for silver plated coating in deionized water and ethanol at several liquid temperatures (273K–400K) and pressures (0.10MPa–0.48MPa). The mass loss rate is evaluated in terms of thermodynamic parameter Σ proposed by Brennen [9], suppression pressure p–p{sub v} (p{sub v}: saturated vapor pressure) and acoustic impedance ρc (ρ: density and c: sound speed). Cavitation bubble behaviors depending on the thermodynamic effect and the liquid type were observed by high speed video camera. The mass loss rate is formulated by thermodynamic parameter Σ, suppression pressure p–p{sub v} and acoustic impedance ρc.

  19. Lack of differences in the regional variation of oxygen saturation in larger retinal vessels in diabetic maculopathy and proliferative diabetic retinopathy.

    Science.gov (United States)

    Jørgensen, Christina Mørup; Bek, Toke

    2017-06-01

    Diabetic retinopathy is characterised by morphological lesions in the ocular fundus related to disturbances in retinal blood flow. The two vision threatening forms of retinopathy show specific patterns of distribution of retinal lesions with proliferative diabetic retinopathy (PDR) developing secondary to ischaemia and hypoxia in the retinal periphery and diabetic maculopathy (DM) developing secondary to hyperperfusion and increased vascular permeability in the macular area. These differences in the distribution of retinal lesions might be reflected in regional differences in oxygen saturation in the larger retinal vessels. Dual-wavelength retinal oximetry was performed in 30 normal persons, 30 patients with DM and 30 patients with PDR, and the oxygen saturation was measured in peripapillary vessels supplying the four retinal quadrants and in branches from the upper temporal arcades supplying, respectively, the macular area and the retinal periphery. The overall oxygen saturation was significantly higher in diabetic patients than in normal persons and the arteriovenous (AV) saturation difference significantly lower in the patients with DM. The regional variation in oxygen saturation was similar in the three studied groups with a decreasing saturation from the upper nasal through the lower nasal, lower temporal and the upper temporal peripapillary vessels, and with a significantly higher oxygen saturation in venules draining the macular area than in venules draining the retinal periphery. The regional differences in retinal lesions in vision threatening diabetic retinopathy are not reflected in regional differences in the oxygen saturation of larger retinal vessels. The development of vision threatening diabetic retinopathy depends on other factors, such as, for example, regional differences in the retinal microcirculation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Mechanics of non-saturated soils

    International Nuclear Information System (INIS)

    Coussy, O.; Fleureau, J.M.

    2002-01-01

    This book presents the different ways to approach the mechanics of non saturated soils, from the physico-chemical aspect to the mechanical aspect, from the experiment to the theoretical modeling, from the laboratory to the workmanship, and from the microscopic scale to the macroscopic one. Content: water and its representation; experimental bases of the behaviour of non-saturated soils; transfer laws in non-saturated environment; energy approach of the behaviour of non-saturated soils; homogenization for the non-saturated soils; plasticity and hysteresis; dams and backfilling; elaborated barriers. (J.S.)

  1. Operating results of 220 MW SKODA saturated steam turbines

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    One of the steam turbines produced by the SKODA Works, the 220 MW steam turbine for saturated admission steam of a speed of 3000 r.p.m. is described; it is used in nuclear power plants with 400 MW PWR type reactors. 16 units of 8 turbines each have been in operation in the Jaslovske Bohunice and Dukovany power plants with the total period of operation of all machines exceeding 750,000 hours. The 220 MW steam turbine consists of a two-flow high-pressure section and of two identical two-flow low-pressure sections. The pressure of saturated steam at the inlet of the high-pressure section is 4.32 MPa (the corresponding temperature of the saturation limit being 255 degC) and during the expansion in the high-pressure section it drops to 0.6 MPa; steam moisture reaches 12%. In a separator and two-stage reheater using blend steam, the steam is freed of the moisture and is reheated to a temperature of 217 degC. Some operational problems are discussed, as are the loss of the material of the stator parts of the high-pressure section due to corrosion-erosion wear and corrosion-erosion wear of the guide wheels of the high-pressure section, and measures are presented carried out for the reduction of the corrosion-erosion effects of wet steam. One of the serious problems were the fatigue fractures of the blades of the 4th high-pressure stage, which appeared after 20 000 to 24 000 hours of operation in the dented tee-root. The guide wheels of the 4th stage were substituted by new guide wheels with uniform pitch of the channels and with increased number of guide blades. Also discussed are the dynamic behavior of the low-pressure section of the bridge structure, the operating reliability and the heat off-take for water heating of long-distance heating systems. (Z.S.) 9 figs

  2. Two different modelling methods of the saturated steam turbine load rejection

    International Nuclear Information System (INIS)

    Negreanu, Gabriel-Paul; Oprea, Ion

    1999-01-01

    One of the most difficult operation regimes of a steam turbine is the load rejection. It happens usually when the main switchgear of the unit closes unexpectedly due to some external or internal causes. In this moment, the rotor balance collapses: the motor momentum is positive, the resistant momentum is zero and the rotation velocity increases rapidly. When this process occurs, the over-speed protection should activate the emergency stop valves and the control and intercept valves in order to stop the steam admission into the turbine. The paper presents two differential approaches of the fluid dynamic processes from the flow sections of the saturated steam turbine of the NPP, where the laws of mass and energy conservation are applied. In this manner, the 'power and speed versus time' diagrams can be drawn. The main parameters of such technical problem are the closure low of the valves, the large volume of internal cavities, the huge inertial momentum of the rotor and especially the moisture of the steam that evaporates when the pressure decreases and generates an extra power in the turbine. (authors)

  3. Quantitative description of the saturated absorption signal in iodine stabilized He-Ne lasers

    International Nuclear Information System (INIS)

    Brillet, A.; Cerez, P.

    1977-01-01

    He-Ne lasers stabilized by saturated absorption 127 I 2 have been studied in many laboratories and are now widely used as optical frequency standards. But, although their frequency stability and reproducibility have been extensively measured and reported, the size and the width of the saturated absorption signals used for the stabilization are not yet well understood. Particularly, the extrapolation of the linewidth to zero pressure results in an apparent discrepancy with the lifetime of the upper level of the transition. By measuring or evaluating all the important parameters which affect the operation of these lasers we are now able to describe with a good accuracy the properties of the saturated absorption signal and their variations with the iodine pressure, using Greenstein's theory of a laser with an internal absorption cell. At low iodine pressures (typically below 100 m Torr), we observe a divergence between experimental and theoretical results, which is interpreted as an effect of the laser beam geometry, when the saturation parameter becomes much larger than 1. (orig.) [de

  4. Retinal oxygen saturation before and after glaucoma surgery.

    Science.gov (United States)

    Nitta, Eri; Hirooka, Kazuyuki; Shimazaki, Takeru; Sato, Shino; Ukegawa, Kaori; Nakano, Yuki; Tsujikawa, Akitaka

    2017-08-01

    This study compared retinal vessel oxygen saturation before and after glaucoma surgery. Retinal oxygen saturation in glaucoma patients was measured using a non-invasive spectrophotometric retinal oximeter. Adequate image quality was found in 49 of the 108 consecutive glaucoma patients recruited, with 30 undergoing trabeculectomy, 11 EX-PRESS and eight trabeculotomy. Retinal oxygen saturation measurements in the retinal arterioles and venules were performed at 1 day prior to and at approximately 10 days after surgery. Statistical analysis was performed using a Student's t-test. After glaucoma surgery, intraocular pressure (IOP) decreased from 19.8 ± 7.7 mmHg to 9.0 ± 5.7 mmHg (p glaucoma surgery had an effect on the retinal venous oxygen saturation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw; Myat, Aung; Gee, Chun Won

    2011-01-01

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher's and Chun & Seban's falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  6. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-Ol), one of the richest marine gas hydrate accumulations was discovered at Site NGHP-01-10 in the Krishna-Godavari Basin. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Assuming the resistivity of gas hydratebearing sediments is isotropic, th?? conventional Archie analysis using the logging while drilling resistivity log yields gas hydrate saturations greater than 50% (as high as ???80%) of the pore space for the depth interval between ???25 and ???160 m below seafloor. On the other hand, gas hydrate saturations estimated from pressure cores from nearby wells were less than ???26% of the pore space. Although intrasite variability may contribute to the difference, the primary cause of the saturation difference is attributed to the anisotropic nature of the reservoir due to gas hydrate in high-angle fractures. Archie's law can be used to estimate gas hydrate saturations in anisotropic reservoir, with additional information such as elastic velocities to constrain Archie cementation parameters m and the saturation exponent n. Theory indicates that m and n depend on the direction of the measurement relative to fracture orientation, as well as depending on gas hydrate saturation. By using higher values of m and n in the resistivity analysis for fractured reservoirs, the difference between saturation estimates is significantly reduced, although a sizable difference remains. To better understand the nature of fractured reservoirs, wireline P and S wave velocities were also incorporated into the analysis.

  7. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons.

    Science.gov (United States)

    Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I

    2016-11-01

    Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

  8. On the spin saturation and thermal properties of nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Ramadan, S.

    1983-12-01

    The binding energy and the incompressibility of nuclear matter with degree of spin saturation D is calculated using the Skyrme interaction and two forms of a velocity dependent effective potential. The effect of the degree of spin saturation D on the thermal properties of nuclear matter is also discussed. It is found that generally the pressure decreases with increasing D. (author)

  9. Law of nonlinear flow in saturated clays and radial consolidation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media. There is good agreement between the derived results and test ones. Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow. Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius. The interaction is an important reason why nonlinear flow in saturated clays occurs. An exact mathematical model was presented for nonlinear flow in micro-scale pore of saturated clays. Dimension and physical meanings of parameters of it are definite. A new law of nonlinear flow in saturated clays was established. It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one. Darcy law is a special case of the new law. A mathematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow. Equations of average mass conservation and moving boundary, and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer, a method of steady state in stead of transient state and a method of integral of an equation. Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained. Results show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay. The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases. Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.

  10. Thermal effects on tearing mode saturation

    International Nuclear Information System (INIS)

    Kim, J.S.; Chu, M.S.; Greene, J.M.

    1988-01-01

    The effect of geometry on tearing modes, saturated states of tearing modes, and the thermal effect on tearing modes are presented. The configuration of current and magnetic fields are quite different in slabs and in Tokamaks. However, for any magnetic island regardless of geometry and heating conditions, at island saturation the product of resistivity and current is the same at magnetic O and X lines. The temperature perturbation effect on the nonlinear development of tearing modes is investigated. Thermal conduction along the field lines is much faster than that in the perpendicular direction, and thus the temperature profile follows the island structure. Utilizing Spitzer's conductivity relation, the temperature perturbation is modelled as helical components of resistivity. For a usual tearing mode unstable Tokamak, where shear is positive, the islands continue to grow to a larger size when the islands are cooled. When they are heated, the island sizes are reduced. The temperature perturbation can induce islands even for equilibria stable with respect to tearing modes. Again, the islands appear when cooling takes place. The equilibria with the cooled islands show enhanced field line stochasticity, thus enhanced heat transport. Therefore, thermal instability can be directly related to pressure disruptions. (author)

  11. A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols

    Science.gov (United States)

    Krieger, Ulrich K.; Siegrist, Franziska; Marcolli, Claudia; Emanuelsson, Eva U.; Gøbel, Freya M.; Bilde, Merete; Marsh, Aleksandra; Reid, Jonathan P.; Huisman, Andrew J.; Riipinen, Ilona; Hyttinen, Noora; Myllys, Nanna; Kurtén, Theo; Bannan, Thomas; Percival, Carl J.; Topping, David

    2018-01-01

    To predict atmospheric partitioning of organic compounds between gas and aerosol particle phase based on explicit models for gas phase chemistry, saturation vapor pressures of the compounds need to be estimated. Estimation methods based on functional group contributions require training sets of compounds with well-established saturation vapor pressures. However, vapor pressures of semivolatile and low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique which is generally reported to be smaller than a factor of 2. At present, there is no general reference technique for measuring saturation vapor pressures of atmospherically relevant compounds with low vapor pressures at atmospheric temperatures. To address this problem, we measured vapor pressures with different techniques over a wide temperature range for intercomparison and to establish a reliable training set. We determined saturation vapor pressures for the homologous series of polyethylene glycols (H - (O - CH2 - CH2)n - OH) for n = 3 to n = 8 ranging in vapor pressure at 298 K from 10-7 to 5×10-2 Pa and compare them with quantum chemistry calculations. Such a homologous series provides a reference set that covers several orders of magnitude in saturation vapor pressure, allowing a critical assessment of the lower limits of detection of vapor pressures for the different techniques as well as permitting the identification of potential sources of systematic error. Also, internal consistency within the series allows outlying data to be rejected more easily. Most of the measured vapor pressures agreed within the stated uncertainty range. Deviations mostly occurred for vapor pressure values approaching the lower detection limit of a technique. The good agreement between the measurement techniques (some of which are sensitive to the mass

  12. Relationships between fluid pressure and capillary pressure in ...

    African Journals Online (AJOL)

    In this work, the Bower's and Gardner's technique of velocity-to fluid pressure gradient methods were applied on seismic reflection data in order to predict fluid pressure of an X- oil field in Niger Delta Basin. Results show significant deflection common with fluid pressure zones . With average connate water saturation Swc ...

  13. Muscle tissue saturation in humans studied with two non-invasive optical techniques: a comparative study

    Science.gov (United States)

    Shaharin, Alfi; Krite Svanberg, Emilie; Ellerström, Ida; Subash, Arman Ahamed; Khoptyar, Dmitry; Andersson-Engels, Stefan; Åkeson, Jonas

    2013-11-01

    Muscle tissue saturation (StO2) has been measured with two non-invasive optical techniques and the results were compared. One of the techniques is widely used in the hospitals - the CW-NIRS technique. The other is the photon timeof- flight spectrometer (pTOFS) developed in the Group of Biophotonics, Lund University, Sweden. The wavelengths used in both the techniques are 730 nm and 810 nm. A campaign was arranged to perform measurements on 21 (17 were taken for comparison) healthy adult volunteers (8 women and 13 men). Oxygen saturations were measured at the right lower arm of each volunteer. To observe the effects of different provocations on the oxygen saturation a blood pressure cuff was attached in the upper right arm. For CW-NIRS, the tissue saturation values were in the range from 70-90%, while for pTOFS the values were in the range from 55-60%.

  14. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  15. Validation of the Nonin 8600V Pulse Oximeter for heart rate and oxygen saturation measurements in rats.

    Science.gov (United States)

    Bernard, Susan L; An, Dowon; Glenny, Robb W

    2004-05-01

    This report validates the use and limitations of the Nonin Pulse Oximeter for measuring heart rate and oxygen saturation in rats. Eight anesthetized Sprague-Dawley rats were intubated and catheterized. Oxygen saturation was directly measured from arterial blood by using a Radiometer OSM3 Hemoximeter adjusted for rat blood as well as indirectly by using the Nonin Pulse Oximeter. Oxygen saturation was changed by varying the level of inhaled oxygen. Heart rate was measured in two ways: 1) by using the signal from the Nonin Pulse Oximeter and 2) by counting the pressure pulses from the transduced blood pressure. There was excellent agreement between heart rate values measured by the Nonin Pulse Oximeter and that measured by counting the pulses from the arterial blood pressure recording. The Nonin Pulse Oximeter underestimated oxygen saturations by about 3% to 5% compared to the Hemoximeter. Overall, the pulse oximeter reflected important trends in oxygen saturations, making it a useful tool for laboratory animal medicine.

  16. Evaluation of Pressure Generated by Resistors From Different Positive Expiratory Pressure Devices.

    Science.gov (United States)

    Fagevik Olsén, Monika; Carlsson, Maria; Olsén, Erik; Westerdahl, Elisabeth

    2015-10-01

    Breathing exercises with positive expiratory pressure (PEP) are used to improve pulmonary function and airway clearance. Different PEP devices are available, but there have been no studies that describe the pressure generated by different resistors. The purpose of this study was to compare pressures generated from the proprietary resistor components of 4 commercial flow-dependent PEP valves with all other parameters kept constant. Resistors from 4 flow-regulated PEP devices (Pep/Rmt system, Wellspect HealthCare; Pipe P breathing exerciser, Koo Medical Equipment; Mini-PEP, Philips Respironics [including resistors by Rüsch]; and 15-mm endo-adapter, VBM Medizintechnik) were tested randomly by a blinded tester at constant flows of 10 and 18 L/min from an external gas system. All resistors were tested 3 times. Resistors with a similar diameter produced statistically significant different pressures at the same flow. The differences were smaller when the flow was 10 L/min compared with 18 L/min. The differences were also smaller when the diameter of the resistor was increased. The pressures produced by the 4 resistors of the same size were all significantly different when measuring 1.5- and 2.0-mm resistors at a flow of 10 L/min and 2.0-mm resistors at a flow of 18 L/min (P < .001). There were no significant differences between any of the resistors when testing sizes of 4.5 and 5.0 mm at either flow. The Mini-PEP and adapter resistors gave the highest pressures. Pressures generated by the different proprietary resistor components of 4 commercial PEP devices were not comparable, even though the diameter of the resistors is reported to be the same. The pressures generated were significantly different, particularly when using small-diameter resistors at a high flow. Therefore, the resistors may not be interchangeable. This is important information for clinicians, particularly when considering PEP for patients who do not tolerate higher pressures. Copyright © 2015 by

  17. Experimental and numerical approaches of the hydro-mechanical behaviour of a quasi-saturated compacted clayey soil

    Directory of Open Access Journals (Sweden)

    Li Zhong-Sen

    2016-01-01

    Full Text Available The present research is funded by the French National Project « TerreDurable », which is dedicated to the study of soils in quasi-saturated conditions (close to saturation for the analysis of stability and settlement of earth structures such as embankment, dams. A global presentation of the drying-wetting test shows the volume change, air entry and soil-water characteristics of the soil at slurry and oven-dried conditions. Unsaturated undrained triaxial test was carried out in order to investigate the variation of pore-water pressure from quasi-saturated domain to saturation. The experimental results of the triaxial test are then modeled using a two-dimensional explicit finite difference program (Flac 2D. A constitutive law developed in the TerreDurable project allows better understanding the behaviour of quasi-saturated soils using the water retention curve of quasi-saturated domain proposed by Boutonnier (2007, 2010. A simple effective stress model is used (Cam Clay by taking into account both the suction and the compressibility of equivalent fluid (water + air. The results from numerical calculation and experimental measurements are compared.

  18. Effective stress principle for partially saturated media

    International Nuclear Information System (INIS)

    McTigue, D.F.; Wilson, R.K.; Nunziato, J.W.

    1984-04-01

    In support of the Nevada Nuclear Waste Storage Investigation (NNWSI) Project, we have undertaken a fundamental study of water migration in partially saturated media. One aspect of that study, on which we report here, has been to use the continuum theory of mixtures to extend the classical notion of effective stress to partially saturated media. Our analysis recovers previously proposed phenomenological representations for the effective stress in terms of the capillary pressure. The theory is illustrated by specializing to the case of linear poroelasticity, for which we calculate the deformation due to the fluid pressure in a static capillary fringe. We then examine the transient consolidation associated with liquid flow induced by an applied surface load. Settlement accompanies this flow as the liquid is redistributed by a nonlinear diffusion process. For material properties characteristic of tuff from the Nevada Test Site, these effects are found to be vanishingly small. 14 references, 7 figures, 1 table

  19. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil

    2011-10-03

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher\\'s and Chun & Seban\\'s falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  20. Thermo-hydric characterization of partially saturated porous media; Caracterisation thermo-hydrique de milieux poreux partiellement satures d'eau

    Energy Technology Data Exchange (ETDEWEB)

    Simon Salager; Frederic Jamin; Moulay Said El Youssoufi; Christian Saix [Laboratoire de Mecanique et Genie Civil, Universite Montpellier II, cc 048, Place Eugene Bataillon, 34095 Montpellier (France)

    2005-07-01

    We present a contribution to the thermo-hydric characterization of partially saturated porous media by water, through the characteristic curve. This curve defines the relation between suction and degree of saturation. Using this curve for a given temperature, a model is used to predict it for other temperatures. An experimental device called pressure cell was made in a thermo-regulated environment. The model was validated by several tests on a ceramic and silty clayey sand, at 20 and 60 C. The results obtained lead to a characteristic surface which can be considered as a generalization of the classical characteristic curve. (authors)

  1. The role of central venous oxygen saturation, blood lactate, and central venous-to-arterial carbon dioxide partial pressure difference as a goal and prognosis of sepsis treatment.

    Science.gov (United States)

    Wittayachamnankul, Borwon; Chentanakij, Boriboon; Sruamsiri, Kamphee; Chattipakorn, Nipon

    2016-12-01

    The current practice in treatment of severe sepsis and septic shock is to ensure adequate oxygenation and perfusion in patients, along with prompt administration of antibiotics, within 6 hours from diagnosis, which is considered the "golden hour" for the patients. One of the goals of treatment is to restore normal tissue perfusion. With this goal in mind, some parameters have been used to determine the success of treatment and mortality rate; however, none has been proven to be the best predictor of mortality rate in sepsis patients. Despite growing evidence regarding the prognostic indicators for mortality in sepsis patients, inconsistent reports exist. This review comprehensively summarizes the reports regarding the frequently used parameters in sepsis including central venous oxygen saturation, blood lactate, and central venous-to-arterial carbon dioxide partial pressure difference, as prognostic indicators for clinical outcomes in sepsis patients. Moreover, consistent findings and inconsistent reports for their pathophysiology and the potential mechanisms for their use as well as their limitations in sepsis patients are presented and discussed. Finally, a schematic strategy for potential management and benefits in sepsis patients is proposed based upon these current available data. There is currently no ideal biomarker that can indicate prognosis, predict progression of the disease, and guide treatment in sepsis. Further studies are needed to be carried out to identify the ideal biomarker that has all the desired properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A three-dimensional laboratory steam injection model allowing in situ saturation measurements. [Comparing steam injection and steam foam injection with nitrogen and without nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

    1992-08-01

    The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

  3. Variables of state and charateristics for isentropic discharge phenomena of water, starting with saturation

    Energy Technology Data Exchange (ETDEWEB)

    Baudisch, H.

    1968-03-15

    The tables presented in this report contain the thermodynamic values of isentropic change of state for water in the two-phase region starting from the saturation line down to 0.01 at. The variables have been computed in the pressure range from 5-100 at. in equal pressure intervals of 5 at. and in the range from 100-170 at. in intervals of 10 at. Assuming a one-dimensional flow and a known saturation pressure, the dimensions of a discharge nozzle may be determined by interpolation of the calculated values for an isentropic discharge. 4 figs., 29 tabs., 23 refs.

  4. [Comparison of different continuous positive airway pressure titration methods for obstructive sleep apnea hypopnea syndrome].

    Science.gov (United States)

    Li, Jingjing; Ye, Jingying; Zhang, Peng; Kang, Dan; Cao, Xin; Zhang, Yuhuan; Ding, Xiu; Zheng, Li; Li, Hongguang; Bian, Qiuli

    2014-10-01

    To explore whether there were differences between the results of automatic titration and the results of manual titration for positive airway pressure treatment in patients with obstructive sleep apnea hypopnea syndrome (OSAHS) and its influencing factors, the results might provide a theoretical basis for the rational use of two pressure titration methods. Sixty one patients with OSAHS were included in this study. All patients underwent a manual titration and an automatic titration within one week. The clinical informations, polysomnography data, and the results of both two titration of all patients were obtained for analysis. The overall apnea/hypopnea index was (63.1 ± 17.7)/h, with a range of 14.9/h to 110.4/h. The treatment pressure of manual titration was (8.4 ± 2.1) cmH(2)O, which was significantly lower than the treatment pressure of automatic titration, (11.5 ± 2.7) cmH(2)O (t = -9.797, P titration and manual titration), it was found that the pressure of automatic titration was significantly higher in patients with a ΔP > 3 cmH(2)O than in patients with a ΔP ≤ 3 cmH(2)O, which was (13.3 ± 2.3) cmH(2)O vs (10.0 ± 2.0) cmH(2)O (t = -6.159, P titration between these two groups, which was (8.6 ± 2.4) cmH(2)O vs (8.3 ± 2.0)cmH(2)O (P > 0.05). There was no significant difference in age, body mass index, neck circumference, abdomen circumference, apnea hypopnea index, and arterial oxygen saturation between these two groups. The treatment pressure of automatic titration is usually higher than that of manual titration. For patients with a high treatment pressure which is derived from automatic titration, a suggestion about manual titration could be given to decrease the potential treatment pressure of continuous positive airway pressure, which may be helpful in improving the comfortableness and the compliance of this treatment.

  5. Cerebral oxygen saturation and cardiac output during anaesthesia in sitting position for neurosurgical procedures: a prospective observational study.

    Science.gov (United States)

    Schramm, P; Tzanova, I; Hagen, F; Berres, M; Closhen, D; Pestel, G; Engelhard, K

    2016-10-01

    Neurosurgical operations in the dorsal cranium often require the patient to be positioned in a sitting position. This can be associated with decreased cardiac output and cerebral hypoperfusion, and possibly, inadequate cerebral oxygenation. In the present study, cerebral oxygen saturation was measured during neurosurgery in the sitting position and correlated with cardiac output. Perioperative cerebral oxygen saturation was measured continuously with two different monitors, INVOS ® and FORE-SIGHT ® . Cardiac output was measured at eight predefined time points using transoesophageal echocardiography. Forty patients were enrolled, but only 35 (20 female) were eventually operated on in the sitting position. At the first time point, the regional cerebral oxygen saturation measured with INVOS ® was 70 (sd 9)%; thereafter, it increased by 0.0187% min -1 (P<0.01). The cerebral tissue oxygen saturation measured with FORE-SIGHT ® started at 68 (sd 13)% and increased by 0.0142% min -1 (P<0.01). The mean arterial blood pressure did not change. Cardiac output was between 6.3 (sd 1.3) and 7.2 (1.8) litre min -1 at the predefined time points. Cardiac output, but not mean arterial blood pressure, showed a positive and significant correlation with cerebral oxygen saturation. During neurosurgery in the sitting position, the cerebral oxygen saturation slowly increases and, therefore, this position seems to be safe with regard to cerebral oxygen saturation. Cerebral oxygen saturation is stable because of constant CO and MAP, while the influence of CO on cerebral oxygen saturation seems to be more relevant. NCT01275898. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The viscosity of the refrigerant 1,1-difluoroethane along the saturation line

    Science.gov (United States)

    van der Gulik, P. S.

    1993-07-01

    The viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) has been measured along the saturation line both in the saturated liquid and in the saturated vapor. The data have been obtained every 10 K from 243 up to 393 K by means of a vibrating-wire viscometer using the free damped oscillation method. The density along the saturation line was calculated from the equation of state given by Tamatsu et al. with application of the saturated vapor-pressure correlation given by Higashi et al. An interesting result is that in the neighborhood of the critical point, the kinematic viscosity of the saturated liquid seems to coincide with that of the saturated vapor. The results for the saturated liquid are in satisfying agreement with those of Kumagai and Takahashi and of Phillips and Murphy. A comparison of the saturatedvaport data with the unsaturated-vapor data of Takahashi et al. shows some discrepancies.

  7. Bubble number saturation curve and asymptotics of hypobaric and hyperbaric exposures.

    Science.gov (United States)

    Wienke, B R

    1991-12-01

    Within bubble number limits of the varying permeability and reduced gradient bubble models, it is shown that a linear form of the saturation curve for hyperbaric exposures and a nearly constant decompression ratio for hypobaric exposures are simultaneously recovered from the phase volume constraint. Both limits are maintained within a single bubble number saturation curve. A bubble term, varying exponentially with inverse pressure, provides closure. Two constants describe the saturation curve, both linked to seed numbers. Limits of other decompression models are also discussed and contrasted for completeness. It is suggested that the bubble number saturation curve thus provides a consistent link between hypobaric and hyperbaric data, a link not established by earlier decompression models.

  8. Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti

    2017-04-01

    Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation

  9. Dependency of radon entry on pressure difference

    International Nuclear Information System (INIS)

    Kokotti, H.; Kalliokoski, P.

    1992-01-01

    Radon levels, ventilation rate and pressure differences were monitored continuously in four apartment houses with different ventilation systems. Two of them were ventilated by mechanical exhaust, one by mechanical supply and exhaust, and one by natural ventilation. The two-storey houses were constructed from concrete elements on a slab and located on a gravel esker. It was surprising to find that increasing the ventilation rate increased levels of radon in the apartments. Increased ventilation caused increased outdoor-indoor pressure difference, which in turn increased the entry rate of radon and counteracted the diluting effect of ventilation. The increase was significant when the outdoor-indoor pressure difference exceeded 5 Pa. Especially in the houses with mechanical exhaust ventilation the pressure difference was the most important factor of radon entry rate, and contributed up to several hundred Bq m -3 h -1 . (Author)

  10. Effect of Collagen Matrix Saturation on the Surface Free Energy of Dentin using Different Agents.

    Science.gov (United States)

    de Almeida, Leopoldina de Fátima Dantas; Souza, Samilly Evangelista; Sampaio, Aline Araújo; Cavalcanti, Yuri Wanderley; da Silva, Wander José; Del Bel Cur, Altair A; Hebling, Josimeri

    2015-07-01

    The surface free energy of conditioned-dentin is one of the factors that interfere with monomeric infiltration of the interfibrillar spaces. Saturation of the tooth matrix with different substances may modulate this energy and, consequently, the wettability of the dentin. To evaluate the influence of different substances used to saturate conditioned-dentin on surface free energy (SFE) of this substrate. Dentin blocks (4 × 7 × 1 mm, n = 6/ group), obtained from the roots of bovine incisors, were etched using phosphoric acid for 15 seconds, rinsed and gently dried. The surfaces were treated for 60 seconds with: ultra-purified water (H20-control); ethanol (EtOH), acetone (ACT), chlorhexidine (CHX), ethylenediaminetetraacetic acid (EDTA); or sodium hypochlorite (NaOCl). The tooth surfaces were once again dried with absorbent paper and prepared for SFE evaluation using three standards: water, formamide and bromonaphthalene. Analysis of variance (ANOVA) and Dunnet's tests (a = 0.05) were applied to the data. Ethylenediaminetetraacetic acid was the only substance that caused a change to the contact angle for the standards water and formamide, while only EtOH influenced the angles formed between formamide and the dentin surface. None of the substances exerted a significant effect for bromonaphtha-lene. In comparison to the control, only EDTA and NaOCl altered both polar components of the SFE. Total SFE was increased by saturation of the collagen matrix by EDTA and reduced when NaOCl was used. Saturation of the collagen matrix by EDTA and EtOH changed the surface free energy of the dentin. In addition, the use of NaOCl negatively interfered with the properties evaluated. The increase of surface free energy and wettability of the dentin surface would allow higher penetration of the the adhesive system, which would be of importance to the clinical success of resin-dentin union.

  11. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    . The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...... and the temperatures range from 2 to 95 °C, differing for the specimen types. The data has been analyzed to yield differential enthalpy and entropy of adsorption, as well as the dependence of the relative vapor pressure on temperature at various constant moisture contents. The implications for the coefficient......PART I: In order to generate isosteric (constant mass) vapor pressure – temperature data (P-T data) for adsorbed pore water in hydrated cement paste, the Thermo Piestic Analysis system (the TPA system) described herein was developed. The TPA system generates high precision equilibrium isosteric P...

  12. Interarm difference in blood pressure

    DEFF Research Database (Denmark)

    Mehlsen, Jesper; Wiinberg, Niels

    2014-01-01

    The present study aimed at examining the interarm difference in blood pressure and its use as an indicator of peripheral arterial disease (PAD). Data were included from consecutive patients referred from their general practitioner to our vascular laboratory for possible PAD aged 50 years or older...... without known cardiac disease, renal disease, or diabetes mellitus. 824 patients (453 women) with mean age of 72 years (range: 50-101) were included. 491 patients had a diagnosis of hypertension and peripheral arterial disease (PAD) was present in 386 patients. Systolic blood pressure was 143 ± 24 mm......Hg and 142 ± 24 mmHg on the right and left arm, respectively (P = 0.015). The interarm difference was greater in patients with hypertension (P = 0.002) and PAD (P blood pressure was reproducible...

  13. Modelling suction instabilities in soils at varying degrees of saturation

    Directory of Open Access Journals (Sweden)

    Buscarnera Giuseppe

    2016-01-01

    Full Text Available Wetting paths imparted by the natural environment and/or human activities affect the state of soils in the near-surface, promoting transitions across different regimes of saturation. This paper discusses a set of techniques aimed at quantifying the role of hydrologic processes on the hydro-mechanical stability of soil specimens subjected to saturation events. Emphasis is given to the mechanical conditions leading to coupled flow/deformation instabilities. For this purpose, energy balance arguments for three-phase systems are used to derive second-order work expressions applicable to various regimes of saturation. Controllability analyses are then performed to relate such work input with constitutive singularities that reflect the loss of strength under coupled and/or uncoupled hydro-mechanical forcing. A suction-dependent plastic model is finally used to track the evolution of stability conditions in samples subjected to wetting, thus quantifying the growth of the potential for coupled failure modes upon increasing degree of saturation. These findings are eventually linked with the properties of the field equations that govern pore pressure transients, thus disclosing a conceptual link between the onset of coupled hydro-mechanical failures and the evolution of suction with time. Such results point out that mathematical instabilities caused by a non-linear suction dependent behaviour play an important role in the advanced constitutive and/or numerical tools that are commonly used for the analysis of geomechanical problems in the unsaturated zone, and further stress that the relation between suction transients and soil deformations is a key factor for the interpretation of runaway failures caused by intense saturation events.

  14. Monitoring mixed venous oxygen saturation in patients with obstructive shock after massive pulmonary embolism.

    Science.gov (United States)

    Krivec, Bojan; Voga, Gorazd; Podbregar, Matej

    2004-05-31

    Patients with massive pulmonary embolism and obstructive shock usually require hemodynamic stabilization and thrombolysis. Little is known about the optimal and proper use of volume infusion and vasoactive drugs, or about the titration of thrombolytic agents in patients with relative contraindication for such treatment. The aim of the study was to find the most rapidly changing hemodynamic variable to monitor and optimize the treatment of patients with obstructive shock following massive pulmonary embolism. Ten consecutive patients hospitalized in the medical intensive care unit in the community General Hospital with obstructive shock following massive pulmonary embolism were included in the prospective observational study. Heart rate, systolic arterial pressure, central venous pressure, mean pulmonary-artery pressure, cardiac index, total pulmonary vascular-resistance index, mixed venous oxygen saturation, and urine output were measured on admission and at 1, 2, 3, 4, 8, 12, and 16 hours. Patients were treated with urokinase through the distal port of a pulmonary-artery catheter. At 1 hour, mixed venous oxygen saturation, systolic arterial pressure and cardiac index were higher than their admission values (31+/-10 vs. 49+/-12%, p<0.0001; 86+/-12 vs. 105+/-17 mmHg, p<0.01; 1.5+/-0.4 vs. 1.9+/-0.7 L/min/m2, p<0.05; respectively), whereas heart rate, central venous pressure, mean pulmonary-artery pressure and urine output remained unchanged. Total pulmonary vascular-resistance index was lower than at admission (29+/-10 vs. 21+/-12 mmHg/L/min/m2, p<0.05). The relative change of mixed venous oxygen saturation at hour 1 was higher than the relative changes of all other studied variables (p<0.05). Serum lactate on admission and at 12 hours correlated to mixed venous oxygen saturation (r=-0.855, p<0.001). In obstructive shock after massive pulmonary embolism, mixed venous oxygen saturation changes more rapidly than other standard hemodynamic variables.

  15. One hour effects of salbutamol and formoterol on blood pressure, heart rate and oxygen saturation in asthmatics

    Directory of Open Access Journals (Sweden)

    Geraldo Andrade Capuchinho-Júnior

    2008-05-01

    Full Text Available Aim: To analyse systolic (SBP and diastolic blood pressure (DBP, partial oxygen saturation (SpO2 and heart rate (HR disorders for an hour after short and long acting ß2-agonists. Material and methods: Twenty-four severe persistent asthma Pulmonology outpatients at Hospital Universitario Gaffree e Guinle were selected. SBP, DBP, SpO2 and HR values were determined before and after 400 μg of salbutamol and 12 μg of formoterol, on different days, with a minimum interval of 24 hours. Results: All patients showed ventilatory obstruction, as seen by a reduced FEV1/FVC ratio. There was no statistical SBP/DBP/HR difference after bronchodilator agents, but SpO2 increased with salbutamol. Conclusion: A standard dose of salbutamol and formoterol does not cause haemodynamic disorder. Resumo: Objectivo: Analisar os possíveis efeitos do uso de β-2-agonistas, de curta e longa duração, nas pressões arteriais sistólica (PAS e diastólica (PAD, na saturação parcial de oxigénio (SpO2 e na frequência cardíaca (FC, durante o período de uma hora. Material e métodos: Vinte e quatro doentes com asma persistente grave, em tratamento no ambulatório de Pneumologia do Hospital Universitário Gaffrée e Guinle, foram seleccionados para um ensaio clínico sequencial e cruzado. Os valores da PAS, PAD, SpO2 e FC foram registados antes e após o uso de broncodilatadores, salbutamol 400 μg e formoterol 12 μg, em dias diferentes, com intervalo mínimo de 24 horas. Resultados: Todos os doentes apresentaram distúrbio ventilatório obstrutivo, identificado pela redução da relação entre o volume expiratório forçado no primeiro segundo (VEMS e a capacidade vital forçada (CVF. Após o uso de substância broncodilatadora, não houve variação significativa nas PAS e PAD, nem na FC; porém, a SpO2 aumentou com o uso de salbutamol. Conclusão: Não foram observadas

  16. On the extension of multi-phase models to sub-residual saturations

    International Nuclear Information System (INIS)

    Lingineni, S.; Chen, Y.T.; Boehm, R.F.

    1995-01-01

    This paper focuses on the limitations of applying multi-phase flow and transport models to simulate the hydrothermal processes occurring when the liquid saturation falls below residual levels. A typical scenario of a heat-generating high-level waste package emplaced in a backfilled drift of a waste repository is presented. The hydrothermal conditions in the vicinity of the waste package as well as in the far-field are determined using multi-phase, non-isothermal codes such as TOUGH2 and FEHM. As the waste package temperature increases, heat-pipe effects are created and water is driven away from the package into colder regions where it condenses. The variations in the liquid saturations close to the waste package are determined using these models with extended capillary pressure-saturations relationships to sub-residual regime. The predictions indicate even at elevated temperatures, waste package surroundings are not completely dry. However, if transport based modeling is used to represent liquid saturation variations in the sub-residual regime, then complete dry conditions are predicted within the backfill for extended periods of time. The relative humidity conditions near the waste package are also found to be sensitive to the representation of capillary pressure-saturation relationship used for sub-residual regime. An experimental investigation is carried out to study the variations in liquid saturations and relative humidity conditions in sub-residual regimes. Experimental results indicated that extended multi-phase models without interphase transport can not predict dry-out conditions and the simulations underpredict the humidity conditions near the waste package

  17. Pressure (Or No Royal Road)

    Science.gov (United States)

    Bradley, J.

    1973-01-01

    Discusses how difficult the various problems of pressure, partial pressure, gas laws, and vapor pressure are for students. Outlines the evolution of the concept of pressure, the gas equation for a perfect gas, partial pressures, saturated vapor pressure, Avogadro's hypothesis, Raoult's law, and the vapor pressure of ideal solutions. (JR)

  18. Comparison of pulseoximetry oxygen saturation and arterial oxygen saturation in open heart intensive care unit

    Directory of Open Access Journals (Sweden)

    Alireza Mahoori

    2013-08-01

    Full Text Available Background: Pulseoximetry is widely used in the critical care setting, currently used to guide therapeutic interventions. Few studies have evaluated the accuracy of SPO2 (puls-eoximetry oxygen saturation in intensive care unit after cardiac surgery. Our objective was to compare pulseoximetry with arterial oxygen saturation (SaO2 during clinical routine in such patients, and to examine the effect of mild acidosis on this relationship.Methods: In an observational prospective study 80 patients were evaluated in intensive care unit after cardiac surgery. SPO2 was recorded and compared with SaO2 obtained by blood gas analysis. One or serial arterial blood gas analyses (ABGs were performed via a radial artery line while a reliable pulseoximeter signal was present. One hundred thirty seven samples were collected and for each blood gas analyses, SaO2 and SPO2 we recorded.Results: O2 saturation as a marker of peripheral perfusion was measured by Pulseoxim-etry (SPO2. The mean difference between arterial oxygen saturation and pulseoximetry oxygen saturation was 0.12%±1.6%. A total of 137 paired readings demonstrated good correlation (r=0.754; P<0.0001 between changes in SPO2 and those in SaO2 in samples with normal hemoglobin. Also in forty seven samples with mild acidosis, paired readings demonstrated good correlation (r=0.799; P<0.0001 and the mean difference between SaO2 and SPO2 was 0.05%±1.5%.Conclusion: Data showed that in patients with stable hemodynamic and good signal quality, changes in pulseoximetry oxygen saturation reliably predict equivalent changes in arterial oxygen saturation. Mild acidosis doesn’t alter the relation between SPO2 and SaO2 to any clinically important extent. In conclusion, the pulse oximeter is useful to monitor oxygen saturation in patients with stable hemodynamic.

  19. Saturation behaviour of the LHC NEG coated beam pipes

    CERN Document Server

    Porcelli, T; Lanza, G; Baglin, V; Jimenez, J M

    2012-01-01

    In the CERN Large Hadron Collider (LHC), about 6 km of the UHV beam pipe are at room temperature and serve as experimental or utility insertions. TiZrV non-evaporable getter (NEG) coating is used to maintain the design pressure during beam operation. Molecular desorption due to dynamic effects is stimulated during protons operation at high intensity. This phenomenon produces an important gas load from the vacuum chamber walls, which could lead to a partial or total saturation of the NEG coating. To keep the design vacuum performances and to schedule technical interventions for NEG reactivation, it is necessary to take into account all these aspects and to regularly evaluate the saturation level of the NEG coating. Experimental studies of a typical LHC vacuum sector were conducted in the laboratory in order to identify the best method to assess the saturation level of the beam pipe. Partial saturation of the NEG was performed and the effective pumping speed, transmission and capture probability are analysed.

  20. New calculation method for thermodynamic properties of humid air in humid air turbine cycle – The general model and solutions for saturated humid air

    International Nuclear Information System (INIS)

    Wang, Zidong; Chen, Hanping; Weng, Shilie

    2013-01-01

    The article proposes a new calculation method for thermodynamic properties (i.e. specific enthalpy, specific entropy and specific volume) of humid air in humid air turbine cycle. The research pressure range is from 0.1 MPa to 5 MPa. The fundamental behaviors of dry air and water vapor in saturated humid air are explored in depth. The new model proposes and verifies the relationship between total gas mixture pressure and gas component pressures. This provides a good explanation of the fundamental behaviors of gas components in gas mixture from a new perspective. Another discovery is that the water vapor component pressure of saturated humid air equals P S , always smaller than its partial pressure (f·P S ) which was believed in the past researches. In the new model, “Local Gas Constant” describes the interaction between similar molecules. “Improvement Factor” is proposed for the first time by this article, and it quantitatively describes the magnitude of interaction between dissimilar molecules. They are combined to fully describe the real thermodynamic properties of humid air. The average error of Revised Dalton's Method is within 0.1% compared to experimentally-based data. - Highlights: • Our new model is suitable to calculate thermodynamic properties of humid air in HAT cycle. • Fundamental behaviors of dry air and water vapor in saturated humid air are explored in depth. • Local-Gas-Constant describes existing alone component and Improvement Factor describes interaction between different components. • The new model proposes and verifies the relationship between total gas mixture pressure and component pressures. • It solves saturated humid air thoroughly and deviates from experimental data less than 0.1%

  1. Capillary pressure - saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    Science.gov (United States)

    Tokunaga, T. K.; Wang, S.; Wan, J.; Dong, W.; Kim, Y.

    2016-12-01

    Capillary pressure (Pc) - saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, seventeen sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23 °C) and reservoir (12.0 MPa, 45 °C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  2. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies

    Science.gov (United States)

    Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.

    2018-05-01

    Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.

  3. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies

    Science.gov (United States)

    Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.

    2017-11-01

    Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.

  4. Densities, Viscosities and Derived Thermophysical Properties of Water-Saturated Imidazolium-Based Ionic Liquids.

    Science.gov (United States)

    Martins, Mónia A R; Neves, Catarina M S S; Kurnia, Kiki A; Carvalho, Pedro J; Rocha, Marisa A A; Santos, Luís M N B F; Pinho, Simão P; Freire, Mara G

    2016-01-15

    In order to evaluate the impact of the alkyl side chain length and symmetry of the cation on the thermophysical properties of water-saturated ionic liquids (ILs), densities and viscosities as a function of temperature were measured at atmospheric pressure and in the (298.15 to 363.15) K temperature range, for systems containing two series of bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [C n C n im][NTf 2 ] (with n = 1-8 and 10) and asymmetric [C n C 1 im][NTf 2 ] (with n = 2-5, 7, 9 and 11) ILs. For water-saturated ILs, the density decreases with the increase of the alkyl side chain length while the viscosity increases with the size of the aliphatic tails. The saturation water solubility in each IL was further estimated with a reasonable agreement based on the densities of water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing properties of ILs and water follow a near ideal behaviour. The water-saturated symmetric ILs generally present lower densities and viscosities than their asymmetric counterparts. From the experimental data, the isobaric thermal expansion coefficient and energy barrier were also estimated. A close correlation between the difference in the energy barrier values between the water-saturated and pure ILs and the water content in each IL was found, supporting that the decrease in the viscosity of ILs in presence of water is directly related with the decrease of the energy barrier.

  5. Improvement in retinal venous oxygen saturation after panretinal photocoagulation is predictive of progression of proliferative diabetic retinopathy

    DEFF Research Database (Denmark)

    Torp, Thomas Lee; Kawasaki, Ryo; Wong, Tien Yin

    blood pressure was 152/84mmHg. Retinal arterial and venous saturation was 96.7% and 67.4%, respectively. Patients in Group 1 and 2 did not differ in baseline retinal arterial and venous oxygen saturation, number of laser spots delivered, total laser energy delivered, or change in retinal arterial oxygen...... patients with diagnosed PDR were included. We performed wide-field fluorescein angiography (WFA) (Optomap; Optos PLC., Dunfermline, Scotland, UK) and retinal oximetry (Oxymap model T1; Oxymap, software version 2.4.2, Reykjavik, Iceland) at baseline and three months after PRP by a navigated laser (NAVILAS...

  6. Competition between two wetland macrophytes under different levels of sediment saturation

    Directory of Open Access Journals (Sweden)

    Feng Li

    2015-02-01

    Full Text Available Plant-plant interactions have been widely studied under various environmental conditions. However, in wetland ecosystems how plant interactions change in response to variation in sediment saturation remains largely unclear, even though different levels of sediment saturation play important roles in determining plant growth performance in wetland ecosystems. To this end, a competition experiment with two typical wetland species, Carex brevicuspis (neighbor plant and Polygonum hydropiper (target plant, was conducted in a target-neighbor design. Two water levels (0 cm and -40 cm water levels representing waterlogged and drained sediments, respectively and three neighbor plant densities (0 plants m-2, 400 plants m-2, and 1600 plants m-2 were tested in a factorial design. Biomass accumulation of P. hydropiper decreased along with enhanced C. brevicuspis density in the waterlogged treatment. However, in the drained treatment, biomass accumulation did not change under two C. brevicuspis densities. Above-ground relative neighbor effect index (ARNE and relative neighbor effect index (RNE of C. brevicuspis on P. hydropiper increased along with enhanced C. brevicuspis density only under waterlogged conditions. The below-ground relative neighbor effect index (BRNE was not affected at the different water level and density treatments. The below-ground mass fraction of P. hydropiper was much higher in the waterlogged treatment than it was in the drained one, especially with no C. brevicuspis treatment. However, the leaf mass fraction displayed the opposite pattern. The longest root length of P. hydropiper was much shorter under waterlogged treatment than under the drained treatment. These results suggest that the competition intensity of C. brevicuspis to P. hydropiper increased along with increasing C. brevicuspis density only under waterlogged conditions. Moreover, this study also confirms that P. hydropiper can acclimate to water stress mainly through

  7. Alpha-Particle Gas-Pressure Sensor

    Science.gov (United States)

    Buehler, M. C.; Bell, L. D.; Hecht, M. H.

    1996-01-01

    An approximate model was developed to establish design curves for the saturation region and a more complete model developed to characterize the current-voltage curves for an alpha-particle pressure sensor. A simple two-parameter current-voltage expression was developed to describe the dependence of the ion current on pressure. The parameters are the saturation-current pressure coefficient and mu/D, the ion mobility/diffusion coefficient. The sensor is useful in the pressure range between 0.1 and 1000 mb using a 1 - mu Ci(241) Am source. Experimental results, taken between 1 and up to 200 mb, show the sensor operates with an anode voltage of 5 V and a sensitivity of 20 fA/mb in nitrogen.

  8. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  9. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    Directory of Open Access Journals (Sweden)

    Gofar Nurly

    2017-01-01

    Full Text Available This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–pore-water pressure analysis to evaluate the effect of rainfall infiltration on the deformation and transient pore-water pressure on slope stability. Slope stability analyses were performed at some times during and after rainfall infiltration. Results show that the critical condition for slope made by sandy material was at the end of rainfall while for clayey material was at some specified times after the rainfall ceased. Unsaturated stability analysis on sandy soil gives higher factor of safety because the soil never reached saturation. Transient analysis using unsaturated soil concept could predict more critical condition of delayed failure of slopes made up of clayey soil.

  10. Phase equilibrium in a polarized saturated 3He-4He mixture

    International Nuclear Information System (INIS)

    Rodrigues, A.; Vermeulen, G.

    1997-01-01

    We present experimental results on the phase equilibrium of a saturated 3 He- 4 He mixture, which has been cooled to a temperature of 10-15 mK and polarized in a 4 He circulating dilution refrigerator to a stationary polarization of 15 %, 7 times higher than the equilibrium polarization in the external field of 7 T. The pressure dependence of the polarization enhancement in the refrigerator shows that the molar susceptibilities of the concentrated and dilute phase of a saturated 3 He- 4 He mixture are equal at p = 2.60 ± 0.04 bar. This result affects the Fermi liquid parameters of the dilute phase. The osmotic pressure in the dilute phase has been measured as a function of the polarization of the coexisting concentrated phase up to 15 %. We find that the osmotic pressure at low polarization ( < 7 % ) agrees well with thermodynamics using the new Fermi liquid parameters of the dilute phase

  11. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  12. Gaseous saturable absorbers for the Helios CO2 laser system

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.; Nowak, A.V.; Czuchlewski, S.J.

    1981-01-01

    Saturable absorbers are widely used to suppress parasitic oscillations in large-aperture, high-power CO 2 fusion-laser systems. We report experimental results on SF 6 -based gaseous saturable absorbers used for parasitic suppression in the eight-beam, 10 kJ Helios fusion-laser system. The gas mix effectively quenches self-lasing in the 9 and 10 μm branches of the CO 2 laser spectrum while simultaneously allowing high transmission of subnanosecond multiwavelength pulses for target-irradiation experiments. The gas isolator now in use consists of SF 6 and the additional fluorocarbons: 1, 1-difluoroethane (FC-152a); dichlorodifluoromethane (FC-12); chloropentafluoroethane (FC-115); 1,1-dichloro 2,2-difluoroethylene (FC-1112a); chlorotrifluoroethylene (FC-1113); and perfluorocyclobutane (FC-C318). The saturation of the mix was studied as a function of incident fluence, pressure, cell length, and incident wavelength. Experimental results are presented on the saturation properties of pure SF 6 and FC-152a and compared with the saturation behavior of CO 2 at 400 0 C

  13. Shear dilatancy and acoustic emission in dry and saturated granular materials

    Science.gov (United States)

    Brodsky, E. E.; Siman-Tov, S.

    2017-12-01

    Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via

  14. Serum albumin--a non-saturable carrier

    DEFF Research Database (Denmark)

    Brodersen, R; Honoré, B; Larsen, F G

    1984-01-01

    The shape of binding isotherms for sixteen ligands to human serum albumin showed no signs of approaching saturation at high ligand concentrations. It is suggested that ligand binding to serum albumin is essentially different from saturable binding of substrates to enzymes, of oxygen to haemoglobi...

  15. Experimental vapor pressures (from 1 Pa to 100 kPa) of six saturated Fatty Acid Methyl Esters (FAMEs): Methyl hexanoate, methyl octanoate, methyl decanoate, methyl dodecanoate, methyl tetradecanoate and methyl hexadecanoate

    International Nuclear Information System (INIS)

    Sahraoui, Lakhdar; Khimeche, Kamel; Dahmani, Abdallah; Mokbel, Ilham; Jose, Jacques

    2016-01-01

    Highlight: • Vapor-liquid equilibria, Enthalpy of Vaporization, saturated Fatty Acid Methyl Ester. - Abstract: Vapor pressures of six saturated Fatty Acid Methyl Esters (FAMEs), methyl hexanoate (or methyl caproate), methyl octanoate (or methyl caprylate), Methyl decanoate (or methyl caprate), methyl dodecanoate (or methyl laurate), methyl tetradecanoate (or methyl myristate), and methyl hexadecanoate (or methyl palmitate) were measured from 1 Pa to 100 kPa and at temperature range between 262 and 453 K using a static apparatus. The experimental data (P-T) were compared with the available literature data.

  16. Saturation and nucleation in hot nuclear systems

    International Nuclear Information System (INIS)

    Deangelis, A.R.

    1990-07-01

    We investigate nuclear fragmentation in a supersaturated system using classical nucleation theory. This allows us to go outside the normally applied constraint of chemical equilibrium. The system is governed by a virial equation of state, which we use to find an expression for the density as a function of pressure and temperature. The evolution of the system is discussed in terms of the phase diagram. Corrections are included to account for the droplet surface and all charges contained in the system. Using this model we investigate and discuss the effects of temperature and saturation, and compare the results to those of other models of fragmentation. We also discuss the limiting temperatures of the system for the cases with and without chemical equilibrium. We find that large nuclei will be formed in saturated systems, even above the limiting temperature as previously defined. We also find that saturation and temperature dominate surface and Coulomb effects. The effects are quite large, thus even a qualitative inspection of the yields may give an indication of the conditions during fragmentation

  17. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-01-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimension transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 refs., 8 figs

  18. Thermodynamically coupled mass transport processes in a saturated clay

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table

  19. Research experiments on pressure-difference sensors with ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Ruican, Hao, E-mail: haoruican@163.com [School of Mechanical Engineering, Beijing Polytechnic, Beijing 100176 (China); Huagang, Liu; Wen, Gong; Na, Zhang [School of Mechanical Engineering, Beijing Polytechnic, Beijing 100176 (China); Ruixiao, Hao [Civil and Architectural Engineering Institute of CCCC-FHEB Co., Ltd., Beijing 101102 (China)

    2016-10-15

    Ferrofluid has distinctive properties and can be applied in many industrial uses, especially in sensors. The principles of pressure-difference sensors with ferrofluid were illustrated and experiments were demonstrated. Four types of ferrofluids with different concentrations were selected for the experiments performed. Then, the parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. Four U tubes with different diameters were designed and built. Experiments were conducted to analyze the impacts of tube diameter and ferrofluid concentration on the output voltage/pressure difference performance. According to the experiment results, the tube diameter has little effect on the sensor output voltage. With the concentration of ferrofluid increasing, the output voltage and sensitivity of the pressure-difference sensor increases. The measurable range of the sensor also increases with the increasing concentration of ferrofluid. The workable range and the sensitivity of the designed sensor were (−2000~+2000)Pa and 1.26 mV/Pa, respectively. - Highlights: • The principle of pressure difference sensor with ferrofluid was illustrated. • The parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. • Four series of U tubes with different diameter were designed and manufactured. • The experiments were made to analyze the factors of the tube diameter and the concentration of ferrofluid on the output-input pressure difference. • The sensitivity of the pressure difference sensor with ferrofluid was studied and the corresponding conclusions were obtained.

  20. Research experiments on pressure-difference sensors with ferrofluid

    International Nuclear Information System (INIS)

    Ruican, Hao; Huagang, Liu; Wen, Gong; Na, Zhang; Ruixiao, Hao

    2016-01-01

    Ferrofluid has distinctive properties and can be applied in many industrial uses, especially in sensors. The principles of pressure-difference sensors with ferrofluid were illustrated and experiments were demonstrated. Four types of ferrofluids with different concentrations were selected for the experiments performed. Then, the parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. Four U tubes with different diameters were designed and built. Experiments were conducted to analyze the impacts of tube diameter and ferrofluid concentration on the output voltage/pressure difference performance. According to the experiment results, the tube diameter has little effect on the sensor output voltage. With the concentration of ferrofluid increasing, the output voltage and sensitivity of the pressure-difference sensor increases. The measurable range of the sensor also increases with the increasing concentration of ferrofluid. The workable range and the sensitivity of the designed sensor were (−2000~+2000)Pa and 1.26 mV/Pa, respectively. - Highlights: • The principle of pressure difference sensor with ferrofluid was illustrated. • The parameters of ferrofluid, such as density and magnetization, were measured. The magnetization curves of the ferrofluid were sketched. • Four series of U tubes with different diameter were designed and manufactured. • The experiments were made to analyze the factors of the tube diameter and the concentration of ferrofluid on the output-input pressure difference. • The sensitivity of the pressure difference sensor with ferrofluid was studied and the corresponding conclusions were obtained.

  1. Uniqueness of Specific Interfacial Area–Capillary Pressure–Saturation Relationship Under Non-Equilibrium Conditions in Two-Phase Porous Media Flow

    KAUST Repository

    Joekar-Niasar, Vahid

    2012-02-23

    The capillary pressure-saturation (P c-S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a hypothetical porous medium using a dynamic pore-network model called DYPOSIT, which has been employed and extended for this study: (a) P c-S w relationship is measured empirically under equilibrium conditions. It is then used in Darcy-based simulations for all dynamic conditions. This is only valid if there is a guarantee that this relationship is unique for a given flow process (drainage or imbibition) independent of dynamic conditions; (b) It is also known that P c-S w relationship is flow process dependent. Depending on drainage and imbibition, different curves can be achieved, which are referred to as "hysteresis". A thermodynamically derived theory (Hassanizadeh and Gray, Water Resour Res 29: 3389-3904, 1993a) suggests that, by introducing a new state variable, called the specific interfacial area (a nw, defined as the ratio of fluid-fluid interfacial area to the total volume of the domain), it is possible to define a unique relation between capillary pressure, saturation, and interfacial area. This study investigates these two aspects of capillary pressure-saturation relationship using a dynamic pore-network model. The simulation results imply that P c-S w relation not only depends on flow process (drainage and imbibition) but also on dynamic conditions for a given flow process. Moreover, this study attempts to obtain the first preliminary insights into the global functionality of capillary pressure-saturation-interfacial area relationship under equilibrium and non-equilibrium conditions and the uniqueness of P c-S w-a nw relationship. © 2012 The Author(s).

  2. The Effects of Massage with Coconut and Sunflower Oils on Oxygen Saturation of Premature Infants with Respiratory Distress Syndrome Treated With Nasal Continuous Positive Airway Pressure

    Directory of Open Access Journals (Sweden)

    Sousan Valizadeh

    2012-11-01

    Full Text Available Introduction: Nowadays particular emphasis is placed on the developmental aspects of premature infants care. Massage therapy is one of the best-known methods of caring. Due to the minimal touch policy in neonatal intensive care units (NICUs, massaging is not usually performed on premature infants. However, there is not sufficient evidence to support the claim that newborn infants with complex medical conditions should not be massaged. This study aimed to determine the effects of massage with coconut and sunflower oils on oxygen saturation of infants with respiratory distress syndrome (RDS treated with nasal continuous positive airway pressure (NCPAP. Methods: This was a randomized controlled trial on 90 newborns who were admitted to Alzahra Hospital (Tabriz, Iran. The infants were divided into control and massage therapy groups (massage with coconut and sunflower oils. Data was collected using a hospital documentation form. A 15-minute daily massage was performed for 3 days. Respiratory rate (RR, fraction of inspired oxygen (FiO2 and oxygen saturation were measured 5 minutes before the massage, 3 times during the massage, and 5 minutes after the massage. The collected data was analyzed using a mixed model. Results: In comparison to coconut oil and control groups, mean oxygen saturation of sunflower oil group was improved. In addition, the coconut massage group showed lower oxygen saturation than the control group but was all values were within the normal range. Although massage decreased oxygen saturation, there was no need to increase FiO2. Conclusion: Massage therapy can provide developmental care for infants treated with NCPAP.

  3. Heat transfer and pressure drop of condensation of hydrocarbons in tubes

    Science.gov (United States)

    Fries, Simon; Skusa, Severin; Luke, Andrea

    2018-03-01

    The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.

  4. [Sedation with intravenous midazolam during upper gastrointestinal endoscopy--changes in hemodynamics, oxygen saturation and memory].

    Science.gov (United States)

    Mizuno, Ju; Matsuki, Michiko; Gouda, Yoshinori; Nishiyama, Tomoki; Hanaoka, Kazuo

    2003-09-01

    Cardiorespiratory adverse effects are often observed in patients undergoing upper gastrointestinal endoscopy with sedation. In this study, we examined hemodynamics, oxygen saturation and memory during upper gastrointestinal endoscopy under sedation with intravenous midazolam. Eight healthy outpatients without any obvious complications received intravenous midazolam 5 mg for sedation for upper gastrointestinal endoscopy. Blood pressure, heart rate and percutaneous arterial oxygen saturation (SpO2) were measured before, during and after endoscopy. After the arousal by intravenous flumazenil, we inquired the patients about the level of memory during the endoscopy. Blood pressure decreased significantly two minutes after midazolam administration, but increased significantly after the insertion of an endoscope which was not different from the control value. Heart rate increased significantly one and three minutes after the insertion of the endoscope. SpO2 decreased significantly after midazolam administration and stayed at around 95%. No patients remembered the procedure. Sedation with intravenous midazolam during upper gastrointestinal endoscopy is useful to control the cardiovascular responses, and to obtain amnesia. However, a decrease in SpO2 should be watched carefully.

  5. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation.

    Science.gov (United States)

    Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël

    2013-06-01

    How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.

  6. Saturation Detection-Based Blocking Scheme for Transformer Differential Protection

    Directory of Open Access Journals (Sweden)

    Byung Eun Lee

    2014-07-01

    Full Text Available This paper describes a current differential relay for transformer protection that operates in conjunction with a core saturation detection-based blocking algorithm. The differential current for the magnetic inrush or over-excitation has a point of inflection at the start and end of each saturation period of the transformer core. At these instants, discontinuities arise in the first-difference function of the differential current. The second- and third-difference functions convert the points of inflection into pulses, the magnitudes of which are large enough to detect core saturation. The blocking signal is activated if the third-difference of the differential current is larger than the threshold and is maintained for one cycle. In addition, a method to discriminate between transformer saturation and current transformer (CT saturation is included. The performance of the proposed blocking scheme was compared with that of a conventional harmonic blocking method. The test results indicate that the proposed scheme successfully discriminates internal faults even with CT saturation from the magnetic inrush, over-excitation, and external faults with CT saturation, and can significantly reduce the operating time delay of the relay.

  7. Critical parameters and saturated density of trifluoroiodomethane (CF{sub 3}I)

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y.Y.; Shi, L.; Zhu, M.S.; Han, L.Z. [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering

    1999-05-01

    The vapor-liquid coexistence curve of trifluoroiodomethane (CF{sub 3}I) was measured by visual observation of the meniscus disappearance in an optical cell. Thirty-two saturated density data points were obtained along the vapor-liquid coexistence curve between 384.5 and 2024.9 kg/m{sup 3} in the temperature range from 301.02 K to the critical temperature. The experimental uncertainties in temperature and density were estimated to be within {+-}10 mK and {+-}0.5%, respectively. Measurements near the critical point were used to determine the critical temperature T{sub c} = 396.44 {+-} 0.01 K and the critical density {rho}{sub c} = 868 {+-} 3 kg/m{sup 3} for trifluoroiodomethane (CF{sub 3}I) on the basis of the meniscus disappearing level as well as the intensity of the critical opalescence. The critical pressure {rho}{sub c} = 3.953 {+-} 0.005 MPa was extrapolated from the existing vapor pressure equation proposed previously using the present {Tc} value. The critical exponent, {beta}, was also determined, and correlations of the saturated liquid and saturated vapor densities of CF{sub 3}I were developed.

  8. How Pore Filling Shale Affects Elastic Wave Velocities in Fully and Partially Saturated Sandstone: Characterization, Measurement, and Modelling

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2017-01-01

    The elastic bulk modulus of a sandstone is affected by the fluid saturation as compression induces a pressure in the fluid thus increasing the bulk modulus of the sandstone as a whole. Assuming a uniform induced pressure and no interaction between the saturating fluid and the solid rock the fluid...... contribution to the elastic bulk modulus is quantified by Gassmann's equations. Experimental measurements of the fluid contribution to the elastic moduli are, however often much larger than predicted within the assumptions of Gassmann. Clay-rich low-mobility sandstones are especially prone to having elastic...... moduli highly sensitive to the fluid saturation. The presence of clay in a sandstone can affect two of the underlying assumptions to Gassmann's equations: decreased fluid mobility can cause pressure gradients and fluid-clay interactions are common. The elastic and petrophysical properties of clay...

  9. The effects of arterial carbon dioxide partial pressure and sevoflurane on capillary venous cerebral blood flow and oxygen saturation during craniotomy.

    Science.gov (United States)

    Klein, Klaus Ulrich; Glaser, Martin; Reisch, Robert; Tresch, Achim; Werner, Christian; Engelhard, Kristin

    2009-07-01

    Intraoperative routine monitoring of cerebral blood flow and oxygenation remains a technological challenge. Using the physiological principle of carbon dioxide reactivity of cerebral vasculature, we investigated a recently developed neuromonitoring device (oxygen-to-see, O2C device) for simultaneous measurements of regional cerebral blood flow (rvCBF), blood flow velocity (rvVelo), oxygen saturation (srvO2), and hemoglobin amount (rvHb) at the capillary venous level in patients subjected to craniotomy. Twenty-six neurosurgical patients were randomly assigned to anesthesia with 1.4% or 2.0% sevoflurane end-tidal concentration. After craniotomy, a fiberoptic probe was applied on a macroscopically healthy surface of cerebral tissue next to the site of surgery. Simultaneous measurements in 2 and 8 mm cerebral depth were performed in each patient during lower (35 mm Hg) and higher (45 mm Hg) levels (random order) of arterial carbon dioxide partial pressure (PaCO2). The principle of these measurements relies on the combination of laser-Doppler flowmetry (rvCBF, rvVelo) and photo-spectrometry (srvO2, rvHb). Linear models were fitted to test changes of end points (rvCBF, rvVelo, srvO2, rvHb) in response to lower and higher levels of PaCO2, 1.4% and 2.0% sevoflurane end-tidal concentration, and 2 and 8 mm cerebral depth. RvCBF and rvVelo were elevated by PaCO2 independent of sevoflurane concentration in 2 and 8 mm depth of cerebral tissue (P oxygen was decreased by elevated PaCO2. Unchanged levels of rvHb signify that there was no blood loss during measurements. Data suggest that the device allows detection of local changes in blood flow and oxygen saturation in response to different PaCO2 levels in predominant venous cerebral microvessels.

  10. Inter-arm blood pressure differences in pregnant women.

    Science.gov (United States)

    Poon, L C Y; Kametas, N; Strobl, I; Pachoumi, C; Nicolaides, K H

    2008-08-01

    To determine the prevalence of blood pressure inter-arm difference (IAD) in early pregnancy and to investigate its possible association with maternal characteristics. A cross-sectional observational study. Routine antenatal visit in a university hospital. A total of 5435 pregnant women at 11-14 weeks of gestation. Blood pressure was taken from both arms simultaneously with a validated automated device. The presence of inter-arm blood pressure difference of 10 mmHg or more. The IAD in systolic and diastolic blood pressure was 10 mmHg or more in 8.3 and 2.3% of the women, respectively. Systolic IAD was found to be significantly related to systolic blood pressure and pulse pressure, and diastolic IAD was found to be significantly related to maternal age, diastolic blood pressure and pulse pressure. The systolic and diastolic IAD were higher in the hypertensive group compared with the normotensive group and absolute IAD increased with increasing blood pressure. About 31.0 and 23.9% of cases of hypertension would have been underreported if the left arm and the right arm were used, respectively, in measuring the blood pressure. There is a blood pressure IAD in a significant proportion of the pregnant population, and its prevalence increases with increasing blood pressure. By measuring blood pressure only on one arm, there is a one in three chance of underreporting hypertension. Therefore, it would be prudent that during the booking visit blood pressure should be taken in both arms and thus provide guidance for subsequent blood pressure measurements during the course of pregnancy.

  11. First-order Probabilistic Analysis of the Effects of Heterogeneity on Pore-water Pressure in a Hillslope

    Science.gov (United States)

    Cai, J.; Yan, E.; Yeh, T. C. J.

    2015-12-01

    Pore-water pressure in a hillslope is a critical control of its stability. The main objective of this paper is to introduce a first-order moment analysis to investigate the pressure head variability within a hypothetical hillslope, induced by steady rainfall infiltration. This approach accounts for the uncertainties and spatial variation of the hydraulic conductivity, and is based on a first-order Taylor approximation of pressure perturbations calculated by a variably saturated, finite element flow model. Using this approach, the effects of variance (σ2lnKs) and spatial structure anisotropy (λh/λv) of natural logarithm of saturated hydraulic conductivity, and normalized vertical infiltration flux (q/ks) on the hillslope pore-water pressure are evaluated. We found that the responses of pressure head variability (σ2p) are quite different between unsaturated region and saturated region divided by the phreatic surface. Above the phreatic surface, a higher variability in pressure head is obtained from a higher σ2lnKs, a higher λh/λv and a smaller q/ks; while below the phreatic surface, a higher σ2lnKs, a lower λh/λv or a larger q/ks would lead to a higher variability in pressure head, and greater range of fluctuation of the phreatic surface within the hillslope. σ2lnKs has greatest impact on σ2p within the slope and λh/λv has smallest impact. All three variables have greater influence on maximum σ2p within the saturated region below the phreatic surface than that within the unsaturated region above the phreatic surface. The results obtained from this study are useful to understand the influence of hydraulic conductivity variations on slope seepage and stability under different slope conditions and material spatial distributions.

  12. Compensation of Actuator’s Saturation by Using Fuzzy Logic and Imperialist Competitive Algorithm in a System with PID Controller

    Directory of Open Access Journals (Sweden)

    Abbas Ali Zamani

    2012-07-01

    Full Text Available Physical systems always include constraints and limits. Usually, the limits and constraints, in the control systems, are appeared as temperature and pressure limits or pumps capacity. One of the existing limits in the systems with PID controller is associated with the actuator’s saturation limits. With the saturating of the actuator, the controller’s output and plant’s input will be different and the output signal of controller do not lead the system and their states could not update correctly where this issue makes the system response undesirable. In this paper, by adding a fuzzy compensator that it’s parameters are tuned using imperialist competitive algorithm, the actuator saturation is prevented and the important parameters of the system response, such as setting time and overshoot, are improved.

  13. Saturated fatty acid intake can influence increase in plasminogen activator inhibitor-1 in obese adolescents.

    Science.gov (United States)

    Masquio, D C L; de Piano, A; Campos, R M S; Sanches, P L; Corgosinho, F C; Carnier, J; Oyama, L M; do Nascimento, C M P O; de Mello, M T; Tufik, S; Dâmaso, A R

    2014-04-01

    The aim of this study was to verify if saturated fatty acid intake adjusted by tertiles can influence metabolic, inflammation, and plasminogen activator inhibitor-1 (PAI-1) in obese adolescents. Body mass, height, body mass index, waist circumference, blood pressure, and body composition of 108 obese adolescents were obtained. Fasting glucose, insulin, PAI-1, and CRP were determined. Insulin resistance was assessed by Homeostasis Model Assessment (HOMA-IR) and insulin sensitivity by Quantitative Insulin Sensitivity Check Index (QUICKI). Dietetic intake was estimated by a 3-day dietary record, and volunteers were divided according to consumption of saturated fatty acids: tertile 1 [Low Saturated Fatty Acid Intake (Low-SFA): ≤12.14 g], tertile 2 [Moderate Saturated Fatty Intake (Moderate SFA intake): 12.15-20.48 g], and tertile 3 [High Saturated Fatty Acid Intake (High-SFA Intake); >20.48 g]. Statistical analysis was performed using STATISTICA 7.0 software and the significance level was set at pstudy is that Moderate and High-SFA intakes presented significantly higher values of PAI-1 than Low-SFA Intake. PAI-1 was positively associated with saturated fatty intake, waist circumference, mean blood pressure, and HOMA-IR. SFA intake was predictor of PAI-1 independent of body fat, HOMA-IR and total-cholesterol. In addition, PAI-1 was an independent predictor of blood pressure. HOMA-IR and QUICKI presented significantly higher and lower, respectively, in High-SFA compared to Moderate-SFA intake. High-SFA influenced cardiovascular disease risks, since it increased PAI-1 and insulin resistance, and decreased insulin sensibility, leading to vicious cycle among food ingestion, pro-thrombotic state, and cardiovascular risks in obese adolescents. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Temperature and Pressure Evolution during Al Alloy Solidification at Different Squeeze Pressures

    International Nuclear Information System (INIS)

    Li, Junwen; Zhao, Haidong; Chen, Zhenming

    2015-01-01

    Squeeze casting is an advanced and near net-shape casting process, in which external high pressure is applied to solidifying castings. The castings are characterized with fine grains and good mechanical properties. In this study, a series of experiments were carried out to measure the temperature and pressure histories in cavity of Al-Si-Mg direct squeeze castings with different applied solidification pressures of 0.1, 50, 75, and 100 MPa. The evolution of the measured temperatures and pressures was compared and discussed. The effect of pressure change on formation of shrinkage defects was analyzed. Further the friction between the castings and dies during solidification was calculated. It is shown that the applied squeeze pressure has significant influence on the friction at die and casting interfaces, which affects the pressure evolution and transmission. The results could provide some benchmark data for future thermal-mechanics coupled modeling of squeeze castings. (paper)

  15. Society of cardiovascular anesthesiologists: the effect of blood pressure regulation during aortic coarctation repair on brain, kidney, and muscle oxygen saturation measured by near-infrared spectroscopy: a randomized, clinical trial

    NARCIS (Netherlands)

    Moerman, Annelies; Bové, Thierry; François, Katrien; Jacobs, Stefan; Deblaere, Isabel; Wouters, Patrick; de Hert, Stefan

    2013-01-01

    In this study, we compared the effects of 3 frequently used arterial blood pressure-regulating agents on brain (rScO2), renal (SrO2), and muscle (SmO2) oxygen saturation, during aortic coarctation repair in children. Based on the reported adverse effect of sodium nitroprusside (SNP) on left-sided

  16. Modified swelling pressure apparatus using vapor pressure technique for compacted bentonite

    International Nuclear Information System (INIS)

    Nishimura, Tomoyoshi

    2012-01-01

    Document available in extended abstract form only. bentonite. The compacted bentonite is found in unsaturated conditions before applying of swelling due to absorption. The behaviour of compacted bentonite is not consistent with the principle and concepts of classical, saturated soil mechanics. An unsaturated soil theoretical framework using soil water characteristic curve has been fairly established over the past several decades. The soil-water characteristic curve is a relationship between soil moisture and soil suction obtained by the axis translation technique, vapor pressure technique or osmotic suction control which is a key feature in unsaturated soil mechanics. The soil-water characteristic curve can be used for prediction of the shear strength, volume change and hydraulic conductivity. Cui et al. 2002 indicated soil-water characteristic curve of expansive clay soil in high soil suction ranges using osmotic suction technique. Tripathy et al. 2010 described the soil-water characteristic curve both using the axis translation technique and vapor pressure technique in the entire soil suction ranges. Nishimura and Koseki 2011 measured suction of bentonite applied high soil suction due vapor pressure using a chilled mirror dew point potentiometer (WP4-T of DECAGON Device). The bentonite with gravimetric water content of 18 % indicated soil suction of 2.8 MPa at least. It is predicted that suction efforts to swelling pressure and shear strength of unsaturated compacted bentonite. This study focuses on the influence of suction on both swelling pressure and shear strength of compacted bentonite. The soil-water characteristic curve (SWCC) tests were conducted for compacted bentonite using both axis-translation technique and vapor pressure technique. The SWCC had a range from 0 kPa to 296 MPa in suction. The compacted bentonite having two different soil suctions were prepared for swelling pressure tests. Newly swelling pressure testing apparatus was developed in order

  17. Enhanced signal dispersion in saturation transfer difference experiments by conversion to a 1D-STD-homodecoupled spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Pastor, Manuel; Vega-Vazquez, Marino [Universidade de Santiago de Compostela, Laboratorio Integral de Dinamica e Estructura de Biomoleculas Jose R. Carracido, Unidade de Resonancia Magnetica, Edificio CACTUS, RIAIDT (Spain); Capua, Antonia De [Seconda Universita degli Studi di Napoli, Dipartimento di Scienze Ambientali (Italy); Canales, Angeles [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y funcion de proteinas (Spain); Andre, Sabine; Gabius, Hans-Joachim [Ludwig-Maximilians-Universitaet, Institut fuer Physiologische Chemie, Tieraerztliche Fakultaet (Germany); Jimenez-Barbero, Jesus [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y funcion de proteinas (Spain)], E-mail: JJbarbero@cib.csic.es

    2006-10-15

    The saturation transfer difference (STD) experiment is a rich source of information on topological aspects of ligand binding to a receptor. The epitope mapping is based on a magnetization transfer after signal saturation from the receptor to the ligand, where interproton distances permit this process. Signal overlap in the STD spectrum can cause difficulties to correctly assign and/or quantitate the measured enhancements. To address this issue we report here a modified version of the routine experiment and a processing scheme that provides a 1D-STD homodecoupled spectrum (i.e. an experiment in which all STD signals appear as singlets) with line widths similar to those in original STD spectrum. These refinements contribute to alleviate problems of signal overlap. The experiment is based on 2D-J-resolved spectroscopy, one of the fastest 2D experiments under conventional data sampling in the indirect dimension, and provides excellent sensitivity, a key factor for the difference experiments.

  18. Saturation and forward jets at HERA

    International Nuclear Information System (INIS)

    Marquet, C.; Peschanski, R.; Royon, C.

    2004-01-01

    We analyse forward-jet production at HERA in the framework of the Golec-Biernat and Wusthoff saturation models. We obtain a good description of the forward-jet cross-sections measured by the H1 and ZEUS Collaborations in the two-hard-scale region (k T∼ Q >> Λ QCD ) with two different parametrizations with either significant or weak saturation effects. The weak saturation parametrization gives a scale compatible with the one found for the proton structure function F2. We argue that Mueller-Navelet jets at the Tevatron and the LHC could help distinguishing between both options

  19. Speciation of High-Pressure Carbon-Saturated COH Fluids at Buffered fO2 Conditions: An Experimental Approach

    Science.gov (United States)

    Tumiati, S.; Tiraboschi, C.; Recchia, S.; Poli, S.

    2014-12-01

    The quantitative assessment of species in COH fluids is crucial in modelling mantle processes. For instance, H2O/CO2 ratio in the fluid phase influences the location of the solidus and of carbonation/decarbonation reactions in peridotitic systems . In the scientific literature, the speciation of COH fluids has been generally assumed on the basis of thermodynamic calculations using equations of state of simple H2O-non-polar gas systems (e.g., H2O-CO2-CH4). Only few authors dealt with the experimental determination of high-pressure COH fluid species at different conditions, using diverse experimental and analytical approaches (e.g., piston cylinder+capsule-piercing+gas-chromatography/mass-spectrometry; cold-seal+silica glass capsules+Raman). We performed experiments on COH fluids using a capsule-piercing device coupled with a quadrupole mass spectrometry. This type of analyzer ensures superior performances in terms of selectivity of molecules to be detected, high acquisition rates and extended linear response range. Experiments were carried out in a rocking piston cylinder apparatus at pressure of 1 GPa and temperatures from 800 to 900°C. Carbon-saturated fluids were generated through the addition of oxalic acid dihydrate and graphite. Single/double capsules and different packing materials (BN and MgO) were used to evaluate the divergence from the thermodynamic speciation model. Moreover, to assess the effect of solutes on COH fluid speciation we also performed a set of experiments adding synthetic forsterite to the charge. To determine the speciation we assembled a capsule-piercing device that allows to puncture the capsule in a gas-tight vessel at 80°C. The extraction Teflon vessel is composed of a base part, where the capsule is allocated on a steel support, and a top part where a steel drill is mounted. To release the quenched fluids from the capsule, the base part of vessel is hand-tighten to the top part, allowing the steel pointer to pierce the capsule. The

  20. Experimental Determination of Frost Resistance of Autoclaved Aerated Concrete at Different Levels of Moisture Saturation

    Science.gov (United States)

    Kočí, Václav; Maděra, Jiří; Jerman, Miloš; Černý, Robert

    2018-06-01

    The ability of porous building materials to stand up to moisture phase changes induced by alternating environment is described mostly by means of their frost resistance. However, the test conditions defined by relevant standards might not capture the real situation on building site in various locations. In particular, the prescribed full water saturation of analyzed specimens during the whole time of a freeze/thaw experiment presents an ultimate case only but certainly not an everyday reality. Even the materials of surface layers are mostly exposed to such severe conditions just for a limited period of time. In this paper, the experimental analysis of frost resistance of three different types of autoclaved aerated concrete (AAC) is performed in an extended way, including not only the standard testing but also the investigation of dry- and partially saturated samples. A complementary computational analysis of an AAC building envelope in Central European climate is presented as well, in order to illustrate the likely hygric conditions in the wall. Experimental results show that according to the standard test the loss of compressive strength, as well as the loss of mass after 25 cycles, is acceptable for all studied samples but after 50 cycles only the material with the compressive strength of 4 MPa performs satisfactorily. On the other hand, the tests with initially dried or partially saturated samples indicate a good frost resistance of all studied materials for both 25 and 50 cycles.

  1. Prevalence of inter-arm blood pressure difference among clinical out-patients.

    Science.gov (United States)

    Sharma, Balkishan; Ramawat, Pramila

    2016-04-01

    An increased inter-arm blood pressure difference is an easily determined physical finding, may use as an indicator of cardio vascular event and other sever diseases. Authors evaluated 477 patients to determine the prevalence and significance of inter-arm blood pressure difference. 477 routine outdoor patients selected to observe the inter-arm blood pressure difference. Age, height, weight, body mass index, history of disease and blood pressure recorded. The prevalence of ≥10 mmHg systolic inter-arm blood pressure difference was 5.0% was more as compared to 3.8% had diastolic inter-arm blood pressure difference. The prevalence of systolic and diastolic inter-arm difference between 6 to 10 mmHg was 31.4% and 27.9% respectively. Mean systolic inter-arm blood pressure difference was significantly higher among those patients had a multisystem disorder (10.57±0.98 mmHg) and followed by patients with cardiovascular disease (10.22±0.67 mmHg) as compared to healthy patients (2.71±0.96 mmHg). Various diseases highly influenced the increase in blood pressure irrespective of systolic or diastolic was confirmed strongly significant (pdifferent inter arm blood pressure difference levels. This study supports the view of inter-arm blood pressure difference as an alarming stage of increased disease risk that incorporated to investigate potential problems at an early diagnostic stage. A significant mean difference between left and right arm blood pressure recorded for many diseases.

  2. Effect of pore water pressure on P-wave velocity in water-filled sands with partial air saturation; Fukanzen howa jotai no suna shiryo wo denpasuru P ha sokudo ni oyobosu kangeki suiatsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kanema, T [Chishitsu-Keisoku Co. Ltd., Tokyo (Japan)

    1997-10-22

    With an objective to elucidate change in velocity of elastic waves in association with water pressure increase in a sand bed below the groundwater level in a shallow portion of the ground, a measurement experiment was carried out on P-wave velocity in sand samples with partial air saturation. The experiment has used fine sand having an equivalent coefficient of 2.40, a soil particle density of 2.68 g/cm {sup 3} or 60%, and a grain size of 0.36 mm. Inside the water-filled sand sample, two accelerometers were embedded 20 cm apart from each other as vibration receivers. An electromagnetic hammer for P-wave was used as the vibration source. In the experiment, measurement was carried out on the P-wave velocity in association with increase in pore water pressure by applying water pressure afresh to the water-filled sample. As a result of the experiment, the following matters were disclosed: the P-wave velocity increases as the pore water pressure was increased, and a phenomenon was recognized that the dominant frequency changes into high frequency; the degree of increase in the P-wave velocity varies depending on initial saturation of the sample; and bubbles in the pore fluid have their volume decreased due to compression resulted from increased pore water pressure and dissolution of air into the pore water. 6 refs., 11 figs.

  3. Plantar Pressure Variation during Jogging with Different Heel Height

    Directory of Open Access Journals (Sweden)

    Y. D. Gu

    2013-01-01

    Full Text Available This paper presents the key testing and analysis results of an investigation on the effect of heel height on the plantar pressure over different foot areas in jogging. It is important in improving the understanding of jogging with high heels and damage/injury prevention. It can also potentially guide the development of suitable/adaptive exercise schemes in between daily activities with high heels. In this work, plantar pressure data were collected from 10 habituated healthy female subjects (aged 21–25 years at their natural jogging speed with three different conditions: flat heeled shoes (0.8 cm, low heeled shoes (4.0 cm, and high heeled shoes (6.6 cm. Data analysis showed significantly differences in plantar pressure distribution associated with the heel heights with increased pressure in the first metatarsal region and decreased pressure in the lateral metatarsal and midfoot sections. However, there is no significant alteration of plantar pressure in the central area of the forefoot with jogging gait.

  4. The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials

    NARCIS (Netherlands)

    Remij, E.W.; Remmers, J.J.C.; Huyghe, J.M.R.J.; Smeulders, D.M.J.

    2015-01-01

    In this paper, we present an enhanced local pressure model for modelling fluid pressure driven fractures in porous saturated materials. Using the partition-of-unity property of finite element shape functions, we describe the displacement and pressure fields across the fracture as a strong

  5. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  6. The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some cesium salts

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2006-01-01

    Vapour pressures of water over saturated solutions of cesium chloride, cesium bromide, cesium nitrate, cesium sulfate, cesium formate, and cesium oxalate were determined as a function of temperature. These vapour pressures were used to evaluate the water activities, osmotic coefficients and molar enthalpies of vapourization. Molar enthalpies of solution of cesium chloride, Δ sol H m (T = 295.73 K; m = 0.0622 mol . kg -1 ) = (17.83 ± 0.50) kJ . mol -1 ; cesium bromide, Δ sol H m (T = 293.99 K; m = 0.0238 mol . kg -1 ) = (26.91 ± 0.59) kJ . mol -1 ; cesium nitrate, Δ sol H m (T = 294.68 K; m = 0.0258 mol . kg -1 ) = (37.1 ± 2.3) kJ . mol -1 ; cesium sulfate, Δ sol H m (T = 296.43 K; m = 0.0284 mol . kg -1 ) (16.94 ± 0.43) kJ . mol -1 ; cesium formate, Δ sol H m (T = 295.64 K; m = 0.0283 mol . kg -1 ) = (11.10 ± 0.26) kJ . mol -1 and Δ sol H m (T = 292.64 K; m = 0.0577 mol . kg -1 ) = (11.56 ± 0.56) kJ . mol -1 ; and cesium oxalate, Δ sol H m (T = 291.34 K; m = 0.0143 mol . kg -1 ) = (22.07 ± 0.16) kJ . mol -1 were determined calorimetrically. The purity of the chemicals was generally greater than 0.99 mass fraction, except for HCOOCs and (COOCs) 2 where purities were approximately 0.95 and 0.97 mass fraction, respectively. The uncertainties are one standard deviations

  7. Automatic algorithm for monitoring systolic pressure variation and difference in pulse pressure.

    Science.gov (United States)

    Pestel, Gunther; Fukui, Kimiko; Hartwich, Volker; Schumacher, Peter M; Vogt, Andreas; Hiltebrand, Luzius B; Kurz, Andrea; Fujita, Yoshihisa; Inderbitzin, Daniel; Leibundgut, Daniel

    2009-06-01

    Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.

  8. In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy.

    Science.gov (United States)

    Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2012-08-15

    A method for noninvasively detecting hemoglobin oxygen saturation (SO2) and carboxyhemoglobin saturation (SCO) in subcutaneous microvasculature with multiwavelength photoacoustic microscopy is presented. Blood samples mixed with different concentrations of carboxyhemoglobin were used to test the feasibility and accuracy of photoacoustic microscopy compared with the blood-gas analyzer. Moreover, fixed-point detection of SO2 and SCO in mouse ear was obtained, and the changes from normoxia to carbon monoxide hypoxia were dynamically monitored in vivo. Experimental results demonstrate that multiwavelength photoacoustic microscopy can detect SO2 and SCO, which has future potential clinical applications.

  9. A direct method for determining complete positive and negative capillary pressure curves for reservoir rock using the centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Spinler, E.A.; Baldwin, B.A. [Phillips Petroleum Co., Bartlesville, OK (United States)

    1997-08-01

    A method is being developed for direct experimental determination of capillary pressure curves from saturation distributions produced during centrifuging fluids in a rock plug. A free water level is positioned along the length of the plugs to enable simultaneous determination of both positive and negative capillary pressures. Octadecane as the oil phase is solidified by temperature reduction while centrifuging to prevent fluid redistribution upon removal from the centrifuge. The water saturation is then measured via magnetic resonance imaging. The saturation profile within the plug and the calculation of pressures for each point of the saturation profile allows for a complete capillary pressure curve to be determined from one experiment. Centrifuging under oil with a free water level into a 100 percent water saturated plug results in the development of a primary drainage capillary pressure curve. Centrifuging similarly at an initial water saturation in the plug results in the development of an imbibition capillary pressure curve. Examples of these measurements are presented for Berea sandstone and chalk rocks.

  10. Experimental and modeling investigations of solubility and saturated liquid densities and viscosities for binary systems (methane +, ethane +, and carbon dioxide + 2-propanol)

    International Nuclear Information System (INIS)

    Nourozieh, Hossein; Kariznovi, Mohammad; Abedi, Jalal

    2013-01-01

    Highlights: • Solubilities of CH 4 , C 2 H 6 , and CO 2 in 2-propanol and saturated density and viscosity. • Solubility of C 2 H 6 in 2-propanol is higher than CH 4 and CO 2 . • Dissolution of CO 2 increases liquid density and reduces liquid viscosity. • Liquid density and viscosity reduces with dissolution of CH 4 and C 2 H 6 . • Solubilities and saturated liquid densities were predicted with SRK and PR EOS. -- Abstract: Solubilities of methane, ethane, and carbon dioxide in 2-propanol have been measured at the temperatures (303 and 323) K and at the pressures up to 6 MPa using an in-house designed PVT apparatus. The saturated liquid properties, density and viscosity, were also measured in each experiment. Prior to the phase equilibrium measurements, the density and viscosity of pure 2-propanol were measured at the temperatures (303 and 323) K over the pressure range (0.1 to 10) MPa. The dissolution of carbon dioxide in 2-propanol caused a decline in the viscosity of saturated liquid phase while an increase in the density of gas-expanded liquid was observed. The viscosity-pressure trends for methane- and ethane-saturated liquid viscosities were similar to carbon dioxide, but the saturated liquid densities decreased with the dissolution of methane and ethane in 2-propanol. Solubility increased with pressure and decreased with temperature for all compressed gases (methane, ethane and carbon dioxide). The experimental data were well correlated using Soave–Redlich–Kwong and Peng–Robinson equations of state. The solubilities and saturated liquid densities were well represented with both equations of state, and there is no superior equation of state for the modeling of the phase compositions and saturated liquid densities

  11. Studies of non-isothermal flow in saturated and partially saturated porous media

    International Nuclear Information System (INIS)

    Ho, C.K.; Maki, K.S.; Glass, R.J.

    1993-01-01

    Physical and numerical experiments have been performed to investigate the behavior of nonisothermal flow in two-dimensional saturated and partially saturated porous media. The physical experiments were performed to identify non-isothermal flow fields and temperature distributions in fully saturated, half-saturated, and residually saturated two-dimensional porous media with bottom heating and top cooling. Two counter-rotating liquid-phase convective cells were observed to develop in the saturated regions of all three cases. Gas-phase convection was also evidenced in the unsaturated regions of the partially saturated experiments. TOUGH2 numerical simulations of the saturated case were found to be strongly dependent on the assumed boundary conditions of the physical system. Models including heat losses through the boundaries of the test cell produced temperature and flow fields that were in better agreement with the observed temperature and flow fields than models that assumed insulated boundary conditions. A sensitivity analysis also showed that a reduction of the bulk permeability of the porous media in the numerical simulations depressed the effects of convection, flattening the temperature profiles across the test cell

  12. Pulse pressure and diabetes treatments: Blood pressure and pulse pressure difference among glucose lowering modality groups in type 2 diabetes.

    Science.gov (United States)

    Alemi, Hamid; Khaloo, Pegah; Mansournia, Mohammad Ali; Rabizadeh, Soghra; Salehi, Salome Sadat; Mirmiranpour, Hossein; Meftah, Neda; Esteghamati, Alireza; Nakhjavani, Manouchehr

    2018-02-01

    Type 2 diabetes is associated with higher pulse pressure. In this study, we assessed and compared effects of classic diabetes treatments on pulse pressure (PP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) in patients with type 2 diabetes.In a retrospective cohort study, 718 non-hypertensive patients with type 2 diabetes were selected and divided into 4 groups including metformin, insulin, glibenclamide+metformin, and metformin+insulin. They were followed for 4 consecutive visits lasting about 45.5 months. Effects of drug regimens on pulse and blood pressure over time were assessed separately and compared in regression models with generalized estimating equation method and were adjusted for age, duration of diabetes, sex, smoking, and body mass index (BMI).Studied groups had no significant change in PP, SBP, and DBP over time. No significant difference in PP and DBP among studied groups was observed (PP:P = 0.090; DBP:P = 0.063). Pairwise comparisons of PP, SBP, and DBP showed no statistically significant contrast between any 2 studied groups. Interactions of time and treatment were not different among groups.Our results demonstrate patients using metformin got higher PP and SBP over time. Averagely, pulse and blood pressure among groups were not different. Trends of variation in pulse and blood pressure were not different among studied diabetes treatments.

  13. Triple nitrate isotopes indicate differing nitrate source contributions to streams across a nitrogen saturation gradient

    Science.gov (United States)

    Lucy A. Rose; Emily M. Elliott; Mary Beth. Adams

    2015-01-01

    Nitrogen (N) deposition affects forest biogeochemical cycles worldwide, often contributing to N saturation. Using long-term (>30-year) records of stream nitrate (NO3-) concentrations at Fernow Experimental Forest (West Virginia, USA), we classified four watersheds into N saturation stages ranging from Stage 0 (N-...

  14. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Zhou, Bao-Chun; Liu, Li-Jun; Liu, Bing

    2016-09-01

    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO 2 ) and oxygen partial pressure (PaO 2 ). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO 2 were measured. The controls were also examined for rSO 2 and PaO 2 , but received no treatment. rSO 2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO 2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.

  15. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    Science.gov (United States)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  16. Predicting liquid water saturation through differently structured cathode gas diffusion media of a proton exchange Membrane Fuel Cell

    NARCIS (Netherlands)

    Akhtar, N.; Kerkhof, P.J.A.M.

    2012-01-01

    The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a

  17. 饱和蒸汽压式波纹管疏水阀热动元件实验研究%Experimental study on the saturated vapor pressure type thermostatic bellows for steam traps

    Institute of Scientific and Technical Information of China (English)

    李树勋; 徐登伟; 把桥环

    2011-01-01

    针对液体膨胀式波纹管蒸汽疏水阀排量不稳定、漏汽率高等问题,分析波纹管热动元件的热工特性.基于Riedel蒸汽压方程和气液平衡方程,建立饱和蒸汽压式波纹管热动元件的热力学模型,设计相应实验系统,进行不同参数下的实验研究.结果表明,饱和蒸汽压式波纹管热动元件伸长量是相变温度的单值函数,近似呈指数关系;采用不同混合比、刚度及填充方式,可调节疏水阀的排水过冷度.%In view of the instabilities of displacement and high steam leakage rate for the liquid-expansion type ther-mostatic bellows steam traps, thermodynamic characteristical of thermostatic bellows was analyzed. Based on the Riedel equation and the vapor-liquid equilibrium equation, thermodynamic model of the saturated vapor pressure type thermostatic bellows was set up, corresponding experimental system was designed, and experimental studies with different parameters was carried out. The experimental results agree well with the theoretical analysis. The results show that the elongation A/I of the saturated vapor pressure type thermostatic bellows is monodrome function of phase transition temperature T, and relationship between the elongation A/I and the phase change temperature t is an exponential function. The subcooled temperature of steam trap can be adjusted by using different mixture ratio, different bellows' stiffness and different sufficient attire method. This paper establishes theoretical and experimental foundation for improving the performance of thermostatic bellows steam traps.

  18. Solubility of carbon dioxide, methane, and ethane in 1-butanol and saturated liquid densities and viscosities

    International Nuclear Information System (INIS)

    Kariznovi, Mohammad; Nourozieh, Hossein; Abedi, Jalal

    2013-01-01

    Highlights: • Experimental solubilities of CH 4 , C 2 H 6 , and CO 2 in 1-butanol and saturated liquid properties. • Solubilities and saturated liquid densities were predicted with SRK and PR EOS. • Solubility of C 2 H 6 in 1-butanol is higher than CH 4 and CO 2 . • Liquid density and viscosity reduces with dissolution of CH 4 and C 2 H 6 . • Dissolution of CO 2 increases liquid density and reduces liquid viscosity. -- Abstract: A designed pressure–volume–temperature (PVT) apparatus has been used to measure the (vapor + liquid) equilibrium properties of three binary mixtures (methane +, ethane +, and carbon dioxide + 1-butanol) at two temperatures (303 and 323) K and at the pressures up to 6 MPa. The solubility of the compressed gases in 1-butanol and the saturated liquid densities and viscosities were measured. In addition, the density and viscosity of pure 1-butanol were measured at two temperatures (303 and 323) K and at the pressures up to 10 MPa. The experimental results show that the solubility of the gases in 1-butanol increases with pressure and decreases with temperature. The dissolution of gases in 1-butanol causes a decline in the viscosity of liquid phase. The saturated liquid density follows a decreasing trend with the solubility of methane and ethane. However, the dissolution of carbon dioxide in 1-butanol leads to an increase in the density of liquid phase. The experimental data are well correlated with Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR) equations of state (EOSs). SRK EOS was slightly superior for correlating the saturated liquid densities

  19. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    Science.gov (United States)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    Porous rocks in hydrocarbon reservoirs are often saturated with a mixture of two or more fluids. Interpretation of exploration seismograms requires understanding of the relationship between distribution of the fluids patches and acoustic properties of rocks. The sizes of patches as well as their distribution affect significantly the seismic response. If the size of the fluid patch is smaller than the diffusion wavelength then pressure equilibration is achieved and the bulk modulus of the rock saturated with a mixture is defined by the Gassmann equations (Gassmann, 1951) with the saturation-weighted average of the fluid bulk modulus given by Wood's law (Wood, 1955, Mavko et al., 1998). If the fluid patch size is much larger than the diffusion wavelength then there is no pressure communication between different patches. In this case, fluid-flow effects can be neglected and the overall rock may be considered equivalent to an elastic composite material consisting of homogeneous parts whose properties are given by Gassmann theory with Hill's equation for the bulk modulus (Hill, 1963, Mavko et al., 1998). At intermediate values of fluid saturation the velocity-saturation relationship is significantly affected by the fluid patch distribution. In order to get an improved understanding of factors influencing the patch distribution and the resulting seismic wave response we performed simultaneous measurements of P-wave velocities and rock sample CT imaging. The CT imaging allows us to map the fluid distribution inside rock sample during saturation (water imbibition). We compare the experimental results with theoretical predictions. In this paper we will present results of simultaneous measurements of longitudinal wave velocities and imaging mapping of fluid distribution inside rock sample during sample saturation. We will report results of two kinds of experiments: "dynamic" and "quasi static" saturation. In both experiments Casino Cores Otway Basin sandstone, Australia core

  20. Monitoring CO2 penetration and storage in the brine-saturated low permeable sandstone by the geophysical exploration technologies

    Science.gov (United States)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Imasato, M.

    2017-12-01

    Carbon dioxide (CO2) capture and storage (CCS) plays a vital role in reducing greenhouse gas emissions. In the northern part of Kyushu region of Japan, complex geological structure (Coalfield) is existed near the CO2 emission source and has 1.06 Gt of CO2 storage capacity. The geological survey shows that these layers are formed by low permeable sandstone. It is necessary to monitor the CO2 behavior and clear the mechanisms of CO2 penetration and storage in the low permeable sandstone. In this study, measurements of complex electrical impedance (Z) and elastic wave velocity (P-wave velocity: Vp) were conducted during the supercritical CO2 injection experiment into the brine-saturated low permeable sandstone. The experiment conditions were as follows; Confining pressure: 20 MPa, Initial pore pressure: 10 MPa, 40 °, CO2 injection rate: 0.01 to 0.5 mL/min. Z was measured in the center of the specimen and Vp were measured at three different heights of the specimen at constant intervals. In addition, we measured the longitudinal and lateral strain at the center of the specimen, the pore pressure and CO2 injection volume (CO2 saturation). During the CO2 injection, the change of Z and Vp were confirmed. In the drainage terms, Vp decreased drastically once CO2 reached the measurement cross section.Vp showed the little change even if the flow rate increased (CO2 saturation increased). On the other hand, before the CO2 front reached, Z decreased with CO2-dissolved brine. After that, Z showed continuously increased as the CO2 saturation increased. From the multi-parameter (Hydraulic and Rock-physics parameters), we revealed the detail CO2 behavior in the specimen. In the brine-saturated low permeable sandstone, the slow penetration of CO2 was observed. However, once CO2 has passed, the penetration of CO2 became easy in even for brine-remainded low permeable sandstone. We conclude low permeable sandstone has not only structural storage capacity but also residual tapping

  1. Pore-scale modelling of the effect of viscous pressure gradients during heavy oil depletion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bondino, I. [Total E and P UK Ltd., London (United Kingdom); McDougall, S.R. [Heriot-Watt Univ., Edinburgh (United Kingdom); Hamon, G. [Total E and P Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    In solution gas drive, when the reservoir pressure is lowered below the bubble point, bubbles nucleate and grow within saturated oil. A period of internal gas-phase expansion maintains reservoir pressure, driving oil to the wellbore region. Continued pressure reduction eventually leads to the formation of a connected gas phase that is capable of being produced along with the oleic phase. As a result, the total produced gas-oil ratio in the well begins to increase. Once the connected gas phase develops, oil production begins to decrease. This general description can be inadequate in the context of heavy oils where additional characteristics, such as foamy oil, and atypically high recoveries are observed. In order to improve the simulation of solution gas drive for heavy oil in the framework of a pre-existing pore-scale network simulator, a dynamic gas-oil interface tracking algorithm was used to determine the mobilization of bubbles under intense pressure gradients. The model was used to characterize both the stationary capillary controlled growth of bubbles characteristic of slow depletion rates in the far wellbore region and the flow phenomena in the near wellbore region. A rationale for interpreting a range of flow mechanism, their associated gas relative permeabilities and critical gas saturations was also proposed. The paper first presented a description of the dynamic pore network model in terms of its' ability to model the porous space; and mobilize gas under viscous pressure gradients and unsteady-state gas relative permeabilities. The dynamic network modelling of heavy oil depletion experiments at different rates and the prediction of the experimental gas saturations were then presented along with a discussion on critical gas saturations. It was concluded that foamy oil behaviour can be observed in situations where capillary pressures are overcome by viscous pressure gradients. 47 refs., 5 tabs., 17 figs.

  2. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  3. Virus movement in soil during saturated and unsaturated flow.

    Science.gov (United States)

    Lance, J C; Gerba, C P

    1984-02-01

    Virus movement in soil during saturated and unsaturated flow was compared by adding poliovirus to sewage water and applying the water at different rates to a 250-cm-long soil column equipped with ceramic samplers at different depths. Movement of viruses during unsaturated flow of sewage through soil columns was much less than during saturated flow. Viruses did not move below the 40-cm level when sewage water was applied at less than the maximum infiltration rate; virus penetration in columns flooded with sewage was at least 160 cm. Therefore, virus movement in soils irrigated with sewage should be less than in flooded groundwater recharge basins or in saturated soil columns. Management of land treatment systems to provide unsaturated flow through the soil should minimize the depth of virus penetration. Differences in virus movement during saturated and unsaturated flow must be considered in the development of any model used to simulate virus movement in soils.

  4. Mean Blood Pressure Difference among Adolescents Based on Dyssomnia Types.

    Science.gov (United States)

    Sembiring, Krisnarta; Ramayani, Oke Rina; Lubis, Munar

    2018-02-15

    Dyssomnia is the most frequent sleep disturbance and associated with increased blood pressure. There has been no study determining the difference in mean blood pressure based on dyssomnia types among adolescents. To determine the difference in mean blood pressure among adolescents based on dyssomnia types. Cross-sectional study was conducted in SMP Negeri 1 Muara Batang Gadis in April 2016. Samples were students having sleep disturbance based on Sleep Disturbance Scale for Children (SDSC) questionnaire. Stature and blood pressure data were collected along with demographic data and sleep disorder questionnaire. Analyses were done with Kruskal-Wallis test and logistic regression. P - value blood pressure (DBP) was 111.1 (SD 16.46) mmHg and 70.3 (SD 11.98) mmHg respectively. Mean SDSC score was 49.7 (SD 8.96), and the most frequent dyssomnia type was disorders of initiating and maintaining sleep. Age and sex were not the risk factors of hypertension in dyssomnia. There was a significant difference in mean SBP (P = 0.006) and DBP (P = 0.022) based on dyssomnia types. Combination dyssomnia type had the highest mean blood pressure among dyssomnia types. There is a significant difference in mean blood pressure among adolescents based on dyssomnia types.

  5. Combining different frequencies for electrical heating of saturated and unsaturated soil zones

    Energy Technology Data Exchange (ETDEWEB)

    Roland, U.; Holzer, F.; Kopinke, F.D. [Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Leipzig (Germany)

    2011-10-15

    In situ electrical heating of soil was studied applying different frequencies: low-frequency energy for resistive heating and radio-frequency energy for dielectric heating. Steep temperature gradients were observed for each heating mode under the condition of the coexistence of saturated and unsaturated soil zones. By combining the two heating modes, this undesired effect can be avoided, thus allowing efficient soil remediation especially when organic phases are accumulated at the capillary fringe. A parallel application of both frequencies was demonstrated as the most suitable method to reduce temperature gradients. By using electronic filters, both electric fields can be established by only one electrode array. This innovative concept is especially applicable for optimizing thermal remediation of light non-aqueous phase liquid contaminations or realizing thermally-enhanced electrokinetic removal of heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. The unsaturated flow in porous media with dynamic capillary pressure

    Science.gov (United States)

    Milišić, Josipa-Pina

    2018-05-01

    In this paper we consider a degenerate pseudoparabolic equation for the wetting saturation of an unsaturated two-phase flow in porous media with dynamic capillary pressure-saturation relationship where the relaxation parameter depends on the saturation. Following the approach given in [13] the existence of a weak solution is proved using Galerkin approximation and regularization techniques. A priori estimates needed for passing to the limit when the regularization parameter goes to zero are obtained by using appropriate test-functions, motivated by the fact that considered PDE allows a natural generalization of the classical Kullback entropy. Finally, a special care was given in obtaining an estimate of the mixed-derivative term by combining the information from the capillary pressure with the obtained a priori estimates on the saturation.

  7. Experimental study on poro-mechanical behavior of saturated Meuse-Haute/Marne argillite subjected to triaxial compression

    International Nuclear Information System (INIS)

    Hu, Dawei; Zhang, Fan; Xie, Shouyi; Shao, Jianfu

    2012-01-01

    Document available in extended abstract form only. Due to its low permeability (10 -18 to 10 -20 m 2 ), the Meuse-Haute/Marne argillite is chosen as the candidate host rock for the geological disposal of high-level radioactive waste by 'Agence Nationale de gestion des Dechets Radioactifs' (ANDRA). During the excavation of the underground tunnel in argillite formation, the Excavation Damaged Zone (EDZ) is expected to develop due to the stress redistribution during excavation and subsequent rock convergence. The nucleation and propagation of microcracks in EDZ can consequently affect the poro-mechanical behavior of the host rock. Therefore, it is of crucial importance to study the poro-mechanical behavior of Meuse-Haute/Marne argillite under the influence of stress induced microcracks. For this purpose, this paper presents the original experimental results of drained and undrained triaxial compression tests as well as evolution of Biot's coefficient during hydrostatic and deviatoric loading of saturated Meuse-Haute/Marne argillite. The size of samples used in the present work is 20x20 mm in order to reduce the saturating time. The axis of the cylindrical sample is perpendicular to the bedding planes. The test system is placed in an insulated room and a temperature control system is used to maintain a constant temperature of 20 ±0.2 C. The saturation condition is an important factor for the determination of the mechanical and poro-elastic properties of saturated argillite. Thus, for each sample, after putting into the triaxial cell, the confining pressure is loaded to 2 MPa and we inject distilled water both at the injection and outlet faces in order to insure the pore pressure at the two faces hold at 1 MPa. This procedure will be keep to 72 hours. Then, the pore pressure at the injection face is increased to 1.5 MPa, and we record the pore pressure at the outlet face. Once the pore pressure at the outlet face reaches the same value at injection face, the sample is

  8. BACEKO II. Flow-through, open-front and saturation tests of pre-compacted backfill blocks in a quarter-scale test tunnel

    International Nuclear Information System (INIS)

    Keski-Kuha, E.; Nemlander, R.; Koho, P.

    2013-11-01

    The series of tests performed in BACEKO II project examined three different block materials for potential use in backfilling the repository; Friedland clay, 40/60-mixture of bentonite (40 %) and crushed rock (60 %) and Milos B clay in conjunction with pellet materials Cebogel QSE and Milos B clay. The testing program consisted of 9 tests, that continued the 1/4-scale tests executed in BACEKO 2008. The block backfilling degree of the 1/4-scale test tunnels was 73.8 % which was consistent with the material ratios associated with filling a repository tunnel having a 10 % over-excavation ratio. Some of these tests were conducted using a restraint installed at the front face of the setup and open-front tests were subsequently added in order to establish the time span which an open backfill front can remain stable should an interruption in the backfilling process occur. Additionally one flow-through test with higher salinity water (7 % TDS versus the 3,5 % TDS used in all other tests), was performed for an assembly constructed using Friedland clay. The rate of test assembly, consumption of materials and achieved densities were all monitored. During the tests, the erosion rates, progression of saturation and development of total pressure were monitored. In disassembling the tests, samples were collected for gravimetric water content measurement, the erosion pathways were identified and the sections were photographed with an infrared camera to illustrate the moister areas in the backfill. The greatest amounts of eroded material were observed in open-front tests where exiting water removed clay from the face of the backfill and formed a deepening channel in the block backfill. The open-front tests remained stable only until the outflow emerged. The properties of the pellet layer depend on the as-placed conditions which were operatordependant and also affect the outflow times. There was not much difference in the amount of erosion observed for the different block materials

  9. Quick Preparation of Moisture-Saturated Carbon Fiber-Reinforced Plastics and Their Accelerated Ageing Tests Using Heat and Moisture

    Directory of Open Access Journals (Sweden)

    Masao Kunioka

    2016-06-01

    Full Text Available A quick method involving the control of heat and water vapor pressure for preparing moisture-saturated carbon fiber-reinforced plastics (CFRP, 8 unidirectional prepreg layers, 1.5 mm thickness, epoxy resin has been developed. The moisture-saturated CFRP sample was obtained at 120 °C and 0.2 MPa water vapor in 72 h by this method using a sterilizer (autoclave. The bending strength and viscoelastic properties measured by a dynamic mechanical analysis (DMA remained unchanged during repetitive saturation and drying steps. No degradation and molecular structural change occurred. Furthermore an accelerated ageing test with two ageing factors, i.e., heat and moisture was developed and performed at 140–160 °C and 0.36–0.62 MPa water vapor pressure by using a sealed pressure-proof stainless steel vessel (autoclave. The bending strength of the sample decreased from 1107 to 319 MPa at 160 °C and 0.63 MPa water vapor pressure in 9 days. Degraded samples were analyzed by DMA. The degree of degradation for samples was analyzed by DMA. CFRP and degraded CFRP samples were analyzed by using a surface and interfacial cutting analysis system (SAICAS and an electron probe micro-analyzer (EPMA equipped in a scanning electron microscope.

  10. Elastic Dispersion and Attenuation in Fully Saturated Sandstones: Role of Mineral Content, Porosity, and Pressures

    Science.gov (United States)

    Pimienta, Lucas; Borgomano, Jan V. M.; Fortin, Jérôme; Guéguen, Yves

    2017-12-01

    Because measuring the frequency dependence of elastic properties in the laboratory is a technical challenge, not enough experimental data exist to test the existing theories. We report measurements of three fluid-saturated sandstones over a broad frequency band: Wilkenson, Berea, and Bentheim sandstones. Those sandstones samples, chosen for their variable porosities and mineral content, are saturated by fluids of varying viscosities. The samples elastic response (Young's modulus and Poisson's ratio) and hydraulic response (fluid flow out of the sample) are measured as a function of frequency. Large dispersion and attenuation phenomena are observed over the investigated frequency range. For all samples, the variation at lowest frequency relates to a large fluid flow directly measured out of the rock samples. These are the cause (i.e., fluid flow) and consequence (i.e., dispersion/attenuation) of the transition between drained and undrained regimes. Consistently, the characteristic frequency correlates with permeability for each sandstone. Beyond this frequency, a second variation is observed for all samples, but the rocks behave differently. For Berea sandstone, an onset of dispersion/attenuation is expected from both Young's modulus and Poisson's ratio at highest frequency. For Bentheim and Wilkenson sandstones, however, only Young's modulus shows dispersion/attenuation phenomena. For Wilkenson sandstone, the viscoelastic-like dispersion/attenuation response is interpreted as squirt flow. For Bentheim sandstone, the second effect does not fully follow such response, which could be due to a lower accuracy in the measured attenuation or to the occurence of another physical effect in this rock sample.

  11. A computer program for accident calculations of a standard pressurized water reactor

    International Nuclear Information System (INIS)

    Keutner, H.

    1979-01-01

    In this computer program the dynamic of a standard pressurized water reactor should be realized by both circulation loops with all important components. All important phenomena are taken into consideration, which appear for calculation of disturbances in order to state a realistic process for some minutes after a disturbance or a desired change of condition. In order to optimize the computer time simplifications are introduced in the statement of a differential-algebraic equalization system such that all important effects are taken into consideration. The model analysis starts from the heat production of the fuel rod via cladding material to the cooling medium water and considers the delay time from the core to the steam generator. Alternations of the cooling medium pressure as well as the different temperatures in the primary loop influence the pressuring system - the pressurizer - which is realized by a water and a steam zone with saturated and superheated steam respectively saturated and undercooled water with injection, heating and blow-down devices. The bilance of the steam generator to the secondary loop realizes the process engineering devices. Thereby the control regulation of the steam pressure and the reactor performance is realized. (orig.) [de

  12. A corresponding states treatment of the liquid-vapor saturation line

    International Nuclear Information System (INIS)

    Srinivasan, K.; Ng, K.C.; Velasco, S.; White, J.A.

    2012-01-01

    Highlights: → Correlations arising from the maxima of products of properties in the coexistence line. → Analysis of maxima along the vapor pressure curve. → Correlations for the maximum of the saturated vapor enthalpy curve. → Prediction of properties of the new low GWP refrigerants HFO 1234yf and HFO 1234ze (E). - Abstract: In this work we analyze correlations for the maxima of products of some liquid-vapor saturation properties. These points define new characteristic properties of each fluid that are shown to exhibit linear correlations with the critical properties. We also demonstrate that some of these properties are well correlated with the acentric factor. An application is made to predict the properties of two new low global warming potential (GWP) refrigerants.

  13. Pressure-anisotropy-induced nonlinearities in the kinetic magnetorotational instability

    Science.gov (United States)

    Squire, J.; Quataert, E.; Kunz, M. W.

    2017-12-01

    In collisionless and weakly collisional plasmas, such as hot accretion flows onto compact objects, the magnetorotational instability (MRI) can differ significantly from the standard (collisional) MRI. In particular, pressure anisotropy with respect to the local magnetic-field direction can both change the linear MRI dispersion relation and cause nonlinear modifications to the mode structure and growth rate, even when the field and flow perturbations are very small. This work studies these pressure-anisotropy-induced nonlinearities in the weakly nonlinear, high-ion-beta regime, before the MRI saturates into strong turbulence. Our goal is to better understand how the saturation of the MRI in a low-collisionality plasma might differ from that in the collisional regime. We focus on two key effects: (i) the direct impact of self-induced pressure-anisotropy nonlinearities on the evolution of an MRI mode, and (ii) the influence of pressure anisotropy on the `parasitic instabilities' that are suspected to cause the mode to break up into turbulence. Our main conclusions are: (i) The mirror instability regulates the pressure anisotropy in such a way that the linear MRI in a collisionless plasma is an approximate nonlinear solution once the mode amplitude becomes larger than the background field (just as in magnetohyrodynamics). This implies that differences between the collisionless and collisional MRI become unimportant at large amplitudes. (ii) The break up of large-amplitude MRI modes into turbulence via parasitic instabilities is similar in collisionless and collisional plasmas. Together, these conclusions suggest that the route to magnetorotational turbulence in a collisionless plasma may well be similar to that in a collisional plasma, as suggested by recent kinetic simulations. As a supplement to these findings, we offer guidance for the design of future kinetic simulations of magnetorotational turbulence.

  14. Determination of near-saturated hydraulic conductivity by automated minidisk infiltrometer

    Science.gov (United States)

    Klipa, Vladimir; Snehota, Michal; Dohnal, Michal; Zumr, David

    2013-04-01

    Numerical models in surface and subsurface hydrology require knowledge of infiltration properties of soils for their routine use in the field of water management, environmental protection or agriculture. A new automated tension infiltration module has been designed at the Faculty of Civil Engineering, Czech Technical University in Prague to facilitate the measurements of near-saturated hydraulic conductivity. In the proposed infiltration module the amount of infiltrated water is registered via changes of buoyant force of stationary float attached to the load cell. Presented setup consists of six mini-disk infiltrometer modules held in the light aluminum frame and two Mariotte's bottles. Three infiltrometer modules connected to each Mariotte's bottle allow performing six simultaneous measurements at two different pressure heads. Infiltration modules are connected to the automatic data logging system and consist of: plastic cover with the integrated load cell and the float, reservoir tube (external diameter of 50 mm), and sintered stainless steel plate (diameter of 44.5 mm). The newly developed device was used for determination of near-saturated hydraulic conductivity of soils in experimental catchments Uhlirska (Jizera Mountains, Northern Bohemia) and Kopaninsky creek (Bohemian-Moravian Highlands). The acquired data show a good agreement with the data obtained from previous measurements.

  15. Gluon saturation in a saturated environment

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-01-01

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q sA 2 , in AA compared with pA collisions.

  16. Empirical Formulas for Calculation of Negative Pressure Difference in Vacuum Pipelines

    Directory of Open Access Journals (Sweden)

    Marek Kalenik

    2015-10-01

    Full Text Available The paper presents the analysis of results of empirical investigations of a negative pressure difference in vacuum pipelines with internal diameters of 57, 81, 102 mm. The investigations were performed in an experimental installation of a vacuum sewage system, built in a laboratory hall on a scale of 1:1. The paper contains a review of the literature concerning two-phase flows (liquid-gas in horizontal, vertical and diagonal pipelines. It presents the construction and working principles of the experimental installation of vacuum sewage system in steady and unsteady conditions during a two-phase flow of water and air. It also presents a methodology for determination of formula for calculation of a negative pressure difference in vacuum pipelines. The results obtained from the measurements of the negative pressure difference Δpvr in the vacuum pipelines were analyzed and compared with the results of calculations of the negative pressure difference Δpvr, obtained from the determined formula. The values of the negative pressure difference Δpvr calculated for the vacuum pipelines with internal diameters of 57, 81, and 102 mm with the use of Formula (19 coincide with the values of Δpvr measured in the experimental installation of a vacuum sewage system. The dependence of the negative pressure difference Δpvr along the length of the vacuum pipelines on the set negative pressure in the vacuum container pvzp is linear. The smaller the vacuum pipeline diameter, the greater the negative pressure difference Δpvr is along its length.

  17. A free boundary problem describing the saturated-unsaturated flow in a porous medium

    Directory of Open Access Journals (Sweden)

    Gabriela Marinoschi

    2004-01-01

    Full Text Available This paper presents a functional approach to a nonlinear model describing the complete physical process of water infiltration into an unsaturated soil, including the saturation occurrence and the advance of the wetting front. The model introduced in this paper involves a multivalued operator covering the simultaneous saturated and unsaturated flow behaviors and enhances the study of the displacement of the free boundary between these two flow regimes. The model resides in Richards' equation written in pressure form with an initial condition and boundary conditions which in this work express the inflow due to the rain on the soil surface on the one hand, and characterize a certain permeability corresponding to the underground boundary, on the other hand. Existence, uniqueness, and regularity results for the transformed model in diffusive form, that is, for the moisture of the soil, and the existence of the weak solution for the pressure form are proved in the 3D case. The main part of the paper focuses on the existence of the free boundary between the saturated and unsaturated parts of the soil, and this is proved, in the 1D case, for certain stronger assumptions on the initial data and boundary conditions.

  18. Mean Blood Pressure Difference among Adolescents Based on Dyssomnia Types

    OpenAIRE

    Krisnarta Sembiring; Oke Rina Ramayani; Munar Lubis

    2018-01-01

    BACKGROUND: Dyssomnia is the most frequent sleep disturbance and associated with increased blood pressure. There has been no study determining the difference in mean blood pressure based on dyssomnia types among adolescents. OBJECTIVE: To determine the difference in mean blood pressure among adolescents based on dyssomnia types. METHODS: a Cross-sectional study was conducted in SMP Negeri 1 Muara Batang Gadis in April 2016. Samples were students having sleep disturbance based on Sleep...

  19. Measuring lateral saturated soil hydraulic conductivity at different spatial scales

    Science.gov (United States)

    Di Prima, Simone; Marrosu, Roberto; Pirastru, Mario; Niedda, Marcello

    2017-04-01

    substratum of Permian sandstone that exhibits very low drainage, thus preventing deep water percolation (Castellini et al., 2016). In the laboratory, small-scale lateral and vertical saturated hydraulic conductivity, Ks,v, were determined by the constant-head permeameter method (Klute and Dirksen, 1986) on 20 soil cubes of 1331 cm3 of volume (Bagarello and Sgroi, 2008), allowing determination of mean Ks anisotropy for the hillslope. In the field, small-scale Ks,v was determined by infiltration runs of the BEST (Lassabatere et al., 2006) type carried out using a ring with an inner diameter of 0.15 m. The BEST-steady algorithm, proposed by Bagarello et al. (2014), was used to analyze the cumulative infiltration curves in order to decrease the failure rate of the BEST algorithms (Di Prima et al., 2016). The in situ Ks,l at an intermediate spatial scale was estimated by a trench test (Blanco-Canqui et al., 2002) carried out on a monolith 50 cm wide, 68 cm long and 34.5 cm deep (the depth to substratum). Finally, the large spatial scale (hillslope-scale) Ks,lvalue was estimated from the outflow of a 8.5 m large drain and from the perched water table levels monitored in the hillslope, following the methodology of Brooks et al. (2004). Anisotropy was not detected, since the soil cube experiments did not revealed significant differences between Ks,v and Ks,l values. The differences between the Ks datasets measured by the cube and the BEST methods were not statistically significant at p = 0.05. These methods yielded Ks values 6.4 and 5.8 times lower than the hillslope-scale Ks,l, respectively. The Ks,l value obtained by the trench experiment in the soil monolith was 1440 mm h-1, which was only 1.5 times higher than the hillslope-scale Ks,l. Probably, the chosen size of soil monolith was sufficient to properly represent the spatial heterogeneity of the soil in the hillslope. This finding need to be confirmed by further trench tests in soil monoliths to be carried out in the studied

  20. DETERMINATION OF SATURATION VAPOR PRESSURE OF LOW VOLATILE SUBSTANCES THROUGH THE STUDY OF EVAPORATION RATE BY THERMOGRAVIMETRIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. V. Ralys

    2015-11-01

    Full Text Available Subject of Study.Research of vapor pressure of low volatile substances is a complicated problem due to both direct experimental implementation complexity and, most significantly, the issues faced correctness of the analysis and processing of experimental data. That is why it is usually required engaging the reference substances (with vapor pressures well studied. The latter drastically reduces the effectiveness of the experimental methods used and narrows their applicability. The paper deals with an approach to the evaporation process description (sublimation of low volatile substances based on molecular kinetic description in view of diffusive and convection processes. The proposed approach relies on experimental thermogravimetricfindingsina wide range of temperatures, flow rates ofthe purge gas and time. Method. A new approach is based on the calculation of the vapor pressure and uses the data about the speed of evaporation by thermogravimetric analysis depending on the temperature, the flow rate of the purge gas, and the evaporation time. The basis for calculation is the diffusion-kinetic description of the process of evaporation (mass loss of the substance from the exposed surface. The method is applicable to determine the thermodynamic characteristics for both the evaporation (the equilibrium liquid - vapor and sublimation (the equilibrium solid - vapor. We proposed the appropriate method of the experiment and analysis of its data in order to find the saturated vapor pressure of individual substances of low volatility. Main Results. The method has been tested on substances with insufficiently reliable and complete study of the thermodynamic characteristics but, despite this, are often used (because of the other data limitations as reference ones. The vaporization process (liquid-vapor has been studied for di-n-butyl phthalate C16H22O4 at 323,15–443,15 К, and sublimation for benzoic acid C7H6O2at 303,15–183,15 К. Both processes have

  1. Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300°C

    Science.gov (United States)

    Pribnow, D.; Williams, C.F.; Sass, J.H.; Keating, R.

    1996-01-01

    The conductivitites of selected gneiss (two) and amphibolite (one) core samples have been measured under conditions of elevated temperature and pressure with a needle-probe. Water-saturated thermal conductivity measurements spanning temperatures from 25 to 300??C and hydrostatic pressures of 0.1 and 34 MPa confirm the general decrease in conductivity with increasing temperature but deviate significantly from results reported from measurements on dry samples over the same temperature range. The thermal conductivity of water-saturated amphibolite decreases with temperature at a rate approximately 40% less than the rate for dry amphibolite, and the conductivity of water-saturated gneiss decreases at a rate approximately 20% less than the rate for dry gneiss. The available evidence points to thermal cracking as the primary cause of the more rapid decrease in dry thermal conductivity with temperature. The effects of thermal cracking were also observed in the water-saturated samples but resulted in a net decrease in room-temperature conductivity of less than 3%. These results highlight the importance of duplicating in-situ conditions when determining thermal conductivity for the deep crust.

  2. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Seyed Mahdi [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of); Karimi-Sabet, Javad, E-mail: j_karimi@alum.sharif.edu [NFCRS, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Shariaty-Niassar, Mojtaba, E-mail: mshariat@ut.ac.ir [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-31

    Highlights: • Manipulation of the Cu surface morphology in a wide range by electropolishing treatment. • Comparison of the nucleation density of graphene at low pressure and atmospheric pressure CVD processes. • Controlling the evolution of the Cu surface morphology inside a novel confined space. • Growth of large-size graphene domains. - Abstract: In this work, we study the influence of the surface morphology of the catalytic copper substrate on the nucleation density and the growth rate of graphene domains at low and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) processes. In order to obtain a wide range of initial surface morphology, precisely controlled electropolishing methods were developed to manipulate the roughntreess value of the as-received Cu substrate (RMS = 30 nm) to ultra-rough (RMS = 130 nm) and ultra-smooth (RMS = 2 nm) surfaces. The nucleation and growth of graphene domains show obviously different trends at LPCVD and APCVD conditions. In contrast to APCVD condition, the nucleation density of graphene domains is almost equal in substrates with different initial roughness values at LPCVD condition. We show that this is due to the evolution of the surface morphology of the Cu substrate during the graphene growth steps. By stopping the surface sublimation of copper substrate in a confined space saturated with Cu atoms, the evolution of the Cu surface was impeded. This results in the reduction of the nucleation density of graphene domains up to 24 times in the pre-smoothed Cu substrates at LPCVD condition.

  3. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures

    International Nuclear Information System (INIS)

    Hedayat, Seyed Mahdi; Karimi-Sabet, Javad; Shariaty-Niassar, Mojtaba

    2017-01-01

    Highlights: • Manipulation of the Cu surface morphology in a wide range by electropolishing treatment. • Comparison of the nucleation density of graphene at low pressure and atmospheric pressure CVD processes. • Controlling the evolution of the Cu surface morphology inside a novel confined space. • Growth of large-size graphene domains. - Abstract: In this work, we study the influence of the surface morphology of the catalytic copper substrate on the nucleation density and the growth rate of graphene domains at low and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) processes. In order to obtain a wide range of initial surface morphology, precisely controlled electropolishing methods were developed to manipulate the roughntreess value of the as-received Cu substrate (RMS = 30 nm) to ultra-rough (RMS = 130 nm) and ultra-smooth (RMS = 2 nm) surfaces. The nucleation and growth of graphene domains show obviously different trends at LPCVD and APCVD conditions. In contrast to APCVD condition, the nucleation density of graphene domains is almost equal in substrates with different initial roughness values at LPCVD condition. We show that this is due to the evolution of the surface morphology of the Cu substrate during the graphene growth steps. By stopping the surface sublimation of copper substrate in a confined space saturated with Cu atoms, the evolution of the Cu surface was impeded. This results in the reduction of the nucleation density of graphene domains up to 24 times in the pre-smoothed Cu substrates at LPCVD condition.

  4. Ice versus liquid water saturation in simulations of the indian summer monsoon

    Science.gov (United States)

    Glazer, Russell H.; Misra, Vasubandhu

    2018-02-01

    At the same temperature, below 0 °C, the saturation vapor pressure (SVP) over ice is slightly less than the SVP over liquid water. Numerical models use the Clausius-Clapeyron relation to calculate the SVP and relative humidity, but there is not a consistent method for the treatment of saturation above the freezing level where ice and mixed-phase clouds may be present. In the context of current challenges presented by cloud microphysics in climate models, we argue that a better understanding of the impact that this treatment has on saturation-related processes like cloud formation and precipitation, is needed. This study explores the importance of the SVP calculation through model simulations of the Indian summer monsoon (ISM) using the regional spectral model (RSM) at 15 km grid spacing. A combination of seasonal and multiyear simulations is conducted with two saturation parameterizations. In one, the SVP over liquid water is prescribed through the entire atmospheric column (woIce), and in another the SVP over ice is used above the freezing level (wIce). When SVP over ice is prescribed, a thermodynamic drying of the middle and upper troposphere above the freezing level occurs due to increased condensation. In the wIce runs, the model responds to the slight decrease in the saturation condition by increasing, relative to the SVP over liquid water only run, grid-scale condensation of water. Increased grid-scale mean seasonal precipitation is noted across the ISM region in the simulation with SVP over ice prescribed. Modification of the middle and upper troposphere moisture results in a decrease in mean seasonal mid-level cloud amount and an increase in high cloud amount when SVP over ice is prescribed. Multiyear simulations strongly corroborate the qualitative results found in the seasonal simulations regarding the impact of ice versus liquid water SVP on the ISM's mean precipitation and moisture field. The mean seasonal rainfall difference over All India between w

  5. Two-phase flow in volatile oil reservoir using two-phase pseudo-pressure well test method

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, M.; Ahmadi, M. [Calgary Univ., AB (Canada)

    2009-09-15

    A study was conducted to better understand the behaviour of volatile oil reservoirs. Retrograde condensation occurs in gas-condensate reservoirs when the flowing bottomhole pressure (BHP) lowers below the dewpoint pressure, thus creating 4 regions in the reservoir with different liquid saturations. Similarly, when the BHP of volatile oil reservoirs falls below the bubblepoint pressure, two phases are created in the region around the wellbore, and a single phase (oil) appears in regions away from the well. In turn, higher gas saturation causes the oil relative permeability to decrease towards the near-wellbore region. Reservoir compositional simulations were used in this study to predict the fluid behaviour below the bubblepoint. The flowing bottomhole pressure was then exported to a well test package to diagnose the occurrence of different mobility regions. The study also investigated the use of a two-phase pseudo-pressure method on volatile and highly volatile oil reservoirs. It was concluded that this method can successfully predict the true permeability and mechanical skin. It can also distinguish between mechanical skin and condensate bank skin. As such, the two-phase pseudo-pressure method is particularly useful for developing after-drilling well treatment and enhanced oil recovery process designs. However, accurate relative permeability and PVT data must be available for reliable interpretation of the well test in volatile oil reservoirs. 18 refs., 3 tabs., 9 figs.

  6. The vapour pressure of americium(III) chloride

    International Nuclear Information System (INIS)

    Schuster, W.

    1983-01-01

    Based on the method described by Fischer, an ultramicro-size appratus was developed for static determination of the saturation vapour pressure of highly radioactive materials. The apparatus was tested with MgCl 2 , MnCl 2 , HoCl 3 and ScF 3 . The vapour pressure curves of MgCl 2 and MnCl 2 were in good agreement with other publications and thus proved the efficiency of the apparatus in spite of its difficulties of handling. The values measured for HoCl 3 and ScF 3 differed from those of earlier publications. However, these deviations have been observed before and may be the result of the different measuring principles of static and dynamic methods. For AmCl 3 , the following vapour pressure equation was established: log psub(Torr)=-(11826/T)+10.7. The thermodynamic parameters of the evaporation process were calculated on this basis, and the values for AmBr 3 and PnCl 3 were determined by extrapolation. (orig.) [de

  7. Indoor radon concentration and outdoor/indoor pressure difference correlation

    International Nuclear Information System (INIS)

    Cechak, T.; Fronka, A.; Moucka, L.

    2004-01-01

    In the current approach to the radon issue, the radon risk for people living in a building is estimated based on the average indoor radon concentration. Short-term measurements as usually applied fail to reflect the wide range of radon variations arising from ventilation, radon supply and, in particular, human activities in the building. For this reason, efforts are made to find a new approach to the assessment of the quality of a building as a radon barrier, independent of the weather conditions and residential habits. A simple model of radon volume activity entering the building at a constant rate and simultaneously ventilated at a constant rate is applicable to this task. The rate of radon ingress can be regarded as a parameter making it possible to quantify the leakage of structures provided the barrier against the radon in a soil gas. The ventilation rate, on the other hand, characterizes the leakage of the whole building envelope at a given outdoor/indoor pressure difference. A unique measuring technique called the blower door exists whereby a defined pressure difference between the indoor and outdoor atmosphere can be established. Under such conditions both the ventilation rate and the rate of radon ingress can be measured and expressed as a function of the pressure difference. An analysis of the model of a room with a constant ventilation and constant radon supply is presented and the relationship between radon supply and ventilation rate can be assumed. Some experimental results show how the model can be utilized. The real indoor-outdoor air pressure differences, the indoor-soil air pressure differences, and some effects of different ventilation regimes are given. Other experiments, which have been done by using the blower door method, illustrate the possible effects and some restrictions for a routine application are discussed

  8. Does the Position or Contact Pressure of the Stethoscope Make Any Difference to Clinical Blood Pressure Measurements

    Science.gov (United States)

    Pan, Fan; Zheng, Dingchang; He, Peiyu; Murray, Alan

    2014-01-01

    Abstract This study aimed to investigate the effect of stethoscope position and contact pressure on auscultatory blood pressure (BP) measurement. Thirty healthy subjects were studied. Two identical stethoscopes (one under the cuff, the other outside the cuff) were used to simultaneously and digitally record 2 channels of Korotkoff sounds during linear cuff pressure deflation. For each subject, 3 measurements with different contact pressures (0, 50, and 100 mm Hg) on the stethoscope outside the cuff were each recorded at 3 repeat sessions. The Korotkoff sounds were replayed twice on separate days to each of 2 experienced listeners to determine systolic and diastolic BPs (SBP and DBP). Variance analysis was performed to study the measurement repeatability and the effect of stethoscope position and contact pressure on BPs. There was no significant BP difference between the 3 repeat sessions, between the 2 determinations from each listener, between the 2 listeners and between the 3 stethoscope contact pressures (all P > 0.06). There was no significant SBP difference between the 2 stethoscope positions at the 2 lower stethoscope pressures (P = 0.23 and 0.45), but there was a small (0.4 mm Hg, clinically unimportant) significant difference (P = 0.005) at the highest stethoscope pressure. The key result was that, DBP from the stethoscope under the cuff was significantly lower than that from outside the cuff by 2.8 mm Hg (P stethoscope outside the cuff, tends to give a higher DBP than the true intra-arterial pressure, this study could suggest that the stethoscope position under the cuff, and closer to the arterial occlusion, might yield measurements closer to the actual invasive DBP. PMID:25546675

  9. Optimization of pressurized liquid extraction (PLE) for rapid determination of mineral oil saturated (MOSH) and aromatic hydrocarbons (MOAH) in cardboard and paper intended for food contact.

    Science.gov (United States)

    Moret, Sabrina; Sander, Maren; Purcaro, Giorgia; Scolaro, Marianna; Barp, Laura; Conte, Lanfranco S

    2013-10-15

    Packaging can represent a primary source of food contamination with mineral oil saturated hydrocarbons (MOSH) and aromatic hydrocarbons (MOAH), especially when recycled cardboard or mineral oil based printing inks are used. A pressurized liquid extraction (PLE) method, followed by on-line LC-GC analysis, has been optimized for rapid mineral oil determination in cardboard and paper samples. The proposed method involves extraction with hexane (2 cycles) at 60°C for 5 min, and allows for the processing of up to 6 samples in parallel with minimal sample manipulation and solvent consumption. It gave good repeatability (coefficient of variation lower than 5%) and practically quantitative extraction yield (less than 2% of the total contamination found in a third separate cycle). The method was applied to different cardboards and paper materials intended for food contact. Results obtained were similar to those obtained by applying classical solvent extraction with hexane/ethanol 1:1 (v/v) as described by Lorenzini et al. [20]. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Comparing Different Strategies in Directed Evolution of Enzyme Stereoselectivity: Single- versus Double-Code Saturation Mutagenesis.

    Science.gov (United States)

    Sun, Zhoutong; Lonsdale, Richard; Li, Guangyue; Reetz, Manfred T

    2016-10-04

    Saturation mutagenesis at sites lining the binding pockets of enzymes constitutes a viable protein engineering technique for enhancing or inverting stereoselectivity. Statistical analysis shows that oversampling in the screening step (the bottleneck) increases astronomically as the number of residues in the randomization site increases, which is the reason why reduced amino acid alphabets have been employed, in addition to splitting large sites into smaller ones. Limonene epoxide hydrolase (LEH) has previously served as the experimental platform in these methodological efforts, enabling comparisons between single-code saturation mutagenesis (SCSM) and triple-code saturation mutagenesis (TCSM); these employ either only one or three amino acids, respectively, as building blocks. In this study the comparative platform is extended by exploring the efficacy of double-code saturation mutagenesis (DCSM), in which the reduced amino acid alphabet consists of two members, chosen according to the principles of rational design on the basis of structural information. The hydrolytic desymmetrization of cyclohexene oxide is used as the model reaction, with formation of either (R,R)- or (S,S)-cyclohexane-1,2-diol. DCSM proves to be clearly superior to the likewise tested SCSM, affording both R,R- and S,S-selective mutants. These variants are also good catalysts in reactions of further substrates. Docking computations reveal the basis of enantioselectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. TRUST: A Computer Program for Variably Saturated Flow in Multidimensional, Deformable Media

    Energy Technology Data Exchange (ETDEWEB)

    Reisenauer, A. E.; Key, K. T.; Narasimhan, T. N.; Nelson, R. W.

    1982-01-01

    The computer code, TRUST. provides a versatile tool to solve a wide spectrum of fluid flow problems arising in variably saturated deformable porous media. The governing equations express the conservation of fluid mass in an elemental volume that has a constant volume of solid. Deformation of the skeleton may be nonelastic. Permeability and compressibility coefficients may be nonlinearly related to effective stress. Relationships between permeability and saturation with pore water pressure in the unsaturated zone may include hysteresis. The code developed by T. N. Narasimhan grew out of the original TRUNP code written by A. L. Edwards. The code uses an integrated finite difference algorithm for numerically solving the governing equation. Narching in time is performed by a mixed explicit-implicit numerical procedure in which the time step is internally controlled. The time step control and related feature in the TRUST code provide an effective control of the potential numerical instabilities that can arise in the course of solving this difficult class of nonlinear boundary value problem. This document brings together the equations, theory, and users manual for the code as well as a sample case with input and output.

  12. NON-COHESIVE SOIL DIRECT SHEAR STRENGTH AFFECTED WITH HYDROSTATIC PRESSURE

    Directory of Open Access Journals (Sweden)

    Tadas Tamošiūnas

    2017-12-01

    Full Text Available This paper presents first results of non­cohesive soil direct shear tests with hydrostatic pressure. To reach this aim, it was chosen the Baltic Sea Klaipėda sand, due to granulometry composition and particles shape. According to this, investigated Baltic Sea sand can be called Lithuanian standard sand for scientific testing. Analysis of results revealed, that when it is increased hydrostatic pressure, the shearing strength is also increasing. Comparing air­ dry sand results with fully saturated sand and affected with 100 kPa of hydrostatic pressure, the angle of internal friction increased for 21,24%. Meanwhile, the cohesion was not changing so dramatically according to hydrostatic pressure change. Obtained results allows to proceed this research work more detailed with different loading types, testing procedures and hydrostatic pressures.

  13. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    Science.gov (United States)

    Kazemiroodsari, Hadi

    Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was

  14. Diffuse reflectance spectroscopy for the measurement of tissue oxygen saturation

    International Nuclear Information System (INIS)

    Sircan-Kucuksayan, A; Canpolat, M; Uyuklu, M

    2015-01-01

    Tissue oxygen saturation (StO 2 ) is a useful parameter for medical applications. A spectroscopic method has been developed to detect pathologic tissues, due to a lack of normal blood circulation, by measuring StO 2 . In this study, human blood samples with different levels of oxygen saturation have been prepared and spectra were acquired using an optical fiber probe to investigate the correlation between the oxygen saturation levels and the spectra. A linear correlation between the oxygen saturation and ratio of the intensities (760 nm to 790 nm) of the spectra acquired from blood samples has been found. In a validation study, oxygen saturations of the blood samples were estimated from the spectroscopic measurements with an error of 2.9%. It has also been shown that the linear dependence between the ratio and the oxygen saturation of the blood samples was valid for the blood samples with different hematocrits. Spectra were acquired from the forearms of 30 healthy volunteers to estimate StO 2 prior to, at the beginning of, after 2 min, and at the release of total vascular occlusion. The average StO 2 of a forearm before and after the two minutes occlusion was significantly different. The results suggested that optical reflectance spectroscopy is a sensitive method to estimate the StO 2 levels of human tissue. The technique developed to measure StO 2 has potential to detect ischemia in real time. (paper)

  15. Viscosity of saturated helium-3-helium-4 mixture below 200 mK

    NARCIS (Netherlands)

    Zeegers, J.C.H.; Waele, de A.T.A.M.; Gijsman, H.M.

    1991-01-01

    The shear viscosity of saturated3He-4He mixture has been measured at temperatures between 7 mK and 200 mK using a vibrating-wire viscometer and a calibrated pressure cell. The reliability of the vibrating-wire technique was tested by measuring the viscosity of pure4He. The results are internally

  16. SATCAP-B: a program for thermal-hydraulic design of 'Saturated Temperature Capsule'

    International Nuclear Information System (INIS)

    Harayama, Yasuo; Someya, Hiroyuki; Niimi, Motoji

    1989-11-01

    As an advanced irradiation technique, the JMTR (Japan Materials Testing Reactor) project is developing a 'Saturated Temperature Capsule' which water is injected in and boiled. When the water is kept at a constant pressure, the water temperature does not become higher than the saturated temperature. This type capsule is based on the conception of keeping the coolant to the saturated temperature and using the temperature control. In designing the capsule in which the inner coolant is injected, thermal performances have to be understood as exactly as possible. Then, a program (named SATCAP) was compiled to graps the thermal performance within the capsule. On the other hand, a 'Saturated Temperature Capsule' was made and irradiated in the JMTR core. It was indicated from supplied water temperatures recorded by thermo-couples attached in the capsule that heat transfer coefficients prefered models due to natural convection to models incorporated in the initial version of the program. Then, the program was revised by adding mainly heat transfer model based on natural convection. The present report describes the calculation procedure and guides of input and output for the revised program (SATCAP version-B). (author)

  17. In-Situ X-ray Tomography Study of Cement Exposed to CO2 Saturated Brine

    DEFF Research Database (Denmark)

    Chavez Panduro, E. A.; Torsæter, M.; Gawel, K.

    2017-01-01

    For successful CO2 storage in underground reservoirs, the potential problem of CO2 leakage needs to be addressed. A profoundly improved understanding of the behavior of fractured cement under realistic subsurface conditions including elevated temperature, high pressure and the presence of CO2...... saturated brine is required. Here, we report in situ X-ray micro computed tomography (μ-CT) studies visualizing the microstructural changes upon exposure of cured Portland cement with an artificially engineered leakage path (cavity) to CO2 saturated brine at high pressure. Carbonation of the bulk cement......, self-healing of the leakage path in the cement specimen, and leaching of CaCO3 were thus directly observed. The precipitation of CaCO3, which is of key importance as a possible healing mechanism of fractured cement, was found to be enhanced in confined regions having limited access to CO2...

  18. In vivo determination of triglyceride (TG) secretion in rats fed different dietary saturated fats using [2-3H]-glycerol

    International Nuclear Information System (INIS)

    Lai, H.C.; Yang, H.; Lasekan, J.; Clayton, M.; Ney, D.M.

    1990-01-01

    Male, Sprague-Dawley rats (154±1 g) were fed diets containing 2% corn oil (CO) + 14% butterfat (BF), beef tallow (BT), olive oil (OO) or coconut oil (CN) vs a 16% CO control diet for 5 weeks. Changes in plasma TG specific activity (dpm/mg TG) were determined in individual unanesthetized rats after injection of 100 μCi [2- 3 H]-glycerol via a carotid cannula. Fractional rate constants were obtained using a 2-compartment model and nonlinear regression analysis. Results demonstrated no difference in the fractional rate constants among dietary groups; but, differences in the rates of hepatic TG secretion were noted. Rats fed BT showed a higher rate of hepatic TG secretion than rats fed CO. Rats fed BF, OO or CN showed somewhat higher rates of hepatic TG secretion than CO. VLDL TG, phospholipid, and apolipoprotein B and E levels were higher with saturated fats vs CO. The data suggest that the higher plasma TG levels noted in response to feeding saturated fats vs corn oil can be explained, in part, by an increased flux of hepatic TG secretion

  19. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    International Nuclear Information System (INIS)

    Moridis, George J.; Sloan, E. Dendy

    2007-01-01

    In this paper, we evaluate the gas production potential of disperse, low-saturation (S H H hydrate-bearing sediments subject to depressurization-induced dissociation over a 10-year production period. We investigate the sensitivity of items (a)-(c) to the following hydraulic properties, reservoir conditions, and operational parameters: intrinsic permeability, porosity, pressure, temperature, hydrate saturation, and constant pressure at which the production well is kept. The results of this study indicate that, despite wide variations in the aforementioned parameters (covering the entire spectrum of such deposits), gas production is very limited, never exceeding a few thousand cubic meters of gas during the 10-year production period. Such low production volumes are orders of magnitude below commonly accepted standards of economic viability, and are further burdened with very unfavorable gas-to-water ratios. The unequivocal conclusion from this study is that disperse, low-S H hydrate accumulations in oceanic sediments are not promising targets for gas production by means of depressurization-induced dissociation, and resources for early hydrate exploitation should be focused elsewhere

  20. Behaviour of the ASDEX pressure gauge at high neutral gas pressure and applications for ITER

    International Nuclear Information System (INIS)

    Scarabosio, A.; Haas, G.

    2008-01-01

    The ASDEX Pressure Gauge is, at present, the main candidate for in-vessel neutral pressure measurement in ITER. Although the APG output is found to saturate at around 15 Pa, below the ITER requirement of 20 Pa. We show, here, that with small modifications of the gauge geometry and potentials settings we can achieve satisfactory behaviour up to 30 Pa at 6 T

  1. Lower limb intracast pressures generated by different types of immobilisation casts.

    Science.gov (United States)

    Chaudhury, Salma; Hazlerigg, Alexandra; Vusirikala, Anuhya; Nguyen, Joseph; Matthews, Stuart

    2017-02-18

    To determine if complete, split casts and backslabs [plaster of Paris (POP) and fiberglass] generate different intracast pressures and pain. Increased swelling within casts was modeled by a closed water system attached to an expandable bag placed directly under different types of casts applied to a healthy lower limb. Complete fiberglass and POP casts, split casts and backslabs were applied. Twenty-five milliliter aliquots of saline were injected into the system and the generated intracast pressures were measured using a sphygmomanometer. The subject was blinded to the pressure scores to avoid bias. All casts were applied to the same right limb on the same subject to avoid the effects of variations in anatomy or physiology on intracast pressures. Pain levels were evaluated using the Visual Analogue Score after each sequential saline injection. Each type of cast was reapplied four times and the measurements were repeated on four separate occasions. Sample sizes were determined by a pre-study 90% power calculation to detect a 20% difference in intracast pressures between cast groups. A significant difference between the various types of casts was noted when the saline volume was greater than 100 mL ( P = 0.009). The greatest intracast pressure was generated by complete fiberglass casts, which were significantly higher than complete POP casts or backslabs ( P = 0.018 and P = 0.008 respectively) at intracast saline volumes of 100 mL and higher. Backslabs produced a significantly lower intracast pressure compared to complete POP only once the saline volume within casts exceeded 225 mL ( P = 0.009). Intracast pressures were significantly lower in split casts ( P = 0.003). Split POP and fiberglass casts produced the lowest intracast pressures, even compared to backslabs ( P = 0.009). Complete fiberglass casts generated the highest pain levels at manometer pressures of 75 mmHg and greater ( P = 0.001). Split fiberglass casts had significantly reduced pain levels ( P = 0

  2. Clinical significance of inter-arm pressure difference and ankle-brachial pressure index in patients with suspected coronary artery disease

    International Nuclear Information System (INIS)

    Igarashi, Yuko; Chikamori, Taishiro; Tomiyama, Hirofumi; Usui, Yasuhiro; Hida, Satoshi; Tanaka, Hirokazu; Nagao, Tadashi; Yamashina, Akira

    2007-01-01

    Although measuring blood pressure at the bilateral brachia is common in medical practice, its clinical significance in patients with suspected coronary artery disease (CAD) has not been fully clarified. The method of this study was to define the significance of inter-arm systolic blood pressure difference in patients with suspected CAD, and to assess the relationship between inter-arm pressure difference and CAD, simultaneous brachial and ankle blood pressure measurements and stress myocardial single-photon emission computed tomography (SPECT) were performed in 386 consecutive patients with suspected CAD, excluding those with previous myocardial infarction or coronary revascularization. Subclavian artery stenosis, defined as ≥15 mmHg inter-arm systolic blood pressure difference, was found in 27 patients (7%). Age (65±12 vs 65±11 years), male sex (21/27 vs 244/359), prevalence of hypertension (63% vs 56%), hypercholesterolemia (63% vs 62%), diabetes mellitus (33% vs 38%), cigarette smoking (44% vs 41%) and family history of CAD (15% vs 12%) were similar between patients with subclavian artery stenosis and those without. The incidence of decreased ankle-brachial pressure index (ABI) was higher (37% vs 12%, p=0.001), and percentage ischemic myocardium as assessed by SPECT was greater (9.0±8.5% vs 5.6±6.6%, p=0.05) in patients with subclavian artery stenosis than in those without. Furthermore, significant correlations were observed between inter-arm pressure difference and percentage ischemic myocardium (r=0.13; p=0.01), and ABI (r=-0.26, p<0.0001). Among 386 patients, 283 underwent coronary angiography, and 63% of those who had inter-arm blood pressure difference had CAD. Furthermore, 83% of those CAD patients had multi-vessel CAD, which is regarded as a high-risk subset for subsequent cardiac events. Inter-arm pressure difference is often found in patients with suspected CAD, and is associated with significant CAD and peripheral artery disease. Thus, inter

  3. Correlations for Saturation Efficiency of Evaporative Cooling Pads

    Science.gov (United States)

    Jain, J. K.; Hindoliya, D. A.

    2014-01-01

    This paper presents some experimental investigations to obtain correlations for saturation efficiency of evaporative cooling pads. Two commonly used materials namely aspen and khus fibers along with new materials namely coconut fibers and palash fibers were tested in a laboratory using suitably fabricated test setup. Simple mathematical correlations have been developed for calculating saturation efficiency of evaporating cooling pads which can be used to predict their performance at any desired mass flow rate. Performances of four different pad materials were also compared using developed correlations. An attempt was made to test two new materials (i.e. fibers of palash wood and coconut) to check their suitability as wetted media for evaporative cooling pads. It was found that Palash wood fibers offered highest saturation efficiency compared to that of other existing materials such as aspen and khus fibers at different mass flow rate of air.

  4. Simulation of the saturation process of a radwaste storage cell

    International Nuclear Information System (INIS)

    Robbe, M.F.; Clouard, A.

    2001-01-01

    This paper presents a simulation of the saturation of the barrier and the plug of a storage cell by the surrounding host rock. Generally speaking, the unsaturated barrier and plug start saturating immediately in the vicinity of the quasi-saturated host rock. Then the saturation front propagates towards the canisters and the symmetry axis. Apart from the part in contact with the plug, the barrier is saturated at about 30 years. The part of the barrier near the plug is saturated around 80 years. If the top of the plug is saturated very soon, the part in the corner near the gallery and the symmetry axis is not completely saturated after 100 years. In the site, we observe a small desaturation during the first month, at the limit with the plug and the barrier, and especially in the corner limited by both FoCa clay pieces. This transient phenomenon may be assigned to the time difference between the immediate suction of water by the unsaturated materials and the delayed water flows coming from the saturated host rock to compensate the water suction. The purpose of this computation was at once to estimate the time necessary for the saturation of the clay layers surrounding the radwaste canisters and to evaluate the hydro-mechanical behaviour of the storage cell during the saturation process. Therefore a mechanical simulation was performed using the present hydraulic results to initiate the mechanical computation. (authors)

  5. Concurrent freezing and sublimation of a liquid-saturated porous slab

    International Nuclear Information System (INIS)

    Vaidyanathan, N.; Shamsundar, N.

    1991-01-01

    In this paper analytical models are formulated for describing heat and mass transport during concurrent freezing and sublimation of a one-dimensional liquid-saturated porous slab. The models are based on transient heat transfer in the frozen and wet regions, and quasi-steady heat and mass transfer in the dried region. The enthalpy method in conjunction with a fully implicit finite-difference scheme is employed to obtain the solution in the frozen and wet regions. A quasi-steady solution is used in the dried region. The governing equations are nondimensionalized and parametric studies are performed. The results indicate that the Luikov number, the ambient vapor pressure, and the heat transfer Biot number are important parameters. The results also confirm that the sublimation interface temperature may show significant variations, in contrast to earlier studies in which it was assumed constant

  6. Frost heave susceptibility of saturated soil under constant rate of freezing

    Science.gov (United States)

    Ryokai, K.; Iguro, M.; Yoneyama, K.

    Introduced are the results of experiments carried out to quantitatively obtain the frost heave pressure and displacement of soil subjected to artificial freezing or freezing around in-ground liquefied natural gas storage tanks. This experiment is conducted to evaluate the frost heave susceptibility of saturated soil under overconsolidation. In other words, this experiment was carried out to obtain the relation of the over-burden pressure and freezing rate to the frost heave ratio by observing the frost heave displacement and freezing time of specimens by freezing the specimens at a constant freezing rate under a constant overburden pressure, while letting water freely flow in and out of the system. Introduced are the procedures for frost heave test required to quantitatively obtain the frost heave displacement and pressure of soil. Furthermore, the relation between the frost heave susceptibility and physical properties of soil obtained by this test is reported.

  7. Agreement between arterial partial pressure of carbon dioxide and saturation of hemoglobin with oxygen values obtained by direct arterial blood measurements versus noninvasive methods in conscious healthy and ill foals.

    Science.gov (United States)

    Wong, David M; Alcott, Cody J; Wang, Chong; Bornkamp, Jennifer L; Young, Jessica L; Sponseller, Brett A

    2011-11-15

    To determine agreement between indirect measurements of end-tidal partial pressure of carbon dioxide (PetCO(2)) and saturation of hemoglobin with oxygen as measured by pulse oximetry (SpO(2)) with direct measurements of PaCO(2) and calculated saturation of hemoglobin with oxygen in arterial blood (SaO(2)) in conscious healthy and ill foals. Validation study. 10 healthy and 21 ill neonatal foals. Arterial blood gas analysis was performed on healthy and ill foals examined at a veterinary teaching hospital to determine direct measurements of PaCO(2) and PaO(2) along with SaO(2). Concurrently, PetCO(2) was measured with a capnograph inserted into a naris, and SpO(2) was measured with a reflectance probe placed at the base of the tail. Paired values were compared by use of Pearson correlation coefficients, and level of agreement was assessed with the Bland-Altman method. Mean ± SD difference between PaCO(2) and PetCO(2) was 0.1 ± 5.0 mm Hg. There was significant strong correlation (r = 0.779) and good agreement between PaCO(2) and PetCO(2). Mean ± SD difference between SaO(2) and SpO(2) was 2.5 ± 3.5%. There was significant moderate correlation (r = 0.499) and acceptable agreement between SaO(2) and SpO(2). Both PetCO(2) obtained by use of nasal capnography and SpO(2) obtained with a reflectance probe are clinically applicable and accurate indirect methods of estimating and monitoring PaCO(2) and SaO(2) in neonatal foals. Indirect methods should not replace periodic direct measurement of corresponding parameters.

  8. Evaluation of the impact of atmospheric pressure in different seasons on blood pressure in patients with arterial hypertension.

    Science.gov (United States)

    Kamiński, Marek; Cieślik-Guerra, Urszula I; Kotas, Rafał; Mazur, Piotr; Marańda, Witold; Piotrowicz, Maciej; Sakowicz, Bartosz; Napieralski, Andrzej; Trzos, Ewa; Uznańska-Loch, Barbara; Rechciński, Tomasz; Kurpesa, Małgorzata

    2016-01-01

    Atmospheric pressure is the most objective weather factor because regardless of if outdoors or indoors it affects all objects in the same way. The majority of previous studies have used the average daily values of atmospheric pressure in a bioclimatic analysis and have found no correlation with blood pressure changes. The main objective of our research was to assess the relationship between atmospheric pressure recorded with a frequency of 1 measurement per minute and the results of 24-h blood pressure monitoring in patients with treated hypertension in different seasons in the moderate climate of the City of Łódź (Poland). The study group consisted of 1662 patients, divided into 2 equal groups (due to a lower and higher average value of atmospheric pressure). Comparisons between blood pressure values in the 2 groups were performed using the Mann-Whitney U test. We observed a significant difference in blood pressure recorded during the lower and higher range of atmospheric pressure: on the days of the spring months systolic (p = 0.043) and diastolic (p = 0.005) blood pressure, and at nights of the winter months systolic blood pressure (p = 0.013). A significant inverse relationship between atmospheric pressure and blood pressure during the spring days and, only for systolic blood pressure, during winter nights was observed. Int J Occup Med Environ Health 2016;29(5):783-792. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  9. Hydraulic Properties of Porous Media Saturated with Nanoparticle-Stabilized Air-Water Foam

    Directory of Open Access Journals (Sweden)

    Xianglei Zheng

    2016-12-01

    Full Text Available The foam generated by the mixture of air and water has a much higher viscosity and lower mobility than those of pure water or gas that constitutes the air-water foam. The possibility of using the air-water foam as a flow barrier for the purpose of groundwater and soil remediation is explored in this paper. A nanoparticle-stabilized air-water foam was fabricated by vigorously stirring the nano-fluid in pressurized condition. The foam bubble size distribution was analyzed with a microscope. The viscosities of foams generated with the solutions with several nanoparticle concentrations were measured as a function of time. The breakthrough pressure of foam-saturated microfluidic chips and sand columns were obtained. The hydraulic conductivity of a foam-filled sand column was measured after foam breakthrough. The results show that: (1 bubble coalescence and the Ostwald ripening are believed to be the reason of bubble size distribution change; (2 the viscosity of nanoparticle-stabilized foam and the breakthrough pressures decreased with time once the foam was generated; (3 the hydraulic conductivity of the foam-filled sand column was almost two orders of magnitude lower than that of a water-saturated sand column even after the foam-breakthrough. Based on the results in this study, the nanoparticle-stabilized air-water foam could be injected into contaminated soils to generate vertical barriers for temporary hydraulic conductivity reduction.

  10. Pressure effects on single chain magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mito, M. E-mail: mitoh@elcs.kyutech.ac.jp; Shindo, N.; Tajiri, T.; Deguchi, H.; Takagi, S.; Miyasaka, H.; Yamashita, M.; Clerac, R.; Coulon, C

    2004-05-01

    Pressure effects on a single chain magnet [Mn{sub 2}(saltmen){sub 2}Ni(pao){sub 2}(py){sub 2}](ClO{sub 4}){sub 2} (saltmen{sup 2-}=N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminate), and pao{sup -}=pyridine-2-aldoximate) have been investigated through AC magnetic measurements under pressure (P). The slow relaxation of the magnetization depends on pressure. Both the blocking temperature (T{sub B}) and energy barrier ({delta}) increase by pressurization, and those enhancements saturate at around P=7 kbar.

  11. Evaluating the Influence of Pore Architecture and Initial Saturation on Wettability and Relative Permeability in Heterogeneous, Shallow-Shelf Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Alan P.; Bhattacharya, Saibal; Victorine, John; Stalder, Ken

    2007-09-30

    Thin (3-40 ft thick), heterogeneous, limestone and dolomite reservoirs, deposited in shallow-shelf environments, represent a significant fraction of the reservoirs in the U.S. midcontinent and worldwide. In Kansas, reservoirs of the Arbuckle, Mississippian, and Lansing-Kansas City formations account for over 73% of the 6.3 BBO cumulative oil produced over the last century. For these reservoirs basic petrophysical properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation to waterflood, resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale of measurement. Many of these reservoirs produce from structures of less than 30-60 ft, and being located in the capillary pressure transition zone, exhibit vertically variable initial saturations and relative permeability properties. Rather than being simpler to model because of their small size, these reservoirs challenge characterization and simulation methodology and illustrate issues that are less apparent in larger reservoirs where transition zone effects are minor and most of the reservoir is at saturations near S{sub wirr}. These issues are further augmented by the presence of variable moldic porosity and possible intermediate to mixed wettability and the influence of these on capillary pressure and relative permeability. Understanding how capillary-pressure properties change with rock lithology and, in turn, within transition zones, and how relative permeability and residual oil saturation to waterflood change through the transition zone is critical to successful reservoir management and as advanced waterflood and improved and enhanced recovery methods are planned and implemented. Major aspects of the proposed study involve a series of tasks to measure data to reveal the nature of how wettability and drainage and imbibition oil-water relative permeability change with pore architecture and initial water saturation. Focus is placed on

  12. 3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame

    Science.gov (United States)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Bellezza, Cinzia

    2018-06-01

    Seismic propagation in the upper part of the crust, where geothermal reservoirs are located, shows generally strong velocity dispersion and attenuation due to varying permeability and saturation conditions and is affected by the brittleness and/or ductility of the rocks, including zones of partial melting. From the elastic-plastic aspect, the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. We describe the related effects with a Burgers mechanical element for the shear modulus of the dry-rock frame. The Arrhenius equation combined to the octahedral stress criterion define the Burgers viscosity responsible of the brittle-ductile behaviour. The effects of permeability, partial saturation, varying porosity and mineral composition on the seismic properties is described by a generalization of the White mesoscopic-loss model to the case of a distribution of heterogeneities of those properties. White model involves the wave-induced fluid flow attenuation mechanism, by which seismic waves propagating through small-scale heterogeneities, induce pressure gradients between regions of dissimilar properties, where part of the energy of the fast P-wave is converted to slow P (Biot)-wave. We consider a range of variations of the radius and size of the patches and thin layers whose probability density function is defined by different distributions. The White models used here are that of spherical patches (for partial saturation) and thin layers (for permeability heterogeneities). The complex bulk modulus of the composite medium is obtained with the Voigt-Reuss-Hill average. Effective pressure effects are taken into account by using exponential functions. We then solve the 3D equation of motion in the space-time domain, by approximating the White complex bulk modulus with that of a set of Zener elements connected in series. The Burgers and generalized Zener models allows us to solve the equations with a direct grid

  13. Systematic instrumental errors between oxygen saturation analysers in fetal blood during deep hypoxemia.

    Science.gov (United States)

    Porath, M; Sinha, P; Dudenhausen, J W; Luttkus, A K

    2001-05-01

    During a study of artificially produced deep hypoxemia in fetal cord blood, systematic errors of three different oxygen saturation analysers were evaluated against a reference CO oximeter. The oxygen tensions (PO2) of 83 pre-heparinized fetal blood samples from umbilical veins were reduced by tonometry to 1.3 kPa (10 mm Hg) and 2.7 kPa (20 mm Hg). The oxygen saturation (SO2) was determined (n=1328) on a reference CO oximeter (ABL625, Radiometer Copenhagen) and on three tested instruments (two CO oximeters: Chiron865, Bayer Diagnostics; ABL700, Radiometer Copenhagen, and a portable blood gas analyser, i-STAT, Abbott). The CO oximeters measure the oxyhemoglobin and the reduced hemoglobin fractions by absorption spectrophotometry. The i-STAT system calculates the oxygen saturation from the measured pH, PO2, and PCO2. The measurements were performed in duplicate. Statistical evaluation focused on the differences between duplicate measurements and on systematic instrumental errors in oxygen saturation analysis compared to the reference CO oximeter. After tonometry, the median saturation dropped to 32.9% at a PO2=2.7 kPa (20 mm Hg), defined as saturation range 1, and to 10% SO2 at a PO2=1.3 kPa (10 mm Hg), defined as range 2. With decreasing SO2, all devices showed an increased difference between duplicate measurements. ABL625 and ABL700 showed the closest agreement between instruments (0.25% SO2 bias at saturation range 1 and -0.33% SO2 bias at saturation range 2). Chiron865 indicated higher saturation values than ABL 625 (3.07% SO2 bias at saturation range 1 and 2.28% SO2 bias at saturation range 2). Calculated saturation values (i-STAT) were more than 30% lower than the measured values of ABL625. The disagreement among CO oximeters was small but increasing under deep hypoxemia. Calculation found unacceptably low saturation.

  14. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  15. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriëtte; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michaël A.; Spronk, Peter E.

    2012-01-01

    Objective: The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design: Prospective observational controlled study. Setting: Nonacademic university-affiliated

  16. Changes of contact pressure and area in patellofemoral joint after different meniscectomies.

    Science.gov (United States)

    Bai, Bo; Shun, Hui; Yin, Zhi Xun; Liao, Zhuang-Wen; Chen, Ni

    2012-05-01

    We investigated the contact pressure and area of the patellofemoral joint both before and after different meniscectomies to provide a biomechanical basis for selecting meniscectomy and its clinical application for meniscus injuries. Six fresh cadaveric knees were used in the study. Using Staubli robots and an ultra-low-min-type pressure-sensitive tablet, changes in contact area and stress in the patellofemoral joint were measured at various flexion angles following different parts and degrees of meniscectomy. The patellofemoral contact area enlarged with the increase of knee flexion angle. From the values obtained from contact areas and average contact pressure of the patellofemoral joint, we found no significant difference between partial meniscectomy and intact knees, but a significant difference was found between total meniscectomy and intact knees. The contact area after lateral meniscectomy was statistically less than that of intact knees. The mean patellofemoral contact pressure after lateral meniscectomy was larger than in intact knees at each angle of flexion. No significant difference in contact area was observed between intact knees and medial meniscectomy. The average patellofemoral contact pressure after medial meniscectomy was larger than in intact knees from 0° ~ 30° of knee flexion, and no significant differences were found between intact knees and medial meniscectomy while knee bending from 60° to 90°. Different meniscectomies result in high contact pressure or disordered distribution of contact pressure, which may be the cause of postoperative patellofemoral degenerative arthrosis.

  17. Acute tamponade alters subendo- and subepicardial pressure-flow relations differently during vasodilation.

    Science.gov (United States)

    Kingma, J G; Martin, J; Rouleau, J R

    1994-07-01

    Instantaneous diastolic left coronary artery pressure-flow relations (PFR) shift during acute tamponade as pressure surrounding the heart increases. Coronary pressure at zero flow (Pf = 0) on the linear portion of the PFR is the weighted mean of the different myocardial waterfall pressures, the distribution of which varies across the left ventricular wall during diastole. However, instantaneous PFR measured in large epicardial coronary arteries cannot be used to estimate Pf = 0 in the different myocardial tissue layers. During coronary vasodilatation in a capacitance-free model, myocardial PFR differs from subendocardium to subepicardium. Therefore, we studied the effects of acute tamponade during maximal pharmacology induced coronary vasodilatation on myocardial PFR in in situ anesthetized dogs. Tamponade reduced cardiac output, aortic pressure, and coronary blood flow. Results demonstrate that different mechanisms influence distribution of myocardial blood flow during tamponade. Subepicardial vascular resistance is unchanged and the extrapolated Pf = 0 is increased, thereby shifting PFR to a higher intercept on the pressure axis. Subendocardial vascular resistance is increased while the extrapolated Pf = 0 remains unchanged. Results indicate that in the setting of acute tamponade with coronary vasodilatation different mechanisms regulate the distribution of myocardial blood flow: in the subepicardium only outflow pressure increases, whereas in the subendocardium only vascular resistance increases.

  18. Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

    International Nuclear Information System (INIS)

    Hong, Sung Soo; Ryoo, Won; Chung, Gui Yung; Chun, Myung-Suk

    2014-01-01

    In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1-11 atm, the flow rate in the feed-channel decreased about 8-13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference

  19. Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Soo; Ryoo, Won; Chung, Gui Yung [Hong-Ik University, Seoul (Korea, Republic of); Chun, Myung-Suk [Korea Institute of Science and Technology (KIST), Seoul (Korea, Republic of)

    2014-02-15

    In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1-11 atm, the flow rate in the feed-channel decreased about 8-13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference.

  20. Simultaneously Measured Interarm Blood Pressure Difference and Stroke: An Individual Participants Data Meta-Analysis.

    Science.gov (United States)

    Tomiyama, Hirofumi; Ohkuma, Toshiaki; Ninomiya, Toshiharu; Mastumoto, Chisa; Kario, Kazuomi; Hoshide, Satoshi; Kita, Yoshikuni; Inoguchi, Toyoshi; Maeda, Yasutaka; Kohara, Katsuhiko; Tabara, Yasuharu; Nakamura, Motoyuki; Ohkubo, Takayoshi; Watada, Hirotaka; Munakata, Masanori; Ohishi, Mitsuru; Ito, Norihisa; Nakamura, Michinari; Shoji, Tetsuo; Vlachopoulos, Charalambos; Yamashina, Akira

    2018-06-01

    We conducted individual participant data meta-analysis to examine the validity of interarm blood pressure difference in simultaneous measurement as a marker to identify subjects with ankle-brachial pressure index blood pressure difference >5 mm Hg as being associated with a significant odds ratio for the presence of ankle-brachial pressure index blood pressure difference >15 mm Hg was associated with a significant Cox stratified adjusted hazard ratio for subsequent stroke (hazard ratio, 2.42; 95% confidence interval, 1.27-4.60; P blood pressure differences, measured simultaneously in both arms, may be associated with vascular damage in the systemic arterial tree. These differences may be useful for identifying subjects with an ankle-brachial pressure index of blood pressure in both arms at the first visit. © 2018 American Heart Association, Inc.

  1. Extensive impact of saturated fatty acids on metabolic and cardiovascular profile in rats with diet-induced obesity: a canonical analysis.

    Science.gov (United States)

    Oliveira Junior, Silvio A; Padovani, Carlos R; Rodrigues, Sergio A; Silva, Nilza R; Martinez, Paula F; Campos, Dijon Hs; Okoshi, Marina P; Okoshi, Katashi; Dal-Pai, Maeli; Cicogna, Antonio C

    2013-04-15

    Although hypercaloric interventions are associated with nutritional, endocrine, metabolic, and cardiovascular disorders in obesity experiments, a rational distinction between the effects of excess adiposity and the individual roles of dietary macronutrients in relation to these disturbances has not previously been studied. This investigation analyzed the correlation between ingested macronutrients (including sucrose and saturated and unsaturated fatty acids) plus body adiposity and metabolic, hormonal, and cardiovascular effects in rats with diet-induced obesity. Normotensive Wistar-Kyoto rats were submitted to Control (CD; 3.2 Kcal/g) and Hypercaloric (HD; 4.6 Kcal/g) diets for 20 weeks followed by nutritional evaluation involving body weight and adiposity measurement. Metabolic and hormonal parameters included glycemia, insulin, insulin resistance, and leptin. Cardiovascular analysis included systolic blood pressure profile, echocardiography, morphometric study of myocardial morphology, and myosin heavy chain (MHC) protein expression. Canonical correlation analysis was used to evaluate the relationships between dietary macronutrients plus adiposity and metabolic, hormonal, and cardiovascular parameters. Although final group body weights did not differ, HD presented higher adiposity than CD. Diet induced hyperglycemia while insulin and leptin levels remained unchanged. In a cardiovascular context, systolic blood pressure increased with time only in HD. Additionally, in vivo echocardiography revealed cardiac hypertrophy and improved systolic performance in HD compared to CD; and while cardiomyocyte size was unchanged by diet, nuclear volume and collagen interstitial fraction both increased in HD. Also HD exhibited higher relative β-MHC content and β/α-MHC ratio than their Control counterparts. Importantly, body adiposity was weakly associated with cardiovascular effects, as saturated fatty acid intake was directly associated with most cardiac remodeling

  2. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  3. Instrumented Pressure Testing Chamber (IPTC) Characterization of Methane Gas Hydrate-Bearing Pressure Cores Collected from the Methane Production Test Site in the Eastern Nankai Trough, Offshore Japan

    Science.gov (United States)

    Waite, W. F.; Santamarina, J. C.; Dai, S.; Winters, W. J.; Yoneda, J.; Konno, Y.; Nagao, J.; Suzuki, K.; Fujii, T.; Mason, D. H.; Bergeron, E.

    2014-12-01

    Pressure cores obtained at the Daini-Atsumi Knoll in the eastern Nankai Trough, the site of the methane hydrate production test completed by the Methane Hydrate Resources in Japan (MH21) project in March 2013, were recovered from ~300 meters beneath the sea floor at close to in situ pressure. Cores were subsequently stored at ~20 MPa and ~5°C, which maintained hydrate in the cores within stability conditions. Pressure core physical properties were measured at 10 MPa and ~6°C, also within the methane hydrate stability field, using the IPTC and other Pressure Core Characterization Tools (PCCTs). Discrete IPTC measurements were carried out in strata ranging from silty sands to clayey silts within the turbidite sequences recovered in the cores. As expected, hydrate saturations were greatest in more permeable coarser-grained layers. Key results include: 1) Where hydrate saturation exceeded 40% in sandy sediments, the gas hydrate binds sediment grains within the matrix. The pressure core analyses yielded nearly in situ mechanical properties despite the absence of effective stress in the IPTC. 2) In adjacent fine-grained sediment (hydrate saturation < 15%), hydrate did not significantly bind the sediment. IPTC results in these locations were consistent with the zero effective-stress limit of comparable measurements made in PCCT devices that are designed to restore the specimen's in situ effective stress. In sand-rich intervals with high gas hydrate saturations, the measured compressional and shear wave velocities suggest that hydrate acts as a homogeneously-distributed, load-bearing member of the bulk sediment. The sands with high gas hydrate saturations were prone to fracturing (brittle failure) during insertion of the cone penetrometer and electrical conductivity probes. Authors would like to express their sincere appreciation to MH21 and the Ministry of Economy, Trade and Industry for permitting this work to be disclosed at the 2014 Fall AGU meeting.

  4. Pore Structure Model for Predicting Elastic Wavespeeds in Fluid-Saturated Sandstones

    Science.gov (United States)

    Zimmerman, R. W.; David, E. C.

    2011-12-01

    During hydrostatic compression, in the elastic regime, ultrasonic P and S wave velocities measured on rock cores generally increase with pressure, and reach asymptotic values at high pressures. The pressure dependence of seismic velocities is generally thought to be due to the closure of compliant cracks, in which case the high-pressure velocities must reflect only the influence of the non-closable, equant "pores". Assuming that pores can be represented by spheroids, we can relate the elastic properties to the pore structure using an effective medium theory. Moreover, the closure pressure of a thin crack-like pore is directly proportional to its aspect ratio. Hence, our first aim is to use the pressure dependence of seismic velocities to invert the aspect ratio distribution. We use a simple analytical algorithm developed by Zimmerman (Compressibility of Sandstones, 1991), which can be used for any effective medium theory. Previous works have used overly restrictive assumptions, such as assuming that the stiff pores are spherical, or that the interactions between pores can be neglected. Here, we assume that the rock contains an exponential distribution of crack aspect ratios, and one family of stiff pores having an aspect ratio lying somewhere between 0.01 and 1. We develop our model in two versions, using the Differential Scheme, and the Mori-Tanaka scheme. The inversion is done using data obtained in dry experiments, since pore fluids have a strong effect on velocities and tend to mask the effect of the pore geometry. This avoids complicated joint inversion of dry and wet data, such as done by Cheng and Toksoz (JGR, 1979). Our results show that for many sets of data on sandstones, we can fit very well the dry velocities. Our second aim is to predict the saturated velocities from our pore structure model, noting that at a given differential stress, the pore structure should be the same as for a dry test. Our results show that the Biot-Gassmann predictions always

  5. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriette; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michael A.; Spronk, Peter E.

    2012-01-01

    Objective:  The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design:  Prospective observational controlled study. Setting:  Nonacademic university-affiliated

  6. Difference in blood pressure measurements between arms: methodological and clinical implications.

    Science.gov (United States)

    Clark, Christopher E

    2015-01-01

    Differences in blood pressure measurements between arms are commonly encountered in clinical practice. If such differences are not excluded they can delay the diagnosis of hypertension and can lead to poorer control of blood pressure levels. Differences in blood pressure measurements between arms are associated cross sectionally with other signs of vascular disease such as peripheral arterial disease or cerebrovascular disease. Differences are also associated prospectively with increased cardiovascular mortality and morbidity and all cause mortality. Numbers of publications on inter-arm difference are rising year on year, indicating a growing interest in the phenomenon. The prevalence of an inter-arm difference varies widely between reports, and is correlated with the underlying cardiovascular risk of the population studied. Prevalence is also sensitive to the method of measurement used. This review discusses the prevalence of an inter-arm difference in different populations and addresses current best practice for the detection and the measurement of a difference. The evidence for clinical and for vascular associations of an inter-arm difference is presented in considering the emerging role of an inter-arm blood pressure difference as a novel risk factor for increased cardiovascular morbidity and mortality. Competing aetiological explanations for an inter-arm difference are explored, and gaps in our current understanding of this sign, along with areas in need of further research, are considered.

  7. Effects of the Strain Rate Sensitivity and Strain Hardening on the Saturated Impulse of Plates

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    Full Text Available Abstract This paper studies the stiffening effects of the material strain rate sensitivity and strain hardening on the saturated impulse of elastic, perfectly plastic plates. Finite element (FE code ABAQUS is employed to simulate the elastoplastic response of square plates under rectangular pressure pulse. Rigid-plastic analyses for saturated impulse, which consider strain rate sensitivity and strain hardening, are conducted. Satisfactory agreement between the finite element models (FEM and predictions of the rigid-plastic analysis is obtained, which verifies that the proposed rigid-plastic methods are effective to solve the problem including strain rate sensitivity and strain hardening. The quantitative results for the scale effect of the strain rate sensitivity are given. The results for the stiffening effects suggest that two general stiffening factors n 1 and n 2, which characterizes the strain rate sensitivity and strain hardening effect, respectively can be defined. The saturated displacement is inversely proportional to the stiffening factors (i.e. n 1 and n 2 and saturated impulse is inversely proportional to the square roots of the stiffening factors (i.e. n 1 and n 2. Formulae for displacement and saturated impulse are proposed based on the empirical analysis.

  8. Saturation and porosity measurements of different soil samples by gamma ray transmission

    International Nuclear Information System (INIS)

    Akbal, S.; Filiz Baytas, A.

    2000-01-01

    Gamma-ray transmission methods have been used accurately for the study of the properties of soil samples. In this study, the soil samples were collected from various regions of Turkey and a Nal (TI) detector measured the attenuation of strongly collimated monoenergetic gamma beam (from Cs-137) through soil samples. The water saturation and porosity were therefore calculated from the transmission measurements for each soil sample. (authors)

  9. Degradation of phospholipids under different types of irradiation and varying oxygen saturation

    Czech Academy of Sciences Publication Activity Database

    Vyšín, Luděk; Tomanová, K.; Pavelková, T.; Wagner, Richard; Davídková, Marie; Múčka, V.; Čuba, V.; Juha, Libor

    2017-01-01

    Roč. 56, č. 3 (2017), s. 241-247 ISSN 0301-634X R&D Projects: GA ČR GA13-28721S; GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : lipid peroxidation * DOPC * gamma rays * eectrons * protons * oxygen saturation Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 2.398, year: 2016

  10. Saturated vapor pressure over molten mixtures of GaCl{sub 3} and alkali metal chlorides; Davlenie nasyshchennykh parov rasplavlennykh smesej CaCl{sub 3} s khloridami shchelochnykh metallov

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Smolenskij, V V; Moskalenko, N I [UrO RAN, Inst. Vysokotemperaturnoj Ehlektrokhimii, Elaterinburg (Russian Federation)

    2004-07-01

    Volatilities of GaCl{sub 3} and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl{sub 3} in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl{sub 3}; their variation permits altering parameters of GaCl{sub 3} distillation from the salt melt in a wide range.

  11. Effect of high-pressure homogenization on different matrices of food supplements.

    Science.gov (United States)

    Martínez-Sánchez, Ascensión; Tarazona-Díaz, Martha Patricia; García-González, Antonio; Gómez, Perla A; Aguayo, Encarna

    2016-12-01

    There is a growing demand for food supplements containing high amounts of vitamins, phenolic compounds and mineral content that provide health benefits. Those functional compounds have different solubility properties, and the maintenance of their compounds and the guarantee of their homogenic properties need the application of novel technologies. The quality of different drinkable functional foods after thermal processing (0.1 MPa) or high-pressure homogenization under two different conditions (80 MPa, 33 ℃ and 120 MPa, 43 ℃) was studied. Physicochemical characteristics and sensory qualities were evaluated throughout the six months of accelerated storage at 40 ℃ and 75% relative humidity (RH). Aroma and color were better maintained in high-pressure homogenization-treated samples than the thermally treated ones, which contributed significantly to extending their shelf life. The small particle size obtained after high-pressure homogenization treatments caused differences in turbidity and viscosity with respect to heat-treated samples. The use of high-pressure homogenization, more specifically, 120 MPa, provided active ingredient homogeneity to ensure uniform content in functional food supplements. Although the effect of high-pressure homogenization can be affected by the food matrix, high-pressure homogenization can be implemented as an alternative to conventional heat treatments in a commercial setting within the functional food supplement or pharmaceutical industry. © The Author(s) 2016.

  12. On natural convection in enclosures filled with fluid-saturated porous media including viscous dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, V.A.F. [Departamento de Engenharia Mecanica, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2006-07-15

    Care needs to be taken when considering the viscous dissipation in the energy conservation formulation of the natural convection problem in fluid-saturated porous media. The unique energy formulation compatible with the First Law of Thermodynamics informs us that if the viscous dissipation term is taken into account, also the work of pressure forces term needs to be taken into account. In integral terms, the work of pressure forces must equal the energy dissipated by viscous effects, and the net energy generation in the overall domain must be zero. If only the (positive) viscous dissipation term is considered in the energy conservation equation, the domain behaves as a heat multiplier, with an heat output greater than the heat input. Only the energy formulation consistent with the First Law of Thermodynamics leads to the correct flow and temperature fields, as well as of the heat transfer parameters characterizing the involved porous device. Attention is given to the natural convection problem in a square enclosure filled with a fluid-saturated porous medium, using the Darcy Law to describe the fluid flow, but the main ideas and conclusions apply equally for any general natural or mixed convection heat transfer problem. It is also analyzed the validity of the Oberbeck-Boussinesq approximation when applied to natural convection problems in fluid-saturated porous media. (author)

  13. Pressure transient analysis in single and two-phase water by finite difference methods

    International Nuclear Information System (INIS)

    Berry, G.F.; Daley, J.G.

    1977-01-01

    An important consideration in the design of LMFBR steam generators is the possibility of leakage from a steam generator water tube. The ensuing sodium/water reaction will be largely controlled by the amount of water available at the leak site, thus analysis methods treating this event must have the capability of accurately modeling pressure transients through all states of water occurring in a steam generator, whether single or two-phase. The equation systems of the present model consist of the conservation equations together with an equation of state for one-dimensional homogeneous flow. These equations are then solved using finite difference techniques with phase considerations and non-equilibrium effects being treated through the equation of state. The basis for water property computation is Keenan's 'fundamental equation of state' which is applicable to single-phase water at pressures less than 1000 bars and temperatures less than 1300 0 C. This provides formulations allowing computation of any water property to any desired precision. Two-phase properties are constructed from values on the saturation line. The use of formulations permits the direct calculation of any thermodynamic property (or property derivative) to great precision while requiring very little computer storage, but does involve considerable computation time. For this reason an optional calculation scheme based on the method of 'transfinite interpolation' is included to give rapid computation in selected regions with decreased precision. The conservation equations were solved using the second order Lax-Wendroff scheme which includes wall friction, allows the formation of shocks and locally supersonic flow. Computational boundary conditions were found from a method-of-characteristics solution at the reservoir and receiver ends. The local characteristics were used to interpolate data from inside the pipe to the boundary

  14. Inter-Arm Difference in Brachial Blood Pressure in the General Population of Koreans.

    Science.gov (United States)

    Song, Bo Mi; Kim, Hyeon Chang; Shim, Jee-Seon; Lee, Myung Ha; Choi, Dong Phil

    2016-05-01

    We investigated the inter-arm difference in blood pressure of the general Korean population to identify associated factors. A total of 806 participants aged 30 to 64 years without history of major cardiovascular disease were analyzed in this cross-sectional study. They participated in the Cardiovascular and Metabolic Disease Etiology Research Center cohort study that began in 2013. Brachial blood pressure was measured simultaneously for both arms using an automated oscillometric device equipped with two cuffs in seated position. After five minutes of rest, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured three times. The average of the three measurements was used for analysis. Multivariate logistic regression models were used to identify factors associated with inter-arm differences in blood pressure. The mean inter-arm difference was 3.3 mmHg for SBP and 2.0 mmHg for DBP. Large inter-arm differences (≥10 mmHg) in SBP and in DBP were found in 3.7% and 0.9% of subjects, respectively. A large inter-arm difference in SBP was associated with mean SBP (p=0.002) and C-reactive protein (p=0.014) while a large inter-arm different in DBP was only associated with body mass index (p=0.015). Sex, age, and anti-hypertensive medication use were not associated with differences in inter-arm blood pressure. Large inter-arm difference in blood pressure is only present in a small portion of healthy Korean adults. Our findings suggest that high SBP, chronic inflammation, and obesity may be associated with larger difference in inter-arm blood pressure.

  15. Improved dq-Axes Model of PMSM Considering Airgap Flux Harmonics and Saturation

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Antaloae, Ciprian; Mijatovic, Nenad

    2016-01-01

    In this work, the classical linear model of a permanent magnet synchronous motor (PMSM) is modified by adding d and q-axes harmonic inductances so that the modified model can consider non-linearities present in an interior permanent magnet (IPM) motor. Further, a method has been presented to assess...... the effect of saturation and cross-saturation on constant torque curves of PMSM. Two IPM motors with two different rotor topologies and different specifications are designed to evaluate the effect of saturation on synchronous and harmonic inductances, and on operating points of the machines...

  16. Saturation of superstorms and finite compressibility of the magnetosphere: Results of the magnetogram inversion technique and global PPMLR-MHD model

    Science.gov (United States)

    Mishin, V. V.; Mishin, V. M.; Karavaev, Yu.; Han, J. P.; Wang, C.

    2016-07-01

    We report on novel features of the saturation process of the polar cap magnetic flux and Poynting flux into the magnetosphere from the solar wind during three superstorms. In addition to the well-known effect of the interplanetary electric (Esw) and southward magnetic (interplanetary magnetic field (IMF) Bz) fields, we found that the saturation depends also on the solar wind ram pressure Pd. By means of the magnetogram inversion technique and a global MHD numerical model Piecewise Parabolic Method with a Lagrangian Remap, we explore the dependence of the magnetopause standoff distance on ram pressure and the southward IMF. Unlike earlier studies, in the considered superstorms both Pd and Bz achieve extreme values. As a result, we show that the compression rate of the dayside magnetosphere decreases with increasing Pd and the southward Bz, approaching very small values for extreme Pd ≥ 15 nPa and Bz ≤ -40 nT. This dependence suggests that finite compressibility of the magnetosphere controls saturation of superstorms.

  17. Seismic response analysis of the deep saturated soil deposits in Shanghai

    Science.gov (United States)

    Huang, Yu; Ye, Weimin; Chen, Zhuchang

    2009-01-01

    The quaternary deposits in Shanghai are horizontal soil layers of thickness up to about 280 m in the urban area with an annual groundwater table between 0.5 and 0.7 m from the surface. The characteristics of deep saturated deposits may have important influences upon seismic response of the ground in Shanghai. Based on the Biot theory for porous media, the water-saturated soil deposits are modeled as a two-phase porous system consisting of solid and fluid phases, in this paper. A nonlinear constitutive model for predicting the seismic response of the ground is developed to describe the dynamic characters of the deep-saturated soil deposits in Shanghai. Subsequently, the seismic response of a typical site with 280 m deep soil layers, which is subjected to four base excitations (El Centro, Taft, Sunan, and Tangshan earthquakes), is analyzed in terms of an effective stress-based finite element method with the proposed constitutive model. Special emphasis is given to the computed results of accelerations, excess pore-water pressures, and settlements during the seismic excitations. It has been found that the analysis can capture fundamental aspects of the ground response and produce preliminary results for seismic assessment.

  18. Mobility Effect on Poroelastic Seismic Signatures in Partially Saturated Rocks With Applications in Time-Lapse Monitoring of a Heavy Oil Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang

    2017-11-01

    Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.

  19. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  20. Generational Differences in Resistance to Peer Pressure among Mexican-Origin Adolescents.

    Science.gov (United States)

    Umana-Taylor, Adriana J.; Bamaca-Gomez, Mayra Y.

    2003-01-01

    Examined whether Mexican origin adolescents who varied by generational status would differ in their resistance to peer pressure. After controlling for gender, resistance to peer pressure varied significantly by generational status. Adolescents with no familial births in the United States were significantly more resistant to peer pressure than…

  1. Differences Between Right and Left Arm Blood Pressures in the Elderly

    OpenAIRE

    Hashimoto, Fred; Hunt, William C.; Hardy, Linda

    1984-01-01

    Recommendations vary on whether blood pressures should be measured in the right or in the left arm because no frequency distributions for a pressure difference between the arms exist. We took a total of 12 blood pressure determinations in both arms of 174 elderly persons and analyzed the data by a least-squares components of variance method. The mean difference between the arms (right minus left) was 0.93 mm of mercury for systole and 0.70 mm of mercury for diastole. For systole the proportio...

  2. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    Science.gov (United States)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  3. The influence of different auto-ignition modes on the behavior of pressure waves

    International Nuclear Information System (INIS)

    Xu, Han; Yao, Anren; Yao, Chunde

    2015-01-01

    Highlights: • Modes of pressure oscillations in knocking, HCCI and super knock are recognized. • Three representative auto-ignition modes in engines are proposed. • A new method of “Energy Injected” is brought into understanding pressure wave. • Simulation results revealed the decisive factors for these three auto-ignition modes. • Different modes lead to different pressure wave behaviors damaging engines. - Abstract: For internal combustion engines, the knock of Homogeneous Charge Compression Ignition engines, the conventional knock of gasoline engines and the super knock are all caused by the auto-ignition of unburned mixture which leads to the oscillation burning, but their Maximal Pressure Oscillation Amplitude (MPOA) and Maximum Pressure Rising Rate (MPRR) are totally different. In order to explore the reason, we propose three typical auto-ignition modes and then bring up the method of “Energy Injected” (EI) which is based on the experiment measured heat release rate. Through changing the heat source term in the energy equation for different auto-ignition modes, we conducted a series of numerical simulations for these three modes. After that, the following pressure oscillations can be compared and analyzed. The numerical simulation results show that different combustion pressure waves with different oscillation characteristics come from different auto-ignition modes, thus the macroscopic MPRR and MPOA are totally different. Furthermore, the method of “EI” based on the experiment measured heat release rate can accurately and rapidly help to research the formation and propagation of pressure waves in the engine combustion chamber.

  4. Interarm blood pressure difference in a post-stroke population.

    Science.gov (United States)

    Gaynor, Eva; Brewer, Linda; Mellon, Lisa; Hall, Patricia; Horgan, Frances; Shelley, Emer; Dolan, Eamonn; Hickey, Anne; Bennett, Kathleen; Williams, David J

    2017-09-01

    An increased interarm systolic blood pressure (SBP) difference of ≥10 mm Hg is associated with increased cardiovascular risk and a difference of ≥15 mm Hg with increased cerebrovascular risk. The stroke population presents a high-risk group for future cardiovascular and cerebrovascular events and therefore estimation of interarm SBP difference as a predictive tool may assist with further secondary stroke prevention. The aim of the study was to determine the prevalence of interarm SBP and diastolic blood pressure difference in a post-stroke population. A comprehensive assessment of secondary risk factors along with blood pressure measurements were taken 6-months' post-ischemic stroke from the Action on Secondary Prevention Interventions and Rehabilitation in Stroke cohort. Descriptive and logistic regression analyses were performed. Odds ratios and 95% confidence intervals are presented. Two hundred thirty-eight (M: F,139:99; mean age, 68.4 years) of 256 patients followed up at 6 months post-stroke had suitable blood pressure readings from both arms. Ninety-six patients (40.3%) had an interarm SBP difference of ≥10 mm Hg and 49 (20.6%) had a difference of ≥15 mm Hg. A history of hypertension, diabetes, smoking, and obesity was not significantly associated with an increased risk of interarm SBP difference. After multivariate logistic analysis, a history of alcohol excess was associated with an increased IASBP ≥15 mm Hg (odds ratio 2.32, 95% confidence interval 1.03-5.22). We have demonstrated that interarm SBP difference is commonly seen in a post stroke population. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  5. Saturation and beaming in astrophysical masers. II. The fully saturated limit

    International Nuclear Information System (INIS)

    Alcock, C.; Ross, R.R.; College of the Holy Cross, Worcester, MA)

    1985-01-01

    Radiative transfer in fully saturated maser clouds has been investigated using the four-stream model equations of Alcock and Ross (1985). It is shown that a modest elongation of the maser cloud produces a substantial asymmetry in the maser output. The ratio of output fluxes in different directions is a strong function of the ratio of the corresponding chord lengths across the cloud. Arguments are presented that the asymmetries reported here for the four-stream models closely mimic the asymmetries that should be expected in a real master cloud. 10 references

  6. Nonlinear saturation of the Rayleigh Taylor instability

    International Nuclear Information System (INIS)

    Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.

    1997-01-01

    The problem of the nonlinear saturation of the 2 dimensional Rayleigh Taylor instability is re-examined to put various earlier results in a proper perspective. The existence of a variety of final states can be attributed to the differences in the choice of boundary conditions and initial conditions in earlier numerical modeling studies. Our own numerical simulations indicate that the RT instability saturates by the self consistent generation of shear flow even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. Such final states can be achieved for suitable values of the Prandtl number. (author)

  7. Effect of oxygen partial pressure on the density of antiphase boundaries in Fe3O4 thin films on Si(100)

    Science.gov (United States)

    Singh, Suraj Kumar; Husain, Sajid; Kumar, Ankit; Chaudhary, Sujeet

    2018-02-01

    Polycrystalline Fe3O4 thin films were grown on Si(100) substrate by reactive DC sputtering at different oxygen partial pressures PO2 for controlling the growth associated density of antiphase boundaries (APBs). The micro-Raman analyses were performed to study the structural and electronic properties in these films. The growth linked changes in the APBs density are probed by electron-phonon coupling strength (λ) and isothermal magnetization measurements. The estimated values of λ are found to vary from 0.39 to 0.56 with the increase in PO2 from 2.2 × 10-5 to 3.0 × 10-5 Torr, respectively. The saturation magnetization (saturation field) values are found to increase (decrease) from 394 (5.9) to 439 (3.0) emu/cm3 (kOe) with the increase in PO2 . The sharp Verwey transition (∼120 K), low saturation field, high saturation magnetization and low value of λ (comparable to the bulk value ∼0.51) clearly affirm the negligible amount of APBs in the high oxygen partial pressure deposited thin films.

  8. [Study of blood oxygen saturation, heart rate changes and plateau reaction of the Antarctic Kunlun station investigation team in different plateau environments].

    Science.gov (United States)

    Zhao, Shun-yun; Wu, Xin-min; Guo, Ya-min; Zhang, Shu-shun; An, Yan-ming; Li, Bing; Wang, Hao

    2013-06-11

    To explore the blood oxygen saturation and heart rate changes of the Antarctic explorers. During August 2010 to April 2011, the changes in blood oxygen saturation, heart rate and plateau reaction of 16 Antarctic expedition team in different plateau environments (Tibetan plateau versus Antarctic plateau) were monitored with the noninvasive pulse oximeter MD300-C. The extent of acute mountain sickness was determined according to the Lake Louise Consensus acute mountain reaction symptom scores and judgment method. The changes of blood oxygen saturation, heart rate at different altitudes of 110, 3650, 4300 m (96.8% ± 1.2%,89.1% ± 1.2%, 86.1% ± 2.0%, (75.0 ± 5.4) times/min, (104.0 ± 4.3) times/min, (113.0 ± 5.2) times/min,F = 214.155, 240.088,both P rate at different altitudes of 2000, 2500, 3000, 3500 and 4087 m(91.9% ± 1.3%,90.5% ± 1.3%,87.6% ± 1.4%,85.0% ± 1.8%,81.5% ± 2.2%, (85.9 ± 3.2) times/min, (90.6 ± 2.8) times/min, (97.8 ± 4.1) times/min, (102.0 ± 3.4) times/min, (106.3 ± 3.9) times/min, F = 105.418, 90.174, both P rate were both correlated with the risk of altitude sickness (r = -0.446 and 0.565, both P rate of the Antarctic explorers. And with the increases of altitude, the risk of altitude sickness gradually increases.

  9. The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media

    Science.gov (United States)

    Tang, Mingming; Lu, Shuangfang; Zhan, Hongbin; Wenqjie, Guo; Ma, Huifang

    2018-03-01

    Dynamic capillary pressure (DCP) effects, which is vital for predicting multiphase flow behavior in porous media, refers to the injection rate dependence capillary pressure observed during non-equilibrium displacement experiments. However, a clear picture of the effects of microscale fractures on DCP remains elusive. This study quantified the effects of microscale fractures on DCP and simulated pore-scale force and saturation change in fractured porous media using the multiphase lattice Boltzmann method (LBM). Eighteen simulation cases were carried out to calculate DCP as a function of wetting phase saturation. The effects of viscosity ratio and fracture orientation, aperture and length on DCP and DCP coefficient τ were investigated, where τ refers to the ratio of the difference of DCP and static capillary pressure (SCP) over the rate of wetting-phase saturation change versus time. Significant differences in τ values were observed between unfractured and fractured porous media. The τ values of fractured porous media were 1.1  × 104 Pa ms to 5.68 × 105 Pa ms, which were one or two orders of magnitude lower than those of unfractured porous media with a value of 4 × 106 Pa. ms. A horizontal fracture had greater effects on DCP and τ than a vertical fracture, given the same fracture aperture and length. This study suggested that a microscale fracture might result in large magnitude changes in DCP for two-phase flow.

  10. An ex vivo porcine skin model to evaluate pressure-reducing devices of different mechanical properties used for pressure ulcer prevention.

    Science.gov (United States)

    Yeung, Ching-Yan C; Holmes, David F; Thomason, Helen A; Stephenson, Christian; Derby, Brian; Hardman, Matthew J

    2016-11-01

    Pressure ulcers are complex wounds caused by pressure- and shear-induced trauma to skin and underlying tissues. Pressure-reducing devices, such as dressings, have been shown to successfully reduce pressure ulcer incidence, when used in adjunct to pressure ulcer preventative care. While pressure-reducing devices are available in a range of materials, with differing mechanical properties, understanding of how a material's mechanical properties will influence clinical efficacy remains limited. The aim of this study was to establish a standardized ex vivo model to allow comparison of the cell protection potential of two gel-like pressure-reducing devices with differing mechanical properties (elastic moduli of 77 vs. 35 kPa). The devices also displayed differing energy dissipation under compressive loading, and resisted strain differently under constant load in compressive creep tests. To evaluate biological efficacy we employed a new ex vivo porcine skin model, with a confirmed elastic moduli closely matching that of human skin (113 vs. 119 kPa, respectively). Static loads up to 20 kPa were applied to porcine skin ex vivo with subsequent evaluation of pressure-induced cell death and cytokine release. Pressure application alone increased the percentage of epidermal apoptotic cells from less than 2% to over 40%, and increased cellular secretion of the pro-inflammatory cytokine TNF-alpha. Co-application of a pressure-reducing device significantly reduced both cellular apoptosis and cytokine production, protecting against cellular damage. These data reveal new insight into the relationship between mechanical properties of pressure-reducing devices and their biological effects. After appropriate validation of these results in clinical pressure ulcer prevention with all tissue layers present between the bony prominence and external surface, this ex vivo porcine skin model could be widely employed to optimize design and evaluation of devices aimed at reducing pressure

  11. Pressurized subsampling system for pressured gas-hydrate-bearing sediment: Microscale imaging using X-ray computed tomography

    International Nuclear Information System (INIS)

    Jin, Yusuke; Konno, Yoshihiro; Nagao, Jiro

    2014-01-01

    A pressurized subsampling system was developed for pressured gas hydrate (GH)-bearing sediments, which have been stored under pressure. The system subsamples small amounts of GH sediments from cores (approximately 50 mm in diameter and 300 mm in height) without pressure release to atmospheric conditions. The maximum size of the subsamples is 12.5 mm in diameter and 20 mm in height. Moreover, our system transfers the subsample into a pressure vessel, and seals the pressure vessel by screwing in a plug under hydraulic pressure conditions. In this study, we demonstrated pressurized subsampling from artificial xenon-hydrate sediments and nondestructive microscale imaging of the subsample, using a microfocus X-ray computed tomography (CT) system. In addition, we estimated porosity and hydrate saturation from two-dimensional X-ray CT images of the subsamples

  12. Prediction technique for minimum-heat-flux (MHF)- point condition of saturated pool boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1987-01-01

    The temperature-controlled hypothesis for the minimum-heat-flux (MHF)-point condition, in which the MHF-point temperature is regarded as the controlling factor and is expected to be independent of surface configuration and dimensions, is inductively investigated for saturated pool-boiling. In this paper such features of the MHF-point condition are experimentally proved first. Secondly, a correlation of the MHF-point temperature is developed for the effect of system pressure. Finally, a simple technique based on this correlation is presented to estimate the effects of surface configuration, dimensions and system pressure on the minimum heat flux. (author)

  13. SATURATED ZONE IN-SITU TESTING

    Energy Technology Data Exchange (ETDEWEB)

    P.W. REIMUS

    2004-11-08

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass

  14. SATURATED ZONE IN-SITU TESTING

    International Nuclear Information System (INIS)

    REIMUS, P.W.

    2004-01-01

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid

  15. Automatic NAA. Saturation activities

    International Nuclear Information System (INIS)

    Westphal, G.P.; Grass, F.; Kuhnert, M.

    2008-01-01

    A system for Automatic NAA is based on a list of specific saturation activities determined for one irradiation position at a given neutron flux and a single detector geometry. Originally compiled from measurements of standard reference materials, the list may be extended also by the calculation of saturation activities from k 0 and Q 0 factors, and f and α values of the irradiation position. A systematic improvement of the SRM approach is currently being performed by pseudo-cyclic activation analysis, to reduce counting errors. From these measurements, the list of saturation activities is recalculated in an automatic procedure. (author)

  16. Pressure field study of the Tevatron cold compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; Fermilab

    2003-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  17. Pressure Field Study of the Tevatron Cold Compressors

    International Nuclear Information System (INIS)

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.

    2004-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40,000 and 95,000 rpm, with a speed of 80,000 rpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper

  18. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation.

    Science.gov (United States)

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2011-07-01

    Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC). Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes

    International Nuclear Information System (INIS)

    Ikegawa, Tadashi; Nishihara, Katsunobu

    2003-01-01

    A weakly nonlinear theory has been developed for the classical Rayleigh-Taylor instability with a finite bandwidth taken into account self-consistently. The theory includes up to third order nonlinearity, which results in the saturation of linear growth and determines subsequent weakly nonlinear growth. Analytical results are shown to agree fairly well with two-dimensional hydrodynamic simulations. There are generally many local peaks of a perturbation with a finite bandwidth due to the interference of modes. Since a local amplitude is determined from phases among the modes as well as the bandwidth, we have investigated an onset of the linear growth saturation and the subsequent weakly nonlinear growth for different bandwidths and phases. It is shown that the saturation of the linear growth occurs locally, i.e., each of the local maximum amplitudes (LMAs) grows exponentially until it reaches almost the same saturation amplitude. In the random phase case, the root mean square amplitude thus saturates with almost the same amplitude as the LMA, after most of the LMAs have saturated. The saturation amplitude of the LMA is found to be independent of the bandwidth and depends on the Atwood number. We derive a formula of the saturation amplitude of modes based on the results obtained, and discuss its relation with Haan's formula [Phys. Rev. A 39, 5812 (1989)]. The LMAs grow linearly in time after the saturation and their speeds are approximated by the product of the linear growth rate and the saturation amplitude. We investigate the Atwood number dependence of both the saturation amplitude and the weakly nonlinear growth

  20. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  1. Extreme pressure differences at 0900 NZST and winds across New Zealand

    Science.gov (United States)

    Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita

    2005-07-01

    Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are

  2. Nitrous oxide: Saturation properties and the phase diagram

    International Nuclear Information System (INIS)

    Ferreira, A.G.M.; Lobo, L.Q.

    2009-01-01

    The experimental values of the coordinates of the triple point and of the critical point of nitrous oxide registered in the literature were assessed and those judged as most reliable have been selected. Empirical equations have been found for the vapour pressure, sublimation and fusion curves. The virial coefficients and saturation properties as functions of temperature along the equilibrium curves are described by reduced equations. They were used in arriving at the molar enthalpies at the triple point and the normal boiling temperature. Equations for the sublimation and fusion curves resulting from the exactly integrated Clapeyron equation compare favourably with the results from the empirical treatment and the experimental data.

  3. Saturated properties prediction in critical region by a quartic equation of state

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2011-08-01

    Full Text Available A diverse substance library containing extensive PVT data for 77 pure components was used to critically evaluate the performance of a quartic equation of state and other four famous cubic equations of state in critical region. The quartic EOS studied in this work was found to significantly superior to the others in both vapor pressure prediction and saturated volume prediction in vicinity of critical point.

  4. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  5. Does the position or contact pressure of the stethoscope make any difference to clinical blood pressure measurements: an observational study.

    Science.gov (United States)

    Pan, Fan; Zheng, Dingchang; He, Peiyu; Murray, Alan

    2014-12-01

    This study aimed to investigate the effect of stethoscope position and contact pressure on auscultatory blood pressure (BP) measurement. Thirty healthy subjects were studied. Two identical stethoscopes (one under the cuff, the other outside the cuff) were used to simultaneously and digitally record 2 channels of Korotkoff sounds during linear cuff pressure deflation. For each subject, 3 measurements with different contact pressures (0, 50, and 100 mm Hg) on the stethoscope outside the cuff were each recorded at 3 repeat sessions. The Korotkoff sounds were replayed twice on separate days to each of 2 experienced listeners to determine systolic and diastolic BPs (SBP and DBP). Variance analysis was performed to study the measurement repeatability and the effect of stethoscope position and contact pressure on BPs. There was no significant BP difference between the 3 repeat sessions, between the 2 determinations from each listener, between the 2 listeners and between the 3 stethoscope contact pressures (all P > 0.06). There was no significant SBP difference between the 2 stethoscope positions at the 2 lower stethoscope pressures (P = 0.23 and 0.45), but there was a small (0.4 mm Hg, clinically unimportant) significant difference (P = 0.005) at the highest stethoscope pressure. The key result was that, DBP from the stethoscope under the cuff was significantly lower than that from outside the cuff by 2.8 mm Hg (P stethoscope outside the cuff, tends to give a higher DBP than the true intra-arterial pressure, this study could suggest that the stethoscope position under the cuff, and closer to the arterial occlusion, might yield measurements closer to the actual invasive DBP.

  6. Simultaneous compared with sequential blood pressure measurement results in smaller inter-arm blood pressure differences

    NARCIS (Netherlands)

    van der Hoeven, Niels V.; Lodestijn, Sophie; Nanninga, Stephanie; van Montfrans, Gert A.; van den Born, Bert-Jan H.

    2013-01-01

    There are currently few recommendations on how to assess inter-arm blood pressure (BP) differences. The authors compared simultaneous with sequential measurement on mean BP, inter-arm BP differences, and within-visit reproducibility in 240 patients stratified according to age ( <50 or ≥60 years) and

  7. Fault tolerant control of systems with saturations

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2013-01-01

    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec......This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture...... in connection with faulty systems including input saturation gives an additional YJBK transfer function related to the input saturation. In the fault free case, this additional YJBK transfer function can be applied directly for optimizing the feedback loop around the input saturation. In the faulty case......, the design problem is a mixed design problem involved both parametric faults and input saturation....

  8. Gender Differences in Behavioral and Neural Responses to Unfairness Under Social Pressure.

    Science.gov (United States)

    Zheng, Li; Ning, Reipeng; Li, Lin; Wei, Chunli; Cheng, Xuemei; Zhou, Chu; Guo, Xiuyan

    2017-10-18

    Numerous studies have revealed the key role of social pressure on individuals' decision-making processes. However, the impact of social pressure on unfairness-related decision-making processes remains unclear. In the present study, we investigated how social pressure modulated men's and women's responses in an ultimatum game. Twenty women and eighteen men played the ultimatum game as responders in the scanner, where fair and unfair offers were tendered by proposers acting alone (low pressure) or by proposers endorsed by three supporters (high pressure). Results showed that men rejected more, whereas women accepted more unfair offers in the high versus low pressure context. Neurally, pregenual anterior cingulate cortex activation in women positively predicted their acceptance rate difference between contexts. In men, stronger right anterior insula activation and increased connectivity between right anterior insula and dorsal anterior cingulate cortex were observed when they receiving unfair offers in the high than low pressure context. Furthermore, more bilateral anterior insula and left dorsolateral prefrontal cortex activations were found when men rejected (relative to accepted) unfair offers in the high than low pressure context. These findings highlighted gender differences in the modulation of behavioral and neural responses to unfairness by social pressure.

  9. Inter-arm blood pressure difference in type 2 diabetes: a barrier to effective management?

    Science.gov (United States)

    Clark, Christopher E; Greaves, Colin J; Evans, Philip H; Dickens, Andy; Campbell, John L

    2009-06-01

    Previous studies have identified a substantial prevalence of a blood pressure difference between arms in various populations, but not patients with type 2 diabetes. Recognition of such a difference would be important as a potential cause of underestimation of blood pressure. To measure prevalence of an inter-arm blood pressure difference in patients with type 2 diabetes, and to estimate how frequently blood pressure measurements could be erroneously underestimated if an inter-arm difference is unrecognised. Cross-sectional study. Five surgeries covered by three general practices, Devon, England. Patients with type 2 diabetes underwent bilateral simultaneous blood pressure measurements using a validated protocol. Mean blood pressures were calculated for each arm to derive mean systolic and diastolic differences, and to estimate point prevalence of predefined magnitudes of difference. A total of 101 participants were recruited. Mean age was 66 years (standard deviation [SD] = 13.9 years); 59% were male, and mean blood pressure was 138/79 mmHg (SD = 15/10 mmHg). Ten participants (10%; 95% confidence interval [CI] = 4 to 16) had a systolic inter-arm difference > or =10 mmHg; 29 (29%; 95% CI = 20 to 38) had a diastolic difference >/=5 mmHg; and three (3%; 95% CI = 0 to 6) a diastolic difference > or =10 mmHg. No confounding variable was observed to account for the magnitude of an inter-arm difference. A systolic inter-arm difference > or =10 mmHg was observed in 10% of patients with diabetes. Failure to recognise this would misclassify half of these as normotensive rather than hypertensive using the lower-reading arm. New patients with type 2 diabetes should be screened for an inter-arm blood pressure difference.

  10. Heat transfer and pressure drop during hydrocarbon refrigerant condensation inside a brazed plate heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Giovanni A. [University of Padova, Department of Management and Engineering, Str.lla S.Nicola 3, I-36100 Vicenza (Italy)

    2010-08-15

    This paper presents the heat transfer coefficients and pressure drop measured during HC-600a, HC-290 and HC-1270 saturated vapour condensation inside a brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature (pressure) and fluid properties are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature (pressure) and great sensitivity to refrigerant mass flux and fluid properties. A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 15-18 kg m{sup -2} s{sup -1}. In the forced convection condensation region the heat transfer coefficients show a 35-40% enhancement for a 60% increase of the refrigerant mass flux. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. HC-1270 shows heat transfer coefficients 5% higher than HC-600a and 10-15% higher than HC-290, together with frictional pressure drop 20-25% lower than HC-290 and 50-66% lower than HC-600a. (author)

  11. Changes in entrapped gas content and hydraulic conductivity with pressure.

    Science.gov (United States)

    Marinas, Maricris; Roy, James W; Smith, James E

    2013-01-01

    Water table fluctuations continuously introduce entrapped air bubbles into the otherwise saturated capillary fringe and groundwater zone, which reduces the effective (quasi-saturated) hydraulic conductivity, K(quasi), thus impacting groundwater flow, aquifer recharge and solute and contaminant transport. These entrapped gases will be susceptible to compression or expansion with changes in water pressure, as would be expected with water table (and barometric pressure) fluctuations. Here we undertake laboratory experiments using sand-packed columns to quantify the effect of water table changes of up to 250 cm on the entrapped gas content and the quasi-saturated hydraulic conductivity, and discuss our ability to account for these mechanisms in ground water models. Initial entrapped air contents ranged between 0.080 and 0.158, with a corresponding K(quasi) ranging between 2 and 6 times lower compared to the K(s) value. The application of 250 cm of water pressure caused an 18% to 26% reduction in the entrapped air content, resulting in an increase in K(quasi) by 1.16 to 1.57 times compared to its initial (0 cm water pressure) value. The change in entrapped air content measured at pressure step intervals of 50 cm, was essentially linear, and could be modeled according to the ideal gas law. Meanwhile, the changes in K(quasi) with compression-expansion of the bubbles because of pressure changes could be adequately captured with several current hydraulic conductivity models. © Ground Water 2012 and © Her Majesty the Queen in Right of Canada 2012. Ground Water © 2012, National Ground Water Association.

  12. Relating saturation capacity to charge density in strong cation exchangers.

    Science.gov (United States)

    Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo

    2017-07-21

    In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Numerical Study of Frequency-dependent Seismoelectric Coupling in Partially-saturated Porous Media

    Directory of Open Access Journals (Sweden)

    Djuraev Ulugbek

    2017-01-01

    Full Text Available The seismoelectric phenomenon associated with propagation of seismic waves in fluid-saturated porous media has been studied for many decades. The method has a great potential to monitor subsurface fluid saturation changes associated with production of hydrocarbons. Frequency of the seismic source has a significant impact on measurement of the seismoelectric effects. In this paper, the effects of seismic wave frequency and water saturation on the seismoelectric response of a partially-saturated porous media is studied numerically. The conversion of seismic wave to electromagnetic wave was modelled by extending the theoretically developed seismoelectric coupling coefficient equation. We assumed constant values of pore radius and zeta-potential of 80 micrometers and 48 microvolts, respectively. Our calculations of the coupling coefficient were conducted at various water saturation values in the frequency range of 10 kHz to 150 kHz. The results show that the seismoelectric coupling is frequency-dependent and decreases exponentially when frequency increases. Similar trend is seen when water saturation is varied at different frequencies. However, when water saturation is less than about 0.6, the effect of frequency is significant. On the other hand, when the water saturation is greater than 0.6, the coupling coefficient shows monotonous trend when water saturation is increased at constant frequency.

  14. The systolic blood pressure difference between arms and cardiovascular disease in the Framingham Heart Study.

    Science.gov (United States)

    Weinberg, Ido; Gona, Philimon; O'Donnell, Christopher J; Jaff, Michael R; Murabito, Joanne M

    2014-03-01

    An increased interarm systolic blood pressure difference is an easily determined physical examination finding. The relationship between interarm systolic blood pressure difference and risk of future cardiovascular disease is uncertain. We described the prevalence and risk factor correlates of interarm systolic blood pressure difference in the Framingham Heart Study (FHS) original and offspring cohorts and examined the association between interarm systolic blood pressure difference and incident cardiovascular disease and all-cause mortality. An increased interarm systolic blood pressure difference was defined as ≥ 10 mm Hg using the average of initial and repeat blood pressure measurements obtained in both arms. Participants were followed through 2010 for incident cardiovascular disease events. Multivariable Cox proportional hazards regression analyses were performed to investigate the effect of interarm systolic blood pressure difference on incident cardiovascular disease. We examined 3390 (56.3% female) participants aged 40 years and older, free of cardiovascular disease at baseline, mean age of 61.1 years, who attended a FHS examination between 1991 and 1994 (original cohort) and from 1995 to 1998 (offspring cohort). The mean absolute interarm systolic blood pressure difference was 4.6 mm Hg (range 0-78). Increased interarm systolic blood pressure difference was present in 317 (9.4%) participants. The median follow-up time was 13.3 years, during which time 598 participants (17.6%) experienced a first cardiovascular event, including 83 (26.2%) participants with interarm systolic blood pressure difference ≥ 10 mm Hg. Compared with those with normal interarm systolic blood pressure difference, participants with an elevated interarm systolic blood pressure difference were older (63.0 years vs 60.9 years), had a greater prevalence of diabetes mellitus (13.3% vs 7.5%,), higher systolic blood pressure (136.3 mm Hg vs 129.3 mm Hg), and a higher total cholesterol

  15. Bulk hydrodynamic stability and turbulent saturation in compressing hot spots

    Science.gov (United States)

    Davidovits, Seth; Fisch, Nathaniel J.

    2018-04-01

    For hot spots compressed at constant velocity, we give a hydrodynamic stability criterion that describes the expected energy behavior of non-radial hydrodynamic motion for different classes of trajectories (in ρR — T space). For a given compression velocity, this criterion depends on ρR, T, and d T /d (ρR ) (the trajectory slope) and applies point-wise so that the expected behavior can be determined instantaneously along the trajectory. Among the classes of trajectories are those where the hydromotion is guaranteed to decrease and those where the hydromotion is bounded by a saturated value. We calculate this saturated value and find the compression velocities for which hydromotion may be a substantial fraction of hot-spot energy at burn time. The Lindl (Phys. Plasmas 2, 3933 (1995)] "attractor" trajectory is shown to experience non-radial hydrodynamic energy that grows towards this saturated state. Comparing the saturation value with the available detailed 3D simulation results, we find that the fluctuating velocities in these simulations reach substantial fractions of the saturated value.

  16. Saturation flow mathematical model based on multiple combinations of lane groups

    Energy Technology Data Exchange (ETDEWEB)

    Racila, L.

    2016-07-01

    The ideal value of the traffic stream that can pass through an intersection is known as the saturation flow rate per hour on vehicle green time. The saturation flow is important in the understanding of the traffic light cycle and from there the understanding the Level of Service. The paper wishes to evaluate through a series of applied mathematical methods the effect of different lane grouping and critical lane group concept on the saturation flow rate. The importance of this method is that it creates a base for a signalized intersections timing plan. (Author)

  17. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    Science.gov (United States)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  18. 21 CFR 101.75 - Health claims: dietary saturated fat and cholesterol and risk of coronary heart disease.

    Science.gov (United States)

    2010-04-01

    ... LDL-cholesterol, diabetes, high blood pressure, being overweight, cigarette smoking, lack of exercise... acids containing one or more double bonds). (2) The scientific evidence establishes that diets high in..., thus, with increased risk of coronary heart disease. Diets low in saturated fat and cholesterol are...

  19. Influence of gas law on ultrasonic behaviour of porous media under pressure.

    Science.gov (United States)

    Griffiths, S; Ayrault, C

    2010-06-01

    This paper deals with the influence of gas law on ultrasonic behaviour of porous media when the saturating fluid is high pressured. Previous works have demonstrated that ultrasonic transmission through a porous sample with variations of the static pressure (up to 18 bars) of the saturating fluid allows the characterization of high damping materials. In these studies, the perfect gas law was used to link static pressure and density, which is disputable for high pressures. This paper compares the effects of real and perfect gas laws on modeled transmission coefficient for porous foams at these pressures. Direct simulations and a mechanical parameters estimation from minimization show that results are very similar in both cases. The real gas law is thus not necessary to describe the acoustic behaviour of porous media at low ultrasonic frequencies (100 kHz) up to 20 bars. 2010 Elsevier B.V. All rights reserved.

  20. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  1. Oxygenation of saturated and unsaturated hydrocarbons with ...

    Indian Academy of Sciences (India)

    Unknown

    Oxygenation of saturated and unsaturated hydrocarbons with sodium periodate. 431. Table 1. Competitive oxygenation of tetralin and cyclooctene with sodium periodate catalyzed by different manga- .... Teacher Education University. My grateful thanks also extend to Dr D Mohajer for his useful sugges- tions. References. 1.

  2. Investigations on the viscoelastic performance of pressure sensitive adhesives in drug-in-adhesive type transdermal films.

    Science.gov (United States)

    Wolff, Hans-Michael; Irsan; Dodou, Kalliopi

    2014-08-01

    We aimed to investigate the effect of solubility parameter and drug concentration on the rheological behaviour of drug-in-adhesive films intended for transdermal application. Films were prepared over a range of drug concentrations (5%, 10% and 20% w/w) using ibuprofen, benzoic acid, nicotinic acid and lidocaine as model drugs in acrylic (Duro-Tak 87-4287 and Duro-Tak 87900A) or silicone (Bio-PSA 7-4301 and Bio-PSA 7-4302) pressure sensitive adhesives (PSAs). Saturation status of films was determined using light microscopy. Viscoelastic parameters were measured in rheology tests at 32°C. Subsaturated films had lower viscoelastic moduli whereas saturated films had higher moduli than the placebo films and/or a concentration-dependent increase in their modulus. Saturation concentration of each drug in the films was reflected by decreasing/increasing viscoelastic patterns. The viscoelastic windows (VWs) of the adhesive and drug-in-adhesive films clearly depicted the effect of solubility parameter differences, molar concentration of drug in the adhesive film and differences in PSA chemistry. Drug solubility parameters and molar drug concentrations have an impact on rheological patterns and thus on the adhesive performance of tested pressure sensitive adhesives intended for use in transdermal drug delivery systems. Use of the Flory equation in its limiting form was appropriate to predict drug solubility in the tested formulations.

  3. Speeding-up exchange-mediated saturation transfer experiments by Fourier transform

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Marta G.; Reddy, Jithender G.; Griesinger, Christian; Lee, Donghan, E-mail: dole@nmr.mpibpc.mpg.de [Max-Planck Institute for Biophysical chemistry, Department of NMR-based Structural Biology (Germany)

    2015-11-15

    Protein motions over various time scales are crucial for protein function. NMR relaxation dispersion experiments play a key role in explaining these motions. However, the study of slow conformational changes with lowly populated states remained elusive. The recently developed exchange-mediated saturation transfer experiments allow the detection and characterization of such motions, but require extensive measurement time. Here we show that, by making use of Fourier transform, the total acquisition time required to measure an exchange-mediated saturation transfer profile can be reduced by twofold in case that one applies linear prediction. In addition, we demonstrate that the analytical solution for R{sub 1}ρ experiments can be used for fitting the exchange-mediated saturation transfer profile. Furthermore, we show that simultaneous analysis of exchange-mediated saturation transfer profiles with two different radio-frequency field strengths is required for accurate and precise characterization of the exchange process and the exchanging states.

  4. Speeding-up exchange-mediated saturation transfer experiments by Fourier transform

    International Nuclear Information System (INIS)

    Carneiro, Marta G.; Reddy, Jithender G.; Griesinger, Christian; Lee, Donghan

    2015-01-01

    Protein motions over various time scales are crucial for protein function. NMR relaxation dispersion experiments play a key role in explaining these motions. However, the study of slow conformational changes with lowly populated states remained elusive. The recently developed exchange-mediated saturation transfer experiments allow the detection and characterization of such motions, but require extensive measurement time. Here we show that, by making use of Fourier transform, the total acquisition time required to measure an exchange-mediated saturation transfer profile can be reduced by twofold in case that one applies linear prediction. In addition, we demonstrate that the analytical solution for R 1 ρ experiments can be used for fitting the exchange-mediated saturation transfer profile. Furthermore, we show that simultaneous analysis of exchange-mediated saturation transfer profiles with two different radio-frequency field strengths is required for accurate and precise characterization of the exchange process and the exchanging states

  5. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  6. Uniqueness of Specific Interfacial Area–Capillary Pressure–Saturation Relationship Under Non-Equilibrium Conditions in Two-Phase Porous Media Flow

    KAUST Repository

    Joekar-Niasar, Vahid; Hassanizadeh, S. Majid

    2012-01-01

    The capillary pressure-saturation (P c-S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a

  7. Numerical simulation of air- and water-flow experiments in a block of variably saturated, fractured tuff from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kwicklis, E.M.; Healy, R.W.; Thamir, F.; Hampson, D.

    1998-01-01

    Numerical models of water movement through variably saturated, fractured tuff have undergone little testing against experimental data collected from relatively well-controlled and characterized experiments. This report used the results of a multistage experiment on a block of variably saturated, fractured, welded tuff and associated core samples to investigate if those results could be explained using models and concepts currently used to simulate water movement in variably saturated, fractured tuff at Yucca Mountain, Nevada, the potential location of a high-level nuclear-waste repository. Aspects of the experiment were modeled with varying degrees of success. Imbibition experiments performed on cores of various lengths and diameters were adequately described by models using independently measured permeabilities and moisture-characteristic curves, provided that permeability reductions resulting from the presence of entrapped air were considered. Entrapped gas limited maximum water saturations during imbibition to approximately 0.70 to 0,80 of the fillable porosity values determined by vacuum saturation. A numerical simulator developed for application to fluid flow problems in fracture networks was used to analyze the results of air-injection tests conducted within the tuff block through 1.25-cm-diameter boreholes. These analyses produced estimates of transmissivity for selected fractures within the block. Transmissivities of other fractures were assigned on the basis of visual similarity to one of the tested fractures. The calibrated model explained 53% of the observed pressure variance at the monitoring boreholes (with the results for six outliers omitted) and 97% of the overall pressure variance (including monitoring and injection boreholes) in the subset of air-injection tests examined

  8. Hydrologic mechanisms governing fluid flow in partially saturated, fractured, porous tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Narasimhan, T.N.

    1984-10-01

    In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures

  9. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  10. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma

    2017-01-01

    saturation in the sagittal sinus (R(2 )= 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T2-prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong...... sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy (R(2 )= 0.64, p ..., and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus (R(2 )= 0.71, 0.50, 0.65; p 

  11. A poly-dispersed particle system representation of the porosity for non-saturated cementitious materials

    International Nuclear Information System (INIS)

    Bary, B.

    2006-01-01

    In this paper, the porosity of cementitious materials is described in terms of pore size distribution by means of a 3-dimensional overlapping sphere system with poly-dispersivity in size. On the basis of results established by Lu and Torquato [B. Lu, S. Torquato, Nearest-surface distribution functions for poly-dispersed particle systems, Phys. Rev. A 45(8) (1992) 5530-5544] and Torquato [S. Torquato, Random Heterogeneous Media: Microstructure and Macroscopic Properties. Springer-Verlag: New York, 2001] providing relations for nearest-neighbor distribution functions, the volume fraction of pores having a radius larger than a prescribed value is explicitly expressed. By adopting an appropriate size distribution function for the sphere system, it is shown that the pore size distribution of cementitious materials as detected for instance by mercury intrusion porosimetry (MIP), which generally points out several pore classes, can be well approached. On the basis of this porosity representation, the evaluation of the capillary pressure in function of the saturation degree is provided. The model is then applied to the simulation of the saturation degree versus relative humidity adsorption curves. The impact of the pore size distribution, the temperature and the thickness of the adsorbed water layer on these parameters are assessed and analyzed for three model materials having different pore characteristics. (author)

  12. Experimental characterization of the concrete behaviour under high confinement: influence of the saturation ratio and of the water/cement ratio

    International Nuclear Information System (INIS)

    Vu, X.H.

    2007-08-01

    The objective of this thesis is to experimentally characterize the influence of the saturation ratio and of the water/cement ratio of concrete on its behaviour under high confinement. This thesis lies within a more general scope of the understanding of concrete behaviour under severe loading situations (near field detonation or ballistic impacts). A near field detonation or an impact on a concrete structure generate very high levels of stress associated with complex loading paths in the concrete material. To validate concrete behaviour models, experimental results are required. The work presented in this thesis concerns tests conducted using a static triaxial press that allows to obtain stress levels of the order of the giga Pascal. The porous character of concrete and the high confinement required on the one hand, a development of a specimen protection device, and on the other hand, a development of an instrumentation with strain gauges, which is unprecedented for such high confinements. Hydrostatic and triaxial tests, conducted on the one hand on model materials and on the other hand on concrete, allowed to validate the developed experimental procedures as well as the technique of strain and stress measurements. The studies concerning the influence of the saturation ratio and of the water/cement ratio of concrete on its behaviour required the formulation of a plain baseline concrete and of two modified concretes with different water/cement ratios. The analysis of triaxial tests performed on the baseline concrete shows that the saturation ratio of concrete has a major influence on its static behaviour under high confinement. This influence is particularly marked for the concrete loading capacity and for the shape of limit state curves for saturation ratios greater than 50%. The concrete loading capacity increases with the confinement pressure for tests on dry concrete whereas beyond a given confinement pressure, it remains limited for wet or saturated concrete

  13. Enhancement of aromatic and saturated hydrocarbon by modified ...

    African Journals Online (AJOL)

    Three sediment samples collected from the Qua Iboe River System and eighteen different column packing ratios of silica gel and alumina were used in this investigation. The variation of the composition of the stationary phase (silica gel and alumina, SA) gave different yields of aromatic and saturated hydrocarbons. In all the ...

  14. On the micromechanics of slip events in sheared, fluid-saturated fault gouge

    Science.gov (United States)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2017-06-01

    We used a three-dimensional discrete element method coupled with computational fluid dynamics to study the poromechanical properties of dry and fluid-saturated granular fault gouge. The granular layer was sheared under dry conditions to establish a steady state condition of stick-slip dynamic failure, and then fluid was introduced to study its effect on subsequent failure events. The fluid-saturated case showed increased stick-slip recurrence time and larger slip events compared to the dry case. Particle motion induces fluid flow with local pressure variation, which in turn leads to high particle kinetic energy during slip due to increased drag forces from fluid on particles. The presence of fluid during the stick phase of loading promotes a more stable configuration evidenced by higher particle coordination number. Our coupled fluid-particle simulations provide grain-scale information that improves understanding of slip instabilities and illuminates details of phenomenological, macroscale observations.

  15. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Smirnov, A.; Fisch, N.J.

    2005-01-01

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission

  16. Configuration and testing of a saturated vapor helium compressor

    International Nuclear Information System (INIS)

    Ludwigsen, J.L.; Iwasa, Y.; Smith, J.L.

    1986-01-01

    A saturated vapor helium compressor was designed and tested as a component of a helium-temperature refrigeration cycle. The use of the cold compressor allows reduction of both the precooling heat exchanger area and main compressor size compared to a conventional cycle due to increased pressure of the return gas. The compressor tested was a single-piston reciprocating device which was controlled with programmable hydraulic/pneumatic logic. The compressor was mounted at the cold end of a CTI Model 1400 helium liquefier. An average compression ratio of 2.4 was obtained and an average efficiency of 82% was achieved. In computing compressor efficiency, external heat leaks to the compressor were neglected

  17. Oscillometric blood pressure measurements: differences between measured and calculated mean arterial pressure.

    NARCIS (Netherlands)

    Kiers, H.D.; Hofstra, J.M.; Wetzels, J.F.M.

    2008-01-01

    Mean arterial pressure (MAP) is often used as an index of overall blood pressure. In recent years, the use of automated oscillometric blood pressure measurement devices is increasing. These devices directly measure and display MAP; however, MAP is often calculated from systolic blood pressure (SBP)

  18. Numerical investigation on cavitation in pressure relief valve for coal liquefaction

    International Nuclear Information System (INIS)

    Ou, G F; Li, W Z; Xiao, D H; Zheng, Z J; Dou, H S; Wang, C

    2015-01-01

    The pressure relief valve for regulating the level of the high-pressure separator works under a pressure difference up to 15 MPa in the temperature of 415 °C. Severe cavitation erosion and particle impact lead to the valve disc's mass loss. In this paper, three-dimensional turbulent cavitating flows in the pressure relief valve are numerically simulated to reveal the mechanism of mass loss at valve disc. The RNG k-ε turbulence model and the mixture model with a mass transfer for cavitation are employed to simulate the cavitating flow in the pressure relief valve. The result shows that there is phase change in the pressure relief process and cavitation bubbles would be transported by high-velocity backflow to the head of valve disc. For the local pressure higher than the saturated vapor pressure, the bubbles collapse at the head of disc and cavitation erosion is formed at the head of the disc. By comparing the cases of opening of 40%, 50%, and 60%, backflow velocity and cavitation region in front of the disc decrease with the opening increase. Therefore, during the actual operation, the pressure relief valve should be kept to a relatively large opening

  19. On the pressure drop in Plate Heat Exchangers used as desorbers in absorption chillers

    International Nuclear Information System (INIS)

    Garcia-Hernando, N.; Almendros-Ibanez, J.A.; Ruiz, G.; Vega, M. de

    2011-01-01

    The influence of the pressure drop in Plate Heat Exchangers (PHE) in the boiling temperature of LiBr-H 2 O and NH 3 -H 2 O solutions is studied. For the NH 3 -H 2 O solution, the pressure drop-temperature saturation relationship estates that high pressure drops can be allowed in the solution with negligible changes in the saturation temperature, and in the PHE performance. Besides, in the case of the LiBr-H 2 O solution, as the working pressure is usually very low, the analysis of the pressure drop must be taken as a main limiting parameter for the use of Plate Heat Exchangers as vapour generators. In this case, the pressure drop may considerably change the boiling temperature of the solution entering the heat exchanger and therefore a higher heating fluid temperature may be required. A guideline to design these systems is proposed.

  20. Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects.

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Feng; Li, Hua; Xu, Junzhong; Gochberg, Daniel F; Gore, John C; Zu, Zhongliang

    2017-07-01

    Accurate quantification of chemical exchange saturation transfer (CEST) effects, including dipole-dipole mediated relayed nuclear Overhauser enhancement (rNOE) saturation transfer, is important for applications and studies of molecular concentration and transfer rate (and thereby pH or temperature). Although several quantification methods, such as Lorentzian difference (LD) analysis, multiple-pool Lorentzian fits, and the three-point method, have been extensively used in several preclinical and clinical applications, the accuracy of these methods has not been evaluated. Here we simulated multiple-pool Z spectra containing the pools that contribute to the main CEST and rNOE saturation transfer signals in the brain, numerically fit them using the different methods, and then compared their derived CEST metrics with the known solute concentrations and exchange rates. Our results show that the LD analysis overestimates contributions from amide proton transfer (APT) and intermediate exchanging amine protons; the three-point method significantly underestimates both APT and rNOE saturation transfer at -3.5 ppm (NOE(-3.5)). The multiple-pool Lorentzian fit is more accurate than the other two methods, but only at lower irradiation powers (≤1 μT at 9.4 T) within the range of our simulations. At higher irradiation powers, this method is also inaccurate because of the presence of a fast exchanging CEST signal that has a non-Lorentzian lineshape. Quantitative parameters derived from in vivo images of rodent brain tumor obtained using an irradiation power of 1 μT were also compared. Our results demonstrate that all three quantification methods show similar contrasts between tumor and contralateral normal tissue for both APT and the NOE(-3.5). However, the quantified values of the three methods are significantly different. Our work provides insight into the fitting accuracy obtainable in a complex tissue model and provides guidelines for evaluating other newly developed

  1. Saturated Zone Colloid-Facilitated Transport

    International Nuclear Information System (INIS)

    Wolfsberg, A.; Reimus, P.

    2001-01-01

    The purpose of the Saturated Zone Colloid-Facilitated Transport Analysis and Modeling Report (AMR), as outlined in its Work Direction and Planning Document (CRWMS MandO 1999a), is to provide retardation factors for colloids with irreversibly-attached radionuclides, such as plutonium, in the saturated zone (SZ) between their point of entrance from the unsaturated zone (UZ) and downgradient compliance points. Although it is not exclusive to any particular radionuclide release scenario, this AMR especially addresses those scenarios pertaining to evidence from waste degradation experiments, which indicate that plutonium and perhaps other radionuclides may be irreversibly attached to colloids. This report establishes the requirements and elements of the design of a methodology for calculating colloid transport in the saturated zone at Yucca Mountain. In previous Total Systems Performance Assessment (TSPA) analyses, radionuclide-bearing colloids were assumed to be unretarded in their migration. Field experiments in fractured tuff at Yucca Mountain and in porous media at other sites indicate that colloids may, in fact, experience retardation relative to the mean pore-water velocity, suggesting that contaminants associated with colloids should also experience some retardation. Therefore, this analysis incorporates field data where available and a theoretical framework when site-specific data are not available for estimating plausible ranges of retardation factors in both saturated fractured tuff and saturated alluvium. The distribution of retardation factors for tuff and alluvium are developed in a form consistent with the Performance Assessment (PA) analysis framework for simulating radionuclide transport in the saturated zone. To improve on the work performed so far for the saturated-zone flow and transport modeling, concerted effort has been made in quantifying colloid retardation factors in both fractured tuff and alluvium. The fractured tuff analysis used recent data

  2. Experimental and numerical study on thermal conductivity of partially saturated unconsolidated sands

    Science.gov (United States)

    Lee, Youngmin; Keehm, Youngseuk; Kim, Seong-Kyun; Shin, Sang Ho

    2016-04-01

    A class of problems in heat flow applications requires an understanding of how water saturation affects thermal conductivity in the shallow subsurface. We conducted a series of experiments using a sand box to evaluate thermal conductivity (TC) of partially saturated unconsolidated sands under varying water saturation (Sw). We first saturated sands fully with water and varied water saturation by drainage through the bottom of the sand box. Five water-content sensors were integrated vertically into the sand box to monitor water saturation changes and a needle probe was embedded to measure thermal conductivity of partially saturated sands. The experimental result showed that thermal conductivity decreases from 2.5 W/mK for fully saturated sands to 0.7 W/mK when water saturation is 5%. We found that the decreasing trend is quite non-linear: highly sensitive at very high and low water saturations. However, the boundary effects on the top and the bottom of the sand box seemed to be responsible for this high nonlinearity. We also found that the determination of water saturation is quite important: the saturation by averaging values from all five sensors and that from the sensor at the center position, showed quite different trends in the TC-Sw domain. In parallel, we conducted a pore-scale numerical modeling, which consists of the steady-state two-phase Lattice-Boltzmann simulator and FEM thermal conduction simulator on digital pore geometry of sand aggregation. The simulation results showed a monotonous decreasing trend, and are reasonably well matched with experimental data when using average water saturations. We concluded that thermal conductivity would decrease smoothly as water saturation decreases if we can exclude boundary effects. However, in dynamic conditions, i.e. imbibition or drainage, the thermal conductivity might show hysteresis, which can be investigated with pore-scale numerical modeling with unsteady-state two-phase flow simulators in our future work.

  3. Experimental investigation of wettability alteration on residual oil saturation using nonionic surfactants: Capillary pressure measurement

    Directory of Open Access Journals (Sweden)

    Masoud Amirpour

    2015-12-01

    Full Text Available Introducing the novel technique for enhancing oil recovery from available petroleum reservoirs is one of the important issues in future energy demands. Among of all operative factors, wettability may be the foremost parameter affecting residual oil saturation in all stage of oil recovery. Although wettability alteration is one of the methods which enhance oil recovery from the petroleum reservoir. Recently, the studies which focused on this subject were more than the past and many contributions have been made on this area. The main objective of the current study is experimentally investigation of the two nonionic surfactants effects on altering wettability of reservoir rocks. Purpose of this work is to change the wettability to preferentially the water-wet condition. Also reducing the residual oil saturation (Sor is the other purpose of this work. The wettability alteration of reservoir rock is measured by two main quantitative methods namely contact angle and the USBM methods. Results of this study showed that surfactant flooding is more effective in oil-wet rocks to change their wettability and consequently reducing Sor to a low value. Cedar (Zizyphus Spina Christi is low priced, absolutely natural, and abundantly accessible in the Middle East and Central Asia. Based on the results, this material can be used as a chemical surfactant in field for enhancing oil recovery.

  4. The role of hillslope topography on shallow landslides activation and basin saturation propensity

    Science.gov (United States)

    Lanni, C.; Pretto, I.; Rigon, R.

    2009-12-01

    Shallow Landslides are one of the most important causes of loss of human life and socio-economic damage related to the hydro-geological risk issues. In the past years a big number of researches have developed tools to assess for the stability condition of hillslopes at the basin-scale. Montgomery and Dietrich (1994), for instance, with their own SHALSTAB model, give a simple way to evaluate the safety factor of mountain hillslopes, coupling the infinite slope stability model with a very simple steady-state hydrological model based on the work by O'Loughlin (1986) and which has similarities to TOPOG (Beven and Kirkby, 1979). The state of art gives the possibility to evaluate the transient nature of the generated pore-pressure fields within soil-thickness during and after the rainfalls. A valuable tool to fulfill this purpose may be the GEOtop model (Rigon et al., 2006) born to solve the 3-dimensional form of Richards’ equation. The present work, which was held using GEOtop model, investigates the stability conditions and the water table level of nine characteristic hillslope types when steady-state conditions are reached. The artificial simple basins are created combining three different curvature's profile (straight, concave and convex) and three different plan shapes (parallel, convergent and divergent) (fig.1). In the analysis the hillslope soil thickness is imposed constant, while the bedrock is considered impermeable. Different intensity rainfalls are simulated. The results show that in the case of the lowest intensity rainfall, basins with convex shape present higher percentage of saturated area than concave and straight ones. Also, convergent hillslopes generally produce a higher percentage of saturated area than the other plan shapes. Moreover, in the case of higher intensity rainfalls, the concave profile curvature seems to be the first order controller on the saturation process. Regarding the stability conditions, convergent hillslopes generally presents

  5. Coherence length saturation at the low temperature limit in two-dimensional hole gas

    Science.gov (United States)

    Shan, Pujia; Fu, Hailong; Wang, Pengjie; Yang, Jixiang; Pfeiffer, L. N.; West, K. W.; Lin, Xi

    2018-05-01

    The plateau-plateau transition in the integer quantum Hall effect is studied in three Hall bars with different widths. The slopes of the Hall resistance as a function of magnetic field follow the scaling power law as expected in the plateau-plateau transition, and saturate at the low temperature limit. Surprisingly, the saturation temperature is irrelevant with the Hall bar size, which suggests that the saturation of the coherence length is intrinsic.

  6. Evaluation Of Liner Back-pressure Due To Concrete Pore Pressure At Elevated Temperatures

    International Nuclear Information System (INIS)

    James, R.J.; Rashid, Y.R.; Liu, A.S.; Gou, B.

    2006-01-01

    GE's latest evolution of the boiling water reactor, the ESBWR, has innovative passive design features that reduce the number and complexity of active systems, which in turn provide economic advantages while also increasing safety. These passive systems used for emergency cooling also mean that the primary containment system will experience elevated temperatures with longer durations than conventional plants in the event of design basis accidents. During a Loss of Coolant Accident (LOCA), the drywell in the primary containment structure for the ESBWR will be exposed to saturated steam conditions for up to 72 hours following the accident. A containment spray system may be activated that sprays the drywell area with water to condense the steam as part of the recovery operations. The liner back-pressure will build up gradually over the 72 hours as the concrete temperatures increase, and a sudden cool down could cause excessive differential pressure on the liner to develop. For this analysis, it is assumed that the containment spray is activated at the end of the 72-hour period. A back-pressure, acting between the liner and the concrete wall of the containment, can occur as a result of elevated temperatures in the concrete causing steam and saturated vapor pressures to develop from the free water remaining in the pores of the concrete. Additional pore pressure also develops under the elevated temperatures from the non-condensable gases trapped in the concrete pores during the concrete curing process. Any buildup of this pore pressure next to the liner, in excess of the drywell internal pressure, will act to push the liner away from the concrete with a potential for tearing at the liner anchorages. This paper describes the methods and analyses used to quantify this liner back-pressure so that appropriate measures are included in the design of the liner and anchorage system. A pore pressure model is developed that calculates the pressure distribution across the concrete

  7. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    Science.gov (United States)

    Santos, J. E.; Savioli, G. B.

    2018-04-01

    Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  8. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent.

    Science.gov (United States)

    Latypov, Rais; Costin, Gelu; Chistyakova, Sofya; Hunt, Emma J; Mukherjee, Ria; Naldrett, Tony

    2018-01-31

    Platinum-bearing chromitites in mafic-ultramafic intrusions such as the Bushveld Complex are key repositories of strategically important metals for human society. Basaltic melts saturated in chromite alone are crucial to their generation, but the origin of such melts is controversial. One concept holds that they are produced by processes operating within the magma chamber, whereas another argues that melts entering the chamber were already saturated in chromite. Here we address the problem by examining the pressure-related changes in the topology of a Mg 2 SiO 4 -CaAl 2 Si 2 O 8 -SiO 2 -MgCr 2 O 4 quaternary system and by thermodynamic modelling of crystallisation sequences of basaltic melts at 1-10 kbar pressures. We show that basaltic melts located adjacent to a so-called chromite topological trough in deep-seated reservoirs become saturated in chromite alone upon their ascent towards the Earth's surface and subsequent cooling in shallow-level chambers. Large volumes of these chromite-only-saturated melts replenishing these chambers are responsible for monomineralic layers of massive chromitites with associated platinum-group elements.

  9. Flashing evaporation under different pressure levels

    International Nuclear Information System (INIS)

    Liao, Yixiang; Lucas, Dirk; Krepper, Eckhard; Rzehak, Roland

    2013-01-01

    Highlights: • CFD simulation based on two-fluid model for flashing boiling inside a vertical pipe. • Effect of pressure level on the maximum thermal energy available for evaporation. • Effect of presumed bubble size on the onset of flashing as well as evaporation rate. • Effect of pressure level on the critical bubble size that can start stable flashing. • Effect of pressure level on nucleation rate and mechanism. - Abstract: Flashing evaporation of water inside a vertical pipe under four pressure levels is investigated both experimentally and numerically. In the experiment depressurization is realized through a blow-off valve, and the evaporation rate is controlled by the opening rate and degree of the valve. In the CFD simulation phase change is assumed to be caused by thermal heat transfer between steam–water interface and the surrounding water. Consequently, the evaporation rate is determined by heat transfer coefficient, interfacial area density as well as liquid superheat degree. The simulated temporal course of cross-section averaged steam volume fraction is compared with the measured one. It is found that the increasing rate and maximum value of steam volume fraction is over-predicted under low-pressure conditions, which is mainly caused by the neglect of bubble growth in the mono-dispersed simulation. The agreement is notably improved by performing poly-dispersed simulations with the inhomogeneous MUSIG approach (IMUSIG). On the other hand an underestimation of the maximum steam volume fraction is observed in high-pressure cases, since the contribution of nucleation to the total steam generation rate becomes large as the system pressure increases. Reliable models for nucleation rate as well as bubble detachment size are indispensable for reliable predictions. An effect of the system pressure level on the nucleation mechanism is observed in the experiment

  10. Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + enstatite and magnesite + enstatite

    Science.gov (United States)

    Tiraboschi, Carla; Tumiati, Simone; Sverjensky, Dimitri; Pettke, Thomas; Ulmer, Peter; Poli, Stefano

    2018-01-01

    We experimentally investigated the dissolution of forsterite, enstatite and magnesite in graphite-saturated COH fluids, synthesized using a rocking piston cylinder apparatus at pressures from 1.0 to 2.1 GPa and temperatures from 700 to 1200 °C. Synthetic forsterite, enstatite, and nearly pure natural magnesite were used as starting materials. Redox conditions were buffered by Ni-NiO-H2O (ΔFMQ = - 0.21 to - 1.01), employing a double-capsule setting. Fluids, binary H2O-CO2 mixtures at the P, T, and fO2 conditions investigated, were generated from graphite, oxalic acid anhydrous (H2C2O4) and water. Their dissolved solute loads were analyzed through an improved version of the cryogenic technique, which takes into account the complexities associated with the presence of CO2-bearing fluids. The experimental data show that forsterite + enstatite solubility in H2O-CO2 fluids is higher compared to pure water, both in terms of dissolved silica ( mSiO2 = 1.24 mol/kgH2O versus mSiO2 = 0.22 mol/kgH2O at P = 1 GPa, T = 800 °C) and magnesia ( mMgO = 1.08 mol/kgH2O versus mMgO = 0.28 mol/kgH2O) probably due to the formation of organic C-Mg-Si complexes. Our experimental results show that at low temperature conditions, a graphite-saturated H2O-CO2 fluid interacting with a simplified model mantle composition, characterized by low MgO/SiO2 ratios, would lead to the formation of significant amounts of enstatite if solute concentrations are equal, while at higher temperatures these fluid, characterized by MgO/SiO2 ratios comparable with that of olivine, would be less effective in metasomatizing the surrounding rocks. However, the molality of COH fluids increases with pressure and temperature, and quintuplicates with respect to the carbon-free aqueous fluids. Therefore, the amount of fluid required to metasomatize the mantle decreases in the presence of carbon at high P- T conditions. COH fluids are thus effective carriers of C, Mg and Si in the mantle wedge up to the shallowest

  11. Assessing species saturation: conceptual and methodological challenges.

    Science.gov (United States)

    Olivares, Ingrid; Karger, Dirk N; Kessler, Michael

    2018-05-07

    Is there a maximum number of species that can coexist? Intuitively, we assume an upper limit to the number of species in a given assemblage, or that a lineage can produce, but defining and testing this limit has proven problematic. Herein, we first outline seven general challenges of studies on species saturation, most of which are independent of the actual method used to assess saturation. Among these are the challenge of defining saturation conceptually and operationally, the importance of setting an appropriate referential system, and the need to discriminate among patterns, processes and mechanisms. Second, we list and discuss the methodological approaches that have been used to study species saturation. These approaches vary in time and spatial scales, and in the variables and assumptions needed to assess saturation. We argue that assessing species saturation is possible, but that many studies conducted to date have conceptual and methodological flaws that prevent us from currently attaining a good idea of the occurrence of species saturation. © 2018 Cambridge Philosophical Society.

  12. The difference in blood pressure readings between arms and survival: primary care cohort study.

    Science.gov (United States)

    Clark, Christopher E; Taylor, Rod S; Shore, Angela C; Campbell, John L

    2012-03-20

    To determine whether a difference in systolic blood pressure readings between arms can predict a reduced event free survival after 10 years. Cohort study. Rural general practice in Devon, United Kingdom. 230 people receiving treatment for hypertension in primary care. Bilateral blood pressure measurements recorded at three successive surgery attendances. Cardiovascular events and deaths from all causes during a median follow-up of 9.8 years. At recruitment 24% (55/230) of participants had a mean interarm difference in systolic blood pressure of 10 mm Hg or more and 9% (21/230) of 15 mm Hg or more; these differences were associated with an increased risk of all cause mortality (adjusted hazard ratio 3.6, 95% confidence interval 2.0 to 6.5 and 3.1, 1.6 to 6.0, respectively). The risk of death was also increased in 183 participants without pre-existing cardiovascular disease with an interarm difference in systolic blood pressure of 10 mm Hg or more or 15 mm Hg or more (2.6, 1.4 to 4.8 and 2.7, 1.3 to 5.4). An interarm difference in diastolic blood pressure of 10 mm Hg or more was weakly associated with an increased risk of cardiovascular events or death. Differences in systolic blood pressure between arms can predict an increased risk of cardiovascular events and all cause mortality over 10 years in people with hypertension. This difference could be a valuable indicator of increased cardiovascular risk. Bilateral blood pressure measurements should become a routine part of cardiovascular assessment in primary care.

  13. CO2 saturated water as two-phase flow for fouling control in reverse electrodialysis.

    Science.gov (United States)

    Moreno, J; de Hart, N; Saakes, M; Nijmeijer, K

    2017-11-15

    When natural feed waters are used in the operation of a reverse electrodialysis (RED) stack, severe fouling on the ion exchange membranes and spacers occurs. Fouling of the RED stack has a strong influence on the gross power density output; which can decrease up to 50%. Moreover, an increase in the pressure loss occurs between the feed water inlet and outlet, increasing the pumping energy and thus decreasing the net power density that can be obtained. In this work, we extensively investigated the use of CO 2 saturated water as two-phase flow cleaning for fouling mitigation in RED using natural feed waters. Experiments were performed in the REDstack research facility located at the Afsluitdijk (the Netherlands) using natural feed waters for a period of 60 days. Two different gas combinations were experimentally investigated, water/air sparging and water/CO 2 (saturated) injection. Air is an inert gas mixture and induces air sparging in the stack. In the case of CO 2 , nucleation, i.e. the spontaneous formation of bubbles, occurs at the spacer filaments due to depressurization of CO 2 saturated water, inducing cleaning. Results showed that stacks equipped with CO 2 saturated water can produce an average net power density of 0.18 W/m 2 under real fouling conditions with minimal pre-treatment and at a low outside temperature of only 8 °C, whereas the stacks equipped with air sparging could only produce an average net power density of 0.04 W/m 2 . Electrochemical impedance spectroscopy measurements showed that the stacks equipped with air sparging increased in stack resistance due to the presence of stagnant bubbles remaining in the stack after every air injection. Furthermore, the introduction of CO 2 gas in the feed water introduces a pH decrease in the system (carbonated solution) adding an additional cleaning effect in the system, thus avoiding the use of environmentally unwanted cleaning chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All

  14. Misconceptions in Reporting Oxygen Saturation

    NARCIS (Netherlands)

    Toffaletti, John; Zijlstra, Willem G.

    2007-01-01

    BACKGROUND: We describe some misconceptions that have become common practice in reporting blood gas and cooximetry results. In 1980, oxygen saturation was incorrectly redefined in a report of a new instrument for analysis of hemoglobin (Hb) derivatives. Oxygen saturation (sO(2)) was redefined as the

  15. Sealing efficiency of an argillite-bentonite plug subjected to gas pressure, in the context of deep underground nuclear waste storage

    International Nuclear Information System (INIS)

    Liu, Jiang-Feng

    2013-01-01

    In France, the deep underground nuclear waste repository consists of a natural barrier (in an argillaceous rock named argillite), associated to artificial barriers, including plugs of swelling clay (bentonite)-sand for tunnel sealing purposes. The main objective of this thesis is to assess the sealing efficiency of the bentonite-sand plug in contact with argillite, in presence of both water and gas pressures. To assess the sealing ability of partially water-saturated bentonite/sand plugs, their gas permeability is measured under varying confining pressure (up to 12 MPa). It is observed that tightness to gas is achieved under confinement greater than 9 MPa for saturation levels of at least 86-91%. We than assess the sealing efficiency of the bentonite-sand plug placed in a tube of argillite or of Plexiglas-aluminium (with a smooth or a rough interface). The presence of pressurized gas affects the effective swelling pressure at values P gas from 4 MPa. Continuous gas breakthrough of fully water-saturated bentonite-sand plugs is obtained for gas pressures on the order of full swelling pressure (7-8 MPa), whenever the plug is applied along a smooth interface. Whenever a rough interface is used in contact with the bentonite-sand plug, a gas pressure significantly greater than its swelling pressure is needed for gas to pass continuously. Gas breakthrough tests show that the interface between plug/argillite or the argillite itself are two preferential pathways for gas migration, when the assembly is fully saturated. (author)

  16. Numerical evaluation of the water saturation in a high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Benet, L.V.; Bouillet, Ch.; Tulita, C.; Wendling, J.

    2010-01-01

    Document available in extended abstract form only. This work is a contribution of the ANDRA's program of numerical simulations of the evolution in time of hydrogeological flows in a radioactive waste repository in deep clay formations. This study aims at evaluating the water contact areas with steel for corrosion modeling in a High-Level radioactive waste disposal, from the building to the total saturation, more than 100 000 years later [HSPA6b]. Energy release by radioactive spent fuel and thermal expansion of the interstitial water is taken into account in the models. Thermal transfers in the porous media and free convection in the gaps (Navier-Stokes equations) are computed with a linear Finite Element scheme. The mass transfers in the porous media are solved with a P0-P1 Mixed Finite Element method (Richard's equations during exploitation and two phases flow equations after the closure). All numerical simulations are performed with the Cast3M code (http://wwwcast3m. cea.fr/). During the exploitation, the H-L radioactive waste storage cell is not supposed to be hermetically closed. The pressure in the storage cell remains atmospheric and mass transfers towards the main gallery are possible. So a seepage boundary condition is used on excavation surface in order to provide evolution in time of saturation limit along the storage cell. For each cell of the boundary mesh: - No water flux is imposed in contact with unsaturated media. - Atmospheric pressure is imposed in contact with saturated media. A relative humidity of 50% is imposed for the atmosphere in the gallery. Vapour diffusive flux is implemented in Richard's equations with a suction pressure formula according to Kelvin law. Temperature impact on vapour flux is neglected. Vapour diffusive flux is significant in the concrete wall of gallery due to the ventilation. The free convection steady state in the gap is solved at different times of the thermal transient to evaluate location of

  17. NABUB a non-saturated model of coolant boiling in a fast reactor sub-assembly

    International Nuclear Information System (INIS)

    Brook, A.J.; Mills, D.S.

    1975-08-01

    A theoretical model is described of sodium boiling in a fast reactor sub-assembly in which the usual assumptions of a saturated vapour are not made. Instead, vapour pressure is calculated in a perfect gas basis, which enables some allowance to be made for the possible presence of non-condensables, which may inhibit the condensation f the vapour. Indications are given of the circumstances under which such inhibition might be expected to show the most marked effects, and some sample results ontained by the code are presented. These show that the coolant voiding pattern is most sensitive to restrictions on the condensing flux in the 100 to 200w/cm 2 range. If unrestricted condensation is assumed, the results of the code are in excellent agreement with more conventional saturation models. (author)

  18. Tracking Controller for Intrinsic Output Saturated Systems in Presence of Amplitude and Rate Input Saturations

    DEFF Research Database (Denmark)

    Chater, E.; Giri, F.; Guerrero, Josep M.

    2014-01-01

    We consider the problem of controlling plants that are subject to multiple saturation constraints. Especially, we are interested in linear systems whose input is subject to amplitude and rate constraints of saturation type. Furthermore, the considered systems output is also subject to an intrinsi...

  19. Investigating Multiphase Flow Phenomena in Fine-Grained Reservoir Rocks: Insights from Using Ethane Permeability Measurements over a Range of Pore Pressures

    Directory of Open Access Journals (Sweden)

    Eric Aidan Letham

    2018-01-01

    Full Text Available The ability to quantify effective permeability at the various fluid saturations and stress states experienced during production from shale oil and shale gas reservoirs is required for efficient exploitation of the resources, but to date experimental challenges prevent measurement of the effective permeability of these materials over a range of fluid saturations. To work towards overcoming these challenges, we measured effective permeability of a suite of gas shales to gaseous ethane over a range of pore pressures up to the saturated vapour pressure. Liquid/semiliquid ethane saturation increases due to adsorption and capillary condensation with increasing pore pressure resulting in decreasing effective permeability to ethane gas. By how much effective permeability to ethane gas decreases with adsorption and capillary condensation depends on the pore size distribution of each sample and the stress state that effective permeability is measured at. Effective permeability decreases more at higher stress states because the pores are smaller at higher stress states. The largest effective permeability drops occur in samples with dominant pore sizes in the mesopore range. These pores are completely blocked due to capillary condensation at pore pressures near the saturated vapour pressure of ethane. Blockage of these pores cuts off the main fluid flow pathways in the rock, thereby drastically decreasing effective permeability to ethane gas.

  20. Development of a general model for determination of thermal conductivity of liquid chemical compounds at atmospheric pressure

    DEFF Research Database (Denmark)

    Gharagheizi, Farhad; Ilani‐Kashkouli, Poorandokht; Sattari, Mehdi

    2013-01-01

    In this communication, a general model for representation/presentation of the liquid thermal conductivity of chemical compounds (mostly organic) at 1 atm pressure for temperatures below normal boiling point and at saturation pressure for temperatures above the normal boiling point is developed...... using the Gene Expression Programming algorithm. Approximately 19,000 liquid thermal conductivity data at different temperatures related to 1636 chemical compounds collected from the DIPPR 801 database are used to obtain the model as well as to assess its predictive capability. The parameters...

  1. 1DFEMWATER: A one-dimensional finite element model of WATER flow through saturated-unsaturated media

    International Nuclear Information System (INIS)

    Yeh, G.T.

    1988-08-01

    This report presents the development and verification of a one- dimensional finite element model of water flow through saturated- unsaturated media. 1DFEMWATER is very flexible and capable of modeling a wide range of real-world problems. The model is designed to (1) treat heterogeneous media consisting of many geologic formations; (2) consider distributed and point sources/sinks that are spatially and temporally variable; (3) accept prescribed initial conditions or obtain them from steady state simulations; (4) deal with transient heads distributed over the Dirichlet boundary; (5) handle time-dependent fluxes caused by pressure gradient on the Neumann boundary; (6) treat time-dependent total fluxes (i.e., the sum of gravitational fluxes and pressure-gradient fluxes) on the Cauchy boundary; (7) automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface; (8) provide two options for treating the mass matrix (consistent and lumping); (9) provide three alternatives for approximating the time derivative term (Crank-Nicolson central difference, backward difference, and mid-difference); (10) give three options (exact relaxation, underrelaxation, and overrelaxation) for estimating the nonlinear matrix; (11) automatically reset the time step size when boundary conditions or source/sinks change abruptly; and (12) check mass balance over the entire region for every time step. The model is verified with analytical solutions and other numerical models for three examples

  2. Self-pressurization analysis of the natural circulation integral nuclear reactor using a new dynamic model

    Directory of Open Access Journals (Sweden)

    Ali Farsoon Pilehvar

    2018-06-01

    Full Text Available Self-pressurization analysis of the natural circulation integral nuclear reactor through a new dynamic model is studied. Unlike conventional pressurized water reactors, this reactor type controls the system pressure using saturated coolant water in the steam dome at the top of the pressure vessel. Self-pressurization model is developed based on conservation of mass, volume, and energy by predicting the condensation that occurs in the steam dome and the flashing inside the chimney using the partial differential equation. A simple but functional model is adopted for the steam generator. The obtained results indicate that the variable measurement is consistent with design data and that this new model is able to predict the dynamics of the reactor in different situations. It is revealed that flashing and condensation power are in direct relation with the stability of the system pressure, without which pressure convergence cannot be established. Keywords: Condensation Power, Flashing Phenomenon, Natural Circulation, Self-Pressurization, Small Modular Reactor

  3. How to compute the power of a steam turbine with condensation, knowing the steam quality of saturated steam in the turbine discharge

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Albarran, Manuel Jaime; Krever, Marcos Paulo Souza [Braskem, Sao Paulo, SP (Brazil)

    2009-07-01

    To compute the power and the thermodynamic performance in a steam turbine with condensation, it is necessary to know the quality of the steam in the turbine discharge and, information of process variables that permit to identifying with high precision the enthalpy of saturated steam. This paper proposes to install an operational device that will expand the steam from high pressure point on the shell turbine to atmosphere, both points with measures of pressure and temperature. Arranging these values on the Mollier chart, it can be know the steam quality value and with this data one can compute the enthalpy value of saturated steam. With the support of this small instrument and using the ASME correlations to determine the equilibrium temperature and knowing the discharge pressure in the inlet of surface condenser, the absolute enthalpy of the steam discharge can be computed with high precision and used to determine the power and thermodynamic efficiency of the turbine. (author)

  4. Synthesis of capillary pressure curves from post-stack seismic data with the use of intelligent estimators: A case study from the Iranian part of the South Pars gas field, Persian Gulf Basin

    Science.gov (United States)

    Golsanami, Naser; Kadkhodaie-Ilkhchi, Ali; Erfani, Amir

    2015-01-01

    Capillary pressure curves are important data for reservoir rock typing, analyzing pore throat distribution, determining height above free water level, and reservoir simulation. Laboratory experiments provide accurate data, however they are expensive, time-consuming and discontinuous through the reservoir intervals. The current study focuses on synthesizing artificial capillary pressure (Pc) curves from seismic attributes with the use of artificial intelligent systems including Artificial Neural Networks (ANNs), Fuzzy logic (FL) and Adaptive Neuro-Fuzzy Inference Systems (ANFISs). The synthetic capillary pressure curves were achieved by estimating pressure values at six mercury saturation points. These points correspond to mercury filled pore volumes of core samples (Hg-saturation) at 5%, 20%, 35%, 65%, 80%, and 90% saturations. To predict the synthetic Pc curve at each saturation point, various FL, ANFIS and ANN models were constructed. The varying neural network models differ in their training algorithm. Based on the performance function, the most accurately functioning models were selected as the final solvers to do the prediction process at each of the above-mentioned mercury saturation points. The constructed models were then tested at six depth points of the studied well which were already unforeseen by the models. The results show that the Fuzzy logic and neuro-fuzzy models were not capable of making reliable estimations, while the predictions from the ANN models were satisfyingly trustworthy. The obtained results showed a good agreement between the laboratory derived and synthetic capillary pressure curves. Finally, a 3D seismic cube was captured for which the required attributes were extracted and the capillary pressure cube was estimated by using the developed models. In the next step, the synthesized Pc cube was compared with the seismic cube and an acceptable correspondence was observed.

  5. On the pressure drop in Plate Heat Exchangers used as desorbers in absorption chillers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Hernando, N.; de Vega, M. [Energy System Engineering (ISE), Departamento de Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganes, Madrid (Spain); Almendros-Ibanez, J.A. [Escuela de Ingenieros Industriales de Albacete, Departamento de Mecanica Aplicada e Ingenieria de Proyectos, Universidad de Castilla La Mancha, Campus Universitario s/n, 02071 Albacete (Spain); Renewable Energy Research Institute, c/de la Investigacion s/n, 02071 Albacete (Spain); Ruiz, G. [Energy Efficiency and Renewables Department, Tecnicas Reunidas S.A., C/Arapiles No. 13, 10a, 28015 Madrid (Spain)

    2011-02-15

    The influence of the pressure drop in Plate Heat Exchangers (PHE) in the boiling temperature of LiBr-H{sub 2}O and NH{sub 3}-H{sub 2}O solutions is studied. For the NH{sub 3}-H{sub 2}O solution, the pressure drop-temperature saturation relationship estates that high pressure drops can be allowed in the solution with negligible changes in the saturation temperature, and in the PHE performance. Besides, in the case of the LiBr-H{sub 2}O solution, as the working pressure is usually very low, the analysis of the pressure drop must be taken as a main limiting parameter for the use of Plate Heat Exchangers as vapour generators. In this case, the pressure drop may considerably change the boiling temperature of the solution entering the heat exchanger and therefore a higher heating fluid temperature may be required. A guideline to design these systems is proposed. (author)

  6. Coccolithophores and calcite saturation state in the Baltic and Black Seas

    Directory of Open Access Journals (Sweden)

    T. Tyrrell

    2008-04-01

    Full Text Available The Baltic and Black Seas are both brackish, that is to say both have salinities intermediate between freshwater and seawater. The coccolithophore Emiliania huxleyi is abundant in one, the Black Sea, but absent from the other, the Baltic Sea. Here we present summertime coccolithophore measurements confirming this difference, as well as data on the calcium carbonate saturation state of the Baltic Sea. We find that the Baltic Sea becomes undersaturated (or nearly so in winter, with respect to both the aragonite and calcite mineral forms of CaCO3. Data for the Black Sea are more limited, but it appears to remain strongly supersaturated year-round. The absence of E. huxleyi from the Baltic Sea could therefore potentially be explained by dissolution of their coccoliths in winter, suggesting that minimum annual (wintertime saturation states could be most important in determining future ocean acidification impacts. In addition to this potential importance of winter saturation state, alternative explanations are also possible, either related to differences in salinity or else to differences in silicate concentrations.

  7. Low-cost but accurate radioactive logging for determining gas saturation in a reservior

    International Nuclear Information System (INIS)

    Neuman, C.H.

    1976-01-01

    A method is disclosed for determining gas saturation in a petroleum reservoir using logging signals indirectly related to the abundances of oxygen and carbon nuclei in the reservoir rock. The first step of the invention is to record first and second logs sensitive to the abundance of oxygen and carbon nuclei, respectively, after the region surrounding the well bore is caused to have fluid saturations representative of the bulk of the reservoir. A purposeful change is then made in the fluid saturations in the region surrounding the well bore by injecting a liquid capable of displacing substantially all of the original fluids. The logs are recorded a second time. The displacing fluid is then itself displaced by brine, and a third suite of logs is recorded. The total fluid and oil saturations are then determined from the differences between respective corresponding logs and from known fractional volume oxygen and carbon contents of the reservoir brine and oil and the first injected liquid. Gas saturation is then calculated from differences between total fluid and oil saturation values. It is not necessary that the log responses be independent of the material in the borehole, the casing, the casing cement, or the reservoir rock. It is only necessary that changes in formation fluids content cause proportional changes in log responses. 7 Claims, 4 Figures

  8. Skeletal Muscle Oxygen Saturation (StO2 Measured by Near-Infrared Spectroscopy in the Critically Ill Patients

    Directory of Open Access Journals (Sweden)

    J. Mesquida

    2013-01-01

    Full Text Available According to current critical care management guidelines, the overall hemodynamic optimization process seeks to restore macrocirculatory oxygenation, pressure, and flow variables. However, there is increasing evidence demonstrating that, despite normalization of these global parameters, microcirculatory and regional perfusion alterations might occur, and persistence of these alterations has been associated with worse prognosis. Such observations have led to great interest in testing new technologies capable of evaluating the microcirculation. Near-infrared spectroscopy (NIRS measures tissue oxygen saturation (StO2 and has been proposed as a noninvasive system for monitoring regional circulation. The present review aims to summarize the existing evidence on NIRS and its potential clinical utility in different scenarios of critically ill patients.

  9. Saturation flow versus green time at two-stage signal controlled intersections

    Directory of Open Access Journals (Sweden)

    A. Boumediene

    2009-12-01

    Full Text Available Intersections are the key components of road networks considerably affecting capacity. As flow levels and experience have increased over the years, methods and means have been developed to cope with growing demand for traffic at road junctions. Among various traffic control devices and techniques developed to cope with conflicting movements, traffic signals create artificial gaps to accommodate the impeded traffic streams. The majority of parameters that govern signalised intersection control and operations such as a degree of saturation, delays, queue lengths, the level of service etc. are very sensitive to saturation flow. Therefore, it is essential to reliably evaluate saturation flow for correctly setting traffic signals to avoid unnecessary delays and conflicts. Generally, almost all guidelines support the constancy of saturation flow irrespective of green time duration. This paper presents the results of field studies carried out to enable the performance of signalised intersections to be compared at different green time durations. It was found that saturation flow decreased slightly with growing green time. Reduction corresponded to between 2 and 5 pcus/gh per second of green time. However, the analyses of the discharge rate during the successive time intervals of 6-seconds showed a substantial reduction of 10% to 13% in saturation flow levels after 36 seconds of green time compared to those relating to 6–36 seconds range. No reduction in saturation flow levels was detected at the sites where only green periods of 44 seconds or less were implemented.

  10. Critical pressure of non-equilibrium two-phase critical flow

    Energy Technology Data Exchange (ETDEWEB)

    Minzer, U [Israel Electric Corp. Ltd., Haifa (Israel)

    1996-12-01

    Critical pressure is defined as the pressure existing at the exit edge of the piping, when it remains constant despite a decrease in the back. According to this definition the critical pressure is larger than the back pressure and for two-phase conditions below saturation pressure. The two-phase critical pressure has a major influence on the two-phase critical flow characteristics. Therefore it is of High significance in calculations of critical mass flux and critical depressurization rate, which are important in the fields of Nuclear Reactor Safety and Industrial Safety. At the Nuclear Reactor Safety field is useful for estimations of the Reactor Cooling System depressurization, the core coolant level, and the pressure build-up in the containment. In the Industrial Safety field it is helpful for estimating the leakage rate of toxic gases Tom liquefied gas pressure vessels, depressurization of pressure vessels, and explosion conditions due to liquefied gas release. For physical description of non-equilibrium two-phase critical flow it would be convenient to divide the flow into two stages. The first stage is the flow of subcooled liquid at constant temperature and uniform pressure drop (i.e., the case of incompressible fluid and uniform piping cross section). The rapid flow of the liquid causes a delay in the boiling of the liquid, which begins to boil below saturation pressure, at thermal non-equilibrium. The boiling is the beginning of the second stage, characterized by a sharp increase of the pressure drop. The liquid temperature on the second stage is almost constant because most of the energy for vaporization is supplied from the large pressure drop The present work will focus on the two-phase critical pressure of water, since water serves as coolant in the vast majority of nuclear power reactors throughout the world. (author).

  11. Critical pressure of non-equilibrium two-phase critical flow

    International Nuclear Information System (INIS)

    Minzer, U.

    1996-01-01

    Critical pressure is defined as the pressure existing at the exit edge of the piping, when it remains constant despite a decrease in the back. According to this definition the critical pressure is larger than the back pressure and for two-phase conditions below saturation pressure. The two-phase critical pressure has a major influence on the two-phase critical flow characteristics. Therefore it is of High significance in calculations of critical mass flux and critical depressurization rate, which are important in the fields of Nuclear Reactor Safety and Industrial Safety. At the Nuclear Reactor Safety field is useful for estimations of the Reactor Cooling System depressurization, the core coolant level, and the pressure build-up in the containment. In the Industrial Safety field it is helpful for estimating the leakage rate of toxic gases Tom liquefied gas pressure vessels, depressurization of pressure vessels, and explosion conditions due to liquefied gas release. For physical description of non-equilibrium two-phase critical flow it would be convenient to divide the flow into two stages. The first stage is the flow of subcooled liquid at constant temperature and uniform pressure drop (i.e., the case of incompressible fluid and uniform piping cross section). The rapid flow of the liquid causes a delay in the boiling of the liquid, which begins to boil below saturation pressure, at thermal non-equilibrium. The boiling is the beginning of the second stage, characterized by a sharp increase of the pressure drop. The liquid temperature on the second stage is almost constant because most of the energy for vaporization is supplied from the large pressure drop The present work will focus on the two-phase critical pressure of water, since water serves as coolant in the vast majority of nuclear power reactors throughout the world. (author)

  12. Inter-arm blood pressure differences compared with ambulatory monitoring: a manifestation of the 'white-coat' effect?

    Science.gov (United States)

    Martin, Una; Holder, Roger; Hodgkinson, James; McManus, Richard

    2013-02-01

    Inter-arm difference in blood pressure of >10 mmHg is associated with peripheral vascular disease, but it is unclear how much of the difference in sequential right and left arm blood pressure measurements might be due to a 'white-coat' effect. To use ambulatory blood pressure monitoring (ABPM) to better understand the clinical significance of inter-arm differences in blood pressure. Retrospective study in a teaching hospital in Birmingham. Anonymised clinical data collected from 784 patients attending a single hospital-based hypertension clinic were retrospectively analysed. Each participant had blood pressure measured sequentially in both arms, followed by ABPM over the subsequent 24 hours. Data were available for 710 (91%) patients, of whom 39.3% (279) had a blood pressure difference of 10 mmHg or more between each arm. Compared to daytime systolic ABPM, the difference was 25.1 mmHg using the arm with the highest reading, but only 15.5 mmHg if the lower reading was taken (mean difference 9.6 mmHg (95% confidence interval [CI] = 9.0 mmHg to 10.3 mmHg)). However, differences between mean right (20.7 mmHg) or left (19.9 mmHg) arm blood pressure and daytime systolic ABPM were very similar. Compared with ABPM, use of the higher of the left and right arm readings measured sequentially appears to overestimate true mean blood pressure. As there is no significant difference in the extent of disparity with ABPM by left or right arm, this is unlikely to be due to arm dominance and may be due to the 'white-coat' effect reducing blood pressure on repeated measurement. Where a large inter-arm blood pressure difference is detected with sequential measurement, healthcare professionals should re-measure the blood pressure in the original arm.

  13. Influence of the Pressure Difference and Door Swing on Heavy Contaminants Migration between Rooms.

    Science.gov (United States)

    Hendiger, Jacek; Chludzińska, Marta; Ziętek, Piotr

    2016-01-01

    This paper presents the results of investigations whose aim was to describe the influence of the pressure difference level on the ability of contaminants migration between neighbouring rooms in dynamic conditions associated with door swing. The analysis was based on airflow visualization made with cold smoke, which simulated the heavy contaminants. The test room was pressurized to a specific level and then the door was opened to observe the trail of the smoke plume in the plane of the door. The door was opened in both directions: to the positively and negatively pressurized room. This study focuses on the visualization of smoke plume discharge and an uncertainty analysis is not applicable. Unlike other studies which focus on the analysis of pressure difference, the present study looks at the contaminants which are heavier than air and on "pumping out" the contaminants by means of door swing. Setting the proper level of pressure difference between the contaminated room and the neighbouring rooms can prove instrumental in ensuring protection against toxic contaminants migration. This study helped to establish the threshold of pressure difference necessary to reduce migration of heavy contaminants to neighbouring rooms.

  14. Saturation and linear transport equation

    International Nuclear Information System (INIS)

    Kutak, K.

    2009-03-01

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  15. Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary

    Science.gov (United States)

    El Sayed, Abdel Moktader A.; El Sayed, Nahla A.

    2017-12-01

    Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.

  16. Radiation pressure induced difference-sideband generation beyond linearized description

    OpenAIRE

    Xiong, Hao; Fan, Y. W.; Yang, X.; Wu, Y.

    2016-01-01

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals...

  17. Micromechanics of non-active clays in saturated state and DEM modelling

    Directory of Open Access Journals (Sweden)

    Pagano Arianna Gea

    2017-01-01

    Full Text Available The paper presents a conceptual micromechanical model for 1-D compression behaviour of non-active clays in saturated state. An experimental investigation was carried out on kaolin clay samples saturated with fluids of different pH and dielectric permittivity. The effect of pore fluid characteristics on one-dimensional compressibility behaviour of kaolin was investigated. A three dimensional Discrete Element Method (DEM was implemented in order to simulate the response of saturated kaolin observed during the experiments. A complex contact model was introduced, considering both the mechanical and physico-chemical microscopic interactions between clay particles. A simple analysis with spherical particles only was performed as a preliminary step in the DEM study in the elastic regime.

  18. Comparative study of interventricular phase difference and pressure gradient in cases of isolated ventricular septal defect

    Energy Technology Data Exchange (ETDEWEB)

    Elhaddad, SH; Moustafa, H; Ziada, G; Seleem, Z; Elsabban, KH; Mahmoud, F [Nuclear medicine department and pediatric cardiology department Faculty of medicine, Cairo university, Cairo, (Egypt)

    1995-10-01

    One hundred and fifty patients with isolated VSD were evaluated by radionuclide MUGA study and Echo-Doppler. Difference between phase angle of the right and left ventricles as detected by MUGA had been divided into main four groups according to pressure gradient between the two ventricles : group I (with pressure gradient {<=}30 mmHg and phase difference 80.10 degree{+-}34.1), group III (with pressure gradient > 70 mmHg and phase difference -0.5 degree {+-} 8.4). It has been found that there was a significant difference between the 4 groups as regards right - to - left ventricular phase difference (P<0.0001). There was significant delay in emptying of right ventricle in groups with pressure gradient < 50 mmHg. Regression analysis revealed inverse correlation between right -to- left ventricular phase difference with changes in pressure gradient (r= 0.81). Similarly, significant correlation had been found between right -to-left ventricular phase difference in relation Qp/Qs (r=0.85); conclusion: interventricular phase difference can be used to evaluate interventricular pressure gradient in cases of isolated VSD. 4 figs., 2 tabs.

  19. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    Science.gov (United States)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  20. Effect of surface loading on the hydro-mechanical response of a tunnel in saturated ground

    Directory of Open Access Journals (Sweden)

    Simon Heru Prassetyo

    2016-09-01

    Full Text Available The design of underground spaces in urban areas must account not only for the current overburden load but also for future surface loads, such as from construction of high-rise buildings above underground structures. In saturated ground, the surface load will generate an additional mechanical response through stress changes and ground displacement, as well as a hydraulic response through pore pressure changes. These hydro-mechanical (H-M changes can severely influence tunnel stability. This paper examines the effect of surface loading on the H-M response of a typical horseshoe-shaped tunnel in saturated ground. Two tunnel models were created in the computer code Fast Lagrangian Analysis of Continua (FLAC. One model represented weak and low permeability ground (stiff clay, and the other represented strong and high permeability ground (weathered granite. Each of the models was run under two liner permeabilities: permeable and impermeable. Two main cases were compared. In Case 1, the surface load was applied 10 years after tunnel construction. In Case 2, the surface load was applied after the steady state pore pressure condition was achieved. The simulation results show that tunnels with impermeable liners experienced the most severe influence from the surface loading, with high pore pressures, large inward displacement around the tunnels, and high bending moments in the liner. In addition, the severity of the response increased toward steady state. This induced H-M response was worse for tunnels in clay than for those in granite. Furthermore, the long-term liner stabilities in Case 1 and Case 2 were similar, indicating that the influence of the length of time between when the tunnel was completed and when the surface load was applied was negligible. These findings suggest that under surface loading, in addition to the ground strength, tunnel stability in saturated ground is largely influenced by liner permeability and the long-term H-M response of

  1. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  2. Interarm Difference in Blood Pressure: Reproducibility and Association with Peripheral Vascular Disease

    Directory of Open Access Journals (Sweden)

    Jesper Mehlsen

    2014-01-01

    Full Text Available The present study aimed at examining the interarm difference in blood pressure and its use as an indicator of peripheral arterial disease (PAD. Data were included from consecutive patients referred from their general practitioner to our vascular laboratory for possible PAD aged 50 years or older without known cardiac disease, renal disease, or diabetes mellitus. 824 patients (453 women with mean age of 72 years (range: 50–101 were included. 491 patients had a diagnosis of hypertension and peripheral arterial disease (PAD was present in 386 patients. Systolic blood pressure was 143 ± 24 mmHg and 142 ± 24 mmHg on the right and left arm, respectively (P=0.015. The interarm difference was greater in patients with hypertension (P=0.002 and PAD (P20 mmHg. This study confirmed the presence of a systematic but clinically insignificant difference in systolic blood pressure between arms. The interarm difference was larger in hypertension and PAD. Consistent lateralisation is present for differences ≥20 mmHg and an interarm difference >25 mmHg is a reliable indicator of PAD in the legs.

  3. Analysis of a microscale 'Saturation Phase-change Internal Carnot Engine'

    International Nuclear Information System (INIS)

    Lurie, Eli; Kribus, Abraham

    2010-01-01

    A micro heat engine, based on a cavity filled with a stationary working fluid under liquid-vapor saturation conditions and encapsulated by two membranes, is described and analyzed. This engine design is easy to produce using MEMS technologies and is operated with external heating and cooling. The motion of the membranes is controlled such that the internal pressure and temperature are constant during the heat addition and removal processes, and thus the fluid executes a true internal Carnot cycle. A model of this Saturation Phase-change Internal Carnot Engine (SPICE) was developed including thermodynamic, mechanical and heat transfer aspects. The efficiency and maximum power of the engine are derived. The maximum power point is fixed in a three-parameter space, and operation at this point leads to maximum power density that scales with the inverse square of the engine dimension. Inclusion of the finite heat capacity of the engine wall leads to a strong dependence of performance on engine frequency, and the existence of an optimal frequency. Effects of transient reverse heat flow, and 'parasitic heat' that does not participate in the thermodynamic cycle are observed.

  4. Improved dq-axes Model of PMSM Considering Airgap Flux Harmonics and Saturation

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Antaloae, Ciprian; Mijatovic, Nenad

    -saturation on constant torque curves of PMSM. Two interior permanent magnet motor with two different rotor topologies and different specifications are designed to evaluate the effect of saturation on synchronous and harmonic inductances, and operating points of the machines.......The classical dq-axes model of permanent magnet synchronous machines (PMSM) uses linear approximation. This was not an issue in earlier versions of PMSM drives because they mostly used surface magnet motors. With the arrival of interior permanent magnet (IPM) machines, which use reluctance torque...... along with magnet torque, the accuracy of linear models are found to be insufficient. In this work, the effect of air gap flux harmonics is included in the classical model of PMSM using d and q-axes harmonic inductances. Further, a method has been presented to assess the effect of saturation and cross...

  5. Minimized Capillary End Effect During CO2 Displacement in 2-D Micromodel by Manipulating Capillary Pressure at the Outlet Boundary in Lattice Boltzmann Method

    Science.gov (United States)

    Kang, Dong Hun; Yun, Tae Sup

    2018-02-01

    We propose a new outflow boundary condition to minimize the capillary end effect for a pore-scale CO2 displacement simulation. The Rothman-Keller lattice Boltzmann method with multi-relaxation time is implemented to manipulate a nonflat wall and inflow-outflow boundaries with physically acceptable fluid properties in 2-D microfluidic chip domain. Introducing a mean capillary pressure acting at CO2-water interface to the nonwetting fluid at the outlet effectively prevents CO2 injection pressure from suddenly dropping upon CO2 breakthrough such that the continuous CO2 invasion and the increase of CO2 saturation are allowed. This phenomenon becomes most pronounced at capillary number of logCa = -5.5, while capillary fingering and massive displacement of CO2 prevail at low and high capillary numbers, respectively. Simulations with different domain length in homogeneous and heterogeneous domains reveal that capillary pressure and CO2 saturation near the inlet are reproducible compared with those with a proposed boundary condition. The residual CO2 saturation uniquely follows the increasing tendency with increasing capillary number, corroborated by experimental evidences. The determination of the mean capillary pressure and its sensitivity are also discussed. The proposed boundary condition is commonly applicable to other pore-scale simulations to accurately capture the spatial distribution of nonwetting fluid and corresponding displacement ratio.

  6. Lamb dip CRDS of highly saturated transitions of water near 1.4 μm

    Science.gov (United States)

    Kassi, S.; Stoltmann, T.; Casado, M.; Daëron, M.; Campargue, A.

    2018-02-01

    Doppler-free saturated-absorption Lamb dips were measured at sub-Pa pressures on rovibrational lines of H216O near 7180 cm-1, using optical feedback frequency stabilized cavity ring-down spectroscopy. The saturation of the considered lines is so high that at the early stage of the ring down, the cavity loss rate remains unaffected by the absorption. By referencing the laser source to an optical frequency comb, transition frequencies are determined down to 100 Hz precision and kHz accuracy. The developed setup allows resolving highly K-type blended doublets separated by about 10 MHz (to be compared to a HWHM Doppler width on the order of 300 MHz). A comparison with the most recent spectroscopic databases is discussed. The determined K-type splittings are found to be very well predicted by the most recent variational calculations.

  7. Mental abilities and performance efficacy under a simulated 480 meters helium-oxygen saturation diving

    Directory of Open Access Journals (Sweden)

    gonglin ehou

    2015-07-01

    Full Text Available Stress in extreme environment severely disrupts human physiology and mental abilities. The present study investigated the cognition and performance efficacy of four divers during a simulated 480 meters helium-oxygen saturation diving. We analyzed the spatial memory, 2D/3D mental rotation functioning, grip strength, and hand-eye coordination ability in four divers during the 0 – 480 meters compression and decompression processes of the simulated diving. The results showed that except for its mild decrease on grip strength, the high atmosphere pressure condition significantly impaired the hand-eye coordination (especially at 300 meters, the reaction time and correct rate of mental rotation, as well as the spatial memory (especially as 410 meters, showing high individual variability. We conclude that the human cognition and performance efficacy are significantly affected during deep water saturation diving.

  8. Gluon Saturation and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Sichtermann, Ernst

    2016-12-15

    The fundamental structure of nucleons and nuclear matter is described by the properties and dynamics of quarks and gluons in quantum chromodynamics. Electron-nucleon collisions are a powerful method to study this structure. As one increases the energy of the collisions, the interaction process probes regions of progressively higher gluon density. This density must eventually saturate. An high-energy polarized Electron-Ion Collider (EIC) has been proposed to observe and study the saturated gluon density regime. Selected measurements will be discussed, following a brief introduction.

  9. Void fraction prediction in saturated flow boiling

    International Nuclear Information System (INIS)

    Francisco J Collado

    2005-01-01

    saturated flow boiling at several pressures of industrial interest. The first result is that the measured specific linear heat is not at all equal to the mixture enthalpy gradient based on the true quality, the difference being a factor quite close to the classic value of the slip ratio, suggesting that this parameter should be included in the thermodynamic heat balance. Furthermore it has been possible to predict this slip factor from the process parameters namely, inlet pressure and velocity, and heat flux. Hence allowing the accurate prediction of the true mass quality from the modified heat balance and so, from classic thermodynamic relationships, to derive accurate values of the void fraction that compares quite well with the measured ones in the Cambridge project. (author)

  10. A new treatment of capillarity to improve the stability of IMPES two-phase flow formulation

    KAUST Repository

    Kou, Jisheng

    2010-12-01

    In this paper, we present an efficient numerical method for two-phase immiscible flow in porous media with different capillarity pressures. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressure functions. One popular scheme is to split the system into a pressure and a saturation equation, and to apply IMplicit Pressure Explicit Saturation (IMPES) approach for time stepping. One disadvantage of IMPES is instability resulting from the explicit treatment for capillary pressure. To improve stability, the capillary pressure is usually incorporated in the saturation equation which gradients of saturation appear. This approach, however, does not apply to the case of different capillary pressure functions for multiple rock-types, because of the discontinuity of saturation across rock interfaces. In this paper, we present a new treatment of capillary pressure, which appears implicitly in the pressure equation. Using an approximation of capillary function, we substitute the implicit saturation equation into the pressure equation. The coupled pressure equation will be solved implicitly and followed by the explicit saturation equation. Five numerical examples are provided to demonstrate the advantages of our approach. Comparison shows that our proposed method is more efficient and stable than the classical IMPES approach. © 2010 Elsevier Ltd.

  11. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics.

    Science.gov (United States)

    Chen, Hao; Yin, Jinde; Yang, Jingwei; Zhang, Xuejun; Liu, Mengli; Jiang, Zike; Wang, Jinzhang; Sun, Zhipei; Guo, Tuan; Liu, Wenjun; Yan, Peiguang

    2017-11-01

    In this Letter, high-quality WS 2 film and MoS 2 film were vertically stacked on the tip of a single-mode fiber in turns to form heterostructure (WS 2 -MoS 2 -WS 2 )-based saturable absorbers with all-fiber integrated features. Their nonlinear saturable absorption properties were remarkable, such as a large modulation depth (∼16.99%) and a small saturable intensity (6.23  MW·cm -2 ). Stable pulses at 1.55 μm with duration as short as 296 fs and average power as high as 25 mW were obtained in an erbium-doped fiber laser system. The results demonstrate that the proposed heterostructures own remarkable nonlinear optical properties and offer a platform for adjusting nonlinear optical properties by stacking different transition-metal dichalcogenides or modifying the thickness of each layer, paving the way for engineering functional ultrafast photonics devices with desirable properties.

  12. Characteristics of the Na/beta-alumina/Na cell as a sodium vapor pressure sensor

    International Nuclear Information System (INIS)

    Takikawa, O.; Imai, A.; Harata, M.

    1982-01-01

    The EMF and voltage-current characteristics for a galvanic cell with the configuration Na vapor (P 1 )/sodium beta-alumina/Na vapor (P 2 ) were studied. It was verified that the EMF followed the Nernst relation over a wide pressure range. For example, when P 1 = 2 x 10 -2 mm Hg and beta-alumina temperature = 340 0 C, the measured EMF agreed with the calculated value in P 2 range from 10 -5 to 10 -2 mm Hg. At lower pressure range, the measured EMF showed a negative deviation. Coexisting argon gas did not influence the cell EMF characteristic. In an atmosphere containing oxygen, the measured EMF was very high at first. Then it decreased and finally approached a value which agreed with the Nernst equation after several hours. At low beta-alumina temperatures, current saturation was observed in the voltage versus current relation with the anode on the P 2 side. Although the sodium pressure could be determined from saturating current measurement, the measurable pressure range was narrower than that for EMF measurement. At high beta-alumina temperature, current saturation was not clear. Values of 6 x 10 -6 (Ω cm) -1 for the electron conductivity and 6 x 10 -10 (Ω cm) -1 for the hole conductivity at 340 0 C were obtained for beta-alumina from the voltage-current characteristics at low sodium pressure. (Auth.)

  13. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    Science.gov (United States)

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  14. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    Science.gov (United States)

    2014-11-01

    Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures Allan Fong, MS1,3, Ranjeev...the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the...type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network

  15. Effect of soil saturation on denitrification in a grassland soil

    Directory of Open Access Journals (Sweden)

    L. M. Cardenas

    2017-10-01

    Full Text Available Nitrous oxide (N2O is of major importance as a greenhouse gas and precursor of ozone (O3 destruction in the stratosphere mostly produced in soils. The soil-emitted N2O is generally predominantly derived from denitrification and, to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water-filled pore space (WFPS is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N2O and N2 were measured as well as the isotopocules of N2O. We found that flux variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71 % WFSP. The isotopocules data indicated isotopic similarities in the wettest treatments vs. the two drier ones. The results agreed with previous findings where it is clear there are two N pools with different dynamics: added N producing intense denitrification vs. soil N resulting in less isotopic fractionation.

  16. [Tissue oxygen saturation in the critically ill patient].

    Science.gov (United States)

    Gruartmoner, G; Mesquida, J; Baigorri, F

    2014-05-01

    Hemodynamic resuscitation seeks to correct global macrocirculatory parameters of pressure and flow. However, current evidence has shown that despite the normalization of these global parameters, microcirculatory and regional perfusion alterations can persist, and these alterations have been independently associated with a poorer patient prognosis. This in turn has lead to growing interest in new technologies for exploring regional circulation and microcirculation. Near infra-red spectroscopy allows us to monitor tissue oxygen saturation, and has been proposed as a noninvasive, continuous and easy-to-obtain measure of regional circulation. The present review aims to summarize the existing evidence on near infra-red spectroscopy and its potential clinical role in the resuscitation of critically ill patients in shock. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  17. Different centre of pressure patterns within the golf stroke II: group-based analysis.

    Science.gov (United States)

    Ball, K A; Best, R J

    2007-05-01

    Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the "Front Foot" and "Reverse" styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.

  18. Potential benefits of saturation cycle with two-phase refrigerant injection

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard; Chun, Ho-Hwan

    2013-01-01

    In this paper, a saturation cycle is proposed to enhance a vapor compression cycle performance by reducing thermodynamic losses associated with single phase gas compression and isenthalpic expansion. In order to approach the saturation cycle, a two-phase refrigerant injection technique is applied to the multi-stage cycle. This multi-stage cycle with different options is modeled, and its performance is evaluated under ASHRAE standard operating conditions for air conditioning systems. Moreover, the two-phase refrigerant injection cycle is compared with the typical vapor injection cycle which is utilizing the internal heat exchanger or the flash tank. Low GWP refrigerants are applied to this two-phase refrigerant injection cycle. In terms of the COP and its improvement, R123 has a higher potential than any other refrigerants in the multi-stage cycle. Lastly, practical ideas realizing the saturation cycle are discussed such as multi-stage phase separator, phase separator with helical structure inside, and injection location of the compressor. -- Highlights: • A saturation cycle is proposed to enhance the vapor compression cycle performance. • Two-phase refrigerant injection technique is applied to the multi-stage cycle. • Modeling results of the proposed cycle show the significant performance improvement. • Low GWP refrigerants are applied and R123 shows the highest performance. • New parameters, α and ε, are used to show the potential of the saturation cycle

  19. Receptor saturation in roentgen films

    Energy Technology Data Exchange (ETDEWEB)

    Strid, K G; Reichmann, S [Sahlgrenska Sjukhuset, Goeteborg (Sweden)

    1980-01-01

    Roentgen-film recording of small object details of low attenuation differences (e.g. pulmonary vessels) is regularly seen to be impaired when the film is exposed to yield high values of optical density (D). This high-density failure is due to receptor saturation, which implies that at high exposure values most silver halide grains of the film are made developable, leaving few grains available to receive additional informative photons. The receptor saturation is analysed by means of a mathematical model of a non-screen film yielding Dsub(max) = 2.0. Optimum recording, defined by maximum signal-to-noise ratio in the image, is found at D approximately 0.64, corresponding to, on an average, 1.6 photons absorbed per grain. On the other hand, maximum contrast occurs at D approximately 1.4, where, on the average, 3.6 photons are absorbed per grain. The detective quantum efficiency of the film, i.e. the fraction of the photons actually contributing to the information content of the image, drops from 41 per cent at maximum signal-to-noise ratio to a mere 10 per cent at maximum contrast.

  20. Energy dependent saturable and reverse saturable absorption in cube-like polyaniline/polymethyl methacrylate film

    Energy Technology Data Exchange (ETDEWEB)

    Thekkayil, Remyamol [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Bangalore 560 080 (India); Gopinath, Pramod [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India)

    2014-08-01

    Solid films of cube-like polyaniline synthesized by inverse microemulsion polymerization method have been fabricated in a transparent PMMA host by an in situ free radical polymerization technique, and are characterized by spectroscopic and microscopic techniques. The nonlinear optical properties are studied by open aperture Z-scan technique employing 5 ns (532 nm) and 100 fs (800 nm) laser pulses. At the relatively lower laser pulse energy of 5 μJ, the film shows saturable absorption both in the nanosecond and femtosecond excitation domains. An interesting switchover from saturable absorption to reverse saturable absorption is observed at 532 nm when the energy of the nanosecond laser pulses is increased. The nonlinear absorption coefficient increases with increase in polyaniline concentration, with low optical limiting threshold, as required for a good optical limiter. - Highlights: • Synthesized cube-like polyaniline nanostructures. • Fabricated polyaniline/PMMA nanocomposite films. • At 5 μJ energy, saturable absorption is observed both at ns and fs regime. • Switchover from SA to RSA is observed as energy of laser beam increases. • Film (0.1 wt % polyaniline) shows high β{sub eff} (230 cm GW{sup −1}) and low limiting threshold at 150 μJ.

  1. [The interarm blood pressure difference in the critically ill patient].

    Science.gov (United States)

    Valls Matarín, Josefa; del Cotillo Fuente, Mercedes; Quintana Riera, Salvador; de la Sierra Iserte, Alejandro

    2014-02-04

    To evaluate the prevalence of a difference in systolic blood pressure (SBPd) ≥ 10 mmHg between arms in patients admitted in a Critical Care Unit and to examine the clinical characteristics associated with such blood pressure difference. Observational cross-sectional study. Two blood pressure measurements in each arm were carried out at unit admission. The firstly measured arm was chosen at random. One-hundred and sixty-eight patients were studied, with a mean age of 61 (SD=16), 67.3% male and 45% with a previous hypertension diagnosis. On admission, 27.4% presented SBPd ≥ 10 mmHg. Among them, 54% had higher SBP in the right arm and 46% in the left one. A SBPd ≥ 10 mmHg was associated with a previous hypertension diagnosis (67.4 versus 36.9%; Parms. This feature is associated with a previous hypertension diagnosis and reduced consciousness. It should be assessed in the future if the choice of a control arm would help improve patient's care as it would become a more accurate guide for hemodynamic management. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  2. Stress transfer from pile group in saturated and unsaturated soil using theoretical and experimental approaches

    Directory of Open Access Journals (Sweden)

    al-Omari Raid R.

    2017-01-01

    Full Text Available Piles are often used in groups, and the behavior of pile groups under the applied loads is generally different from that of single pile due to the interaction of neighboring piles, therefore, one of the main objectives of this paper is to investigate the influence of pile group (bearing capacity, load transfer sharing for pile shaft and tip in comparison to that of single piles. Determination of the influence of load transfer from the pile group to the surrounding soil and the mechanism of this transfer with increasing the load increment on the tip and pile shaft for the soil in saturated and unsaturated state (when there is a negative pore water pressure. Different basic properties are used that is (S = 90%, γd = 15 kN / m3, S = 90%, γd = 17 kN / m3 and S = 60%, γd =15 kN / m3. Seven model piles were tested, these was: single pile (compression and pull out test, 2×1, 3×1, 2×2, 3×2 and 3×3 group. The stress was measured with 5 cm diameter soil pressure transducer positioned at a depth of 5 cm below the pile tip for all pile groups. The measured stresses below the pile tip using a soil pressure transducer positioned at a depth of 0.25L (where L is the pile length below the pile tip are compared with those calculated using theoretical and conventional approaches. These methods are: the conventional 2V:1H method and the method used the theory of elasticity. The results showed that the method of measuring the soil stresses with soil pressure transducer adopted in this study, gives in general, good results of stress transfer compared with the results obtained from the theoretical and conventional approaches.

  3. Comparison study between the effects of different terms contributing to viscous dissipation in saturated porous media

    KAUST Repository

    Salama, Amgad

    2013-02-01

    Some sort of controversy is associated with the problem of viscous dissipation in saturated porous media for which we try to present a comparison study between the influences of the different terms contributing to this phenomenon. We consider viscous dissipation by studying the case of semi-infinite flat plate embedded in saturated porous medium and is kept at constant, higher temperature compared with the surrounding fluid. The fluid is induced to move upwards by natural convection during which viscous dissipation is considered. The boundary layer assumptions are considered to simplify the treatment and to highlight the influencing parameters. The behavior of temperature, and velocity fields in the neighborhood of the vertical flat plate were used to highlight the effects of these parameters. Three terms were considered to contribute to viscous dissipation, namely Darcy\\'s term, the Forchheimer term and Al-Hadharami\\'s term. Although there are no unanimous agreements between researchers to include the Forchhemier term in the dissipation function, some researchers argued it might have an indirect effect and hence for this sake and for completion purposes, we include it in this comparison study. Dimensional considerations reveal that Darcy\\'s term is influenced by Gebhart number, the Forchheimer term is controlled by the non-Darcy parameter and Al-Hadharami\\'s term is influenced by Darcy\\'s number. The governing, non-dimensional set of equations together with the imposed boundary conditions is numerically investigated by finite element method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e., viscous dissipation) is very much influenced by the relative magnitude of these dimensionless parameters. © 2012 Elsevier Masson SAS. All rights reserved.

  4. Association between minor loading vein architecture and light- and CO2-saturated rates of photosynthetic oxygen evolution among Arabidopsis thaliana ecotypes from different latitudes

    Directory of Open Access Journals (Sweden)

    Christopher M Cohu

    2013-07-01

    Full Text Available Through microscopic analysis of veins and assessment of light- and CO2-saturated rates of photosynthetic oxygen evolution, we investigated the relationship between minor loading vein anatomy and photosynthesis of mature leaves in three ecotypes of Arabidopsis thaliana grown under four different combinations of temperature and photon flux density (PFD. All three ecotypes exhibited greater numbers and cross-sectional area of phloem cells as well as higher photosynthesis rates in response to higher PFD and especially lower temperature. The Swedish ecotype exhibited the strongest response to these conditions, the Italian ecotype the weakest response, and the Col-0 ecotype exhibited an intermediate response. Among all three ecotypes, strong linear relationships were found between light- and CO2-saturated rates of photosynthetic oxygen evolution and the number and area of either sieve elements or of companion and phloem parenchyma cells in foliar minor loading veins, with the Swedish ecotype showing the highest number of cells in minor loading veins (and largest minor veins coupled with unprecedented high rates of photosynthesis. Linear, albeit less significant, relationships were also observed between number and cross-sectional area of tracheids per minor loading vein versus light- and CO2-saturated rates of photosynthetic oxygen evolution. We suggest that sugar distribution infrastructure in the phloem is co-regulated with other features that set the upper limit for photosynthesis. The apparent genetic differences among Arabidopsis ecotypes should allow for future identification of the gene(s involved in augmenting sugar-loading and -transporting phloem cells and maximal rates of photosynthesis.

  5. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m -2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation. © 2013 Elsevier B.V. All rights reserved.

  6. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    Science.gov (United States)

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have beendeveloped based on different approac...

  7. Inter-arm blood pressure differences compared with ambulatory monitoring: a manifestation of the ‘white-coat’ effect?

    Science.gov (United States)

    Martin, Una; Holder, Roger; Hodgkinson, James; McManus, Richard

    2013-01-01

    Background Inter-arm difference in blood pressure of >10 mmHg is associated with peripheral vascular disease, but it is unclear how much of the difference in sequential right and left arm blood pressure measurements might be due to a ‘white-coat’ effect. Aim To use ambulatory blood pressure monitoring (ABPM) to better understand the clinical significance of inter-arm differences in blood pressure. Design and setting Retrospective study in a teaching hospital in Birmingham. Method Anonymised clinical data collected from 784 patients attending a single hospital-based hypertension clinic were retrospectively analysed. Each participant had blood pressure measured sequentially in both arms, followed by ABPM over the subsequent 24 hours. Result Data were available for 710 (91%) patients, of whom 39.3% (279) had a blood pressure difference of 10 mmHg or more between each arm. Compared to daytime systolic ABPM, the difference was 25.1 mmHg using the arm with the highest reading, but only 15.5 mmHg if the lower reading was taken (mean difference 9.6 mmHg (95% confidence interval [CI] = 9.0 mmHg to 10.3 mmHg)). However, differences between mean right (20.7 mmHg) or left (19.9 mmHg) arm blood pressure and daytime systolic ABPM were very similar. Conclusion Compared with ABPM, use of the higher of the left and right arm readings measured sequentially appears to overestimate true mean blood pressure. As there is no significant difference in the extent of disparity with ABPM by left or right arm, this is unlikely to be due to arm dominance and may be due to the ‘white-coat’ effect reducing blood pressure on repeated measurement. Where a large inter-arm blood pressure difference is detected with sequential measurement, healthcare professionals should re-measure the blood pressure in the original arm. PMID:23561681

  8. Occurrence of Two Different Types of Paleoarchean TTGs in Singhbhum craton, Eastern India: Insight from Geochemistry and Zircon Saturation Thermometry

    Science.gov (United States)

    Mitra, A.; Dey, S.

    2017-12-01

    Paleoarchean era is marked as an active period of continental crust genesis. A large part of the paleoarchean crust is made up of grey sodic granitoids collectively referred as Tonalite Trondjhemite Granodiorite (TTG). Generation and evolution of TTGs are still highly debated, though researchers agree on their generation through partial melting of hydrated basalt at garnet or amphibole stability field. Discrete remnants of paleoarchean TTGs are exposed in several parts of the Singhbhum craton, eastern India. Our study exhibits occurrence of two different types of TTGs based on REE pattern in a chondrite normalized REE diagram. Accordingly, TTGs have been grouped into two different types, namely (1) High HREE TTG [low SiO2; high HREE avg. (Gd/Er)n=2.23; less fractionated REE avg. (La/Yb)n=27.9 and relatively low Sr/Y avg. Sr/Y=53.59] and Low HREE TTG [high SiO2; depleted HREE avg. (Gd/Er)n=3.23; steeply fractionated REE avg. (La/Yb)n=46.11 and relatively high Sr/Y avg. Sr/Y= 95.49]. The two types of TTGs mainly differ in pressure sensitive signatures like Sr/Y and (La/Yb)n ratio. Considering the major element composition both the types are consistent with a low-K mafic source. This indicates, melting occurred at different crustal levels from a same/similar source. Moderate Al2O3, high Sr contents coupled with depleted HREE and Y are linked to the presence of garnet in either residual or fractionating phase. However, HREE variation is controlled by the amount of Garnet retained in the restite. Thus, in spite of melting of the source rock in garnet stability field, only the minor change in depth of melting and in turn different amount of retention of garnet in the source caused the difference in HREE pattern. Zircon saturation temperature (TZr) calculated on the basis of whole rock Zr concentration ranges from 735˚C to 760 ˚C (avg. 749˚C) for high HREE TTG and 750 ˚C to 802˚C (avg. 773˚C) for low HREE TTG. Absence of zircon xenocryst depicts zircon

  9. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    International Nuclear Information System (INIS)

    Liu Chuan-Jiang; Zheng Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO 4 ) phase precipitates at 250–320°C in the pressure range of 1.0–1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO 4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T−0.7126 (250°C≤T≤320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature. (geophysics, astronomy, and astrophysics)

  10. Correcting saturation of detectors for particle/droplet imaging methods

    International Nuclear Information System (INIS)

    Kalt, Peter A M

    2010-01-01

    Laser-based diagnostic methods are being applied to more and more flows of theoretical and practical interest and are revealing interesting new flow features. Imaging particles or droplets in nephelometry and laser sheet dropsizing methods requires a trade-off of maximized signal-to-noise ratio without over-saturating the detector. Droplet and particle imaging results in lognormal distribution of pixel intensities. It is possible to fit a derived lognormal distribution to the histogram of measured pixel intensities. If pixel intensities are clipped at a saturated value, it is possible to estimate a presumed probability density function (pdf) shape without the effects of saturation from the lognormal fit to the unsaturated histogram. Information about presumed shapes of the pixel intensity pdf is used to generate corrections that can be applied to data to account for saturation. The effects of even slight saturation are shown to be a significant source of error on the derived average. The influence of saturation on the derived root mean square (rms) is even more pronounced. It is found that errors on the determined average exceed 5% when the number of saturated samples exceeds 3% of the total. Errors on the rms are 20% for a similar saturation level. This study also attempts to delineate limits, within which the detector saturation can be accurately corrected. It is demonstrated that a simple method for reshaping the clipped part of the pixel intensity histogram makes accurate corrections to account for saturated pixels. These outcomes can be used to correct a saturated signal, quantify the effect of saturation on a derived average and offer a method to correct the derived average in the case of slight to moderate saturation of pixels

  11. A pitfall in the measurement of arterial blood pressure in the ischaemic limb during elevation

    DEFF Research Database (Denmark)

    Bülow, J; Jelnes, Rolf

    1987-01-01

    In order to evaluate if elevation of the ischaemic limb above heart level is an alternative to the conventionally applied method with external counterpressure for estimation of skin perfusion pressure, femoral and popliteal artery pressures were measured directly in eight patients with occlusion...... of the superficial femoral artery. The measurements were done in the horizontal position and during elevation of the calf above heart level. During elevation relative blood flow, measured by arterio-venous oxygen saturation differences, decreased compared with the horizontal position. In contrast the popliteal...... arterial pressure decreased only by 20% of the value expected from the degree of elevation of the calf above the level of the heart. Thus, it could be calculated that calf vascular resistance increased two- to three-fold on average during elevation. Four patients were reexamined with the venous pressure...

  12. Differences in center of pressure trajectory between normal and steppage gait

    Science.gov (United States)

    Jamshidi, Nima; Rostami, Mostafa; Najarian, Siamak; Menhaj, Mohammad Bagher; Saadatnia, Mohammad; Salami, Firooz

    2010-01-01

    BACKGROUND: This pilot study aimed to assess the differences in center of pressure trajectory in neuropathic patients with steppage gait. Steppage gait has previously been evaluated by several biomechanical methods, but plantar pressure distribution has been much less studied. The purpose of this study was to analyze the changes in center of pressure trajectory using a force plate. METHODS: The steppage gait group was selected from the patients using drop foot brace (25 male) and the control group was selected from Isfahan university students (20 male). They walked at self- selected speed at a mean of ten trials (+2) to collect the center of pressure using a force plate. Center of pressure patterns were categorized into four patterns based on the center of pressure displacement magnitude (spatial features) through time (temporal features) when the longitudinal axis of the insole was plotted as the Y- axis and the transverse axis of the insole as X- axis during stance phase. RESULTS: The horizontal angle measured from center of pressure linear regression was positive in the control group (4.6 ± 2.4) (p < 0.005), but negative in the patient group (- 2.3 ± 1.6) (p < 0.005). CONCLUSIONS: The finding of this research measured center of pressure trajectory in steppage gait over time, which is useful for designing better shoe sole and also orthopaedic device and better understanding of stability in patients with drop foot. PMID:21526056

  13. Differences in center of pressure trajectory between normal and steppage gait

    Directory of Open Access Journals (Sweden)

    Nima Jamshidi

    2010-01-01

    Full Text Available Background: This pilot study aimed to assess the differences in center of pressure trajectory in neuropathic patients with steppage gait. Steppage gait has previously been evaluated by several biomechanical methods, but plantar pressure distribution has been much less studied. The purpose of this study was to analyze the changes in center of pressure tra-jectory using a force plate. Methods: The steppage gait group was selected from the patients using drop foot brace (25 male and the control group was selected from Isfahan university students (20 male. They walked at self- selected speed at a mean of ten tri-als (+2 to collect the center of pressure using a force plate. Center of pressure patterns were categorized into four pat-terns based on the center of pressure displacement magnitude (spatial features through time (temporal features when the longitudinal axis of the insole was plotted as the Y- axis and the transverse axis of the insole as X- axis during stance phase. Results: The horizontal angle measured from center of pressure linear regression was positive in the control group (4.6 ± 2.4 (p < 0.005, but negative in the patient group (- 2.3 ± 1.6 (p < 0.005. Conclusions: The finding of this research measured center of pressure trajectory in steppage gait over time, which is useful for designing better shoe sole and also orthopaedic device and better understanding of stability in patients with drop foot.

  14. Micro-poromechanics model of fluid-saturated chemically active fibrous media.

    Science.gov (United States)

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2015-02-01

    We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.

  15. Energy and Emission Characteristics of a Short-Arc Xenon Flash Lamp Under "Saturated" Optical Brightness Conditions

    Science.gov (United States)

    Kamrukov, A. S.; Kireev, S. G.; Kozlov, N. P.; Shashkovskii, S. G.

    2017-09-01

    We present the results of a study of the electrical, energy, and spectral brightness characteristics of an experimental three-electrode high-pressure xenon flash lamp under conditions ensuring close to maximum possible spectral brightness for the xenon emission. We show that under saturated optical brightness conditions (brightness temperature in the visible region of the spectrum 30,000 K), emission of a pulsed discharge in xenon is quite different from the emission from an ideal blackbody: the maximum brightness temperatures are 24,000 K in the short-wavelength UV region and 19,000 K in the near IR range. The relative fraction of UV radiation in the emission spectrum of the lamp is >50%, which lets us consider such lamps as promising broadband sources of radiation with high spectral brightness for many important practical applications.

  16. Ultrafast THz Saturable Absorption in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  17. Predicting the occurrence of mixed mode failure associated with hydraulic fracturing, part 2 water saturated tests

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broome, Scott Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Choens, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barrow, Perry Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-14

    Seven water-saturated triaxial extension experiments were conducted on four sedimentary rocks. This experimental condition was hypothesized more representative of that existing for downhole hydrofracture and thus it may improve our understanding of the phenomena. In all tests the pore pressure was 10 MPa and confirming pressure was adjusted to achieve tensile and transitional failure mode conditions. Using previous work in this LDRD for comparison, the law of effective stress is demonstrated in extension using this sample geometry. In three of the four lithologies, no apparent chemo-mechanical effect of water is apparent, and in the fourth lithology test results indicate some chemo-mechanical effect of water.

  18. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  19. Electrical conductivity modeling in fractal non-saturated porous media

    Science.gov (United States)

    Wei, W.; Cai, J.; Hu, X.; Han, Q.

    2016-12-01

    The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.

  20. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts

    Science.gov (United States)

    Liu, Yanan; Samaha, Naji-Tom; Baker, Don R.

    2007-04-01

    The sulfur concentration in silicate melts at sulfide saturation (SCSS) was experimentally investigated in a temperature range from 1150 to 1450 °C and a pressure range from 500 MPa to 1 GPa in a piston-cylinder apparatus. The investigated melt compositions varied from rhyolitic to basaltic and water concentrations varied from 0 to ˜9 wt%. All experiments were saturated with FeS melt or pyrrhotite crystals. Temperature was confirmed to have a positive effect on the SCSS. Experimental oxygen fugacities were either near the carbon-carbon monoxide buffer or one log unit above the nickel-nickel oxide buffer, and found to positively affect the SCSS. Combining our results with data from the literature we constructed a model to predict the SCSS in melts ranging in composition from komatiitic to rhyolitic, with water concentrations from 0 to 9 wt%, at pressures from 1 bar to 9 GPa and oxygen fugacities between ˜2 log units below the fayalite-magnetite-quartz buffer to ˜2 log units above it. The coefficients were obtained by multiple linear regression of experimental data and the best model found for the prediction of the SCSS is: ln(Sinppm)=11.35251-{4454.6}/{T}-0.03190{P}/{T}+0.71006ln(MFM)-1.98063[(MFM)(XO)]+0.21867ln(XO)+0.36192lnX where P is in bar, T is in K, MFM is a compositional parameter describing the melt based upon cation mole fractions: MFM={Na+K+2(Ca+Mg+Fe)}/{Si×(Al+Fe)}, XO is the mole fraction of water in the melt, and X is the mole fraction of FeO in the melt. This model was independently tested against experiments performed on anhydrous and hydrous melts in the temperature range from 800 to 1800 °C and 1-9 GPa. The model typically predicts the measured values of the natural log of the SCSS (in ppm) for komatiitic to rhyolitic (˜42 to ˜74 wt% SiO 2) melts to within 5% relative, but is less accurate for high-silica (>76 wt% SiO 2) rhyolites, especially those with molar ratios of iron to sulfur below 2. We demonstrate how this model can be used with

  1. A Parallel Saturation Algorithm on Shared Memory Architectures

    Science.gov (United States)

    Ezekiel, Jonathan; Siminiceanu

    2007-01-01

    Symbolic state-space generators are notoriously hard to parallelize. However, the Saturation algorithm implemented in the SMART verification tool differs from other sequential symbolic state-space generators in that it exploits the locality of ring events in asynchronous system models. This paper explores whether event locality can be utilized to efficiently parallelize Saturation on shared-memory architectures. Conceptually, we propose to parallelize the ring of events within a decision diagram node, which is technically realized via a thread pool. We discuss the challenges involved in our parallel design and conduct experimental studies on its prototypical implementation. On a dual-processor dual core PC, our studies show speed-ups for several example models, e.g., of up to 50% for a Kanban model, when compared to running our algorithm only on a single core.

  2. Pore-scale modeling of vapor transport in partially saturated capillary tube with variable area using chemical potential

    DEFF Research Database (Denmark)

    Addassi, Mouadh; Schreyer, Lynn; Johannesson, Björn

    2016-01-01

    Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters and the nu......Here we illustrate the usefulness of using the chemical potential as the primary unknown by modeling isothermal vapor transport through a partially saturated cylindrically symmetric capillary tube of variable cross-sectional area using a single equation. There are no fitting parameters...... and the numerical solutions to the equation are compared with experimental results with excellent agreement. We demonstrate that isothermal vapor transport can be accurately modeled without modeling the details of the contact angle, microscale temperature fluctuations, or pressure fluctuations using a modification...

  3. Site-Scale Saturated Zone Flow Model

    International Nuclear Information System (INIS)

    G. Zyvoloski

    2003-01-01

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being

  4. Organic Dye Effects on DNAPL Entry Pressure in Water Saturated Porous Media

    International Nuclear Information System (INIS)

    Iversen, G.M.

    2001-01-01

    One of three diazo dyes with the same fundamental structure have been used in most studies of DNAPL behavior in porous media to stain the NAPL: Sudan III, Sudan IV, or Oil-Red-O. The dyes are generally implicitly assumed to not influence DNAPL behavior. That assumption was tested using simple entry pressure experiments

  5. Can the water content of highly compacted bentonite be increased by applying a high water pressure?

    International Nuclear Information System (INIS)

    Pusch, R.; Kasbohm, J.

    2001-10-01

    A great many laboratory investigations have shown that the water uptake in highly compacted MX-80 clay takes place by diffusion at low external pressure. It means that wetting of the clay buffer in the deposition holes of a KBS-3 repository is very slow if the water pressure is low and that complete water saturation can take several tens of years if the initial degree of water saturation of the buffer clay and the ability of the rock to give off water are low. It has therefore been asked whether injection of water can raise the degree of water saturation and if a high water pressure in the nearfield can have the same effect. The present report describes attempts to moisten highly compacted blocks of MX-80 clay with a dry density of 1510 kg/m 3 by injecting water under a pressure of 650 kPa through a perforated injection pipe for 3 and 20 minutes, respectively. The interpretation was made by determining the water content of a number of samples located at different distances from the pipe. An attempt to interpret the pattern of distribution of injected uranium acetate solution showed that the channels into which the solution went became closed in a few minutes and that dispersion in the homogenized clay gave low U-concentrations. The result was that the water content increased from about 9 to about 11-12 % within a distance of about 1 centimeter from the injection pipe and to slightly more than 9 % at a distance of about 4-5 cm almost independently of the injection time. Complete water saturation corresponds to a water content of about 30 % and the wetting effect was hence small from a practical point of view. By use of microstructural models it can be shown that injected water enters only the widest channels that remain after the compaction and that these channels are quickly closed by expansion of the hydrating surrounding clay. Part of the particles that are thereby released become transported by the flowing water and cause clogging of the channels, which is

  6. ORANGE JUICE AND BLOOD PRESSURE

    Directory of Open Access Journals (Sweden)

    M. F. VALIM

    2009-01-01

    Full Text Available

    Blood pressure is the force of blood against artery walls. It is measured in millimeters of mercury (mm Hg and recorded as two numbers: systolic pressure (as the heart contracts over diastolic pressure (as the heart relaxes between beats. High blood pressure (hypertension is defined as chronically elevated high blood pressure, with systolic blood pressure (SBP of 140 mm Hg or greater, and diastolic blood pressure (DBP of 90 mm Hg or greater. High blood pressure (HBP, smoking, abnormal blood lipid levels, obesity and diabetes are risk factors for coronary heart disease, the leading cause of death in the US. Lifestyle modifications such as engaging in regular physical activity, quitting smoking and eating a healthy diet (limiting intake of saturated fat and sodium and increasing consumption of fiber, fruits and vegetables are advocated for the prevention, treatment, and control of HBP. As multiple factors influence blood pressure, the effects of each factor are typically modest, particularly in normotensive subjects, yet the combined effects can be substantial. Nutrition plays an important role in influencing blood pressure. Orange juice should be included as part of any low sodium diet and/or any blood pressure reducing eating plan, as it is sodium free, fat-free and can help meet recommended levels of potassium intake that may contribute to lower BP.

  7. Core Flooding Experiments Combined with X-rays and Micro-PET Imaging as a Tool to Calculate Fluid Saturations in a Fracture

    Science.gov (United States)

    Gran, M.; Zahasky, C.; Garing, C.; Pollyea, R. M.; Benson, S. M.

    2017-12-01

    One way to reduce CO2 emissions is to capture CO2 generated in power plants and other industrial sources to inject it into a geological formation. Sedimentary basins are the ones traditionally used to store CO2 but the emission sources are not always close to these type of basins. In this case, basalt rocks present a good storage alternative due their extent and also their potential for mineral trapping. Flow through basaltic rocks is governed by the permeable paths provided by rock fractures. Hence, knowing the behavior of the multiphase flow in these fractures becomes crucial. With the aim to describe how aperture and liquid-gas interface changes in the fracture affect relative permeability and what are the implications of permeability stress dependency, a series of core experiments were conducted. To calculate fracture apertures and fluid saturations, core flooding experiments combined with medical X-Ray CT scanner and micro-PET imaging (Micro Positron Emission Tomography) were performed. Capillary pressure and relative permeability drainage curves were simultaneously measured in a fractured basalt core under typical storage reservoir pressures and temperatures. The X-Ray scanner allows fracture apertures to be measured quite accurately even for fractures as small as 30 µ, but obtaining fluid saturations is not straightforward. The micro-PET imaging provides dynamic measurements of tracer distributions which can be used to calculate saturation. Here new experimental data is presented and the challenges associated with measuring fluid saturations using both X-Rays and micro-PET are discussed.

  8. Observability of linear systems with saturated outputs

    NARCIS (Netherlands)

    Koplon, R.; Sontag, E.D.; Hautus, M.L.J.

    1994-01-01

    We present necessary and sufficient conditions for observability of the class of output-saturated systems. These are linear systems whose output passes through a saturation function before it can be measured.

  9. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    International Nuclear Information System (INIS)

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von

    2007-01-01

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand (α/β-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available

  10. Saturated Zone In-Situ Testing

    International Nuclear Information System (INIS)

    Reimus, P. W.; Umari, M. J.

    2003-01-01

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and

  11. Saturated Zone In-Situ Testing

    Energy Technology Data Exchange (ETDEWEB)

    P. W. Reimus; M. J. Umari

    2003-12-23

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and

  12. SATURATION OF MAGNETOROTATIONAL INSTABILITY THROUGH MAGNETIC FIELD GENERATION

    International Nuclear Information System (INIS)

    Ebrahimi, F.; Prager, S. C.; Schnack, D. D.

    2009-01-01

    The saturation mechanism of magnetorotational instability (MRI) is examined through analytical quasi-linear theory and through nonlinear computation of a single mode in a rotating disk. We find that large-scale magnetic field is generated through the α-effect (the correlated product of velocity and magnetic field fluctuations) and causes the MRI mode to saturate. If the large-scale plasma flow is allowed to evolve, the mode can also saturate through its flow relaxation. In astrophysical plasmas, for which the flow cannot relax because of gravitational constraints, the mode saturates through field generation only.

  13. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms

    Directory of Open Access Journals (Sweden)

    Sencer Buzrul

    2017-09-01

    Full Text Available Modeling of microbial inactivation by high hydrostatic pressure (HHP requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log10 reduction and ≥5 data points including the atmospheric pressure value (P = 0.1 MPa, and with holding time ≤10 min for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log10 (P5 inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P5 values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R2adj and highest mean square error (MSE values, while the Fermi equation had the best fit (the highest R2adj and lowest MSE values. Parameters of the models and also P5 values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P5 values at given conditions. The procedure given in this study can also be extended for

  14. The influence of sand content on swelling pressures and structure developed in statically compacted Na-bentonite

    International Nuclear Information System (INIS)

    Gray, M.N.; Cheung, S.C.H.; Dixon, D.A.

    1984-09-01

    A laboratory investigation of the vertical and lateral swelling pressures developed in statically compacted, air-dry specimens of sodium (Na)-bentonite:silica sand mixtures as they are saturated in confined conditions with double-distilled, deionized water is described. The results are interpreted with the aid of observations of the compacted soil structures made in a scanning electron microscope. It is shown that the sand acts as an inert filler material and vertical swelling pressures are controlled by a parameter termed the effective clay dry density (qsub(c)). A limiting value of qsub(c) exists below which vertical and lateral swelling pressures do not differ and are theoretically predictable. Above this value, vertical pressures exceed lateral ones. This is related to a change from an isotropic to an anisotropic soil fabric as qsub(c) is increased above the limiting value

  15. Uniqueness of specific interfacial area-capillary pressure-saturation relationship under non-equilibrium conditions in two-phase porous media flow

    NARCIS (Netherlands)

    Joekar-Niasar, V.; Hassanizadeh, S.M.

    2012-01-01

    The capillary pressure–saturation (P c–S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a hypothetical porous medium using a dynamic pore-network model

  16. Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals.

    Directory of Open Access Journals (Sweden)

    Olof Birna Olafsdottir

    Full Text Available To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals.Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1. Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min and then again room air (10 minutes recovery.Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001 and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001. The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001. The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001 and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001.Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye.

  17. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography.

    Science.gov (United States)

    Haftka, Joris J H; Parsons, John R; Govers, Harrie A J

    2006-11-24

    A gas chromatographic method using Kováts retention indices has been applied to determine the liquid vapour pressure (P(i)), enthalpy of vaporization (DeltaH(i)) and difference in heat capacity between gas and liquid phase (DeltaC(i)) for a group of polycyclic aromatic hydrocarbons (PAHs). This group consists of 19 unsubstituted, methylated and sulphur containing PAHs. Differences in log P(i) of -0.04 to +0.99 log units at 298.15K were observed between experimental values and data from effusion and gas saturation studies. These differences in log P(i) have been fitted with multilinear regression resulting in a compound and temperature dependent correction. Over a temperature range from 273.15 to 423.15K, differences in corrected log P(i) of a training set (-0.07 to +0.03 log units) and a validation set (-0.17 to 0.19 log units) were within calculated error ranges. The corrected vapour pressures also showed a good agreement with other GC determined vapour pressures (average -0.09 log units).

  18. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    properties like saturation pressures, densities at reservoir temperature and Stock TankviOil (STO) densities, while keeping the n-alkane limit of the correlations unchanged. Apart from applying this general approach to PC-SAFT, we have also shown that the approach can be applied to classical cubic models...... approach to characterizing reservoir fluids for any EoS. The approach consists in developing correlations of model parameters first with a database for well-defined components and then adjusting the correlations with a large PVT database. The adjustment is made to minimize the deviation in key PVT...... method to SRK and PR improved the saturation pressure calculation in comparisonto the original characterization method for SRK and PR. Using volume translationtogether with the new characterization approach for SRK and PR gives comparable results for density and STO density to that of original...

  19. Thermal infrared imagery as a tool for analysing the variability of surface saturated areas at various temporal and spatial scales

    Science.gov (United States)

    Glaser, Barbara; Antonelli, Marta; Pfister, Laurent; Klaus, Julian

    2017-04-01

    Surface saturated areas are important for the on- and offset of hydrological connectivity within the hillslope-riparian-stream continuum. This is reflected in concepts such as variable contributing areas or critical source areas. However, we still lack a standardized method for areal mapping of surface saturation and for observing its spatiotemporal variability. Proof-of-concept studies in recent years have shown the potential of thermal infrared (TIR) imagery to record surface saturation dynamics at various temporal and spatial scales. Thermal infrared imagery is thus a promising alternative to conventional approaches, such as the squishy boot method or the mapping of vegetation. In this study we use TIR images to investigate the variability of surface saturated areas at different temporal and spatial scales in the forested Weierbach catchment (0.45 km2) in western Luxembourg. We took TIR images of the riparian zone with a hand-held FLIR infrared camera at fortnightly intervals over 18 months at nine different locations distributed over the catchment. Not all of the acquired images were suitable for a derivation of the surface saturated areas, as various factors influence the usability of the TIR images (e.g. temperature contrasts, shadows, fog). Nonetheless, we obtained a large number of usable images that provided a good insight into the dynamic behaviour of surface saturated areas at different scales. The images revealed how diverse the evolution of surface saturated areas can be throughout the hydrologic year. For some locations with similar morphology or topography we identified diverging saturation dynamics, while other locations with different morphology / topography showed more similar behaviour. Moreover, we were able to assess the variability of the dynamics of expansion / contraction of saturated areas within the single locations, which can help to better understand the mechanisms behind surface saturation development.

  20. Nonlinear Saturation Amplitude in Classical Planar Richtmyer–Meshkov Instability

    International Nuclear Information System (INIS)

    Liu Wan-Hai; Jiang Hong-Bin; Ma Wen-Fang; Wang Xiang

    2016-01-01

    The classical planar Richtmyer–Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh–Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI. (paper)

  1. ARGAZ: a new device for experimental study of the coupling between hydrogen production and hydrogen transfer through saturated Callovian-Oxfordian argillite

    International Nuclear Information System (INIS)

    Imbert, C.; Bataillon, C.; Touze, G.; Vigier, P.; Talandier, J.

    2010-01-01

    by the Faraday law. A global measurement will be achieved by analysing at regular intervals the content of the sampling bottle. A miniature pressure sensor placed at the nickel/argillite interface is expected to provide the overpressure due to hydrogen production. The device is equipped with miniature pressure sensors. Three of these sensors are placed inside the argillite at different levels from the nickel-argillite interface, namely at 12.5 mm, 25 mm and 37.5 mm. These sensors aim to measure the pressure of the fluid (liquid plus gas pressures) in the porosity of the argillite. Thanks to their little size, these sensors do not disturb a lot the interstitial pressure in the mud-stone. As the media is initially saturated, they will indicate the possible over pressure due to hydrogen at the sensing point. The device is also equipped with nickel wires. Three pairs of wires are placed inside the argillite at different levels from the nickel-argillite interface. These sensors are located at the same levels as the pressure sensors. These electrodes will be used first to monitor the potential redox front due to hydrogen transport in aqueous phase and secondly to monitor the gas phase transport if it takes place. This monitoring is based on high frequency impedance measurements allowing determining the seeming ionic resistance of the part of argillite located in between the nickel wire. It has been shown that bubbles transport modified highly this seeming ionic resistance. The first phase of the study will consider a moderate production rate of hydrogen. An equivalent corrosion rate, about 1 to 3 μm/year will be considered. During this phase hydrogen will probably dissolve in the water contained in the porosity of the mud-stone. After results analysis, other production ratings will be tested. Particularly, the possible de-saturation of the argillite near the interface, due to the water consumption and gas generation in competition with gas transfer and dissolution, will

  2. Phase composition and saturated liquid properties in binary and ternary systems containing carbon dioxide, n-decane, and n-tetradecane

    International Nuclear Information System (INIS)

    Kariznovi, Mohammad; Nourozieh, Hossein; Abedi, Jalal

    2013-01-01

    Highlights: ► Binary and ternary systems of (carbon dioxide + n-decane + n-tetradecane) at 323.2 K. ► Isothermal phase properties measurements over wide range of pressure (1 to 6) MPa. ► Experimental measurements, density, viscosity, and composition, using a designed PVT apparatus. ► The experimental data were correlated using two equations of state. ► The interaction parameters and the volume shift values from the experimental data on the binary pairs. - Abstract: Experimental phase equilibrium data have been measured for the binary and ternary systems containing (carbon dioxide, n-decane, and n-tetradecane) at 323.2 K over the pressure range (1 to 6) MPa using a designed PVT apparatus. The measurements presented in this paper were undertaken to determine liquid phase composition and liquid saturated properties (density and viscosity) when a liquid hydrocarbon (n-decane, n-tetradecane, and their mixtures) was saturated with carbon dioxide. The generated data for compositions and densities were correlated with the Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR) equations of state (EOS). The adjustment of binary interaction parameters and volume translation technique has been employed to correlate the experimental compositions and densities. The adjusted binary parameters from the data of binary pairs (carbon dioxide + n-decane) and (carbon dioxide + n-tetradecane) were used to correlate the generated ternary data. The calculated ternary compositions were found to be in good agreement with the experimental data using the binary parameters from the data of binary pairs for both EOSs. The results for the density of saturated liquid phase indicated that the volume translation should be applied to all components in the binary and ternary systems to describe accurately the saturated liquid densities for mixtures.

  3. Minimum K_2,3-saturated Graphs

    OpenAIRE

    Chen, Ya-Chen

    2010-01-01

    A graph is K_{2,3}-saturated if it has no subgraph isomorphic to K_{2,3}, but does contain a K_{2,3} after the addition of any new edge. We prove that the minimum number of edges in a K_{2,3}-saturated graph on n >= 5 vertices is sat(n, K_{2,3}) = 2n - 3.

  4. Racial differences in the impact of social support on nocturnal blood pressure.

    Science.gov (United States)

    Cooper, Denise C; Ziegler, Michael G; Nelesen, Richard A; Dimsdale, Joel E

    2009-06-01

    To investigate whether black and white adults benefit similarly from perceived social support in relation to blood pressure (BP) dipping during sleep. The Interpersonal Support Evaluation List (ISEL, 12-item version), which measures the perceived availability of several types of functional social support, was examined for interactive effects with race on dipping of mean arterial pressure (MAP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) derived from 24-hour ambulatory blood pressure monitoring (ABPM). The sample consisted of 156 young to middle-aged adults (61 blacks, 95 whites; mean age = 35.7 years). Mean ISEL scores did not differ between racial groups. Controlling for age, body mass index (BMI), resting BP, and socioeconomic status (SES), the interaction of social support by race yielded associations with nighttime dipping in MAP and DBP (p social support increased, white adults received cardiovascular benefits as suggested by enhanced nocturnal dipping of BP, but black adults accrued risks as evidenced by blunted declines in BP during sleep.

  5. Radiation pressure induced difference-sideband generation beyond linearized description

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Hao, E-mail: haoxiong1217@gmail.com; Fan, Yu-Wan; Yang, Xiaoxue; Wu, Ying, E-mail: yingwu2@126.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-08-08

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.

  6. Differences in blood pressure by measurement technique in neurocritically ill patients: A technological assessment.

    Science.gov (United States)

    Lele, Abhijit V; Wilson, Daren; Chalise, Prabhakar; Nazzaro, Jules; Krishnamoorthy, Vijay; Vavilala, Monica S

    2018-01-01

    Blood pressure data may vary by measurement technique. We performed a technological assessment of differences in blood pressure measurement between non-invasive blood pressure (NIBP) and invasive arterial blood pressure (ABP) in neurocritically ill patients. After IRB approval, a prospective observational study was performed to study differences in systolic blood pressure (SBP), mean arterial pressure (MAP), and cerebral perfusion pressure (CPP) values measured by NIBP arm, ABP at level of the phlebostatic axis (ABP heart) and ABP at level of the external auditory meatus (ABP brain) at 30 and 45-degree head of bed elevation (HOB) using repeated measure analysis of covariance and correlation coefficients. Overall, 168 patients were studied with median age of 57 ± 15 years, were mostly female (57%), with body mass index ≤30 (66%). Twenty-three percent (n = 39) had indwelling intracranial pressure monitors, and 19.7% (n = 33) received vasoactive agents. ABP heart overestimated ABP brain for SBP (11.5 ± 2.7 mmHg, p ABP heart overestimated NIBP arm for SBP (8 ± 1.5 mmHg, p ABP heart overestimates MAP compared to ABP brain and NIBP arm. Using ABP heart data overestimates CPP and may be responsible for not achieving SBP, MAP or CPP targets aimed at the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Saturation of single toroidal number Alfvén modes

    International Nuclear Information System (INIS)

    Wang, X; Briguglio, S

    2016-01-01

    The results of numerical simulations are presented to illustrate the saturation mechanism of a single toroidal number Alfvén mode, driven unstable, in a tokamak plasma, by the resonant interaction with energetic ions. The effects of equilibrium geometry non-uniformities and finite mode radial width on the wave-particle nonlinear dynamics are discussed. Saturation occurs as the fast-ion density flattening produced by the radial flux associated to the resonant particles captured in the potential well of the Alfvén wave extends over the whole region where mode-particle power exchange can take place. The occurrence of two different saturation regimes is shown. In the first regime, dubbed resonance detuning, that region is limited by the resonance radial width (that is, the width of the region where the fast-ion resonance frequency matches the mode frequency). In the second regime, called radial decoupling, the power exchange region is limited by the mode radial width. In the former regime, the mode saturation amplitude scales quadratically with the growth rate; in the latter, it scales linearly. The occurrence of one or the other regime can be predicted on the basis of linear dynamics: in particular, the radial profile of the fast-ion resonance frequency and the mode structure. Here, we discuss how such properties can depend on the considered toroidal number and compare simulation results with the predictions obtained from a simplified nonlinear pendulum model. (paper)

  8. The Evidence for Saturated Fat and for Sugar Related to Coronary Heart Disease.

    Science.gov (United States)

    DiNicolantonio, James J; Lucan, Sean C; O'Keefe, James H

    2016-01-01

    Dietary guidelines continue to recommend restricting intake of saturated fats. This recommendation follows largely from the observation that saturated fats can raise levels of total serum cholesterol (TC), thereby putatively increasing the risk of atherosclerotic coronary heart disease (CHD). However, TC is only modestly associated with CHD, and more important than the total level of cholesterol in the blood may be the number and size of low-density lipoprotein (LDL) particles that contain it. As for saturated fats, these fats are a diverse class of compounds; different fats may have different effects on LDL and on broader CHD risk based on the specific saturated fatty acids (SFAs) they contain. Importantly, though, people eat foods, not isolated fatty acids. Some food sources of SFAs may pose no risk for CHD or possibly even be protective. Advice to reduce saturated fat in the diet without regard to nuances about LDL, SFAs, or dietary sources could actually increase people's risk of CHD. When saturated fats are replaced with refined carbohydrates, and specifically with added sugars (like sucrose or high fructose corn syrup), the end result is not favorable for heart health. Such replacement leads to changes in LDL, high-density lipoprotein (HDL), and triglycerides that may increase the risk of CHD. Additionally, diets high in sugar may induce many other abnormalities associated with elevated CHD risk, including elevated levels of glucose, insulin, and uric acid, impaired glucose tolerance, insulin and leptin resistance, non-alcoholic fatty liver disease, and altered platelet function. A diet high in added sugars has been found to cause a 3-fold increased risk of death due to cardiovascular disease, but sugars, like saturated fats, are a diverse class of compounds. The monosaccharide, fructose, and fructose-containing sweeteners (e.g., sucrose) produce greater degrees of metabolic abnormalities than does glucose (either isolated as a monomer, or in chains as starch

  9. Blood oxygen saturation determined by transmission spectrophotometry of hemolyzed blood samples

    Science.gov (United States)

    Malik, W. M.

    1967-01-01

    Use of the Lambert-Beer Transmission Law determines blood oxygen saturation of hemolyzed blood samples. This simplified method is based on the difference in optical absorption properties of hemoglobin and oxyhemoglobin.

  10. Flow of gasoline-in-water microemulsion through water-saturated soil columns

    International Nuclear Information System (INIS)

    Ouyang, Y.; Mansell, R.S.; Rhue, R.D.

    1995-01-01

    Much consideration has been given to the use of surfactants to clean up nonaqueous phase liquids (NAPLs) from contaminated soil and ground water. Although this emulsification technique has shown significant potential for application in environmental remediation practices, a major obstacle leading to low washing efficiency is the potential formation of macroemulsion with unfavorable flow characteristics in porous media. This study investigated influences of the flow of leaded-gasoline-in-water (LG/W) microemulsion upon the transport of gasoline and lead (Pb) species in water-saturated soil columns. Two experiments were performed: (1) the immiscible displacement of leaded gasoline and (2) the miscible displacement of LG/W microemulsion through soil columns, followed by sequentially flushing with NaCl solution and a water/surfactant/cosurfactant (W/S/CoS) mixture. Comparison of breakthrough curves (BTC) for gasoline between the two experiments shows that about 90% of gasoline and total Pb were removed from the soil columns by NaCl solution in the LG/W microemulsion experiment as compared to 40% removal of gasoline and 10% removal of total Pb at the same process in the leaded gasoline experiment. Results indicate that gasoline and Pb species moved much more effectively through soil during miscible flow of LG/W microemulsion than during immiscible flow of leaded gasoline. In contrast to the adverse effects of macroemulsion on the transport of NAPLs, microemulsion was found to enhance the transport of gasoline through water-saturated soil. Mass balance analysis shows that the W/S/CoS mixture had a high capacity for removing residual gasoline and Pb species from contaminated soil. Comparison of water-pressure differences across the soil columns for the two experiments indicates that pore clogging by gasoline droplets was greatly minimized in the LG/W microemulsion experiment

  11. Trapping saturation of the bump-on-tail instability and electrostatic harmonic excitation in earth's foreshock

    Science.gov (United States)

    Klimas, Alexander J.

    1990-01-01

    The Vlasov simulation is used to examine the trapping saturation of the bump-on-tail instability both with and without mode-mode coupling and subsequent harmonic excitation. It is found that adding the pumped harmonic modes leads to a significant difference in the behavior of the phase-space distribution function near the unstable bump at the saturation time of the instability. The pumped modes permit rapid plateau formation on the space-averaged velocity distribution, in effect preventing the onset of the quasi-linear velocity-diffusion saturation mechanism.

  12. Inter-arm blood pressure difference in hospitalized elderly patients--is it consistent?

    Science.gov (United States)

    Grossman, Alon; Weiss, Avraham; Beloosesky, Yichayaou; Morag-Koren, Nira; Green, Hefziba; Grossman, Ehud

    2014-07-01

    Inter-arm blood pressure difference (IAD) is recognized as a risk factor for cardiovascular mortality. Its reproducibility in the elderly is unknown. The authors determined the prevalence and reproducibility of IAD in hospitalized elderly patients. Blood pressure was measured simultaneously in both arms on two different days in elderly individuals hospitalized in a geriatric ward. The study included 364 elderly patients (mean age, 85±5 years). Eighty-four patients (23%) had systolic IAD >10 and 62 patients (17%) had diastolic IAD >10 mm Hg. A total of 319 patients had two blood pressure measurements. Systolic and diastolic IAD remained in the same category in 203 (64%) and 231 (72%) patients, respectively. Correlations of systolic and diastolic IAD between the two measurements were poor. Consistency was not affected by age, body mass index, comorbidities, or treatment. IAD is extremely common in hospitalized elderly patients, but, because of poor consistency, its clinical significance in this population is uncertain. ©2014 Wiley Periodicals, Inc.

  13. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  14. Compressed-air work is entering the field of high pressures.

    Science.gov (United States)

    Le Péchon, J Cl; Gourdon, G

    2010-01-01

    Since 1850, compressed-air work has been used to prevent shafts or tunnels under construction from flooding. Until the 1980s, workers were digging in compressed-air environments. Since the introduction of tunnel boring machines (TBMs), very little digging under pressure is needed. However, the wearing out of cutter-head tools requires inspection and repair. Compressed-air workers enter the pressurized working chamber only occasionally to perform such repairs. Pressures between 3.5 and 4.5 bar, that stand outside a reasonable range for air breathing, were reached by 2002. Offshore deep diving technology had to be adapted to TBM work. Several sites have used mixed gases: in Japan for deep shaft sinking (4.8 bar), in The Netherlands at Western Scheldt Tunnels (6.9 bar), in Russia for St. Petersburg Metro (5.8 bar) and in the United States at Seattle (5.8 bar). Several tunnel projects are in progress that may involve higher pressures: Hallandsås (Sweden) interventions in heliox saturation up to 13 bar, and Lake Mead (U.S.) interventions to about 12 bar (2010). Research on TBMs and grouting technologies tries to reduce the requirements for hyperbaric works. Adapted international rules, expertise and services for saturation work, shuttles and trained personnel matching industrial requirements are the challenges.

  15. Study on the saturating and swelling behavior of an engineering bentonite barrier using a test model

    International Nuclear Information System (INIS)

    Nakajima, Makoto; Kobayashi, Ichizo; Toida, Masaru; Fujisaki, Katsutoshi

    2007-01-01

    The conceptual design of a disposal facility with additional buffer depth for radioactive waste is mainly constituted from the multi-barrier system that is constructed around the waste form so that it prevents radionuclide transfer to the biosphere. The engineered bentonite barrier is one of the elements of the multi-barrier system and is constructed with homogeneous bentonite-containing material compacted to a high density so that there are no voids. Due to the swelling characteristics of the bentonite material, the self-sealing function which is an important function of the bentonite barrier can work, but at the same time it mechanically affects the neighboring structures. Therefore, an experimental study was implemented in order to evaluate the mechanical effect of the bentonite swelling behavior throughout the construction, emplacement operations and closure re-saturation phase. In this article, the results of swelling tests to obtain the mechanical properties of the bentonite and three types of test model experiments performed for the event observations in the different saturation processes are described. As a result, the effects of a seepage pattern of ground water and a variation in the density produced by construction on the swelling pressure distribution of the bentonite barrier could be reproduced and validated. It is thought that they will be important events when ground water permeates the bentonite layer of a multiple barrier system. (author)

  16. Bursting tests on pressure vessels with cracks differing in configuration and location

    International Nuclear Information System (INIS)

    Stahlberg, R.

    1978-01-01

    For assessing the safety of nuclear pressure vessels exhibiting cracks, bursting test were carried out on a series of medium-size pressure vessels with and without welded nozzles and exhibiting cracks differing in configuration and location. The linear-elastic approach proved to be sufficiently accurate for straight strain conditions up to the onset of general yielding. Other analytical methods were successfully used to cover the plastic region. (orig.) [de

  17. Comparison of plantar pressure distribution between three different shoes and three common movements in futsal.

    Science.gov (United States)

    Teymouri, Meghdad; Halabchi, Farzin; Mirshahi, Maryam; Mansournia, Mohammad Ali; Mousavi Ahranjani, Ali; Sadeghi, Amir

    2017-01-01

    Analysis of in-shoe pressure distribution during sport-specific movements may provide a clue to improve shoe design and prevent injuries. This study compared the mean and the peak pressures over the whole foot and ten separate areas of the foot, wearing different shoes during specific movements. Nine male adult recreational futsal players performed three trials of three sport-specific movements (shuffle, sprint and penalty kick), while they were wearing three brands of futsal shoes (Adidas, Lotto and Tiger). Plantar pressures on dominant feet were collected using the F-SCAN system. Peak and mean pressures for whole foot and each separate area were extracted. For statistical analysis, the mean differences in outcome variables between different shoes and movements were estimated using random-effects regression model using STATA ver.10. In the average calculation of the three movements, the peak pressure on the whole foot in Adidas shoe was less than Lotto [8.8% (CI95%: 4.1-13.6%)] and Tiger shoes [11.8% (CI95%:7-16.7%)], (P<0.001). Also, the recorded peak pressure on the whole foot in penalty kick was 61.1% (CI95%: 56.3-65.9%) and 57.6% (CI95%: 52.8-62.3%) less than Shuffle and Sprint tests, respectively (P<0.001). Areas with the highest peak pressure during all 3 movements were not different between all shoes. This area was medial forefoot in cases of shuffle and sprint movements and medial heel in case of penalty kick.

  18. Comparison of plantar pressure distribution between three different shoes and three common movements in futsal.

    Directory of Open Access Journals (Sweden)

    Meghdad Teymouri

    Full Text Available Analysis of in-shoe pressure distribution during sport-specific movements may provide a clue to improve shoe design and prevent injuries. This study compared the mean and the peak pressures over the whole foot and ten separate areas of the foot, wearing different shoes during specific movements.Nine male adult recreational futsal players performed three trials of three sport-specific movements (shuffle, sprint and penalty kick, while they were wearing three brands of futsal shoes (Adidas, Lotto and Tiger. Plantar pressures on dominant feet were collected using the F-SCAN system. Peak and mean pressures for whole foot and each separate area were extracted. For statistical analysis, the mean differences in outcome variables between different shoes and movements were estimated using random-effects regression model using STATA ver.10.In the average calculation of the three movements, the peak pressure on the whole foot in Adidas shoe was less than Lotto [8.8% (CI95%: 4.1-13.6%] and Tiger shoes [11.8% (CI95%:7-16.7%], (P<0.001. Also, the recorded peak pressure on the whole foot in penalty kick was 61.1% (CI95%: 56.3-65.9% and 57.6% (CI95%: 52.8-62.3% less than Shuffle and Sprint tests, respectively (P<0.001.Areas with the highest peak pressure during all 3 movements were not different between all shoes. This area was medial forefoot in cases of shuffle and sprint movements and medial heel in case of penalty kick.

  19. Scintillation probe with photomultiplier tube saturation indicator

    International Nuclear Information System (INIS)

    Ruch, J.F.; Urban, D.J.

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated. 2 figs

  20. TOURGHREACT: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media

    OpenAIRE

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-01-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between ...

  1. Determination of the activity of a molecular solute in saturated solution

    International Nuclear Information System (INIS)

    Nordstroem, Fredrik L.; Rasmuson, Ake C.

    2008-01-01

    Prediction of the solubility of a solid molecular compound in a solvent, as well as, estimation of the solution activity coefficient from experimental solubility data both require estimation of the activity of the solute in the saturated solution. The activity of the solute in the saturated solution is often defined using the pure melt at the same temperature as the thermodynamic reference. In chemical engineering literature also the activity of the solid is usually defined on the same reference state. However, far below the melting temperature, the properties of this reference state cannot be determined experimentally, and different simplifications and approximations are normally adopted. In the present work, a novel method is presented to determine the activity of the solute in the saturated solution (=ideal solubility) and the heat capacity difference between the pure supercooled melt and solid. The approach is based on rigorous thermodynamics, using standard experimental thermodynamic data at the melting temperature of the pure compound and solubility measurements in different solvents at various temperatures. The method is illustrated using data for ortho-, meta-, and para-hydroxybenzoic acid, salicylamide and paracetamol. The results show that complete neglect of the heat capacity terms may lead to estimations of the activity that are incorrect by a factor of 12. Other commonly used simplifications may lead to estimations that are only one-third of the correct value

  2. Determination of the activity of a molecular solute in saturated solution

    Energy Technology Data Exchange (ETDEWEB)

    Nordstroem, Fredrik L. [Department of Chemical Engineering and Technology, Royal Institute of Technology, 100 44 Stockholm (Sweden); Rasmuson, Ake C. [Department of Chemical Engineering and Technology, Royal Institute of Technology, 100 44 Stockholm (Sweden)], E-mail: rasmuson@ket.kth.se

    2008-12-15

    Prediction of the solubility of a solid molecular compound in a solvent, as well as, estimation of the solution activity coefficient from experimental solubility data both require estimation of the activity of the solute in the saturated solution. The activity of the solute in the saturated solution is often defined using the pure melt at the same temperature as the thermodynamic reference. In chemical engineering literature also the activity of the solid is usually defined on the same reference state. However, far below the melting temperature, the properties of this reference state cannot be determined experimentally, and different simplifications and approximations are normally adopted. In the present work, a novel method is presented to determine the activity of the solute in the saturated solution (=ideal solubility) and the heat capacity difference between the pure supercooled melt and solid. The approach is based on rigorous thermodynamics, using standard experimental thermodynamic data at the melting temperature of the pure compound and solubility measurements in different solvents at various temperatures. The method is illustrated using data for ortho-, meta-, and para-hydroxybenzoic acid, salicylamide and paracetamol. The results show that complete neglect of the heat capacity terms may lead to estimations of the activity that are incorrect by a factor of 12. Other commonly used simplifications may lead to estimations that are only one-third of the correct value.

  3. Medial stabilized and posterior stabilized TKA affect patellofemoral kinematics and retropatellar pressure distribution differently.

    Science.gov (United States)

    Glogaza, Alexander; Schröder, Christian; Woiczinski, Matthias; Müller, Peter; Jansson, Volkmar; Steinbrück, Arnd

    2018-06-01

    Patellofemoral kinematics and retropatellar pressure distribution change after total knee arthroplasty (TKA). It was hypothesized that different TKA designs will show altered retropatellar pressure distribution patterns and different patellofemoral kinematics according to their design characteristics. Twelve fresh-frozen knee specimens were tested dynamically in a knee rig. Each specimen was measured native, after TKA with a posterior stabilized design (PS) and after TKA with a medial stabilized design (MS). Retropatellar pressure distribution was measured using a pressure sensitive foil which was subdivided into three areas (lateral and medial facet and patellar ridge). Patellofemoral kinematics were measured by an ultrasonic-based three-dimensional motion system (Zebris CMS20, Isny Germany). Significant changes in patellofemoral kinematics and retropatellar pressure distribution were found in both TKA types when compared to the native situation. Mean retropatellar contact areas were significantly smaller after TKA (native: 241.1 ± 75.6 mm 2 , MS: 197.7 ± 74.5 mm 2 , PS: 181.2 ± 56.7 mm 2 , native vs. MS p patellofemoral kinematics were found in both TKA designs when compared to the native knee during flexion and extension with a more medial patella tracking. Patellofemoral kinematics and retropatellar pressure change after TKA in different manner depending on the type of TKA used. Surgeons should be aware of influencing the risks of patellofermoral complications by the choice of the prosthesis design.

  4. Qualification of Sub-atmospheric Pressure Sensors for the Cryomagnet Bayonet Heat Exchangers of the Large Hadron Collider

    CERN Document Server

    Jeanmonod, N; Casas-Cubillos, J

    2006-01-01

    The superconducting magnets of the Large Hadron Collider (LHC) will be cooled at 1.9 K by distributed cooling loops working with saturated two-phase superfluid helium flowing in 107 m long bayonet heat exchangers [1] located in each magnet cold-mass cell. The temperature of the magnets could be difficult to control because of the large dynamic heat load variations. Therefore, it is foreseen to measure the heat exchangers pressure to feed the regulation loops with the corresponding saturation temperature. The required uncertainty of the sub-atmospheric saturation pressure measurement shall be of the same order of the one associated to the magnet thermometers, in pressure it translates as ±5 Pa at 1.6 kPa. The transducers shall be radiation hard as they will endure, in the worst case, doses up to 10 kGy and 10**15 neutrons·cm**-2 over 10 years. The sensors under evaluation were installed underground in the dump section of the SPS accelerator with a radiation environment close to the one expected for the L...

  5. Numerical study of pressure fluctuations transfer law in different flow rate of turbine mode in a prototype pump turbine

    International Nuclear Information System (INIS)

    Sun, Y K; Zuo, Z G; Liu, S H; Wu, Y L; Liu, J T; Qin, D Q; Wei, X Z

    2013-01-01

    Numerical simulation using SST k-w turbulence model was carried out, to predict pressure fluctuation transfer law in turbine mode. Three operating points with different mass flow rates are simulated. The results of numerical simulation show that, the amplitude and frequency of pressure fluctuations in different positions are very different. The transfer law of amplitude and frequency of pressure fluctuations change with different position and different mass flow rate. Blade passing frequency (BPF) is the first dominant frequency in vaneless space, while component in this frequency got smaller in the upstream and downstream of vaneless space when the mass flow is set. Furthermore triple blade passing frequency (3BPF) component obtained a different transfer law through the whole flow passage. The amplitude and frequency of pressure fluctuations is also different in different circumference position of vaneless space. When the mass flow is different, the distribution of pressure fluctuations in circumference is different. The frequency component of pressure fluctuations in all the positions is different too

  6. Dynamic characterization of partially saturated engineered porous media and gas diffusion layers using hydraulic admittance

    Science.gov (United States)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    2012-09-01

    Simple laboratory methods for determining liquid water distribution in polymer electrolyte membrane fuel cell gas diffusion layers (GDLs) are needed to engineer better GDL materials. Capillary pressure vs. liquid saturation measurements are attractive, but lack the ability to probe the hydraulic interconnectivity and distribution within the pore structure. Hydraulic admittance measurements of simple capillary bundles have recently been shown to nicely measure characteristics of the free-interfaces and hydraulic path. Here we examine the use of hydraulic admittance with a succession of increasingly complex porous media, starting with a laser-drilled sample with 154 asymmetric pores and progress to the behavior of Toray TGP-H090 carbon papers. The asymmetric laser-drilled sample clearly shows hydraulic admittance measurements are sensitive to sample orientation, especially when examined as a function of saturation state. Finite element modeling of the hydraulic admittance is consistent with experimental measurements. The hydraulic admittance spectra from GDL samples are complex, so we examine trends in the spectra as a function of wet proofing (0% and 40% Teflon loadings) as well as saturation state of the GDL. The presence of clear peaks in the admittance spectra for both GDL samples suggests a few pore types are largely responsible for transporting liquid water.

  7. Urban Saturated Power Load Analysis Based on a Novel Combined Forecasting Model

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-03-01

    Full Text Available Analysis of urban saturated power loads is helpful to coordinate urban power grid construction and economic social development. There are two different kinds of forecasting models: the logistic curve model focuses on the growth law of the data itself, while the multi-dimensional forecasting model considers several influencing factors as the input variables. To improve forecasting performance, a novel combined forecasting model for saturated power load analysis was proposed in this paper, which combined the above two models. Meanwhile, the weights of these two models in the combined forecasting model were optimized by employing a fruit fly optimization algorithm. Using Hubei Province as the example, the effectiveness of the proposed combined forecasting model was verified, demonstrating a higher forecasting accuracy. The analysis result shows that the power load of Hubei Province will reach saturation in 2039, and the annual maximum power load will reach about 78,630 MW. The results obtained from this proposed hybrid urban saturated power load analysis model can serve as a reference for sustainable development for urban power grids, regional economies, and society at large.

  8. Neutron activation detector saturation activities measured in the AAEC research reactor HIFAR

    International Nuclear Information System (INIS)

    Hilditch, R.J.; Lowenthal, G.C.

    1980-01-01

    Titanium and cobalt wires are irradiated with radiation damage specimens in each reactor period to determine variations in neutron flux densities. The results from these monitors constitute a considerable body of data with good statistical significance. However, a difficulty encountered when using measurements collected over a number of reactor periods for determining flux depression factors or cadmium ratios is accounting for the effects on saturation activities of different irradiation conditions, in particular the continuously changing fuel burn-up rates. This difficulty was overcome by correlating the saturation activities of (n,γ) reactions with the number of fissions in the fuel. The experimental saturation activities so correlated enable (1) flux depression factors to be obtained for cobalt and silver wires, relative to thin foils, and (2) use of these flux depression factors and others quoted in the literature to calculate the ratio of saturation activities of Co and Ag wires. Finally, reference is made to the potential usefulness of the 123 Sb(n,γ) reaction as a resonance detector given that a new method for making thin monitors can be readily applied to antimony

  9. Influence of Individual Differences on the Calculation Method for FBG-Type Blood Pressure Sensors.

    Science.gov (United States)

    Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun; Kobayashi, Yuka

    2016-12-28

    In this paper, we propose a blood pressure calculation and associated measurement method that by using a fiber Bragg grating (FBG) sensor. There are several points at which the pulse can be measured on the surface of the human body, and when a FBG sensor located at any of these points, the pulse wave signal can be measured. The measured waveform is similar to the acceleration pulse wave. The pulse wave signal changes depending on several factors, including whether or not the individual is healthy and/or elderly. The measured pulse wave signal can be used to calculate the blood pressure using a calibration curve, which is constructed by a partial least squares (PLS) regression analysis using a reference blood pressure and the pulse wave signal. In this paper, we focus on the influence of individual differences from calculated blood pressure based on each calibration curve. In our study, the calculated blood pressure from both the individual and overall calibration curves were compared, and our results show that the calculated blood pressure based on the overall calibration curve had a lower measurement accuracy than that based on an individual calibration curve. We also found that the influence of the individual differences on the calculated blood pressure when using the FBG sensor method were very low. Therefore, the FBG sensor method that we developed for measuring the blood pressure was found to be suitable for use by many people.

  10. The inter-arm blood pressure difference and peripheral vascular disease: cross-sectional study.

    Science.gov (United States)

    Clark, Christopher E; Campbell, John L; Powell, Roy J; Thompson, John F

    2007-10-01

    A blood pressure (BP) difference between the upper limbs is often encountered in primary care. Knowledge of its prevalence and importance in the accurate measurement of BP is poor, representing a source of error. Current hypertension guidelines do not emphasize this. To establish the prevalence of an inter-arm blood pressure difference (IAD) and explore its association with other indicators of peripheral vascular disease (PVD) in a hypertensive primary care population. This was a cross-sectional study. Primary care, one rural general practice, was the setting of the study. The methods were controlled simultaneous measurement of brachial BPs, ankle-brachial pressure index (ABPI) and tiptoe stress testing in 94 subjects. In all, 18 of 94 [19%, 95% confidence interval (CI) 11-27%] subjects had mean systolic inter-arm difference (sIAD) > or =10 mmHg and seven of 94 (7%, 95% CI 2-12%) had mean diastolic inter-arm difference (dIAD) > or =10 mmHg. Nineteen of 91 (20%, 95% CI 12-28%) had a reduced ABPI pressure drop > or =20%. An IAD and asymptomatic PVD are common in a primary care hypertensive population. Magnitude of the IAD is inversely correlated with ABPI, supporting the hypotheses that IADs are causally linked to PVD, and that IAD is a useful marker for the presence of PVD. Consequently, detection of an IAD should prompt the clinician to screen subjects for other signs of vascular disease and target them for aggressive cardiovascular risk factor modification.

  11. [Measuring the blood pressure in both arms is of little use; longitudinal study into blood pressure differences between both arms and its reproducibility in patients with diabetes mellitus type 2].

    Science.gov (United States)

    Kleefstra, N; Houweling, S T; Meyboom-de Jong, B; Bilo, H J G

    2007-07-07

    To determine the prevalence of inter-arm blood pressure differences > 10 mmHg in patients with diabetes mellitus type 2 (DM2) and to determine whether these differences are consistent over time. Descriptive. In an evaluation study of 169 DM2 patients from 5 general practices in 2003 and 2004, different methods of oscillatory measurement were used to investigate inter-arm blood pressure differences > 10 mmHg systolic or diastolic. These methods were: one measurement in each arm non-simultaneously (method A), one measurement simultaneously (B) and the mean of two simultaneous measurements (C). With method A an inter-arm blood pressure difference was found in 33% of patients. This percentage diminished to 9 with method C. In 44% (n = 7) of the patients in whom method C detected a relevant blood pressure difference, this difference was not found with method A. In 79% of patients the inter-arm blood pressure difference was not reproduced after one year. In daily practice, one non-simultaneous blood pressure measurement in each arm (method A) was of little value for identification of patients with inter-arm blood pressure differences. The reproducibility was poor one year later. Bilateral blood pressure measurement is therefore of little value.

  12. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface

    Directory of Open Access Journals (Sweden)

    Katja eFichtel

    2015-10-01

    Full Text Available Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301. The organism was isolated at 20 °C and atmospheric pressure from ~61 °C-warm sediments approximately five meters above the sediment-basement interface. In comparison to standard laboratory conditions (20 °C and 0.1 MPa, faster growth was recorded when incubated at in situ pressure and high temperature (45 °C, while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure.

  13. Rectifier transformer saturation on commutation failure

    International Nuclear Information System (INIS)

    Lu, E.; Bronner, G.

    1989-01-01

    The rectifier transformer's service differs from the power transformer's service because of the rectifier load. Under certain fault conditions, such as a commutation failure, d.c. magnetization may be introduced into the rectifier transformer cores, resulting in possible saturation of the magnetic circuit, thus in degradation of the performance of the transformer. It is the purpose of this paper to present an approach for evaluating the electromagnetic transient process under such a fault condition. The studies were made on the operating 1000MVA converter system at the Princeton Plasma Physics Laboratory

  14. The difference in endolymphatic hydrostatic pressure elevation induced by isoproterenol between the ampulla and the cochlea.

    Science.gov (United States)

    Inamoto, Ryuhei; Miyashita, Takenori; Matsubara, Ai; Hoshikawa, Hiroshi; Mori, Nozomu

    2017-06-01

    The purpose of the study was to investigate the difference in the responses of endolymphatic hydrostatic pressure to isoproterenol, β-adrenergic receptor agonist, between pars superior and pars inferior. The hydrostatic pressure of endolymph and perilymph and endolymphatic potential in the ampulla and the cochlea during the intravenous administration of isoproterenol were recorded using a servo-null system in guinea pigs. The hydrostatic pressure of endolymph and perilymph in the ampulla and cochlea was similar in magnitude. Isoproterenol significantly increased hydrostatic pressure of ampullar and cochlear endolymph and perilymph with no change in the ampullar endolymphatic potential and endocochlear potential, respectively. The isoproterenol-induced maximum change of endolymphatic hydrostatic pressure in ampulla was significantly (phydrostatic pressure in the ampulla disappeared like that in the cochlea. Isoproterenol elevates endolymphatic hydrostatic pressure in different manner between the vestibule and the cochlea. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Analysis of a microscale 'Saturation Phase-change Internal Carnot Engine'

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, Eli [School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Kribus, Abraham, E-mail: kribus@eng.tau.ac.i [School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2010-06-15

    A micro heat engine, based on a cavity filled with a stationary working fluid under liquid-vapor saturation conditions and encapsulated by two membranes, is described and analyzed. This engine design is easy to produce using MEMS technologies and is operated with external heating and cooling. The motion of the membranes is controlled such that the internal pressure and temperature are constant during the heat addition and removal processes, and thus the fluid executes a true internal Carnot cycle. A model of this Saturation Phase-change Internal Carnot Engine (SPICE) was developed including thermodynamic, mechanical and heat transfer aspects. The efficiency and maximum power of the engine are derived. The maximum power point is fixed in a three-parameter space, and operation at this point leads to maximum power density that scales with the inverse square of the engine dimension. Inclusion of the finite heat capacity of the engine wall leads to a strong dependence of performance on engine frequency, and the existence of an optimal frequency. Effects of transient reverse heat flow, and 'parasitic heat' that does not participate in the thermodynamic cycle are observed.

  16. Dipole saturated absorption modeling in gas phase: Dealing with a Gaussian beam

    Science.gov (United States)

    Dupré, Patrick

    2018-01-01

    With the advent of new accurate and sensitive spectrometers, cf. combining optical cavities (for absorption enhancement), the requirement for reliable molecular transition modeling is becoming more pressing. Unfortunately, there is no trivial approach which can provide a definitive formalism allowing us to solve the coupled systems of equations associated with nonlinear absorption. Here, we propose a general approach to deal with any spectral shape of the electromagnetic field interacting with a molecular species under saturation conditions. The development is specifically applied to Gaussian-shaped beams. To make the analytical expressions tractable, approximations are proposed. Finally, two or three numerical integrations are required for describing the Lamb-dip profile. The implemented model allows us to describe the saturated absorption under low pressure conditions where the broadening by the transit-time may dominate the collision rates. The model is applied to two specific overtone transitions of the molecular acetylene. The simulated line shapes are discussed versus the collision and the transit-time rates. The specific collisional and collision-free regimes are illustrated, while the Rabi frequency controls the intermediate regime. We illustrate how to recover the input parameters by fitting the simulated profiles.

  17. [Values of mixed venous oxygen saturation and difference of mixed venous-arterial partial pressure of carbon dioxide in monitoring of oxygen metabolism and treatment after open-heart operation].

    Science.gov (United States)

    Pan, Chuanliang; Zhang, Haiying; Liu, Jianping

    2014-10-01

    To explore the clinic values of early goal directed treatment (EGDT) with the target of mixed venous oxygen saturation (SvO₂) and difference of mixed venous-arterial partial pressure of carbon dioxide (Pv-aCO₂) in monitoring of oxygen metabolism and treatment for patients post open-heart operation. A prospective study was conducted. The adult patients admitted to Third People's Hospital of Chengdu from December 2011 to March 2014 with SvO₂2 mmol/L when admitted in intensive care unit (ICU) were selected on whom elective open-heart operation and pulmonary artery catheter examination were done. All patients received EGDT with the target of SvO₂≥0.65 and Pv-aCO₂<6 mmHg (1 mmHg=0.133 kPa) and were divided into three groups by the values of SvO₂and Pv-aCO₂at 6-hour after ICU admission: A group with SvO₂≥0.65 and Pv-aCO₂<6 mmHg, B group with SvO₂≥0.65 and Pv-aCO₂≥6 mmHg, and C group with SvO₂<0.65. Then the changes and prognosis of the patients in different groups were observed. 103 cases were included, 44 in A group, 31 in B group and 28 in C group. The acute physiology and chronic health evaluation II (APACHEII) score in group A were significantly lower than that in group B or C at 6, 24, 48 and 72 hours (T6, T24, T48, T72) of ICU admission (T6: 11.4 ± 5.8 vs. 13.9 ± 5.4, 13.7 ± 6.4; T24: 8.8 ± 3.7 vs. 10.8 ± 4.8, 11.8 ± 5.4; T48: 8.7 ± 4.1 vs. 9.6 ± 4.2, 10.2 ± 5.1; T72: 7.5 ± 3.4 vs. 8.6 ± 2.9, 9.2 ± 4.2, all P<0.05), and the sequential organ failure assessment (SOFA) showed the same tendency (T6: 6.5 ± 4.3 vs. 8.0 ± 3.8, 9.1 ± 4.5; T24: 6.6 ±3.6 vs. 8.6 ± 3.9, 8.5 ± 3.3; T48: 5.2 ± 3.4 vs. 7.0 ± 3.6, 7.6 ± 5.1; T72: 4.6 ± 2.4 vs. 5.8 ± 2.5, 6.8 ± 3.5, all P<0.05). The values of blood lactic acid (mmol/L) in group A and B were significant lower than that in group C at T6, T24, T48 and T72 (T6: 1.60 ± 0.95, 2.20 ± 1.02 vs. 2.55 ± 1.39; T24: 2.26 ± 1.26, 2.70 ± 1.36 vs. 3.34 ± 2.36; T48: 2.01 ± 1.15, 2.17

  18. Grain scale observations of stick-slip dynamics in fluid saturated granular fault gouge

    Science.gov (United States)

    Johnson, P. A.; Dorostkar, O.; Guyer, R. A.; Marone, C.; Carmeliet, J.

    2017-12-01

    We are studying granular mechanics during slip. In the present work, we conduct coupled computational fluid dynamics (CFD) and discrete element method (DEM) simulations to study grain scale characteristics of slip instabilities in fluid saturated granular fault gouge. The granular sample is confined with constant normal load (10 MPa), and sheared with constant velocity (0.6 mm/s). This loading configuration is chosen to promote stick-slip dynamics, based on a phase-space study. Fluid is introduced in the beginning of stick phase and characteristics of slip events i.e. macroscopic friction coefficient, kinetic energy and layer thickness are monitored. At the grain scale, we monitor particle coordination number, fluid-particle interaction forces as well as particle and fluid kinetic energy. Our observations show that presence of fluids in a drained granular fault gouge stabilizes the layer in the stick phase and increases the recurrence time. In saturated model, we observe that average particle coordination number reaches higher values compared to dry granular gouge. Upon slip, we observe that a larger portion of the granular sample is mobilized in saturated gouge compared to dry system. We also observe that regions with high particle kinetic energy are correlated with zones of high fluid motion. Our observations highlight that spatiotemporal profile of fluid dynamic pressure affects the characteristics of slip instabilities, increasing macroscopic friction coefficient drop, kinetic energy release and granular layer compaction. We show that numerical simulations help characterize the micromechanics of fault mechanics.

  19. Stabilization of Networked Control Systems with Variable Delays and Saturating Inputs

    Directory of Open Access Journals (Sweden)

    M. Mahmodi Kaleybar

    2014-06-01

    Full Text Available In this paper, improved conditions for the synthesis of static state-feedback controller are derived to stabilize networked control systems (NCSs subject to actuator saturation. Both of the data packet latency and dropout which deteriorate the performance of the closed-loop system are considered in the NCS model via variable delays. Two different techniques are employed to incorporate actuator saturation in the system description. Utilizing Lyapunov-Krasovskii Theorem, delay-dependent conditions are obtained in terms of linear matrix inequalities (LMIs to determine the static feedback gain. Moreover, an optimization problem is formulated in order to find the less conservative estimate for the region of attraction corresponding to different maximum allowable delays. Numerical examples are introduced to demonstrate the effectiveness and advantages of the proposed schemes.

  20. Elastoplastic model for unsaturated, quasi-saturated and fully saturated fine soils

    Directory of Open Access Journals (Sweden)

    Lai Ba Tien

    2016-01-01

    Full Text Available In unsaturated soils, the gaseous phase is commonly assumed to be continuous. This assumption is no more valid at high saturation ratio. In that case, air bubbles and pockets can be trapped in the porous network by the liquid phase and the gas phase becomes discontinuous. This trapped air reduces the apparent compressibility of the pore fluid and affect the mechanical behavior of the soil. Although it is trapped in the pores, its dissolution can take place. Dissolved air can migrate through the pore space, either by following the flow of the fluid or by diffusion. In this context, this paper present a hydro mechanical model that separately considers the kinematics and the mechanical behavior of each fluid species (eg liquid water, dissolved air, gaseous air and the solid matrix. This new model was implemented in a C++ code. Some numerical simulations are performed to demonstrate the ability of this model to reproduce a continuous transition of unsaturated to saturated states.